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Abstract

Vertex algebras arose in conformal field theory and were first defined axiomat-

ically by Borcherds in his famous proof of the Moonshine Conjecture in 1986. The

orbifold construction is a standard way to construct new vertex algebras from old

ones. Starting with a vertex algebra V and a group G of automorphisms, one con-

siders the invariant subalgebra VG (called G-orbifold of V), and its extensions. For

example, the Moonshine vertex algebra arises as an extension of the Z2-orbifold of

the lattice vertex algebra associated to the Leech lattice.

In this thesis we consider two problems. First, given a simple, finite-dimensional

Lie algebra g, there is an involution on g called the Cartan involution, which lifts

to a Z2-action on the universal affine vertex algebra V k(g) at level k. For any g,

we shall find an explicit minimal strong generating set for the orbifold V k(g)Z2 , for

generic values of k. Let l = rank(g) and let m be the number of positive roots of g,

so that dim(g) = 2m+ l. We will prove that for g 6= sl2, V
k(g)Z2 is of type

W
(
1m, 2d+(d2), 3(d2), 4

)
, d = m+ l,

for generic values of k. In this notation, a vertex algebra is said to be of type

W((d1)
n1 , . . . (dr)

nr) if it has a minimal strong generating set consisting of ni fields

in weight di, for i = 1, . . . , r. In the case g = sl2, there is one extra field in weight

4, so that V k(g)Z2 is of type W(1, 23, 3, 42) for generic value of k. In the case

g = sl2, we explicitly determine the set of nongeneric values of k where this set
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does not strongly generate the orbifold; it consists only of {0,±32
3 , 16, 48}. Second,

we consider the Z2-orbifold of the Zamolodchikov W3-algebra with central charge

c, which we denote by Wc
3. It was conjectured over 20 years ago in the physics

literature that (Wc
3)Z2 should be of type W(2, 4, 6, 8, 10) for generic values of c. We

prove this conjecture for all values of c 6= 559±7
√
76657

95 , and we show that for these

two values of c, (Wc
3)Z2 is of type W(2, 6, 8, 10, 12, 14). The method introduced to

study (Wc
3)Z2 involves ideas from algebraic geometry and is applicable to a broad

range of problems of this kind.
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Chapter 1

Introduction

Vertex algebra has its roots in physics literature including string theory and

conformal field theory. More recently, this notion attracted the mathematicians and

so many applications have appeared including finite group theory and representa-

tions of infinite dimensional Lie algebras. The notion of vertex algebra first was

introduced by Borcherds in 1986 in his astonishing proof of the Moonshine Con-

jecture. Thereby, it has been developed emphasizing beautifully the overlapping

between physics and mathematics [B, FLM, K].

Given a vertex algebra V and a group G of automorphisms of V, the invariant

subalgebra VG is called a G-orbifold of V. Many interesting vertex algebras can be

constructed either as orbifolds or as extensions of orbifolds. A spectacular example

is the Moonshine vertex algebra V \, which is an extension of the Z2-orbifold of the

lattice vertex algebra associated to the Leech lattice [B, FLM]. Its full automorphism

group is the Monster finite simple group of order

245.320.59.76.112.133.17.19.23.29.31.41.47.59.71 ≈ 8.1053,
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and its graded character is the modular invariant j-function from number theory up

to a constant. There is a substantial literature on the structure and representation

theory of orbifolds under finite group actions; see for example [DVVV, DHVW,

DM, DLMI, DLMII, DRX]. It is widely believed that nice properties of V such as

C2-cofiniteness and rationality will be inherited by VG when G is finite. In the case

where G is cyclic, the C2-cofiniteness of VG was proven by Miyamoto in [M], and

the rationality was recently established by Carnahan and Miyamoto in [CM].

Many vertex algebras depend continuously on a parameter k. Examples

include the universal affine vertex algebra V k(g) associated to a simple, finite-

dimensional Lie algebra g, and the W-algebra Wk(g, f) associated to g together

with a nilpotent element f ∈ g. Typically, if Vk is such a vertex algebra depending

on k, it is simple for generic values of k but has a nontrivial maximal proper ideal Ik

for special values. Often, one is interested in the structure and representation theory

of the simple quotient Vk/Ik at these points. For example, the C2-cofiniteness and

rationality of simple affine vertex algebras at positive integer level was proven by

Frenkel and Zhu in [FZ], and the C2-cofiniteness and rationality of several families

of W-algebras is due to Arakawa [A].

A vertex algebra V is called a strongly finitely generated (shortly SFG) if

there is a finite set of generators, such that the collection of iterated Wick products

of the generators and their derivatives spans V. Many well-known vertex algebras

have this property, and finding a minimal strong finite generating set for a vertex

algebra is a very useful step towards understanding its structure and representation

theory. Since a strong generating set for a vertex algebra gives rise to a generating

set for Zhu’s associative algebra Zhu(V) [Zh], the SFG property implies that Zhu(V)

is finitely generated. This is important because the irreducible, positive energy

representations of V are in one-to-one correspondence with the irreducible modules

over Zhu(V). Also, the SFG property of V is equivalent to the finite generation of
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Zhu’s commutative algebra, which implies that the associated variety of V is if finite

type.

In general, it is a difficult problem to determine if a vertex algebra V has the

SFG property. In a series of papers [LI, LII, LIII, LIV, LV, CLII], Linshaw has

established that if V is a free field algebra (i.e., either a Heisenberg algebra, a βγ-

system, a free fermion algebra, or a symplectic fermion algebra of finite rank), and G

is a reductive group of automorphisms of V, the orbifold VG has the SFG property.

This also holds if V is an affine vertex algebra V k(g) for any Lie (super)algebra g

equipped with a nondegenerate supersymmetric bilinear form, for generic values of

k [LIV, CLIII]. However, there are very few nontrivial examples where an explicit

minimal strong generating set can be written down. Also, for vertex algebras like

V k(g) which depend on a parameter k, it is important to determine the nongeneric

set, where the strong generating set does not work. By a result of [CLIII], it is

known that this set contains at most the poles of the structure constants appearing

in the operator product expansions (OPEs) of the generators, and in particular is

a finite set. Unfortunately there are few examples where it is practical to work this

out explicitly, even with the help of a computer.

The importance of finding the nongeneric points is that it allows us to study

orbifolds of the simple quotient Lk(g) of V k(g), provided that k is generic in the

above sense. The projection V k(g) → Lk(g) always restricts to a surjective homo-

morphism

V k(g)G → Lk(g)G,

so a strong generating set for V k(g)G descends to a strong generating set for Lk(g)G.

In the examples we consider, most of the interesting values of k for which V k(g) is

highly reducible turn out to be generic, so we obtain strong generators for Lk(g)G.
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1.1 Outline

The goal of this dissertation is to study the explicit structure of the Z2-orbifold

of the universal affine vertex algebra V k(g) associated to a simple, finite-dimensional

Lie algebra g at level k, and the Zamolodchikov W3 algebra Wc
3 with central charge

c. Our calculations are done using the Mathematica package of Thielemans [T].

This dissertation is organized as follows:

Chapter 2, we give some foundations, and review basic notations towards

defining a vertex algebra. We then give a precise definition of a vertex algebra. A

vertex algebra is a (super) vector space V with a vacuum vector 1, and a translation

operator T together with a linear map:

Y (., z) : V → End(V )[[z, z−1]];

assigns to each a ∈ V a field

a(z) :=
∑
n∈Z

a(n)z−n−1 ∈ End(V )[[z, z−1]],

satisfying that for v ∈ V, a(n).v = 0 for n sufficiently large enough.

This data is required to satisfy some axioms. Loosely speaking, the vertex

algebra can be viewed as a generalization of an associative commutative algebra

with a unit. We provide extensive examples and explore the algebraic structure of

some well-known vertex algebras associated with infinite-dimensional Lie algebras,

like the Heisenberg, affine Kac-Moody, Virasoro vertex algebras and the fermionic

ghost system.

Chapter 3 is devoted to introduce the classical invariant theory. We present

highlighted theorems such as Hilbert Finiteness Theorem, and Weyl First and Sec-

ond Fundamental Theorems. In the Weyl Theorem, all invariants of many copies of
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a given representation V can be obtained from only n copies where dim(V ) = n by

a process called polarization. In chapter 4, we give an introduction to the orbifold

theory, and a motivation to the strong finite generating set.

The main body is presented in Chapters 5 and 6. First, we study V k(g)Z2 in

Chapter 5. Here g is a simple, finite-dimensional Lie algebra and V k(g) denotes the

corresponding universal affine vertex algebra at level k. There is an involution of g

known as the Cartan involution, and it gives rise to the action of Z2 on V k(g)Z2 .

Let l = rank(g) and let m be the number of positive roots, so that dim(g) = 2m+ l.

Our main result is that for any g with dim(g) > 3, V k(g)Z2 is of type

W
(
1m, 2d+(d2), 3(d2), 4

)
,

for generic values of k. Here d = m+l. In this notation, we say that a vertex algebra

is of type W((d1)
n1 , . . . (dr)

nr) if it has a minimal strong generating set consisting

of ni fields in weight di, for i = 1, . . . , r. In the case g = sl2, there is one extra field

in weight 4, so that V k(g)Z2 is of type W(1, 23, 3, 42) for generic value of k.

To prove this result, we use a deformation argument [LIV] that says that in

an appropriate sense,

lim
k→∞

V k(g)Z2 ∼= H(m)⊗
(
H(d)Z2

)
.

Here H(k) denotes the rank k Heisenberg vertex algebra, and the action of Z2 is

given on the generators by multiplication by −1. Moreover, the limiting structure

has a minimal strong generating set of the same type as V k(g)Z2 for generic val-

ues of k. So the problem of finding a minimal strong generating set for V k(g)Z2 is

reduced to finding the minimal strong generating set for H(d)Z2 for all d. In the

case d = 1, H(1)Z2 is of type W(2, 4) by a celebrated result of Dong and Nagatomo

[DNI], and this is the starting point for the study of Z2-orbifolds of rank one lat-
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tice vertex algebras. Much is also known about the structure and representation

theory of H(n)Z2 (see [DNII]), although a minimal strong generating set was not

previously determined in the literature. We will show that for d = 2, H(2)Z2 is of

type W(23, 3, 42) and for d ≥ 3, H(d)Z2 is of type W(2d+(d2), 3(d2), 4). This is the key

technical ingredient in the above description of V k(g)Z2 .

It is also of interest to explicitly describe the set of nongeneric values of k

where the above strong generating sets do not work. By a general result of [CLIII],

this set is always finite and consists at most of the poles of the structure constants of

the OPE algebra among the generators. In practice, it is very difficult to explicitly

compute the generators and these structure constants. In the case of sl2 we carry this

out and give the complete set of nongeneric values; it consists only of {0,±32
3 , 16, 48}.

It follows that for all other values of k, the strong generating set for V k(sl2)
Z2 will

descend to a strong generating set for the simple orbifold Lk(sl2)
Z2 .

In Chapter 6, we study the Z2-orbifold of the Zamolodchikov algebra Wc
3.

This is the simplest nontrivial example of a W-algebra, and the first to appear in

the literature [Za] in the context of two-dimensional conformal field theories with

extensions of Virasoro symmetry. It is of type W(2, 3) is generated by the Virasoro

field L and a weight 3 primary field W . Unlike free field and affine vertex algebras,

the OPE relations among L and W are nonlinear in the sense that normally ordered

products of the generators and their derivatives appear. This makes their study

much more difficult. It was conjectured over 20 years ago in the physics literature

[BS, B-H] that (Wc
3)Z2 should be of type W(2, 6, 8, 10, 12) for generic values of c.

Our main result in this chapter is a proof of this conjecture for all values of c except

for c 6= 559±7
√
76657

95 . Additionally, we show that for these two values of c, (Wc
3)Z2 is

of type W(2, 6, 8, 10, 12, 14).

The proof of this result is more difficult than our description of V k(g)Z2 in

Chapter 5, and requires a different approach since it is not practical to calculate the
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full OPE algebra among the generators and determined the poles of all structure

constants. We first construct a natural infinite strong generating set

{L,U2n,0| n ≥ 0}

for (Wc
3)Z2 , where U2n,0 = : (∂2nW )W :, which has weight 2n+ 6. This generating

set comes from classical invariant theory, and there are infinitely many nontrivial

normally ordered relations among these generators. The relation of minimal weight

14 is unique up to scalar multiples, and has the form

181248 + 5590c− 475c2

60480(22 + 5c)
U8,0 = P (L,U0,0, U2,0, U4,0, U6,0),

where P is a normally ordered polynomial in L,U0,0, U2,0, U4,0, U6,0 and their deriva-

tives. The pole at c = −22
5 is inessential and can be removed; it is a consequence

of the choice of normalization of W . Therefore U8,0 can be eliminated if and only

if c 6= 559±7
√
76657

95 . Similarly, we construct decoupling relations for all c expressing

U10,0, U12,0 and U14,0 as normally ordered polynomials in L,U0,0, U2,0, U4,0, U6,0, U8,0,

and their derivatives. To construct decoupling relations for Un,0 for all even integers

n ≥ 16, we apply the operators U0,0◦1 and U2,0◦1 to the above relations. This yields

two families of relations

F (n, c)Un+4,0 = An(L,U0,0, U2,0, . . . , Un+2,0), (1.1.1)

G(n, c)Un+6,0 = Bn(L,U0,0, U2,0, . . . , Un+4,0), (1.1.2)

where An and Bn are normally ordered polynomials as above. The key observation

is that F (n, c) and G(n, c) are rational functions of c and n which have no poles

for c 6= −22
5 and n ≥ 10. So if (c, n) does not lie on the affine variety V ⊂ C2

determined by F (n − 4, c) = 0 and G(n − 6, c) = 0, we can use either (1.1.1) or

7



(1.1.2) to eliminate Un,0 for all n ≥ 16. The main technical result in Chapter 6 is

finding the explicit form of F (n, c) and G(n, c). It is then straightforward to prove

that V has no such points (c, n) where n ≥ 16 is an even positive integer.

This method provides a general algorithmic approach to determining the non-

generic set for orbifolds of the form (Vk)G, where Vk is a vertex algebra depending on

a parameter k. Typically, there is a natural infinite strong generating set for (Vk)G

coming from classical invariant theory. There are also infinitely many nontrivial

normally ordered relations among these generators. These relations allow certain

generators to be eliminated, and for generic values of k, all but finitely many can be

eliminated. If we eliminate as many generators as possible, the remaining ones will

form a minimal strong generating set S that works for generic k. We expect that

families of relations can be constructed such that the coefficients of the generators

to be eliminated are rational functions in finitely many variables

Fi(k, n1, . . . , nr), i = 1, . . . , s.

Here n1, . . . , nr must be positive integers, and are related to the weights of the gen-

erators to be eliminated. Corresponding to such a system of relations is the variety

V ⊂ Cr+1 determined by Fi(k, n1, . . . , nr) = 0 for i = 1, . . . , s. A value of k will be

generic if there is no point (k, n1, . . . , nr) ∈ V such that the remaining coordinates

n1, . . . , nt are positive integers. Points with such strong integrality constraints are

expected to be rare, and in principle can be found.

8



Chapter 2

Introduction to Vertex Algebras

In this chapter, we review some basic definitions and important lemmas in

order to give a precise definition of vertex algebras. We provide well-known exam-

ples of commutative vertex algebras as well as non-commutative ones associated to

infinite dimensional Lie algebras along with their algebraic structure.

2.1 Preliminaries

Let V be a vector space (generally over C).

Definition 2.1.1. A V -valued formal distribution in formal variables z1, z2, ..., zn

is a finite or infinite series

f(z1, z2, ..., zn) =
∑
i1∈Z

...
∑
in∈Z

fi1,...,inz
i1
1 ...z

in
n , (2.1.1)

where each fi1,...,in ∈ V. The space of all series of this form defines a vector space

denoted by V [[z±11 , z±12 , ..., z±1n ]].

9



Multiplying a formal distribution f(z1, z2, ..., zn) ∈ V [[z±11 , z±12 , ..., z±1n ]] by a

formal distribution g(w1, w2, ..., wm) ∈ V [[w±11 , w±12 , ..., w±1m ]] is well-defined element

in V [[z±11 , z±12 , ..., z±1n , w±11 , w±12 , ..., w±1m ]]. Nevertheless, the product of two elements

of V [[z±11 , z±12 , ..., z±1n ]] in general does not make sense since it gives an infinite series

which might not converge. However, the product of a formal power series by a

Laurent series, that is a series of the form (2.1.1) satisfying that fi1,...,in = 0 for

n << 0 is well-defined. The space of all Laurent series with coefficients in V in

one formal variable z is denoted by V ((z)), while V ((z))((w)) indicates the space of

Laurent series in w whose coefficients are Laurent series in z. In several variables,

the space V ((z1, z2, ..., zn)) will denote the field of fractions of V [[z1, z2, ..., zn]]. The

space of all Laurent polynomials with coefficients in V in formal variables z1, z2, ..., zn

is denoted by V [z1, z
−1
1 , z2, z

−1
2 , ..., zn, z

−1
n ].

An interesting example of the formal distribution in two variables is the delta-

function as it will be defined in the next section.

Definition 2.1.2. Let f(z) =
∑

n∈Z fnz
n ∈ V [[z±1]] be a formal distribution in one

formal variable. The linear map Resz : V [[z±1]] → V is the formal residue of f(z)

defined to be the coefficient of z−1. That is,

Reszf(z) = f−1.

The formal derivative ∂z : V [[z±1]]→ V [[z±1]] is defined by

∂z(
∑
n∈Z

fnz
n) =

∑
n∈Z

nfnz
n−1.

Clearly, Resz∂zf(z) = 0.

10



Definition 2.1.3. Given a Z≥0-graded vector space V over C

V =

∞⊕
n=0

Vn.

A linear map (an endomorphism) ϕ : V → V is called homogenous of degree m, if

ϕ(Vn) ⊂ Vn+m for all n.

Conventions 2.1.4. For any two formal variables z, w, and an arbitrary complex

number m, the binomial series (z + w)m can be given by the following expansion:

(z + w)m =
∑
n≥0

(
m

n

)
zm−nwn,

where (
m

n

)
=
m(m− 1)...(m− n+ 1)

n!
.

A special case gives

(1− z)−1 =
∑
n≥0

zn, for |z| < 1.

2.2 Delta-function

The delta-function is a formal distribution δ ∈ C[[z±1, w±1]] in formal two

variables z, w, defined as follows:

δ(z, w) =
∑
n∈Z

znw−n−1. (2.2.1)

Remark 2.2.1. It is easy seen from the definition of Delta-function that

δ(z, w) =
∑

n∈Z z
nw−n−1 =

∑
m∈Z z

−m−1wm = δ(w, z). Moreover, since

δ(z, w) =
∑
m∈Z

z−m−1wm =
∑
m∈Z

z−m−2wm+1,
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so ∂zδ(z, w) = −∂wδ(w, z).

Proposition 2.2.2. Let a(z) be a formal distribution in one formal variable. The

Delta-function satisfies The following:

1. a(z)δ(z, w) = a(w)δ(z, w).

2. Resz(a(z)δ(z, w)) = a(w).

3. (z − w)k+1∂kwδ(z, w) = 0.

2.3 The power series expansion of a rational function

Given a rational function in two formal variables f(z, w) with poles at z =

0, w = 0, |z| = |w| only. The power series expansion of f(z, w) in the domain

|z| > |w| (respectively |w| > |z|) is denoted by i|z|>|w|f (respectively i|w|>|z|f).

Example 2.3.1. For k ≥ 0, we have

i|z|>|w|
1

(z − w)k+1
=
∞∑
j=0

(
j

k

)
z−j−1wj−k,

i|w|>|z|
1

(z − w)k+1
= −

−∞∑
j=−1

(
j

k

)
z−j−1wj−k.

Remark 2.3.2. For k ∈ Z, we have

i|z|>|w|(z − w)k =
∞∑
j=0

(
k

j

)
(−w)jzk−j ∈ C[z][[z−1, w]],

i|w|>|z|(z − w)k =
∞∑
j=0

(
k

j

)
zj(−w)k−j ∈ C[w][[w−1, z]].

For k > 0, the above two expansions are equal, but for k < 0, i|z|>|w|(z − w)k 6=

i|w|>|z|(z − w)k.
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Remark 2.3.3. Using the power series expansion, Delta-function can be interpreted

as follows:

δ(z, w) = i|z|>|w|
1

z − w
− i|w|>|z|

1

z − w
. (2.3.1)

2.4 Vertex algebras

Let V be a (super) vector space, that is, a Z2-graded vector space (generally

infinite dimensional over C). Let z be a formal variable. Recall, V ((z)) is the space

of Laurent series with coefficients in V, which is defined earlier in this chapter,

V ((z)) := {
∑
n∈Z

v(n)zn| v(n) ∈ V, v(n) = 0 for n << 0}.

Let a : V → V ((z)) be a linear map that takes v 7→ a(v) =
∑

n∈Z v(n)zn such that

v(n) = 0 for n << 0. We shall rewrite a(v) =
∑

n∈Z v(n)z−n−1, v(n) ∈ V, v(n) = 0

for n >> 0.

Convention 2.4.1. Another point of view, the following are two equivalent defini-

tions of the linear map:

a : V → V ((z))⇔ a(z) : V → End(V )[[z, z−1]]

where a(z) :=
∑

n∈Z a(n)z−n−1, a(n) ∈ End(V ) and for any v ∈ V, a(n).v = 0 for

n >> 0.

The vector space of all such linear maps is denoted QO(V ). Each a ∈ QO(V )

has a unique representation by the following formal distribution:

a = a(z) :=
∑
n∈Z

a(n)z−n−1 ∈ End(V )[[z, z−1]],
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where a(n) is the nth Fourier mode of a(z), and for any v ∈ V, a(n).v = 0 for n >> 0.

We call a(z) a field on QO(V ). Since V is a (super) vector space, each a in a (super)

QO(V ) has the form a = a0 + a1 (even, respectively odd) where ai : Vj → Vi+j((z))

for i, j ∈ Z2 and |ai| = i.

