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Abstract

A necessary precursor to ensure proper vegetation growth on reclaimed

coal-mine areas is even distribution of topsoil. This ﬁ-h-e—s—is—}cifmdiscusses ~{Comment[SRH1]: Thesis has a different

connotation in this university.

development of surface models to describe the accurate determination and
visualization of the distribution of topsoil. Prediction surfaces from topsoil-
depth point samples were created using the surface interpolation methods,
Inverse Distance Weighted and Kriging. The validity and accuracy of each
method was assessed to determine the best method to evaluate actual
topsoil distribution ata coal mining site. The model can be utilized by non-
spatially trained personnel working in the mining arena as an aid in
assessing how appropriately the topsoil has been distributed over newly

reclaimed mine areas.
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Introduction

Coalis a combustible rock that contains more than 50 percent by
weight carbonaceous material. The precursor to coalis peat; the
unconsolidated deposit of large amounts of plant remains which have
accumulated in widespread wetland environments such as bogs and
swamps. Over long periods of time (millions of years) deeply buried peat is
transformed physically and chemically into coal via extreme heat and
pressure from overlying sediments.

Coal contains an abundant amount of carbon and when carbon, a
naturally occurring element in living matter, combines with hydrogen a
compound called a hydrocarbon is produced. Such natural hydrocarbons,
including coal, are referred to as fossil fuels because they originate from the
accumulation and transformation of plants and in some cases, other
organisms.

Fossil fuels are burned to produce heat which in turn can be used to
produce electricity. Coal is the most abundant fossil fuel on earth and the
most dominate fuel for producing electricity. In the United States, coal is the
leading energy resource, accounting for almost one third of the country's
totalenergy production and more than 51% of the nation’s electrical power
production. (Greb etal, 2006).

As our most abundant domestic source of energy, coal fills an essential

part of the nation’s energy needs. Unfortunately, coal production is linked
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with adverse environmental issues and concerns particularly related to
disturbance of hydrologic systems, ground subsidence, and post-mining land
use. In addition, mitigating the effects of past mining practices, and
increasing the health of and decreasing safety risks to the public pose
difficult challenges for government’'s regulatory control.

Beginning in the 1740's, commercial coal mining has been occurring
in the United States without regard to environmental consequences.
Prompted by major environmental impacts from coal mining during the
1960's and 1970’s, the U.S. Congress enacted The Surface Mining Control
and Reclamation Act (SMCRA) in 1977. These federal laws and regulations
define minimum requirements for the performance of specific activities
during the mining operation and have set standards for environmental
protection that must be met. The SMCRA defined minimum standards to
ensure that the lands affected by coal mining operations are returned to
productive use.

The Office of Surface Mining Reclamation and Enforcement (OSM), a
bureau under the U.S. Department of Interior, is charged with carrying out
the requirements of SMCRA.

OSM carries out the requirements of SMCRA in cooperation with States
and Indian tribes. OSM's objectives are to “ensure thatcoal mining activities
are conducted in a manner that protects citizens and the environment during

mining, to ensure that the land is restored to beneficial use after mining,
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and to mitigate the effects of past mining by aggressively pursuing

reclamation of abandoned coal mines.” *

Background

In adherence with the rules of SMCRA, prior to the start of coal mining
activities, a permit must be obtained from the OSM. The permit application
must describe several requirements: (1) the existing conditions at the
proposed mine site, (2) the procedures and equipment to be used in the
operation, (3) the potential environmental impacts resulting from the
operation, (4) the measures to be taken to protect the environment, (5) the
intended post-mining land use to which the area will be returned upon
completion of mining, and (6) the specific techniques to be used to reclaim
the area to the intended use. The process includes restoring the land to its
approximate original appearance by restoring topsoil and planting native
vegetation and ground covers. (U.S. Department of Interior, 2007).

Throughout the life of the mine (LOM), i.e. the time frame when earth
is first broken to begin extraction of coal through when final reclamation is
completed, compliance inspections of the progress of reclamation and
observance to regulations of SMCRA are made by the OSM either directly or
via oversight of State or Tribal programs. At each step along the way the
mine operator under the enforcement of 0OSM must comply with Federal and

State laws and with SMCRA. The LOM can span decades, especially in the

L 0SM Mission Statement from http://www.osmre.qov/aboutus/Mission.shtm



http://www.osmre.gov/aboutus/Mission.shtm

Ferarese-5

exceedingly large coal mine operations in the west, and many regulatory
inspectors and other earth scientists and engineers work in concert over this
time frame.

Reclamation occurs contemporaneously at the mine site in that
reclamation activities will be under way in one area while coal removal
continues nearby. To ensure compliance at each step, an inspection is
conducted monthly for specific areas deemed problematic and one inspection
per quarter to include the entire mine site. Upon completion of the
inspection, a written report is produced for documentation purposes. The
inspection report is an important document that may become a factor if legal
action ensues.

Surface coal mining is more complex than simply uncovering the coal
and removing it. Attention must be paid to environmental concerns,
especially returning the mined land to productive use, and in actuality
surface mining entails a sequence of activities.

Although the characteristics of each mine site, including the geology,
hydrology, and topography will affect the mining method used, the following
activities in sequential order are common to all surface coal mine operations:
(1) erosion and sedimentation control, (2) road construction, (3) clearing

and brubbing], (4) topsoil removal (salvage) and handling, (5) overburden

removal and handling, (6) coal removal and handling, (7) reclamation.

Comment[SRH2]: I'm not sure | know
what this means. Perhaps a parenthetical
definition is in order.1'm sure the mining
audience gets it but other readers might
not.
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The first steps in preparing an area for coal removal is to clear and

grub. Clearing is the act of cutting and/or removing all trees and brush from

an area.@rubbing ﬁs removing any remaining roots and stumps, low growing ‘_._..--'[C;MTEM[SRHG]:Nevermind!@
| Thanks.

vegetation, and grass. These are necessary steps to facilitate topsoil
salvage.

Topsoil is the uppermost layer of soil in which plant growth is best
achieved. This layer must be removed and properly stored in order to
enhance soil productivity, as it is desirable to re-lay this same topsoil during
the reclamation phase. However, in areas where the topsoil is of poor quality
or unavailable in sufficient quantities the permit may allow the use of topsoil
substitutes in reclaiming the land. In either case, there are regulations
addressing the redistribution of topsoil. One of which is that topsoil must be
redistributed to a depth specified in the mining permit and in a manner that
achieves an approximate, uniform thickness.

