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Local finiteness and automorphism groups
of low complexity subshifts
RONNIE PAVLOV and SCOTT SCHMIEDING

Department of Mathematics, University of Denver,
2390 S. York St., Denver, CO 80208, USA

(e-mail: rpavlov@du.edu, scott.schmieding@du.edu)

(Received 29 July 2021 and accepted in revised form 11 January 2022)

Abstract. We prove that for any transitive subshift X with word complexity function cn(X),
if lim inf(log(cn(X)/n)/(log log log n)) = 0, then the quotient group Aut(X, σ)/〈σ 〉 of
the automorphism group of X by the subgroup generated by the shift σ is locally finite.
We prove that significantly weaker upper bounds on cn(X) imply the same conclusion if
the gap conjecture from geometric group theory is true. Our proofs rely on a general upper
bound for the number of automorphisms of X of range n in terms of word complexity,
which may be of independent interest. As an application, we are also able to prove that
for any subshift X, if cn(X)/n2(log n)−1 → 0, then Aut(X, σ) is amenable, improving a
result of Cyr and Kra. In the opposite direction, we show that for any countable infinite
locally finite group G and any unbounded increasing f : N → N, there exists a minimal
subshift X with Aut(X, σ)/〈σ 〉 isomorphic to G and cn(X)/nf (n) → 0.

Key words: symbolic dynamics, word complexity, automorphism groups, locally finite
groups
2020 Mathematics Subject Classification: 37B10 (Primary); 20F65 (Secondary)

1. Introduction
This work deals with symbolic dynamics, which is the study of symbolically defined
topological dynamical systems called subshifts. A subshift is simply a closed and
shift-invariant subset of AZ for some finite set A. One way of measuring the size of a
subshift X is via its word complexity function cn(X); cn(X) is the number of different
n-letter strings (or words) appearing within points of X.

Another sense of ‘complexity’ for a subshift comes from its group of automor-
phisms; an automorphism of a subshift X is a homeomorphism from X to itself which
commutes with the shift map σ : X → X defined by (σx)(n) = x(n + 1). The set of
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2 R. Pavlov and S. Schmieding

automorphisms Aut(X, σ) has an obvious group structure from composition, and turns
out to always be countable. By definition, σ itself is always in Aut(X, σ), and 〈σ 〉, the
subgroup generated by σ , is always a normal subgroup of Aut(X, σ). (See §2 for more
details.)

In this paper, we continue a line of research which has been fruitfully developed in many
recent works [3–8, 16, 17], namely: in what sense must subshifts with low complexity
functions have automorphism groups which are ‘small’ or restricted? Though we do
not claim it to be complete, we summarize some recent results in this area. Some of
the following results include the hypothesis of transitivity/minimality of X; we postpone
definitions to §2.1.
(1) X minimal and lim inf(cn(X)/n) < ∞ �⇒ Aut(X, σ)/〈σ 〉 finite [3, 7].
(2) X transitive and lim sup(cn(X)/n) < ∞ �⇒ Aut(X, σ)/〈σ 〉 finite [3].
(3) lim sup(cn(X)/n) < ∞ �⇒ all f.g. subgroups of Aut(X, σ) are virtually Zd [3].
(4) cn(X)/n2(log n)−2 → 0 �⇒ Aut(X, σ) amenable [6].
(5) X transitive and lim inf(cn(X)/n2) = 0 �⇒ Aut(X, σ)/〈σ 〉 periodic [5].
(6) lim inf(cn(X)/n2) = 0 �⇒ Aut(X, σ) does not contain a free semigroup on two

generators [6].
(7) X minimal and cn(X)/n3 → 0 �⇒ every f.g. torsion-free subgroup of Aut(X, σ) is

virtually abelian [4].
(8) X minimal and there exists d ∈ N with cn(X)/nd → 0 �⇒ Aut(X, σ) amenable and

every f.g. torsion-free subgroup of Aut(X, σ) is virtually nilpotent [4].
(9) X minimal and there exists β < 1/2 with log cn(X)/nβ → 0 �⇒ Aut(X, σ)

amenable [4].
Here, we wish to add some more context to the transition from linear to slightly

greater complexity function; to our knowledge, up to now, there have been no complexity
thresholds used between the linear one for items (1)–(3) above and o(n2/ log2 n) from
item (4). It is reasonable to expect that complexity extremely close to linear should place
restrictions on the group structure of Aut(X, σ)/〈σ 〉 which are stronger than periodicity.
Our first main result shows that for transitive subshifts, low enough complexity in fact
implies that Aut(X, σ)/〈σ 〉 is locally finite.

THEOREM 1.1. If X is an infinite transitive subshift with lim inf(log(cn(X)/n)/

(log log log n)) = 0, then Aut(X, σ)/〈σ 〉 is locally finite (and countable).

We briefly remark that local finiteness is a strictly stronger property than periodicity
(for instance, the Tarski monster groups and Grigorchuk group are periodic but not locally
finite), and so this result has a strictly stronger complexity hypothesis and conclusion than
item (5) above.

To prove Theorem 1.1, we first achieve some estimates on growth of number of
automorphisms as a function of range by using left- and right-special words (Corollary
3.1). We then use a theorem of Shalom and Tao (Theorem 2.26) to show that our growth is
so slow as to force finitely generated subgroups of Aut(X, σ)/〈σ 〉 to be virtually nilpotent.
Finally, we combine this with the fact that Aut(X, σ)/〈σ 〉 is known to be periodic under
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Local finiteness and automorphism groups of low complexity subshifts 3

the hypotheses of Theorem 1.1 due to item (5) above; thus all finitely generated subgroups
of Aut(X, σ)/〈σ 〉 are virtually nilpotent and periodic, therefore finite.

There is a well-known conjecture in geometric group theory called the gap conjecture
(see [9]), which states that every finitely generated group with growth rate eo(

√
n) (see §2.3

for more details) has polynomial growth. The gap conjecture is known to hold for some
classes of groups [9, 10, 19, 20], but is still open in general.

Variants of our first main result show that Aut(X, σ)/〈σ 〉 is locally finite under much
weaker hypotheses if the gap conjecture is true.

THEOREM 1.2. If X is a transitive subshift with lim inf(cn(X)/n1.25(log n)−0.5) = 0 and
the gap conjecture is true, then Aut(X, σ)/〈σ 〉 is locally finite (and countable).

THEOREM 1.3. If X is a transitive subshift with cn(X)/n1.5(log n)−1 → 0 and the gap
conjecture is true, then Aut(X, σ)/〈σ 〉 is locally finite (and countable).

Finally, our techniques allow for a slight improvement to the theorem of Cyr and Kra
referenced as item (4) above, where they proved that if (X, σ) is any subshift satisfying
cn(X) = o(n2/(log2 n)), then Aut(X, σ) is amenable.

THEOREM 1.4. If X is a subshift with cn(X)/n2(log n)−1 → 0, then Aut(X, σ) is
amenable (and countable).

Our final result is in the opposite direction, showing that no superlinear complexity
threshold can impose stronger restrictions on Aut(X, σ)/〈σ 〉 than being locally finite (and
countable).

THEOREM 1.5. For any countable locally finite group G and any unbounded
increasing f : N → R, there exists a minimal subshift X with Aut(X, σ)/〈σ 〉 = G and
cn(X)/nf (n) → 0.

In particular, Theorem 1.5 provides examples of minimal subshifts having arbitrarily
slow but superlinear complexity function whose automorphism group is not virtually
abelian, demonstrating that the words ‘finitely generated torsion-free’ cannot be omitted in
item (7) above. For example, if one applies Theorem 1.5 in the case where G is a countably
infinite locally finite simple group, then in this case, Aut(X, σ) can not be virtually
abelian.

Remark 1.6. Theorems 1.1 and 1.5 together completely characterize the possible
Aut(X, σ)/〈σ 〉 for transitive subshifts X with growth n(log log n)o(1) along a subsequence:
they are exactly the locally finite groups.