The space End(V ) could be viewed as a subspace of QO(V ) if we consider the

linear map a as the constant series
∑

n∈Z aδn,−1z
−n−1. Here δn,−1 is the Kronecker

delta. The space End(V ) is an associative algebra with a unit but QO(V ) is not

quite algebra. The product of two elements of QO(V ) in general does not make

sense, since the product gives an infinite series which need not converge. Indeed,

the product of a(z), b(z) ∈ QO(V ) gives

a(z).b(z) =
∑
n∈Z

a(n)z−n−1
∑
m∈Z

b(m)z−m−1

=
∑
n,m∈Z

a(n)b(m)z−(n+m)−2

=
∑
k∈Z

( ∑
n+m=k

a(n)b(m)
)
z−k−2.

However, we can fix this and extend the product in End(V ) to all QO(V ). This

extension is called The Wick product.

Definition 2.4.2. Let a(z), b(w) ∈ QO(V ). The normal-ordered product of a(z) and

b(w) is called the Wick product, and is defined as follows

: a(z)b(w) :=
∑
n<0

a(n)z−n−1b(w) + (−1)|a||b|b(w)
∑
n≥0

a(n)z−n−1.

: a(z)b(w) : is well-defined element in QO(V ).

For a1(z), ..., an(z) ∈ QO(V ), we define the k-fold iterated Wick product inductively

as follows:

: a1(z)...an(z) :=: a1(z)(: a2(z)...an(z) :) : .
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Conventions 2.4.3. For any two fields

a(z) =
∑
n∈Z

a(n)z−n−1, b(w) =
∑
m∈Z

b(m)w−m−1

in QO(V ), their commutator is defined by

[
∑
n∈Z

a(n)z−n−1,
∑
m∈Z

b(m)w−m−1] =

∑
n,m∈Z

[a(n), b(m)]z−n−1w−m−1 ∈ End[[z±1, w±1]].

We shall write a(z)− =:
∑

n<0 a(n)z−n−1, and a(z)+ =:
∑

n≥0 a(n)z−n−1. As we

noted before, the coefficient of z−1 defines the Resza(z). Recall, ∂za(z) is the formal

derivative ∂z = d
dz . We can check that ∂z(a(z)±) = (∂za(z))±, and so ∂z acts as a

derivation with respect to the Wick product:

∂z(: a(z)b(z) :) =: (∂za(z))b(z) : + : a(z)(∂zb(z)) : .

From now on, we will write a instead of a(z), and ∂ instead of ∂z if it is clear

from the context.

Definition 2.4.4. Let a, b ∈ QO(V ), and let n be an integer. Define the nth circle

product on QO(V ) by

a(w)◦n b(w) = Resza(z)b(w)i|z|>|w|(z−w)n− (−1)|a||b|Reszb(w)a(z)i|w|>|z|(z−w)n.

Remark 2.4.5. 1. a(w) ◦n b(w) is well-defined element in QO(V ).

2. The negative circle product can be obtained by

n!a(z) ◦−n−1 b(z) =: (∂na(z))b(z) : . (2.4.1)
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3. a(z) ◦−1 b(z) =: a(z)b(z) : .

4. The QO(V ) is a nonassociative algebra with the operations ◦n and a unit 1 ∈

End(V ) satisfying 1◦na = δn,−1a for all n, and a◦n1 = δn,−1a for n ≥ −1.

Lemma 2.4.6. (OPE) The operator product expansion: Let a, b ∈ QO(V ).

Then

a(z)b(w) =
∑
n≥0

a(w) ◦n b(w)(z − w)−n−1+ : a(z)b(w) : . (2.4.2)

We often write a(z)b(w) ∼
∑

n≥0 a(w) ◦n b(w)(z − w)−n−1, where ∼ means equal

modulo the regular term : a(z)b(w) : .

Definition 2.4.7. Let A be a QOA. A subset S = {ai|i ∈ I} of A is said to generate

A if every element a ∈ A can be written as a linear combination of nonassociative

words in the letters ai, ◦n, for i ∈ I and n ∈ Z.

Definition 2.4.8. Two fields a, b ∈ QO(V ) are said to circle commute (or quantum

commute) if

(z − w)N [a(z), b(w)] = 0, (2.4.3)

for some an integer N ≥ 0. In addition, if every two elements in QOA pairwise

circle commute (quantum commute), then QOA is a circle commutative algebra (or

commutative quantum operator algebra (CQOA)).

Note that since we are working over a super vector space V, so [., .] denotes

the super bracket, that is [a, b] = ab− (−1)|a||b|ba, for a, b ∈ QO(V ). It follows from

(2.4.3) that a ◦n b = 0 for n ≥ N. The above definition is referred as a definition of

the locality of a, b ∈ QO(V ) on some books in vertex algebras.

Lemma 2.4.9. (Dong’s Lemma) Let a, b, c ∈ QO(V ). If a, b, c are three pairwise

quantum commuting fields, then a◦nb quantum commute with c as well for all n ∈ Z.
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Remark 2.4.10. It follows from Dong’s Lemma that if a(z), b(z), c(z) are three

pairwise quantum commuting fields, then : a(z)b(z) : quantum commutes with c(z).

We shall now give the definition of a vertex algebra.

Definition 2.4.11. [B], [FLM] A vertex algebra (V,1, T, Y ) is a collection of data:

• (space of states) a super vector space V = V0 + V1;

• (vacuum vector) a vector 1 ∈ V0;

• (translation operator) a linear operator T : V → V acting on V ;

• (fields) a linear map:

Y (., z) : V → End(V )[[z, z−1]];

taking each a ∈ V to a field acting on V

a 7→ a(z) :=
∑
n∈Z

a(n)z−n−1 ∈ End(V )[[z, z−1]].

This data is required to satisfy the following axioms:

• (vacuum axiom) 1(z) = 1. Furthermore, for any a ∈ V we have

a(z)1 ∈ V [[z]],

and a(z)1|z=0 = a, i.e. a(n)1 = 0, n ≥ 0, and a(−1)1 = a.

• (translation axiom) For any a ∈ V,

[T, a(z)] = ∂za(z)
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and T1 = 0.

• (quantum commute axiom) All fields a(z) pairwise quantum commute.

Borcherds identities: For a, b, c ∈ V, and k,m, n ∈ Z, we have

∞∑
j=0

(
n

j

)
(a ◦m+j b) ◦n+k−j c =

∞∑
j=0

(
m

j

)
((−1)ja ◦n+m−j (b ◦k+j c)

− (−1)j+mb ◦k+m−j (a ◦n+j c)). (2.4.4)

Note that the above sums are finite since a(n).b = 0 for n >> 0.

Definition 2.4.12. (The Tensor Product of Vertex Algebras)

Given two vertex algebras (V 1,1V 1 , T1, Y1) and (V 2,1V 2 , T2, Y2). Their tensor prod-

uct V 1⊗CV
2 is a well-defined vertex algebra where Y (a1⊗a2, z) = Y (a1, z)⊗Y (a2, z)

for ai ∈ V i, 1 = 1V 1 ⊗ 1V 2 and T = T1 ⊗ 1 + 1⊗ T2.

Vertex algebras homomorphism, vertex subalgebras, ideals, and modules are

defined similarly in a usual way.

Definition 2.4.13. Given two vertex algebras (V 1,1V 1 , T1, Y1) and (V 2,1V 2 , T2, Y2).

A vertex algebra homomorphism f from (V 1,1V 1 , T1, Y1) to (V 2,1V 2 , T2, Y2) is a lin-

ear map f : V 1 → V 2 that maps 1V 1 to 1V 2 , and preserves all circle products.

Definition 2.4.14. Let (V,1, T, Y ) be a vertex algebra, a vertex subalgebra V ′ ⊂

V is a T -invariant subspace which contains the vacuum vector and satisfies that

Y (a, z)b ∈ V ′((z)) for a, b ∈ V ′ with the induced vertex algebra.

A vertex algebra ideal I ⊂ V is a T -invariant subspace which satisfies that 1 /∈ I,

and Y (a, z)b ∈ I((z)) for a ∈ I and b ∈ V.
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Definition 2.4.15. For a vertex algebra (V,1, T, Y ), a module over a vertex algebra

V is a vector space M equipped with a linear map

V → End(M)[[z, z−1]], a 7→ aM (z) =
∑
n∈Z

a(n)Mz−n−1,

satisfying the following:

1. aM (n) ∈ End(M) such that for all a ∈ V, and m ∈ M,aM (n).m = 0 for

n >> 0,

2. 1(z) = 1M ,

3. Borcherds identity holds:

∞∑
j=0

(
n

j

)
(aM ◦m+j b

M ) ◦n+k−j cM =

∞∑
j=0

(
m

j

)
((−1)jaM ◦n+m−j (bM ◦k+j cM )

− (−1)j+mbM ◦k+m−j (aM ◦n+j cM )).

Proposition 2.4.16. Let a, b, c be three fields in some vertex algebra A, and let

n > 0. Then

: (: ab :)c : − : abc :=
∑
k≥0

1

(k + 1)!
(: (∂k+1a)(b ◦k c) : +(−1)|a||b| : (∂k+1b)(a ◦k c) :),

(2.4.5)

: ab : −(−1)|a||b| : ba :=
∑
k≥0

(−1)k

(k + 1)!
∂k+1(a ◦k b), (2.4.6)

a ◦n (: bc :)− : (a ◦n b)c : −(−1)|a||b| : b(a ◦n c) :=
n∑
k=1

(
n

k

)
(a ◦n−k b) ◦k−1 c, (2.4.7)

(: ab :) ◦n c =
∑
k≥0

1

k!
(∂ka)(b ◦n+k c) + (−1)|a||b|

∑
k≥0

b ◦n−k−1 (a ◦k c). (2.4.8)
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To illustrate the notion of vertex algebras, we give examples and we check

the quantum commute axiom given in the Definition (2.4.11) for each since it is not

obvious.

2.5 Examples of vertex algebras

2.5.1 Commutative vertex algebras

A commutative vertex algebra V is a vertex algebra whose all fields a(z), b(z),

a, b ∈ V pairwise commute. This is stronger than the notion of quantum commute.

Here, we have N = 0 in the definition (2.4.8).

Example 2.5.1. Given an associative, commutative subalgebra with a unit V fur-

nished with an even derivation T of degree 1. Set

1 = 1, a(z)b = (ezTa)b =
∑
n≥0

zn

n!
(Tna)b,

where 1 is the unit element of V, and a, b ∈ V. Moreover, For a, b ∈ V, we have

[T, a(z)]b = (∂za(z))b.

Conversely, given a commutative vertex algebra V, then by the vacuum axiom

we have for a, b ∈ V

a(z)b = a(z)b(w)1|w=0 = b(w)a(z)1|w=0.

Therefore a(z)b ∈ V [[z]], and so a(z) ∈ End[[z]] for all a ∈ V. Clearly, the commuta-

tive vertex algebra is a commutative algebra with a unit, and a product a.b =: ab : .

The unit is given by the vacuum vector 1, and the translation operator T of V acts
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as derivation on V with respect to this product, that is

T (a.b) = (Ta).b+ a.T (b).

This example shows that the definition of the commutative vertex algebra is an

analogue to the definition of the commutative algebra with a unit and a derivation.

2.5.2 Non-commutative vertex algebras

Before we introduce the examples, we need the following definitions.

Definition 2.5.2. A Lie algebra g is a vector space over some field F together with

a bilinear operation [., .] : g ⊗ g → g called the Lie bracket satisfying the following

axioms:

• (skew-symmetry) [x, y] = −[y, x],

• (Jacobi identity) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Definition 2.5.3. Given a Lie algebra g, a central extension of g is an exact se-

quence

0→ a→ ĝ→ g→ 0

of Lie algebras. Here a ⊂ Z(ĝ) is central, that is Z(ĝ) = {x ∈ ĝ|[x, ĝ] = 0}.

We are interested in one-dimensional central extensions, where a ' Cκ and κ

is the generator as we will see in the up coming examples.

Definition 2.5.4. The tensor algebra of a vector space V is a pair (T (V ), i), where

T (V ) =
⊕

k≥0 T kV is an associative algebra of tensors on V (of any rank) over C,

with multiplication being the tensor product, and i : V → T (V ) is a linear injection

map satisfying the universal property: if B is an associative algebra and ϕ : V → B

is any linear map, then there exists a unique algebra homomorphism ϕ̃ : T (V )→ B

such that ϕ = ϕ̃ ◦ i.
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In the above definition, the tensor algebra T (V ) =
⊕

k≥0 T kV = C⊕V ⊕(V ⊕

V )⊕ (V ⊕ V ⊕ V )⊕ .... The tensor algebra is very useful since many other algebras

can be constructed as quotient algebras of T (V ). Some examples of this, the exterior

algebra, the symmetric algebra, Clifford algebras, and universal enveloping algebras.

Definition 2.5.5. Let g be a Lie algebra, and let I be a two sided ideal in T (g)

generated by the elements of the form x⊗y−y⊗x− [x, y], x, y ∈ g. The universal

enveloping algebra for g, denoted by U(g), is a tensor algebra T (g) modulo the ideal

I, i.e.

U(g) = T (g)/I.

Note that U(g) is an associative algebra with a unit, and that any represen-

tation of g is a U(g)-module.

Theorem 2.5.6. (Poincaré-Birkhoff-Witt, PBW) Let g be a Lie algebra, and

let {xi}i∈I its basis. Then the universal enveloping algebra Ug has the following

monomial basis called PBW basis:

xn1
i1
... xnk

ik
, i1 < ... < ik, ni ≥ 0 integers.

Most well-known vertex algebras V are the universal enveloping vertex alge-

bras corresponds to some Lie conformal algebras. Many of them have the virasoro

element L(z), (it will be introduced later), and often it is required that L0 be di-

agonalizable and L−1 acts on V by formal differentiation, and so we call the pair

(V, L(z)) a conformal vertex algebra of central charge c.

Definition 2.5.7. Let (V, L(z)) be a conformal vertex algebra. A conformal weight

4 of an element a(z) ∈ V is an eigenvalue 4 of the eigenvector of L0. Furthermore,

we denote the subspace of conformal weight 4 by V4.
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Remark 2.5.8. In any conformal vertex algebra V, the operator ◦n is homogeneous

of weight −n− 1. In particular, the Wick product ◦−1 is homogeneous of weight 0.

Remark 2.5.9. Let V be a Z2-graded vector space. A field ϕ(z) of conformal weight

4 ∈ Z+ can be defined by the following formal distribution:

ϕ(z) :=
∑
n∈Z

ϕ(n)z−n−4,

where ϕ(n) is homogenous in End(V ) of degree −n.

Definition 2.5.10. Let (V, L(z)) be a conformal vertex algebra. An element a(z) ∈

V4 of conformal weight 4 is called primary if it satisfies the OPE relation

L(z)a(w) ∼ 4a(w)(z − w)−2 + ∂a(w)(z − w)−1,

i.e. there are no 3 poles and higher. Moreover, we call a vector a(z) ∈ V4 is

quasi-primary if it satisfies the OPE relation

L(z)a(w) ∼ C(z − w)4−2 +4a(w)(z − w)−2 + ∂a(w)(z − w)−1,

for some constant C.

2.6 The Heisenberg vertex algebra

The Heisenberg Lie algebra h = C[t, t−1] ⊕ Cκ is the one-dimensional central

extension of the commutative Lie algebra of Laurent polynomials C[t, t−1], (the loop

algebra of one-dimensional commutative Lie algebra C), that is

0→ Cκ → h→ C[t, t−1]→ 0,
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where a generator κ is called the central charge. Sometimes, the central charge is

also called the rank of a vertex algebra. The Heisenberg Lie algebra h is spanned

by 〈tn, n ∈ Z, κ〉, and these generators satisfy the following Lie bracket:

[tn, tm] = nδn+m,0κ, [κ, tn] = 0,

with Z-gradation deg(tn) = n, and deg(κ) = 0.

Let h = h− ⊕ h+, where h− = ⊕n<0hn while h+ = ⊕n≥0hn, and both are

commutative Lie subalgebras of h. Here hn denotes the subspace of degree n. By the

PBW theorem,

V ∼= h− = C[t−1, t−2, ...], (2.6.1)

where t−1, t−2, ... are algebraically independent variables. Define a representation ρ

as follows:

h
ρ−→ End(V)

ρ(tn) =

 n ∂
∂t−n if n ≥ 0,

tn if n > 0,

and κ acts as a multiplication by scalar 1, that is, κ acts by id. Indeed, ρ defines a

h-module on V.

Recall, we have constructed a h-module on V, where h = C[t, t−1] ⊕ Cκ. Due

to the commutativity of the Lie algebra h+, it has a trivial one-dimensional repre-

sentation. We shall define an induced representation of h from the representation of

h+. Let C be the one dimensional h+-module on which tn, n ≥ 0 acts trivially, and

κ acts as a multiplication by scalar 1. Therefore,

V = U(h)⊗U(h+) C,
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where U(h) denotes the universal enveloping algebra of h. This is called the Fock

representation of h. Under the isomorphism (2.6.1), the action of tn, n ≥ 0 on V is

just the multiplication. On the other hand, the action of tn, n ≥ 0 can be obtained by

moving tn, n ≥ 0 through tn, n < 0 by the relation [tn, t−n] = n, and tn.1 = 0, n ≥ 0

where 1 is the unit element of U(h). By induction, tn, n ≥ 0 acts by derivation

n ∂
∂t−n and t0 acts trivially on V just like the action of h on V via the representation

ρ. We call the operators tn, n < 0 creation operators, while tn, n ≥ 0 annihilation

operators.

To construct the generating field α(z), let α(n) ∈ End(V ) be a linear operator

representing tn on V. Define α(z) :

α(z) =
∑
n∈Z

α(n)z−n−1,

to be an even generator of weight 1 lying in QO(V ), satisfying the OPE relation:

α(z)α(w) ∼ (z − w)−2. (2.6.2)

To check that α(z) quantum commutes with itself:

Recall the delta-function δ(z, w), and so

[α(z), α(w)] = [
∑
n∈Z

α(n)z−n−1,
∑
m∈Z

α(m)w−m−1]

=
∑
n∈Z

[α(n), α(−n)]z−n−1wn−1

=
∑
n∈Z

nz−n−1wn−1

= ∂wδ(z, w).
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By Proposition 2.2.2, item (3), we have

(z − w)2[α(z), α(w)] = 0. (2.6.3)

The Heisenberg vertex algebra H = 〈α(z)〉 on V has a PBW basis as follows:

: ∂k1α...∂ksα :, s ≥ 0, k1 ≥ ... ≥ ks ≥ 0. (2.6.4)

To demonstrate how the OPE relation is carried out, we shall calculate the

OPE relation for L(z) = 1
2 : α(z)α(z) : using the creation and annihilation operators

as follows:

We have

L(z) =
1

2
: α(z)α(z) :=

1

2
: αα :=

1

2
: (α−α+ αα+) :,

L(w) =
1

2
: α(w)α(w) :=

1

2
: ᾱᾱ :=

1

2
: (ᾱ−ᾱ+ ᾱᾱ+) : .

Then

L(z)L(w) =
1

4
(: α−αᾱ−ᾱ : + : α−αᾱᾱ+ : + : αα+ᾱ−ᾱ : + : αα+ᾱᾱ+ :).

Using the creation and annihilation operators, as well as (2.3.1) once can write

: α−αᾱ−ᾱ : =: α−ᾱ−αᾱ : + : α−[α, ᾱ−]ᾱ :,

= 2 : α−ᾱ− :
1

(z − w)2
.
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Similarly,

: αα+ᾱ−ᾱ : =: αᾱ−α+ᾱ− : + : α[α+, ᾱ−]ᾱ− :,

=: ᾱ−αα+ᾱ− : + : [α, ᾱ−]α+ᾱ− : +[α+ᾱ−]
1

(z − w)2
+ : αᾱ− :

1

(z − w)2
,

=: ᾱ−α− :
1

(z − w)2
+

1

(z − w)4
+ : α−ᾱ− :

1

(z − w)2
+

1

(z − w)4
,

= 2 : ᾱ−α− :
1

(z − w)2
+

2

(z − w)4
.

On the other hand, we have

: ᾱ−α− :=: ᾱ−α− : +∂z(: ᾱ−α− :)|z=w(z − w) + ∂2z (: ᾱ−α− :)|z=w(z − w)2 + ....

So,

: ᾱ−α− :
1

(z − w)2
=: ᾱ−ᾱ− :

1

(z − w)2
+ ∂w : ᾱᾱ− :

1

(z − w)
.

Therefore,

L(z)L(w) ∼ 1

2

1

(z − w)4
+ : ᾱ−ᾱ− :

1

(z − w)2
+ ∂w : ᾱᾱ− :

1

(z − w)
,

∼ 1

2

1

(z − w)4
+ 2L(w)

1

(z − w)2
+ ∂wL(w)

1

(z − w)
.

This is exactly the OPE relation for the virasoro field as we shall see later.

2.7 The rank n Heisenberg vertex algebra H(n)

The rank n Heisenberg vertex algebra H(n) is the tensor product of n copies

of rank 1 Heisenberg vertex algebra H, i.e. H(n) = H⊗ ...⊗H︸ ︷︷ ︸
n copies

with even generators

α1, ..., αn. For i = 1, ..., n, the OPE relation (2.6.2) holds for each generator αi, that

is

αi(z)αj(w) ∼ δi,j(z − w)−2. (2.7.1)
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There is a natural conformal structure of central charge n on H(n) with the

Virasoro element L(z), that is

L(z) =
1

2

n∑
i=1

: αi(z)αi(z) :, (2.7.2)

under which each αi is of weight 1.

The rank n Heisenberg vertex algebra H(n) = 〈αi(z)|i = 1, ..., n〉 has a PBW

basis as follows:

: ∂k
1
1α1 . . . ∂k

1
s1α1 . . . ∂k

n
1 αn . . . ∂k

n
snαn :, si ≥ 0, ki1 ≥ . . . kisi ≥ 0.

