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ABSTRACT 

 

As a result of dissimilarity in lung morphometry and physiological conditions, 

therapeutic aerosol particles deposit differently in humans of various ages and body weights.  

These particles also deposit differently in non-human species that are often utilized in 

inhalation and dosing studies.  The focus of this work is to determine the optimal particle 

size and deposition (traditional efficiency and volume-weighted) of therapeutic particles in 

humans of both genders ranging in age from 3 months old to 21 years old and three non-

human species (B6C3F1 mouse, Long-Evans hooded rat, and Beagle dog).  This study finds 

that in humans, both optimal particle size and volume-weighted deposition are age and 

weight dependent; as age and weight increase, optimal particle size and deposition increase.  

Also, for all ages, breathing rates that are lower than normal enhance volume-weighted 

deposition and shift optimal particle size.  Additionally, a rigorous sensitivity analysis of 

breathing rate and particles diameter on deposition shows that at normal breathing rates, 

sensitivity to breathing rate is greater than sensitivity to particle diameter for young children, 

but sensitivities to both become similar as age/body weight increase.  At optimal breathing 

rates, the sensitivity to both breathing rate and particle diameter are lowest at the optimal 

breathing rates for children; for healthy adults, however, there is no apparent difference in 

sensitivity at normal and optimal breathing rates.  This study also found that the mouse 

represents infants and young children relatively well, the rat represents older children 
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relatively well, and the canine likely represents adolescents well.  In addition, numerous 

studies postulate that the use of heliox instead of air will improve deposition as a result of the 

differences in density and dynamic viscosity; therefore, this study evaluates the effects of 

heliox based upon the differences in these properties.  The results indicate that based on 

these properties, heliox does not appear to have any significant effect on deposition. 
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CHAPTER ONE: INTRODUCTION 

1.1 Motivation and Background 

There are numerous non-invasive drug delivery routes available today, which include 

pulmonary, oral, buccal, nasal, vaginal/uterine, ocular, and transdermal (Kulkarni 2010).  

Each of these has some advantages and disadvantages compared to the others.  Utilization of 

the respiratory tract for the treatment of respiratory diseases and as a route for systemic drug 

delivery has many advantages over the other non-invasive delivery methods for a few 

reasons.  Rapid absorption via the respiratory tract is facilitated by the large surface area of 

the lung due to the substantial number of terminal bronchioles and alveoli, as well as the rich 

blood supply (which is accessible through extremely thin alveolar epithelium in close contact 

with the bloodstream) (Kulkarni 2010, Gupta and Hickey 1991).  The surface area and rich 

blood supply contribute to a high rate of “therapeutic action” with reduced dosing when 

compared to delivery via other systemic routes or delivery of oral drugs with poor 

bioavailability (Kulkarni 2010).  In addition, the respiratory tract does not have the extreme 

pH and metabolic enzymes found in the gastrointestinal tract, which can cause degradation 

and breakdown of medication (Kulkarni 2010, Wang, Siahaan and Soltero 2005).  

Furthermore, with pulmonary drug delivery there is not an issue with first-pass metabolism 

(primarily through the liver) that occurs with oral delivery and causes a reduction in 

bioavailability (Kulkarni 2010, Wang, Siahaan and Soltero 2005, Gupta and Hickey 1991).  

Also, systemic side effects may possibly be lower for pulmonary drug delivery than for oral 
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delivery because more tissue throughout the body is exposed to the medication with oral 

delivery (Gradoń and Marijnissen 2003).  Because of these advantages, delivery of 

therapeutic particles for respiratory diseases by means of inhaled aerosols has become 

extremely common. 

Although these benefits exist for drug delivery via the lung, the efficiency and 

efficacy of medication deposition utilizing this method are dependent upon and critically 

affected by numerous parameters.  These parameters include spray properties, particle 

properties, physiological factors, and the morphometry of the respiratory system (Phalen 

2009, Finlay 2001, Ruzer and Harley 2005, Xu and Yu 1986, Kim 2009).  The respiratory 

system consists of “generations” of airways that begin with the trachea, which is considered 

to be generation 0.  As the airways branch from the trachea to the deep lung, the generation 

number increases.  The structure of the lung, including the lung generations and airway 

dimensions, are often referred to as lung morphometry.  Figure 1 provides a visual 

representation of the branching structure and labeling scheme of the human lung.  

Understanding the branching structure of the lung is important when evaluating deposition of 

particles in particular lung regions.   

A high deposition percentage of therapeutic particles in the appropriate generations of 

the lung is imperative when treating a particular disease, and as a result maximizing the 

particle deposition is essential when optimizing pulmonary drug delivery.  Optimizing 

deposition is critical because it is estimated that 50% of school-aged currently receive little 

or no therapeutic effect from pressurized metered-dose inhaler (pMDI) devices (Pedersen, 

Dubus and Crompton 2010).   
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When comparing the parameters that deposition is dependent upon, it is apparent that 

the primary factors that are capable of being manipulated to optimize drug delivery are the 

particle properties.  Aerodynamic diameter plays a critical role in particle deposition and is 

one of the most convenient particle properties to evaluate and adjust to determine optimal 

deposition. 

 

Figure 1: Visual representation of branching structure of the human lung (Kleinstreuer, Zhang and Donohue 2008) 

 

 

Physiological factors and respiratory system morphometry also affect particle 

deposition (Gradoń and Marijnissen 2003).  Other than respiratory rate, these factors cannot 

be adjusted or manipulated to optimize deposition; additionally, these factors vary between 

individuals or are not consistent from infants to adults.  As infants grow and their body mass 

increases, their respiratory system also continues to increase in size and develop. As a result, 

the morphometry of the lung is continually changing until growth stabilizes.  Studies have 
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shown that the terminal bronchioles are already developed at birth, but that the respiratory 

airways (respiratory bronchioles, alveolar ducts, alveoli) continue to develop (Hofmann 

1982, Dunhill 1962, Davies and Reid 1970).  Not only does the respiratory system increase 

in size as body mass increases, but the number of alveoli and respiratory airways continue to 

increase as well.  As a result studies have shown that infants and young children have a 

different number of lung generations than adults as a result of this (Finlay, Lange, et al. 

2000, Ménache, et al. 2008, Dunhill 1962). Also, the lung growth in children is not linear 

and the largest growth rate occurs in the first two years after birth (Thurlbeck and Angus 

1975). Since lung morphometry, an important factor in particle deposition, changes 

substantially from infancy to adulthood, there is also a high likelihood that particle 

deposition varies in infants, children, and adults (Finlay 2001, Xu and Yu 1986, Ruzer and 

Harley 2005).  In addition, physiological factors such as breathing frequency, tidal volume, 

and respiratory rate also vary as a function of age (Finlay 2001, Phalen, Oldham and 

Beaucage, et al. 1985).  All of these parameters contribute to particle deposition and as a 

result, it is necessary to determine the optimum particle diameter for deposition in infants 

and children as well as adults. 

Furthermore, animal models are frequently used to model humans in an array of 

scientific studies, including inhalation studies (Phalen, Oldham and Wolff 2008).  These 

animal models are often used in these health-related studies and the data is then extrapolated 

to humans because of the limited ability to test on humans  (Martonen, Zhang and Yang 

1992).  However, physiological factors and lung structure in other species can vary 

substantially from humans.  For example, respiratory bronchioles are not present in rats or 
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mice, which will possibly affect particle deposition (Phalen, Yeh and Schum, et al. 1978, Bal 

and Ghoshal 1988). Additionally, the number of lung generations present in different 

mammalian species that are used for lung studies is not always the same as in humans 

(Oldham and Robinson 2007, Maina and Gils 2001, Weinberg, et al. 2005).  For example, 

the 21-yr old human lung model evaluated in this study has 24 lung generations and the 

Beagle dog lung model has 29 lung generations.  Moreover, many of the species that are 

used in lung studies have substantial differences in lung shape from humans.  For instance, 

some studies have shown that many mammalian species (including rats, rabbits, and dogs) 

have lungs structures that are more monopodial whereas human lungs are typically described 

as being nearly dichotomous (Phalen, Oldham and Wolff 2008, Phalen, Yeh and Schum, et 

al. 1978, Weinberg, et al. 2005, Phalen and Oldham 1983).  Figure 2 illustrates this 

difference.  This is because these species have elongated chest cavities while the chest cavity 

of the human is relatively spherical (Phalen, Oldham and Wolff 2008).   

Another difference is that the branching in humans is typically much more 

symmetrical than that of many laboratory animals (Dahl, et al. 1991), which is also clearly 

shown in Figure 2; the human lung has two lobes that are very similar in size and shape, but 

the Beagle dog has one primary lobe and the other lobe is nearly non-existent.  Since these 

animal models are frequently used to model humans, it is important to also determine 

particle deposition in the various species that are used in inhalation and dosing studies to see 

how accurately they represent the deposition in the human.  Since there are differences in 

lung morphometry from infancy to adulthood and as a result depositions are not the same, it 
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is also useful to determine if different animal models more accurately represent humans at 

different growth stages.   

 

Figure 2: In situ casts of the tracheobronchial tree of: (a) a healthy 60-year-old man and (b) a healthy 10-kg 

laboratory beagle to illustrate the monopodial structure (Phalen, Oldham and Wolff 2008) 

 

 

Numerous studies compared differences in human lung morphometry as a function of 

age (Hofmann 1982, Ménache, et al. 2008, Thurlbeck and Angus 1975) as well as particle 

deposition as a function of age (Phalen and Oldham 2001, Finlay, Lange, et al. 2000, Xu and 

Yu 1986, Phalen, Oldham and Beaucage, et al. 1985, Asgharian, Ménache and Miller 2004, 

Yu, et al. 1992, Oldham and Robinson 2006).  There have also been several studies that 

compare the lung morphology of human adults and various mammalian species (Bal and 

Ghoshal 1988, Phalen, Yeh and Raabe, et al. 1973, Phalen, Yeh and Schum, et al. 1978, 
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Schlesinger and McFadden 1981, Phalen and Oldham 1983, Phillips and Kaye 1995).   When 

it comes to deposition, many studies have determined deposition solely in one species or 

compared deposition between various animal species  (Hsieh, Yu and Oberdörster 1999, 

Schmid, et al. 2008, Weinberg, et al. 2005, Kliment, Libich and Kaudersova 1972, Kliment 

1974, Oldham and Robinson 2007, Schum and Yeh 1980).  There have, however, only been 

a few studies that compare deposition in various species to deposition in humans (Dahl, et al. 

1991, Martonen, Zhang and Yang 1992, Schlesinger 1985, Martonen, Katz and Musante 

2001). 

There are, however, no known studies that include both humans of various ages and 

multiple species.  Additionally, all the studies to date report optimal particle sizes based on 

deposition efficiency based on number of particles with no regard to the therapeutic volume 

of drug delivery. The purpose of this study is to inclusively investigate humans and multiple 

species, utilizing the same deposition model, to allow for a more direct comparison.  This 

study will also highlight the differences in optimal particle size based on deposition 

efficiency compared to a volume-averaged deposition.  The goal of the work is to provide 

guidance on the optimal particle size for various ages and species.  Additionally, this work 

evaluates the effect of breathing rate on deposition and optimal particle size. 

This work hypothesizes that the optimal particle size and breathing rate for deposition 

will be significantly smaller for the infant than for the adult.  More specifically, that optimal 

particle size and breathing rate will be dependent upon body weight.  It is also hypothesized 

that the delivered dose (volume-weighted deposition) and optimal particle size will differ 

significantly between various animal species and humans, thereby calling into question the 
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use of these animal models to determine medication dosing in humans.  Also, it is 

hypothesized that heliox will lead to enhanced deposition when compared to air as a result of 

differences in density and dynamic viscosity.   

This study uses lung morphometry, respiratory conditions, lung volumes, fluid 

dynamics, and a static statistical probabilistic model to determine deposition of particles in 

the pulmonary region of the lung via sedimentation, impaction, and Brownian motion.  

Details regarding all of the models and calculations performed in this study will be discussed 

in the Chapter 2 and deposition results are described in Chapters 3-5.  These models are used 

for a few reasons.  Models can provide valuable information regarding a range of parameters 

before performing possibly difficult and expensive experimentation.  Also, rarely are parents 

willing to subject their infants and young children to radiolabelled deposition studies. 
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CHAPTER TWO: METHODS 

2.1 Human Respiratory Conditions and Morphometry Models 

Airway lengths and diameters as a function of lung generation are needed to perform 

particle deposition calculations.  There are many adult lung morphometry models with 

complete airway dimensions available to utilize in particle deposition calculations; however, 

complete lung models for infants and children are considerably more scarce.  Many of the 

available deterministic models were considered in this study when choosing appropriate lung 

morphometry models to use for infants, children, and adults. 

