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DISCRETE QUANTUM GRAVITY
IS NOT ISOMETRIC

S. Gudder
Department of Mathematics

University of Denver
Denver, Colorado 80208, U.S.A.

sgudder@du.edu

Abstract

We show that if a discrete quantum gravity is not classical, then
it cannot be generated by an isometric dynamics. In particular, we
show that if the quantum measure µ (or equivalently the decoherence
functional) is generated by an isometric dynamics, then there is no in-
terference between events so the system describing evolving universes
is classical. The result follows from a forbidden configuration in the
path space of causal sets.

1 Introduction

This introduction presents an overview of the article and precise definitions
will be given in Section 2. We denote the collection of causal sets of cardi-
nality i by Pi, i = 1, 2, . . . . If xi ∈ Pi, xi+1 ∈ Pi+1 satisfy a certain growth
relationship, we write xi → xi+1. A path is a sequence x1x2 · · · , xi ∈ Pi with
xi → xi+1 and an n-path is a sequence of length n, x1x2 · · ·xn, xi ∈ Pi with
xi → xi+1. We denote the set of paths by Ω and the set of n-paths by Ωn.
For ω ∈ Ωn, cyl(ω) is the collection of all paths whose initial n-path is ω
and An is the algebra generated by cyl(ω) for all ω ∈ Ωn. Letting A be the
σ-algebra generated by An, n = 1, 2, . . ., we have that A1 ⊆ A2 ⊆ · · · ⊆ A.
The theory of classical sequential growth process [3, 4, 7] provides us with a
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probability measure ν on A so (Ω,A, ν) becomes a probability space. Let-
ting νn = ν | An be the restriction of ν to An we obtain the Hilbert space
H = L2(Ω,A, ν) together with the increasing sequence of closed subspaces
Hn = L2(Ω,An, νn). The dynamics of a discrete quantum gravity is de-
scribed by a sequence of positive operators ρn on Hn, n = 1, 2, . . ., satisfying
a normalization and consistency condition [2].

We call Pn the n-site space and the associated Hilbert space Kn is the n-
site Hilbert space. Let Un : Kn → Kn+1 be an isometric operator (isometry),
n = 1, 2, . . ., that is compatible with the growth relation x → y. When Un

describes the evolution of the system, there is a standard prescription [5, 6]
for defining the amplitude an(ω) in terms of Un for every ω ∈ Ωn. Also, for
ω = x1x2 · · ·xn, ω′ = x′1x

′
2 · · ·x′n one defines the decoherence

Dn(ω, ω′) = a(ω)a(ω′)δxn,x′n

Moreover, the decoherence functional Dn : An ×An → C is given by

Dn(A,B) =
∑
{Dn(ω, ω′) : ω ∈ A, ω′ ∈ B}

and the quantum measure µn : An → R+ is defined as µn(A) = Dn(A,A). It
can be shown that the matrix with components Dn(ω, ω′) defines a positive
operator ρn on Hn satisfying the conditions of the previous paragraph. In
this case, we say that ρn is generated by the isometry Un.

Our main result follows from a forbidden configuration (FC) theorem for
the path space Ω. If x ∈ Pn, y ∈ Pn+1 with x → y we say that x produces
y and y is an offspring of x. The FC theorem states that two different
producers cannot have two distinct offspring in common. The FC theorem
greatly restricts the allowed isometrics Un which in turn restricts the possible
generated operators ρn. In fact, if ρn is generated by an isometry, then its
matrix representation Dn(ω, ω′) is diagonal. This implies that there is no
interference between paths and that µn is a classical probability measure. We
conclude that if a discrete quantum gravity is not classical, then it cannot
be generated by an isometric dynamics. Of course, almost by definition, a
discrete quantum gravity is not classical, hence the title of this paper. Since
ρn is not generated by an isometry, we must obtain ρn in other ways. We
refer the reader to [2] for a study of this problem.
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2 Discrete Quantum Gravity

A partially ordered set (poset) is a set x together with an irreflexive, tran-
sitive relation < on x. In this work we only consider unlabeled posets and
isomorphic posets are considered to be identical. Let Pn be the collection
of all posets with cardinality n, n = 1, 2, . . ., and let P = ∪Pn. An element
of P is called a causal set and if a < b for a, b ∈ x where x ∈ Pn, then b
is in the causal future of a. If x ∈ Pn, y ∈ Pn+1, then x produces y if y is
obtained from x by adjoining a single new element a to x that is maximal in
y. Thus, a ∈ y and there is no b ∈ y such that a < b. In this case, we write
y = x ↑ a. We also say that x is a producer of y and y is an offspring of x.
If x produces y we write x→ y. We denote the set of offspring of x by x→
and for A ∈ Pn we use the notation