Remark 1.7. We would like to mention [1], where they prove several results similar in spirit
to Theorem 1.5, one of which realizes arbitrary Choquet simplices of invariant measures
for (minimal) Toeplitz subshifts of arbitrarily low superlinear complexity. In addition to
providing a class of examples satisfying our complexity assumptions in Theorems 1.1–1.4,
this also shows that there are subshifts with arbitrary (for instance very large) Choquet
simplices and Aut(X, σ)/〈σ 〉 locally finite.
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4 R. Pavlov and S. Schmieding

2. Definitions/preliminaries
2.1. Symbolic dynamics.

Definition 2.1. For any finite alphabet A, the full shift over A is the set AZ, which is
viewed as a compact topological space with the (discrete) product topology.

Definition 2.2. A word overA is an element w ∈ An for some n ∈ N, which is referred to
as its length and denoted by |w|. We say that a word v is a subword of a word or biinfinite
sequence x if there exists i so that x([i, i + |w|)) = w. (Here and throughout, all intervals
are assumed to be intersected with Z, e.g. [2, 5) represents {2, 3, 4}. For such an interval I,
we view an element ofAI as a word of length |I | by the obvious identification.)

The set of words has an obvious binary operation of concatenation, and whenever we
write expressions like vw or w3, it is with respect to concatenation.

Definition 2.3. The left shift, denoted by σ , is the self-map of the full shift defined by
(σx)(n) = x(n + 1) for x ∈ AZ and n ∈ Z.

Definition 2.4. A subshift overA is a topological dynamical system (X, σ), where X is a
closed subset of the full shiftAZ

d
(endowed with the subspace (product) topology) which

is invariant under σ .

Since there is never ambiguity about the dynamics on X, in this work, we refer to a
subshift simply by the space X for ease of notation.

Definition 2.5. A word, one-sided infinite sequence, or bi-infinite sequence x over A is
periodic with period p if x(n) = x(n + p) for all n ∈ Z, where both x(n) and x(n + p)

are defined.

Definition 2.6. The language of a subshift X, denoted by L(X), is the set of all subwords
of sequences in X. For all n, we write Ln(X) = L(X) ∩An for the set of words of length
n in L(X).

Definition 2.7. A word w is right-special for a subshift X if there exist a �= b ∈ A for
which wa, wb ∈ L(X). Similarly, w is left-special for X if there exist c �= d ∈ A for which
cw, dw ∈ L(X). The sets of n-letter right-special and left-special words for X are denoted
by RSn(X) and LSn(X) respectively.

Definition 2.8. The word complexity sequence of a subshift X is defined by cn(X) :=
|Ln(X)|.

The following lemma is routine, but we include a proof for completeness.

LEMMA 2.9. For any subshift X and n ∈ N, |LSn(X)| and |RSn(X)| are less than or equal
to cn+1(X) − cn(X).

Proof. We give only the proof for |RSn(X)|, as the other is trivially similar. Fix any X and
n, and consider the map f : Ln+1(X) → Ln(X) removing the final letter of an n + 1-letter
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Local finiteness and automorphism groups of low complexity subshifts 5

word. This map is surjective, and it is clear from definition that w ∈ Ln(X) is right-special
if and only if its f -preimage has cardinality greater than 1. From this, it is immediate that
|RSn(X)| ≤ cn+1(X) − cn(X).

Definition 2.10. A subshift X is minimal if for all w ∈ L(X) and x ∈ X, w is a subword
of x.

Definition 2.11. A subshift X is (topologically) transitive if there exists x ∈ X so that
X = {σnx : n ∈ Z}.

We briefly note that an infinite transitive subshift X cannot have isolated periodic points;
if X is transitive, then there exists x ∈ X for which X = {σnx : n ∈ Z}. If p ∈ X were
isolated and periodic, then p ∈ {σnx}, implying that X = {σnp} and that X is finite by
periodicity of p, a contradiction.

Definition 2.12. A (topological) factor map from one subshift X to another subshift X′ is
a surjective continuous function φ : X → X′ which commutes with the shift action (that
is φ ◦ σ = σ ◦ φ).

By the classical Curtis–Hedlund–Lyndon theorem, factor maps on subshifts have a very
specific form.

THEOREM 2.13. For any factor map φ : X → X′, there exists N and � : A2N+1
X → AX′

so that for all x ∈ X and n ∈ N, (φx)(n) = �(x([n − N , n + N])).

Definition 2.14. We say that a factor map φ has range N and has inducing block map � if
it satisfies the conclusion of Theorem 2.13.

We remark that though every factor φ has some range N and inducing block map �,
these need not be unique.

Definition 2.15. An automorphism of a subshift X is a factor map from X to itself which
is bijective.

If φ is an automorphism of X with inducing block map � : A2N+1
X → A, then for

every word w ∈ Ln(X) with n ≥ 2N + 1, we can let � act on w as in the definition
of φ. Formally, let �(w) be the word of length n − 2N defined by (�(w))(i) = �(w([i −
N , i + N])) for N < i ≤ n − N .

We remark that ranges of automorphisms are additive under composition. Indeed, by
definition, if φ has range N and inducing map � and φ′ has range N ′ and inducing map
�′, then φ ◦ φ′ has range N + N ′ and inducing map � ◦ �′ (where �′ acts on words in
A2N+2N ′+1

X , as defined above.)

2.2. Group theory. We here summarize some basic definitions from group theory. We
will not have need of any advanced group theory in this paper, so we do not go into great
detail. For more information, see [15].

While we often make it explicit in the text, throughout we will assume groups to be
countable and discrete.
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6 R. Pavlov and S. Schmieding

Clearly, for any subshift X, the set of automorphisms of X forms a group under the
operation of composition, and we denote this group by Aut(X, σ). Since σ is itself
in Aut(X, σ) and all automorphisms commute with σ by definition, the subgroup of
Aut(X, σ) generated by σ is always normal in Aut(X, σ), and so we may refer to
Aut(X, σ)/〈σ 〉. We refer to the set (generally not a group) of automorphisms with range n
by Autn(X, σ).

Definition 2.16. For a subset S of a group G, we denote by 〈S〉 the subgroup of G generated
by S. A group G is said to be generated by S ⊂ G if 〈S〉 = G; such a set S is then said to
be a generating subset for G. A group G is finitely generated if there exists a finite S ⊂ G

for which G = 〈S〉. We call a generating subset S ⊂ G symmetric if S = S−1.

Definition 2.17. A group G is called locally finite if every finitely generated subgroup of
G is finite.

Any countable and locally finite group may be written as a countable increasing union
of finite subgroups.

Definition 2.18. A group G is called periodic if every element in G has finite order.

Definition 2.19. A countable group G is amenable if there exists a sequence Fi ⊂ G of
finite subsets of G such that, for every g ∈ G,

lim
i→∞

|Fi�gFi |
|Fi | = 0.

Definition 2.20. A group G is nilpotent if there exists a sequence of subgroups

{id} = H0 ⊂ · · · ⊂ Hk−1 ⊂ Hk = G

such that each Hi is normal in G and Hi+1/Hi is contained in the center of G/Hi for all i.
A group G is virtually nilpotent if it contains a finite index nilpotent subgroup.

As noted in the introduction, there has been significant recent work on restrictions on
Aut(X, σ) imposed by the word complexity function of X. We mention one such result
here which we will need in our proofs.

THEOREM 2.21. [5] If X is a transitive subshift and cn(X)/n2 → 0, then Aut(X, σ)/〈σ 〉
is a periodic group.

Remark 2.22. Theorem 2.21 is not necessarily true if one drops the transitivity assumption
on the subshift, even when the complexity function grows linearly (here, by a complexity
function growing linearly, we mean it is bounded above by some linear function). For
example, if (X1, σ1) and (X2, σ2) are two disjoint infinite subshifts whose complexity
functions grow linearly and (Y , σY ) is the union of (X1, σ1) and (X2, σ2), then the
complexity function for (Y , σY ) also grows linearly. However, Aut(Y , σY )/〈σY 〉 is not a
periodic group: we may define an automorphism φ of Y which acts as σ on X1 and the
identity on X2, and then the image of φ under the map Aut(Y , σY ) → Aut(Y , σY )/〈σY 〉 is
of infinite order.
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Local finiteness and automorphism groups of low complexity subshifts 7

2.3. Geometric group theory. We summarize here some basic results from geometric
group theory that we will need. For a more detailed introduction to this area, see [13].

