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Abstract

Tamarisk, an invasive tree native to Eurasia, has become widespread in river corridors across the
southwestern United States. Accused of excessive water consumption and degradation of native
habitats, it has been the target of extensive eradication and restoration efforts. Identifying its ever-
changing distribution and extent benefits natural resource managers tasked with planning and prioritizing
invasive plant management activities.

The use of GIS tools and remotely sensed data offers the potential to speed and improve our ability to
locate tamarisk distributions. This project searches for tamarisk by classifying land cover vegetation
(including tamarisk) based on spectral reflectance values from three-band natural color digital
orthophotos. The study area is a section of the San Miguel River in western Colorado, where an extensive
tamarisk eradication and restoration project was completed in 2008. Recent site survey reports indicate
that a few small, scattered tamarisk trees are beginning to reappear in the study area. While the overall
classification was relatively accurate, it was unable to reliably classify the tamarisk category.
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Abstract

Tamarisk, an invasive tree native to Eurasia, has become widespread
in river corridors across the southwestern United States. Accused of
excessive water consumption and degradation of native habitats, it has been
the target of extensive eradication and restoration efforts. Identifying its
ever-changing distribution and extent benefits natural resource managers
tasked with planning and prioritizing invasive plant management activities.

The use of GIS tools and remotely sensed data offers the potential to
speed and improve our ability to locate tamarisk distributions. This project
searches for tamarisk by classifying land cover vegetation (including
tamarisk) based on spectral reflectance values from three-band natural color
digital orthophotos. The study area is a section of the San Miguel River in
western Colorado, where an extensive tamarisk eradication and restoration
project was completed in 2008. Recent site survey reports indicate that a
few small, scattered tamarisk trees are beginning to reappear in the study
area. While the overall classification was relatively accurate, it was unable to
reliably classify the tamarisk category.
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ProjectDefinition

Tamarisk is a shrub-like tree that has invaded riparian zones across
the southwestern United States. Native to dry regions of Africa and Eurasia,
tamarisk was brought to the United States in the 1800's as an ornamental
and provider of shade and river bank stabilization. It has thrived and
expanded its territory to river corridors across America’'s arid southwest, in
some cases forming dense monoculture thickets. Environmental scientists
and natural resource managers have multiple concerns about tamarisk's
impacts, including excessive water consumption, diminished accessibility to
rivers, degraded wildlife habitat, and displacement of native vegetation.

Along Colorado's San Miguel River, an extensive multi-year tamarisk
eradication and restoration project was completed in 2008. At the San
Miguel River Preserve, a Colorado State Natural Area, regular site visits are
conducted to monitor and record the recovery process and identify tamarisk
recurrences. An increasing number of tamarisk specimens have been
identified during recent site surveys. Supporting and enhancing this
monitoring work with GIS tools and remotely sensed data forms the basis for
this research project.

The primary research goalis to test the ability of these systems and
data to discern the early stages of tamarisk recurrence at the San Miguel
Preserve. A consistently successful method offers multiple benefits including
areduced need for site visits, the ability to focus onsite work to specific
high-probability problem areas, and reduced mitigation costs resulting from
early detection.

The project methodology uses a supervised classification approach
with three-band natural color aerial photographs to classify study area
vegetation (including tamarisk), based on pixel reflectance values. This
method has previously demonstrated the ability to successfully detect
tamarisk, albeit in somewhat different contexts (Akasheh, Neale, and
Jayanthi 2008, Everitt et al. 1996, Everitt et al. 2007). Tamarisk distribution
and characteristics in the San Miguel Preserve differ fundamentally from the
study areas in prior studies. Most research has focused on study areas
containing relatively large dense tamarisk concentrations. In contrast, most
tamarisks at the San Miguel Preserve are scattered, with no expansive
concentrations or dense thickets. Many specimens are located below an



Johnson-2

intermittent cottonwood canopy and at least partially shielded from the view
of airborne or satellite-based sensors. Most are smaller trees - two to three
meters tall, thin, and spindly in appearance. There are a small number of
larger more robust trees, including a small cluster beneath an open sky.