A→= {y ∈ Pn+1 : x→ y, x ∈ A}

The transitive closure of → makes P itself a poset [1, 3, 5].
A path in P is a string (sequence) x1x2 · · · where xi ∈ Pi and xi → xi+1,

i = 1, 2, . . . . An n-path in P is a finite string x1x2 · · ·xn where again xi ∈ Pi

and xi → xi+1. We denote the set of paths by Ω and the set of n-paths by
Ωn. The set of paths whose initial n-path is ωn ∈ Ωn is denoted by ωn ⇒.
Thus, if ωn = x1x2 · · ·xn then

ωn ⇒= {ω ∈ Ω: x1x2 · · ·xnyn+1yn+2 · · · }

For A ⊆ Ωn we use the notation

A⇒= ∪{ω ⇒ : ω ∈ A}

Thus, A ⇒ is the set of paths whose initial n-paths are elements of A. We
call A⇒ a cylinder set and define

An = {A⇒ : A ⊆ Ωn}

In particular, if ωn ∈ Ωn then the elementary cylinder set cyl(ωn) is given
by cyl(ωn) = ωn ⇒. It is easy to check that An forms a increasing sequence
A1 ⊆ A2 ⊆ · · · of algebras on Ω and hence C(Ω) = ∪An is an algebra of
subsets of Ω. We denote the σ-algebra generated by C(Ω) by A.

It is shown in [4, 7] that a classical sequential growth process (CSGP) on
P that satisfies natural causality and covariance conditions is determined by
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a sequence of nonnegative numbers c = (c1, c2, . . .) called coupling constants.
The coupling constants determine a unique probability measure νc on A
making (Ω,A, νc) a probability space. The path Hilbert space is given by
H = L2(Ω,A, νc). If νn

c = νc | An is the restriction of νc to An, then Hn =
L2(Ω,A, νn

c ) is an increasing sequence of closed subspaces of H. Assuming
that νn

c (cyl(ω)) 6= 0, an orthonormal basis for Hn is

en
ω = νn

c (cyl(ω))−1/2 χcyl(ω), ω ∈ Ωn

where χA denotes the characteristic function of a set A.
A bounded operator T on Hn will also be considered as a bounded op-

erator on H by defining Tf = 0 for all f ∈ H⊥n . We employ the notation
χΩ = 1. A q-probability operator is a positive operator ρn on Hn that satisfies
〈ρn1, 1〉 = 1. Denote the set of q-probability operators on Hn by Q(Hn). For
ρn ∈ Q(Hn) we define the n-decoherence functional [1, 2, 3]Dn : An×An → C
by

Dn(A,B) = 〈ρnχB, χA〉
The functional Dn(A,B) gives a measure of the interference between A and
B when the system is described by ρn. It is clear that Dn(Ωn,Ωn) = 1,
Dn(A,B) = Dn(B,A) and A 7→ Dn(A,B) is a complex measure for every
B ∈ An. It is also well known that if A1, . . . , An ∈ An then the matrix with
entries Dn(Aj, Ak) is positive semidefinite. We define the map µn : An → R+

by
µn(A) = Dn(A,A) = 〈ρnχA, χA〉

Notice that µn(Ωn) = 1. Although µn is not additive, it satisfies the grade
2-additive condition: if A,B,C ∈ An are mutually disjoint, then

µn(A∪B∪C) = µn(A∪B)+µn(A∪C)+µn(B∪C)−µn(A)−µn(B)−µn(C)

We call µn the q-measure corresponding to ρn [1, 5, 6].
We call a sequence ρn ∈ Q(Hn), n = 1, 2, . . ., consistent if Dn+1(A,B) =

Dn(A,B) for all A,B ∈ An. Of course, if the sequence ρn, n = 1, 2, . . .,
is consistent, then µn+1(A) = µn(A) for every A ∈ An. In the present
context, a quantum sequential growth process (QSGP) is a consistent sequence
ρn ∈ Q(Hn). We consider a QSGP as a model for discrete quantum gravity.
It is hoped that additional theoretical principles or experimental data will
help determine the coupling constants and the ρn ∈ Q(Hn). We will then
know νc which is the classical part of the process and ρn, n = 1, 2, . . ., which
is the quantum part.
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3 Isometric Generation

Let Kn be the Hilbert space of complex-valued functions on Pn with the
usual inner product

〈f, g〉 =
∑
x∈Pn

f(x)g(x)

We call Kn the n-site Hilbert space and we denote the standard basis χ{x}
of Kn by en

x, x ∈ Pn. The projection operators Pn(x) = |en
x〉〈en

x|, x ∈ Pn,
describe the site at step n of the process. Let Un : Kn → Kn+1 be an operator
satisfying the two conditions

(1) U∗nUn = In (isometry).