2.8 The universal affine vertex algebras V k(g, B)

Let g be a finite-dimensional Lie algebra over C, equipped with a nonde-

generate, symmetric, invariant bilinear form B. The Affine Kac-Moody algebra

ĝ = g[t, t−1] ⊕ Cκ, determined by B, is the one-dimensional central extension of

the loop algebra g[t, t−1] = g⊗ C[t, t−1], that is

0→ Cκ → ĝ→ g⊗ C[t, t−1]→ 0,

where a generator κ is the central charge. The Lie algebra ĝ is spanned by 〈ζ⊗tn, ζ ∈

g, n ∈ Z, κ〉, where these generators satisfy the following Lie bracket:

[ζ ⊗ tn, η ⊗ tm] = [ζ, η]⊗ tn+m + nB(ζ, η)δn+m,0κ, [κ, ζ ⊗ tn] = 0, (2.8.1)

for ζ, η ∈ g, n,m ∈ Z, and Z-gradation deg(ζ ⊗ tn) = n, and deg(κ) = 0.

Definition 2.8.1. For a Lie algebra g, a representation M over g has a level k ∈ C

if κ acts as a multiplication by scalar k.
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To construct generating fields, let Xζi(n) ∈ End(V k) be the linear operator

representing ζi ⊗ tn on V k. Define

Xζi(z) =
∑
n∈Z

Xζi(n)z−n−1,

to be an even generating field of conformal weight 1. It is easy to see that it lies in

QO(V k), and satisfies the OPE relation

Xζ(z)Xη(w) ∼ kB(ζ, η)(z − w)−2 +X [ζ,η](w)(z − w)−1. (2.8.2)

To check that Xζ(z), Xη(z) quantum commute:

Recall the delta-function δ(z, w), and so

[Xζ(z), Xη(w)] = [
∑
n∈Z

Xζ(n)z−n−1,
∑
m∈Z

Xη(m)w−m−1]

=
∑
n,m∈Z

[Xζ , Xη]n+mz
−n−1w−m−1 +

∑
n∈Z

nB(Xζ , Xη)kz−n−1wn−1

=
∑
l∈Z

[Xζ , Xη]l(
∑
n∈Z

z−n−1wn)w−l−1 + nB(Xζ , Xη)k
∑
n∈Z

z−n−1wn−1

= [Xζ , Xη]l(w)δ(z, w) +B(Xζ , Xη)k∂wδ(z, w).

By (3), we have

(z − w)2[Xζ(z), Xη(w)] = 0. (2.8.3)

The Affine vertex algebra V k(g, B) = 〈Xζi |i = 1, ..., dim(g)〉 on V k has a

PBW basis as follows:

: ∂k
1
1Xζ1 . . . ∂k

1
s1Xζ1 . . . ∂k

m
1 Xζm . . . ∂k

m
smXζm :, si ≥ 0, ki1 ≥ . . . kisi ≥ 0. (2.8.4)
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The vertex algebra V k(g, B) generated by {Xζi |ζi ∈ g} is called the universal

affine vertex algebra associated to g and B at level k.

A special case is when g is a simple Lie algebra, that is a non abelian Lie

algebra which has no nontrivial ideals. The bilinear form B is then defined to be

the normalized Killing form as follows.

Definition 2.8.2. Let g be a finite dimensional Lie algebra over C. The Killing

form on g is the bilinear form κg : g× g→ C defined by

(x, y)κg = tr(adx.ady).

Here adx is the adjoint representation of x ∈ g defined by adx(y) = [x, y] for y ∈ g.

So, (2.8.1) can be defined in this case as follows:

[ζ ⊗ tn, η ⊗ tm] = [ζ, η]⊗ tn+m + n(ζ|η)δn+m,0κ, [κ, ζ ⊗ tn] = 0,

for ζ, η ∈ g, n,m ∈ Z. Here (.|.) is the normalized Killing form, and is defined as

(.|.) =
1

2h∨
(., .)κg ,

where h∨ is the dual Coxeter number of g. In this case, we denote V k(g, B) by V k(g).

Let {ζ1, ..., ζn} be an orthonormal basis for g relative to (.|.). There is a natural

conformal structure of central charge k.dim(g)
k+h∨ on V k(g) with the Virasoro element

L(z), that is

L(z) =
1

2(k + h∨)

n∑
i=1

: Xζi(z)Xζi(z) :, (2.8.5)

where k 6= −h∨. In this case, the Virasoro element is called the Sugawara conformal

vector. For k = −h∨, the Virasoro element L(z) does not exist.
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For the case where g is an abelian Lie algebra. Since B is nondegenerate,

V k(g, B) is just the rank n Heisenberg vertex algebra H(n). If we choose an or-

thonormal basis {ζ1, ..., ζn} for g, then H(n) is generated by {αi = Xζi |i = 1, ..., n}.

2.9 Affine vertex algebras V k(sl2)

The ordered basis of sl2 is {x, y, h}, and satisfies the following commutation

relations:

[x, y] = h, [h, x] = 2x, [h, y] = −2y.

If we let Xx(n) ∈ End(V ) be the linear operator representing Xx⊗ tn on V k. Then,

we define

Xx(z) =
∑
n∈Z

Xx(n)z−n−1.

Similarly,

Xy(z) =
∑
n∈Z

Xy(n)z−n−1,

Xh(z) =
∑
n∈Z

Xh(n)z−n−1,

to be even generating fields each of conformal weight 1. It is easy to see that they

lie in QO(V k), and satisfy the OPE relations

Xx(z)Xy(w) ∼ k(z − w)−2 +Xh(w)(z − w)−1, (2.9.1)

Xh(z)Xx(w) ∼ 2Xx(w)(z − w)−1, (2.9.2)

Xh(z)Xy(w) ∼ −2Xy(w)(z − w)−1, (2.9.3)
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Xh(z)Xh(w) ∼ 2k(z − w)−2. (2.9.4)

The Affine vertex algebra V k(sl2) has a PBW basis as follows:

: ∂k
1
1Xx...∂k

1
s1Xx∂k

2
1Xy...∂k

2
s2Xy∂k

3
1Xh...∂k

3
s3Xh :, (2.9.5)

si ≥ 0, ki1 ≥ ... ≥ kisi ≥ 0, for i = 1, 2, 3.

2.10 Virasoro vertex algebra

Let K = C[t, t−1] be the loop algebra. Consider the Witt algebra DerK =

{f(t)∂t : f ∈ K} of (continuous) derivations of K. It has a basis given by {Lj =

−tj+1∂t : j ∈ Z}, and a Lie bracket satisfies:

[Ln, Lm]f = [tn+1∂t, tm+1∂t]f

= (m− n)tn+m+1∂f

= (n−m)Ln+mf.

The Virasoro algebra, denoted by V ir, is the one-dimensional central extension

of the Witt algebra

0→ CC → V ir → DerK → 0,

where the generator C is the central charge. The Virasoro Lie algebra V ir is spanned

by 〈Ln, n ∈ Z, C〉, where these generators satisfy the following Lie bracket:

[Ln, Lm] = (n−m)Ln+m +
n3 − n

12
δn+m,0C, [C,Ln] = 0,

and Z-gradation deg(Ln) = n, and deg(C) = 0.
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To construct the generating field, let Ln ∈ End(V k) be a linear operator.

Define

L(z) =
∑
n∈Z

Lnz
−n−2,

to be an even generating field of conformal weight 2. It is easy to see that it lies in

QO(Vc), and satisfies the OPE relation

L(z)L(w) ∼ C

2
(z − w)−4 + 2L(w)(z − w)−2 + ∂L(w)(z − w)−1. (2.10.1)

To check that L(z) is quantum commute with itself:

[L(z), L(w)] = [
∑
n∈Z

Lnz
−n−2,

∑
m∈Z

Lmw
−m−2]

=
∑
n,m∈Z

[Ln, Lm]z−n−2w−m−2

=
∑
n,m∈Z

(n−m)Ln+mz
−n−2w−m−2

+
C

12

∑
n,m∈Z

(n3 − n)Ln+mz
−n−2w−m−2. (2.10.2)

The first term in the right hand side of (2.10.2) can be rewritten as:

∑
n,m∈Z

(n−m)Ln+mz
−n−2w−m−2 =

∑
n,m∈Z

2(n+ 1)Ln+mz
−n−2w−m−2

+
∑
n,m∈Z

(−n−m− 2)Ln+mz
−n−2w−m−2.

(2.10.3)
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Recall the delta-function δ(z, w), and compute the right hand side of (2.10.3). Thus,

∑
n,m∈Z

2(n+ 1)Ln+mz
−n−2w−m−2 =

∑
n,m∈Z

2(n+ 1)Ln+mz
−n−2w−n−m−2wn

=
∑
k,n∈Z

2Lkw
−k−2(n+ 1)z−n−2wn

= 2L(w)∂wδ(z, w).

(2.10.4)∑
n,m∈Z

(−n−m− 2)Ln+mz
−n−2w−m−2 =

∑
n,m∈Z

(−n−m− 2)Ln+mz
−n−2w−n−m−3wn+1

=
∑
k,n∈Z

(−k − 2)Lkw
−k−3z−n−2wn+1

= ∂wL(w)∂wδ(z, w).

(2.10.5)
C

12

∑
n,m∈Z

(n3 − n)Ln+mz
−n−2w−m−2 =

C

12
∂3wδ(z, w). (2.10.6)

Combining (2.10.4), (2.10.5), (2.10.6), and so by (3), we have

(z − w)4[L(z), L(w)] = 0. (2.10.7)

The Virasoro vertex algebra 〈L(z)〉 on Vc has a PBW basis as follows:

: ∂k1L...∂ksL :, s ≥ 0, k1 ≥ ... ≥ ks ≥ 0. (2.10.8)

Remark 2.10.1. Note That L(z) =
∑

n∈Z L(n)z−n−1, but we usually use the

previous definition so that L(n) = Ln−1. Recall that L0 is diagonalizable since
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[L0, Ln] = −nLn, and L0vc = 0. The eigenvalues of L0 correspond to a highest

weight vector v 6= 0, satisfying L0v = hv for some h ∈ C.

2.11 The fermionic ghost system (bc-system E(V ))

Let Cl be the Clifford algebra associated to the vector space C((t))⊕C((t))dt

and the non-degenerate bilinear form B(., .). It is generated by ψn = tn, and ψ∗n =

tn−1dt which satisfy the following Lie bracket:

[ψn, ψ
∗
m]+ = δn,−m, [ψn, ψm]+ = [ψ∗n, ψ

∗
m]+ = 0, (2.11.1)

where the notation [A,B]+ means AB +BA.

To construct generating fields, let ψn ∈ End(V ), and ψ∗n ∈ End(V ∗) be linear

operators. Define

ψ(z) =
∑
n∈Z

ψnz
−n−1, ψ∗(z) =

∑
n∈Z

ψ∗nz
−n

to be odd generating fields of conformal weights 1 and 0, respectively.

To check that ψ(z), ψ∗(z) quantum commute :

From (2.11.1), we have

[ψ(z), ψ(w)]+ = [ψ∗(z), ψ∗(w)]+ = 0, [ψ(z), ψ∗(w)]+ = δ(z, w), (2.11.2)

and this implies that (z − w)[ψ(z), ψ∗(w)]+ = 0.

The fermionic ghost system 〈ψ(z), ψ∗(z)〉 on V has a basis as follows:

: ∂k
1
1ψ...∂k

1
s1ψ∂k

2
1ψ∗...∂k

2
s2ψ∗ :, si ≥ 0, ki1 ≥ ... ≥ kisi ≥ 0 for i = 1, 2. (2.11.3)
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The fields ψ(z) and ψ∗(z) are denoted by b(z) and c(z), respectively in the physics

literature, and the corresponding conformal vertex algebra is called the bc-system

E(V ). This vertex algebra is the unique vertex algebra with odd generators, was

introduced by Friedan-Martinec-Shenker. For a vector space V of dimension n over

C, the fields bx(z), cx
∗
(z) for x ∈ V and x∗ ∈ V ∗ satisfy the OPE relations

bx(z)cx
∗
(w) ∼ 〈x∗, x〉(z − w)−1, (2.11.4)

cx
∗
(z)bx(w) ∼ 〈x∗, x〉(z − w)−1, (2.11.5)

bx(z)by(w) ∼ 0, cx
∗
(z)cy

∗
(w) ∼ 0, (2.11.6)

where 〈, 〉 demotes the natural pairing between V ∗ and V.

The rank n fermionic ghost system is the tensor product of n copies of rank 1

fermionic ghost system with odd generators bi, ci for i = 1, ..., n. The OPE relations

above still hold for each generator, that is

bi(z)cj(w) ∼ δi,j(z − w)−1. (2.11.7)

2.12 The fermionic vertex superalgebra

For a finite dimensional vector space V, let ClV be the Clifford algebra asso-

ciated to the vector space V ((t))⊕ V ∗((t))dt and the non-degenerate bilinear form

B(., .). If we consider {xi|i ∈ I} as a basis of V, and {x∗i |i ∈ I} as the dual basis of

V ∗, then ClV is generated by ψi,n = xi ⊗ tn, ψ∗i,n = x∗i ⊗ tn−1dt for i ∈ I, n ∈ Z,
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and these generators satisfy the following Lie bracket:

[ψi,n, ψ
∗
j,m]+ = δi,jδn,−m, [ψi,n, ψj,m]+ = [ψ∗i,n, ψ

∗
j,m]+ = 0, (2.12.1)

with Z-gradation deg(ψ∗i,n) = −deg(ψi,n) = 1, and deg(1) = 0.

Let
∧
V be the Fock representation of Cl, generated by a vector 1 satisfying:

ψi,n1 = 0, n ≥ 0, ψ∗i,n1 = 0, n > 0.

Given a Lie algebra g. Let ĝ be the one dimensional central extension of g((t))

0→ Cκ → ĝ→ g((t))→ 0,

where a generator κ is the central charge. The Lie algebra ĝ is spanned by 〈A ⊗

f(t), A ∈ g, κ〉, where these generators satisfy the following Lie bracket:

[A⊗ f(t), B ⊗ g(t)] = [A,B]⊗ f(t)g(t)− nB(A,B)δn,−mκ, [κ,A⊗ f(t)] = 0,

(2.12.2)

for A,B ∈ g.

The vertex subalgebra
∧
V is isomorphic to the tensor product of |I| copies of

the fermonic ghost system
∧
. The vertex algebra structure is defined similarly as

in section (2.11), and in particular, we have generating fields

ψi(z) =
∑
n∈Z

ψi,nz
−n−1, ψ∗i (z) =

∑
n∈Z

ψ∗i,nz
−n.
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Chapter 3

A Glance at Classical Invariant

Theory

In this chapter, we shall provide a brief glimpse into the Classical Invariant

Theory. The term ”invariant” in mathematics refers to a quantity that does not

change under certain classes of transformations. A precise definition for this notion

and instructive examples are given. Some important theorems in this branch of

mathematics are stated too, such as the Hilbert Finiteness Theorem, and the Weyl

First and Second Fundamental Theorem of the Invariant Theory.

3.1 Invariants

Let V be a finite-dimensional vector space. The notation GL(V ) stands for

the group of all invertible linear maps V → V . If we choose a basis {v1, ..., vn} of V,

then GL(V ) is identified with the group of invertible n×n matrices GLn(C). More

precisely, for an automorphism g ∈ GL(V ), we have

g(vk) =
n∑
i=1

aikvi
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for constants aik ∈ C. Then, the matrix corresponding to g is just the matrix whose

entries are aik based on our choice of basis.

Definition 3.1.1. Given a group G, a representation of G on a vector space V is

a group homomorphism

ρ : G −→ GL(V ).

We also call V a G-module.

If V is a G-module, there is an induced action of G on the ring C[V ] of

polynomial functions on V . If f ∈ C[V ] is a function and g ∈ G, we define g(f) ∈

C[V ] by

g(f)(v) = f(g−1(v)).

Definition 3.1.2. Let V be a finite-dimensional G-module, a polynomial function

f ∈ C[V ] is called G-invariant if g(f) = f for all g ∈ G. Equivalently, f(gv) = f(v)

for g ∈ G and v ∈ V . Evidently, the set of G-invariant polynomials C[V ]G is a

subring of C[V ] called the invariant ring.

Natural questions might arise:

• Is C[V ]G a finitely generated over C? If yes,

• What are all invariants of the ring C[V ] under a group action G? Equivalently,

what is the invariant ring C[V ]G?

Example 3.1.3. Let Z2 act on the polynomial ring C[x1, x2] via the action xi 7→ −xi

for i = 1, 2. The invariant ring is generated by the polynomials p = x21, q = x22, and

r = x1x2. Also, the ideal of relations among p, q, r is generated by r2 − pq, so

C[x1, x2]
Z2 ∼= C[p, q, r]/〈r2 − pq〉.

Example 3.1.4. Let SLn(C) act on the polynomial ring C[x1, x2, ..., xn], where the

special linear group SLn(C) is the subgroup of GLn(C) of matrices with determinant
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1. Consider the representation of SLn(C) on the space of n×n matrices Mn(C) given

by left multiplication

(g,A) 7−→ gA, for g ∈ SLn(C) and A ∈Mn(C).

The invariant ring is generated by the determinant polynomial, that is

C[x1, ..., xn]SLn(C) = C[det].

In all examples we have met so far, the invariant ring C[V ]G under action of G

was finitely generated, but this is not always the case. One of highlighted results in

describing the invariant ring C[V ]G is due to David Hilbert (1893). He investigated

the finiteness of the invariant ring C[V ]G under a group action.

Theorem 3.1.5. Hilbert Finiteness Theorem For any finite dimensional, re-

ductive group G ⊂ GLn(C), the invariant ring C[V ]G is finitely generated.

Throughout this dissertation, we will consider the case where G is a finite-

dimensional, reductive subgroup of GLn(C).

3.2 The classical invariant theory (CIT)

The preceding section leads to a fundamental problem in the classical invariant

theory (shortly CIT), which is to find generators and relations for the invariant ring.

A significant contributions have been made by famous mathematicians during the

19th century.

Given a finite-dimensional G-module V , let V ∗ denote the dual representation,

consider the invariant ring

R = C[
⊕
j≥0

Vj ⊕ V ∗j ]
G
,

40



where each Vj is isomorphic to V , and each V ∗j is isomorphic to V ∗. In Weyl’s

terminology, a first fundamental theorem of invariant theory for the pair (G,V ) is

a set of generators for R, and a second fundamental theorem of invariant theory for

(G,V ) is a set of generators for the ideal of relations among the generators of R. It

is very difficult to describe these rings in general, and even for G = SL2, first and

second fundamental theorems are known only for the first few finite-dimensional

SL2-modules. An important theorem of Weyl [W] are the explicit first and second

fundamental theorems when G is a classical group and V is the standard module

(Cn for G = GLn, SLn, or SOn or On, and C2n when G = Sp2n). In the case of the

adjoint representations of the classical groups, this was proven by Procesi [P], and

for the 7-dimensional representation of G2 and the 8-dimensional representation of

Spin7 it was proved by Schwarz [Sch].

Let V be a finite-dimensional representation of G and let Vj ∼= V for j ≥ 0,

as above. For all p ≥ 0, there is an action of GLp on ⊕p−1j=0Vj which commutes with

the action of G. The inclusions GLp ↪→ GLq for p < q sending

M →

 M 0

0 Iq−p


induce an action of GL∞ = limp→∞GLp on ⊕j≥0Vj . We obtain an action of GL∞

on C[⊕j≥0Vj ] which commutes with the action of G, so GL∞ acts on R as well. The

elements σ ∈ GL∞ are called polarization operators, and for a given f ∈ R, σf is

known as a polarization of f.

Theorem 3.2.1. (Weyl) R is generated by the set of polarizations of any set of gen-

erators for C[⊕n−1j≥0Vj ]
G
, where n = dim(V ). Since G is reductive, C[⊕j≥0V n−1

j ]
G

is

finitely generated, so there exists a finite subset {f1, ..., fr} ⊂ R whose polarizations

generate R.
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In this dissertation, we need the explicit first and second fundamental the-

orems in the special case G = Z2 and V the nontrivial one-dimensional module

on which the generator of Z2 acts by −1. This can be viewed as the special case

of Weyl’s first and second fundamental theorems for the orthogonal group On for

n = 1.

Theorem 3.2.2. (Weyl) For k ≥ 0, let Vk be the copy of the standard Z2-module

C with a basis {xk}. The invariant ring C[⊕k≥0Vk]Z2 is generated by the quadratics

qa,b = xaxb, 0 ≤ a ≤ b. (3.2.1)

For a > b, define qa,b = qb,a and let {Qa,b|a, b ≥ 0} be commuting indeterminates

satisfying Qa,b = Qb,a and no other algebraic relations. The kernel I1 of the homo-

morphism

C[Qa,b]→ C[⊕k≥0V k]Z2 , Qa,b 7→ qa,b (3.2.2)

is generated by the 2× 2 determinates

dI,J = det

 Qi0,j0 Qi0,j1

Qi1,j0 Qi1,j1

 . (3.2.3)

In this notation, I = (i0, i1) and J = (j0, j1) are lists of integers satisfying

0 ≤ i0 < i1, 0 ≤ j0 < j1. (3.2.4)

Since Qa,b = Qb,a, so it is clear that dI,J = dJ,I .
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Chapter 4

Orbifolds and Strong Generated

Vertex Algebras

4.1 Orbifolds

In this section, we shall define the invariant subalgebras, and the orbifolds

which is a standard method to construct a new vertex algebra from an old one.

Many interesting vertex algebras are built as orbifolds or as extensions of orbifolds.

Before we dive into this, we introduce the notion of filtrations in order to make

connection between vertex algebras and commutative algebras. This allows us to

apply Weyl’s first and second fundamental theorems of invariant theory. Next, we

define strong finite generated vertex algebras. We give a procedure to detect a strong

finite generating set for an orbifold, and further determine the minimal strong finite

generators have to be considered. We do not require the Classical Invariant Theory

here.

Definition 4.1.1. Given a vertex algebra V, and a group G of automorphisms of

V acting on V. The invariant vertex algebra of V is a subalgebra VG ⊂ V of all
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G-invariants in V defined by

VG = {a ∈ V|ga = a for g ∈ G}.

4.2 Weak and good increasing filtrations

Definition 4.2.1. A good increasing filtration [LiII] on a vertex algebra V is a

Z≥0-filtration

V(0) ⊂ V(1) ⊂ V(2)..., V =
⋃
d≥0
V(d) (4.2.1)

satisfying that V(0) = C, , and for all a ∈ V(r), b ∈ V(s) we have

a ◦n b ∈ V(r+s), for n < 0, (4.2.2)

a ◦n b ∈ V(r+s−1), for n ≥ 0. (4.2.3)

Definition 4.2.2. An element a(z) ∈ V has at most degree d if a(z) ∈ V(d). We

then write deg a(z) = d.