As a result, | hypothesize that the classification will not be able to
discriminate the smaller, scattered tamarisk trees. The larger specimens,
and especially the small cluster, represent a more reasonable target for
sensors. | hypothesize that the classifier is more likely to successfully
identify this group.

For the researcher, a fundamental benefit of the research process is
the acquisition and synthesis of new knowledge, understanding, and insight
about the topic at hand. Thus the secondary research goalis to identify
data, technigues, and tools beyond those employed in this project and
evaluate their ability to provide effective solutions.

The approach used in this study is not at the cutting edge of current
research. It represents a foundational starting point from which to continue
investigating the topic with different combinations of data and methods. The
use of remotely sensed data to detect tamarisk and other invasive plants is a
work in progress, still needing additional research to identify consistently
accurate, cost-effective solutions (Fletcher, Everitt, and Yang 2011). This is
especially true for San Miguel Preserve -like scenarios, in which tamarisk is
in the early stages of establishing a foothold or repopulating (Shafroth et al.
2005).

ProjectFoundations

Invasive Species

The term “globalization” often brings to mind an economic perspective
regarding transnational corporations and financial institutions, international
trade, and job offshoring. In truth, globalization is many-faceted concept
encompassing political, social, cultural, and ecological dimensions. Although
we tend to think otherwise, globalization is not new. Certain aspects are as
old as our planet. Nevertheless, its rate is accelerating, fueled by
increasingly ubiquitous transportation and communication systems. For
environmental scientists, ecological globalization might represent an
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environmental version of Pandora’s Box, particularly with respect to the
problems associated with invasive species.

Invasive species, both plants and animals, are a growing phenomenon
across the globe. As international transportation systems pick up and deliver
goods across the world, they unintentionally provide new import/export
pathways for non-natives. In other cases, non-native species are
purposefully imported into a new region as, for example, pets or ornamental
plants. If the characteristics of the non-native's new territory suit its needs,
it has an opportunity to thrive and spread. The absence of natural enemies
or other native deterrents frequently enhances these newcomers’
opportunities.

The impact of an invasive species can vary, depending on the nature
of the species and its newfound territory. Potential negative impacts can
include changes to the makeup and function of native ecosystems, reduction
of biodiversity, and displacement of native species (Ge etal. 2006, Mack et
al. 2000). In the United States, the economic impact of invasive plants is
estimated to be losses of tens of billions of dollars annually (Pimental et al.
2001).

Tamarisk

A shrub-like tree named tamarisk, colloquially called salt cedar, is one
such invasive. Tamarisk is the subject of this research. Introduced to North
America in the 1800's, tamarisk was embraced for its perceived benefits as
an ornamental plant, as wellas more practical qualities including a provider
of shade, wind protection, and stream bank stabilization. Native to arid
regions of Africa and Eurasia, tamarisk thrived in the dry climate of the
southwestern United States, primarily in riparian zones along river corridors
(Robinson 1965, deGouvenain 1996). It broadened its presence in North
America through the twentieth century. By the late 1980's, tamarisk was
estimated to have extended its coverage to more than 600,000 hectares,
and was increasing at a rate of 3 to 4% annually (Brotherson and Field
1987, DiTomaso 1998). Today itis thought to be the most abundant non-
native tree in southwestern riverine systems (Friedman et al. 2005).

Somewhat concurrent with Tamarisk’s expansion across the
southwest, America's population began a southwesterly migration, in part
enabled by widespread dam building and the resulting availability of water.
Soon, tamarisk began to be recognized as a problem (Brotherson and Winkel
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1986), eventually becoming demonized in both peer-reviewed and popular
publications (Sher and Quigley 2013). Its perceived negative impacts are
extensive, including excessive water consumption, reduction of plant and
wildlife diversity, increased wildfire frequency, and increased flood potential
(Di Tomaso 1998, Hughes 1993). As a result, widespread eradication efforts
were initiated. Today, with increased knowledge, a more holistic approach
appears to be taking hold. Management efforts focus primarily on dense
monoculture infestations, emphasizing ecosystem restoration versus a
single-minded eradication. We have learned that restoration reduces the
likelihood of recurrence by tamarisk orinvasion of other non-natives.
Meanwhile, scientists continue re-assessing many aspects of tamarisk
ecology including water consumption, habitat suitability, and competition
with its riparian neighbors (Sher and Quigley 2013).