The symmetrical dichotomous lung morphometry model (Model “A”) provided by 

Weibel (1963) is one of the most well known and frequently used models available for the 

adult.  Although this model is commonly used, it is known for under predicting the diameters 

of the conducting airways as well as the diameters and lengths of the alveolar airways 

(Finlay 2001).  An additional work revised the small airway dimensions in the alveolar 

region and modified the generation where the respiratory bronchioles begin (Haefeli-Bleuer 

and Weibel 1988), but the issue with the undersized conducting airway diameters has not 

been addressed.   The lung dimensions in this model are at a volume of 4800 ml (or ¾ TLC), 

and thus the model considers the volume of the lung at maximum inflation, or total lung 

capacity (TLC), of the adult to be 6400 ml (Weibel 1963).  Often times lung dimensions are 

scaled to functional residual capacity (FRC), which is the volume still present in the lung 

after each breath has been exhaled.  The Weibel model is commonly scaled because FRC in 
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an adult male is approximately 3100 ml (Finlay 2001) and a lung volume of ¾ TLC is not 

especially useful in calculations.  In addition to the Weibel model, several other complete 

morphometric lung models are also available for the adult (Yeh 1980, Yeh and Schum 1980, 

Horsfield and Cumming 1968). 

As previously mentioned, there are significantly fewer models with complete lung 

morphometry for infants and children.  Several of the studies that do include infants or 

children have only scaled the airway geometries provided by one or more adult models (such 

as Weibel “A”) instead of determining infant and children morphometry based on casting 

and extrapolation (Finlay, Lange, et al. 2000, Hofmann, Martonen and Graham 1989). In 

addition, many of the studies that provide airway data based upon casting often include only 

morphometry for conducting airways and the airways distal to the terminal bronchiole have 

not been incorporated (Ménache, et al. 2008).    

It is difficult to reasonably compare many of the adult models available, including the 

Weibel Model “A” morphometry, to the models of children because they are nearly all 

constructed using different methods.  Since a variety of different ages will be taken into 

consideration in this study, lung models provided by Ménache, et al. (2008) will be utilized 

in all calculations.  The lung geometries in these models are provided in Appendix A.  The 

models provided by Ménache, et al. (2008) are all constructed using the same method for 

consistency and include both males and females of various ages, which are summarized in 

Table 1.  The Ménache, et al. (2008) lung morphometry models assume that the human lungs 

are symmetrical, so the number of airways doubles each time branching occurs.   
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Table 1: Information regarding human lung casts (Ménache, et al. 2008) 

 

                  

Using the Ménache, et al. (2008) lung models will allow for a wide range of ages to be 

evaluated and will contribute to a more reasonable comparison between deposition results.  

However, all of the airway dimensions in these models assume that the lung is at TLC.  This 

is not an acceptable assumption when analyzing particle deposition because the lung is never 

actually at TLC.  Therefore, these models must be scaled so that the airway dimensions more 

accurately represent the volume of the lung when breathing.  In this study, the lung models 

have been scaled to FRC + �� 2⁄ , where TV is the tidal volume (average volume inhaled or 

exhaled when breathing).  This scaled volume is the average volume in the lung halfway 

through one breath.  Only diameters are assumed to constrict as a function of the decrease in 

volume that occurs when scaling the lungs down from TLC.  Consequently, the diameters 

have been scaled down proportionally; the airway lengths are assumed to remain constant.  It 

is important to mention that in this study, the airways in each generation are considered to be 

cylinders and the presence of alveoli and their effect on fluid flow is neglected.   

Since particle deposition is not only dependent upon morphometry, but is also 

dependent upon physiological factors such as respiratory conditions and lung volumes, these 

Age (yr) Gender Weight (kg) Height (cm) BMI

0.25 F 5.9 66.0 13.5

1.75 M 9.0 71.1 17.8

1.92 M 9.1 94.0 10.3

2.33 F 12.2 94.5 13.7

3.00 F 13.6 109.0 11.4

8.67 M 26.0 118.0 18.7

9.42 M 40.9 143.0 20.0

14.00 F 51.0 175.2 16.6

14.08 F 56.0 147.0 25.9

18.00 M 52.0 135.0 28.5

21.00 M 67.0 177.8 21.2
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must also be determined.  The physiological parameters that are required include breathing 

frequency (BF), TV, FRC, and TLC.  BF and TV are dependent upon age and are used to 

determine minute volume (MV), or breathing rate.  They are calculated using the following 

analytical expressions presented in Hofmann (1982), where A is age in years.   

�� (��) =  21.7 + 35.13� − 0.64��  (1) 

��(min��) = ��.��
 .��!" .� + 11.75   (2) 

These expressions were determined from numerous authors for tidal volumes and breathing 

frequencies obtained during rest.  FRC and TLC are determined by utilizing numerous 

analytical expressions that are a function of age, body mass, height, or a combination of the 

three and averaging the results.    Averaging a multitude of correlations provided by 

numerous sources should assist in removing variation caused by small sample numbers 

and/or bias by health state and provide consistent values that lie within a clinically 

acceptable range.  The analytical expressions that are averaged are provided by Taussig, et 

al. (1997), Quanjer, et al. (1993), Stocks and Quanjer (1995), Cook and Hamman (1961), 

Gaultier, et al. (1979), Zeltner, et al. 1987, and Quanjer, et al. (1989).   The values for BF, 

TV, MV, FRC, and TLC that are used in calculations are summarized in Table 2.  
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Table 2: Summary of human respiratory conditions and lung volumes 

 

 

Additionally, a variety of breathing frequencies are taken into consideration for males 

of three different ages (1.92-yr old, 9.42-yr old, and 21-yr old) to determine if both 

traditional and volume-weighted deposition efficiencies are affected by a change in breathing 

rate.  Since the tidal volumes are different for each of these ages, the same breathing 

frequency value will not translate into the same breathing rate for each age, which is 

important to note since this will play a role in the results.  The breathing frequencies that are 

evaluated are 0.5, 1, and 5 to 65 min
-1

 at 5 min
-1

 intervals.    When the general range of 

where the maximum deposition efficiency is located, the results are then refined to determine 

a more accurate maximum efficiency and the corresponding breathing rate.    For the 1.92-yr 

old, these breathing frequencies translate into breathing rates from 0.087 L/min to 11.28 

L/min.  For the 9.42-yr old, the breathing frequencies translate into breathing rates from 0.30 

L/min to 38.46 L/min.  For the 21-yr old, the breathing frequencies translate into breathing 

rates ranging from 0.48 L/min to 62.03 L/min.   

For these three models, a sensitivity analysis is also performed to determine the 

sensitivity of volume-weighted deposition to both breathing rate and particle diameter.  

Age (yr) Gender BF (min-1) TV (ml)
MV 

(L/min)
FRC (ml) TLC (ml)

0.25 F 39 30 2.36 178 328

1.75 M 28 81 4.54 232 465

1.92 M 27 87 4.73 329 589

2.33 F 26 100 5.16 371 699

3.00 F 24 121 5.80 458 822

8.67 M 17 278 9.70 908 1990

9.42 M 17 296 10.09 1573 3243

14.00 F 16 388 12.06 2578 5362

14.08 F 16 389 12.09 1650 3533

18.00 M 15 447 13.20 1348 2871

21.00 M 14 477 13.73 3281 6656
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Sensitivity is determined by evaluating the change in the performance parameter, 

normalized, to the change in the input variable, normalized.  The sensitivity is determined by  

# =
$%&$%&'$%(%&(%&'(%

  (3) 

where Y is the performance parameter and X is the input variable.  For example, when 

performing the sensitivity of volume-weighted deposition to breathing rate, the performance 

parameter Y is the volume-weighted deposition and the input variable X is the breathing rate.  

The larger the sensitivity value, the more sensitive the performance parameter is to the input 

variable.   

 

2.2 Animal Respiratory Conditions and Morphometry Models 

Various animal species are frequently used in inhalation and respiratory studies; thus, 

it is relevant to determine in each case whether or not these species adequately represent 

humans.  Particle deposition calculations will be performed for a subset of animal models 

and compared with the human results.  To perform these calculations, lung morphometry and 

respiratory conditions are also required for each species that will be compared to humans in 

this study.   

Obtaining lung morphometry as a function of lung generation for various non-human 

species is difficult because the quantitative data available are limited.  Since respiratory 

conditions in many species are dependent upon body weight, it is necessary to find 

respiratory conditions and lung morphometry for an animal of same weight and same or 

similar species.  Therefore, even if lung morphometry is available, finding appropriate 
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respiratory conditions for each species can also be challenging because this information is 

equally as scarce.  As a result of this, the animal models that are utilized in this study include 

the B6C3F1 mouse, the Long-Evans hooded rat, and the Beagle dog because both lung 

morphometry and respiratory conditions are available.  The cast information for the animal 

species in this study is summarized in Table 3. 

 

Table 3: Information regarding animal lung casts  

 
a 
from Phalen (1991).  

b
 from Yeh (1979). 

c
 from Yeh (1980). 

 

For the B6C3F1 mouse, lung morphometry is provided by Phalen (1991).  The 

respiratory conditions, FRC, and TLC for the mouse are determined using correlations 

provided by Hsieh, Yu and Oberdörster (1999).  For the Long- Evans rat, lung morphometry 

and TLC are provided by Yeh (1979).  Respiratory conditions and FRC for the rat are 

determined using correlations provided in Hsieh and Yu (1999).  Even though these 

correlations are for Fischer rats, body weight between the two rat strains are similar and 

therefore it is assumed that respiratory conditions and FRC for the Fischer rats are applicable 

to Long-Evans rats.  This assumption is made because lung morphometry for the Fischer rat 

and respiratory conditions for an appropriately-sized Long-Evans rat are not available.  For 

the Beagle dog, lung morphometry is provided by Yeh (1980).  Respiratory conditions and 

lung volumes are estimated using data provided by Mauderly (1974).  The lung geometries 

Model Age (mo) Gender Weight (g)

B6C3F1 Mouse
a Not Stated Not Stated 25.6

Long- Evans Ratb 12 F 330.0

Beagle Dogc 17 M 11,600.0
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for these three animal species are provided in Appendix A.  The respiratory conditions, and 

lung volumes for the three animal species used in this study are summarized in Table 4.   

 
Table 4: Summary of animal respiratory conditions and lung volumes. 

 
                 a from Hsieh, Yu and Oberdörster (1999).  b from Hsieh and Yu (1999). c from Yeh (1979).  

            d from Mauderly (1974).      

 

 

All of the animal lung morphometry models are also based upon a lung at TLC.  Therefore, 

the animal models are also scaled from TLC to a lung volume of FRC + �� 2⁄ .  Once again, 

the diameters are scaled appropriately and the lengths are assumed to remain constant.      

 

2.3 Fluid Dynamics and Particle Deposition Model 

In this study, all calculations will be performed with air and heliox (80/20).  Heliox is 

a gas mixture containing helium and oxygen that has a viscosity that is higher than air and a 

density that is lower than air.  The ratio can vary, but this study considers heliox that is 80% 

helium and 20% oxygen by volume.  The gas mixture is frequently used in critically ill 

patients because multiple studies suggest that it lowers resistance and increases particle 

deposition in the deep lung (Corcoran and Gamard 2004); therefore, the effects of air and 

heliox on particle deposition are evaluated and compared in this study.   

This study will evaluate deposition of particles with a geometric particle diameter d 

from 1.0 µm to 10.0 µm in 1 µm increments.  A number of assumptions relating to the lungs, 

Model BF (min-1) TV (ml) MV (L/min) FRC (ml) TLC (ml)

B6C3F1 Mouse 160a 0.189a 0.0605a 0.629a 0.976a

Long- Evans Rat 120
b

2.23
b 0.535b 8.09

b 14.1c

Beagle Dog 19
d

244
d 9.27d 545

d 1363d



 

17 

 

the fluid (air or heliox), and the particles are made before beginning particle deposition 

calculations.  First, it is assumed that no dilation or contraction of the lung occurs.  Also, all 

deposition is assumed to occur on inhalation.  The airways are assumed to be cylindrical and 

are only scaled radially, not longitudinally.  It is assumed that the particles are spherical and 

monodisperse, meaning all of the particles are the same size so that no particle distributions 

need to be taken into consideration.  In addition, it is assumed that the particles are 

homogeneously distributed throughout the inhaled volume.  All of the particles are not 

forced to deposit or see each airway generation. Instead, this study models the inhalation 

more realistically, where a particular volume is inhaled and the initial section of the volume 

passes through more generations than the final segment of that volume.  It is assumed that 

the aerosol cloud is charge neutral and electrostatic effects are negligible.  This is a 

reasonable assumption because the high humidity in the lung neutralizes the charge of the 

particles (Finlay 2001).   This study also assumes that the particle growth by hygroscopic 

effect is negligible.  It is assumed the flow is incompressible, which is considered a 

reasonable approximation in most cases of aerosol inhalation because the velocities are 

typically below 100 m/s and temperature differences are typically below 30K (Finlay 2001).  

