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ABSTRACT

Prior statistical shape models have not considereltiple structures in the knee
joint to characterize anatomic variations which r@guired to investigate joint mechanics
further for the successful knee replacement. Adiogty, the study’s objective was to
develop statistical shape and alignment model (Sp®Mapture intersubject variability
and demonstrate the ability to generate realisigtances for use in finite element
analysis (FEA). SSAM described the variabilitythe training set of 20 subjects with a
series of modes of variation obtained by perfornprigcipal component analysis (PCA).
PCA produced modes of variation with the first 3d@® representing 70% and 10 modes
representing 95% variability when only bones of phiat were studied. Modes were
perturbed by £ @ and computational models of new virtual subjeceyengenerated.
FEA successfully confirmed the fidelity of the SSABpproach. The relationship
between SSAM and function (motion) were investigaterough the shape-function
model. The framework can create new subject andigiréhe kinematic behavior. The

approach can be an investigative tool to diffesdntiin the shape-function relation

between healthy normal and pathologic groups.
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CHAPTER 1 - INTRODUCTION

1.1 Background

Performance of orthopaedic implants varies drarabyicbetween subjects
because of natural intersubject variability andgsa skill. —However, natural
intersubject variability is ignored and the majpraf studies use a single or limited
number of bone models [Bryan et al., 2010]. Thanesfit is vital to consider intersubject
variability. Intersubject variability is inheregtbresent in bone quality, patient anatomy,
and representation of both variation in shape amdtive alignment of the articular
geometry [Laz and Browne, 2010; Bryan et al., 2010

Computed tomography (CT) and magnetic resonance (MBRges, at present, are
the method of choice for the generation of subgpeeific models. It has made it
possible to define the geometry and the local égswperties of the bone segment to be
modeled [Taddei et al., 2006]. Increasing avalilgbdf imaging techniques provide
information to diagnose pathologies (e.g. patetiaitracking, cartilage degradation, joint
laxity, etc.) and also help understand variabilitypatient anatomy. Subject-specific
anatomy consideration is becoming popular in desgrcustomized instruments and

implants, and in making surgical decisions. So,eustnding the variability associated



with anatomy and alignment has a larger role toy pta the future in pathologies
diagnosis, surgical procedures, and the developwieatistomized and robust implants
for patient care. Recently, hip resurfacing impdantere recalled due to concern over
their robustness to malalginment. Capturing sukgpecific anatomy and alignment
variability and then integrating that with kinentatpredictions will be useful to
understand the variability in the joint mechanid%or example, patellofemoral pain has
been related to abnormal PF kinematics [Fizpaticid., 2011].

Statistical shape models have been widely useth#émacterize variability of a
population data set and in predicting a new ingaraong that population. Particularly
in orthopaedics domain, shape models have beeredpplcharacterize variability in the
bone morphology for training sets of subjects repnéing the population; for example, in
the femur [Bryan et al.,, 2010; Bredbenner et a008, pelvis [Meller and Kalender,
2004] and shoulder [Yang et al., 2008]. Variapiiih the bone material density along
with bone morphology has also been studied [Brytaal.e 2010; Fritscher et al., 2009].
Statistical shape models use a point distributioadeh to establish point-to-point
correspondence between the instances in a traggh@Cootes et al., 1995; Meller and
Kalender, 2004; Behiels et al., 2002].

Principal component analysis is a method to desdtile variability in the set of
corresponding points with a series of common madegriation. It provides amount
and direction of change information [Jolliffe, 2Q0@¢hich has ability to characterize the
variability in the data. It has benefits in 1) iadility quantification, 2) predicting new

virtual geometries (based on the prior populatiatafl with direct application in finite



element analysis, and 3) efficiently predicting wbjsct-specific representation from
incomplete or sparse data sets from less invasetaads (e.g. ultrasound) [Barratt et al.,
2008; Shim et al., 2008; Rajamani et al., 2007].