Definition 2.23. For any group G generated by a finite symmetric set S and any n ∈ N,
Bn(S) denotes the set of ‘words of length at most n over S,’ that is

Bn(S) = {g ∈ G | g = g1 · · · gk for some k ≤ n and gi ∈ S}.
Definition 2.24. A finitely generated group G has polynomial growth if there exists a finite
symmetric generating set S and constants C and d so that |Bn(S)| < Cnd for all n.

It is well known that all virtually nilpotent groups have polynomial growth. A celebrated
theorem of Gromov shows that the converse is also true.

THEOREM 2.25. [11] If G is a finitely generated group with polynomial growth, then G is
virtually nilpotent.

The following theorem of Shalom and Tao shows that there is an explicit superpolyno-
mial rate below which growth rates must be polynomial.

THEOREM 2.26. [18, Corollary 1.10] There exists a constant c > 0 so that if G is a group
generated by a finite symmetric subset S, and there exists N > c−1 for which |BN(S)| ≤
Nc(log log N)c , then G is virtually nilpotent.

Although Theorem 2.26 is the first result that gives an explicit ‘gap’ in growth rates for
finitely generated groups (that is there is no finitely generated group with growth greater
than polynomial but lower than Nc(log log n)c ), it is conjectured that this gap is much larger.
The gap conjecture [9] states that if a group has finite symmetric generating set S and
|Bn(S)| = eo(

√
n), then in fact G has polynomial growth (and is therefore virtually nilpotent

by Gromov’s theorem). The gap conjecture is still open, but it is known to hold for some
classes of groups [9, 10, 19, 20].

Definition 2.27. A finitely generated group G has subexponential growth if there exists a
finite symmetric generating set S so that log |Bn(S)|/n → 0.

It is well known that finitely generated groups of subexponential growth must be
amenable (for instance, see [13, Corollary 9.2.4]).

3. Aut(X, σ) in the low complexity setting
In this section, we prove Theorems 1.1–1.4. The main tool for Theorems 1.1–1.3 is Theorem
2.26, combined with the following lemma, which bounds the number of automorphisms
of a given range.

COROLLARY 3.1. For every infinite transitive subshift X and every n,

|Aut�(n−1)/2�(X, σ)| ≤ (c1+cn(X)(X))2|A|(cn+1(X)−cn(X)).

This is actually a corollary of the following slightly more general theorem, which we
will need for Theorem 1.4.
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8 R. Pavlov and S. Schmieding

For any subshift X, define Aut(FIP)(X, σ) ⊂ Aut(X, σ) to be the subgroup of automor-
phisms of X which fix all isolated periodic points in X. (If X has no isolated periodic points,
then Aut(FIP)(X, σ) := Aut(X, σ).) We denote the set of such automorphisms which have
range n by Aut(FIP)

n (X, σ).

THEOREM 3.2. Let X be a subshift. Then for every n,

|Aut(FIP)
�(n−1)/2�(X, σ)| ≤ (c1+cn(X)(X))2|A|(cn+1(X)−cn(X)).

Proof. For any subshift X and any n, define an n-right branch word to be a word in
L(X) beginning with a word in RSn(X), containing no other word in RSn(X), containing
no repeated n-letter subwords, and which is maximal with respect to subword inclusion
subject to these constraints. Similarly, define an n-left branch word to be a word in L(X)

ending with a word in LSn(X), containing no other word in LSn(X), with no repeated
n-letter subwords, and which is maximal with respect to subword inclusion subject to these
constraints. An n-branch word is any word that is either an n-left or n-right branch word.

The proof relies on the following three facts about n-branch words.
(1) For every n, the number of n-branch words is less than or equal to the quantity

2|A|(cn+1(X) − cn(X)).
(2) For every n, each n-branch word has length less than n + cn(X).
(3) Suppose φ1 and φ2 are automorphisms with range �(n − 1)/2� induced by block

codes �1, �2 respectively such that φ1, φ2 fix all isolated periodic points, and
�1(w) = �2(w) for all n-branch words w. Then φ1 = φ2.

Proof of fact (1). Each n-right branch word w is determined completely by its initial word
in RSn(X) and the following letter; then, since w contains no other words in RSn(X),
each n-letter subword determines the next letter, meaning that all of w is forced. There
are obviously at most |A||RSn(X)| choices for this initial word and following letter, which
is less than or equal to |A|(cn+1(X) − cn(X)) by Lemma 2.9. A similar bound holds for
n-left branch words, implying fact (1).

Proof of fact (2). Every n-branch word contains no repeated n-letter subwords, and so
contains at most cn(X)n-letter subwords. This clearly implies that such a word has length
less than n + cn(X).

Proof of fact (3). We claim that every w ∈ Ln(X) which is not the subword of any n-branch
word must be a subword of an isolated periodic point of X. To see this, assume that w ∈
Ln(X) is not a subword of any n-branch word.

Choose any x ∈ X with x([0, n)) = w. Define m to be the minimal integer greater than
n so that there exists n ≤ i < m for which x([i − n, i)) = x([m − n, m)), that is the first
place, when moving to the right from x(0), where an n-letter word appears for the second
time. Choose such an i, and suppose i > n. Then x(i − n − 1) �= x(m − n − 1), since
otherwise, x([i − n − 1, i − 1)) = x([m − n − 1, m − 1)), violating minimality of m.
This would imply that x([i − n, i)) is a left-special word, and by minimality of m, that
x([0, i)) is a word ending with a word in LSn(X) with no repeated n-letter subwords. We
could then extend x([0, i)) to the left to create a maximal such word x([j , i)), which is an
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n-left branch word by definition. This n-left branch word would contain w = x([0, n)) as
a subword, a contradiction.

Therefore i = n, that is x([0, m)) begins and ends with w. If x([0, m)) contained
any words in LSn(X), then just as before we could construct an n-left branch word
containing w, a contradiction. We have then shown that x([0, m)) begins and ends
with w and contains no subwords in LSn(X). Therefore, the right-most occurrence
of w in x([0, m)) forces letters to the left until the left-most occurrence of w, and this
continues indefinitely. In other words, every y ∈ X with y([0, m)) = x([0, m)) in fact has
y((−∞, m)) periodic with period m − n.

A similar argument shows that x([0, m)) cannot contain any words in RSn(X) either; if
j ≥ 0 were minimal so that x([j , m)) begins with a word in RSn(X), then x([j , m)) could
be extended to the right to create an n-right branch word containing x([m − n, m)) = w,
a contradiction. So x([0, m)) contains no words in RSn(X), meaning that the left-most
occurrence of w forces letters to the right until the right-most occurrence. It follows that if
y ∈ X satisfies y([0, m)) = x([0, m)), then y([0, ∞)) is periodic with period m − n.

Altogether, what we have shown is that every y ∈ X with y([0, m)) = x([0, m)) is
a periodic point with period m − n coming from biinfinite repetition of x([0, m − n)).
Therefore, x is an isolated periodic point, verifying the claim that every w ∈ Ln(X) which
is not the subword of any n-branch word must be a subword of an isolated periodic point.

Now, choose any φ1, φ2 ∈ Aut(FIP)(X, σ) with range �(n − 1)/2� and inducing block
maps �1 and �2, and assume that �1(v) = �2(v) for all n-branch words v. Define n′ =
2�(n − 1)/2� + 1, so that �1 and �2 have domain An′

; clearly n′ ≤ n. Since φ1 and φ2

fix isolated periodic points, for all n′-letter subwords u of such points, �1(u) = �2(u).
Choose any w ∈ Ln′(X) which is not a subword of such a point; since n′ ≤ n, by the above,
it is a subword of an n-branch word v. Now, since �1(v) = �2(v) and w is a subword
of v, �1(w) = �2(w). We now know that �1 and �2 agree on all words in Ln′(X), so
�1 = �2, meaning that φ1 = φ2.