Sound science is the foundation for effectively implementing SMCRA
and use of geospatial technology can be an invaluable tool in the application
of SMCRA towards improving public safety and decreasing detriment to the
environment.

For the greatest part the coal industry has not fully adopted the power
of Geographic Information Systems (GIS). Reliance on antiqguated mapping
technigues is less than a best solution to reclamation. “Many in the mining

industry have adopted Computer Aided Design software, which is a step in
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the right direction, but it is not without its difficulties. The solution is

adoption of modern geospatial standards and techniques.” (Evans, 2008).

Thesis Statement

The aim of this thesis is to describe a process that will create a cell-
based (raster?) analysis prediction surface from sampled topsoil-depth point
values to aid in determining how evenly a mine operator has spread the
required minimum depth of topsoil over newly reclaimed areas on surface
coal mines.

An important objective of the laws enforced by SMCRA is to ensure

that mined lands are returned to productive use. The first precursor ko this ,_...---»[CommentISRHfi]:Istms redundant? Ifit
""""""""""""" is aprecursorithappened first.

end is the necessity that topsoil be evenly distributed and to a specified
depth over the area to be reclaimed. To ensure this requirement is met,
OSM or the affiliated State or Tribal SMCRA regulatory body conducts
compliance inspections of the area.

During a SMCRA inspection, Regulatory Specialists trained in the use
of Global Positioning System (GPS) technology monitor the depth of topsoil
that has been redistributed by collecting soil-depth data using a Topsoil
Probe and portable GPS unit. (Figure 1).

Coordinates of sample locations along with the attribute depth of the

topsoil at that location are downloaded from the GPS receiver and converted

2 A raster is a spatialinage where the datais expressed asa matrix of cells orpixels, with spatial
position implicit in the ordering ofthe pixels.
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into a GIS point feature class or shapefile®. The Reclamation Specialist
visually reviews the shapefile onscreen in a GIS or creates a hard-copy
graphic of the points with their respective topsoil depths annotated in order
to determine areas where minimum topsoil depth has not been achieved or

has been over-placed too thickly.

Figure 1. Reclamation Specialists Monitoring Topsoil-Depth. Courtesy OSM.

This operation has potential to be greatly enhanced to provide greater
interaction of the data among mining professionals and expedite the
timeliness, efficiency, and accuracy in decisions required to be made
following inspection and production of the written inspection report.

SMCRA requires a minimum average top-soil depth evenly distributed

over a reclaimed area. In the absence of more stringent analysis of the

® A shapefile (referred to as a feature class when implemented in a geodatabase) is digital
vectorstorage formatforstoring geometric location and associated attribute information.
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overall distribution of depth the possibility exists that an area could be
deemed to be within requirements by simple virtue of the arithmetic average
of all points sampled over the entirety of the area being within that
minimum average. This does not reflect the spirit of the law and could
provide potential for a greater chance of improper vegetative growth
resulting in subpar reclamation.

It is possible to more accurately determine and visualize the
distribution between measured topsoil depth and the minimum depth called
for in the mining permit. Further, there is need to automate the process to

aid non-spatially trained mining personnel in making assessment.

Literature Review

Several studies related to the wide range of complex problems
associated with coal mine permitting and abandoned mine land problems are
introduced followed by reviews of studies examining surface modeling
applications.

The danger posed by old or poorly designed maps is very real; a
missing map or a map thatis incomplete or in error can and has cost human
lives, damage to homes and property, and proves detrimental to the
environment. “A reclamation program needs a systematic, logical process
able to discriminate among many similar project contenders to meet the

needs of SMCRA and to be legally defensible.” (Rohrer, et al, 2008).
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One facet of the SMCRA rules define the requirement thata
Cumulative Hydrologic Impact Assessment (CHIA) be completed before
proposed coal mine permits may be accepted. Fhe—W est Virginia University
(WVU), with support from OSM developed a suite of software tools to
support CHIA's of proposed mine activities in West Virginia. Incorporating a
GIS interface, they added the Environmental Protection Agency's (EPA)
watershed model, and Hydrologic Simulation Program-Fortran (HSPF) to
their own Watershed Characterization and Modeling System (WCMS) to
predict changes in water-quality and quantity caused by surface mining. The
model contains over 20 parameters and uses a joint calibration approach,
using historical stream flow records from five watersheds and four
verification watersheds throughout West Virginia. (Lamont et al, 2008).

frhe marriage of GIS and Remote Sensing is one not destined for

separation. }‘M any GIS practitioners didn't appreciate the contributions of .- ‘Ckommenl[SRHEI:Intereslmgsmence. !
y ike it.

remote sensing to GIS in the past and its tremendous potential
contributions.” (Green, 2009). The Pennsylvania Department of
Environmental Protection (PA-DEP) and OSM cooperated on a project that
created 3-dimensional models of large anthracite open-pit mining operations
in Pennsylvania. (Anthracite is the highest ranking form of coal which
produces more heat per ton when burned because it is a more concentrated
form of carbon due to increased time and pressure during the alteration

from peat.)
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It is necessary to accurately determine the volume of open pits that
result from certain methods of surface coal mining. Accurate estimates of
backfill material are needed to calculate bond liability to the mine operator.
Forvery large affected areas such as the case in areas in east-central
Pennsylvania the use of remote sensing technology is critical to abate the
cost and difficulties, and simple inability to accurately ground measure such
large areas. Using color high-resolution aerial photographic imagery the PA-
DEP and OSM generated digital photogrammetric data with the goal of three-
dimensionally modeling mine sites for volumetric calculations (Hill, 2004).

Analytical approaches to GIS have evolved over the few decades since
its inception culminating in the science of spatial statistics and spatial
analysis whereby defining geographic relationships leads to solutions that aid
in modeling landscape diversity and pattern. Spatial statistics and analysis
can augment traditional statistics by providing means to map variations in
data by translating discrete point data into a continuous surface representing
the geographic distribution of the data. Many studies have been done using
geostatistical technigues that benefit from the use of interpolation
techniques.