Definition 4.2.3. A vertex algebra V is called graded by degree if it is equipped with

a Z≥0-grading

V =
⊕
k≥0
V(k),

where V(k) = ⊕ki=0V(i).

Definition 4.2.4. For a vertex subalgebra A ⊂ V, a good increasing filtration on A

is a Z≥0-filtration

A(0) ⊂ A(1) ⊂ A(2)...,

induced by a filtration (4.2.1) on V after restriction, where A(k) = A ∩ V(k).
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Definition 4.2.5. The associated graded algebra gr(V) =
⊕

d≥0 V(d)/V(d−1) is a

Z≥0-graded associative, (super)commutative algebra with a unit 1 under a product

induced by the Wick product on V, where V−1 = {0}. It has a derivation ∂ of degree

zero (induced by the operator ∂z = d
dz on V).

Remark 4.2.6. 1. There is no natural linear map V → gr(V) in general, but for

each r ≥ 1 we have the projections

ϕr : V(r) → V(r)/V(r−1) ⊂ gr(V). (4.2.4)

2. If a, b ∈ gr(V) are homogeneous of degrees r, s respectively, and

a(z) ∈ V(r), b(z) ∈ V(s), such that ϕr(a(z)) = a, ϕs(b(z)) = b,

then ϕr+s(: a(z)b(z) :) = ab.

Let R be the category of pairs (V, deg), where V is a vertex algebra equipped

with a Z≥0-filtration. Morphisms in R are morphisms of vertex algebras which

preserve the filtration. The assignment V 7→ gr(V) is a functor from the category

of vertex algebras R to the category of Z≥0-graded (super)commutative rings with

a differential ∂ called ∂-ring.

Definition 4.2.7. A ∂-ring R is said to be generated by a subset {ai|i ∈ I} if

{∂kai|i ∈ I, k ≥ 0} generates R as a graded ring.

Definition 4.2.8. [ACL] A weak increasing filtration on a vertex algebra V is a

Z≥0-filtration

V(0) ⊂ V(1) ⊂ V(2)..., V =
⋃
d≥0
V(d) (4.2.5)

satisfying that for all a ∈ V(r), b ∈ V(s) we have

a ◦n b ∈ V(r+s), for n ∈ Z, (4.2.6)
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Remark 4.2.9. The associated graded algebra gr(V) =
⊕

d≥0 V(d)/V(d−1), obtained

by the weak increasing filtration, is a vertex algebra, but it is no longer abelian in

general. By this, the filtration we have here is weaker than the previous one.

4.3 Strong finite generating set

Definition 4.3.1. Given a vertex algebra V, and S = {ai|i ∈ I} ⊂ V. We say that

S generates V if every a ∈ V is a linear combination of words in ai, ◦n for i ∈ I and

n ∈ Z.

We say that S strongly generates V if every a ∈ V is a linear combination of of words

in ai, for i ∈ I and the negative circle products, i.e. ◦n for n < 0. Equivalently, V

is spanned by the ordered monomials of vertex operators

{: ∂k1ai1 ...∂kmaim : |i1, ..., im ∈ I, 0 ≤ k1 ≤ ... ≤ km}. (4.3.1)

If I is finite, then the vertex algebra V is strongly finitely generated, (shortly SFG).

Moreover, we say that a vertex algebra V is of type W((d1)
n1 , ..., (dr)

nr) if it has a

minimal strong generating set consisting of ni fields in each weight di for i = 1, ..., r.

Example 4.3.2. All examples we introduced in the first chapter, Heisenberg, Affine,

Virasoro vertex algebras, the fermionic ghost system, as well as the W-algebras are

SFG.

The category R mentioned in the previous section is closed under taking

subalgebras. This category together with the functor connecting vertex algebras V

equipped with a Z≥0-filtration to Z≥0- graded commutative algebras with derivation

allow us to find some of the algebraic structure of the vertex algebras. For example,

for any vertex algebra V ∈ R, the ring structure of ∂-ring, namely gr(V) allows us

to construct the strongly generating set for V as a vertex algebra as well by the

following reconstruction property:
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Lemma 4.3.3. [LI] Let V be a vertex algebra in R. Consider the collection {ai|i ∈ I}

that generates gr(V) as a ∂-ring, where ai is homogenous of degree di. Then V is

strongly generated by the collection {ai(z)|i ∈ I}, where ai(z) ∈ V(di) such that

ϕdi(ai(z)) = ai.

Similarly, the alternative reconstruction property for the weak increasing fil-

tration is given by the following lemma:

Lemma 4.3.4. [AL] Given a vertex algebra V with weak increasing filtration. Con-

sider the collection {ai|i ∈ I} that generates gr(V) as a ∂-ring, where ai is homoge-

nous of degree di. Then V is strongly generated by the collection {ai(z)|i ∈ I}, where

ai(z) ∈ V(di) such that ϕdi(ai(z)) = ai.

One of an interesting problems arising is that if we have a SFG vertex algebra

V with a group G of automorphisms acting on V. Does the orbifold VG inherit this

property, i.e. is it SFG? This is an analogous question to the Hilbert problem 3.1.5.

To answer this, we need to demonstrate an explicit strong generating set for VG.

We shall follow the following procedure given in [LIV]:

Consider a ring R = C[⊕j≥0Vj ]G, as it was defined in (3.2), graded by degree

and weight equipped with the natural derivation ∂. Each xj ∈ Vj has degree 1 and

weight j + 1.

On the other hand, let V be a vertex algebra with weight grading V =⊕
m≥0 V[m]. Consider a group G acting on V by automorphisms. Recall, we will be

considering a reductive, finite-dimensional group G.

Our task is to find a strong finite generating set for an orbifold of V. In order

to get this, define a Z≥0 good increasing filtration for VG so that the pair (VG, deg)

lies in R. This filtration satisfies that gr(VG) ∼= gr(V)G ∼= R as ∂-rings graded by

degree and weight. Construct a natural infinite strong generating set for VG using

classical invariant theory, and then choose a generating set S = {si|i ∈ I} for R as a
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∂-ring consisting a finite number of elements in each weight where si has degree di,

and weight wi. Lemma 4.3.3 allows us to get a strong generating set T = {ti|i ∈ I}

for VG such that si = ϕdi(ti), where

ϕdi : (VG)(di) → (VG)(di)/(V
G)(di−1) ⊂ gr(V

G)

is the usual projection.

Our goal is to find a minimal strong finite generating set. To do this, find a

normally ordered polynomial relation (it will be explained later) of minimal weight

among the generators to eliminate as much as you can of the generators, and so the

remaining ones will form a minimal strong generating set.

Definition 4.3.5. Let V be a vertex algebra, we say that ω ∈ V is in normal form

if it has been expressed as a linear combination of monomials of the form (4.3.1).

Definition 4.3.6. Let p ∈ R be a homogeneous polynomial of degree d, and S, T

are two generating sets defined as above. A normal ordering of p will be a choice

of normally ordered polynomial P ∈ (VG)(d) obtained by replacing each si ∈ S by

ti ∈ T, and replacing ordinary products with iterated Wick products. The normally

ordered polynomial P is not unique, but for any choice of P, we have ϕd(P ) = p.

Now, we shall see how the normally ordered polynomial relation in VG among

the elements of T and their derivatives is formed [LIV]:

Let p be a relation among the generators of R (from the second fundamental

theorem for (G,V )). We may assume it to be a homogeneous of degree d. Consider

some normal ordering of p, namely P d ∈ VG. Since gr(VG) ∼= R as graded rings,

it follows that P d ∈ (VG)(d−1). The polynomial ϕd−1(P
d) ∈ R is homogenous of

degree d− 1; if it is nonzero, it could be expressed as a polynomial in the variables

si ∈ S and their derivatives. Let −P d−1 be some normal ordering of this polynomial.
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Then, P d + P d−1 has the property

ϕd(P
d + P d−1) = p, P d + P d−1 ∈ (VG)(d−2).

Continuing in this manner yields

P =

d∑
k=1

P k ∈ VG, (4.3.2)

which is exactly zero. We could think of P as a correction of the relation p. By

induction on d, we could see that all normally ordered polynomial relations in VG

among the elements of T and their derivatives are consequences of such relations.

In order to examine the SFG of VG, each element t ∈ T \ T ′ must admit a

”decoupling relation” as it is defined as follows:

Definition 4.3.7. Let S, T be two generating sets defined as above. A decoupling

relation is a relation expressed as a normally ordered polynomial in the elements of

a finite subset T ′ ⊂ T and their derivatives.

Remark 4.3.8. In general, R is not finitely generated as a ∂-ring, but VG is more

likely to be strongly generated as a vertex algebra by a finite subset T ′ ⊂ T. Consider

a relation in VG of the form (4.3.2), and suppose that for some t ∈ T \ T ′ which

appears in P k for some k < d, with nonzero coefficient. If the remaining terms

in (4.3.2) depend on the elements of T ′ only and their derivatives, then t could

be expressed as a linear combination of such elements, and so we get a decoupling

relation.

We shall include concrete examples of the procedure of finding minimal strong

generating set for an orbifold next sections.
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Definition 4.3.9. Let V be a vertex algebra, and S = {ai|i ∈ I} ⊂ V. We say that

V is freely generated by S if there are no nontrivial normally ordered polynomial

relations among the generators and their derivatives.
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Chapter 5

The Z2-Orbifold of the

Universal Affine Vertex Algebra

Let g be a simple, finite-dimensional Lie algebra equipped with the standard

normalized Killing form (.|.). In this chapter, we shall give an explict minimal

strong finite generating set for the Z2-orbifold of the universal affine vertex algebra

V k(g) associated to g at generic level k. We study this by reducing the problem into

studying a simpler object, the Z2-orbifold of the rank n Heisenberg vertex algebra

H(n) using the deformation argument. The case where dim(g) = 3 (i.e., g = sl2) is

studied separately. Also, the set of nongeneric values of k is determined in this case

by computing all poles of the structure constants appearing in the OPE algebra of

the generators.
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5.1 The Z2-orbifold of H(n)

5.1.1 Filtrations

The rank n Heisenberg vertex algebra H(n) is freely generated by αi for i =

1, ..., n, and spanned by all normally ordered monomials of the form

: ∂k
1
1α1 . . . ∂k

1
s1α1 . . . ∂k

n
1 αn . . . ∂k

n
snαn :, si ≥ 0, ki1 ≥ . . . kisi ≥ 0. (5.1.1)

Therefore, (5.1.1) forms a PBW basis for H(n).

Filtrations on H(n). Define an increasing filtration on H(n) as follows:

H(n)(0) ⊂ H(n)(1) ⊂ H(n)(2) ⊂ ..., H(n) =
⋃
d≥0
H(n)(d), (5.1.2)

where H(n)(−1) = {0}, and H(n)(r) is spanned by the iterated Wick products of the

generators αi and their derivatives such that at most r of αi and their derivatives

appear. That is, H(n)(r) is spanned by all normally ordered monomials of the form

(5.1.1) such that the sum s1 + · · ·+ sn ≤ r. In particular, each αi and its derivatives

have degree 1.

We have a Z≥0-grading

H(n) =
⊕
d≥0
H(n)(d), (5.1.3)

where H(n)(d) = ⊕dk=0H(n)(k). From defining the OPE relation (2.7.1), this is actu-

ally a good increasing filtration, and so, H(n) equipped with such a good filtration

lies in the category R. The OPE relation will be replaced with αi(z)αj(w) ∼ 0, and

so the Z≥0-associated graded algebra

gr(H(n)) =
⊕
d≥0
H(n)(d)/H(n)(d−1)
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is now an abelian vertex algebra freely generated by αi. The rank n Heisenberg

vertex algebra H(n) equipped with such filtrations lies in the category R. Then,

H(n) ∼= gr(H(n)) as linear spaces, and as commutative algebras, we have

gr(H(n)) ∼= C[∂aαi|a ≥ 0, i = 1, ..., n].

Therefore, gr(H(n)) is regarded as a commutative algebra of all polynomials in

∂aαi, a ≥ 0 with a differential ∂ of degree zero acting on the generators as follows:

∂(αia) = αia+1. (5.1.4)

Here αia is the image of ∂aαi(z) in gr(H(n)) under the projection

ϕ1 : H(n)(1) → H(n)(1)/H(n)(0) ⊂ gr(H(n)).

For any reductive group G ⊂ O(n), H(n)G will inherit the filtration, where

O(n) is the full automorphism group of H(n).

Consider the subgroup Z2 of the automorphism group of H(n), which is gen-

erated by the nontrivial involution θ. The action of θ on the generators will be as

follows:

θ(αi) = −αi. (5.1.5)

The OPE relations (2.7.1) will be preserved by this action on H(n), that is

αi ◦m αj = θ(αi) ◦m θ(αj)

for all m as well as the filtration (5.1.2), and induces an action of Z2 on gr(H(n)).
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Going back to H(n)Z2 , it is also spanned by all normally ordered monomials of

the form (5.1.1), where the length s1 + · · · sn is even. Since H(n) is freely generated

by αi, these monomials form a basis for H(n)Z2 , and the normal form is unique.

The filtration on H(n)Z2 is obtained from the filtration (5.1.2) after restriction

as follows:

(H(n)Z2)(0) ⊂ (H(n)Z2)(1) ⊂ ..., H(n)Z2 =
⋃
d≥0

(H(n)Z2)(d),

where (H(n)Z2)(r) = H(n)Z2 ∩H(n)(r).

The action of Z2 on H(n) descends to an action on gr(H(n)), and so we have

a linear isomorphism H(n)Z2 ∼= gr(H(n)Z2) as linear spaces. Similarly, Z2 acts on

gr(H(n)) ∼= C[∂aαi|a ≥ 0, i = 1, ..., n], and so we have a linear isomorphism

gr(H(n)Z2) ∼= gr(H(n))Z2 ∼= C[∂aαi|a ≥ 0, i = 1, ..., n]Z2 (5.1.6)

as commutative algebras. The weight and degree are preserved by (5.1.6) where

wt(∂aαi) = a+ 1.

To describe the generators and relations for the invariant ring C[⊕k≥0V k]Z2 ∼=

gr(H(n))Z2 , where each Vk ∼= C for all k with basis αik, we need the classical theorem

of Weyl (Weyl’s First and Second Fundamental Theorem of Invariant Theory for

the standard representation of Z2) that we introduced in the last chapter.

Generators for the invariant ring. Recall, the gr(H(n))Z2 is a commutative al-

gebra of even degree with a differential ∂ of degree zero, and it extends to gr(H(n))Z2

by the product rule, that is

∂(αiaα
i
b) = (∂αia)α

i
b + αia(∂α

i
b),

= αia+1α
i
b + αiaα

i
b+1.
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Specializing this, for i, j = 1, ..., n, we have ∂(αiaα
j
b) = αia+1α

j
b + αiaα

j
b+1.

Define

qi,ia,b = αiaα
i
b, qi,ja,b = αiaα

j
b,

as generators for gr(H(n))Z2 . The action of ∂ on these generators is defined as

follows:

∂(qi,ia,b) = qi,ia+1,b + qi,ia,b+1, ∂(qi,ja,b) = qi,ja+1,b + qi,ja,b+1. (5.1.7)

Remark 5.1.1. 1. The action of Z2 on the gr(H(n)) which is given by θ(αia) =

−αia guarantees that gr(H(n))Z2 is generated by the subset {qi,ia,b, q
i,j
a,b|a, b ≥

0, 1 ≤ i, j ≤ n}.

2. Since qi,ia,b = qi,ib,a, and qi,ja,b = qj,ib,a, so gr(H(n))Z2 is generated by the subset

{qi,ia,b|0 ≤ a ≤ b, i = 1, ..., n}
⋃
{qi,ja,b|0 ≤ a, b, i, j = 1, ..., n}. (5.1.8)

Avoiding the repetition, we will let i, j = 1, ..., n to be fixed.

The ideal of relations. Among these generators, the ideal of relations is generated

by

qi,jr,sq
k,l
t,u − qi,lr,uq

j,k
s,t , i, j, k, l = 1, ..., n, 0 ≤ r, s, t, u. (5.1.9)

Under the projection

ϕ2 : (H(n)Z2)(2) → (H(n)Z2)(2)/(H(n)Z2)(1) ⊂ gr(H(n)Z2) ∼= C[⊕k≥0V k]Z2 ,

the generators qi,ia,b, q
i,j
a,b of gr(H(n))Z2 correspond to fields ωi,ia,b, ω

i,j
a,b, respectively

defined by

ωi,ia,b =: ∂aαi(z)∂bαi(z) :∈ (H(n)Z2)(2), 0 ≤ a ≤ b, (5.1.10)

ωi,ja,b =: ∂aαi(z)∂bαj(z) :∈ (H(n)Z2)(2), 0 ≤ a ≤ b. (5.1.11)
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Both fields ωi,ia,b, ω
i,j
a,b satisfy ϕ2(ω

i,i
a,b) = qi,ia,b, ϕ2(ω

i,j
a,b) = qi,ja,b, respectively and have

weight a+ b+ 2. Note that
∑n

i=1 ω
i,i
0,0 = 2L, where L is the Virasoro field.

Remark 5.1.2. The subspace (H(n)Z2)(2) has degree at most 2, and has a basis

{1} ∪ {ωi,ia,b, ω
i,j
a,b}. Moreover, for m ≥ 0, the operators ωi,ja,b◦m preserve this vector

space.

The following proposition for the case where i = j could be found in [LIII].

Proposition 5.1.3. For a, b, c ≥ 0, 0 ≤ m ≤ a+ b+ c+ 1, and i < j

ωi,ja,b ◦m ∂cαi = (−1)a
(a+ c+ 1)!

(a+ c+ 1−m)!
∂a+b+c+1−mαj , (5.1.12)

ωi,ja,b ◦m ∂cαj = (−1)b
(b+ c+ 1)!

(b+ c+ 1−m)!
∂a+b+c+1−mαi. (5.1.13)

ωi,ia,b ◦m ∂cαi = λa,b,c,m∂
a+b+c+1−mαi, (5.1.14)

where

λa,b,c,m = (−1)b
(b+ c+ 1)!

(b+ c+ 1−m)!
+ (−1)a

(a+ c+ 1)!

(a+ c+ 1−m)!
.

It follows that for m ≤ a+ b+ c+ 1, and i < j < k we have

ωi,ja,b ◦m ωi,jc,d = (−1)a
(a+ c+ 1)!

(a+ c+ 1−m)!
ωj,ja+b+c+1−m,d

+ (−1)b
(b+ d+ 1)!

(b+ d+ 1−m)!
ωi,ia+b+d+1−m,c, (5.1.15)

ωi,ja,b ◦m ωj,kc,d = (−1)b
(b+ c+ 1)!

(b+ c+ 1−m)!
ωi,ka+b+c+1−m,d, (5.1.16)

ωi,ia,b ◦m ωi,jc,d = λa,b,c,mω
i,j
a+b+c+1−m,d, (5.1.17)

ωj,ja,b ◦m ωi,jc,d = λa,b,d,mω
i,j
c,a+b+d+1−m, (5.1.18)

ωi,ia,b ◦m ωi,ic,d = λa,b,c,mω
i,i
a+b+c+1−m,d + λa,b,d,mω

i,i
c,a+b+d+1−m. (5.1.19)
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As a differential algebra with derivation ∂, some of the generators in the gen-

erating set (5.1.8) for gr(H(n))Z2 could be eliminated due to (5.1.7).

Example 5.1.4. Case i = j : By the product rule, it is easily seen that

qi,i0,1 =
1

2
∂qi,i0,0.

Furthermore, we have

qi,i1,1 = −qi,i0,2 +
1

2
∂2qi,i0,0,

qi,i0,3 =
3

2
∂qi,i0,2 −

1

4
∂3qi,i0,0,

qi,i1,3 = −qi,i0,4 +
3

2
∂2qi,i0,2 −

1

4
∂4qi,i0,0, . . . .

Case i < j : By the product rule, once get

qi,jr,m−r =

r∑
k=0

(−1)r+k
(
r

k

)
∂kqi,j0,m−k, (5.1.20)

for r = 0, ...,m.

For m ≥ 0, let Am = span{ωi,ia,b|a + b = m} be a vector space which is

homogenous of weight m + 2. Use the relation ∂ωi,ia,b = ωi,ia+1,b + ωi,ia,b+1. We have

dim(A2m) = m+ 1 = dim(A2m+1), for m ≥ 0. Moreover, ∂(Am) ⊂ Am+1, and

dim(A2m/∂(A2m−1)) = 1, dim(A2m+1/∂(A2m)) = 0. (5.1.21)

Thus, A2m has a decomposition

A2m = ∂(A2m−1)⊕ 〈ωi,i0,2m〉 = ∂2(A2m−2)⊕ 〈ωi,i0,2m〉, (5.1.22)
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where 〈ωi,i0,2m〉 is the linear span of ωi,i0,2m. Similarly, A2m+1 has a decomposition

A2m+1 = ∂2(A2m−1)⊕ 〈∂ωi,i0,2m〉 = ∂3(A2m−2)⊕ 〈∂ωi,i0,2m〉. (5.1.23)

Therefore,

span{ωi,ia,b|a+ b = 2m} = span{∂2kωi,i0,2m−2k|0 ≤ k ≤ m}

and

span{ωi,ia,b|a+ b = 2m+ 1} = span{∂2k+1ωi,i0,2m−2k|0 ≤ k ≤ m}

are bases of A2m and A2m+1, respectively and so for each ωi,ia,b ∈ A2m and ωi,ic,d ∈

A2m+1 can be written uniquely in the form

ωi,ia,b =
m∑
k=0

λk∂
2kωi,i0,2m−2k, ωi,ic,d =

m∑
k=0

µk∂
2k+1ωi,i0,2m−2k, (5.1.24)

for constants λk, µk.