Also, the spray velocity is assumed to be the same as breathing rate.  In addition, 

there is considered to be no spray angle, so the fluid and particle velocities are assumed to be 

parallel to the airway walls.   Finally, buccal and nasal depositions are not taken into 

consideration as this study only evaluates deposition that occurs from the trachea to the deep 

lung. 
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Various fluid and particle properties are required for deposition calculations.  The air 

temperature is assumed to be 37ºC (310.15K), which is the temperature of the human body.  

The particle density ρp used in this study is 1.0x10
3
 kg/m

3
.  For air, the following properties 

are assumed: the density ρf is 1.2 kg/m
3
, the dynamic viscosity µ is 1.90x10

-5
 kg/m-s, and the 

mean free path λ is 0.072 µm at 37ºC and 1 atm (Finlay 2001).  For heliox, the density and 

dynamic viscosity are provided by Praxair and are 0.4 kg/m
3
 and 1.98x10

-5
 kg/m-s, 

respectively.  The mean free path for heliox is assumed to be the same as air.  In addition, the 

branching angle (of the airways in each generation is assumed to be 38.24º (Finlay 2001). 

Particle deposition, particle motion, and fluid dynamics calculations utilized in this 

study are described by Finlay, 2001.  Particle deposition is determined using a statistical 

mathematical model.  Particle motion and fluids dynamics calculations are required to 

evaluate particle deposition.  For particle motion, it is assumed that there is a single particle 

with a density much larger than the fluid density (Finlay 2001); this particle is assumed to be 

isolated, so all interactions between particles are neglected.  This is generally true except for 

some dry powder inhalers.   

First, it is essential to know the fluid velocity in a particular lung generation.  The 

fluid velocity U0 (in m/s) is  

) = *+
!,∙. (4) 

where MV is minute volume (or breathing rate) in m
3
/s, Ac is the cross-sectional area of an 

airway in that generation in m
2
, and N is the number of airways in that generation.  Once the 

fluid velocity is known, the Reynolds numbers for the particle and the fluid can be 
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determined.  The Reynolds numbers display the importance of inertial forces to viscous 

forces and are nondimensional.  The particle Reynolds number Rep is necessary to ascertain 

the validity of numerous equations and is  

/01 = 234
5  (5) 

where d is particle diameter in m and ν is the kinematic viscosity of air in m
2
/s, which is 

defined as  

6 = 7
89  (6) 

where µ is the fluid dynamic viscosity in kg/m·s and ρf is the fluid density in kg/m
3
. The 

fluid Reynolds number Ref is necessary to evaluate the fluid flow regime for a particular 

generation and is  

/0: = 23;
5  (7) 

where D is the diameter of the airway in that generation in m.  The fluid flow regime is 

laminar when Ref < 2300.  Under normal breathing conditions, the flow is laminar in all 

generations of the lung.   

Aerodynamic diameter is often used instead of geometric diameter to describe a 

particle in an aerosol.  Aerodynamic diameter dae is given as 

<=> = <√#@  (8) 

where d is the particle diameter in m and SG is the specific gravity the particle, which is 

nondimensional.  This equation is only valid when the Rep is much less than 1 and d is much 

less than λ.  Both of these conditions are satisfied in this study.  Since the particle density 

that is chosen is about the same as the density of water, the aerodynamic diameters are 
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determined and are very nearly the same as the geometric diameters, thus there is no affect 

on the results. 

Particle deposition occurs in the respiratory tract by three primary mechanisms: 

sedimentation, inertial impaction, and diffusion.  Sedimentation is when the particles deposit 

in an airway because of gravitational settling.  To determine the probability of sedimentation, 

the cross sectional area of the flow tube is observed with time.  It is assumed that the entire 

area will move downward as a result of gravitational forces on particles homogeneously 

distributed within the area.  The time for this motion will be determined by the velocity of 

the flow and the length of the generation.  The area that falls below the wall of the tube will 

become the percentage of the particles deposited.  Thus for sedimentation calculations, the 

fluid velocity profile is assumed to be laminar plug flow.  In plug flow, the fluid velocity is 

the same across any cross-sectional area of the tube.  When determining the probability of 

sedimentation, the terminal settling velocity (velocity at which the particle settles due to 

gravity) for each particle must be determined.  The settling velocity νsettling (in m/s) is  

6A>BBCDEF = G,8HF4I
�J7  (9) 

where g is acceleration due to gravity in m/s
2
, d is particle diameter in m, and Cc is the 

Cunningham slip correction factor and is nondimensional.  This equation is also only valid 

when the Rep is much less than 1 and d is much less than λ.  The Cunningham slip correction 

factor is necessary when the particle diameter gets smaller and the mean free path is not 

much smaller than particle radii (Finlay 2001).  The Cunningham slip correction factor is 

defined as  
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KL = 1 + 2.25 M
4 (10) 

The distance in which the particle will settle in a particular generation xs (in m) is given by  

NA = νA>BBCDEFP  (11) 

where t is the residence time of a particle in that generation in s.  It is also necessary to 

compute κ to determine sedimentation probability.  The value of κ is 

Q = R5STUUV%WXY
Z23; cos ^ (12) 

where L is the length of an airway in a particular generation in m and θ is the airway 

branching angle.  The probability of gravitational sedimentation for laminar plug flow is  

_A = 1 − �
` abcd�� eZ

R Qf − Z
R Qg1 − eZ

R Qf�h  (13) 

When using this equation, it is important to note that κ is only a real number when it is less 

than ¾.  Due to this, Ps is frequently set to 1 when κ ≥ ¾ because this indicates that it takes a 

particle longer to travel through the length of the tube than it does for it to travel the diameter 

of the tube perpendicular to the flow and therefore sedimentation will occur (Finlay 2001). 

Particle deposition also occurs by means of inertial impaction.  Deposition occurs via 

inertial impaction when there is curvature in an airway and the inertia of the particle is too 

great, resulting in a particle trajectory that no longer follows the fluid flow streamline 

causing the particle to deposit on the airway wall.  Deposition as a result of inertial 

impaction primarily occurs as a result of airway bifurcations and inertial deposition 

probabilities have been well described by empirical relations developed over the past 

century.  The Stokes number determines whether or not inertial impaction will occur and 
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therefore is necessary when evaluating the probability of deposition via impaction.  The 

Stokes number Stk is nondimensional and is  

#Pi = 238H4IG,
�J7;   (14) 

The probability of inertial impaction is given by Chan and Lippmann (1980) and is 

_D = 1.606#Pi + 0.0023 (15) 

This expression was determined based on experimental data in lung casts that take into 

consideration the effects of the larynx and multiple generations (Finlay 2001).   

Other than sedimentation and impaction, particle deposition also takes place as a 

result of Brownian diffusion.  Very small particles have Brownian motion occur due to 

interactions with the molecules of the gas they are carried by.  Brownian motion is when a 

particle collides with the molecules and random walk occurs.  This is considered to be 

diffusion when this takes place with many particles.  The root mean square displacement xd 

(in m) describes the distance the particle travels due to Brownian motion and is  

N4 = j2k4PI
  (16) 

where Dd is the particle diffusion coefficient in m
2
/s.  The particle diffusion coefficient Dd is  

k4 = lmG,
R`74  (17) 

where k is Boltzmann’s constant (1.38x10
-23

 J·K
-1

) and T is the temperature in K (37 

ºC=310.15K).  To determine the probability of Brownian diffusion, ∆ is 

n = lmG,Y
R`7423oI  (18) 
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where k is Boltzmann’s constant and R is the radius of the airway in a generation in m.  The 

probability of deposition due to Brownian diffusion assuming Poiseuille flow in a cylindrical 

tube is given by Ingham (1975) and is  

_4 = 1 − 0.8190��Z.rRs − 0.09670�Jt.��s − 0.03250���Js − 0.05090����.tsI u⁄
     (19) 

Inertial impaction is the dominant deposition mechanism in the larger airways and 

deposition via sedimentation is dominant in the alveolar region.  Also, deposition via both 

impaction and sedimentation increases as the particle size is increased.   

So far, the equations provided determine the probability of each of these deposition 

mechanisms occurring alone, which is unrealistic; in reality, these deposition mechanisms 

occur simultaneously in the lung.  Consequently, an empirical relation that calculates the 

total probability of deposition by taking into consideration all three types of deposition is 

used.  The total probability P is determined using 

_ = (_D1 + _A1 + _41)� 1⁄  (20) 

where Pi is probability of impaction, Ps is the probability of sedimentation, Pd  is the 

probability of Brownian motion, and the value of p (in the exponents) is assumed to be 2 in 

this study.   

The ratio of xd/xs is useful for assessing how important diffusion is when compared 

with sedimentation.  If xd/xs < 0.1, then diffusion becomes negligible and no longer needs to 

be taken into consideration.  When diffusion is not taken into consideration, the total 

probability becomes 

_ = _D + _A − _D_A  (21) 
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 Once the total probability of deposition is determined in each lung generation for 

each particle size, it is necessary to quantify the results in a way that is more applicable to 

dosing.  Most studies assume that the particles move through the lung at the same time at an 

infinite particle density. This is both physically unrealistic and violates several of the 

assumptions used to develop the statistical models. It was instead chosen in this study to 

have each model inhale a normal tidal volume where the particles are homogenously 

distributed throughout the entire volume. The consequence of this is the need to tag particles 

to a particular segment of the tidal volume as the last segment of the tidal volume inhaled 

never reaches the deep lung.  This is achieved using the following equation 

�+% = 1 − ∑ +%&'
+wxUyV (22) 

where i is the generation number, FVi is the fraction of the adjusted cumulative volume still 

available, VTotal is the total adjusted cumulative volume, and ∑Vi-1 is the sum of the adjusted 

volumes above that generation.   
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CHAPTER THREE: HUMAN CORRELATIONS AND DEPOSITION RESULTS 

3.1 Introduction 

Deposition calculations are performed for both males and females and consider a 

range of ages from 3-months old to 21-years old.  A broad range of ages is considered to 

determine if the optimal particle size for alveolar deposition shifts as age increases.  In 

addition, the relationship between deposition and factors other than age are evaluated.  These 

factors include gender, weight, and height.  Weight and height are both evaluated 

individually as well as combined in body mass index (BMI) since it accounts for both of 

these parameters.   

Some studies suggest deposition is highly dependent upon breathing rate (Bennett 

1996), so differences in breathing rate and the resulting affects on particle deposition for 

three different ages (1.92-yr old, 9.42-yr old, and 21-yr old) are also taken into consideration 

by varying breathing frequency.  Since for a particular breathing frequency the 

corresponding breathing rate for each age will not be the same as a result of the differences 

in tidal volume, these breathing rate variations are also discussed.  A sensitivity analysis is 

performed as well to determine the sensitivity of volume-weighted deposition to both 

breathing rate and particle diameter. 
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3.2 Methods 

In the calculations with exclusively humans, volume-weighted deposition is 

determined for the alveolar region (AL) of the lung.  The optimal particle size is the particle 

diameter at which the maximum volume-weighted deposition occurs.  First, the volume-

weighted deposition is determined from 1 µm to 10 µm in 1 µm increments.  From this 

analysis, the specific region in which the maximum volume-weighted deposition occurs is 

discernable.  Volume-weighted deposition is then determined in this specific region in 0.1 

µm increments to determine the optimal particle size to the tenth of a micron.   

This study ignores particles deposited in the conducting airways, generations 0-14, 

because cilia will move the therapeutic up and out of the lung and into the stomach; thus, 

little to no therapeutic effect will be obtained from these particles.  Generations 15-18 are the 

respiratory bronchioles; the particle deposition in these generations is also ignored because 

rapid drug absorption and ideal target region for therapeutic effect is the alveolar region, 

consisting of generations 19-23 in the infant through 3-yr old and generations 19-24 in the 8-

year old through 21-yr old.  However, in the 21-yr old, the aerosol that is inhaled will never 

reach generation 24 because the cumulative adjusted volume of generation 23 in the adult is 

675.2 cm
3
 and the tidal volume is 477.2 cm

3
.  As a result of this, the aerosol that is inhaled 

will never surpass generation 23 and therefore generation 24 has been neglected in 

deposition calculations for the 21-year old.  This only happens for the 21-yr old.   
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3.3 Results and Discussion 

3.31 Volume-Weighted Deposition and Optimal Particle Size Relationships 

Age, weight, height, and body mass index (BMI) are evaluated in this study to 

determine whether correlations exist between these parameters and volume-weighted 

deposition or optimal particle size.  These results are displayed in Figures 3-9.    

Figures 3 (a) and (b) show the relationships between age and weight to volume-

weighted particle deposition, respectively.  Figures 4 (a) and (b) show the relationships 

between height and BMI to volume-weighted deposition, respectively.  Boundary limits (2σ) 

that are 2 standard deviations above and below the trend line are also shown on each graph.  

Based on the results, age and weight have significantly stronger relationships to volume-

weighted deposition than BMI and height.  This is evident by the larger scatter in the BMI 

and height data, lower r
2
 values, and considerably broader 2σ limits of the BMI and height 

results.  Because of this, height and BMI will not be used to describe volume-weighted 

deposition behavior.  The results for BMI are not surprising because BMI typically is not 

used for children because it does not accurately represent them.  CDC growth charts are used 

for children instead because they show what percentile a child is in relation to other children 

of the same age.   