In Colorado, the Noxious Weed Act defines noxious weeds as: “.. non-
native plants that are disrupting our native vegetation and ecosystems.”
Tamarisk is listed on the B List of Noxious Weeds. The B Listis includes
plants whose continued spread should be stopped. Both the state and local
governments are required by state law to develop and implement
management plans to stop the continued spread of the List B species
(Doran, Anthony, and Shelton 2009).

Remote Sensing to detect tamarisk

Given the importance of identifying the locations and extents of
tamarisk populations, what is the most effective way to obtain such
information? Field surveys can identify and measure invasive species, albeit
with limitations. They are a good solution for limited areas, but they can be
time-consuming and labor-intensive. They are also impractical for remote
areas, for assessment of large areal expanses, and for areas having difficult,
limited, or restricted access (Griffith, McKellip, and Morisette 2005). The
successful use of remote sensing methods to identify tamarisk (as well as
other invasives) has the potential to overcome these limitations and provide
information not previously available.

In addition to providing new data, remote sensing methods can
become a valuable tool to supplement field work. These methods could
enhance the efficacy of site surveys by identifying explicit high-probability
target locations. Tools could also provide more timely information, allowing
earlier detection of invasions. Ultimately, these capabilities can lead to more
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well-informed and improved decision-making by our natural resource
managers.

Remote sensing has been used to detect tamarisk since 1936
(Robinson 1965). Since then, techniques have evolved, driven by technology
advances including sensor instruments, sensor platforms, and computer
technologies that support analyses (Griffith, McKellip, and Morisette 2005).
Improvements to remotely sensed imagery, a product of these technologies,
represent a prime example. Modern sensor systems are capable of fine
spectral and spatial resolution, thereby providing highly granular data to
analysts.

Spectral resolution refers to the number of spectral bands that can be
detected by the sensor system, and the bandwidth of each band (Akasheh et
al. 2008). Early data was acquired with single-band black-and-white
photography. It progressed to three-band color and four-band color infrared
versions, and migrated from film to digital systems. Today, three- and four-
band digital sensors remain in widespread use. In addition, multispectral
sensors capture data representing a wider range of the electromagnetic
spectrum including thermal infrared bands. Hyperspectral systems generally
collect data from the same overall frequency/bandwidth ranges as
multispectral systems, but in significantly greater numbers of bands
(typically 200 or more) consisting of much smaller wavelength slices. This
level of specificity eliminates spectral confusion associated with wider
wavelength sampling, enabling precision identification and analysis
(Lillesand, Kiefer, and Chipman 2008).

Spatial resolution is the ground area represented by one pixel in the
remotely sensed image (Akasheh, Neale, and Jayanthi 2008). Spatial
resolution of remotely sensed data ranges from centimeter-level up to one
kilometer. Generally, spatial resolution is related to the sensor platform. UAV
(drone) and aerial systems provide the finest resolutions, while resolution
from satellite-based systems is typically coarser. Larger pixel sizes,
somewhat similarly to large-wavelength spectral bands, result in spectral
confusion (commonly called the 'mixed pixel problem’) because each pixel
value represents the average reflectance of its areal extent.

The earliest efforts to identify tamarisk via remote sensing were visual
examinations of black and white aerial photographs. Subsequent efforts
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have applied automated classification algorithms to images of various spatial
and spectral resolutions.

In one earlier study, tamarisk were successfully identified by using
images captured during autumn, when its foliage progresses through a
distinctive yellow-orange to orange-brown color change, prior to leaf drop
(Everitt and Deloach 1990, Everitt et al. 1996). W hile the approach is useful,
it is limiting due to the restrictive timing considerations for data acquisition.