By fact (3), the number of automorphisms of range �(n − 1)/2� which fix isolated
periodic points is bounded from above by the number of possible choices for �(w) for
all n-branch words w. Each �(w) is determined by the length of w (which is independent
of φ) and some word of length |w| − 2�(n − 1)/2� ≤ |w| − n + 2. By fact (2), the number
of such words is less than or equal to c1+cn(X)(X). By fact (1), the number of w is bounded
by 2|A|(cn+1(X) − cn(X)), completing the proof.

Corollary 3.1 now follows immediately since an infinite transitive subshift X has no
isolated points.

We will also need the following technical lemma, which will allow us to use low
complexity along a subsequence to prove the existence of a (possibly sparser) subsequence
where both complexity and first difference of complexity are small.

LEMMA 3.3. For any sequences of positive reals f (n) and g(n) where

lim inf f (n) −
n∑

i=1

g(i) = −∞,
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there exist infinitely many values of n where f (n) <
∑n

i=1 g(i) and f (n) − f (n − 1) <

g(n).

Proof. We first note that the hypothesis immediately implies that there exist infinitely
many n where f (n) − f (n − 1) < g(n); if not, then there would be N where f (n) −
f (n − 1) ≥ g(n) for all n > N , meaning that

f (n) = f (N) +
n∑

i=N+1

f (i) − f (i − 1) ≥ (f (N) −
N∑

i=1

g(i)) +
n∑

i=1

g(i) for all n > N ,

a contradiction to the assumption.
We now break into two cases. First, suppose that there exists N so that f (n) <∑n
i=1 g(i) for n > N . Combining with the previous paragraph then yields the conclusion

of the lemma.
Now, suppose that there exist infinitely many n where f (n) ≥ ∑n

i=1 g(i). The hypoth-
esis of the lemma implies that there are also infinitely many n where f (n) <

∑n
i=1 g(i).

This implies that there are infinitely many n where f (n − 1) ≥ ∑n−1
i=1 g(i) and f (n) <∑n

i=1 g(i) (that is the sign of the inequality ‘switches infinitely many times’). However,
for any such n,

f (n) − f (n − 1) <

n∑
i=1

g(i) −
n−1∑
i=1

g(i) = g(n),

completing the proof.

We are now prepared to prove Theorems 1.1–1.4. We briefly note that if X is finite, then
Aut(X, σ) and Aut(X, σ)/〈σ 〉 are finite, and the conclusions of these theorems trivially
hold. We therefore treat only the case where X is infinite in all proofs.

Proof of Theorem 1.1. Choose any infinite transitive subshift X with lim inf(log(cn(X)/n)/

(log log log n)) = 0, and take ε > 0 where 5ε is less than the constant c from Theorem
2.26. We first claim that

lim inf cn(X) −
n∑

i=2

�(log log i)ε� = −∞. (1)

To see this, by assumption, there are infinitely many n where cn(X) < n(log log n)ε/2,
which is less than (n/3)(log log(n/2))ε for large enough n. Also,

∑n
i=2�(log log i)ε� ≥∑n

i=�n/2��(log log i)ε� ≥ (n/2)�(log log(n/2))ε�, and so for infinitely many n, cn(X) −∑n
i=2�(log log i)ε� is less than

(n/3)(log log(n/2))ε − (n/2)�(log log(n/2))ε� ≤ n/2 − (n/6)(log log(n/2))ε ,

which approaches −∞, verifying equation (1). We now apply Lemma 3.3, and see that
there exist infinitely many n for which

cn(X) <

n∑
i=2

�(log log i)ε� < n�(log log n)ε� and cn(X) − cn−1(X) < �(log log n)ε�.

(2)
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Now, by Corollary 3.1, for any n satisfying equation (2), |Aut�(n−1)/2�(X, σ)| is bounded
from above by

(c1+cn(X)(X))2|A|(cn+1(X)−cn(X)) ≤ (cn�(log log n)ε�(X))2|A|(log log n)ε .

By subadditivity,

cn�(log log n)ε�(X) ≤ cn(X)�(log log n)ε� < ((n log log n)ε)(log log n)ε

≤ (n2)(log log n)ε = n2(log log n)ε .

Therefore,

|Aut�(n−1)/2�(X, σ)| ≤ (n2(log log n)ε )2|A|(log log n)ε = n4|A|(log log n)2ε

(3)

holds for any of the (infinitely many) n satisfying equation (2).
Now, choose any finite subset S of Aut(X, σ)/〈σ 〉 and let S ′ be a finite set in Aut(X, σ)

whose image under the quotient map Aut(X, σ) → Aut(X, σ)/〈σ 〉 is the set S. Suppose
that k is large enough that all automorphisms in S ′ and their inverses have range k. Then by
additivity of ranges of automorphisms under composition, any composition of m elements
of S′ is an automorphism of range km.

Then for any n for which equation (2) holds, equation (3) implies that the number
B�(n−1)/2�/k(S

′) of compositions of at most �(n − 1)/2�/k elements of S ′ satisfies

|B�(n−1)/2�/k(S
′)| ≤ n4|A|(log log n)2ε

.

Since equation (2) holds for infinitely many n, we may choose such an n greater than ee3
,

9k2, e2e(8|A|/5ε)ε
−1

, and c−2 (here c is as in Theorem 2.26). Then �(n − 1)/2�/k > n/3k >√
n, and log log

√
n = log log n − log 2 >

√
log log n since log log n > 3, so

|B√
n(S

′)| ≤ n4|A|(log log n)2ε ≤ √
n

8|A|(log log
√

n)4ε

.

Since n > e2e(8|A|/5ε)ε
−1

, then 8|A| < 5ε(log log
√

n)ε , and so

|B√
n(S

′)| <
√

n
5ε(log log

√
n)5ε

.

Finally, since
√

n > c−1, by Theorem 2.26, 〈S′〉 is virtually nilpotent.
Therefore, 〈S〉 = 〈S′〉/〈σ 〉 is a quotient group of a virtually nilpotent group and so

itself virtually nilpotent. Let H be a finite index nilpotent subgroup of 〈S〉; it is finitely
generated as it is a finite index subgroup of a finitely generated group. By Theorem 2.21,
Aut(X, σ)/〈σ 〉 is periodic, so H is also periodic. Altogether we have that H is finitely
generated, periodic, and nilpotent, and therefore finite, implying that 〈S〉 is finite as
well. Since S was an arbitrary finite subset of Aut(X, σ)/〈σ 〉, we have shown that
Aut(X, σ)/〈σ 〉 is locally finite.

Proof of Theorem 1.2. Assume that the gap conjecture holds. We change almost nothing
about the proof of Theorem 1.1, but must simply change our estimates for the usage of
Lemma 3.3.
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Choose any infinite transitive subshift X where lim inf(cn(X)/n1.25(log n)−0.5) = 0.
We first claim that for any ε > 0,

lim inf cn(X) −
n∑

i=2

�εi0.25(log i)−0.5� = −∞. (4)

To see this, note that by assumption, there are infinitely many n where cn(X) <

(ε/3)n1.25(log n)−0.5. Also,
∑n

i=2�εi0.25(log i)−0.5� ≥ ∑n
i=�n/2��εi0.25(log i)−0.5� ≥

(n/2)�ε(n/2)0.25(log n)−0.5� ≥ (ε/21.25)n1.25(log n)−0.5 − n/2. So, for infinitely many n,

cn(X) −
n∑

i=2

�εi0.25(log i)−0.5� <
ε

3
n1.25(log(n/2))−0.5 − ε

21.25 n1.25(log(n/2))−0.5 + n

2
.

Since this last term approaches −∞, we have verified equation (4). We now apply Lemma
3.3, and see that there exist infinitely many n for which

cn(X) <

n∑
i=2

�εi0.25(log i)−0.5� ≤ n�εn0.25(log n)−0.5�
and cn(X) − cn−1(X) < �εn0.25(log n)−0.5�.