So far, shape models have focused on individuale®owhich can provide
benefits like development of implant sizing lineSitzpatrick et al., 2007] or the
evaluation of bone fracture risk because of shapd material properties inclusion
together [Bryan et al., 2010; Fritscher et al., J00Quantitative differences in femur and
tibia surface geometry have been characterizedugirashape models to distinguish
between two groups who are not expected to devestgoarthritis [Bredbenner et al.,
2010]. Patello-femoral joint has been also studigitizing shape model approach
[Baldwin et al., 2010].

Eventually, in order to utilize statistical modéisevaluations of joint mechanics
(patellofemoral as well as tibiofemoral), the stttial model must consider all important
structures comprising the joint, their interdeperaies and their relative alignment. A
complete knee statistical shape model can be cestpof all major bones (femur, tibia,
and patella), major cartilages (femoral, tibial-ma¢dtibial-lateral, and patellar), major
ligaments (medial-collateral, lateral-collateragsperior-cruciate, and anterior-cruciate).
In this way, the statistical model will preserventoon changes in shape between
structures, such as the influence of size acrossfemur, tibia and patella, or the
mirroring of the shape of the patella and the tle@hgroove of the femur. In addition,
the relative alignment of the structures will begarved, which influence a subject’s

joint mechanics. [Baldwin et al., 2010; Fizpatretkal., 2011; Bredbenner et al, 2010].
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Previous shape models have considered the refadisiion of structures by using
global scan space coordinates, but this does rsatrigiinate between differences in
anatomic alignment and artifacts resulting fronfedténces in the scanned position (knee
flexed slightly or internally rotates). Choosingkaown flexion where quadriceps is
loaded for relative alignment of bones can rule louttations of the scanned position.
So, this study focuses on developing statisticapshmodels for characterizing shape and
alignment variability of the complete knee joinbrn a population data set. Application
of shape models will be demonstrated by generatawg subjects, and performing finite
element analysis for contact mechanics, and charactg relationship with function-

kinematics.

1.2 Motivation

Knee osteoarthritis (OA) affects millions of peopleridwide. In most cases,
loss of cartilage in the joints happens due to@@imd causes activity limitation in older
age groups [http://oai.epi-ucsf.org]. OA is the snprominent cause for total knee
replacement (TKR), an ultimate solution to trea #ifected knee and again restore the
motion of the knee.

Success of TKR depends on the resultant post-iyperknee joint mechanics
which should be reasonably close to natural knee joechanics. Therefore, it becomes
necessary to understand knee joint mechanics wtach results in better inputs for
implant design. Knee joint mechanics are subjpet#ic and clinical and in-vitro

studies report significant levels of intersubjeetiability in terms of kinematics, joint
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loading, knee structures and bone and soft tissiuagsrial properties. Most importantly,
anatomical variation is the main contributor toenmsubject joint mechanics variability.
Hence, to achieve a successful TKR, it is necessargharacterize the intersubject
variability and use those characteristics for impldesign.

Due to technological advancement, the standardegsoto develop a subject-
specific model is to reconstruct bony structuremglwith soft tissues from CT or MR
images. However, adopting this process for sulgpetific model is a labor intensive
and time consuming process. On the other hanth &draining set across population,
using statistical shape model (SSM) more realmstigject specific model prediction can
be achieved in shorter time. Recently, SSM hawadterized bony morphology and
have included shape and intensity representingityesasd material property variability
[Bryan et al., 2010; Fritscher et al., 2009]. Btatal shape models have applications to
population-based evaluations (e.g. osteoarthriBiedbenner et al., 2010]) and in the
efficient development of subject-specific model®nir a subset of measurements
[Rajamani et al., 2007]. Statistical shape modedse the potential to represent a
population-based model and efficiently generatejesdspecific model for surgical
planning through computer assisted surgery. Pusvistudies of statistical shape
modeling have focused on the partial structure @gfirst and have limited application.
But applying this approach to a joint consistingbohes, cartilage, ligaments and other
structures will have many clinical applicationspopulation-based customized treatment
of OA. Moreover, representing the variability életcomplete knee joint which has a