More sophisticated methods have since evolved, with increased
numbers and types of data sources and more powerful software tools. Ge et
al. (2006) demonstrated an effective method that applied texture-based
classification to one-meter resolution natural color photographs. Time-series
approaches have been used to detect invasions and to monitor tamarisk
mitigation efforts (Anderson et al. 2005, Everitt et al 2007). Groenveld and
W atson (2008) were able to discern leafless wintertime tamarisk using
Landsat 5 Thematic Mapper data, based on the low reflectance values of
bare branches.

A number of projects have used image data combining high spatial
resolution with multispectral/hyperspectral bands, using data from
commercial sources such as QuickBird (Carter etal. 2009, Nagler et al.
2009) or ‘fly to order’ solutions using airborne sensors (Akasheh, Neale, and
Jayanthi 2008, Everitt et al. 2007, Hamada etal. 2007). These solutions
have been generally successful. Study area extent, data acquisition timing,
and sensor capabilities (spatial and spectral resolution) can be customized to
the needs of the project. W hile this flexibility is a great advantage,
commercial solutions also represent a more costly approach.

The most current published research methods apply techniques such
as sub pixel classification (Silvan-Cardenas and Wang 2010) and advanced
classification algorithms (Fletcher, Everitt, and Yang 2011, Wang et al
2013). One such classification algorithm, SVM (support vector machines), is
a machine learning method that does not require normally distributed
training samples and does not impose limitations on the number of bands
that can be used in the classification, potentially enabling more effective use
of hyperspectral data.

Research studies investigating the ability to detect tamarisk with
remotely sensed data use two fundamentally different approaches. One
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general approach uses standard classification methods, based on pixel
reflectance values, applied to image data with increasingly higher
resolutions. The second approach uses more standard data, such as Landsat,
but applies more sophisticated classification algorithms to the data.

These methods, considered as a whole, highlight some of the
difficulties involved in using remotely sensed data to detect tamarisk. W hile
most have successfully located tamarisk, most also have limitations. Many
solutions use commercial data sources in the form of satellite based data or
‘fly to order’ airborne solutions. While these data can provide greater
resolution and therefore yield better classification results, they are costly.
Other classification approaches impose limitations to the timing of data
capture.

A fundamental problem has to do with variations in the extent and
density of the target species we are trying to identify. The majority of
studies attempting to detect tamarisk used study areas in which the invader
is densely populated in a relatively large area, creating an extensive,
homogeneous environment. As a result, imagery of the study areas contains
groups of adjacent ‘pure’ pixels known to represent tamarisk (Evangelista et
al. 2009). In the early stages of an infiltration or repopulation, tamarisk does
not exist in these large, dense clusters. Rather, it consists of smaller,
scattered specimens, often growing below the understory of larger trees.
The ability to detect these invasions or recurrences while still in their early
stages can give natural resource managers the opportunity to initiate
mitigation while the scope of the problem is still small, thereby minimizing
mitigation costs and reducing potential negative impacts to the affected
ecosystem.

The current characteristics and distribution of tamarisk at the San
Miguel Preserve represent an excellent example of an early stage tamarisk
re-population scenario. Due to its remoteness and size, the preserve is also
a location at which a remote sensing detection approach can lead to cost
savings. An effective, reliable remote sensing solution would have the
potential to reduce the frequency of time-consuming site visits. Such a
solution should also enhance the efficiency of field work by focusing
attention to specific locations within the preserve.
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Approach

Study Area

The study area is the riparian zone of Colorado's San Miguel River
within the boundaries of the San Miguel Preserve, a Colorado State Natural
Area. The Preserve, remotely situated in western Colorado, encompasses
approximately seven miles of the San Miguel River. Conveniently, State
Highway 141 parallels the river through the preserve, providing multiple
access points. The nearest city is Grand Junction, 100 miles to the north.
From a mapping standpoint, the study area is neatly contained within the
extent of a single USGS 1:24,000 map (Uravan, CO).

Figure 1. Study Area Location
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The San Miguel River is Colorado's only naturally functioning river
system, with no dams and minimal irrigation diversions to disrupt its natural
riverine processes. The river begins in the San Juan Mountains near Telluride
and flows approximately 90 miles to the northwest, where it joins the
Dolores River immediately north of the San Miguel Preserve study area.