As seen in Figure 3 (a), the increase in volume-weighted deposition as a function of 

age between males and females appears to overlap until approximately 10 years of age.   

After 10 years of age, divergence in volume-weighted deposition between the two genders 

appears.  This is not surprising because as age increases, growth rates between the two 

genders begin to differ from puberty through adulthood.  It is also important to note that 



 

28 

 

based on these results, the rate of increase of volume-weighted deposition (Figure 3 (a) 

slopes) as a function of age tends to be higher for females than for males.  This implies that 

for adult subjects, volume-weighted deposition in subjects of the same age will likely be 

slightly higher in a female than a male.  However, the volume-weighted deposition for the 

14.08-year old is outside of the 2σ bounds on three of these four figures.   This implies that 

there is a possibility that it is an outlier and does not accurately represent the population, 

possibly skewing the result slightly.  Without the 14.08-yr old included in the age versus 

volume-weighted deposition figure (Figure 3 (a)), the differences between volume-weighted 

deposition for males and females in relation to age becomes considerably less significant.   

Figure 3 (b) demonstrates that significant overlap occurs between the males and 

females in relation to volume-weighted deposition as a function of weight.  Because of this, 

it is possible to develop a relationship between volume-weighted deposition and body weight 

for humans in general and gender can be disregarded.  Figure 5 demonstrates this 

relationship; notice the majority of subjects in this study fall within 2σ of this relationship 

despite their gender.   

 

 



 

 

 

 

 

  

 

Figure 3:  (a) Volume-weighted AL deposition as a function of age 
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weighted AL deposition as a function of age     (b) Volume-weighted AL deposition 
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Figure 4:  (a) Volume-weighted AL deposition as a function of height 
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Figure 5: Volume
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olume-weighted AL deposition as a function of weight (genders combined)

(a) and (b) show the relationships between age and weight, respectively, 

optimal particle size where maximum volume-weighted deposition occurs

(a) and (b) show the relationships between height and BMI, respectively, and optimal 

It is apparent from these results that age and weight have stronger correlations 

to optimal particle size when compared to BMI.  This is consistent with 

weighted deposition.  This is evident by the larger scatter in th

values, and considerably more broad 2σ limits. 
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Figure 6:  (a) Optimal particle size as a function of age 
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as a function of age      (b) Optimal particle size as a function of weight
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Figure 7:  (a) Optimal particle size as a function of height
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particle size as a function of height      (b) Optimal particle size as a function of BMI
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Figure 8: Optimal particle size for volume
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Optimal particle size for volume-weighted AL deposition as a function of height (genders combined)

the results for volume-weighted deposition, height also appear

similar relationship to optimal particle size as age and weight, which is seen in Figure 7 (a)

there is virtually no difference between the results for males and females, the two 

and displayed in Figure 8.  The two points that lie above the 2

-yr old female and 18-yr old male, both of which are consider

abnormally short for their age.  This may explain why they do not fall within the 2

when comparing optimal particle size to height.    
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Figure 9: Optimal particle size for volume
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Optimal particle size for volume-weighted AL deposition as a function of weight (genders combined)

also shows minimal difference between males and females in optimal 

particle size in relation to body weight.  For optimal particle size, it is once again possible to 

develop a relationship as a function of body weight for humans in general and genders are

9 demonstrates this relationship; again notice that the majority of subjects 

σ of this relationship despite their gender.  Based on these results, 

the following correlations can be used to determine volume-weighted deposition and optimal 

particle diameter for a subject of a particular weight: 

 (}�) = 0.042 ∙ | (i~) + 2.774  (23)

0.0005 ∙ | (i~) − 0.0034   (24)
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where doptimal is the optimal particle diameter in µm, VWD is volume-weighted deposition, 

and W is body weight in kg.   

 

3.32 Monodisperse vs. Polydisperse Sprays: Deposition and Optimal Particle Size Results 

Based on the analysis, clear differences in deposition as a function of age are 

apparent.  Figures 10 (a) and (b) compare the traditional particle deposition efficiency value 

based purely on number to the volume-weighted particle deposition in the alveolar region for 

children (under 10 years old).  The lines on these figures are approximately where the 

maximum deposition occurs and assist in visually representing the shift, if one exists, in 

optimal particle size as age increases.  Traditional deposition efficiency η (in %) is  

� = .�TW
.wxU  (25) 

where NGen is the number of particles that deposit in a particular generation and NTot is the 

total number of particles.  The traditional deposition efficiency describes a monodisperse 

spray well.  Traditional deposition efficiency, calculated solely on the number of particles 

deposited, assumes that within a given tidal volume the same drug volume is delivered 

regardless of the particle size.  In reality, however, particle size is a critical factor when 

determining delivered therapeutic dose.  This is because the volume of a particle is 

proportional to the particle radius cubed and as a result the volume of therapeutic delivered is 

dependent upon the particle diameter (Newhouse and Ruffin 1979).   For example, the 

particle number density in a monodisperse aerosol with 1 µm particles would need to be 

increased by a factor of 125 to achieve the same drug volume as a monodisperse aerosol with 
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5 µm particles because the radius of a 5 µm particle is 5 times greater than the radius of a 1 

µm particle.  There is some clinical evidence using monodisperse sprays that optimal 

alveolar deposition is obtained with particle diameters between 2 and 3 µm  (Malcolmson 

and Embleton 1998), which is supported by Figure 10 (b).   However, most aerosol devices 

used in a clinical setting deliver a polydisperse spray.  Thus, should the optimal particle size 

be determined solely on the number of particles deposited or the largest volume deposited?      

The volume-weighted deposition calculated in this study helps address this question.  

The volume-weighted deposition VWD is the traditional deposition efficiency multiplied by a 

particle volume weighting factor to take into consideration volume differences.  It is 

nondimensional and is 

�|k = .�TW
.wxU

+��
+'3  (26) 

where VPD is the volume of the particle being considered and V10 is the volume of the 10 

micron particle.  It assumes that the same particle number density is delivered, resulting in a 

greater therapeutic volume for larger particle diameters.   For example, the volume-weighted 

deposition takes into consideration that, even if traditional deposition efficiency is higher for 

the 1 µm particle, the volume of therapeutic delivered per particle is 1000 times less than for 

the 10 µm.  Notice the dramatic difference between the results.  The traditional deposition 

efficiency based on number does not change substantially with age (this is true through 

adulthood and despite gender); however, the volume-weighted depositions and the particle 

sizes at which maximum volume-weighted deposition occurs are dependent upon age and 

body weight, which is evident in Figure 10 (a).  Figure 10 (a) visually demonstrates that the 
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optimal particle size for volume-weighted deposition increases from 2.4 µm for the infant to 

4.5 µm for the 9.42-yr old.    

Finally, Figure 10 (a) is typical of later calculations that show that the volume of 

therapeutic delivered is dramatically different as age increases.  At the optimal particle size 

for infants (2.4 µm) based upon volume-weighted deposition, the infant receives 

approximately 16 times less volume than the 8.67-yr old. 
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Figure 10:  (a) Volume-weighted AL deposition for children under 10 years old             (b) Traditional AL deposition efficiency for children under 10 years old
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Figures 11 (a) and (b) show the traditional deposition efficiency in the AL region for 

females and males, respectively.  The maximum traditional deposition efficiency results and 

the particle diameters at which these maximum values occur are summarized in Table 5.  

Like the results for the children under 10 years old, the optimal particle size remains constant 

at approximately 2-3 µm.  This is visually shown in Figures 11 (a) and (b), as well as seen in 

Table 5.  In addition, these figures and this table show that the traditional deposition 

efficiency magnitude typically increases as age and body weight increase. 

Figures 12 (a) and (b) show the volume-weighted deposition for the AL region.  As 

age and body weight increase, AL volume-weighted deposition also consistently increases.   

It is apparent that the optimal particle size for deposition in the AL region of the lung 

increases as age and body weight increase as well, which is also evident in Figures 6 (a) and 

(b).  The maximum volume-weighted deposition values, as well as the particle diameters at 

which these maximum values occur (optimal particle sizes), are summarized in Table 5.  
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                        Figure 11:   (a) Traditional AL deposition efficiency for females                                              (b) Traditional AL deposition efficiency for males  
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                     Figure 12: (a) Volume-weighted AL deposition for females                                        (b) Volume-weighted AL deposition for males
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Table 5: Summary of results with exclusively humans: maximum volume-weighted deposition values, maximum 

traditional deposition efficiency values, and the particle diameters at which these maximum values occur 

 

   

As seen in Table 5, these results show that the particle diameter should be adjusted 

for the appropriate age/body weight in order to maximize deposition in the desired region of 

the lung.  These results also show that if a therapeutic that is designed for AL deposition in 

the adult is given to an infant, nearly all of the therapeutic will not reach the infant’s alveolar 

region because the particle size is too large.  The differences in deposition and optimal 

particle size as a function of age and body weight are expected because of the differences in 

lung size.   

 

3.33 Breathing Rate Variation 

All previous calculations were conducted at normal breath rates, but clinical studies 

suggest that there may be an optimal breath rate. To explore this concept, differences in 

breathing rates for three males (1.92-yr old, 9.42-yr old, and 21-yr old) are analyzed in this 

Age (yr) Gender
Weight 

(kg)

Volume-

Weighted 

Depositon

Optimal Particle 

Diameter (µm)

Traditional 

Deposition 

Efficiency

Optimal Particle 

Diameter (µm)

0.25 F 5.9 0.00026 2.4 4.78% <1

1.75 M 9.0 0.00038 2.5 1.96% <1

1.92 M 9.1 0.00136 3.5 4.98% 2.3

2.33 F 12.2 0.00097 3.4 2.94% 2.5

3.00 F 13.6 0.0025 3.7 6.90% 2.7

8.67 M 26.0 0.0105 4.5 30.06% 2.3

9.42 M 40.9 0.0100 4.3 32.04% 2.2

14.00 F 51.0 0.0216 5.1 35.96% 2.4

14.08 F 56.0 0.0306 5.4 42.50% 2.4

18.00 M 52.0 0.0244 5.2 38.75% 2.4

21.00 M 67.0 0.0222 4.9 43.82% 2.1
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study by varying breathing frequency.  Figure 13 shows the traditional deposition efficiency 

as a function of breathing rate.   

 

 

 

Figure 13: Maximum traditional deposition efficiency that occurs at each breathing rate 

 

It is apparent from this figure that very low breathing rates are necessary for optimal 

traditional deposition efficiency.  The particle sizes at which these optimal efficiency values 

occur are between 1 and 2 µm for all three ages.  Moreover, the breathing rates at which 

optimal deposition efficiency occurs are considerably lower than normal tidal breathing rates 

for all of the subjects represented.   
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Figure 14: Maximum volume-weighted deposition that occurs at each breathing rate 

 

Figure 14 shows the maximum volume-weighted deposition that occurs at each 

breathing rate.  This figure clearly shows that different breathing rates are necessary for each 

age for optimal deposition, as well as verifies that maximum volume-weighted deposition is 

age and body weight dependent.    Table 6 shows the maximum volume-weighted deposition 

values in addition to the particle sizes and breathing rates at which these maximums occur.  

Table 7 shows the maximum volume-weighted deposition and the corresponding particle 

sizes at normal breathing rates.   
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Table 6: Maximum volume-weighted deposition and the breathing rates where the maximum values occur 

 

 

Table 7: Maximum volume-weighted deposition at normal breathing rates  

 
 

Based on these results, the breathing rate at which maximum volume-weighted 

deposition occurs is different for all three ages.  In addition, for all of the ages, the breathing 

rates at which the maximum volume-weighted deposition occurs are lower than normal tidal 

breathing rates.  Controlling breathing rates can be very difficult for younger ages and it 

possibly not feasible; nevertheless, based on these results deposition can be improved if the 

older children and adults can control breathing rate, which is likely achievable.  Comparison 

of Tables 6 and 7 shows that for the 1.92-yr old, the volume-weighted deposition that occurs 

at the optimal breathing rate is approximately 3.3 times higher than that which occurs at the 

normal breathing rate.  Also, the optimal breathing rate is approximately 3.4 times less than 

the normal breathing rate for this age.  For the 9.42-yr old, the volume-weighted deposition 

at the optimal breathing rate for this age is nearly twice that which occurs at the normal 

breathing rate.  For this age, the optimal breathing rate is almost 2.5 times the normal 

breathing rate.  For the 21-yr old, the volume-weighted deposition at the optimal breathing 

rate is only approximately one tenth higher than the deposition that occurs at the normal 

Age (yr)
Weight 

(kg)

Maximum Volume-

Weighted Deposition  

Breathing Rate 

(L/min)

Particle 

Diameter (µm)

1.92 9.1 0.0046 1.39 4.1

9.42 40.9 0.0206 4.14 5.0

21.00 67 0.0243 9.54 5.3

Age (yr)
Weight 

(kg)

Maximum Volume-

Weighted Deposition  

Normal 

Breathing Rate 

(L/min)

Particle 

Diameter (µm)

1.92 9.1 0.0014 4.72 3.5

9.42 40.9 0.0100 10.09 4.3

21.00 67 0.0222 13.73 4.9
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breathing rate, and the optimal breathing rate is only approximately four tenths higher than 

the normal breathing rate.  Based on these results, the optimal breathing rates get closer to 

normal breathing rates as age/body weight increase.  Also, lowering the breathing rate to 

maximize deposition is more important for children than for adults based on the difference in 

magnitude of volume-weighted deposition at optimal and normal breathing rates.  Tables 6 

and 7 also show that at the optimal breathing rates, the optimal particle size is nearly half a 

micron higher than at normal breathing rates.  This essentially means that optimal particle 

size is dependent upon breathing rate. 