Spatial variability of soil physical properties was carried out using
geostatistical analysis to produce productivity rating systems for use in
precision farming. Rating maps of parameters were prepared as a series of

colored contours using Kriging interpolation and semivariogram models to
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support findings that good soil physical heath is essential for optimum
sustained crop production (Amirinejad 2011).

In a similar study {+-—2666)—the relationship between soil organic
carbon (SOC) and landscape aspects in a region of Northeast China was
conducted which explored using geostatistical Kriging interpolation
techniqgues to distinguish the spatial distribution pattern of SOC(Liu, 2006).

The estimation of spatial variability of precipitation has been shown to
be crucial for accurate distributed hydrologic modeling (Zhang, 2009). The
study by Zhang used a GIS system incorporating Inverse-Distance -
Weighting (IDW) and Kriging as well as other methods to facilitate automatic
spatial precipitation estimation. The study reports that spatial precipitation
maps estimated by different interpolation methods have similar areal mean
precipitation depth but significantly different values of maximum and
minimum precipitation. Zhang suggests implementing multiple spatial
interpolation methods and evaluating their estimates using a correlation
coefficient.

This exemplifies the point that proper use and interpretation of created
surfaces cannot go understated. A common problem in geographic data
analysis is incorrectly creating and interpreting, or failing to interpret,
resultant maps (Wingle, 1992). A study evaluating the accuracy of several
interpolation techniques including IDW and Kriging found that irrespective of

the surface area, few differences existed between the employed techniques
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if the sampling density was high, but performance tended to vary at lower
sampling densities (Chaplot, et al., 1999). A handicap in representing
surfaces is the existence of noise (Demirhan, 2003) wherein with
environmental investigations noise can be introduced by sampling errors in
the form of duplicate samples taken from the same location resulting in
different observation values.

An interpolated surface can produce an appealing picture, but remain
only that in the absence of proper construction and interpretation. It is
important to be knowledgeable about the uncertainty of the predictions.
Using statistical theory and the functionality of GIS software, the analysis,
modeling, and interpretation of data with location coordinates can be
performed using techniques termed spatial data analysis. Specifically,
continuous data such as that representing topsoil-depth and location use a

spatial analytical technigue called geostatistics.

General Discussion on Spatial Modeling

Analysis of data precedes the modeling of it. Analysis must begin with
exploration of the data so that insight is gained towards the proper
application of the methods to be used in the modeling process.

The Environmental Systems Research Institute (ESRI©) ArcGIs™
Desktop extension, Geostatistical Analyst, and the Spatial Statistics toolbox
can be used to aid in analyzing and modeling the distribution of topsoil in

newly reclaimed areas on surface coal mine sites.
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The ArcG1S™ Geostatistical Analyst extension is a collection of tools
used for spatial data exploration and includes the ability to produce
histograms, scatter plots, and semivariograms of the data. Geostatistical
Analyst can be used in the identification of anomalies or outliers in the
dataset as well as serving to help determine the optimal interpolation
prediction method. Additionally, it can be used to create the interpolated
prediction surface, including the prediction uncertainty.

The ArcGIS™ Spatial Statistics toolbox contains statistical tools for
analyzing spatial distributions, patterns, processes, and relationships.

Products resulting from utilizing GIS tools are visually appealing and
impressive, and it should be keptin mind that “it is easy to lose sight of
something thateveryone knows at some level, namely, that most datasets
have errors both in attributes and in locations, and that processing data
propagates errors.” (Krivoruchko, 2011) Further, the best way to be
confident in the output from a statistical model is to understand the key
ideas behind the model. (Krivoruchko, 2011)

The approach to applying statistical analysis techniques to continuous,
terrestrial geographically based (i.e. location) data is known as geostatistical
analysis or geostatistics. Geographic data do not usually conform to the
requirements of standard statistical procedures due to spatial

autocorrelation.
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Spatial autocorrelation is the relationship of how a variable correlates
with itself over space. It is the assumption, as stated by Tobler’'s First Law of
Geography, that points closer together have smaller differences between
their values than points farther apart from each other. Random patterns do
not exhibit spatial autocorrelation so if there is any systematic pattern in the
spatial distribution of a variable, it is said to be spatially autocorrelated;
measuring the extent to which the occurrence of an eventin one area unit
constrains, or makes more probable, the occurrence of an eventin a
neighboring area unit. The term is usually applied to ordered datasets where
the correlation depends on the distance and direction separating
occurrences.

Consideration of spatial autocorrelation necessitates the application of
geostatistics in modeling distributed topsoil-depth because itemploys
analytical techniques and methods using spatial software including
geographic information systems. The results of geostatistical analysis
typically are primarily derived from observation rather than experimentation
but most advanced techniques require knowledge of the discipline they are

to be applied to as well as professional judgment in their use and

interpretation ) {Comment [SRHG]: This is such an
1 important point. Good.

Prior to the start of any spatial analysis and before the actual modeling
of a surface, it is advisable to visually inspect the data by examining its

location and distribution to determine any spatial relationships. The mean or
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center location can be determined by calculating the average x- and y-
coordinates of the dataset. Because the average value can be affected by
extreme values, comparison of the mean center with the middle, or median
center location, determined by ranking the x- and y-coordinates in numeric
order and choosing the middle value in the list, can yield information on
whether some locations in the data are dispersed or tightly clustered. The
directional distribution of the data lends information about the spread of the
data based upon the standard deviation of the x- and y-coordinate locations.

Equally important is exploration of the data values themselves (in this
case topsoil-depth) for investigation into any variation and trends inherent
within the spatial data. Some geostatistical analysis tools assume the data is
normally distributed and operate correctly only if it is the case.

The Normal distribution is a continuous probability distribution of a
measurement, x, that is subject to a large number of independent, random,

additive errors. Mathematically it is the Gaussian function,

1 w2
f(ﬂzﬁf’ %

where, yis simultaneously the mean, median, and mode (i.e. the location of
the center of the peak), o is called the variance and describes how

concentrated the distribution is about the center. The square-root of the
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variance is the standard deviation, o, which measures the width of the
density function.