Specializing this, for m ≥ 0, let A′m = span{ωi,ja,b|a + b = m}, and use the

relation ∂ωi,ja,b = ωi,ja+1,b + ωi,ja,b+1. We have dim(A′m) = m+ 1, for m ≥ 0. Moreover,

∂(A′m) ⊂ A′m+1, and

dim(A′m/∂(A′m−1)) = 1. (5.1.25)

Hence, A′m has a decomposition

A′m = ∂(A′m−1)⊕ 〈ω
i,j
0,m〉 (5.1.26)

where 〈ωi,j0,m〉 is the linear span of ωi,j0,m. Therefore,

span{ωi,ia,b|a+ b = m} = span{∂kωi,j0,m−k|0 ≤ k ≤ m}
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is a basis of A′m. It follows that for each ωi,jr,m−r ∈ A′m could be written uniquely in

the form

ωi,jr,m−r =

r∑
k=0

(−1)r+k
(
r

k

)
∂kωi,j0,m−k, (5.1.27)

where r = 0, . . . ,m.

The minimal strong generating set for H(n)Z2 is emphasized by the following

lemma.

Lemma 5.1.5. H(n)Z2 is strongly generated as a vertex algebra by the subset

{ωi,i0,2m|m ≥ 0, and i = 1, ..., n}
⋃
{ωi,j0,m|m ≥ 0, and 1 ≤ i < j ≤ n}. (5.1.28)

Proof. Since gr(H(n))Z2 = gr(H(n)Z2) is generated by the subset {qi,i0,2m|m ≥ 0, i =

1, ..., n}
⋃
{qi,j0,m|m ≥ 0, and 1 ≤ i < j ≤ n} as a ∂-ring, Lemma 4.3.3 shows that

the corresponding set strongly generates H(n)Z2 as a vertex algebra.

5.1.2 Decoupling relations and higher decoupling relations

We shall distinguish three cases for H(n)Z2 . Notice first that H(n)Z2 is not

freely generated by (5.1.28).

Case 1: For n = 1. The first relation of the form (5.1.9) among the generators

{q0,2m|m ≥ 0} of gr(H(1))Z2 , and their derivatives occurs of minimal weight 6,

corresponds to I = (0, 1), J = (0, 1) in (3.2.2) and has the form

q0,0q1,1 − q0,1q0,1 = 0, (5.1.29)

where qr,s = q1,1r,s . This relation is unique. The corresponding element : ω0,0ω1,1 :

− : ω0,1ω0,1 : lies in (H(n)Z2)(2). Similarly, we shall use the notation ωa,b for ω1,1
a,b

when no confusion may arise. This element element has a correction. By computer
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calculations, it has the form

: ω0,0ω1,1 : − : ω0,1ω0,1 : = −5

4
ω0,4 +

7

4
∂2ω0,2 −

7

24
∂4ω0,0

= −5

4
ω0,4 + P (ω0,0, ω0,2),

(5.1.30)

where P is a normally ordered polynomial in ω0,0, ω0,2, and their derivatives.

On the other hand, once can check that

ω0,1 =
1

2
∂ω0,0, (5.1.31)

ω1,1 = −ω0,2 +
1

2
∂2ω0,0. (5.1.32)

Thus, the left hand side of (5.1.30) can be written as a normally ordered polynomial

in ω0,0, ω0,2, and their derivatives, and so we can rewrite (5.1.30) as follows:

−5

4
ω0,4 = P2(ω0,0, ω0,2). (5.1.33)

This decoupling relation allows ω0,4 to be expressed as a normally ordered polyno-

mial in ω0,0, ω0,2 and their derivatives. No decoupling relations for ω0,0, ω0,2 could

be found since there are no relations of weight less than 6 in gr(H(1))Z2 due to Weyl

First Fundamental Theorem of Invariant Theory for Z2. Furthermore, (5.1.33) is

unique up to scalar multiples due to the uniqueness of (5.1.38).

In order to construct more decoupling relations of the form (5.1.33), we apply

the operator ω0,2◦1 repeatedly to the relation we have already constructed.

The following theorem gives the minimal strong generating set for H(1)Z2 ,

and it is due to (Dong-Nagatomo).

Theorem 5.1.6. [DNI] H(1)Z2 has a minimal strong generating set {ω0,0, ω0,2} and

is of type W(2, 4).

60



Case 2: For n=2. Specializing the above case, once get:

We shall have from the previous case a strong generating set consisting ω1,1
0,0, ω

1,1
0,2, ω

2,2
0,0,

ω2,2
0,2. In addition, we have ω1,2

0,m,m ≥ 0 as strong generators for H(2)Z2 but not all

of them are needed.

The first relation of the form (5.1.9) among the generators {q1,20,m|m ≥ 0, and

1 ≤ i < j ≤ 2} of gr(H(2)Z2) and their derivatives occurs of minimal weight 5, and

has the form

q1,20,0q
2,2
0,1 − q

1,2
0,1q

2,2
0,0 = 0. (5.1.34)

The corresponding element : ω1,2
0,0ω

2,2
0,1 : − : ω1,2

0,1ω
2,2
0,0 : in (H(2)Z2)(2), and has a

correction. By computer calculations, it has the form

: ω1,2
0,0ω

2,2
0,1 : − : ω1,2

0,1ω
2,2
0,0 : = −1

2
ω1,2
0,3 + 2∂ω1,2

0,2 −
5

2
∂2ω1,2

0,1 + ∂3ω1,2
0,0

= −1

2
ω1,2
0,3 +Q(ω1,2

0,0, ω
1,2
0,1, ω

1,2
0,2)

(5.1.35)

where Q is a normally ordered polynomial in ω1,2
0,0, ω

1,2
0,1, ω

1,2
0,2, and their derivatives,

and it could be rewritten as follows:

−1

2
ω1,2
0,3 = Q3(ω

2,2
0,0, ω

1,2
0,0, ω

1,2
0,1, ω

1,2
0,2). (5.1.36)

No decoupling relations for ω2,2
0,0, ω

1,2
0,0, ω

1,2
0,1, ω

1,2
0,2 could be found since there are no

relations of weight less than 5 in gr(H(2))Z2 due to Weyl First Fundamental Theorem

of Invariant Theory for Z2.

On the other hand, We have the following relation

: ω1,2
0,0ω

1,2
0,0 :=

1

2
ω1,1
0,2 +

1

2
ω2,2
0,2+ : ω1,1

0,0ω
2,2
0,0 : . (5.1.37)

In order to construct more decoupling relations of the form (5.1.36), we apply

the operator ω2,2
0,1◦1 repeatedly to the relation we have already constructed.
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Case 3: For n ≥ 3. Specializing the first case, once get:

We shall have from the first case a strong generating set consisting ωi,i0,0, ω
i,i
0,2, i =

1, ..., n. In addition, we have ωi,j0,m,m ≥ 0 1 ≤ i < j ≤ n as strong generators for

H(n)Z2 . This generating set is not optimized.

The first relation of the form (5.1.9) among the generators {qi,i0,2m|m ≥ 0}

of gr(H(n))Z2 , and their derivatives occurs of minimal weight 6, corresponds to

I = (0, 1), J = (0, 1) in (3.2.2) and has the form

qi,i0,0q
i,i
1,1 − q

i,i
0,1q

i,i
0,1 = 0. (5.1.38)

For each i, this relation is unique. The corresponding element : ωi,i0,0ω
i,i
1,1 : − :

ωi,i0,1ω
i,i
0,1 : lies in (H(n)Z2)(2), and has a correction. By computer calculations, it has

the form

: ωi,i0,0ω
i,i
1,1 : − : ωi,i0,1ω

i,i
0,1 : = −5

4
ωi,i0,4 +

7

4
∂2ωi,i0,2 −

7

24
∂4ωi,i0,0

= −5

4
ωi,i0,4 +R(ωi,i0,0, ω

i,i
0,2),

(5.1.39)

where R is a normally ordered polynomial in ωi,i0,0, ω
i,i
0,2, and their derivatives, and

this can be rewritten as follows:

−5

4
ωi,i0,4 = R2(ω

i,i
0,0, ω

i,i
0,2). (5.1.40)

In order to construct more decoupling relations of the form (5.1.40), we apply

the operator ωi,i0,2◦1 repeatedly to the relation we have already constructed.

Remark 5.1.7. Applying the operator ωi,i0,2◦1 to the both sides of (5.1.39) yields

16ωi,i0,6 =
192

25
(: ωi,i0,0ω

i,i
0,0ω

i,i
1,1 : + : ωi,i0,0ω

i,i
0,1ω

i,i
0,1 :) + S(ωi,i0,0, ω

i,i
0,2), (5.1.41)
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where S is a normally ordered polynomial in all linear and quadratic in ωi,i0,0, ω
i,i
0,2,

and their derivatives. The monomials of degree 3 in ωi,i0,0, ω
i,i
0,1, ω

i,i
1,1 that appear in

(5.1.41) are of weight 8, and can be rewritten as follows

: ωi,i0,0ω
i,i
0,0ω

i,i
1,1 : − : ωi,i0,0ω

i,i
0,1ω

i,i
0,1 : =

203

552
ωi,i0,6 +

143

1104
∂4ωi,i0,2 +

41

5520
∂6ωi,i0,0

− 1

12
: ωi,i0,0(∂

2ωi,i0,2) :− 97

276
: (∂ωi,i0,0)(∂

3ωi,i0,0) : +
63

46
: (∂ωi,i0,0)(∂ω

i,i
0,2)

+
17

23
: (∂2ωi,i0,0)ω

i,i
0,2 : −385

276
: ωi,i0,2ω

i,i
0,2 : .

The first relation of the form (5.1.9) among the generators {qi,j0,m|m ≥ 0, 3 ≤

i < j ≤ n} of gr(H(n))Z2 and their derivatives occurs of minimal weight 4, and has

the form

qi,j0,0q
j,k
0,0 − q

i,k
0,0q

j,j
0,0 = 0, for i < j < k. (5.1.42)

The corresponding element : ωi,j0,0ω
j,k
0,0 : − : ωi,k0,0ω

j,j
0,0 : lies in (H(n)Z2)(2), and has a

correction. By computer calculations, it has the form

: ωi,j0,0ω
j,k
0,0 : − : ωi,k0,0ω

j,j
0,0 : =

1

2
ωi,k0,2 − ∂ω

i,k
0,1 +

1

2
∂2ωi,k0,0

= −1

2
ωi,k0,2 + T (ωi,k0,0, ω

i,k
0,1),

(5.1.43)

where T is a normally ordered polynomial in ωi,k0,0, ω
i,k
0,1, and their derivatives. So,

(5.1.43) can be rewritten as follows:

1

2
ωi,k0,2 = T2(ω

j,j
0,0, ω

i,j
0,0, ω

j,k
0,0, ω

i,k
0,0, ω

i,k
0,1). (5.1.44)

No decoupling relations for ωj,j0,0, ω
i,j
0,0, ω

j,k
0,0, ω

i,k
0,0, ω

i,k
0,1 could be found since there are

no relations of weight less than 4 in gr(H(n))Z2 due to Weyl First Fundamental

Theorem of Invariant Theory for Z2. Furthermore, (5.1.44) is unique up to scalar

multiples due to the uniqueness of (5.1.42).
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In order to construct more decoupling relations of the form (5.1.44), we apply

the operator ωk,k0,1 ◦1 repeatedly to the relation we have already constructed.

Lemma 5.1.8. For n ≥ 3, and 1 ≤ i < j ≤ n, H(n)Z2 is generated by ωi,i0,0, ω
i,i
0,2, ω

i,j
0,0,

ωi,j0,1 as a vertex algebra.

Proof. First, for i = 1, ..., n, it suffices to show that each ωi,i0,2k is generated by

ωi,i0,0, ω
i,i
0,2 for all k ≥ 2. This follows from

ωi,i0,2 ◦1 ω
i,i
0,2k = (4 + 2k)ωi,i0,2k+2 + ∂2µ, (5.1.45)

where µ is a linear combination of ∂2rωi,i0,2k−2r for r = 0, ..., k.

Second, for i < j, it suffices to show that each ωi,j0,k is generated by ωi,j0,0, ω
i,j
0,1for all

k ≥ 2. This follows from

ωj,j0,1 ◦1 ω
i,j
0,k = −ωi,j0,k+1. (5.1.46)

Lemma 5.1.9. [LV] Let R0 denote the remainder of the element P0. The condition

R0 6= 0 is equivalent to the existence of a decoupling relation in H(n)Z2 of the form

ωi,i0,2m = Pm(ωi,i0,0, ω
i,i
0,2), (5.1.47)

where P is a normally ordered polynomial in ωi,i0,0, ω
i,i
0,2 and their derivatives.

Lemma 5.1.10. [LV] Suppose that R0 6= 0. Then for all m ≥ 2, there exists a

decoupling relation

ωi,i0,2m = Pm(ωi,i0,0, ω
i,i
0,2), (5.1.48)

where Pm is a normally ordered polynomial in ωi,i0,0, ω
i,i
0,2 and their derivatives.
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Similarly, let R0, denote the remainder of the element D0. The condition

R0 6= 0, is equivalent to the existence of a decoupling relation in H(n)Z2 of the form

ωi,j0,m = Q(ωi,j0,0, ω
i,j
0,1, ω

i,j
0,2), (5.1.49)

where Q is a normally ordered polynomial in ωi,j0,0, ω
i,j
0,1, ω

i,j
0,2 and their derivatives,

and Q′ is a normally ordered polynomial in h0, h1 and their derivatives.

Theorem 5.1.11. 1. For n = 2, H(n)Z2 has a minimal strong generating set

{ω1,1
0,0, ω

1,2
0,0, ω

1,2
0,1, ω

1,2
0,2, ω

2,2
0,0, ω

2,2
0,2, }, (5.1.50)

and is of type W(23, 3, 42).

2. For n ≥ 3, H(n)Z2 has a minimal strong generating set

{ωi,i0,0, ω
1,1
0,2|i = 1, ..., n}

⋃
{ωi,j0,0, ω

i,j
0,1|1 ≤ i < j ≤ n}, (5.1.51)

and is of type W(2n+(n2), 3(n2), 4).

Proof. We shall prove the case where n ≥ 3, and the proof of the other case is similar

and so it is omitted.

First, Lemma 5.1.5 asserts that H(n)Z2 is strongly generated by the natural

infinite set

{ωi,i0,2m|m ≥ 0, and i = 1, ..., n}
⋃
{ωi,j0,m|m ≥ 0, and 1 ≤ i < j ≤ n}.

Next, It suffices to construct decoupling relations of the form

ωi,i0,2m = Pm(ωi,i0,0, ω
i,i
0,2), (5.1.52)
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for m ≥ 4 since we already have such relations for m = 2, 3, where i = 1, ..., n.

Applying the operator ωi,i0,2◦1, which raises the weight by 2 to the relations we have

constructed, and so Lemma 5.1.8 and Lemma 5.1.10 yield the result.

Moreover, we need to construct decoupling relations of the form

ωi,j0,m = Qm(ωi,i0,0, ω
i,i
0,2, ω

i,j
0,0, ω

i,j
0,1),

for m ≥ 2. Applying the operator ωj,j0,1◦1, which raises the weight by 2 to the relations

we have constructed. Lemma 5.1.8, and Lemma 5.1.10 with the relations

: ωi,j0,0ω
i,j
0,0 :=

1

2
ωi,i0,2 +

1

2
ωj,j0,2+ : ωi,i0,0ω

j,j
0,0 :,

: ωi,j0,0ω
j,k
0,0 :=

1

2
ωi,k0,2 − (∂ωi,k0,1) +

1

2
(∂2ωi,k0,0)+ : ωi,k0,0ω

j,j
0,0 :

yield the result. Thus, (5.1.51) is a strong generating set for H(n)Z2 .

The fact that this set is minimal is a consequence of Weyl’s First Fundamental

Theorem of invariant theory for Z2; there are no normally ordered relations of weight

less than 4.

Notice that ωi,i0,0, ω
i,i
0,2, ω

i,j
0,0, ω

i,j
0,1, ω

i,j
0,2 are not primary fields with respect to L. It

is easy to correct them to be a primary ones by adding a normally ordered polynomial

in the previous set and their derivatives. Using the computer calculations, we obtain
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the following primary fields:

L(z) =
1

2

n∑
i=1

: ai(z)ai(z) :,

Ck =
1

2
(ω1,1

0,0 − ω
k,k
0,0 ), where k = 2, ..., n.

Ci,i0,2 = ωi,i0,2 −
2

9
: ωi,i0,0ω

i,i
0,0 : −1

6
∂2ωi,i0,0, where i = 1, ..., n,

Ci,j0,0 = ωi,j0,0,

Ci,j0,1 = ωi,j0,1 −
1

2
∂ωi,j0,0,

Ci,j0,2 = ωi,j0,2 −
4

9
: ωi,j0,0ω

j,j
0,0 : +

5

9
∂2ωi,j0,0 −

13

9
∂ωi,j0,1.

(5.1.53)

5.2 Deformations

Let K ⊂ C be at most countable. Consider the C-algebra FK = {p(κ)q(κ) |deg(p) ≤

deg(q) and r(q) ∈ K}, where r(q) denotes the toots of q.

Definition 5.2.1. A FK-module B with the vertex algebra structure, and coefficients

in FK is called a deformable family.

Note that vertex algebras over FK are defined similarly as vertex algebras over

C. Let B be a vertex algebra, defined in the above definition, with basis {ai|i ∈ I}.

For k /∈ K, we have a vertex algebra

Bk = B/(κ− k),

where (κ− k) is the ideal generated by κ− k. The limit

B∞ = limκ→∞B

is a vertex algebra with basis {αi|i ∈ I}, such that αi = limκ→∞ai.
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Remark 5.2.2. The algebraic structure for the vertex algebra B∞ can be described

as follows:

1. αi ◦n αj = limκ→∞ai ◦n aj , i, j ∈ I, n ∈ Z.

2. The FK-linear map ϕ : B → B∞, ai 7→ αi satisfies

ϕ(ω ◦n ν) = ϕ(ω) ◦n ϕ(ν), ω, ν ∈ B, n ∈ Z. (5.2.1)

Example 5.2.3. [LIV] Let g be a simple, finite dimensional Lie algebra equipped

with the normalized Killing form (.|.), and a related an orthonormal basis {ξ1, ..., ξn}.

The generators Xξi ∈ V k(g) satisfy the OPE relations

Xξi(z)Xξj (w) ∼ kδi,j(z − w)−2 +X [ξj ,ξj ](w)(z − w)−1. (5.2.2)

Let κ be formal variable satisfying κ2 = k. Let F = FK for K = {0}. Let V be

the vertex algebra with coefficients in F, freely generated by {aξi |i = 1, ..., n}, which

satisfy the OPE relations

aξi(z)aξj (w) ∼ δi,j(z − w)−2 +
1

κ
a[ξi,ξj ](w)(z − w)−1.

For k 6= 0, we have a surjective vertex algebra homomorphism

V → V k(g), aξi 7→ 1√
k
Xξi ,

with the kernel (κ−
√
k). It follows that V k(g) ∼= V/(κ−

√
k), and the limit V∞ =

limκ→∞V is a vertex algebra over C with generators {αξi |i = 1, ..., n}, which satisfy

the OPE relations

αξi(z)αξj (w) ∼ δi,j(z − w)−2.
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Therefore, V∞ ∼= H(n).

Corollary 1. [LIV] (VG)∞ = (V∞)G = H(n)G.

5.3 The universal Affine vertex algebra, revisited

Filtrations. We define an increasing filtration on V k(g) for any simple, finite

dimensional Lie algebra g as follows:

V k(g)(0) ⊂ V k(g)(1) ⊂ V k(g) ⊂ ..., V k(g) =
⋃
d≥0

V k(g)(d), (5.3.1)

where V k(g)(−1) = {0}, and V k(g)(r) is spanned by the iterated Wick products of the

generators Xζi and their derivatives, such that at most r of the generators and their

derivatives appear, that is, V k(g) is spanned by all normally ordered monomials of

the form (2.8.4), such that the total length s1 + · · · + sm ≤ r. In particular, each

Xζi and their derivatives have degree 1.

We have a Z≥0-grading

V k(g) =
⊕
r≥0

V k(g)(r), (5.3.2)

where V k(g)(d) = ⊕dr=0V
k(g)(r). So, V k(g) equipped with such a good filtration lies

in the category R. The Z≥0-associated graded algebra

gr(V k(g)) =
⊕
d≥0

V k(g)(d)/V
k(g)(d−1)

is now an abelian vertex algebra freely generated by Xζi . Then, V k(g) ∼= gr(V k(g))

as linear spaces, and as commutative algebras we have

gr(V k(g)) ∼= C[Xζi , ∂Xζi , ∂2Xζi , ...].
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According to the Cartan Killing classification, we have the following list for

the simple Lie algebras.

Theorem 5.3.1. [BH] Any complex finite dimensional simple Lie algebra is iso-

morphic to exactly one of the following:

Classical Lie Algebras:

1. sln+1, n ≥ 1, and it has a Cartan notation An.

2. so2n+1, n ≥ 2, and it has a Cartan notation Bn.

3. sp2n, n ≥ 3, and it has a Cartan notation Cn.

4. so2n, n ≥ 4, and it has a Cartan notation Dn.

Exceptional Lie Algebras:

1. G2.

2. F4.

3. E6, E7, or E8.

The table below shows the dimension, rank l, and the number of positive roots

m for each simple Lie algebra from the previous list:
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Lie algebra Dimension Rank l The number of positive roots m

sln+1 (n+ 1)2 − 1 n (n2+n)
2

so2n+1
2n(2n+1)

2 n n2

sp2n n(2n+ 1) n n2

so2n
2n(2n−1)

2 n n2 − n

G2 14 2 6

F4 52 4 24

E6 78 6 36

E7 133 7 63

E8 248 8 120

5.3.1 The Cartan involution and its extension to V k(g)

Let g be a simple Lie algebra as above, and let l = rank(g) and m be the

number of positive roots. With respect to a choice of base for the root system Φ,

we have a triangular decomposition

g = h⊕ n+ ⊕ n−,

where h is the Cartan subalgebra with basis hr, r = 1, . . . , l, and n+ has basis xβi

for i = 1, . . . ,m, and n− has basis yβi for i = 1, . . . ,m. The Cartan involution θ of

g is then given by

θ(xβi) = −yβi , θ(yβi) = −xβi , θ(hr) = −hr.