 

 

 

Figure 15: Particle size where maximum volume-weighted deposition occurs 
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Figure 15 verifies that even when at the optimal breathing rates for each age, the 

magnitude of maximum volume-weighted deposition and the optimal particle size are age 

and body weight dependent.  It is also significant to mention that tidal breathing rates vary 

throughout the population and that these variations will affect deposition results.   

 

3.34 Sensitivity Analysis 

Sensitivity is determined for volume-weighted deposition as a function of breathing 

rate and particle diameter by evaluating the change in the performance parameter, 

normalized, to the change in the input variable, normalized.  For example, when performing 

the sensitivity of volume-weighted deposition to breathing rate, the performance parameter is 

the volume-weighted deposition and the input variable is the breathing rate.  The larger the 

sensitivity value, the more sensitive the performance parameter is to the input variable.   

The sensitivity analyses for the 1.92-yr old as a function of breathing rate and particle 

diameter are given in Tables 8 (a) and (b), respectively.  Tables 9 (a) and (b) show the 

sensitivity analyses for the 9.42-yr old, and Tables 10 (a) and (b) show the sensitivity 

analyses for the 21-yr old.  The values highlighted in green are the normal tidal breathing 

rates for each age and the values highlighted in blue are the optimal breathing rates, which 

were determined when evaluating the effect of breathing rate on deposition.  The values 

shown in red are where the maximum volume-weighted deposition values occur.   
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Table 8: (a) Breathing rate sensitivity analysis for the 1.92-yr old (top)    

 (b) Particle diameter sensitivity analysis for the 1.92-yr old (bottom)     

1.92-yr Old

Breathing Rate 

(L/min)
1 2 3 4 5 6 7 8 9 10

0.087

0.17 0.652 2.000

0.87 -0.606 0.931 1.250 1.250 1.250

1.39 -0.522 -0.202 0.488 0.779 1.509

1.74 -0.437 -0.409 -0.236 -0.142 -0.032 3.000

2.60 -1.265 -1.538 -1.450 -1.660 -2.369

3.47 -0.888 -1.284 -1.404 -2.142 -4.640

4.72 -2.941 -4.895 -7.347 -10.708

5.21 -0.569 -0.979 -1.464 -2.801

6.07 -2.173 -4.378 -9.593 -40.256

6.94 -0.968 -2.036 -5.243 -357.199

7.81 -0.978 -2.195 -6.121

8.68 -0.989 -2.376 -5.156

9.54 -1.001 -2.587 -7.315

10.41 -1.012 -2.841 -12.174

Particle Diameter (µm)

1.92-yr Old

Breathing Rate 

(L/min)
1 2 3 4 5 6 7 8 9 10

0.087

0.17 0.985

0.87 1.825 1.651 -0.075 -13.183

1.39 1.847 2.074 0.711 -2.310

1.74 1.849 2.121 0.806 -2.053 -62.899

2.60 1.841 2.135 0.683 -2.938

3.47 1.827 2.115 0.210 -6.294

4.72 1.803 1.977 -0.491

5.21 1.792 1.914 -1.201

6.07 1.747 1.457 -10.266

6.94 1.720 1.009 -362.784

7.81 1.689 0.368

8.68 1.653 -0.180

9.54 1.611 -1.210

10.41 1.560 -3.691

Particle Diameter (µm)
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Table 9: (a) Breathing rate sensitivity analysis for the 9.42-yr old (top)    

 (b) Particle diameter sensitivity analysis for the 9.42-yr old (bottom)     

9.42-yr Old

Breathing Rate 

(L/min)
1 2 3 4 5 6 7 8 9 10

0.30

0.59 0.349 1.480 2.000

2.96 -0.421 0.573 1.107 1.250 1.250 1.250 1.250

4.14 -0.788 -0.437 -0.086 0.376 0.639 0.730 2.286

8.87 -0.918 -0.678 -0.694 -1.059 -1.665 -2.587 -10.743

10.09 -0.825 -0.901 -1.183 -1.761 -2.939 -6.658

11.83 -0.909 -1.093 -1.489 -2.173 -5.032 -11.900

14.79 -1.044 -1.386 -1.971 -3.371 -7.521

17.75 -1.083 -1.581 -2.478 -4.790 -21.309

20.71 -1.115 -1.793 -2.977 -7.223 -41.328

23.67 -1.144 -1.956 -3.603 -10.315

26.62 -2.393 -4.793 -13.156 -55.236

29.58 -1.116 -2.374 -5.718 -28.834

32.54 -1.152 -2.653 -5.251

35.50 -1.186 -3.017 -6.870

Particle Diameter (µm)

9.42-yr Old

Breathing Rate 

(L/min)
1 2 3 4 5 6 7 8 9 10

0.30 0.508

0.59 1.530 -2.177

2.96 1.809 1.904 1.120 0.156 -2.479 -19.123

4.14 1.825 2.002 1.491 0.563 -2.208 -4.447

8.87 1.840 1.996 1.135 -0.353 -4.345 -25.376

10.09 1.839 1.965 0.960 -0.981 -7.775

11.83 1.835 1.913 0.709 -2.886 -15.769

14.79 1.826 1.813 0.048 -6.795

17.75 1.813 1.673 -1.030 -24.852

20.71 1.798 1.494 -3.170 -96.433

23.67 1.780 1.245 -7.318

26.62 1.733 0.181 -28.815

29.58 1.703 -0.581 -77.074

32.54 1.666 -1.263

35.50 1.620 -2.356

Particle Diameter (µm)
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Table 10: (a) Breathing rate sensitivity analysis for the 21-yr old (top)    

 (b) Particle diameter sensitivity analysis for the 21-yr old (bottom)     

21-yr Old

Breathing Rate 

(L/min)
1 2 3 4 5 6 7 8 9 10

0.48

0.95 0.506 1.831 2.000

4.77 -0.132 0.800 1.238 1.250 1.250 1.250

9.54 -1.048 -0.252 0.247 0.521 0.997 1.421 2.000 2.000

13.73 -1.071 -0.339 -0.290 -0.418 -0.229 -0.213 -0.844 -0.054

19.09 -1.142 -0.772 -0.868 -0.942 -1.231 -2.344 -4.575

23.86 -1.091 -0.992 -1.248 -1.266 -2.487 -4.691 -13.748

28.63 -1.082 -1.144 -1.319 -1.936 -3.945 -10.018

33.40 -1.076 -1.293 -1.668 -2.975 -6.478 -18.163

38.18 -1.072 -1.378 -2.122 -3.935 -6.974

42.95 -1.070 -1.477 -2.182 -4.079 -9.871

47.72 -1.069 -1.572 -2.410 -4.544 -21.010

52.49 -1.069 -1.667 -2.671 -5.529 -21.559

57.26 -1.070 -1.846 -2.969 -7.798

62.03 -1.071 -1.874 -3.308 -9.654

Particle Diameter (µm)

21-yr Old

Breathing Rate 

(L/min)
1 2 3 4 5 6 7 8 9 10

0.48 -3.689

0.95 1.355 -42.796

4.77 1.790 1.773 1.169 -1.296 -5.457

9.54 1.845 2.045 1.611 0.729 -0.611 -4.266 -17.402

13.73 1.871 2.058 1.525 0.947 -0.580 -6.304 -12.533

19.09 1.881 2.037 1.485 0.687 -2.108 -11.329

23.86 1.883 1.995 1.478 -0.154 -4.494 -28.461

28.63 1.882 1.971 1.265 -1.458 -10.902

33.40 1.879 1.924 0.852 -3.727 -25.555

38.18 1.875 1.839 0.288 -5.949

42.95 1.870 1.761 -0.341 -10.798

47.72 1.864 1.671 -1.088 -28.685

52.49 1.857 1.566 -2.151 -61.353

57.26 1.848 1.450 -4.135

62.03 1.840 1.300 -7.301

Particle Diameter (µm)
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Aside from the top row of the breathing rate sensitivity results and the 1 micron 

column for the particle diameter sensitivity results, all of the blank positions in each table are 

present because the volume-weighted deposition values are zero and consequently sensitivity 

calculations are not applicable.   

Tables 8 (a) and (b) show that for young children, sensitivity to breathing rate is 

greater than sensitivity to particle diameter at normal breathing rates.  However, the 

sensitivity of volume-weighted deposition to both breathing rate and particle diameter are the 

lowest at the optimal breathing rate.  Tables 9 (a) and (b) show that for older children, the 

sensitivity of volume-weighted deposition to breathing rate is only slightly higher than 

sensitivity to particle diameter, exhibiting the lowest sensitivity to both at optimal breathing 

rates. Tables 10 (a) and (b) show that for healthy adults, the magnitude of sensitivity of 

volume-weighted deposition to both breathing rate and particle diameter is similar regardless 

of breathing rate.  Also, there does not appear to be a difference in sensitivity at the normal 

breathing rate and optimal breathing rate.  This is possibly because these two breathing rates 

are in close proximity to each other.   

Also, when comparing Tables 8-10 (a), it is apparent that sensitivity to breathing rate 

changes as a function of age and/or body weight.  The sensitivity is not the same for the 

1.92-yr old as it is for the 21-yr old; at normal breathing rates,  sensitivity of volume-

weighted deposition to breathing rate decreases as age/ body weight increase.  However, 

Tables 8-10 also show that at the optimal breathing rate and optimal particle diameters, the 

sensitivity to breathing rate and particle diameter tends to be relatively low for all ages.   
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3.4 Conclusions 

For volume-weighted alveolar deposition, the variation of optimal particle size is 

~2.5 µm for infants to 5-6 µm for adults.  This represents a two-fold increase in optimal 

particle size as age/body weight increase.  This study brings to light the correlations that 

exist for both genders between deposition and factors such as age and body weight.  This is 

done for the purpose of developing relationships between age and weight to optimal particle 

size and volume-weighted deposition.  For volume-weighted deposition and optimal particle 

diameter as a function of weight, significant overlap occurs between the two genders and the 

genders are combined.  The following correlations can be used to determine approximate 

volume-weighted deposition VWD and optimal particle diameter doptimal at normal breathing 

rates for both genders of a particular weight W. 

<z1BD{=C (}�) = 0.042 ∙ | (i~) + 2.774 

 �|k = 0.0005 ∙ | (i~) − 0.0034 

 

The results of this study indicate that slowing breathing rates below normal breathing 

rates, especially in children, will likely enhance deposition performance.  Also, the results 

indicate that optimal particle size shifts as a result of changes in breathing rate and this 

should be taken into consideration when developing delivery devices and delivering 

therapeutics.   

The sensitivity analysis performed shows that for very young children, sensitivity to 

changes in breathing rate is greater than sensitivity to changes in particle diameter at normal 

breathing rates.  However, the sensitivity of volume-weighted deposition to both breathing 

rate and particle diameter are the lowest at the optimal breathing rate.  For older children, the 
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sensitivity of volume-weighted deposition to breathing rate is only slightly higher than 

sensitivity to particle diameter, exhibiting the lowest sensitivity to both at optimal breathing 

rates.  For healthy adults, the magnitude of sensitivity of volume-weighted deposition to both 

breathing rate and particle diameter is similar regardless of breathing rate, and there does not 

appear to be a difference in sensitivity at the normal and optimal breathing rates.  

However, these results only take into account one morphometric model for each 

represented age.  Since lung geometry can vary significantly between individuals, additional 

research is needed to address the differences between individuals of each age group as well 

as the differences between males and females of the same age and body weight.  

Additionally, more research is needed for adolescents and adults to determine if a 

relationship exists between BMI and optimal particle size or volume-weighted deposition 

since a limited number of subjects of these ages is presented in this study.    

Further, these results fail to capture that differences exist in inspiration and expiration 

rates.  Moreover, clinical studies are needed to validate these statistical results because the 

models used in this study are static and fail to account for the dilation of the lung geometry 

during inspiration and expiration.  It is only in models that can capture this aspect that the 

effects of lung remodeling as a result of health status can be explored.   
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CHAPTER FOUR: COMPARISON BETWEEN HUMANS AND ANIMALS  

4.1 Introduction 

Particle deposition calculations are performed for a mouse, rat, and canine and 

compared to the human models.  These animals vary in body size and weight and are 

frequently used in dosing studies; therefore, they are compared to humans to determine their 

applicability in relation to particle deposition for the various human ages presented in this 

study.  Body weight is the only appropriate comparison parameter between humans and 

animals; therefore, body weight is used to evaluate deposition in animals and provide 

comparison with humans.   