If the data exhibit characteristics of the Normal distribution, then
graphically the distribution is represented by a bell-shaped curve where
there is a clustering of values near the mean. There willbe equal numbers
of values on either side of the center of the curve. In Figure 2 each colored
band has a width of one standard deviation. The numbers written as
percentages represent the percent of the dataset accounted for.(e.g. 68.2%
of the set have values within one standard deviation of the mean, 95.4%
have values within two standard deviations, and 99.6% within three

standard deviations.)

0.3 04

0.2

34.1% 34.1%

0.0

=30 =20 -1lo M lo 20 30

Figure 2. The Normal Distribution. Graphic from Wikipedia (Mwtoews.)
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If the frequency distribution of a dataset is normal the data will be
symmetric about the mean and the data is said to have skewness, a;, of
zero. When the mean and median are not similar in value, asymmetry
occurs in the data and will be reflected in the distribution curve being
skewed to the left for skewness values a;<0, and to the right for skewness

values a3>0. Mathematically, the skewness, a3 may be calculated by,

o
= S -

Th-Np-28 &

where, o-hat is standard deviation, n is the number of sample values, x; is
the i'" value in the set, and x-bar is the mean of the sample values.
Additional data exploration methods available that allow inspection
into the properties of datasets include the normal QQ plot. It graphically
compares the distribution of a given variable to the Normal distribution. The
QQ plotis a scatter plot where the quantiles of a dataset are plotted against
the quantiles of the Normal distribution. Figure 3 illustrates that in the QQ
plot, perfect normality is represented by a straight line and the actual data
are plotted as points along the line. The closer the points are to the Normal
line, the more the data has many of the characteristics of a normally
distributed set of data. QQ plots are also helpful in determining outliers. The

values at the tails of the QQ plot can potentially be outliers and can point to
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the necessity to further investigate such points before continuing with an

analysis.

N
T

=
T

|
-
T

Normal data quantiles
0 o

. 1 L 1 \ L
-2 —1 0 1 2 3
Normal theoretical quantiles

|
| W
w

Figure 3.QQ Plot. Graphic from Wikipedia (Skbkedas.)

Another quick and convenient descriptive statistical aid to graphically
explore datasets such as topsoil-depth sample points is through use of the
Boxplot, sometimes called the hox-and-whisker diagram. A hoxplot
summarizes five descriptive statistical parameters: the minimum sample
value, the lower quartile (Q1), the median (Q2), the upper quartile (Q3),
and the maximum sample value. A boxplot generally can also indicate
observations that may be outliers. Figure 4 illustrates the comparison
between the boxplot and the Normal distribution. In Figure 4, IRQ is the

“interquartile range,” being the mid-spread which contain 50% of the data
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and equal to the difference between the upper and lower quartiles. These
first and third quartiles correspond to a cumulative proportion of 0.25 and
0.75 of the data points, respectively. By arranging the data in increasing
order, 25% of the values will lie below the first quartile, and 25% of the
values will lie above the third quarter. The quartiles are special cases of the

general quantile that is calculated by
Quantile = (i) - 0.5/n

where n is the number of data points and (i) is the i"™ rank of the ordered

dataset values.

IQR

Q1 Q3

Q1 - 1.5 X% IQR | Q3+ 1.5 % IQR
I |
I
Medium
—dg —30 -2 —lo 0o lo 20 30 4o
—2.6880 —0.67450 0.67450 2.6980

2465% | 50% 4.65%
4o -3¢ -20 -lo 00 10 20 30 10
15.73% 68.27% 15.73%
—do —30 —-20 -l 0o lo 20 30 4o

Figure 4. Boxplot To Normal Probability Function. Graphic from Wikipedia (Jhguch.)
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The “peaked-ness” of a frequency distribution is measured by a

parameter known as kurtosis. Similar to the idea of skewness which is a
measure of the symmetry of a distribution, kurtosis, o, describes the shape

of the frequency curve; more pointy distributions tend to have higher
kurtosis values. Kurtosis serves to describe the size of the tails of a
distribution, the measure of which can provide the likeliness that the
distribution will produce outliers. Normal distributions will exhibit the value

of 3 for the kurtosis measure. Mathematically, kurtosis can be calculated by

el
q
gt

T

. =h4

i, = (% -%)*-b

1

where, o-hat is standard deviation, n is the number of sample values, x;is

the i" value in the set, x-har is the mean of the sample values, and

_ aln +1) 3y
l=Nn-21n=-3 " (n-2n-3

It is important in the data exploration phase that it is determined how
the data is distributed, because some Geostatistical Analyst interpolation
tools assume the data is normally distributed. In instances where this is not

the case it may be possible to apply transformations to the data that can
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sometimes make the datasets more Normal. Data transforms used in
Geostatistical Analyst includes the Box-Cox transformation that is a family of

transforms defined for positive values and described by,

) {35 = 1)

TR

00
where k is an integer parameter and x is the value being transformed.

If the frequency distribution for a dataset is broadly uni-modal (one
major peak) and left-skewed, the natural log transform (logarithms base e)
can adjust the pattern to make it more symmetric and similar to a Normal
distribution.

The process of ranking the data and then mapping each rank to the
corresponding data rank of a normal distribution is known as the normal
score transformation, another method to help normalize data.

Other exploratory analysis of spatial data includes the geostatistical
methods of Voronoi Mapping and Global Trend Analysis.

A Voronoi map is constructed by forming a series of polygons around
the location of topsoil-depth sample points such that any location within an
individual polygon boundary is closer to the sampled point inside that
polygon than to any other sampled point. Sampled points whose surrounding
polygon shares a border with other sampled points’ polygons will be

considered neighbors, allowing a variety of local statistics to be computed. It
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is possible to use the ESRI® Geostatistical Analyst extension Voronoi
Mapping toolin a topsoil-depth study to aid in identifying potential local
outliers. The cluster Voronoi method involves placing the data into five class
intervals. If the class interval of a polygon is different from its neighbors the
software colors the polygon grey to distinguish it. Figure 5 illustrates an
example of of a Voronoi Cluster Map where the grey cells reflect potential

outliers.

Figure 5. Voronoi Cluster Map Example.

Stationarity, a property in which the relationship between two points

depends not upon their exact location but only the distance between them,
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is another assumption of many geostatistical analysis techniques. An entropy
Voronoi map can be used to examine this local variation between data
points. It is calculated based on the class of each surrounding polygon.
Figure 6 illustrates an example of a Voronoi Entropy Map. The red and
orange areas reflect areas with higher variability and are thereby less

stationary than the light greener colors.