higher degree of complexity through SSM is morellehging. It requires not only



registration of the structures of the knees in tlagning set but also preservation of
relative position of the structures, a challengitagk. Inclusions of ligaments

surrounding the knee which provide unique motionst@int have heavy influence to the
knee mechanics. As knee mechanics is importarthéoproper mobility of the subject, it
becomes important to account for the ligament httemt variability (inter-subject

variability) and hence develop a robust SSAM madidel patient's surgical need and
ensuring success of TKR. This thought was motweti in applying SSM concept to a
challenging situation like representing a joint tth@ontains bones, cartilages and
ligaments, and then characterizing the intersubyeetability, and demonstrating the
ability to generate new virtual subjects for uséinite element analysis and TKR implant
design, will be useful with many clinical applicats.

There are other potential areas where furtherarekas required. SSAM can also
be utilized in conjunction with correlated anatoationeasurement (e.g. femoral
epicondyles distance, femoral radius) to predicueate patient's specific geometry for
pre-operating planning and surgical decisions identifying mechanical axes, bone cut,
component sizing, and placement. It could gredtlye patient's specific customized
implants manufacturing and hence would serve pddiespecific need rather than

available standard size implants.

1.3 Objectives

As discussed above, statistical shape models Hawepotential to generate

subject-specific models from a population and respist surgeons for surgical planning
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through computer assisted surgery. Furthermoagisstal shape model can be used in
computational analysis to simulate natural and anfdd joint mechanics, and then
evaluate the robustness of implants design. Acaghi the sequential objectives of this
study were:

-To develop an approach to represent a populat@ed intersubject variability
in bone morphology and soft issues and alignmenthfe structures of the knee through
statistical shape and alignment modeling (SSAM).

-To demonstrate the ability of statistical modets describe variability in a
training set and to generate realistic instancesi$e finite element (FE) analysis related
to joint mechanics.

-To apply statistical modeling approach to chammterelationships between
shape, alignment and kinematics (motions) throhghshape-function model

Moreover, this study will also advance prior stated shape modeling efforts
[Baldwin et al., 2010] (Figure 2.10) by isolatingetshape and alignment components of
the variability and reporting alignments in a kireia form relative to anatomical
reference frames for a controlled knee positior? (B&ion). A controlled position was
chosen to avoid capturing variability because afamtrolled and unloaded scan position.
If scan position would have been taken then it baldifficult to differentiate whether the
variability observed is due to relative alignmehftknee structures or differences in the
scan position. The larger aim of this study iptoduce statistical shape models in FE
model format. This approach will enable the jom#chanics assessments because of the

influence of the shape and alignment by evaluatmmgact mechanics and kinematics for



a perturbed shape model (representing a new subjdtreover, the FE model is also
useful for pathological investigation, like patelimal tracking and patellofemoral pain
[Fitzpatrick et al., 2011], and robust implant dgsievaluation with a population of

subjects.

1.4 Organization

Chapter 2 consists of literature review, which pdeg information about basic
anatomy of the human knee joint relevant to statisshape models and prior statistical
shape models and principal component analysis.

Chapter 3 provides the information of software $oalsed, methods and
procedures followed to develop training set dataj atatistical method to develop
statistical shape models. This Chapter has thiféereht cases: bones only, bones and
cartilages, and bones and cartilages and liganwnssatistical shape modeling. These
cases are with increasing complexity.

Chapter 4 presents the results and analysis ofebdts for all three different
cases of SSAM. It also discusses the fidelity hef 8SAM through running a finite
element analysis and presenting the results.

Chapter 5 is dedicated to the demonstrated apijoliicat SSAM. In this chapter,
a developed framework for knee kinematics predictior the new virtual subject is
discussed.

Chapter 6 concludes the dissertation by highlightthe results and making

recommendations for future work in the field ofdstu
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CHAPTER 2 — LITERATURE REVIEW

This chapter provides literature review on gendsackground of clinical
terminologies, human knee anatomy, prior statistsldape models, and principal

component analysis.