 

4.2 Methods 

In the calculations with humans and animals, traditional deposition efficiency and 

volume-weighted deposition are once again determined for the alveolar region.  However, as 

previously mentioned, respiratory bronchioles are not present in the mouse and rat, and thus 

only the conducting airways and the alveolar region are specified.   As a result, to allow for 

more accurate comparison, the generations included in the alveolar region of the lung are 

modified for the human models so that the alveolar region is described in a similar fashion to 

the animal models.  In the human models, the terminal bronchiole and respiratory bronchiole 

generations are considered to be part of the alveolar region when compared with the animal 

species.  Consequently, for the infants and young children (3-mo old to 3-yr old), generations 
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15-23 are considered to be the alveolar region.  For the other ages that are evaluated (8.67-yr 

old to 21-yr old), generations 15-24 are considered to be the alveolar region.  However, 

generation 24 is once again not included in the deposition calculations for the 21-yr old 

because the tidal volume will not reach this generation, as discussed in Chapter 3.   

The total number of generations in the lung and the number of generations in the 

alveolar region are dependent upon the animal species.  For the mouse, generations 15-21 

make up the alveolar region.  For the rat, generations 15-23 are considered to be the alveolar 

region.  For the canine, the alveolar region consists of generations 21-29. 

 

4.3 Results and Discussion 

Figure 16 (a) shows the volume-weighted deposition for humans and animals.  Figure 

16 (b) shows the optimal particle size for volume-weighted deposition for humans and 

animals.  Based on Figure 16 (a), the rate at which deposition increases as a function of body 

weight is only slightly higher for animals than for humans, but the difference in magnitude of 

deposition as a function of body weight in animals and humans appears to be statistically 

significant.  For example, the magnitude of volume-weighted deposition for the mouse 

appears to be nearly equal to that of the 3-yr old despite a considerable difference in body 

weight.   

  



 

 

 

 

 

 

 

    

                    Figure 16: (a) VWD as a function of weight (humans and animals) 
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VWD as a function of weight (humans and animals)                (b) Optimal particle size for VWD as a function of weight (humans and animals)
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Figure 16 (b) shows that the rate at which optimal particle diameter for volume-

weighted deposition increases in relation to body weight is higher for animals that for 

humans; the rate of increase in optimal particle size for volume-weighted deposition is 2/3 

times higher for animals than for humans.  In addition, there is once again a difference 

between humans and animals in relation to optimal particle size magnitude; the magnitude of 

optimal particle size for volume-weighted deposition in relation to body weight is higher for 

animals than for humans.   

The human and animal results for traditional deposition efficiency, volume-weighted 

deposition, and optimal particle sizes for each are summarized in Table 11.  Despite 

redefining the alveolar region for the humans, the optimal particle size for traditional 

deposition efficiency remains relatively constant between 2.5 to 4 µm for all species 

regardless of body weight.   

 

Table 11: Summary of results with animals and humans: maximum volume-weighted deposition values, maximum 

traditional deposition efficiency values, and the particle diameters at which these maximum values occur 

 

Age (yr) Gender
Weight 

(kg)

Volume-Weighted 

Depositon

Optimal Particle 

Diameter (µm)

Traditional 

Deposition 

Efficiency

Optimal Particle 

Diameter (µm)

0.25 F 5.9 0.00072 2.9 6.87% <1

1.75 M 9.0 0.00081 2.7 7.57% <1

1.92 M 9.1 0.00373 4.5 7.94% 2.5

2.33 F 12.2 0.00456 5.2 6.59% 3.5

3.00 F 13.6 0.00831 5.3 11.38% 3.5

8.67 M 26.0 0.01869 4.9 34.67% 2.4

9.42 M 40.9 0.01682 4.7 36.39% 2.3

14.00 F 51.0 0.05358 6.6 44.72% 3.3

14.08 F 56.0 0.07735 7.4 51.22% 3.3

18.00 M 52.0 0.06423 6.9 47.69% 3.2

21.00 M 67.0 0.05099 6.4 51.57% 3

B6C3F1 Mouse 0.0256 0.00887 5.3 10.81% 3.7

Long- Evans Rat 0.33 0.01512 5.6 15.95% 3.7

Beagle Dog 11.6 0.02891 6.5 26.88% 3.2
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When considering the animal results, the alveolar deposition and optimal particle 

sizes for the animals increase as a result of body size increase (from mouse to rat to canine).  

However, even though the mouse is considerably smaller in size than all of the humans, 

Table 11 shows that the volume-weighted deposition and traditional deposition efficiency for 

the mouse very closely correspond to that of the 3-yr old, as well as the optimal particle size 

for volume-weighted deposition.  The volume-weighted deposition and traditional deposition 

efficiency values for the other animal species increase from here.     

These results are also displayed in Figure 17, which shows volume-weighted 

deposition as a function of particle diameter for the animal species in comparison with 

humans.  The similarities between animals and humans are surprising given the dramatic 

difference in airway dimensions, particularly from a mouse to an adult human.  For example, 

the diameter and length of the mouse trachea are 0.137 cm and 0.897 cm, respectively, 

whereas the diameter and length of the 21-yr old human trachea are 2.060 cm and 12.920 cm, 

respectively.  Clearly, from these dimensions alone it is apparent that the difference between 

the airway dimensions and the resulting airway volumes of these species is quite significant.  

Also, it is surprising to observe that the smallest animal exhibits optimal particle sizes within 

a range consistent with the younger humans.    

Comparison of Table 5 and Table 11 shows that the optimal particle size for humans 

has shifted higher for each age as a result of adding the respiratory bronchioles to the 

alveolar region.  These results are anticipated because the optimal particle size for volume-

weighted deposition in the respiratory bronchioles was calculated to be approximately 2 µm 

higher for a particular age than the alveolar deposition.  Additionally, the magnitude of 
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volume-weighted deposition for the humans increases as a result of adding the respiratory 

bronchioles to the alveolar region, but these results are expected.      

 

 

Figure 17: Volume-weighted AL deposition in humans and animals 

 

Based on Figure 17, the mouse deposition and optimal particle size correspond 

closely with the 3-yr old and as a result the mouse is a generally a relatively good model for 

infants and young children.  Despite a slight difference in optimal particle size, the 

similarities in volume-weighted deposition between the rat and the 9.42-yr old indicate that 

the rat is likely a relatively good model for older children.  Also, even though the deposition 

in the canine does not correspond to any of the particular human subjects presented in this 
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study, the volume-weighted deposition and optimal particle size indicate that the canine 

likely represents adolescents reasonably well.   

 

4.4 Conclusions 

Having a firm understanding of the changes in deposition between animal models and 

the human target population is critical when translating dosing level from an animal model to 

a human model.  Simply administering more drug for a higher body mass is likely 

inappropriate and could potentially lead to over or under dosing. 

These results indicate that the mouse represents the traditional deposition efficiency, 

volume-weighted deposition, and optimal particle size for the 3-yr old female very well and 

is likely generally a good model of optimal particle size for younger children.  The rat is 

likely a good model for older children based on the similarities in volume-weighted 

deposition to the 9.42-yr old.  The canine, on the other hand, likely models adolescent 

humans reasonably well generally although it does not exactly match any of the subjects 

presented in this study.  The rates of increase of deposition and optimal particle size as a 

function of mass, however, are different among the animals and the small human sample 

population represented in this study.   

Furthermore, it is obvious from the increase in volume-weighted deposition and the 

shift in optimal particle size that that deposition and optimal particle sizes for humans 

depend upon how the regions of the lung are defined.  If the generations that are included in 

the alveolar region are changed, these results demonstrate that the deposition will change.  

Awareness of this is critical when determining and comparing deposition between various 
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models.  It is important to define similar lung regions for each model for the results to be 

accurately compared. 
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CHAPTER FIVE: HELIOX COMPARED TO AIR 

5.1 Introduction and Methods 

Calculations for the humans and animals are performed with 80/20 heliox in addition 

to air because some research studies suggest that heliox decreases resistance in the lung thus 

leading to an increase in alveolar particle deposition (Corcoran and Gamard 2004, Gemci, et 

al. 2003, Kim and Corcoran 2009).  These calculations are performed by replacing the 

density and dynamic viscosity of air with the property values for heliox.  The density of 

80/20 heliox is approximately 1/3 that of air and the dynamic viscosity is slightly higher than 

that of air.  The heliox results are compared to the air results to determine if any 

enhancement in particle deposition occurs as a consequence of the differences in these 

properties.  The effects of heliox on tidal volume and respiratory conditions that are 

suggested by Corcoran and Gamard (2004) are not taken into consideration.   

   

5.2 Results and Discussion 

Figure 18 shows the volume-weighted deposition for the heliox and air for human 

subjects.  The difference in the results between air and heliox in this study appear to be 

insignificant.  The use of heliox in place of air does not seem to have any effect on the 

volume-weighted deposition for the young children (3-years old and under).  For the older 

ages presented in this study, the slight increase in particle deposition as a result of the heliox 
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is likely due to statistical error as a result of the all of the assumptions made in this study.  In 

addition, no change in optimal particle size occurs as a result of the addition of heliox.   

 

 

Figure 18: Volume-weighted AL deposition in humans with air and heliox 

 

 

5.3 Conclusions 

No apparent change in particle deposition efficiency in the alveolar region occurs in 

this study as a result of the differences between dynamic viscosity and density of air and 

heliox.  Other property differences between air and heliox were not taken into consideration 

in this study, and there is a possibility that heliox might have beneficial effects as a result of 

factors not addressed in this study. 
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CHAPTER SIX: SUMMARY AND CONCLUSIONS 

6.1 Model Summary 

This study uses respiratory conditions, lung morphometry models, and lung volumes 

for humans and animal species, along with a static statistical mathematical model, to provide 

probabilities of alveolar deposition via inertial impaction, gravitational sedimentation, and 

Brownian motion.  The human models used in this study include males and females ranging 

in age from 3-months old to 21-years old; the animal models in this study include the 

B6C3F1 mouse, the Long-Evans hooded rat, and the Beagle dog.  As long as appropriate 

lung morphometry models, respiratory conditions, and lung volumes are available, this 

model can easily be used to determine deposition for other subjects.    

 

6.2 Human Deposition, Optimal Particle Size, and Breathing Rate Conclusions 

This study hypothesized that the optimal breathing rate and optimal particle size for 

volume-weighted deposition are dependent upon body weight, with both increasing as body 

weight increases.  The results of this study verify that this hypothesis is correct.  For volume-

weighted alveolar deposition at normal breathing rates, the variation of optimal particle size 

is ~2.5 µm for infants to 5-6 µm for adults, which represents a two-fold increase in optimal 

particle size as age/body weight increase.  Correlations are developed in this study that 

determine volume-weighted deposition and optimal particle size as a function of body 

weight.  These correlations are shown below and can be used for both genders to determine 
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approximate volume-weighted deposition VWD and optimal particle diameter doptimal at 

normal breathing rates for subjects of a particular weight W. 

<z1BD{=C (}�) = 0.042 ∙ | (i~) + 2.774 

 �|k = 0.0005 ∙ | (i~) − 0.0034 

 

The results of this study also indicate that slowing breathing rates below normal 

breathing rates, especially in children, enhances deposition performance.  Also, the results 

indicate that optimal particle size shifts as a result of changes in breathing rate and this 

should be taken into consideration when developing delivery devices and delivering 

therapeutics.   

The sensitivity analysis performed shows that for very young children, sensitivity of 

volume-weighted deposition to changes in breathing rate is greater than sensitivity to 

changes in particle diameter at normal breathing rates, and the sensitivity to both breathing 

rate and particle diameter are the lowest at the optimal breathing rate.  For older children, the 

sensitivity of volume-weighted deposition to breathing rate is only slightly higher than 

sensitivity to particle diameter, exhibiting the lowest sensitivity to both at optimal breathing 

rates.  For healthy adults, the magnitude of sensitivity of volume-weighted deposition to both 

breathing rate and particle diameter is similar regardless of breathing rate, and there does not 

appear to be a difference in sensitivity at the normal and optimal breathing rates.  

 

6.3 Human and Animal Deposition and Optimal Particle Size Conclusions 

This study hypothesized that the delivered dose (volume-weighted deposition) and 

optimal particle size will differ significantly between various animal species and humans.  
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When translating dose from an animal model to a human model, simply administering more 

drug for a higher body mass is determined in this study to be inappropriate and could 

potentially lead to over or under dosing.  Despite considerable differences in body weight, 

each animal evaluated in this study surprising represents a human age group relatively well.   