Figure 6. Voronoi Entropy Map Example.

If data do not display appropriate stationarity it could be due to a
trend being present in the data. A trend is analyzed by fitting a polynomial

function to describe the variation in the data,

f(x)=ax"+a ,x" 1+ . +a,x+3,
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where nis a non-negative integer and where each value {a,, ..., ao} is a
constant. The order of the polynomial refers to the exponent in the leading
term. A first-order polynomial is linear and displays as a straight line, a
second-order as a parabola, and a third-order as a cubic function.

The ESRI® Geostatistical Analyst extension Trend Analysis tool
provides a three-dimensional perspective of data where sample locations are
plotted on the x,y plane with the height (topsoil-depth value) of the data
projected onto the x,z and y,z planes as scatter plots. Figure 7 illustrates an
example of how a cubic trend (3rd order polynomial) and a weak, parabolic
trend (2"d order) could present. Trend analysis can indicate if there is large-
scale data variation and in what direction; the blue line is North-South, the

green line is East-West.

Figure 7. Polynomial Trend Example.
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After completion of the exploration of data comes creation of the
interpolated topsoil-depth surface. Interpolation involves the prediction of
values at locations where no sample has been taken and is derived from
functions on the known values at actual sampled locations.

Two of the most common interpolation techniques include Inverse
Distance Weighting (IDW) and the family of methods called Kriging. IDW is a
deterministic method, meaning the interpolation involves non-statistical,
mathematical methods that predict surface cell values for unmeasured x,y
locations using the actual measured topsoil-depth point values surrounding
the unknown, predicted locations. It explicitly implements Tobler's First Law
of Geography by assuming that each measured topsoil-depth point has a
local influence that diminishes with distance. It weights points closer to the
unknown, predicted x,y location to a greater amount than locations further
away. As the distance approaches zero (i.e. the location of the predicted
point equals that of the measured point) the relative weight approaches 1.
Therefore, IDW is an exact interpolator, meaning the predictions will equal
the measured values at the location of the measured value. That is, the
interpolated surface can never exceed the measured values. A power
function, p, determines the rate at which the weights decrease with distance
from the measured point. As such, the weights are proportional to the
inverse distance between the actual measured point and the unknown,

predicted point raised to the power, p. To determine the optimal p value it is
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necessary to minimize the root-mean-square predicted error (RMSPE) which
is a summary statistic that quantifies the error of the prediction surface. The
Geostatistical Analyst extension will iteratively calculate different power
values to determine the lowest RMSPE and hence, the optimum power.

W hile the deterministic technique of IDW uses only the existing
configuration of measured sample points and depends solely on the distance
to the prediction location to create the interpolated surface, the Kriging
methods use geostatistical technigues that incorporate the statistical
properties of the measured sample points. Kriging is a multi-step process
that necessitates exploratory data analysis as described above. Additionally,
because itis based on stochastic principles it can produce error or
uncertainty surfaces along with the prediction surface, as well as surfaces
that define the probability of predicted values exceeding (or failing to exceed
as in the case of minimum topsoil-depth) a critical value. The kriging
method involves quantifying the underlying spatial structure of the data
through a process known as variography. Itis an advanced geostatistical
procedure based in fitting models that include autocorrelation.

Autocorrelation is assessed and quantified using a semivariogram
function (gamma) which plots one-half the square of the difference between

two values against the distance separating them.

Y="%[2(s) - Zs;))?
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where syand s;are the two points in the pair and Z(s) is the value at each
point. As the distance separating the two points increases so does the
difference between their values increase, if spatial autocorrelation exists.

Figure 8 is an illustration of the general semivariogram plot.

 Sill

Range

-

Distance

Figure 8. General Semivariogram. Graphic from Wikipedia.

The height of the semivariogram is called the Sill and defines the
variation between pairs of data points. The variation increases with distance
and the Range of the semivariogram is that distance between pairs of points
where the function flattens out; past this point the values are considered

independent and no longer spatially dependent.
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Underpinning the geostatistical modeling technique of Kriging is fitting
the data to the optimum empirical semivariogram function. It is this model
that will be used by the Geostatistical Analyst software to produce the
interpolated surface.

Prior knowledge of what is desired from the outcome of a predicated
surface model along with exploratory data analysis points the way to which
interpolation methods are best suited for any particular dataset under study,
and accounts into consideration any assumptions that may be required of
the method. After the surfaces are created itis necessary to determine how
well they predict values at unknown locations by study of calculated
statistics that can serve as diagnostic indicators. The process of cross-
validation can be used to determine whether the model values are
reasonable. Cross-validation is a robust technique that uses all of the data
by removing, one by one, each data point and its associated value, then
calculating the value at this now “unknown” location using the remaining
points. The procedure is repeated for every point in the dataset. Then,
cross-validation compares all of the measured and predicted values and
creates scatter-plot graphs and summaries of the predicted versus measured
values statistics.

In addition, using the cross-validation summary statistics and plots
makes it possible to compare different interpolation models relative to one

another even if the surfaces have been created by different methods.
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The details of the exploratory data analysis and interpolation processes
used to analysis topsoil-depth data at a mining site are addressed atlength

in the following methodology and result sections.

Methodology

Two interpolation techniques, IDW and Kriging, were investigated in
order to describe a process that will create an analysis prediction surface
from sampled topsoil-depth point values to aid in determining how evenly a
mine operator has spread the required minimum depth of topsoil over newly
reclaimed areas on surface coal mines.

Scripts from the ESRI ArcGIS Desktop© 10.0, ArcInfo license, Spatial
Statistics and Geostatistical Analyst extension toolkits were used to study

the topsoil-depth data.

Study Area and Data

The study area is located on a western U.S. coal mine under the
jurisdiction of OSM. It is a large operation named Blackmesa Complex Mine,
located on both Hopi Tribe and Navajo Nation lands near the city of Kayenta,
in Navajo County, Arizona. The complex covers 65,219 acres.

The red outline on Figure 9 is the boundary of the permitted area of
the mine site. The black dashed outline on the figure denotes the location of
a portion of the mine in the topsoil distribution stage of reclamation and
delineates the region of interest for this study. The topsoil-depth data

studied is confined within this approximate 575 acre region.