Since θ preserves the Lie bracket as well as the normalized Killing form, it is

immediate that it extends to an automorphism of the vertex algebra V k(g) given by
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the same formula, where hr, xβi , yβi are now interpreted as the generating fields for

V k(g).

It is convenient to apply a linear change of variables to replace the generators

hr, xβi , yβi of V k(g) with a set of eigenvectors for θ as follows:

Eβi = xβi + yβi , Fβi = xβi − yβi hr.

The action of θ on the new generators will be as follows:

θ(Eβi) = −Eβi , θ(Fβi) = Fβi , θ(hr) = −hr.

Since the monomials (2.8.4) form a basis for V k(g), and the new generators are

related to the old ones by a linear change of variables, there is also a PBW basis

consisting of normally ordered monomials of the new generators and their deriva-

tives.

Note that the fields Fβi lie in the orbifold V k(g)Z2 . Define additional elements

of V k(g)Z2 as follows:

Q
βi,βj
a,b =: ∂aEβi(z)∂

bEβj (z) :,

Qhr,βia,b =: ∂ahr(z)∂
bEβi(z) :,

Qhr,hsa,b =: ∂ahr(z)∂
bhs(z) :,

which each have weight a+ b+ 2.

Note that in the case g = sl2, there is only one positive root β, so there is one

element Fβ, one element Eβ, and one basis vector h for h. In this case, the above

elements are

Qβ,βa,b =: ∂aEβ(z)∂bEβ(z) :,

Qh,βa,b =: ∂ah(z)∂bEβ(z) :,

Qh,ha,b =: ∂ah(z)∂bh(z) :,
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5.3.2 The structure of V k(g)Z2

The following theorem describes V k(g)Z2 for generic values of k.

Theorem 5.3.2. Let g be a simple, finite-dimensional Lie algebra, and let l =

rank(g), m the number of positive roots, and set d = m+ l.

1. For g 6= sl2, and k generic, V k(g)Z2 has a minimal strong generating set

{Fβi , Q
βa,βb
0,0 , Qβ1,β10,2 , Qhr,hs0,0 , Qht,βu0,0 , Qht,βu0,1 },

for 1 ≤ i ≤ m, 1 ≤ a ≤ b ≤ m, 1 ≤ r ≤ s ≤ l, 1 ≤ t ≤ l, and 1 ≤ u ≤ m. In

particular, V k(g)Z2 is of type W(1m, 2d+(d2), 3(d2), 4).

2. For g = sl2 and k generic, V k(g)Z2 has a minimal strong generating set

{F,Qβ,β0,0 , Q
h,h
0,0 , Q

h,h
0,2 , Q

β,h
0,0 , Q

β,h
0,1 , Q

β,h
0,2 },

and in particular, is of type W(1, 23, 3, 42).

Proof. Let n = 2m+ l = dim(g). By deformation argument, we have

lim
k→∞

V k(g) ∼= H(n).

Here H(n) is the rank n Heisenberg algebra with generators Fβi , Eβi and hr. (By

abuse of notation, we use the same symbols for the limits of these fields). Moreover,

the action of Z2 is trivial on the rankm Heisenberg subalgebra generated by {Fβi | i =

1, . . . ,m, and it acts by −1 on the rank d = m+l Heisenberg algbera with generators

{Eβi , hr| i = 1, . . . ,m, r = 1, . . . , l}. It is immediate that

lim
k→∞

V k(g)Z2 ∼= H(m)⊗
(
H(d)Z2

)
.
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In the limit k → ∞, the fields Fβi are the generators of H(m), and the remaining

quadratic fields are precisely the generators for H(d)Z2 . The claim in both cases

then follows by Theorem 5.1.11.

5.3.3 The nongeneric set for V k(sl2)
Z2

Here we determine the set of nongeneric values of k where the strong finite

generating set for V k(sl2)
Z2 does not work. For convenience, we change our notation

in the case of sl2. We work in the usual root basis for {x, y, h} for sl2, and the

corresponding generators {Xx, Xy, Xh} for V k(sl2). The action of θ is then given

by

θ(Xx) = −Xy, θ(Xy) = −Xx, θ(Xh) = −Xh.

We change the basis to the basis of eigenvectors as follows:

G = Xx +Xy, F = Xx −Xy, H = Xh. (5.3.3)

The nontrivial involution θ acts on the new generators as follows:

θ(G) = −G, θ(F ) = F, θ(H) = −H.

Define the new generators for V k(sl2) as follows:

Qi,j =: ∂iG(z)∂jG(z) :∈ (V k(sl2)
Z2)(2),

Ui,j =: ∂iH(z)∂jH(z) :∈ (V k(sl2)
Z2)(2),

Vi,j =: ∂iH(z)∂jG(z) :∈ (V k(sl2)
Z2)(2).

which each have weight i+ j + 2.

In this notation, the strong generators for V k(sl2) given by Theorem 5.3.2 are

{F,Q0,0, U0,0, U0,2, V0,0, V0,1, V0,2}. In particular, these fields close under OPE, so
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for α1, α2 in the above set, each term in the OPE of α1(z)α2(w) can be expressed

as a linear combination of normally ordered monomials in these generators. The

coefficients of these monomials are called the structure constants of the OPE alge-

bra, and they are all rational functions of k. By Theorem 5.3 of [CLIII], the only

nongeneric values of k are the poles of these structure constants. Clearly there are

at most finitely many such poles. By computing the remaining OPE relations, we

find that all poles of structure constant lie in the set {0, 16
51 ,

16
9 ,±

32
3 , 16, 32, 48}.

An immediate consequence is the following:

Corollary 2. For at most k 6= 0, 1651 ,
16
9 ,±

32
3 , 16, 32, 48, V k(sl2)

Z2 is of type

W(1, 23, 3, 42).

It is important to point out that in general, it is difficult to describe the non-

generic set using the structure constants method especially with generators that

have higher weights than they are here. In this case, we use the decoupling relations

to describe the generic behavior.
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Chapter 6

W-Algebras

In this chapter, we introduce the W-algebra Wk(g) :=Wk(g, fprin) associated

to a simple Lie algebra g and its principal nilpotent element fprin. There are several

ways to constructWk(g), and here we briefly review a standard construction known

as the quantum Drinfeld-Sokolov reduction. It is a certain semi-infinite cohomol-

ogy of a BRST complex (refers to the physicists Becchi, Rouet, Stora and Tyutin)

associated to g, and we follow the presentation on the book [FBZ] of Frenkel and

Ben-Zvi. In the case g = sl3, Wk(sl3) is known as the Zamolodchikov W3-algebra

[Za]. Our main result is a complete description of the Z2-orbifold of theW3-algebra,

which is a joint work with Linshaw [AL].

6.1 The BRST complex and the quantum

Drinfeld-Sokolov reduction

Let g be a simple Lie algebra of rank l with the Cartan decomposition

g = h⊕ n+ ⊕ n−,
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where n+ (resp., n+) is the upper (resp., lower) nilpotent subalgebra, and h is the

Cartan subalgebra.

Let Cln+ be the Clifford algebra associated to the vector space n+((t)) ⊕

n∗+((t))dt and the non-degenerate bilinear form B(., .). Let {eα}α∈4+ be a basis

of n+, where 4+ is the set of positive roots of g. Then, Cln+ is generated by

ψα,n = eα⊗ tn, ψ∗α,n = e∗α⊗ tn−1dt for α ∈ 4+, n ∈ Z, and these generators satisfy

the Lie bracket (2.12.1), with the corresponding Fock representation
∧

n+
. Let cγα,β

be the structure constants in n+, that is

[eα, eβ] =
∑
γ∈4+

cγα,βeγ .

Consider the vertex subalgebra

C•k(g) = V k(g)⊗
•∧
n+

, (6.1.1)

where V k(g) is the universal Affine vertex algebra. It is equipped with a the standard

differential dst of degree 1. The complex pair (C•k(g), dst) is the standard differential

of semi-infinite cohomology of the n+((t)) with coefficients in V k(g).

Define a Lie algebra homomorphisim

n+
ρ−→ Cln+

eα 7−→
∑
γ∈4+

cγα,βeγe
∗
β.

For eα, eβ ∈ n+, we have

[ρ(eα), eβ] = [eα, eβ] ∈ n+ ⊂ Cln+ .
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Let Q(z) be an odd field corresponds to Q of degree 1 in C1
k(g), defined as

Q(z) =
∑
α∈4+

eα(z)ψ∗α(z)− 1

2

∑
α,β,γ∈4+

cγα,β : ψ∗α(z)ψ∗β(z)ψγ(z) :,

and satisfies the OPE relation

Q(z)Q(w) ∼ 0,

that is Q(z)Q(w) is regular at z = w.

Consider a linear functional χ on n+((t)) as follows

χ(enα) =

 1 if α is simple, n = −1,

0 otherwise.

Note that χ([x, y]) = 0 for x, y ∈ n+((t)), that is χ is a character of n+((t)) called

the Drinfeld-Sokolov character. Then,

d = dst + χ

is a differential on C•k(g) satisfies d2 = 0. The complex (C•k(g), d) with cohomological

gradation is called the BRST complex of the quantum Drinfeld-Sokolov reduction.

We refer to its cohomology by H•k(g), and it is a vertex algebra. In particular, H0
k(g)

is a vertex algebra called the W-algebra associated to ĝ at level k and denoted by

Wk(g).

The following theorem gives the vertex algebra structure. For the proof, see

[FBZ].

Theorem 6.1.1. H0
k(g) =Wk(g) is a vertex algebra generated by Wi of degree di+1

for i = 1, ..., l, di is the ith exponent of g, and H i
k(g) = 0 for i 6= 0.
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Example 6.1.2. 1. For g = sl2, Wk(sl2) = V irc(k), where the central charge

c(k) = 1 − 6(k+1)2

k+2 . By Theorem 6.1.1, it is finitely generated by the Virasoro

field W1(z) = L(z).

2. For g = sl3, Wk(sl3) = Wc
3 the W-algebra which was first constructed by

Zamolodchikov [Za], and the central charge c(k) = 2 − 24(k+2)2

k+3 . It is finitely

generated by the Virasoro field W1(z) = L(z), and W2(z) of conformal weight

3.

6.2 The W3-algebra

The W3-algebra Wc
3 with central charge c is an extension of the Virasoro

algebra. It is categorized of type W(2, 3) strongly generated by a Virasoro field L

and a weight 3 primary field W satisfying the OPE relations

L(z)L(w) ∼ c

2
(z − w)−4 + 2L(w)(z − w)−2 + ∂L(w)(z − w)−1, (6.2.1)

L(z)W (w) ∼ 3W (w)(z − w)−2 + ∂W (w)(z − w)−1, (6.2.2)

W (z)W (w) ∼ c

3
(z − w)−6 + 2L(w)(z − w)−4 + ∂L(w)(z − w)−3

+

(
32

22 + 5c
: LL : +

3(−2 + c)

2(22 + 5c)
∂2L

)
(z − w)−2

+

(
32

22 + 5c
: (∂L)L : +

−2 + c

3(22 + 5c)
∂3L

)
(z − w)−1.

(6.2.3)

It is the first and simplest example of nonlinear vertex algebra. The OPE

relation (6.2.3) is special in sense that it has a field of conformal weight 4 indicated

by 16
22+5c(: LL : − 3

10∂
2L), and so Wc

3 is viewed as a non-closed vertex algebra.

Remark 6.2.1. The OPE relation (6.2.3) has a pole at c = −22
5 , and this pole is

inessential and can be removed by multiplying W by a factor of
√

22 + 5c, and then

taking the limit as c → −22
5 . The correspondent W3-algebra is W−22/53 , with the
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rescaled generator, will be denoted by W , satisfies

W (z)W (w) ∼
(

32 : LL : −48

5
∂2L

)
(z − w)−2 +

(
32 : (∂L)L : −32

15
∂3L

)
(z − w)−1.

(6.2.4)

For all c ∈ C, Wc
3 is freely generated by L,W, and has a PBW basis as follows

: (∂k
1
1L)...(∂k

1
s1L)(∂k

2
1W )...(∂k

2
s2W ) :, si ≥ 0, ki1 ≥ ... ≥ kisi ≥ 0 for i = 1, 2.

(6.2.5)

From now and on, we will shortly use the notation W for Wc
3.

6.2.1 Filtrations

Define a filtration on W as follows:

W(0) ⊂ W(1) ⊂ ... W =
⋃
d≥0
W(d), (6.2.6)

whereW(−1) = {0}, andW(r) is spanned by iterated Wick products of the generators

L,W and their derivatives, such that at most r copies of W and its derivatives

appear. That is, W(r) is spanned by all normally ordered monomials of the form

(6.2.5) such that s2 ≤ r. In particular, each L and its derivatives have degree 0,

while each W and its derivatives have degree 1.

Remark 6.2.2. Checking the filtrations axioms’ on the OPE relations (6.2.1)-

(6.2.3), once see that the above filtrations is a weak increasing filtration. Note that

the associated graded algebra

V = gr(W) =
⊕
d≥0
W(d)/W(d−1)

is not abelian since it contains W(0) as a subalgebra which it is just the Virasoro

algebra with generator L. Also, the associated graded algebra V is freely generated
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by L,W . The vertex algebra V will still have the same OPE relations (6.2.1)-(6.2.2)

while (6.2.3) will be replaced with W (z)W (w) ∼ 0.

Since the associated graded algebra Vc is nonabelian vertex algebra, so we will

need to define another filtration on V as follows:

V(0) ⊂ V(1) ⊂ ..., V =
⋃
d≥0
V(d), (6.2.7)

where V(−1) = {0}, and V(r) is spanned by iterated Wick products of the generators

L,W and their derivatives, of length at most r. That is, V(r) is spanned by all

normally ordered monomials of the form (6.2.5) such that s1 +s2 ≤ r. In particular,

both L and W, and its derivatives have degree 1. From defining the OPE relations,

this is actually a good increasing filtration, and therefore the associated graded

algebra

gr(V) =
⊕
d≥0
V(d)/V(d−1)

is now abelian. Hence, gr(V) is considered as an abelian vertex algebra generated by

the virasoro element L of weight 2 and W of weight 3 satisfying the OPE relations

L(z)L(w) ∼ 0,

L(z)W (w) ∼ 0,

W (z)W (w) ∼ 0.

The W-algebra equipped with such two consequent filtrations lies in the cat-

egory R, and so W ∼= gr(V) as linear spaces. In particular, gr(V) is isomorphic to

the polynomial algebra

C[L, ∂L, ∂2L, . . . ,W, ∂W, ∂2W, . . . ].
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6.2.2 The Z2-orbifold of W

The full automorphism group of W is Z2, generated by the nontrivial involu-

tion θ. The action of θ on the generators will be as follows:

θ(L) = L, θ(W ) = −W. (6.2.8)

The OPE relations (6.2.1)-(6.2.3) will be preserved by this action on W, that

is

L ◦n L = θ(L) ◦n θ(L),

L ◦nW = θ(L) ◦n θ(W ),

W ◦nW = θ(W ) ◦n θ(W ),

for all n as well as the filtration (6.2.6), (6.2.7) and induces an action of Z2 on gr(V).

As we noted before in chapter 3, the invariant ring C[∂kL, ∂lW |k, l ≥ 0]Z2 is

generated by all polynomials in L, and W of even degree. Going back toWZ2 , is also

spanned by all normally ordered monomials of the form (6.2.5) such that s2 is even.

In addition to this fact, W is freely generated by L,W , and so these monomials

form a basis for WZ2 , and the normal form is unique.

The filtration on WZ2 is obtained from the filtration (6.2.6) after restriction

as follows:

WZ2

(0) ⊂ W
Z2

(1) ⊂ · · · , W
Z2

(r) =WZ2 ∩W(r).

The action of Z2 on W descends to an action on V = gr(W), and

gr(WZ2) ∼= VZ2 .

Similarly, Z2 acts on gr(V) ∼= C[L, ∂L, ∂2L, ...,W, ∂W, ∂2W, ...], and

gr(VZ2) ∼= gr(V)Z2 ∼= C[L, ∂L, ∂2L, . . . ,W, ∂W, ∂2W, . . . ]Z2 .
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To describe the generators and relations for the invariant ring C[∂kL, ∂lW |k, l ≥

0]Z2 , we need the classical theorem of Weyl (Weyl’s First and Second Fundamental

Theorem of Invariant Theory for the standard representation of Z2).

Remark 6.2.3. 1. The action of Z2 on the gr(V), which is given by θ(∂kL) =

∂kL and θ(∂lW ) = −∂lW guarantees that gr(V)Z2 is generated by {L, ui,j | i, j ≥

0}, where ui,j = (∂iW )(∂jW ).

2. The definition of ui,j , and gr(V)Z2 being an abelian imply that ui,j = uj,i, and

as a consequence we only need {L, ui,j | i ≥ j ≥ 0}.

The generators: Define

Ui,j = : (∂iW )(∂jW ) : ∈ WZ2

(2), (6.2.9)

which has filtered degree 2, weight i + j + 6 and corresponds to ui,j ∈ gr(V)Z2 .

Hence, WZ2 is strongly generated by

{L,Ui,j | i ≥ j ≥ 0}.

In gr(V)Z2 , as it is considered as differential algebra with derivation ∂, some

of the generators could be eliminated since

∂ui,j = ui+1,j + ui,j+1.

To see this, let An be the vector space spanned by {ui,j | i+ j = n}. If n is an odd,

once can see that An = ∂(An−1), and if n is an even, then An = ∂(An−1) ⊕ 〈un,0〉.

Therefore, {∂mu2n,0| m,n ≥ 0} spans An as well as {ui,j | i, j ≥ 0} does, and so

{L, u2n,0| n ≥ 0} is a minimal generating set for gr(V)Z2 as a differential algebra.
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The ideal of relations: Among these generators, the ideal of relations is generated

by

ui,juk,l − ui,luk,j = 0, 0 ≤ i < k, 0 ≤ j < l. (6.2.10)

Lemma 6.2.4. WZ2 is strongly generated by

{L,U2n,0| n ≥ 0}. (6.2.11)

Proof. As a differential algebra, gr(V)Z2 ∼= gr(VZ2) is generated by {L, u2n,0| n ≥ 0}

and so Lemma 3.6 of [LL] shows that the corresponding set strongly generates VZ2

as a vertex algebra. The claim then follows by Lemma (4.3.4). In particular, in

WZ2 , we can express both Ui,j −Uj,i and ∂Ui,j −Ui+1,j −Ui,j+1 as normally ordered

polynomials in L and its derivatives. So, {Ui,j | i, j ≥ 0} and {∂mU2n,0| m,n ≥ 0}

span the same vector space modulo the Virasoro algebra generated by L.

Remark 6.2.5. Regarding the generating set (6.2.11), the filtered piece WZ2

(2r) is

spanned by elements with at most r of the fields U2n,0, and WZ2

(2r) =WZ2

(2r+1).

6.2.3 Decoupling relations

The Z2-orbifold of theW is not freely generated by (6.2.11). The first relation

of the form (6.2.10) among the generators (6.2.11) has the form

u0,0u1,1 − u1,0u1,0 = 0, (6.2.12)

and is the unique relation in gr(V)Z2 . It corresponds to the element : U0,0U1,1 : − :

U1,0U1,0 :∈ WZ2 of minimal weight 14. The OPE relation (6.2.3) emphasizes that

the above element has some corrections. However, it lies in the degree 2 filtered
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piece WZ2

(2) and by Computer calculations, it has the form

: U0,0U1,1 : − : U1,0U1,0 :=
181248 + 5590c− 475c2

60480(22 + 5c)
U8,0 + P (L,U0,0, U2,0, U4,0, U6,0),

(6.2.13)

where P is a normally ordered polynomial in L,U0,0, U2,0, U4,0, U6,0, and their deriva-

tives. To be more accurate, this relation is written more explicitly in the Appendix.

Remark 6.2.6. Since the set (6.2.11) strongly generates WZ2 , so all Ui,j can be

expressed in term of this generating set. For our purpose, we can write both U1,0,

and U1,1 as follows

U1,0 =
1

2
∂U0,0 −

8

3(22 + 5c)
: (∂3L)L : − 8

22 + 5c
: (∂2L)∂L : − −2 + c

48(22 + 5c)
∂5L,

U1,1 = −U2,0 +
1

2
∂2U0,0 −

8

3(22 + 5c)
: (∂4L)L : − 32

3(22 + 5c)
: (∂3L)(∂L) :

− 8

22 + 5c
: (∂2L)(∂2L) : +

2− c
48(22 + 5c)

∂6L : .

The left side of (6.2.13) is a normally ordered polynomial in L,U0,0, U2,0 due

to the Remark 6.2.6, and so (6.2.13) can be written in the form

181248 + 5590c− 475c2

60480(22 + 5c)
U8,0 = P8(L,U0,0, U2,0, U4,0, U6,0). (6.2.14)

For c 6= −22
5 ,

559±7
√
76657

95 , the above decoupling relation allows U8,0 to be expressed

as a normally ordered polynomial in L,U0,0, U2,0, U4,0, U6,0 and their derivatives.

Recall, the pole at c = −22
5 is inessential. From now on, we shall assume that

c 6= −22
5 for the rest of Subsections, and we deal with the case c = −22

5 separately

in Subsection (6.2.7).

No decoupling relations for U0,0, U2,0, U4,0, U6,0 could be found since there

are no relations of weight less than 14 in gr(V)Z2 due to Weyl First Fundamental

Theorem of Invariant Theory for Z2. Furthermore, (6.2.14) is unique up to scalar
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multiples due to the uniqueness of (6.2.14), and so no decoupling relation for U8,0

could be found for c = 559±7
√
76657

95 .

Weight 16 relations: This relation could be obtained by correcting the

relation u0,0u2,2− u2,0u2,0 = 0 in gr(V)Z2 and similarly as above, the corresponding

element in WZ2 of weight 16:

: U0,0U2,2 : − : U2,0U2,0 : = −434176− 20326c+ 35c2

151200(22 + 5c)
U10,0 +Q(L,U0,0, U2,0, U4,0,

U6,0, U8,0),

(6.2.15)

where Q is a normally ordered polynomial in L,U0,0, U2,0, U4,0, U6,0, U8,0 and their

derivatives. As in Remark 6.2.6, U2,2 can be written as a normally ordered polyno-

mial in L,U0,0, U2,0, U4,0, and their derivatives as follows

U2,2 = U4,0 − 2∂2U2,0 +
1

2
∂4U0,0 −

32

22 + 5c
: (∂3L)(∂3L) : − 48

22 + 5c
: (∂4L)(∂2L) :

− 96

5(22 + 5c)
: (∂5L)(∂L) : − 16

5(22 + 5c)
: (∂6L)L : +

50− 41c

1680(22 + 5c)
∂8L.