(2) If xn 6→ xn+1, then
〈
exn+1

n+1
, Une

n
xn

〉
= 0 (compatibility).

Condition (1) implies that Un is an isometry; that is,

〈Unf, Ung〉 = 〈f, g〉

for all f, g ∈ Kn. The compatibility condition (2) ensures that Un preserves
the growth relation xn → xn+1; that is, when en

xn
corresponds to site xn, then

Une
n
xn

corresponds to sites in xn →. Notice that Qn = UnU
∗
n is the projection

from Kn+1 onto Range (Un). We call

a(xn → xn+1) =
〈
en+1

xn+1
, Une

n
xn

〉
the transition amplitude from xn to xn+1. Of course, by (2) a(xn → xn+1) = 0
if xn 6→ xn+1. The corresponding transition probability is |a(xn → xn+1|2.
Since

Une
n
xn

=
∑

xn+1∈Pn+1

a(xn → xn+1)en+1
xn+1

we conclude that |a(xn → xn+1)|2 can be interpreted as a probability because∑
xn+1∈Pn+1

|a(xn → xn+1|2 =
∥∥Une

n
xn

∥∥2
= 1 (3.1)

For r ≤ s ∈ N, define U(s, r) : Kr → Ks by U(r, r) = Ir if r = s and if r < s,
then

U(s, r) = UrUr+1 · · ·Us−1
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Then U(s, r) is an isometry and U(t, r) = U(t, s)U(s, r) for all r ≤ s ≤ t ∈
N. We call U(s, r) r ≤ s ∈ N a discrete isometric system. Such systems
frequently describe the dynamics (evolution) in quantum mechanics [1, 5, 6].

We can assume that all paths or n-paths begin at the poset x1 that has
one element. We describe the n-path ω = x1x2 · · ·xn quantum mechanically
by the operator Cn(ω) : K1 → Kn given as

Cn(ω) = Pn(xn)Un−1Pn−1(xn−1)Un−2 · · ·P2(x2)U1 (3.2)

Defining the amplitude a(ω) of ω by

a(ω) = a(xn−1 → xn)a(xn−2 → xn−1) · · · a(x1 → x2) (3.3)

we can write (3.2) as
Cn(ω) = a(ω)

∣∣en
xn

〉〈
e1

x1

∣∣ (3.4)

We interpret |a(ω)|2 as the probability of the n-path ω according to the
dynamics U(s, r). It follows from (3.1) that∑

ω∈Ωn

|a(ω)|2 = 1

so |a(ω)|2 is indeed a probability distribution on Ωn.
The operator Cn(ω′)∗Cn(ω) describes the interference between the two

n-paths ω, ω′ ∈ Ωn. Applying (3.4) we conclude that

Cn(ω′)∗Cn(ω) = a(ω′)a(ω)δxn,x′nI1

which we can identify with the complex number

Dn(ω, ω′) = a(ω′)a(ω)δxn,x′n (3.5)

The matrix Dn with entries Dn(ω, ω′) is called the decoherence matrix. We
say that a QSGP ρn, n = 1, 2, . . ., is isometrically generated if there exists
a discrete isometric system given by Un : Kn → Kn+1 such that ρn is the
operator corresponding to the matrix Dn; that is,

〈ρne
n
ω, e

n
ω′〉 = Dn(ω′, ω) (3.6)

for every ω, ω′ ∈ Ωn. At first sight, isometric generation appears to be a
natural way to construct a QSGP. However, the next section shows that this
does not work unless the QSGP is classical. For methods of constructing
such processes that are truly quantum, we refer the reader to [2].
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4 Forbidden Configurations

Various configurations can occur in the poset (P ,→). For instance, it is
quite common for two different producers to share a common offspring. The
next example discusses the case in which more than two producers share a
common offspring.