Ferarese-31

Data for the location of the topsoil sample points was recorded with a
Trimble GeoXT® GPS receiver. The data was downloaded from the GPS
receiver and converted into the point shapefile format. A polygon shapefile
was created to delineate the outline of the mine area from which the topsoil

samples were collected and to act as a mask in geoprocessing operations.

Figure 9. Blackmesa Mine Complex Area of Interest Map.
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A totalof 216 topsoil-depth samples were collected. Eighty-six of them
were collected by the mine operator and the remainder 130 samples were
collected by personnel from the OSM. Both sets were collected using the
same methodology and were in the shapefile format but with slightly
different schema. They each contained a common field that contained the
topsoil-depth measurement in the same units and the two files were merged
into a single file-geodatabase feature class, retaining the common field. To
ensure that no two sampled locations were coincident which could introduce
noise into the analysis (Demirhan, 2003) all data points were checked
against duplication. No duplicate locations were present{ The two closest
samples were 21-feet apart and the maximum distance between any two

samples was 6,700-feet)

Initial Examination of Data

Cursory exploration of the geographic distribution of the sample
locations was performed using the distribution measurement scripts in the
Spatial Statistics toolbox. Figure 10 illustrates_this process. The black outline
in the Figure delineates the study area of interest and the background is a
hillshade of the area created from {a digital elevation model (DEM) derived

from high-resolution stereo satellite imagery Jtaken of the mine site.

The statistics depicted in Figure 10 demonstrate that the mean and
median centers of the data points are relatively close together suggesting

that the data is neither much dispersed nor tightly clustered. The 1-standard

~{Comment[SRH7]: Can you say something
about the positional accuracy of the
sample points collected? Ifthey were
sub-meter accuracy then this looks pretty
good. Ifthey were 10-meter accuracy (I
doubt it using GeoXT) but | think itis an
important point (pun intended).

-]Comment[SRH8]: Photogram metrically

derived?
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deviation directional distribution ellipse is oriented 38.5-degrees, and shows
the data spread is oriented towards the northeast-southwest direction. Of
the 216 samples, 96 (44% ), almost half of them lie outside the ellipse,
supporting neither dispersion or clustering but there are bare areas that are
under-sampled.

The minimum topsoil-depth that was mandated to have been placed,
and evenly distributed, on the reclamation area was 24-inches. The actual
depths measured had values ranging from 6 to 39 inches. From the range in

measured values it may be unlikely that the objective was met.

Figure 10. Spatial Statistics of Sampled Points.
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Geostatistical Data Analysis Methodology

The approach taken to analyze the topsoil-depth data to create
interpolated prediction surfaces followed a methodical process which began
with converting the raw data and representing it in the GIS, as was
discussed in the previous section. Following the visual and cursory
examination of the data the formal exploratory data analysis took place,
after which interpolation models were fit to the data, diagnostics performed
on the surfaces, concluding with comparing the models to determine which

was best. Figure 11 provides a flowchart of the steps carried through.

Initial examination et Ry P
of the data Median Center
l 1-5td dev Directional Ellipse
Farmal Check for normality (Histagram, QQ Plat)
Identify outiiers (Histogram, Q Plot, Vieronol Mapping)
Explora‘tor}f Data Trend analysis
Analysis
Create Surfaces Create IDW prediction surface
B ) Fil the best semivariogram
iterative process Create Kriging prediction surface

[ Cross-validation summary statistics
Perform Cross-validation scatter plots

i i Create Kriging error surface
DIagl’IOStICS Create Indicator surface (exceed 24 inches)

Compare IDW 1o Kriging performance
Compare Models Compare cross-validation statistics esch method

Figure 11. Geostatistical Modeling Summary Flowchart.
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Formal Exploratory Data Analysis

A simple Boxplot, Figure 12, of the raw topsoil-depth data values was
constructed and reflects the data may not be normal but skewed and contain

potential outliers (green dots.)

Boxplot of Sample Points
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Boxplot of Sample Points
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Figure 12. Boxplot of Topsoil-depth.

To more appropriately determine whether the topsoil-data exhibit
characteristics of a Normal distribution a histogram frequency diagram and a

QQ Plot were constructed from the raw data values. Figure 13.
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Figure 13. Histogram and QQ Plot of Raw Data Values.

The histogram of the data shows the distribution is asymmetric with
left-tail skewness. Normal data is defined with skewness of zero and kurtosis
of 3, but the topsoil-depth data presents skewness of 0.93 and kurtosis of
3.4. The mean and median value are not equal, being 17.1 and 16,
respectively. The data values do not correlate well with the Normal line in
the QQ Plot. The uni-modal nature and left-skewed aspect of the data lends
potential that a natural logarithmic transformation could adjust the data to
more normal characteristics. Additionally, both the histogram and the QQ

Plot point to potential outlier data at the high end.
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To examine the potential of outliers a Voronoi Cluster map was
created. The grey polygons in Figure 14 are the locations for which topsoil-
depth data values need to be further investigated before interpolation

proceeds.

: Avtnse:
Samgie Puriy | Topeod peon -

Figure 14. Voronoi Cluster Map of Topsoil-depth.

A natural log transformation was performed on the data and it helped
to produce more symmetry and to approach more normal characteristics.

The QQ Plot of the transformed data is better correlated to the Normal line.
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Even with the transformation in place there remained a potential
outlier exposed on the QQ Plot. It was investigated in detail using ArcMap
and the Voronoi Cluster map. In Figure 15, the selected data point did not
map to potential outliers in the Voronoi map (grey polygons) and after the
transformation the point fell within the bounds of the upper tail of the

histogram. For these reasons the point was not excluded from the dataset.
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Figure 15. Examination of Potential Outlier.
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Each of the potential data outlier points exposed in the Voronoi Cluster
map were selected in ArcMap and examined in detail by comparing their
topsoil-depth value with surrounding values. Only one point was deemed an
outlier but after further investigation into the topography of where it was
located, it was not excluded from the dataset. The point in question is

illustrated in Figure 16.

Figure 16. Rational for Not Excluding Potential Qutlier.
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The yellow point in Figure 16 differs enough from its two closest
neighbors to possibly be considered an outlier. Because it is located on the
opposite side of a ravine from the two differing neighbors it was deemed
liable that the value is not out of the ordinary and for this reason it was not
deleted.