The primary vegetation in the San Miguel Preserve’s riparian zone
consists of cottonwood, oak, willow, various shrubs, and grasses. Most
tamarisks are small and somewhat scattered, with only a few larger
occurrences.

Data

A fundamental element of any GIS-based analysis is its data. This
project relied on primary and secondary data to support the analyses.

Primary Data

Site data, itemized and described in Table 1, was collected over the
course of three site visits: October 7, 2012; April 21, 2013; and May 11,
2013. Data was recorded with GPS units, written notes, and photographs.
Data included tamarisk locations, identities of representative vegetation and
land cover categories, spatial extents for sample land cover categories, and
locations of useful landmarks. Notes and sketches were recorded on 1:1,500
scale digital orthophoto maps. The maps were created beforehand as
reference aids to evaluate and document representative land cover
categories. Photographs were taken to supplement written notes and GPS
data, and as evidence to confirm and document the verity of tamarisk
observations. Notes, maps, GPS data, and photos were subsequently used
as references to help visualize and digitize training samples during the
classification workflow.

Eight land cover categories were identified:

Water (San Miguel River)

Bare ground (dirt, rock, and asphalt)

Shadow (primarily shadows of large cottonwood trees)
Shrubs

Willow

Cottonwood

Oak

Tamarisk

N o W N
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Two handheld GPS receivers were used for data collection. One unit
was a consumer grade Garmin GPSMap 76CSx handheld. GPSMap 76
accuracy is typically in the five- to ten-meter range (Trimble 2005). The
second was a professional grade Trimble Juno SB unit. The Juno SB unit
supports post-processed differential correction (DGPS) and provides
accuracy between two and five meters (Trimble 2008).

Table 1. Primary Data

Description: Data Type: Method: Purpose:
Tamarisk Ground Truth Points & Polygons GPS Accuracy Assessment
Land Cover Ground Truth Polygons GPS Accuracy Assessment
Land Cover Training Polygons Digitized Classification
Samples
Study Area Riparian Zone Polygon Digitized Analysis & Basemap
Landmarks Points GPS Basemap

Secondary Data

Readily-available public domain data was collected via the internet
from a U.S. Government data portal, the Natural Resource Conservation
Service's Geospatial Data Gateway. A National Agricultural Imagery Program
(NAIP) digital orthophoto directly supported the classification. In Colorado,
the most current NAIP datasets were acquired in the summer of 2011. The
specific image thatincludes the study area was recorded on July 14, 2011.
Although most NAIP products are four-band color/infrared images, only
three-band versions are freely available.

Additional datasets were used as basemap layers, providing map
readability and context. Where possible, data was downloaded based on the
extent of the Uravan, Colorado quad. Datasets with larger extents were
clipped to the Uravan quad's extent. Datasets were projected to NAD83
UTM12N as needed. Pertinent information for secondary data is described in
Table 2.

Table 2. Secondary Data

Description: Data Type: Purpose:

NAIP Orthophoto 3-band natural color, 1m resolution Analysis
Acquired: July 14, 2011
11:31 am > 11:54 am MDT

National Land Cover Database NLCD 2006, 30m resolution Basem ap
Digital Raster Graphic USGS Topo Basem ap
TIGER Transportation Highways, roads Basemap
National Elevation Dataset 10m resolution Basem ap

National Hydrography Dataset Rivers, streams, water bodies Basem ap
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Workflow

Preprocessing

After acquisition, GPS data was downloaded and processed with each
device's corresponding software. All GPS data was captured and downloaded
in the WGS84 coordinate system.

Garmin data were downloaded to Garmin's Pathfinder Office )
application and reviewed for coherence. The data were then exported to
Microsoft Excel for preprocessing. Pathfinder Office displays a point location’s
latitude and longitude values as a single attribute called “Position”. A decimal
degree point, for example, appears as: N38.35480 W 108.71060. Excel was
used to split “Position” into two attribute fields (latitude and longitude),
remove the “N” and “W" characters from the fields, and convert west
longitude to a negative value. When preprocessing was completed, the Excel
worksheet was converted to an ESRI shapefile and projected to NAD83
UTM12N.