(5)

Now, by Corollary 3.1, if n satisfies equation (5), |Aut�(n−1)/2�(X, σ)| is bounded from
above by

(c1+cn(X)(X))2|A|(cn+1(X)−cn(X)) ≤ (cn�εn0.25(log n)−0.5�(X))2|A|εn0.25(log n)−0.5
.

By subadditivity,

cn�εn0.25(log n)−0.5�(X) ≤ cn(X)�εn0.25(log n)−0.5�

≤ (n1.25)εn
0.25(log n)−0.5

< n2εn0.25(log n)−0.5
.

Therefore, |Aut�(n−1)/2�(X, σ)| is bounded from above by

(n2εn0.25(log n)−0.5
)2|A|εn0.25(log n)−0.5 = n4|A|ε2n0.5(log n)−1 = e4|A|ε2√n.

Now, exactly as in the end of Theorem 1.1, any finitely generated subgroup H of
Aut(X, σ)/〈σ 〉 has growth less than e4|A|ε2√n. Since ε > 0 was arbitrary, by the gap
conjecture, H must be virtually nilpotent. Exactly as in the proof of Theorem 1.1, this
implies that Aut(X, σ)/〈σ 〉 is locally finite.

Proof of Theorem 1.3. Assume that the gap conjecture holds, and choose any infinite
transitive subshift X where cn(X)/n1.5(log n)−1 → 0. We first claim that for any ε > 0,

lim inf cn(X) −
n∑

i=2

�εi0.5(log i)−1� = −∞. (6)

Again, by assumption, there are infinitely many n where cn(X) < (ε/3)n1.5(log n)−1.
Also,

∑n
i=2�εi0.5(log i)−1� ≥ ∑n

i=�n/2��εi0.5(log i)−1� ≥ (n/2)�ε(n/2)0.5(log n)−1� ≥
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(ε/21.5)n1.5(log n)−1 −n/2. So, for infinitely many n,

cn(X) −
n∑

i=2

ε
√

n(log n)−1 <
ε

3
n1.5(log n)−1 − ε

21.5 n1.5(log n)−1 + n

2
.

Since this last term approaches −∞, we have verified equation (6). We now apply
Lemma 3.3, and see that there exist infinitely many n for which

cn(X) − cn−1(X) < �εn0.5(log n)−1�. (7)

Rather than using Lemma 3.3 to bound cn(X), we simply recall that by assumption, there
exists N so that

cn(X) < �n1.5� (8)

for all n > N . This clearly implies that c1+cn(X)(X) ≤ (n1.5)1.5 = n2.25 for any n > N .
By Corollary 3.1, for any of the infinitely many n > N satisfying equations (7) and (8),
|Aut�(n−1)/2�(X, σ)| is bounded from above by

(c1+cn(X)(X))2|A|(cn+1(X)−cn(X)) ≤ (n2.25)2|A|εn0.5(log n)−1 = e4.5|A|ε√n.

Now, exactly as in the end of Theorem 1.1, any finitely generated subgroup H of
Aut(X, σ)/〈σ 〉 has growth less than e4.5|A|ε√n. Since ε > 0 was arbitrary, by the gap
conjecture, H must be virtually nilpotent. Exactly as in the proof of Theorem 1.1, this
implies that Aut(X, σ)/〈σ 〉 is locally finite.

Proof of Theorem 1.4. Choose any subshift X where cn(X)/n2(log n)−1 → 0, and any
ε > 0. We claim that

lim inf cn(X) −
n∑

i=2

�εi(log i)−1� = −∞. (9)

Again, by assumption, there are infinitely many n where cn(X) < (ε/5)n2(log n)−1. Also,
n∑

i=2

�εi(log i)−1� ≥
n∑

i=�n/2�
�εi(log i)−1�≥ (n/2)�(εn/2)(log n)−1�≥ ε

4
n2(log n)−1 − n

2
.

So, for infinitely many n,

cn(X) −
n∑

i=2

�i(log i)−1� <
ε

5
n2(log n)−1 − ε

4
n2(log n)−1 + n

2
.

Since this last term approaches −∞, we have verified equation (9). We now apply Lemma
3.3, and see that there exist infinitely many n for which

cn(X) − cn−1(X) < �εn(log n)−1�. (10)

Rather than using Lemma 3.3 to bound cn(X), we simply recall that by assumption, there
exists N so that

cn(X) < n2 (11)
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for all n > N . This clearly implies that c1+cn(X)(X) ≤ (n2)2 = n4 for any n > N . Now,
by Theorem 3.2, for any of the infinitely many n > N satisfying equations (10) and (11),
|Aut(FIP)

�(n−1)/2�(X, σ)| is bounded from above by

(c1+cn(X)(X))2|A|(cn+1(X)−cn(X)) ≤ (n4)2|A|εn(log n)−1 = e8|A|εn.

By compactness, the set of isolated periodic points of X is finite; denote this set by P. It
is straightforward to check that the set P is invariant under any automorphism of (X, σ),
and we may consider the homomorphism

πP : Aut(X, σ) → Aut(P, σ |P)
πP : φ �→ φ|P.

By definition, we have Aut(FIP)(X, σ) = ker(πP). Now, exactly as in the end of Theorem
1.1, any finitely generated subgroup H of Aut(FIP)(X, σ) has growth less than e8|A|εn.
Since ε was arbitrary, this implies that H has subexponential growth, and so is amenable.
Then, every finitely generated subgroup of Aut(FIP)(X, σ) is amenable, implying that
Aut(FIP)(X, σ) is amenable. Since P is finite, Aut(P, σ |P) is a finite group, and hence
Aut(FIP)(X, σ) is of finite index in Aut(X, σ). Since Aut(FIP)(X, σ) is amenable, this
implies Aut(X, σ) is amenable.

4. Realizing locally finite groups as Aut(X, σ)/〈σ 〉 for low complexity
In this section, we prove Theorem 1.5. We first outline the general block concatenation
construction of subshifts; for an introduction, see [12, 14]. It is simple to guarantee that
such a subshift be minimal. The difficult part will be to engineer our subshift to have low
complexity and prescribed Aut(X, σ)/〈σ 〉.

A block concatenation subshift is defined by an alphabetA, sequences (nk) of positive
integers, and sets Ak ⊂ Ank with the following property: for every k, every w ∈ Ak+1 is a
concatenation of Ak-words. (This of course implies that nk divides nk+1 for all k.) We will
always take n1 = 1 and A1 = A. Given such A, (nk), and (Ak), X consists of all ‘limits’
of Ak-words (as k → ∞); more formally, x ∈ X if and only if for all n, there exists k so
that x([−n, n]) is a subword of some Ak-word.

We first prove some general lemmas about block concatenation subshifts. The following
is well known [12], but we will give a short proof for completeness.

LEMMA 4.1. If every Ak+1-word, written as a concatenation of Ak-words, contains each
Ak-word at least once, then X is minimal.

Proof. For every w ∈ L(X), there exists k so that w is a subword of some Ak-word.
However, then w is a subword of every Ak+1-word. For every x ∈ X, x contains an
Ak+1-word, so contains w. Since x and w were arbitrary, X is minimal.

By definition, for every x ∈ X and k ∈ N, x can be written as a bi-infinite concatenation
of Ak-words. We say that X is uniquely decomposable if this decomposition is unique for
all x ∈ X. This can also be achieved through a simple assumption about repetitions of
Ak-words.
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LEMMA 4.2. If (dk) is an integer sequence where each Ak+1-word, written as a concate-
nation of Ak-words, begins with dk+1 repetitions of the same Ak-word, ends with dk+1

repetitions of the same Ak-word, and does not elsewhere contain dk+1 repetitions of the
same Ak-word, then X is uniquely decomposable.

Proof. We prove by induction on k. The base case k = 1 simply says that locations of
A1-words are uniquely determined for such subshifts, which is trivial since we always take
A1 to be the alphabet A. For the inductive step, assume for some k that for every x ∈
X, x can be uniquely decomposed into Ak-words. Given this decomposition, one simply
searches for 2dk+1-fold concatenations of the form vdk+1wdk+1 (with v, w ∈ Ak possibly
equal), which can only occur with vdk+1 at the end of one Ak+1-word and wdk+1 at the
beginning of another. This implies that x can be written in a unique way as a concatenation
of Ak+1-words, completing the inductive step and the proof.