An entropy Voronoi map was created to obtain information about the
local variation in the topsoil-depth data. In the Voronoi Entropy map of
topsoil-depth shown in Figure 17, the darker red and orange polygons reflect
areas with higher variability, while the lighter greens denote less variability.

The map for topsoil-depth shows the data somewhat stationary.

Figure 17.Voronoi Entropy Map of Topsoil-depth.
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Figure 18. Trend Analysis of topsoil-depth.
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Figure 18 shows data exploration of topsoil-depth using trend analysis.

Trend analysis shows there is slight variation in the data in both the east-

west (green line) and north-south (blue line) direction. Figure 19 is a

Voronoi Standard Deviation map that shows the largest variability is in the

northeast and southwest area as evidenced by the red polygons. It can be

concluded that the data is not totally stationary.
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Figure 19. Voronoi Standard Deviation Map of Topsoil-depth.

It is unlikely that natural data will present all of the characteristics of
normality and stationarity. The Geostatistical Analyst program offers means
to transform the data to provide accurate prediction of topsoil-depth at
unknown locations by geostatistical interpolation techniques such as Kriging.
Prediction surfaces using the deterministic IDW method and the

geostatistical Kriging method was—were carried out.
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Create Surfaces

The initial surface created was performed using the IDW interpolation
method. IDW is a deterministic interpolator that is exact, so measured data
points will be predicted with the same value as was measured. It is a quick
way to take a first look at an interpolated surface because there are not
many decisions to make on model parameters since it does not depend upon
assumptions about the data other than it being continuous.

Kriging was used to create the second prediction surface. Kriging is
much more flexible than IDW. Because it relies on statistical models it allows
for investigation of graphs of autocorrelation such as the semivariogram.
Figure 20 shows the optimum semivariogram that was fitted to the data
using the Simple Kriging method.

The flexibility achieved through Kriging must be balanced against the
requirement that many decisions be made about the parameters involved in
the interpolation. Version 10.0 of the ESRI® Geostatistical Analyst extension
is equipped with functionality that allows for the software to optimize many
parameters based upon the structure of the spatial data. Still, the advanced
geostatistical methods involved in producing surfaces via Kriging involve
iteration and “trying out” different methods. The Simple Kriging method
using the Normal Score Transformation was found to perform the best and
was used to create the second prediction surface for topsoil-depth

distribution.
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Figure 20.

Perform Diagnostics

Semivariogram

of Topsoil-depth.

The method parameters for the IDW and the Simple Kriging models

that were used to create the predicted surfaces are listed in Appendix B and

C, respectively.

Cross-validation summary statistics and scatter plots are produced as

part of the output from the Geostatistical Analyst tools. The statistics and

plots were examined to determine how the interpolation models performed.

In addition to the summary statistics and plots, geostatistical methods

(Kriging) are equipped with the ability to produce a separate surface that

displays the standard error on the predicted surface. For the Simple Kriging
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model, this diagnostic was also performed and the additional surface
created.

Assuming the data is normal, or can be transformed to normality, itis
possible to create a probability surface that displays the likelihood of
exceeding or failing to exceed a critical value. For the topsoil-depth, the
critical value required by the permit is 24 inches of topsoil evenly distributed
over the entire area. In order to further assess if this was accomplished, a

probability surface was created.

Compare Models

Similar to assessing the validity of a single model, summary statistics
and plots were used to compare the IDW and Kriging prediction surfaces.
Although the number of statistics produced by the Geostatistical Analyst
program for IDW is fewer than for Kriging it remained possible to make the

assessment.

Results

Inspection of the topsoil-depth point values resulted in the knowledge
that the data did not conform to the Normal distribution but was skewed to
the left. Formal exploratory data analysis resulted in observation of several
potential outliers being present but further investigation supported the
choice to not exclude them from input into the surface model interpolation

procedures.
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Two optimized prediction surfaces were created using the deterministic
IDW method and the geostatistical Simple Kriging method. Each surface was
classified in the same manner. Five classes were chosen in order to provide

for more unambiguous interpretation. [rhe class breaks were determined

manually th support the best visualization towards the task of determining ~{Comment[SRH9]: All this technology and
then this seems out of place but I get it.
0K.

the distribution of topsoil-depth across an area. Figure 21 shows the two

surfaces side by side. Both surfaces represent over distribution of topsoil in
similar general areas (green to yellow classes.) The IDW surface, known for
its potential to produce “bulls eyes” around data locations, predicted two

areas where the topsoil was expressly under applied, at 6-inches (red class),

but which the Kriging surface smoothed out.

Figure 21.1DW and Simple Kriging Prediction Surfaces.
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Visualization from each surface concurs that overall the topsoil-depth
24-inch minimum requirement evenly distributed across the area was not
achieved. The vast majority of the areas represented in both surfaces predict
that the topsoil was distributed to a depth of between 6 and 20 inches.

Geostatistical interpolation methods allow for creation of surfaces that
quantify the error involved in the prediction surface. Figure 22 is a surface
showing the standard error of prediction on the Simple Kriging method

derived surface.

Figure 22. Standard Error of Prediction Surface for the Kriging Derived Prediction Surface.
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The lighter white-ish areas indicate where the predicted surface
performed with less error and the red areas are where the error in the
prediction of unknown values is greater. Overall, the Simple Kriging surface
performed well with few areas of red and those areas generally tend to be in

places where sampling frequency was spa+sermore sparse.

In addition to producing error surfaces the geostatistical interpolation
methods are also capable of producing surfaces that display probabilities in
areas where critical values are exceeded or, as in the case of minimum
topsoil-depth, not exceeded. Such probability maps operate under the
assumption that the data is normally distributed. The simple kriging method
that was used in this analysis allows for transformation of the data. The
Normal Standard Transformation was utilized on this dataset to produce

more normal characteristics in the data prior to surface creation.

A surface describing the probability that the study area contains a
topsoil-depth distributed to the required minimum 24-inches is displayed in
Figure 23. The surface shows that only a few places (grey areas) are 68%
likely to contain the minimum topsoil-depth. The majority of the area has
less than 95% likelihood the requirement was met, and a large portion of

the area virtually did not meet the requirement (red areas).
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Figure 23. Probability Surface of 24-inch Minimum Requirement.