Trimble data was downloaded to Trimble's Pathfinder Office application
and reviewed for reasonability before preprocessing. In this case, the
processing applied DGPS corrections to the data. Following DGPS correction,
the Trimble data were exported to an ESRI shapefile and projected to NAD83
UTM12N.

Map Production

A series of study area maps were created in ArcGIS Desktop. A
location map shows the study area location, relative to the State of Colorado
(Figure 1). As a starting point for classification, a “Uravan Quad” map was
created, using the NAIP digital orthophoto as a base layer and displaying
points representing tamarisk and landmark locations. The 1:1,500 scale
maps used in the site survey were derived from the Uravan Quad map.

An explicit study area map was created for analysis and classification
purposes. The study area was limited to the San Miguel River’'s riparian
zone, clearly visible in the NAIP image. Using the distinct boundary of the
riparian zone, a polygon was digitized and used to clip the NAIP image,
creating the study area image used for classification. By focusing in the river
corridor, the processing demand and complexity of classification was
significantly reduced. Figure 2 depicts the study area, bounded in red, and
includes a sample of detailed feature annotations.

Comment[SRHL]: Ithink youmean some other
Garmin software.Garmin Tripand Waypoint
Managermaybe?

Justan FYIbutyoucould haveused DNR GPS and
moved the data directly to shapefile of geodb




MW ShrubsGraszecBare

Geodetic
PID JMD1ZZ  NADSE2
38341389 108702222

Figure 2. Riparian Zone Study Area
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Classification

Image classification is the process of defining information categories in
a raster image. Supervised classification uses training samples to create the
categories. Training samples are analyst-defined areas within the image that
are characteristic of the category they are intended to represent, based on
pixel values. The classification software “learns” to classify an image from
the training samples. For this project, training samples were digitized while
referencing the first subset of ground truth data (Lillesand, Kiefer, and
Chipman 2008).

ESRI ArcGIS Desktop 10.1 was used to perform the supervised
classification for both analyses. The Multivariate toolset, in the Spatial
Analyst extension, contains the tools for supervised and unsupervised
classification. Classification, a multi-step iterative workflow, is visually
depicted in figure 3.

= = Are band values normally distributed?
. Data Exploration and Preprocessing |

-

Are training sample values normally distributed?

T Representative of desired classes.
. Create Training Samples
Mo overlap between training samples.

M

Are training samples representative of desired classes?
Do training sample values overlap?

w

. Evaluate Training Samples

Iterative process with step 3.
When complete, proceed to step 5.

9

. Edit Training Samples

Create Signature File

Supervised
Classification
Workflow Iterative process with step 6.

o

. Examine Signature File || Are classes distinguishable?

~

. Edit Signature File
9 When complets, procesd to step 8.

-

. Apply Classification

Remove isolated pixels.
. Post-Classification Processing -~ Smooth class boundaries.
Remove small isplated regions.

0

Versus ground truth benchmarks.

e " Errors of omission,

10. Measure classification accuracy
Errars of commission.

Assess overall classification accuracy.

Figure 3. Supervised Classification Workflow
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ArcGIS uses the maximum likelihood classification algorithm. This
method assumes the image band and training sample data are normally
distributed, usually a reasonable one for spectral response distributions
(Lillesand, Kiefer, and Chipman 2008). Histograms and descriptive statistics
were examined for the NAIP image bands representing the study area
image. While not perfect, each band displayed a generally normal
distribution pattern.

Creating, evaluating, and editing the training samples is an iterative
process. The idea is to create samples comprised of pixels whose value
ranges are representative of the desired classification categories. It is
important to create samples with discrete value ranges that do notoverlap.
Overlapping values blur the distinctions between classes and reduce the
accuracy of the classification (Lillesand, Kiefer, and Chipman 2008). In the
end, 168 training sample polygons were digitized, with multiple polygons
representing each of the eight classes. Digitizing was done from two versions
of the study area NAIP three-band image. The natural color version was the
primary reference image. In addition, a principal components analysis was
applied to the natural color image, creating a secondary reference image in
which band correlation has been removed. The principal components image
enhanced the appearance of certain features and generally facilitated the
digitization process.