Suppose X is uniquely decomposable, let k ∈ N, and let τ : Ak → Ak be a permutation
of the Ak-words. Associated with τ is a continuous shift-commuting map ατ : X →
(AZ, σ) defined as follows: given x ∈ X, decompose x as a concatenation of Ak-words,
and apply τ to each Ak-word appearing in X. (Note that this map is only well defined
because (X, σ) was assumed uniquely decomposable; shift-commuting and continuity are
then nearly immediate from the definition.) Written symbolically, if we have

x = . . . w−1w0w1 . . . , wi ∈ Ak ,

then

ατ (x) = . . . τ (w−1)τ (w0)τ (w1) . . . . (12)

Note that depending on τ , ατ may or may not map X back into X; if it does, then ατ is
an automorphism of (X, σ).

We are now prepared to define the block concatenation subshifts which will prove
Theorem 1.5.

Proof of Theorem 1.5. Choose any unbounded increasing f and countable locally finite
group G; G can be written, by definition, as the union of an increasing chain of finite
subgroups, that is there exist finite groups Hk so that Hk is a proper subgroup of Hk+1 for
all n, and G is the union of the Hk . Choose an increasing sequence (bk) of integers greater
than 1 with the property that f (bk) > k(|Hk|5|Hk+1|+2|Hk |2) for all k.

Our technique is somewhat similar to that of [2], where a subshift X was constructed
for which the additive group of rationals embeds into Aut(X, σ), in that we will construct,
for every k, automorphisms defined by their action on the set Ak , and then show that every
automorphism of X can be realized in this way. Specifically, for each k, we will define
a group of permutations of the words in Ak which is isomorphic to Hk . We will then
show that for any k, each Ak-permutation induces an Ak+1-permutation by coordinatewise
application to Ak-words, in a manner that is compatible with the containment of Hk as a
subgroup of Hk+1.

We begin with some notation. For every k, fix an ordering (h
(k)
1 , . . . , h

(k)
|Hk |) of the

elements of Hk , where h
(k)
1 = {id}. Write qk = |Hk|/|Hk−1|, and choose any set {r(k)

i }qk

i=1
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of representatives for right cosets of Hk−1 in Hk , that is

Hk =
qk⋃

i=1

Hk−1r
(k)
i .

Without loss of generality, we will always take r
(k)
1 = {id}, the identity element of G (and

of all Hk). We will now recursively define the sets Ak and lengths nk . In our construction,
|Ak| = |Hk| for every k.

The k = 1 case is simple; for every g ∈ H1, define a symbol w
(1)
g , and define the

alphabet A1 = {w(1)
g : g ∈ H1}; clearly |A1| = |H1|.

We now define Ak+1 for k ≥ 1, assuming that Ak = {w(k)
g : g ∈ Hk} has been defined

already. Informally, the idea is that we will define w
(k+1)
g for every g ∈ Hk+1 by assigning

a different ‘template’ concatenation of Ak-words to each coset representative r
(k+1)
i , and

then permuting the Ak-words {w(k)
g }g∈Hk

in those templates by multiplying on the left by
a properly chosen g′ in the subscripts.

More formally, for every g ∈ Hk+1, we first write g = g′r(k+1)
i for some g′ ∈ Hk and

1 ≤ i ≤ qk+1. We then define

w(k+1)
g = w

(k+1)

g′r(k+1)
i

=
(
w

(k)

g′h(k)
2

)2bk+1qk+1

((
w

(k)

g′h(k)
1

)bk+1
(
w

(k)

g′h(k)
2

)bk+1
∣∣∣ · · ·

∣∣∣
(
w

(k)

g′h(k)
|Hk |−1

)bk+1
(
w

(1)

g′h(1)
|Hk |

)bk+1
)

(
w

(k)

g′h(k)
1

)ibk+1
(
w

(k)

g′h(k)
2

)bk+1(3qk+1−i)

.

Here, the concatenation inside the largest parentheses is a list of all pairs of the

form
(
w

(k)

g′h(k)
a

)bk+1
(
w

(k)

g′h(k)
b

)bk+1
, with pairs (a, b) listed in lexicographic order. We then

define Ak+1 = {w(k+1)
g : g ∈ Hk+1}, and note that all Ak+1-words begin and end with

2bk+1qk+1-fold repetitions of an Ak-word. We also note that every Ak+1-word contains
no other such repetitions. To see this, note that in the central line of the definition of

w
(k+1)
g , no

(
w

(k)

g′h(k)
i

)bk+1
can repeat four times, since the pair (i, i) is used only once

and it is not possible to have consecutive lexicographic pairs of the form (j , i)(i, i)(i, k).
Therefore, the largest number of times that an Ak-word can consecutively repeat aside
from the beginning and end of w

(k+1)
g is max(3bk+1, ibk+1) < 2bk+1qk+1. The length of

all Ak+1-words is

nk+1 = bk+1nk(2|Ak|2 + 5qk+1) > bk+1qk+1. (13)

Recursively, this defines nk and Ak for all k, and so an associated block concatenation
subshift X. We here note a few properties of X which will be useful later.
• X is minimal by Lemma 4.1.
• X is uniquely decomposable by Lemma 4.2 (with dk = 2bkqk).
• Concatenations of the form uvw with u, v, w ∈ Ak , u �= v, and v �= w never appear

in points of X, and that every other concatenation uvw with u = v or v = w appears
within every Ak+1-word.
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We now wish to bound the complexity of X from above to show that cn(X)/nf (n) → 0.
Choose any length n; there exists k so that nk ≤ n < nk+1. We first treat the case where n
belongs to [nk , bk+1nk). All points of X are concatenations of Ak-words, and by definition
of Ak+1, each Ak-word is repeated some number of times which is a multiple of bk+1.
Therefore, since n < bk+1nk , any word w ∈ Ln(X) is of the form sqq . . . qqrr . . . rrp,
where q, r are Ak-words, s is a suffix of q, and p is a prefix of r. Then w is determined
completely by the location at which the transition from q to r occurs, and the choices of
q and r. (The case where w has no transition is still included here by just taking q = r .)
So, cn(X) ≤ n|Ak|2 = n|Hk|2. Since |Hk|2 < f (bk)/k < f (nk)/k and n ≥ nk , we have
cn(X) ≤ nf (nk)/k ≤ nf (n)/k.

Now consider the case where n belongs to [bk+1nk , nk+1). Any word w ∈ Ln(X)

must be of the form su
bk+1
1 u

bk+1
2 . . . u

bk+1
j−1 p, where u1, . . . , uj−1 ∈ Ak , s is a suffix of

some word u
bk+1
0 for u0 ∈ Ak , and p is a prefix of some word u

bk+1
j for uj ∈ Ak . By

equation (13), nk+1/bk+1nk < 5qk+1 + 2|Ak|2, and so j < 5|Hk+1| + 2|Hk|2. Clearly, w
is determined by the words u0, . . . , uj and the length of s, so cn(X) ≤ bk+1nk|Ak|j+1 =
bk+1nk|Hk|j+1. Since j < 5|Hk+1| + 2|Hk|2,

|Hk|j+1 ≤ |Hk|5|Hk+1|+2|Hk |2 < f (bk)/k < f (bk+1nk)/k.

Since n ≥ bk+1nk , this implies that cn(X) ≤ nf (bk+1nk)/k ≤ nf (n)/k.
We have shown that for all n ≥ nk , cn(X) ≤ nf (n)/k, and so cn(X)/nf (n) → 0. It

remains only to show that Aut(X, σ)/〈σ 〉 is isomorphic to G.
For any k and h ∈ Hk , define the permutation πk,h of the set {w(k)

g } of Ak-words by
left multiplication of the subscript, that is πk,h(w

(k)
g ) = w

(k)
hg . In a slight abuse of notation,

we also define πk,h to act on concatenations of Ak-words by ‘coordinatewise’ application,
that is if w1, . . . , wm ∈ Ak , πk,h(w1 . . . wm) := πk,h(w1) . . . πk,h(wm). (We note that
this definition is well defined because X is uniquely decomposable.)