(6.2.16)

So (6.2.15) can be written in the form

−434176− 20326c+ 35c2

151200(22 + 5c)
U10,0 = Q10(L,U0,0, U2,0, U4,0, U6,0, U8,0). (6.2.17)

Here U10,0 can be eliminated whenever c 6= 10163±
√
88090409

35 .

Likewise, correcting the relation u0,0u3,1−u3,0u1,0 = 0 yields a relation in the

same weight

: U0,0U3,1 : − : U3,0U1,0 : = −13(−1920− 42c+ 5c2)

9450(22 + 5c)
U10,0 +Q′(L,U0,0, U2,0, U4,0,

U6,0, U8,0),

(6.2.18)
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which can be rewritten as

−13(−1920− 42c+ 5c2)

9450(22 + 5c)
U10,0 = Q′10(L,U0,0, U2,0, U4,0, U6,0, U8,0). (6.2.19)

Here U10,0 can be eliminated whenever c 6= 21±
√
10041
5 . For all c, either (6.2.17) or

(6.2.19) can be used to express U10,0 as a normally ordered polynomial in L,U0,0, U2,0,

U4,0, U6,0, U8,0, and their derivatives.

Remark 6.2.7. For c 6= 559±7
√
76657

95 , U8,0 can be eliminated from either (6.2.17) or

(6.2.19) by using (6.2.14), and so the following relations are obtained

−434176− 20326c+ 35c2

151200(22 + 5c)
U10,0 = P10(L,U0,0, U2,0, U4,0, U6,0), (6.2.20)

−13(−1920− 42c+ 5c2)

9450(22 + 5c)
U10,0 = P ′10(L,U0,0, U2,0, U4,0, U6,0). (6.2.21)

Weight 18 relations: This relation could be obtained by correcting the

relation u0,0u3,3− u3,0u3,0 = 0, and the corresponding element in WZ2 has the form

: U0,0U3,3 : − : U3,0U3,0 := 4012032+28306c−9625c2
1663200(22+5c) U12,0 +R(L,U0,0, U2,0, U4,0, U6,0,

U8,0, U10,0).

Either (6.2.17) or (6.2.19) can be used to eliminate U10,0 and so

4012032 + 28306c− 9625c2

1663200(22 + 5c)
U12,0 = Q12(L,U0,0, U2,0, U4,0, U6,0, U8,0). (6.2.22)

Here U12,0 can be eliminated whenever c 6= 14153±
√
38816115409
9625 .

Similarly, correcting the relation u0,0u4,2− u4,0u2,0 = 0, and eliminating U10,0

yields

−2785280 + 145762c− 385c2

1108800(22 + 5c)
U12,0 = Q′12(L,U0,0, U2,0, U4,0, U6,0, U8,0), (6.2.23)
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Here U12,0 can be eliminated whenever c 6= 72881±
√
4239307361
385 . Therefore using either

(6.2.22) or (6.2.23), we can eliminate U12,0 for all c.

Remark 6.2.8. For c 6= 559±7
√
76657

95 , U8,0 can be eliminated from these equations

by using (6.2.14), so the following relations are obtained

4012032 + 28306c− 9625c2

1663200(22 + 5c)
U12,0 = P12(L,U0,0, U2,0, U4,0, U6,0), (6.2.24)

−2785280 + 145762c− 385c2

1108800(22 + 5c)
U12,0 = P ′12(L,U0,0, U2,0, U4,0, U6,0). (6.2.25)

Weight 20 relations: This relation could be obtained by correcting the

relation u0,0u4,4− u4,0u4,0 = 0, and the corresponding element in WZ2 has the form

: U0,0U4,4 : − : U4,0U4,0 :=
−20559360 + 1209594c− 5005c2

9459450(22 + 5c)
U14,0

+S(L,U0,0, U2,0, U4,0, U6,0, U8,0, U10,0, U12,0).

Once we eliminate U10,0 and U12,0, the following relation is obtained

−20559360 + 1209594c− 5005c2

9459450(22 + 5c)
U14,0 = Q14(L,U0,0, U2,0, U4,0, U6,0, U8,0). (6.2.26)

so U14,0 can be eliminated whenever c 6= 604797±
√
262879814409
5005 .

Similarly, correcting the relation u0,0u6,2 − u6,0u2,0 = 0, and eliminating U10,0 and

U12,0 yields

−26284032 + 1487354c− 5005c2

12108096(22 + 5c)
U14,0 = Q′14(L,U0,0, U2,0, U4,0, U6,0, U8,0), (6.2.27)

so U14,0 can be eliminated for c 6= 743677±
√
421503900169
5005 . Either (6.2.26) or (6.2.27)

can be used to eliminate U14,0 for all c.
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Remark 6.2.9. For c 6= 559±7
√
76657

95 , U8,0 can be eliminated from these equations

by using (6.2.14), and so the following relations are obtained

−20559360 + 1209594c− 5005c2

9459450(22 + 5c)
U14,0 = P14(L,U0,0, U2,0, U4,0, U6,0), (6.2.28)

−26284032 + 1487354c− 5005c2

12108096(22 + 5c)
U14,0 = P ′14(L,U0,0, U2,0, U4,0, U6,0). (6.2.29)

6.2.4 Higher decoupling relations

The calculations we have seen last subsection guarantee that whenever c 6=
559±7

√
76657

95 , there exist higher decoupling relations

Un,0 = Pn(L,U0,0, U2,0, U4,0, U6,0), n = 16, 18, 20, . . . , (6.2.30)

and whenever c = 559±7
√
76657

95 , there exist relations

Un,0 = Qn(L,U0,0, U2,0, U4,0, U6,0, U8,0), n = 16, 18, 20, . . . . (6.2.31)

The questions may arise:

• Are those higher decoupling relations existed?

• What if we change the normally ordered polynomial, will the coefficient of

U2n,0 be changed?

To answer these questions, first we need a certain invariant of elements of WZ2

(2) of

even weight. Let ω ∈ WZ2

(2) of weight n + 6 be given, where n is an even integer.

Write ω in normal form. For i = 0, 1, . . . , n2 , in the normal form let

Cn,i(ω) (6.2.32)
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denote the coefficient of : (∂n−iW )(∂iW ) :, which is well-defined by uniqueness of

(6.2.5). Let

Cn(ω) =

n/2∑
i=0

(−1)iCn,i(ω), (6.2.33)

that is Cn(ω) is an alternate sum of the coefficients of : (∂n−iW )(∂iW ) : . Recall,

{L,Un,0| n = 0, 2, 4, . . . } strongly generates WZ2 and since Un,0 has weight n + 6,

so we can write

ω = Pω(L,U0,0, U2,0, . . . , Un,0),

where Pω is a normally ordered polynomial in L,U0,0, U2,0, . . . , Un,0, and their deriva-

tives. This expression for ω is not unique due to existence of normally ordered re-

lations among these generators, as well as different choices of normal ordering. In

particular, the coefficients of ∂iUn−i,0 for i = 2, 4, . . . , n will depend on the choice

of Pω.

Example 6.2.10. Recall the decoupling relation (6.2.14) of weight 14. For a given

ω of filtered degree 2, and weight 14, the coefficient C8(ω) can be given by

C8(ω) =
4∑
i=0

(−1)iCn,i(ω)

=
12556 + 772c− 5c2

20160(22 + 5c)
− 6504 + 3014c+ 115c2

15120(22 + 5c)
+

450 + 31c

2640 + 600c
− 454 + 29c

3960 + 900c

+

(
1

32
+

8

9(22 + 5c)

)
=

181248 + 5590c− 475c2

60480(22 + 5c)
.

This is actually the coefficient of U8,0 in Pω, and it is canonical, in the sense it is

independent of all choices of normal ordering as the following Lemma proves.

Lemma 6.2.11. For any ω ∈ WZ2

(2) of weight n+ 6, the coefficient of Un,0 in Pω is

canonical, and coincides with Cn(ω).
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Proof. Consider a subspace J ⊂ WZ2 spanned by elements of the form : a∂b : with

a, b ∈ WZ2 . It is well known that Zhu’s commutative algebra C(WZ2) = WZ2/J

is a commutative, associative algebra with generators corresponding to the strong

generators {L,U2n,0| n ≥ 0}. In particular, consider two expressions for ω ∈ WZ2

(2)

of degree 2 filtered piece and even weight n+ 6, that is

ω = Pω(L,U0,0, U2,0, . . . , Un,0) = Qω(L,U0,0, U2,0, . . . , Un,0).

Let P̃ω and Q̃ω denote the components of Pω, Qω which are linear combinations of

∂iUn−i,0 for i = 0, 2, . . . n. Then P̃ω − Q̃ω lies in J , and hence must be a total

derivative.

Recall now that for i = 0, 1, . . . , n2 ,

un−i,i = (∂n−iW )(∂iW ) ∈ gr(V)Z2 ∼= C[L, ∂L, ∂2L, . . . ,W, ∂W, ∂2W, . . . ]Z2 .

We claim that

un−i,i = (−1)iun,0 + ν,

where ν is a linear combination of ∂jun−j,0 for j = 2, 4, . . . , n, and hence is a total

derivative. For i = 0, take ν = 0, and since ∂(un−i,i−1) = un+1−i,i−1 + un−i,i, which

is a total derivative, it holds by induction on i. It follows from (6.2.3) that for

i = 0, 1, . . . , n2 ,

Un−i,i = (−1)iUn,0 + ω,

where ω is a linear combination of ∂jUn−j,0 for j = 2, 4, . . . , n modulo terms in the

Virasoro algebra generated by L. This proves the claim.

Corollary 3. The coefficient of U8,0 in (6.2.14) coincides with

C8(: U0,0U1,1 : − : U1,0U1,0 :),
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and is independent of all choices of normal ordering in P8. Similarly, the coefficient

of U10,0 in (6.2.17)-(6.2.21), the coefficient of U12,0 in (6.2.22)-(6.2.25), and the

coefficient of U14,0 in (6.2.26)-(6.2.29), are independent of all choices of normally

ordering in these expressions.

As indicated in the Example 6.2.10, ω is given by the expression : U0,0U1,1 :

− : U1,0U1,0 : . Similarly, the coefficient of U10,0 in (6.2.17) coincides with

C10(: U0,0U2,2 : − : U2,0U2,0 :) =
5∑
i=0

(−1)iCn,i(: U0,0U2,2 : − : U2,0U2,0 :)

=
65806− 3573c− 945c2

302400(22 + 5c)
− 814− 207c

3780(22 + 5c)

+
−25842 + 12107c+ 175c2

60480(22 + 5c)
− 4958 + 289c

41580 + 9450c

+
2386 + 263c

4320(22 + 5c)
− 1

900

(
3 +

272

22 + 5c

)
= −434176− 20326c+ 35c2

151200(22 + 5c)
.

The coefficient of U10,0 in (6.2.21) coincides with

C10(: U0,0U3,1 : − : U3,0U1,0 :) =
5∑
i=0

(−1)iCn,i(: U0,0U3,1 : − : U3,0U1,0 :)

=
13082 + 85c− 45c2

75600(22 + 5c)
− −3134 + 761c+ 35c2

15120(22 + 5c)

+
1874 + 143c

36960 + 8400c
−

51 + 20c− 8512
22+5c

25200

+
98− 17c

7920 + 1800c
−− 29(6 + c)

300(22 + 5c)

= −13(−1920− 42c+ 5c2)

9450(22 + 5c)
.
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Remark 6.2.12. The operator U0,0◦1 raises the weight by 4, and so applying this

to Un,0 yields

U0,0 ◦1 Un,0 = F (n, c)Un+4,0 +Rn(L,U0,0, U2,0, . . . , Un+2,0),

where F (n, c) denotes the coefficient of Un+4,0 and Rn is a normally ordered poly-

nomial in L,U0,0, U2,0, . . . , Un+2,0 and their derivatives. From the OPE relations

(6.2.2) and (6.2.3), we deduce that U0,0 ◦1 Un,0 lies in WZ2

(2), and so by Lemma

6.2.11, we have

F (n, c) = Cn+4(U0,0 ◦1 Un,0). (6.2.34)

Likewise, the operator U2,0◦1 raises the weight by 6, and so applying this to

Un,0 yields

U2,0 ◦1 Un,0 = G(n, c)Un+6,0 + Sn(L,U0,0, U2,0, . . . , Un+4,0),

where G(n, c) denotes the coefficient of Un+6,0 and Sn is a normally ordered polyno-

mial in L,U0,0, U2,0, . . . , Un+4,0 and their derivatives. Then U2,0 ◦1Un,0 lies in WZ2

(2),

and

G(n, c) = Cn+6(U2,0 ◦1 Un,0). (6.2.35)

The following theorems give an explicit formulas for F (n, c) and G(n, c). It

turns out they are rational functions of n and c. The proof of this essential obser-

vation will be given in next subsection.

Theorem 6.2.13. For all even integers n ≥ 0,

F (n, c) = −(10 + n)(p0(c) + p1(c)n+ p2(c)n
2 + p3(c)n

3)

36(22 + 5c)(1 + n)(3 + n)(4 + n)
,
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where

p0(c) = 720 + 384c+ 12c2, p1(c) = −5286 + 125c+ 19c2,

p2(c) = −2160 + 40c+ 8c2, p3(c) = −186 + 11c+ c2

Theorem 6.2.14. For all even integers n ≥ 0,

G(n, c) = −(12 + n)(q0(c) + q1(c)n+ q2(c)n
2 + q3(c)n

3 + q4(c)n
4)

1260(22 + 5c)(1 + n)(3 + n)(4 + n)(5 + n)
,

where

q0(c) = −466200 + 20580c+ 2100c2, q1(c) = −183780− 46096c+ 3745c2,

q2(c) = −74076− 31732c+ 2065c2, q3(c) = −19116− 5624c+ 455c2,

q4(c) = −1308− 248c+ 35c2.

6.2.5 Proof of theorem 6.2.13

For all n ≥ 0, setting a = U0,0, b = ∂nW, c = W in the Proposition 2.4.16-

(2.4.7) yields

U0,0 ◦1 Un,0 = : (U0,0 ◦1 ∂nW )W : +(U0,0 ◦0 ∂nW ) ◦0 W+ : (∂nW )(U0,0 ◦1 W ) : .

So in order to calculate F (n, c) = Cn+4(U0,0 ◦1 Un,0), it is sufficient to calculate the

following three expressions:

Cn+4

(
: (U0,0 ◦1 ∂nW )W :

)
, (6.2.36)

Cn+4

(
(U0,0 ◦0 ∂nW ) ◦0 W

)
, (6.2.37)
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Cn+4

(
: (∂nW )(U0,0 ◦1 W ) :

)
. (6.2.38)

Lemma 6.2.15. For all n ≥ 1, Cn+4

(
(U0,0 ◦0 ∂nW ) ◦0 W

)
= 0.

Proof. We have ∂
(
U0,0 ◦0 ∂n−1W

)
= ∂(U0,0) ◦0 ∂n−1W +U0,0 ◦0 ∂nW. The first term

in the right is always 0, so ∂
(
U0,0 ◦0 ∂n−1W

)
= U0,0 ◦0 ∂nW. Therefore,

(U0,0 ◦0 ∂nW ) ◦0 W = ∂
(
U0,0 ◦0 ∂n−1W

)
◦0 W = 0,

and so the expression (6.2.37) always vanish.

To calculate (6.2.36), we need the following lemma.

Lemma 6.2.16. For all n ≥ 1,

U0,0 ◦0 ∂n−1W −
64

22 + 5c
∂n
(

: LLW :
)

+
64

22 + 5c
∂n−1

(
: (∂L)LW :

)

−10(14 + c)

3(22 + 5c)
∂n+2

(
: LW :

)
+

86 + 5c

22 + 5c
∂n+1

(
: (∂L)W :

)
−26 + 3c

22 + 5c
∂n
(

: (∂2L)W :
)

+
2(−2 + c)

3(22 + 5c)
∂n−1

(
: (∂3L)W :

)
−−186 + 11c+ c2

36(22 + 5c)
∂n+4W = 0.

Proof. For n = 1 follows from the fact that

∂
(
U0,0 ◦0 ∂n−1W

)
= U0,0 ◦0 ∂nW.

The claim then follows by induction on n.

Lemma 6.2.17. For all n ≥ 1,

U0,0 ◦1 ∂nW −
64(1 + n)

22 + 5c
∂n
(

: LLW :
)

+
64n

22 + 5c
∂n−1

(
: (∂L)LW :

)
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−2(258 + 15c+ 70n+ 5cn)

3(22 + 5c)
∂n+2

(
: LW :

)
+

236 + 10c+ 86n+ 5cn

22 + 5c
∂n+1

(
: (∂L)W :

)
−58 + 3c+ 26n+ 3cn

22 + 5c
∂n
(

: (∂2L)W :
)

+
2(−2 + c)

3(22 + 5c)
∂n−1

(
: (∂3L)W :

)
−−426 + 91c+ 5c2 − 186n+ 11cn+ c2n

36(22 + 5c)
∂n+4W = 0.

Proof. For n = 1, it is obvious. The proof then follows by induction on n using the

previous lemma and the formula

∂
(
U0,0 ◦1 ∂n−1W

)
= −U0,0 ◦0 ∂n−1W + U0,0 ◦1 ∂nW.

Corollary 4. For all n ≥ 1,

Cn+4

(
(: U0,0 ◦1 ∂nW )W :

)
− 64(1 + n)

22 + 5c
Cn+4

(
: (∂n(: LLW :))W :

)

+
64n

22 + 5c
Cn+4

(
:
(
∂n−1

(
: (∂L)LW :

))
W :

)

−2(258 + 15c+ 70n+ 5cn)

3(22 + 5c)
Cn+4

(
: (∂n+2(: LW :))W :

)

+
236 + 10c+ 86n+ 5cn

22 + 5c
Cn+4

(
: ∂n+1

(
: (∂L)W :

)
W :

)

−58 + 3c+ 26n+ 3cn

22 + 5c
Cn+4

(
: ∂n

(
: (∂2L)W :

)
W :

)

+
2(−2 + c)

3(22 + 5c)
Cn+4

(
: ∂n−1

(
: (∂3L)W :

)
W :

)

−−426 + 91c+ 5c2 − 186n+ 11cn+ c2n

36(22 + 5c)
= 0.
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We shall calculate Cn+4 to each term in the Corollary 4 for our purpose. So,

first we have

Cn+4,0

(
: (∂n(: LLW :))W :

)
=

15

(1 + n)(2 + n)(3 + n)(4 + n)
,

Cn+4,1

(
: (∂n(: LLW :))W :

)
=

7

(1 + n)(2 + n)(3 + n)
,

Cn+4,2

(
: (∂n(: LLW :))W :

)
=

1

(1 + n)(2 + n)
,

Cn+4,i

(
: (∂n(: LLW :))W :

)
= 0, 3 ≤ i ≤ n+ 4

2
.

Using (6.2.33) yields

Cn+4

(
: (∂n(: LLW :))W :

)
=

−1 + n

(2 + n)(3 + n)(4 + n)
. (6.2.39)

Next, we have

Cn+4,0

(
:
(
∂n−1

(
: (∂L)LW :

))
W :

)
= − 24

n(1 + n)(2 + n)(3 + n)(4 + n)
,

Cn+4,1

(
:
(
∂n−1

(
: (∂L)LW :

))
W :

)
= − 10

n(1 + n)(2 + n)(3 + n)
,

Cn+4,2

(
:
(
∂n−1

(
: (∂L)LW :

))
W :

)
= − 1

n(1 + n)(2 + n)
,

Cn+4,i

(
:
(
∂n−1

(
: (∂L)LW :

))
W :

)
= 0, 3 ≤ i ≤ n+ 4

2
.

Therefore

Cn+4

(
:
(
∂n−1

(
: (∂L)LW :

))
W :

)
= − −4 + n

n(2 + n)(3 + n)(4 + n)
. (6.2.40)
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Next, we have

Cn+4,0

(
: (∂n+2(: LW :))W :

)
=

3

(3 + n)(4 + n)
,

Cn+4,1

(
: (∂n+2(: LW :))W :

)
=

1

3 + n
,

Cn+4,i

(
: (∂n+2(: LW :))W :

)
= 0, 2 ≤ i ≤ n+ 4

2
.

Therefore

Cn+4

(
: (∂n+2(: LW :))W :

)
= − 1 + n

(3 + n)(4 + n)
. (6.2.41)

Next, we have

Cn+4,0

(
: ∂n+1

(
: (∂L)W :

)
W :

)
= − 6

(2 + n)(3 + n)(4 + n)
,

Cn+4,1

(
: ∂n+1

(
: (∂L)W :

)
W :

)
= − 1

(2 + n)(3 + n)
,

Cn+4,i

(
: ∂n+1

(
: (∂L)W :

)
W :

)
= 0, 2 ≤ i ≤ n+ 4

2
.

Therefore

Cn+4

(
: ∂n+1

(
: (∂L)W :

)
W :

)
=

−2 + n

(2 + n)(3 + n)(4 + n)
. (6.2.42)

Next, we have

Cn+4,0

(
: ∂n

(
: (∂2L)W :

)
W :

)
=

18

(1 + n)(2 + n)(3 + n)(4 + n)
,

Cn+4,1

(
: ∂n

(
: (∂2L)W :

)
W :

)
=

2

(1 + n)(2 + n)(3 + n)
,

Cn+4,i

(
: ∂n

(
: (∂2L)W :

)
W :

)
= 0, 2 ≤ i ≤ n+ 4

2
.
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Therefore

Cn+4

(
: ∂n

(
: (∂2L)W :

)
W :

)
= − 2(−5 + n)

(1 + n)(2 + n)(3 + n)(4 + n)
. (6.2.43)

Next, we have

Cn+4,0

(
: ∂n−1

(
: (∂3L)W :

)
W :

)
= − 72

n(1 + n)(2 + n)(3 + n)(4 + n)
,

Cn+4,1

(
: ∂n−1

(
: (∂3L)W :

)
W :

)
= − 6

n(1 + n)(2 + n)(3 + n)
,

Cn+4,i

(
: ∂n−1

(
: (∂3L)W :

)
W :

)
= 0, 2 ≤ i ≤ n+ 4

2
.