Example 1. Figure 1 illustrates a case in which three producers share a
common offspring. In this figure, a rising line called a link from vertex a to
vertex b designates that a < b and there is no c such that a < c < b. In this
figure, y1, y2 and y3 produce the offspring y. This is the smallest cardinality
example of this configuration. Indeed, if y has four elements then y would
need three nonisomorphic maximal elements to have three producers and
this is impossible. Figure 2 illustrates a poset that is the offspring of n
producers.

We call the next result the forbidden configuration (FC) theorem. The
proof of the theorem is illustrated in Figure 3.

Theorem 4.1. Two different producers cannot have two distinct offspring
in common.

Proof. Suppose x1 6= x2 both produce y1 6= y2 where = means isomorphic.
Then there exist a1, a2, b1, b2 such that y1 = x1 ↑ a1, y2 = x1 ↑ a2, y1 = x2 ↑
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b1, y2 = x2 ↑ b2. Since y1 6= y2, a1 6= a2 in the sense that the links of a1 are not
the same as the links of a2. Similarly, b1 6= b2. Since x1 6= x2, we have that
a1 6= b1. Similarly, a2 6= b2. Since b1 ∈ y1 we have that b1 ∈ x1. Since b2 ∈ y2

we have that b2 ∈ x1. Hence, {b1, b2} ⊆ x1 and similarly {a1, a2} ⊆ x2. Since
a1 /∈ x1 we conclude that a1 6= b1. Hence, {a1, b1, b2} ⊆ y1 and similarly
{a1, a2, b2} ⊆ y2. Let z1 = y1 r {a1, b1} and z2 = y2 r {a2, b2}. Then z1 6= z2

because b2 ∈ z1 and b2 /∈ z2. Now x1 = z1 ↑ b1 and x1 = z2 ↑ b2. Similarly,
x2 = z1 ↑ a1 and x2 = z2 ↑ a2. We conclude that x1 and x2 are common
offspring of distinct producers z1 and z2. Of course,

card (z1) = card (z2) = card (x1)− 1

We can continue this process until we obtain distinct producers of cardinal-
ity 2 at which point we have a contradiction.

We now present our main result.

Theorem 4.2. If a QSGP ρn is generated by isometries Un : Kn → Kn+1

then the corresponding q-measures µn are classical probability measures, n =
1, 2, . . . .

Proof. Suppose ρn is generated by isometries Un : Kn → Kn+1. Letting ω =
x1x2 · · ·xn, ω = x′1, x

′
2 · · · x′n be n-paths in Ωn with ω 6= ω′ we shall show that

Dn(ω, ω′) = 0. If xn 6= x′n, then by (3.5) we have Dn(ω, ω′) = 0 so suppose
that xn = x′n. Assume that xn−1 6= x′n−1 so xn is a common offspring of
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the distinct producers xn−1, x
′
n−1. By Theorem 4.1, xn is the only common

offspring of xn−1, x
′
n−1 so by the compatibility condition we have

a(xn−1 → xn)a(x′n−1 → xn) =
〈
Un−1e

n−1
xn−1

, en
xn

〉〈
en

xn
, Un−1e

n−1
x′n−1

〉
=
∑
y∈Pn

〈
Un−1e

n−1
xn−1

, en
y

〉〈
en

y , Un−1e
n−1
x′n−1

〉
=
〈
Un−1e

n−1
xn−1

, Un−1e
n−1
x′n−1

〉
= 0

It follows that a(xn−1 → xn) = 0 or a(x′n−1 → xn) = 0. Applying (3.3) we
conclude that a(ω) = 0 or a(ω′) = 0 and hence, by (3.5) Dn(ω, ω′) = 0. If
xn−1 = x′n−1, since ω 6= ω′ we will eventually have a largest r ∈ N such that
xr 6= x′r, 2 ≤ r ≤ n− 2. We now proceed as before to obtain Dn(ω, ω′) = 0.
It follows from (3.6) that 〈ρne

n
ω, e

n
ω′〉 = 0. Hence, if A ∈ An we have

µn(A) =
∑
{〈ρne

n
ω, e

n
ω′〉 : ω ⇒, ω′ ⇒⊆ A}

=
∑
{〈ρωe

n
ω, e

n
ω〉 : ω ⇒⊆ A}

=
∑
{µ ({ω}) : ω ⇒⊆ A}

We conclude that µn is a classical probability measure, n = 1, 2, . . . .

If µn is a classical probability measure, then there is no interference be-
tween events and the QSGP is classical. We conclude that if a QSGP is
isometrically generated, then it is classical.
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