A subset of the information collected during site survey visits (referred
to as the training sample data) was the fundamental basis for digitizing the
training samples. A second subset of the site survey data (referred to as the
ground truth data) was set aside and used as a baseline during the post-
classification evaluation process. Training samples were sized to include
between 30 and 300 pixels, the optimal range for a three-band image
(Lillesand, Kiefer, and Chipman 2008).

After multiple iterations, training samples were finalized and the study
area image was classified. Finally, post-classification processing was
performed to eliminate isolated pixels and smooth class boundaries. The
nature of this analysis, attempting to detect small and somewhat isolated
tamarisks, dictated the use of small parameter values for these steps.
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Results

An accuracy assessment, comparing classification results to ground
truth observations, was the final stage of the workflow. The first step was a
visual examination of the classification map, with particular attention to
classified and ground truth tamarisk locations. In general, areas classified as
tamarisk were small and widely scattered across the entire study area. They
did not appear to have any spatial relationship to the ground truth tamarisk
locations. Figure 4 shows detail of the study area containing a number of
tamarisk, several of which are grouped together with a clear view to the sky.
The classification indicates only a few scattered specimens, consistent with
the classified distribution across the entire study area. An accurate
classification should have somewhat duplicated the ground truth
concentration in this area.

= Tamarisk Classified

@ Tamarisk Ground Truth

Figure 4. Tamarisk: Classification and Ground Truth
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An error matrix (Table 3) provides a more objective evaluation of
classification accuracy by comparing the relationship between ground truth
data and classification results for each classification category. Columns
represent ground truth pixel counts. Rows represent classification pixel
counts. Pixels that were correctly classified are along the diagonal where
ground truth and classification categories intersect (Lillesand, Kiefer, and
Chipman 2008).

Table 3. Classification Error Matrix and Statistics

Category: Ground Truth: Cl ification
Classification: Water | Bare Shadow Shrub | Willow |Cottonwood| Oak |[Tamarisk| Totals:

Water 16,183 0 0 28 1 11 17 0 16,240
Bare Ground 0] 2,573 o] 0] 0 381 397 0] 3,351
Shadow 0 0 899 0 0 854 139 0 1,892
Shrub 447 3 1 3,609 232 2,755 2,874 6 9,927
Willow 0 0 0 0 1,783 1,480 187 31 3,481
Cottonwood 0] [o] 5 0 492 13,547 5,472 209 19,725
Oak 0 0 0 0 ] 328 1,042 1 1,371
Tamarisk 0 [0] 0 [0] 0 10 49 18 77
Ground Truth
Totals: 16,630] 2,576 905 3,637 |2,508 19,366 10,177 265 56,064
Total Pixel Count: 56,064 Producer's Accuracy: User's Accuracy:
Correctly classified: | 39,654 Water 97.3% Water 99.7%
Overall accuracy: 70.7% Bare 99.9% Bare 76.8%
Kyt Value: 0.62 Shadow 99.3% Shadow 47.5%

Shrub 99.2% Shrub 36.4%

Willow 71.1% Willow 51.2%

Cottonwood| 70.0% Cottonwood | 68.7%

Oak 10.2% Oak 76.0%

Tamarisk 6.8% Tamarisk 23.4%

The overall classification accuracy, the quotient of correctly classified
pixels divided by total pixels, was 71% .

Producer’s accuracy estimates the probability that a known land cover
area is properly classified (Lillesand, Kiefer, and Chipman 2008). It is
calculated for each classification category. Producer’s accuracy for the water
class (97% ) is calculated by dividing the number of correctly classified water
pixels (16,183 - water diagonal) by the number of pixels known to be water
(16,630 - watercolumn total). This measurement is primarily meaningful to
the producer of the classification.