Therefore

Cn+4

(
: ∂n−1

(
: (∂3L)W :

)
W :

)
=

6(−8 + n)

n(1 + n)(2 + n)(3 + n)(4 + n)
. (6.2.44)

Combining (6.2.39)-(6.2.44) yields (6.2.36).

The following calculation is needed to find (6.2.38):

U0,0 ◦1 W −
64

22 + 5c
: LLW : −2(258 + 15c)

3(22 + 5c)
∂2(: LW :) +

236 + 10c

22 + 5c
∂
(

: (∂L)W :
)

−58 + 3c

22 + 5c
: (∂2L)W : −−426 + 91c+ 5c2

36(22 + 5c)
∂4W.

(6.2.45)

Since Cn+4

(
: (∂nW )(∂4W ) :

)
= 1 when n is even, this implies the following

corollary

Corollary 5. We have

Cn+4

(
: (∂nW )(U0,0 ◦1 W ) :

)
− 64

22 + 5c
Cn+4

(
: (∂nW )(: LLW :) :

)

−2(258 + 15c)

3(22 + 5c)
Cn+4

(
: (∂nW )

(
∂2(: LW :)

)
:

)
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+
236 + 10c

22 + 5c
Cn+4

(
: (∂nW )

(
∂(: (∂L)W :)

)
:

)

−58 + 3c

22 + 5c
Cn+4

(
: (∂nW )

(
: (∂2L)W :

)
:

)

−−426 + 91c+ 5c2

36(22 + 5c)
= 0.

We shall calculate Cn+4 to each term in the Corollary 5 for our purpose. So,

first we have

Cn+4,0

(
: (∂nW )(: LLW :) :

)
=

−1 + n

(2 + n)(3 + n)(4 + n)
,

Cn+4,i

(
: (∂nW )(: LLW :) :

)
= 0, 1 ≤ i ≤ n+ 4

2
.

Using (6.2.33) yields

Cn+4

(
: (∂nW )(: LLW :) :

)
=

−1 + n

(2 + n)(3 + n)(4 + n)
. (6.2.46)

Next, we calculate

Cn+4,0

(
: (∂nW )

(
∂2(: LW :)

)
:

)
= − 2(−5 + n)

(1 + n)(2 + n)(3 + n)(4 + n)
,

Cn+4,1

(
: (∂nW )

(
∂2(: LW :)

)
:

)
= − 2(−3 + n)

(1 + n)(2 + n)(3 + n)
,

Cn+4,2

(
: (∂nW )

(
∂2(: LW :)

)
:

)
= − −1 + n

(1 + n)(2 + n)
,

Cn+4,i

(
: (∂nW )

(
∂2(: LW :)

)
:

)
= 0, 3 ≤ i ≤ n+ 4

2
.

Hence

Cn+4

(
: (∂nW )

(
∂2(: LW :)

)
:

)
= − 1 + n

(3 + n)(4 + n)
. (6.2.47)
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Next, we have

Cn+4,0

(
: (∂nW )

(
∂(: (∂L)W :)

)
:

)
= − 2(−5 + n)

(1 + n)(2 + n)(3 + n)(4 + n)
,

Cn+4,1

(
: (∂nW )

(
∂(: (∂L)W :)

)
:

)
= − −3 + n

(1 + n)(2 + n)(3 + n)
,

Cn+4,i

(
: (∂nW )

(
∂(: (∂L)W :)

)
:

)
= 0, 2 ≤ i ≤ n+ 4

2
.

Hence

Cn+4

(
: (∂nW )

(
∂(: (∂L)W :)

)
:

)
=

−2 + n

(2 + n)(3 + n)(4 + n)
. (6.2.48)

Next, we have

Cn+4,0

(
: (∂nW )

(
: (∂2L)W :

)
:

)
= − 2(−5 + n)

(1 + n)(2 + n)(3 + n)(4 + n)
,

Cn+4,i

(
: (∂nW )

(
: (∂2L)W :

)
:

)
= 0, 1 ≤ i ≤ n+ 4

2
.

Therefore

Cn+4

(
: (∂nW )

(
: (∂2L)W :

)
:

)
= − 2(−5 + n)

(1 + n)(2 + n)(3 + n)(4 + n)
. (6.2.49)

Combining (6.2.46)-(6.2.49) yields (6.2.38). Finally, the proof of Theorem

6.2.13 follows by combining the formulas for (6.2.36) and (6.2.38). The proof of

Theorem 6.2.14 is similar and so it is omitted.
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6.2.6 The minimal strong generating set for the orbifold of W

The main body is presented in this section which gives a complete description

to the Z2-orbifold of theW-algebra. Before we state the main theorem, we introduce

some useful observations.

Theorem 6.2.18. For all c 6= −22
5 and all even integers n ≥ 16, we have either

F (n− 4, c) 6= 0 or G(n− 6, c) 6= 0. In other words, the variety V ⊂ C2 determined

by F (n − 4, c) = 0 and G(n − 6, c) = 0, has no points (c, n) with n ≥ 16 an even

integer.

Proof. Let

f(n, c) = p0(c) + p1(c)n+ p2(c)n
2 + p3(c)n

3,

g(n, c) = q0(c) + q1(c)n+ q2(c)n
2 + q3(c)n

3 + q4(c)n
4,

where pi(c) and qi(z) are as in Theorems 6.2.13 and 6.2.14. For a positive integer

n, once get

F (n, c) = 0⇔ f(n, c) = 0, G(n, c) = 0⇔ g(n, c) = 0.

We may regard f(n, c) as a family of quadratics in c parametrized by n, and so

f(n, c) = (720− 5286n− 2160n2 − 186n3) + (384 + 125n+ 40n2 + 11n3)c

+ (12 + 19n+ 8n2 + n3)c2.

As n → ∞, the quadratic formula p3(c) = −186 + 11c + c2 = 0 can be used to

express the roots r1(n) and r2(n) as functions of n, that is

lim
n→∞

1

n3
f(n, c) = p3(c),
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and so

lim
n→∞

r1(n) =
−11−

√
865

2
∼ −20.2054, lim

n→∞
r2(n) =

−11 +
√

865

2
∼ 9.20544.

Similarly, we regard g(n, c) as a family of quadratics in c parametrized by n, and so

g(n, c) = (−466200− 183780n− 74076n2 − 19116n3 − 1308n4)

+(20580− 46096n− 31732n2 − 5624n3 − 248n4)c

+(2100 + 3745n+ 2065n2 + 455n3 + 35n4)c2,

and we can express the roots s1(n) and s2(n) as functions of n. Since

lim
n→∞

1

n4
g(n, c) = q4(c),

we have

lim
n→∞

s1(n) =
2(62−

√
15289)

35
∼ −3.52278, lim

n→∞
s2(n) =

2(62 +
√

15289)

35
∼ 10.6085.

Consider n as a positive real variable, and so for i = 1, 2, ri(n) and si(n) are

differentiable functions of n. Using the derivatives test for r1(n) and r2(n), we see

both are decreasing functions on (9,∞). We have

r1(22) =
−139622− 2

√
51839598721

29900
∼= −19.8993,

so −20.2054 < r1(n) < −19.8993 for all n > 22. Similarly,

r2(22) =
−139622 + 2

√
51839598721

29900
∼= 10.56,
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so 9.20544 < r2(n) < 10.56 for all n > 22. This implies that if n > 26 is an

even positive integer and F (n − 4, c) = 0, c is a real number that lies either in

(−20.2054,−19.8993) or (9.20544, 10.56).

Likewise, both s1(n) and s2(n) are decreasing functions on (7,∞). Note that

s1(20) =
24566535− 945

√
1800197569

5071500
∼= −3.06194,

so −3.52278 < s1(n) < −3.06194 for all n > 20. We have,

s2(20) =
24566535 + 945

√
1800197569

5071500
∼= 12.75,

so 10.6085 < s2(n) < 12.75 for all n > 20. Therefore if n > 26 is a positive integer

and G(n− 6, c) = 0, then c is a real number lying either in (−3.52278,−3.06194) or

(10.6085, 12.75). This shows that Theorem 6.2.18 holds for all n > 26. It is easy to

demonstrate the Theorem for 16 ≤ n ≤ 26 by constructing decoupling relations in

the form (6.2.30), (6.2.31), and so the claim follows.

The following corollary is an immediate consequence of the previous Theorem,

which can confirm the existence of the decoupling relations for Un,0 for all n ≥ 8.

Corollary 6. 1. For all c 6= −22
5 ,

559±7
√
76657

95 and all even integers n ≥ 8, there

exists a decoupling relation

Un,0 = Pn(L,U0,0, U2,0, U4,0, U6,0), (6.2.50)

where Pn is a normally ordered polynomial in L,U0,0, U2,0, U4,0, U6,0 and their

derivatives.
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2. For c = 559±7
√
76657

95 and all even integers n ≥ 10, there exists a decoupling

relation

Un,0 = Qn(L,U0,0, U2,0, U4,0, U6,0, U8,0), (6.2.51)

where Qn is a normally ordered polynomial in L,U0,0, U2,0, U4,0, U6,0, U8,0 and

their derivatives.

Proof. First, suppose that c 6= −22
5 ,

559±7
√
76657

95 . For n = 8, 10, 12, 14, we have

introduced the relations (6.2.50) in the subsection (6.2.3), so let n ≥ 16 and assume

the result for all even integers 8 ≤ m < n. First, suppose that F (n − 4, c) 6= 0.

Apply the operator U0,0◦1 to both sides of

Un−4,0 = Pn−4(L,U0,0, U2,0, U4,0, U6,0)

and use the Remark 6.2.12 we obtain

F (n−4, c)Un,0+Rn−4(L,U0,0, U2,0, . . . , Un−2,0) = U0,0◦1Pn−4(L,U0,0, U2,0, U4,0, U6,0).

The term U0,0◦1Pn−4 is a normally ordered polynomial in L,U0,0, U2,0, . . . , U10,0 and

their derivatives. All U8,0, U10,0, . . . , Un−2,0, and their derivatives can be eliminated

by using the previous decoupling relations, and so we get the desired relation.

Suppose now F (n − 4, c) = 0, and so G(n − 6, c) 6= 0 by assumption. Apply

the operator U2,0◦1 to both sides of

Un−6,0 = Pn−6(L,U0,0, U2,0, U4,0, U6,0),

and use the Remark 6.2.12 we obtain

G(n−6, c)Un,0+Sn−6(L,U0,0, U2,0, . . . , Un−2,0) = U2,0◦1Pn−6(L,U0,0, U2,0, U4,0, U6,0).
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Since the right hand side depends only on L,U0,0, U2,0, . . . , U12,0, so all U8,0, U10,0, . . . ,

Un−2,0 and their derivatives can eliminated by using the previous relations.

Next, suppose that c = 559±7
√
76657

95 . For n = 10, 12, 14, we have the desired

relations (6.2.51) in the subsection (6.2.3), so let n ≥ 16 and assume the result for

all even integers 10 ≤ m < n. The rest of the proof follows similarly as above.

Our main theorem is the following:

Theorem 6.2.19. 1. For all c 6= −22
5 ,

559±7
√
76657

95 ,WZ2 is of typeW(2, 6, 8, 10, 12)

with minimal strong generating set {L,U0,0, U2,0, U4,0, U6,0}.

2. For c = 559±7
√
76657

95 , WZ2 is of type W(2, 6, 8, 10, 12, 14) with minimal strong

generating set {L,U0,0, U2,0, U4,0, U6,0, U8,0}.

Proof. First, Lemma 6.2.4 asserts that WZ2 is strongly generated by the natural

infinite set {L,U2n,0|n ≥ 0}. Next, it suffices to construct decoupling relations of

the form

Un,0 = Pn(L,U0,0, U2,0, U4,0, U6,0)

for c 6= −22
5 ,

559±7
√
76657

95 , and all even integers n ≥ 16 since we already have

such relations for n = 8, 10, 12, 14. Here Pn is a normally ordered polynomial in

L,U0,0, U2,0, U4,0, U6,0, and their derivatives. For c = 559±7
√
76657

95 , it suffices to con-

struct decoupling relations of the form

Un,0 = Qn(L,U0,0, U2,0, U4,0, U6,0, U8,0)

for all even integers n ≥ 16 since we already have such relations for n = 10, 12, 14

where Qn is a normally ordered polynomial in L,U0,0, U2,0, U4,0, U6,0, U8,0, and their

derivatives. Applying the operators U0,0◦1 and U2,0◦1 to the relations we have
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constructed yields two families of relations

F (n, c)Un+4,0 = An(L,U0,0, U2,0, ..., Un+2,0), (6.2.52)

G(n, c)Un+6,0 = Bn(L,U0,0, U2,0, ..., Un+4,0) (6.2.53)

where An, Bn are normally ordered polynomials as above. Both F (n, c), and G(n, c)

have no poles for c 6= −22
5 and n ≥ 10. For n ≥ 16, Un,0 can be eliminated via (6.2.52)

or (6.2.53) only if (c, n) does not lie on the affine variety V ⊂ C2 determined by

F (n− 4, c) = 0 and G(n− 6, c) = 0, and this follows by Theorem 6.2.18.

6.2.7 The case c = −22
5

Recall, the rescaled generator W satisfies (6.2.4), and the generators for the

orbifold WZ2 are still {L,U2n,0| n ≥ 0}.

Decoupling relations Similarly as in (6.2.3), the first relation among the genera-

tors has the form

u0,0u1,1 − u1,0u1,0 = 0,

and is the unique relation in gr(V)Z2 , of minimal weight 14. It corresponds to the

element : U0,0U1,1 : − : U1,0U1,0 : of WZ2 . This element has some corrections, and

by Computer calculations, it has the form

: U0,0U1,1 : − : U1,0U1,0 : =
256

105
U8,0 + P (L,U0,0, U2,0, U4,0, U6,0), (6.2.54)

where P is a normally ordered polynomial in L,U0,0, U2,0, U4,0, U6,0, and their deriva-

tives. The left side of (6.2.54) is a normally ordered polynomial in L,U0,0, L2,0 due
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to (6.2.6), and so (6.2.54) can be written in the form

256

105
U8,0 = P8(L,U0,0, U2,0, U4,0, U6,0). (6.2.55)

Weight 16 relations: This relation could be obtained by correcting the relation

u0,0u2,2− u2,0u2,0 = 0 in gr(V)Z2 and similarly as above, the corresponding relation

in WZ2 in weight 16:

: U0,0U2,2 : − : U2,0U2,0 : = −16384

4725
U10,0 +Q(L,U0,0, U2,0, U4,0, U6,0, U8,0), (6.2.56)

where Q is a normally ordered polynomial in L,U0,0, U2,0, U4,0, U6,0, U8,0 and their

derivatives. Since U2,2 can be written as a normally ordered polynomial in L,U0,0,

U2,0, U4,0 and their derivatives, so (6.2.56) can be written in the form

−16384

4725
U10,0 = Q10(L,U0,0, U2,0, U4,0, U6,0, U8,0). (6.2.57)

Likewise, correcting the relation u0,0u3,1−u3,0u1,0 = 0 yields a relation in the

same weight

: U0,0U3,1 : − : U3,0U1,0 : =
53248

23625
U10,0 +Q′(L,U0,0, U2,0, U4,0, U6,0, U8,0), (6.2.58)

which can be rewritten as

53248

23625
U10,0 = Q′10(L,U0,0, U2,0, U4,0, U6,0, U8,0). (6.2.59)

So, both the following relations exist

U8,0 = P8(L,U0,0, U2,0, U4,0, U6,0), U10,0 = P10(L,U0,0, U2,0, U4,0, U6,0).
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Higher decoupling relations Applying the operator U0,0◦1 repeatedly to the

relations we have already constructed yields

U0,0 ◦1 Un,0 = F (n)Un+4,0 + P,

where P is a normally ordered polynomial in L,U0,0, U2,0, . . . , Un+2,0 and their

derivatives. It follows that it is possible to construct higher decoupling relations

Un,0 = Pn(L,U0,0, U2,0, U4,0, U6,0), n = 12, 14, . . . .

Theorem 6.2.20. For all c = −22
5 , and all even integers n ≥ 0,

F (n) = −64(6 + n)(10 + n)(1 + 7n)

75(1 + n)(3 + n)
, (6.2.60)

which is exactly

lim
c→− 22

5

(22 + 5c)F (n, c).

Theorem 6.2.21. For c = −22
5 , WZ2 is of type W(2, 6, 8, 10, 12) with minimal

strong generating set {L,U0,0, U2,0, U4,0, U6,0}.
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Chapter 7

Appendix

In this Appendix, an explicit normally ordered polynomial relation in weight

14 for the following relation

: U0,0U1,1 : − : U1,0U1,0 :=
181248 + 5590c− 475c2

60480(22 + 5c)
U8,0 + P (L,U0,0, U2,0, U4,0, U6,0)

in WZ2

(2) is written down for the reader convenience. This relation is unique up to

scalar multiples.

: U0,0U1,1 : − : U1,0U1,0 : +
40

22 + 5c
: LLU4,0 : +

144

22 + 5c
: (∂2L)LU2,0 :

+
144

22 + 5c
: (∂L)(∂L)U2,0 : +

112

22 + 5c
: (∂L)L∂U2,0 : − 56

22 + 5c
: LL∂2U2,0 :

− 8

22 + 5c
: (∂3L)L∂U0,0 : − 24

22 + 5c
: (∂2L)(∂L)∂U0,0 : − 64

22 + 5c
: (∂2L)L∂2U0,0 :

− 64

22 + 5c
: (∂L)(∂L)∂2U0,0 : − 48

22 + 5c
: (∂L)L∂3U0,0 : +

28

3(22 + 5c)
: LL∂4U0,0 :

+
47

180
: LU6,0 : +

5(54 + 13c)

12(22 + 5c)
: (∂2L)U4,0 : +

1962 + 155c

24(22 + 5c)
: (∂L)∂U4,0 :

−−182 + 75c

24(22 + 5c)
: L∂2U4,0 : +

3(−2 + c)

2(22 + 5c)
: (∂4L)U20 : − 170− 53c

24(22 + 5c)
: (∂3L)∂U2,0 :
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− 486 + 61c

8(22 + 5c)
: (∂2L)∂2U2,0 : −1878 + 125c

12(22 + 5c)
: (∂L)∂3U2,0 :

− 662− 75c

24(22 + 5c)
: L∂4U2,0 : − 8

15(22 + 5c)
: (∂6L)U0,0 :

− 218 + 3c

48(22 + 5c)
: (∂5L)∂U0,0 : − 2(15 + c)

3(22 + 5c)
: (∂4L)∂2U0,0 :

− 1966 + 137c

(144(22 + 5c)
: (∂3L)∂3U0,0 : +

102 + 61c

48(22 + 5c)
: (∂2L)∂4U0,0 :

+
25(14 + c)

12(22 + 5c)
: (∂L)∂5U0,0 : +

662− 75c

120(22 + 5c)
: L∂6U0,0 :

− 896

15(22 + 5c)2)
: (∂6L)LLL : − 256

5(22 + 5c)2
: (∂5L)(∂L)LL :

− 1664

3(22 + 5c)2
: (∂4L)(∂2L)LL : − 5504

9(22 + 5c)2
: (∂3L)(∂3L)LL :

+
5632

3(22 + 5c)2
: (∂4L)(∂L)(∂L)L : +

4352

(22 + 5c)2
: (∂3L)(∂2L)(∂L)L :

+
1024

(22 + 5c)2
: (∂2L)(∂2L)(∂2L)L : +

4096

3(22 + 5c)2
: (∂3L)(∂L)(∂L)(∂L) :

+
896

(22 + 5c)2
: (∂2L)(∂2L)(∂L)(∂L) : −29486− 2263c

630(22 + 5c)2
: (∂8L)LL :

+
32(−5174 + 209c)

315(22 + 5c)2
: (∂7L)(∂L)L : +

2(−28198 + 2427c)

45(22 + 5c)2
: (∂6L)(∂2L)L :

+
32(−1174 + 109c)

15(22 + 5c)2
: (∂5L)(∂3L)L : −14486− 1307c

9(22 + 5c)2
: (∂4L)(∂4L)L :

−2(25518 + 2065c)

45(22 + 5c)2
: (∂6L)(∂L)(∂L) : −32(541 + 52c)

5(22 + 5c)2
: (∂5L)(∂2L)(∂L) :

−104(482 + 37c)

9(22 + 5c)2
: (∂4L)(∂3L)(∂L) : −2(−286 + 167c)

3(22 + 5c)2
: (∂4L)(∂2L)(∂2L) :

−8(−886 + 23c)

9(22 + 5c)2
: (∂3L)(∂3L)(∂2L) :

−−342897348− 25407820c+ 402775c2

5443200(22 + 5c)2
: (∂10L)L :
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−−345995076− 26686756c+ 626275c2

544320(22 + 5c)2
: (∂9L)(∂L) :

−−349360452− 27205180c+ 577903c2

120960(22 + 5c)2
: (∂8L)(∂2L) :

−−2804245644− 218591252c+ 4546349c2

362880(22 + 5c)2
: (∂7L)(∂3L) :

−−21995034− 1714285c+ 35605c2

1620(22 + 5c)2
: (∂6L)(∂4L) :

−−140780292− 10970908c+ 228175c2

17280(22 + 5c)2
: (∂5L)(∂5L) :

−93733420− 225352108c− 18450565c2 + 381800c3

479001600(22 + 5c)2
∂12L

−181248 + 5590c− 475c2

60480(22 + 5c)
U8,0 −

−63456− 3862c+ 115c2

4320(22 + 5c)
∂2U6,0

+
−74208− 5206c+ 115c2

1728(22 + 5c)
∂4U4,0 −

−74208− 5270c+ 115c2

1440(22 + 5c)
∂6U2,0

−1264260 + 89924c− 1955c2

120960(22 + 5c)
∂8U0,0 = 0.
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