The results comparing deposition in humans and animals indicate that the mouse 

represents the traditional deposition efficiency, volume-weighted deposition, and optimal 

particle size for the 3-yr old female very well and is likely generally a good model of optimal 

particle size for younger children.  The rat is likely a good model for older children based on 

the similarities in volume-weighted deposition to the 9.42-yr old.  The canine, on the other 

hand, likely models adolescent humans reasonably well generally although it does not 

exactly match any of the subjects presented in this study.  The rates of increase of deposition 

increase and optimal particle size as a function of mass, however, are different among the 

animals and the small human sample population represented in this study.  The similarities 

and differences between humans and animal species need to be kept in mind in relation to 

therapeutic particle size and dosing.     

Furthermore, it is obvious from the increase in volume-weighted deposition and the 

shift in optimal particle size that that deposition and optimal particle sizes for humans 

depend upon how the regions of the lung are defined.  If the generations that are included in 

the alveolar region are changed, these results demonstrate that the deposition will change.  

Awareness of this is critical when determining and comparing deposition between various 

models.  It is important to define similar lung regions for each model for the results to be 

accurately compared. 
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6.4 Heliox and Air Comparison Conclusions 

This study hypothesized that heliox will lead to enhanced deposition when compared 

to air as a result of differences in density and dynamic viscosity.  The results of this study 

determine that heliox has no apparent effect on particle deposition in the alveolar region 

when compared to air as a result of the differences in density and dynamic viscosity.  

However, other property differences between air and heliox were not taken into 

consideration in this study, and there is a possibility that heliox might have beneficial effects 

as a result of factors not addressed in this study. 

 

6.5 Future Work 

The results presented in this study only take into account one morphometric model 

for each represented age.  Since lung geometry can vary significantly between individuals, 

additional research is needed to address the differences between individuals of each age 

group.  Evaluation of results that apply a distribution to TV, TLC, FRC, MV, and airways 

dimensions would provide insight into variations that exist within the population.  It is also 

valuable to evaluate the differences in optimal particle size and deposition between males 

and females of the same age and body weight.  Additionally, more research is needed for 

adolescents and adults to determine if a relationship exists between BMI and optimal particle 

size or volume-weighted deposition since a limited number of subjects of these ages is 

presented in this study.   
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Numerous animal species not taken into consideration in this study are utilized in 

inhalation studies and dosing.  However, lung morphometry and physiological information 

for many of these species is limited or not available.  If this information were accessible, 

determination as to whether these animal species more accurately represent humans would 

be possible.  Further studies are needed to determine morphometry and respiratory 

conditions for these various species to enable statistical particle deposition efficiency 

comparisons with humans.     

Further, these results fail to capture that differences exist in inspiration and expiration 

rates.  Moreover, clinical studies are needed to validate these statistical results because the 

models used in this study are static and fail to account for the dilation of the lung geometry 

during inspiration and expiration.  It is only in models that can capture this aspect that the 

effects of lung remodeling as a result of disease can be explored.   
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APPENDIX A 

 
(Ménache, et al. 2008) 

 

 
(Ménache, et al. 2008) 

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume (cm3)

Number of 

Airways

0 CA 0.733 3.330 1.405 1.405 1

1 CA 0.550 1.580 0.751 2.156 2

2 CA 0.348 0.645 0.245 2.401 4

3 CA 0.231 0.470 0.158 2.559 8

4 CA 0.159 0.412 0.131 2.690 16

5 CA 0.116 0.388 0.131 2.821 32

6 CA 0.090 0.344 0.140 2.961 64

7 CA 0.068 0.291 0.135 3.096 128

8 CA 0.053 0.247 0.140 3.236 256

9 CA 0.043 0.177 0.132 3.367 512

10 CA 0.034 0.136 0.126 3.494 1,024

11 CA 0.028 0.102 0.129 3.623 2,048

12 CA 0.023 0.077 0.131 3.754 4,096

13 CA 0.020 0.059 0.152 3.905 8,192

14 CA 0.017 0.046 0.171 4.077 16,384

15 TB 0.015 0.038 0.220 4.297 32,768

16 RB 0.013 0.031 0.270 4.566 65,536

17 RB 0.012 0.027 0.400 4.966 131,072

18 RB 0.011 0.024 0.598 5.564 262,144

19 AD 0.010 0.021 0.865 6.429 524,288

20 AD 0.009 0.019 1.267 7.697 1,048,576

21 AD 0.008 0.018 1.897 9.594 2,097,152

22 AD 0.008 0.017 3.584 13.178 4,194,304

23 AS 0.007 0.016 5.165 18.343 8,388,608

Lung Morphometry for 0.25-year Old Human (Female)

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume (cm3)

Number of 

Airways

0 CA 0.870 3.758 2.234 2.234 1

1 CA 0.643 1.780 1.156 3.390 2

2 CA 0.337 0.857 0.306 3.696 4

3 CA 0.217 0.589 0.174 3.870 8

4 CA 0.161 0.524 0.171 4.041 16

5 CA 0.135 0.573 0.262 4.303 32

6 CA 0.109 0.464 0.277 4.580 64

7 CA 0.089 0.374 0.298 4.878 128

8 CA 0.072 0.300 0.313 5.191 256

9 CA 0.057 0.232 0.303 5.494 512

10 CA 0.045 0.160 0.261 5.754 1,024

11 CA 0.037 0.115 0.253 6.008 2,048

12 CA 0.031 0.086 0.266 6.274 4,096

13 CA 0.026 0.066 0.287 6.561 8,192

14 CA 0.023 0.053 0.361 6.921 16,384

15 TB 0.020 0.044 0.453 7.374 32,768

16 RB 0.018 0.038 0.634 8.008 65,536

17 RB 0.016 0.034 0.896 8.904 131,072

18 RB 0.014 0.032 1.291 10.195 262,144

19 AD 0.013 0.030 2.088 12.283 524,288

20 AD 0.012 0.028 3.321 15.604 1,048,576

21 AD 0.012 0.027 6.404 22.008 2,097,152

22 AD 0.011 0.026 10.364 32.371 4,194,304

23 AS 0.010 0.026 17.130 49.501 8,388,608

Lung Morphometry for 1.75-year Old Human (Male)
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(Ménache, et al. 2008) 

 

 
(Ménache, et al. 2008) 

 

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume 

(cm3)

Number of 

Airways

0 CA 1.083 5.726 5.275 5.275 1

1 CA 0.745 2.175 1.896 7.171 2

2 CA 0.568 0.867 0.879 8.050 4

3 CA 0.361 0.622 0.509 8.559 8

4 CA 0.261 0.505 0.432 8.991 16

5 CA 0.202 0.507 0.520 9.511 32

6 CA 0.152 0.466 0.541 10.052 64

7 CA 0.122 0.386 0.578 10.630 128

8 CA 0.099 0.329 0.648 11.278 256

9 CA 0.080 0.269 0.692 11.971 512

10 CA 0.061 0.197 0.590 12.560 1,024

11 CA 0.050 0.147 0.591 13.151 2,048

12 CA 0.041 0.110 0.595 13.746 4,096

13 CA 0.034 0.084 0.625 14.371 8,192

14 CA 0.029 0.066 0.714 15.085 16,384

15 TB 0.024 0.053 0.786 15.871 32,768

16 RB 0.021 0.044 0.999 16.870 65,536

17 RB 0.018 0.037 1.234 18.104 131,072

18 RB 0.016 0.033 1.739 19.843 262,144

19 AD 0.014 0.029 2.341 22.184 524,288

20 AD 0.012 0.027 3.202 25.385 1,048,576

21 AD 0.011 0.025 4.982 30.368 2,097,152

22 AD 0.009 0.024 6.404 36.772 4,194,304

23 AS 0.008 0.023 9.698 46.470 8,388,608

Lung Morphometry for 1.92-year Old Human (Male)

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume (cm3)

Number of 

Airways

0 CA 0.950 5.812 4.120 4.120 1

1 CA 0.858 2.390 2.764 6.883 2

2 CA 0.611 0.977 1.146 8.029 4

3 CA 0.498 0.541 0.843 8.872 8

4 CA 0.345 0.590 0.882 9.755 16

5 CA 0.271 0.543 1.002 10.757 32

6 CA 0.214 0.470 1.082 11.839 64

7 CA 0.169 0.396 1.137 12.976 128

8 CA 0.136 0.311 1.157 14.132 256

9 CA 0.119 0.288 1.640 15.772 512

10 CA 0.085 0.204 1.185 16.958 1,024

11 CA 0.068 0.160 1.190 18.148 2,048

12 CA 0.055 0.126 1.226 19.374 4,096

13 CA 0.045 0.099 1.290 20.664 8,192

14 CA 0.037 0.079 1.392 22.056 16,384

15 TB 0.030 0.064 1.482 23.538 32,768

16 RB 0.025 0.053 1.705 25.243 65,536

17 RB 0.021 0.044 1.998 27.240 131,072

18 RB 0.017 0.037 2.202 29.442 262,144

19 AD 0.014 0.032 2.583 32.025 524,288

20 AD 0.012 0.027 3.202 35.227 1,048,576

21 AD 0.010 0.024 3.953 39.180 2,097,152

22 AD 0.008 0.021 4.427 43.607 4,194,304

23 AS 0.007 0.019 6.134 49.741 8,388,608

Lung Morphometry for 2.33-year Old Human (Female)
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(Ménache, et al. 2008) 

 

 
(Ménache, et al. 2008) 

 

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume (cm3)

Number of 

Airways

0 CA 0.950 7.010 4.969 4.969 1

1 CA 0.701 2.275 1.756 6.725 2

2 CA 0.494 0.795 0.609 7.334 4

3 CA 0.397 0.596 0.590 7.925 8

4 CA 0.336 0.597 0.847 8.772 16

5 CA 0.267 0.531 0.951 9.723 32

6 CA 0.218 0.467 1.116 10.839 64

7 CA 0.176 0.395 1.230 12.069 128

8 CA 0.141 0.323 1.291 13.360 256

9 CA 0.111 0.236 1.169 14.529 512

10 CA 0.085 0.187 1.087 15.616 1,024

11 CA 0.068 0.144 1.071 16.687 2,048

12 CA 0.054 0.113 1.060 17.747 4,096

13 CA 0.044 0.090 1.121 18.868 8,192

14 CA 0.036 0.073 1.217 20.085 16,384

15 TB 0.030 0.060 1.390 21.475 32,768

16 RB 0.025 0.051 1.641 23.116 65,536

17 RB 0.021 0.044 1.998 25.113 131,072

18 RB 0.018 0.039 2.602 27.715 262,144

19 AD 0.016 0.035 3.690 31.404 524,288

20 AD 0.013 0.032 4.454 35.858 1,048,576

21 AD 0.012 0.029 6.878 42.736 2,097,152

22 AD 0.010 0.027 8.894 51.631 4,194,304

23 AS 0.009 0.026 13.875 65.506 8,388,608

Lung Morphometry for 3.00-year Old Human (Female)

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume (cm3)

Number of 

Airways

0 CA 1.440 7.781 12.672 12.672 1

1 CA 1.045 3.375 5.789 18.461 2

2 CA 0.717 1.065 1.720 20.181 4

3 CA 0.513 0.798 1.320 21.501 8

4 CA 0.376 0.614 1.091 22.592 16

5 CA 0.288 0.695 1.449 24.041 32

6 CA 0.226 0.553 1.420 25.460 64

7 CA 0.178 0.428 1.363 26.824 128

8 CA 0.141 0.373 1.491 28.315 256

9 CA 0.111 0.262 1.298 29.613 512

10 CA 0.089 0.196 1.249 30.861 1,024

11 CA 0.074 0.148 1.304 32.165 2,048

12 CA 0.062 0.116 1.434 33.599 4,096

13 CA 0.052 0.095 1.653 35.252 8,192

14 CA 0.045 0.082 2.137 37.389 16,384

15 TB 0.040 0.073 3.006 40.395 32,768

16 RB 0.035 0.067 4.225 44.619 65,536

17 RB 0.031 0.063 6.233 50.852 131,072

18 RB 0.029 0.060 10.389 61.241 262,144

19 AD 0.026 0.058 16.145 77.386 524,288

20 AD 0.024 0.056 26.564 103.950 1,048,576

21 AD 0.022 0.055 43.846 147.796 2,097,152

22 AD 0.021 0.055 79.901 227.697 4,194,304

23 AD 0.020 0.054 142.309 370.006 8,388,608

24 AS 0.019 0.054 256.868 626.875 16,777,216

Lung Morphometry for 8.67-year Old Human (Male)
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(Ménache, et al. 2008) 

 
(Ménache, et al. 2008) 

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume (cm3)