LEMMA 4.3. For any k ≥ 1, h ∈ Hk , and w ∈ Ak+1, πk,h(w) = πk+1,h(w).

Proof. This comes from the definition of Ak+1. Informally, it is due to the fact that a left
multiplication by any h ∈ Hk in the subscript of an Ak+1-word w

(k+1)

g′r(k+1)
i

passes through to

left multiplications of all subscripts of the component Ak-words.
More formally, choose any k ≥ 1, h ∈ Hk and g ∈ Hk+1; we can write g = g′r(k+1)

i for
some g′ ∈ Hk and 1 ≤ i ≤ qk+1. Then,

πk,h

(
w(k+1)

g

)
= πk,h

(
w

(k+1)

g′r(k+1)
i

)

= πk,h

((
w

(k)

g′h(k)
2

)2bk+1qk+1

((
w

(k)

g′h(k)
1

)bk+1
(
w

(k)

g′h(k)
2

)bk+1
∣∣∣ · · ·

∣∣∣
(
w

(k)

g′h(k)
sk−1

)bk+1
(
w

(1)

g′h(1)
sk

)bk+1
)

(
w

(k)

g′h(k)
1

)ibk+1
(
w

(k)

g′h(k)
2

)bk+1(3qk+1−i))

https://doi.org/10.1017/etds.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.7


18 R. Pavlov and S. Schmieding

=
(
w

(k)

hg′h(k)
2

)2bk+1qk+1

((
w

(k)

hg′h(k)
1

)bk+1
(
w

(k)

hg′h(k)
2

)bk+1
∣∣∣ · · ·

∣∣∣
(
w

(k)

hg′h(k)
sk−1

)bk+1
(
w

(1)

hg′h(1)
sk

)bk+1
)

(
w

(k)

hg′h(k)
1

)ibk+1
(
w

(k)

hg′h(k)
2

)bk+1(3qk+1−i)

= w
(k+1)

hg′r(k+1)
i

= πk+1,h

(
w

(k+1)

g′r(k+1)
i

)
= πk+1,h

(
w(k+1)

g

)
.

In particular, by induction, Lemma 4.3 implies that for any k < m, πk,h induces the
permutation πm,h of Am-words by coordinatewise action. By passing to limits, we see that
in fact πk,h induces a self-bijection of X, which we denote by φk,h. Since X is uniquely
decomposable, φk,h is continuous and shift-commuting (in fact, it is one of the maps ατ

defined in equation (12)), and so is in Aut(X, σ).
For every k, the group {φk,h}h∈Hk

is clearly isomorphic to Hk itself (since φk,h ◦ φk,h′ =
φk,hh′). The collection {φk,h}k∈N,h∈Hk

then forms a subgroup of Aut(X, σ), which we
denote by Gφ , and it follows from the above that Gφ is isomorphic to G. We now claim
that even after quotienting out by the subgroup generated by the shift, this is still true.

LEMMA 4.4. Let ρ : Aut(X, σ) → Aut(X, σ)/〈σ 〉 denote the quotient map. Then ρ(Gφ)

is isomorphic to G.

Proof. It is enough to show that Gφ ∩ ker ρ = id. Therefore, it is enough to show that if
φk,h = σm for some k, h, m, then m = 0. Suppose then that σm = φk,h. Choose k′ ≥ k so
that |m| < nk′ . Then, by Lemma 4.3, φk,h = φk′,h, and hence σm = φk′,h. Finally, we note
that for any x ∈ X, φk′,h(x) has Ak′-words in the same locations as x. Since σm(x) =
φk′,h(x) and |m| < nk′ , the only way for this to happen is if m = 0, completing the
proof.

Finally, we must show that under the quotient map ρ : Aut(X, σ) → Aut(X, σ)/〈σ 〉,
the image of Gφ is all of Aut(X, σ)/〈σ 〉; in other words, that every automorphism of X
can be written as σ jφk,h for some j ∈ Z, k ∈ N, and h ∈ Hk .

We need a technical definition; we say that φ ∈ Aut(X, σ) preserves locations
of Ak-words if, for all x ∈ X and m < n, if x([m, m + nk)) is an Ak-word, then
(φx)([m, m + nk)) is an Ak-word. (Note that preserving locations of Ak-words clearly
implies preserving locations of Aj -words for any j < k.) We say that φ simply preserves
locations if it preserves locations of Ak-words for all k.

It is clear that for every φ ∈ Aut(X, σ) of range nk and every x ∈ X, there exists a shift
i with |i| ≤ nk/2 so that (φ ◦ σ i)(x) has Ak-words at the same locations as x. In theory
though, this is weaker than preserving locations of Ak-words, as i could depend on x. For
our examples, we can show that this is not possible as long as k is large enough.

LEMMA 4.5. If φ ∈ Aut(X, σ) has range nk , and for some x ∈ X, φx has Ak-words at the
same locations as x, then φ preserves locations of Ak-words.
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Proof. Choose any k, φ with range nk and inducing block map �, x ∈ X, and suppose
that φx has Ak-words at the same locations as x. By shifting x, we may assume without
loss of generality that x([0, nk+1)) is an Ak+1-word. Then x([0, nk+1)), as an Ak+1-word,
contains all concatenations of three Ak-words which are in L(X), that is, for all u, v, w ∈
Ak such that uvw ∈ L(X) (that is u = v or v = w), there exists nk ≤ i < nk+1 − 2nk

so that x([i − nk , i + 2nk)) = uvw. This implies that �(uvw) = (φx)([i, i + nk)) is an
Ak-word.

For any y ∈ X and j ∈ Z, if y([j , j + nk)) ∈ Ak , then y([j − nk , j + 2nk)) = uvw

for some u, v, w ∈ Ak , implying that (φy)([j , j + nk)) = �(uvw) is an Ak-word. Since
y was arbitrary, φ preserves locations of Ak-words.

We now wish to show that all automorphisms of X preserve locations up to a shift.

LEMMA 4.6. For every φ ∈ Aut(X, σ), there exists i so that σ i ◦ φ preserves locations.

Proof. Choose any φ ∈ Aut(X, σ), and choose k so that both φ and φ−1 have range nk/2.
Choose any x ∈ X with x([0, nk+1)) an Ak+1-word. There clearly exists i with |i| < nk/2
so that for all m, (φ ◦ σ ix)([mnk , (m + 1)nk)) is an Ak-word. Write φ′ := φ ◦ σ i . By
additivity of ranges under composition, φ′ and φ′−1 have range nk , and by Lemma 4.5,
φ′ preserves locations of Ak-words.

Now, consider any x ∈ X for which x([−nk+1, 0)) and x([0, nk+1)) are both
Ak+1-words, and x([−nk+1, 0)) ends with the same 2bk+1ck+1-fold repetition of an
Ak-word that x([0, nk+1)) begins with. Then x([−2bk+1ck+1nk , 2bk+1ck+1nk)) =
w4bk+1ck+1 for some w ∈ Ak . Since φ preserves locations of Ak-words and has
range less than nk , (φ′x)([(−2bk+1ck+1 + 1)nk , (2bk+1ck+1 − 1)nk)) = v4bk+1ck+1−2

for some v ∈ Ak . However, the only (4bk+1ck+1 − 2)-fold repetitions of Ak-words
within points of x are within the (4bk+1ck+1)-fold repetitions occurring across the
boundary of some pairs of Ak+1-words. Therefore, there exists some j ∈ {0, ±nk} for
which ((φ′ ◦ σ j )x)([−2bk+1ck+1nk , 2bk+1ck+1nk]) = v4bk+1ck+1 , which implies that
((φ′ ◦ σ j )x)([−nk+1, 0)) and ((φ′ ◦ σ j )x)([0, nk+1)) are Ak+1-words, and so that
(φ′ ◦ σ j )x has Ak+1-words in the same locations as x. Define φ′′ := φ′ ◦ σ j ; since
φ′, φ′−1 had range nk and |j | ≤ nk , φ′′ and φ′′−1 have range 2nk by additivity of ranges
under composition. Since 2nk < nk+1, Lemma 4.5 implies that φ′′ preserves locations
of Ak+1-words. We claim that in fact φ′′ preserves locations for all Am-words for m > k,
which will complete the proof since φ′′ = φ ◦ σ i+j . We prove by induction on m. The base
case m = k + 1 is completed, so we assume that m > k and that φ′′ preserves locations of
Am-words.