2.1 Clinical Terminology

In human anatomy, a well- defined terminology idremely useful for the
consistent description of the relative motionsh&f human body. Relative motions of the
body have been described with the help of thredoameal planes: sagittal, coronal
(frontal), and transverse (axial). These thre@gdaare based on positions relative to the
body in standing position with arms at the side pabins facing forwards (Figure 2.1).
The sagittal plane divides the body into right deft halves from head to toe. A
structure is said to be medial to another if itlisser to the midline and lateral if it is
further away. The coronal or frontal plane is gaqticular to the sagittal plane, bisecting
the body into front and back halves and a strucisirdescribed to be anterior if it is
nearer to the front of the body and posterior iitloser to the back. The transverse or
horizontal plane intersects the body at right amdte the sagittal and coronal planes,
parallel to the ground and divides the body intpesior (head) and inferior (toe)

sections. A structure is superior if it is at gher level or closer to the head and inferior
9



if it is at a lower level or away from the headddiionally, the terms proximal and distal
may be used to indicate an object is closer tacémer of the body (proximal) or farther
away from the body center (distal) (Figure 2.2)ix ®rminologies: anterior-posterior,
medial-lateral, inferior-superior, flexion-extensjonternal-external and varus-valgus are
used to describe six degrees of freedom to defieedlative motion of the knee joint and
have been used in this study. The first threda@arthree translational degrees of freedom
of the knee while the next three are for threetimtal degrees of freedom (Figure 2.3).
Flexion is a movement in the sagittal plane redytie angle between the femur and the
tibia, while extension is the increase in angleveen the two bones. An internal rotation
occurs about the inferior-superior axis when oneebimtates toward the midline of the
body, and an external rotation occurs when the lbotages away from the midline. An
adduction (varus) is the movement toward the madlin the coronal plane while

abduction (valgus) is the movement away.

2.2 Anatomy of the Human Knee

This review of the literature is focused on impaottatructures (bones and soft-
tissues) of the human knee joint that influencdutsctional behavior most and relevant
to the subject of this study. Functional behawsocantrolled by mainly articular surfaces,
ligaments, and tendons at the knee joints. Theuwdati surfaces of the knee are located on
the three bony structures: distal end of femurximnal end of tibia, and posterior face of
patella (Figure 2.4). The femur to the tibia ar#tion occurs at the tibiofemoral or knee

joint, and the femur and the patella articulatiappens at the patellofemoral joint.
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At the knee, the articular surface of the tibiofeasd@nd patellofemoral joints are
covered in a thin layer of highly organized tissoenprised of collagen and elastin fibers
known as articular cartilage (Figure 2.5). Thécatar surface of tibiofemoral consists of
the medial and lateral femoral condyles, sulcu®ggpthe posterior aspect of the patella
and the proximal tibial surface (Figure 2.6). T@mary functions of the articular
cartilage are to decrease contact stresses bybdistg loads over a wide area, and to
permit relative movement of the opposing joint agés with low coefficient of friction
of aroundu = 0.01 [Ramakrishnan et al., 2001] at the joi@ver time, depending upon
activities and age, the articular cartilage canrwaeay and exposes the rough bones in
direct contact and cause knee pain and restrigted Rctivities (known as osteoarthritis).
These degenerated articulating surfaces are renthwaty total knee arthroplasty.

The stability of the knee joint is provided by axtemsive network of ligaments
and tendons around the knee joint. Ligaments areld of strong fibrous connective
tissue that fasten together the articular endoagb and cartilage at the joints to provide
passive constraint to the knee. A majority of tbasstraint is provided by four major
ligaments: the anterior and posterior cruciatenigats (ACL and PCL) and the medial
and lateral collateral ligaments (MCL and LCL) (g 2.5). The ACL and PCL prevent
sliding of the tibia in the anterior and posterébrections, respectively. The collateral
ligaments provide medial-lateral and varus-valgiabity, and limit internal-external
rotation during extension.