Number of 

Airways

0 CA 1.647 9.921 21.136 21.136 1

1 CA 1.185 3.070 6.772 27.908 2

2 CA 0.727 1.130 1.876 29.784 4

3 CA 0.492 0.915 1.392 31.176 8

4 CA 0.387 0.746 1.404 32.580 16

5 CA 0.301 0.848 1.931 34.511 32

6 CA 0.234 0.675 1.858 36.369 64

7 CA 0.178 0.508 1.618 37.987 128

8 CA 0.132 0.408 1.429 39.416 256

9 CA 0.099 0.327 1.289 40.705 512

10 CA 0.081 0.221 1.166 41.871 1,024

11 CA 0.066 0.164 1.149 43.020 2,048

12 CA 0.055 0.127 1.236 44.256 4,096

13 CA 0.047 0.103 1.464 45.720 8,192

14 CA 0.041 0.088 1.904 47.624 16,384

15 TB 0.036 0.077 2.568 50.192 32,768

16 RB 0.033 0.071 3.980 54.172 65,536

17 RB 0.030 0.066 6.115 60.286 131,072

18 RB 0.028 0.063 10.169 70.456 262,144

19 AD 0.027 0.061 18.311 88.767 524,288

20 AD 0.025 0.059 30.368 119.135 1,048,576

21 AD 0.024 0.058 55.026 174.162 2,097,152

22 AD 0.024 0.057 108.155 282.317 4,194,304

23 AD 0.023 0.056 195.175 477.491 8,388,608

24 AS 0.022 0.056 357.144 834.635 16,777,216

Lung Morphometry for 9.42-year Old Human (Male)

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume (cm3)

Number of 

Airways

0 CA 1.700 12.660 28.736 28.736 1

1 CA 1.196 3.050 6.853 35.589 2

2 CA 0.833 1.435 3.128 38.717 4

3 CA 0.623 1.116 2.722 41.438 8

4 CA 0.514 0.784 2.603 44.041 16

5 CA 0.398 0.817 3.253 47.294 32

6 CA 0.324 0.740 3.905 51.199 64

7 CA 0.259 0.572 3.857 55.056 128

8 CA 0.203 0.489 4.052 59.108 256

9 CA 0.159 0.390 3.965 63.072 512

10 CA 0.126 0.295 3.767 66.839 1,024

11 CA 0.102 0.227 3.799 70.638 2,048

12 CA 0.084 0.177 4.018 74.656 4,096

13 CA 0.071 0.143 4.638 79.294 8,192

14 CA 0.060 0.119 5.513 84.806 16,384

15 TB 0.052 0.102 7.098 91.904 32,768

16 RB 0.045 0.091 9.485 101.389 65,536

17 RB 0.040 0.082 13.506 114.896 131,072

18 RB 0.036 0.076 20.279 135.175 262,144

19 AD 0.033 0.072 32.286 167.461 524,288

20 AD 0.030 0.069 51.142 218.604 1,048,576

21 AD 0.028 0.066 85.228 303.831 2,097,152

22 AD 0.026 0.065 144.747 448.578 4,194,304

23 AD 0.024 0.063 239.080 687.658 8,388,608

24 AS 0.023 0.062 432.173 1119.830 16,777,216

Lung Morphometry for 14.00-year Old Human (Female)
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(Ménache, et al. 2008) 

 
(Ménache, et al. 2008) 

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume (cm3)

Number of 

Airways

0 CA 1.507 10.260 18.301 18.301 1

1 CA 1.478 3.630 12.456 30.756 2

2 CA 0.918 1.152 3.050 33.806 4

3 CA 0.724 0.777 2.559 36.365 8

4 CA 0.567 0.776 3.135 39.500 16

5 CA 0.460 1.052 5.595 45.095 32

6 CA 0.359 0.902 5.843 50.938 64

7 CA 0.281 0.677 5.374 56.312 128

8 CA 0.218 0.556 5.313 61.625 256

9 CA 0.165 0.424 4.642 66.267 512

10 CA 0.129 0.268 3.587 69.854 1,024

11 CA 0.102 0.185 3.096 72.950 2,048

12 CA 0.083 0.137 3.036 75.986 4,096

13 CA 0.069 0.110 3.370 79.355 8,192

14 CA 0.058 0.094 4.069 83.425 16,384

15 TB 0.050 0.086 5.533 88.958 32,768

16 RB 0.044 0.081 8.072 97.029 65,536

17 RB 0.039 0.077 12.056 109.086 131,072

18 RB 0.035 0.075 18.916 128.002 262,144

19 AD 0.032 0.074 31.203 159.204 524,288

20 AD 0.030 0.073 54.107 213.312 1,048,576

21 AD 0.028 0.073 94.267 307.578 2,097,152

22 AD 0.026 0.073 162.562 470.141 4,194,304

23 AD 0.025 0.072 296.478 766.618 8,388,608

24 AS 0.024 0.072 546.468 1313.086 16,777,216

Lung Morphometry for 14.08-year Old Human (Female)

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume (cm3)

Number of 

Airways

0 CA 1.507 9.236 16.474 16.474 1

1 CA 1.478 3.535 12.130 28.604 2

2 CA 0.918 1.380 3.654 32.258 4

3 CA 0.724 0.865 2.849 35.106 8

4 CA 0.567 0.969 3.915 39.021 16

5 CA 0.460 0.969 5.153 44.174 32

6 CA 0.359 0.889 5.759 49.934 64

7 CA 0.281 0.770 6.112 56.046 128

8 CA 0.218 0.584 5.580 61.626 256

9 CA 0.165 0.496 5.430 67.056 512

10 CA 0.129 0.367 4.912 71.968 1,024

11 CA 0.102 0.278 4.652 76.620 2,048

12 CA 0.083 0.214 4.743 81.363 4,096

13 CA 0.069 0.169 5.177 86.540 8,192

14 CA 0.058 0.139 6.017 92.557 16,384

15 TB 0.050 0.117 7.528 100.084 32,768

16 RB 0.044 0.103 10.264 110.348 65,536

17 RB 0.039 0.093 14.562 124.910 131,072

18 RB 0.035 0.085 21.438 146.348 262,144

19 AD 0.032 0.080 33.733 180.081 524,288

20 AD 0.030 0.076 56.331 236.411 1,048,576

21 AD 0.028 0.073 94.267 330.678 2,097,152

22 AD 0.026 0.071 158.108 488.787 4,194,304

23 AD 0.025 0.069 284.125 772.911 8,388,608

24 AS 0.024 0.068 516.109 1289.020 16,777,216

Lung Morphometry for 18.00-year Old Human (Male)
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(Ménache, et al. 2008) 

  

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume (cm3)

Number of 

Airways

0 CA 2.060 12.920 43.061 43.061 1

1 CA 1.670 3.620 15.858 58.920 2

2 CA 1.052 1.557 5.413 64.333 4

3 CA 0.778 1.134 4.313 68.646 8

4 CA 0.555 0.905 3.503 72.149 16

5 CA 0.398 0.919 3.659 75.808 32

6 CA 0.311 0.880 4.278 80.086 64

7 CA 0.234 0.848 4.668 84.754 128

8 CA 0.178 0.676 4.306 89.060 256

9 CA 0.131 0.533 3.678 92.738 512

10 CA 0.113 0.405 4.159 96.898 1,024

11 CA 0.093 0.292 4.062 100.960 2,048

12 CA 0.079 0.214 4.297 105.256 4,096

13 CA 0.068 0.164 4.879 110.135 8,192

14 CA 0.060 0.133 6.161 116.297 16,384

15 TB 0.054 0.114 8.555 124.852 32,768

16 RB 0.048 0.101 11.978 136.830 65,536

17 RB 0.044 0.094 18.734 155.564 131,072

18 RB 0.041 0.089 30.803 186.366 262,144

19 AD 0.038 0.085 50.541 236.908 524,288

20 AD 0.036 0.083 88.588 325.495 1,048,576

21 AD 0.034 0.081 154.228 479.723 2,097,152

22 AD 0.033 0.080 286.991 766.714 4,194,304

23 AD 0.032 0.080 539.722 1306.435 8,388,608

24 AS 0.031 0.079 1000.369 2306.804 16,777,216

Lung Morphometry for 21.00-year Old Human (Male)
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(Phalen 1991) 

 
(Yeh, Schum and Duggan 1979) 

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume 

(cm3)

Number of 

Airways

0 CA 0.137 0.897 0.0132 0.0132 1

1 CA 0.141 0.508 0.0159 0.0291 2

2 CA 0.114 0.202 0.0082 0.0373 4

3 CA 0.090 0.083 0.0042 0.0416 8

4 CA 0.078 0.097 0.0074 0.0490 16

5 CA 0.072 0.050 0.0065 0.0555 32

6 CA 0.063 0.043 0.0067 0.0622 50

7 CA 0.054 0.043 0.0074 0.0696 75

8 CA 0.045 0.040 0.0073 0.0769 115

9 CA 0.040 0.034 0.0075 0.0844 175

10 CA 0.036 0.033 0.0091 0.0934 270

11 CA 0.029 0.027 0.0075 0.1009 420

12 CA 0.021 0.024 0.0053 0.1062 640

13 CA 0.014 0.018 0.0027 0.1090 980

14 CA 0.010 0.013 0.0015 0.1105 1,505

15 TB 0.009 0.011 0.0021 0.1126 3,010

16 AD 0.009 0.010 0.0038 0.1164 6,020

17 AD 0.008 0.010 0.0061 0.1225 12,040

18 AD 0.008 0.010 0.0121 0.1346 24,080

19 AD 0.008 0.010 0.0242 0.1588 48,160

20 AD 0.008 0.010 0.0484 0.2072 96,320

21 AD 0.008 0.009 0.0871 0.2944 192,640

Lung Morphometry for B6C3F 1  Mouse

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume (cm3)

Number of 

Airways

0 CA 0.340 2.680 0.243 0.243 1

1 CA 0.290 0.715 0.094 0.338 2

2 CA 0.263 0.400 0.065 0.403 3

3 CA 0.203 0.176 0.028 0.431 5

4 CA 0.163 0.208 0.035 0.466 8

5 CA 0.134 0.117 0.023 0.489 14

6 CA 0.123 0.114 0.031 0.520 23

7 CA 0.112 0.130 0.049 0.569 38

8 CA 0.095 0.099 0.046 0.615 65

9 CA 0.087 0.091 0.059 0.674 109

10 CA 0.078 0.096 0.084 0.758 184

11 CA 0.070 0.073 0.087 0.845 309

12 CA 0.058 0.075 0.103 0.948 521

13 CA 0.049 0.060 0.099 1.047 877

14 CA 0.036 0.055 0.083 1.130 1,477

15 TB 0.020 0.035 0.027 1.157 2,487

16 AD 0.017 0.029 0.033 1.190 4,974

17 AD 0.016 0.025 0.050 1.240 9,948

18 AD 0.015 0.022 0.077 1.317 19,896

19 AD 0.014 0.020 0.123 1.440 39,792

20 AD 0.014 0.019 0.233 1.673 79,584

21 AD 0.014 0.018 0.441 2.114 159,168

22 AD 0.014 0.017 0.833 2.947 318,336

23 AS 0.014 0.017 1.666 4.613 636,672

Lung Morphometry for Long-Evans Rat
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 (Yeh 1980) 

Generation # Airway Type
Diameter 

(cm)
Length (cm) Volume (cm3)

Cumulative 

Volume 

(cm3)

Number of 

Airways

0 CA 1.800 14.800 37.66 37.661 1

1 CA 1.490 1.380 4.81 42.474 2

2 CA 1.160 1.520 4.82 47.293 3

3 CA 0.879 0.989 3.00 50.294 5

4 CA 0.605 0.847 1.95 52.242 8

5 CA 0.472 0.547 1.24 53.486 13

6 CA 0.399 0.443 1.16 54.649 21

7 CA 0.377 0.370 1.45 56.095 35

8 CA 0.345 0.400 2.13 58.226 57

9 CA 0.329 0.320 2.58 60.811 95

10 CA 0.300 0.287 3.21 64.016 158

11 CA 0.264 0.256 3.67 67.687 262

12 CA 0.220 0.289 4.77 72.455 434

13 CA 0.191 0.191 3.95 76.401 721

14 CA 0.176 0.162 4.71 81.111 1,195

15 CA 0.141 0.159 4.92 86.034 1,983

16 CA 0.114 0.154 5.17 91.205 3,290

17 CA 0.092 0.124 4.50 95.704 5,458

18 CA 0.074 0.103 4.01 99.715 9,054

19 CA 0.052 0.094 3.00 102.713 15,019

20 CA 0.044 0.081 3.70 106.413 30,038

21 TB 0.036 0.071 4.34 110.755 60,076

22 AD 0.031 0.063 5.71 116.468 120,152

23 AD 0.027 0.055 7.57 124.035 240,304

24 AD 0.025 0.049 11.56 135.595 480,608

25 AD 0.023 0.043 17.17 152.768 961,216

26 AD 0.022 0.038 27.77 180.537 1,922,432

27 AD 0.022 0.033 48.23 228.769 3,844,864

28 AD 0.021 0.029 77.24 306.008 7,689,728

29 AS 0.021 0.026 138.50 444.506 15,379,456

Lung Morphometry for a Beagle Dog
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