Choose two Am-words y, z which are not equal, but agree on their first and last 2nm

letters (for instance, w
(m)
id and w

(m)

r
(m)
2

would work). Choose x ∈ X so that x([−nm+1, 0))

and x([0, nm+1)) are both in Am+1, x([−nm+1, 0)) ends with y2bm+1cm+1 , and x([0, nm+1))

begins with z2bm+1cm+1 .
Since φ′′ preserves locations of Am-words, all words (φ′′x)([inm, (i + 1)nm))

for −2bm+1cm+1 ≤ i < 2bm+1cm+1 are Am-words. Since φ′′ has range 2nk , each
(φ′′x)([inm, (i + 1)nm)) depends only on x(inm − 2nk , (i + 1)nm + 2nk)). Since y and z
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agree on their first and last 2nm ≥ 2nk letters and

x([−2bm+1cm+1nm, 2bm+1cm+1nm)) = y2bm+1cm+1z2bm+1cm+1 ,

(φ′′x)([inm, (i + 1)nm)) is the same for −2bm+1cm+1 < i < 0 (call this Am-word a) and
for 0 ≤ i < 2bm+1cm+1 − 1 (call this Am-word b).

If a = b, then since φ′′−1 has range 2nk < nm, it would have to be the case that
y = z (formally, if � is an inducing block map for φ′′−1, then since a = (φ′′x)([−2nm −
2nk , −nm + 2nk) = (φ′′x)([nm − 2nk , 2nm + 2nk) = b, it must be the case that y =
�(a) = x([−2nm, −nm) = x([nm, 2nm) = �(b) = z.) This is a contradiction, so
a �= b. Now, we know that (φ′′x)([(−2bm+1cm+1 + 1)nm, (2bm+1cm+1 − 1)nm)) =
a2bm+1cm+1−1b2bm+1cm+1−1 for a �= b ∈ Am, and the only occurrence of such a word is
with midpoint at the border between Am+1-words. Therefore, (φ′′x)([−nm+1, 0)) and
(φ′′x)([0, nm+1)) are Am+1-words, and so φ′′x has Am+1-words at the same locations as x.
Since φ′′ has range 2nk < nm+1, φ′′ preserves locations of Am+1-words by Lemma 4.5.
This completes the induction and the proof.

The following lemma now completes the proof of Theorem 1.5.

LEMMA 4.7. If φ ∈ Aut(X, σ) preserves locations, then there exist k ∈ N and h ∈ Hk so
that φ = φk,h.

Proof. Assume that φ ∈ Aut(X, σ) preserves locations, fix k so that φ has range nk , and
let � be an inducing block map for φ. Choose any x ∈ X with x([0, nk)) an Ak-word. Then
x([ink , (i + 1)nk)) is an Ak-word for all i, and by assumption, (φx)([ink , (i + 1)nk)) is an
Ak-word for all i as well. Then, exactly as in the proof of Lemma 4.5, for all u, v, w ∈ Ak

with u = v or v = w, �(uvw) ∈ Ak . We will prove that φ is equal to some φk,h in two
steps. First, we will show that �(uvw) depends only on v, implying that φ is induced by a
permutation of Ak-words in the sense of equation (12). Then, we show that the only such
permutations which send Ak+1-words to Ak+1-words are of the form πk,h.

To see that �(uvw) depends only on v, choose any (u, v, w) �= (u′, v, w′) ∈ S.
By its definition, the Ak+1-word w

(k+1)
id contains both uvw and u′vw′ somewhere in

its first (2bk+1ck+1 + bk+1|Ak|2) concatenated Ak-words, say that w
(k+1)
id ([(p − 1)nk ,

(p + 2)nk)) = uvw and w
(k+1)
id ([(q − 1)nk , (q + 2)nk)) = u′vw′ for some p, q ≤

2bk+1ck+1 + bk+1|Ak|2.
Choose any x ∈ X with x([0, nk+1)) = w

(k+1)
id . Since φ preserves locations of

Ak+1-words, (φx)([0, nk+1)) is some Ak+1-word w
(k+1)

hr
(k+1)
i

= πk,hw
(k+1)

r
(k+1)
i

with h ∈ Hk

and 1 ≤ i ≤ qk+1. Note that w
(k+1)

r
(k+1)
i

begins with the same initial 2bk+1ck+1 + bk+1|Ak|2

concatenated Ak-words as w
(k+1)
id , and so contains v starting at locations pnk and qnk .

However, πk,h is just a permutation of Ak-words, and so w
(k+1)

hr
(k+1)
i

contains the same

Ak-word πk,h(v) at those locations. Therefore, �(uvw) = �(u′vw′) = πk,h(v). Since
(u, v, w) and (u′, v, w′) were arbitrary, we have shown that �(uvw) depends only on v,
that is there is a permutation τ of Ak-words so that φ = ατ as in equation (12).
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Consider the image of the Ak+1-word w
(k+1)
id under (coordinatewise application of)

φ = ατ . It must be another Ak+1-word since φ preserves locations, call it w
(k+1)

hr
(k+1)
i

for

h ∈ Hk and 1 ≤ i ≤ qk+1. We note that w
(k)

h
(k)
2

occurs bk+1(5qk+1 + |Ak| − 1) times in the

decomposition of w
(k+1)
id into Ak-words, and so some Ak-word must appear this many

times in w
(k+1)

hr
(k+1)
i

. It is not hard to check that this implies i = 1 (the maximum number of

times an Ak-word appears becomes smaller if i > 1, since then the final self-concatenation
in the definition of w

(k+1)

hr
(k+1)
i

is shorter). Therefore, �(w
(k+1)
id ) = w

(k+1)

hr
(k+1)
1

= w
(k+1)
h for

some h ∈ Hk .
Recall that w

(k+1)
id contains every Ak-word, and so since φ = ατ and πk,h map w

(k+1)
id

to the same word w
(k+1)
h , it must be the case that τ = πk,h. Therefore, φ = φk,h, and since

φ was arbitrary, we are done.

By Lemmas 4.6 and 4.7, every φ ∈ Aut(X, σ) can be written as σ jφk,h for some j ∈ Z,
k ∈ N, and h ∈ Hk , and so Aut(X, σ)/〈σ 〉 is isomorphic to G, completing the proof.

Remark 4.8. We can in fact say a little more about Aut(X, σ) for this construction:
Aut(X, σ) is isomorphic to Z × G, with the Z corresponding to σ . To see this, recall
that G is isomorphic to Gφ , and then consider the map α : Gφ × Z → Aut(X, σ) defined
by α(φh,k , n) = φh,kσ

n. It is easy to check that since σ is in the center of Aut(X, σ), α is
a homomorphism. Lemmas 4.6 and 4.7 imply that α is surjective, and it is straightforward
to check that α is also injective, and hence an isomorphism.

Remark 4.9. It is natural to wonder whether the somewhat complex block concatenation
subshifts could be replaced by the simpler subclass of Toeplitz subshifts in our construc-
tions. In general, this is not possible, since the automorphism group of a Toeplitz subshift
is always abelian (see [8]).

Remark 4.10. In Example 3.9 from [2], they construct a minimal subshift X where the
additive group of rationals Q embeds into Aut(X, σ) (and outline alterations which would
make this embedding an isomorphism). Since Q/Z is countable and locally finite, Theorem
1.5 provides a different minimal subshift X with Aut(X, σ)/〈σ 〉 = Q/Z.
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