User's accuracy is more meaningful to prospective users of the
classification. It estimates the probability that a pixel labeled as a certain
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category really is that category (Lillesand, Kiefer, and Chipman 2008).
User's accuracy for water (99% ) is the quotient of the number of correctly
classified water pixels (16,183 - water diagonal) divided by the number of
pixels classified as water (16,240 - waterrow total).

The Kyar statistic compares the classification results to results that
would have been obtained by random chance. Its value ranges from zero to
one. A Kyar value of zero suggests that the classification results are no
better than a random assignment. A value of 0.62 indicates that the
classification is 62% better than one resulting from chance (Lillesand, Kiefer,
and Chipman 2008).

It is worth noting that error matrices and their resulting statistics
report on the classification accuracy of the ground truth data, not the
accuracy for the entire study area (Lillesand, Kiefer, and Chipman 2008).

Discussion and Recommendations

The methods used in this project, supervised classification of a three-
band one-meter image, yielded reasonable results for certain classification
categories: water, bare ground, cottonwood, and oak. It did not, however,
successfully detect the principal target, tamarisk.

Retrospectively, and as somewhat expected, the nature of tamarisk
distribution in the study area made it difficult to discern when using the
traditional remote sensing methods and data employed in this study.

Due to its limited and scattered distribution across the study area, the
number and size of tamarisk training samples was limited (265 pixels). In
spite of numerous iterations through the training sample development and
testing process and several unsupervised classifications, the spectral
distributions of tamarisk training samples continued to overlap with other
categories. Classification is ineffective when these distributions overlap -
there is no bargaining with statistics. Figure 4 shows the vegetation class
histograms and overlaps: yellow is shrub, bright green is willow, olive is
cottonwood, green is oak, and red is tamarisk.
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Figure 4. Training Sample Histograms - Vegetation Classes

A second factor potentially impacting the tamarisk classification
accuracy relates to the time difference between the classified image and the
data that was collected for training samples and ground truth. The NAIP
image was acquired on July 14, 2011, almost two years before most of the
onsite data gathering took place. Considering that most tamarisks located in
the recent site surveys were young, small plants, it is reasonable to assume
that they would have been smaller, or nonexistent, in 2011. The “2011 size”
of the larger tamarisks is difficult to estimate. @olorado's next appearance
on the NAIP schedule is in 2014. )

Looking forward, it is apparent that a successful solution will require
advanced methods combined with data providing greater spatial and spectral
resolution. One goal of the project was to identify, through the literature

Comment[SRH2]: Itwouldbe interesting to
time field data collection with collection of aerial
photography.Thenallyouhavetodoiswaitfor

release ofthe imagery.
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review and by working through the analysis and classification, ideas for new
and different methods and data. That goal has been successfully achieved.

Journal articles revealed a variety of analysis techniques and datasets
that have been used to detect invasive plants. Because the techniques are
discussed in the literature review section, they are summarized here in bullet
form:

o Texture analysis (Ge et al. 2006)

o Evapotranspiration (Nagler etal. 2009, Dennison et al. 2009)

o Maximum Entropy Model: Maxtent (Evangelista et al. 2009)

o SVMs using hyperspectral data (Fletcher, Everitt, and Wang 2011)

o Sub pixel mapping (Silvan-Cardenas and Wang 2010)

o Comparison of multiple classification algorithms (Wang et al. 2013)

o+ OBIA - Object Based Image Analysis using image data and LiDAR
(ASPRS Seminar 2012)

This project represents the foundation from which I will continue
researching remote sensing methods and data that can reliably identify
invasive plant species, especially in their early stages of infestation.

Although this project’s specific approach was unsuccessful, | view the project
as agreat success - made so by the gained knowledge and experience. This
is the goal of research.

0 Bill, nice work overall. While I'm reading | imagine floating down
the river. Maybe someday. It appears thatyou have
established a firm foundation for further research. Nothing is as
easy as we would like it to be and we don't have magic bullet to
collect and analyze data. Will you carry on with this work? |
hope so.

o Ithas been a privilege working with you over the years.
Congratulations on completing the program!
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