The final determination involves quantifying which surface predicted
topsoil-depth distribution better, IDW or Kriging. Through utilization of the
statistics derived from cross-validation it is possible to compare the
performance between surfaces. Figure 24 is the comparison of the cross-
validation statistics and scatter plots between the IDW and Kriging surfaces

created in this analysis.
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Figure 24. Cross-validation Statistics for IDW and Simple Kriging Comparison.

The scatter plots of measured verses predicted values in Figure 24
may at first suggest that the IDW method outperformed Kriging by virtue of
the tighter correlation observed on the IDW plot to the 1:1 line. The
predicted line is the thicker blue one. But the IDW slope is usually less than

ene—the slope line in Kriging due to a property of the method that tends to
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under estimate large values and over estimate smaller values. (Johnston,
2001)

The summary statistics are presented below the scatter plots in Figure
24. Itis expected thatin a good model, the prediction errors will be
unbiased and therefore near zero. The mean error in the IDW model is 0.24
and in the Kriging model it is 0.068. Also expected of a good model is that
the root-mean-square prediction error (RMSPE) be minimized because the
closer the predictions are to true values the smaller it will be. The RMSPE in

the IDW model is 4.17 and in the Kriging model it is 4.71.

Conclusion
Coal-mining operations, albeit the predominate means of

acquiring the fuel necessary for production of electricity in the U.S., also
come with severe adverse consequences to the land and environment.

Creation of cell-based analysis prediction surfaces from sampled
topsoil-depth point values can aid in determining how evenly a mine
operator has spread the required minimum depth of topsoil over newly
reclaimed areas on surface coal mines.

Use of prediction surfaces from sampled topsoil-depth point values
could help to more accurately evaluate topsoil replacement commitments
defined in surface coal mine permits and could help to ensure better

reclamation.
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W ith a topsoil distribution surface layer in hand it willbe more
apparent which areas require additional topsoil and from which areas excess
topsoil may be acquired. With a continuous surface map it can more readily
be determined what is necessary in order to comply with the requirement of
an evenly distributed topsoil depth.

The ability to make balanced environmental decisions necessitates
taking into consideration interacting factors. Geostatistical tools and
methods provide this capacity towards more appropriately and accurately
defined environmental analysis but it must be recognized that models are
only approximations of reality and must not be considered exact

representations.

Future Opportunities

In efforts to further quantify the interpolated surfaces created in this
report and apply their result to complementary coal mining scenarios it could
prove valuable to utilize remote sensing technology in concert with them.
W ith the use of high-resolution, multi-spectral satellite imagery collected
over several growing seasons at the areas of interest described in this report
itwould be possible to classify the imagery using the infra-red band and

calculate E/egetative indices]. Itwould be possible to compare areas where

vegetation growth may not be occurring successfully with the predicted
probability maps displaying areas where topsoil-depth was predicted to be

less than the optimum 24 inches.

Comment[SRH10]: An interesting
alternative approach.
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It would prove ideal for non-spatially trained personnel in the mining
industry to have access to automatic production of topsoil-depth prediction
surfaces without having to be intimately familiar with the intricate decision
making involved. This analysis showed there is little difference between
deterministic IDW and the many decisions required in geostatistical Kriging,
at least for this study site. Similar findings (Chaplot, et al., 1999)
determined there is little difference as long as the sampling density is high.
But what formulates high sampling density among newly reclaimed topsoil
distribution areas remains unknown. If it were determined that the IDW
method served to produce a reliable surface model of topsoil distribution
then it could be incorporated into an ESRI® ModelBuilder™ model or script
for use, perhaps even fncorporated as a geoprocessing service in an online

web application.]

Comment[SRH11]: Simply a matter of
having a marketavailable to make it
viable.
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Appendix A - List of Acronyms

CHIA Cumulative Hydrologic Impact Assessment

DEM Digital Elevation Model

DOI Department of Interior

EPA Environmental Protection Agency

ESRI Environmental Systems Research Institute

GIS Geographic Information System

GPS Global Positioning System

HSPF Hydrologic Simulation Program-Fortran

IDW Inverse Distance Weighted

LOM Life of Mine

0SM Office of Surface Mining and Enforcement
PA-DEP Pennsylvania Department of Environmental Protection
QQ Quantile-Quantile Plot

RMSE Root-mean-square Error

RMSPE Root-mean-square Predicted Error

SMCRA Surface Mining Control and Reclamation Act

SocC Soil Organic Carbon

WCMS Watershed Characterization and Modeling System

W VU West Virginia University
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Appendix B - IDW Model Parameters

Layer Properties

| General || Source || Display | Extent || Symbology | Method Summary
Input datasets

= Dataset J16_0SM_PWCC
Location C:\GEOG_4993_Thesis\myThesis\myThesis.gdb
Type Feature Class
Data field Topsoi_Depth
Records 216
B Method Inverse Distance Weighted Interpolation
Power 5.9461274547497664
E Searching neighborhood Smooth
Type Smooth
Smoothing factor 0.2
Angle 0
Major serniaxis 2193.799186864329
Minor sermiaxis 2193.799186864329

[ Copy Model to Clipboard ]

[ QK ] [ Cancel ] Apply




Appendix C - Kriging Model Parameters

Method Report

Major semigxis
Minor sermiaxis
= Variogram
Number of lags
Lag size
Mugget
Measurement error %
Shifton
E Model type
Parameter
Range
Anisotropy
Partial sil

Save...

Input datasets
E Dataset J16_0SM_PWCC
Location  C:\GEOG_4993_Thesis\myThesis\myThesis.gdb
Type Feature Class
Data field Topsoi_Depth
Records 216
E Method Kriging
Type Simple
Qutput type Prediction
E Dataset # i
Trend type MNone
B Transformation Narmal Score Transformation
Approximation Direct
E Searching neighborhood Smooth
Type Smooth
Smoothing factor 0.2
Angle 0

521.6507955414371
521.6507955414371
Semivariogram

12
65.20634944267964
0

100

Mo

Stable
1.3162109375
521.6507955414371
Mo
1.0080901129392312

[ QK ] [ Cancel
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