The three bones listed above (femur, tibia and llpteand their respective

cartilages, and the attachment sites of four liggmbéave been considered in the shape
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and alignment modelling. Detailed attachment sitfeICL have been shown in Figure
2.7. Asin, MCL has three prominent attachmemssifemoral, proximal tibial and distal
tibial. Additionally, from a cadaveric specimeretiocation of MCL and LCL in deep

knee flexion has been shown in Figure 2.8.

2.3 Statistical Shape Modeling

In the past, SSM was typically used to investigatividual bone but, have not
considered multiple structures in a joint that vibbk required to assess the complete
joint mechanics. Numerous studies have investigegtationships between shape of the
articular geometry and joint mechanics, for exampie the patellofemoral joint
[Fitzpatrick et al., 2011]. Recently, three dimensl statistical shape models of the
femur for finite element analysis have been creat&tiese models also characterized
shape and intensity representing density and naatgroperty variability [Bryan et al.,
2010]. The variation in both geometry and matepedperties were extracted from
computer tomography (CT) scans and statistical esimapdels captured that information.
Similarly, three dimensional statistical shape nt®daf the tibia for finite element
analysis have been created [Galloway et al., 2(Higlre 2.9).

In another study [Fritscher et al., 2009], shape spatial intensity distribution of
the femur were combined and the inner structurthefproximal femur was analyzed to
predict a biomechanical parameter using appearstatistical models developed from
CT and X-ray images. Based on this study, usingaatomated approach, accurate

predictions of the bone mineral density and bioraedal properties were achieved,
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which otherwise would have been inappropriate usimigventional methods, such as a
surgeon's experience. To summarize, statistiggesimodels have important application
in the accurate prediction of bone parameters.

SSM also helps assist treatment of knee OA, andiges a mean to describe
spatial variation in joint surface geometry betwdealthy subjects and those with
clinical risk of developing osteoarthritis [Bredipem et al.,, 2010]. It has been
demonstrated that SSM is capable of efficientlycdbsg the quantitative differences in
tibia and femur articulating geometry. The stuglyomprised of two bones of the knee
joint without considering other structures presenthe knee joint. Notably, the study
substantiated that SSM has application in OA treatnand how the SSM could be used
to differentiate between patients who are not etqueto develop OA and those who are
at the clinical risk of OA. This proven applicati@f SSM developed from just two
bones, i.e. femur and tibia, guides the path fodvtardevelop SSM from all structures of
the knee.

Another study [Rajamani et al., 2007] has desdriBdd> model construction by
fitting statistical deformable model to minimal sg&a 3D data consisting of digitized
landmarks and surface that are obtained intra-tipeha It presented a novel
anatomical shape deformation technique, operatedparse sets of surface points and
also on small and large sets of digitized pointagipoint distribution model (PDM).

A more recent study [Fitzpatrick et al., 2011] estigated the relationship
between statistical shape models and joint meckani®robabilistic analyses were

combined with statistical shape model to predidel@emoral joint mechanics. This
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approach was helpful to deal with difficult senstyy analysis on a larger number of
parameters. In the combined probabilistic andisticél shape approach, first
probabilistic (Monte Carlo) analysis was used onalde parameters to create a training
set and then statistical shape model developmehnigue was applied to investigate
variability. It was applied in biomechanical ara$/to characterize the effect of implant
alignment and loading on the patellofemoral joirgamanics in the TKR. Though this
study focused on only patellofemoral joint mechanitbiofemoral joint mechanics
inclusion could be the path forward to completer@spntation of knee joint mechanics.
In the above studies, SSM concepts have been agpheaised to characterize the
variability in the data set and their usages.

The methods for developing a statistical shapeehac standardized and consist
of two main steps:
1. Establishing nodal correspondence in the mgisiet, and
2. Performing principal component analysiiscussed in next section

First, and the most important step, in SSM devaleqt is establishing accurate
node to node correspondence between instanceseirtrdiming set so that realistic
representation of shape is feasible. The traisgiggeometries are defined by a set of
points or nodes representing the surfaces of thetates and the statistical shape model
then characterize the changes in the location efrtbdes for the specimens in the
training set. Commonly, iterative closet point P)Calgorithms, also called registration
algorithm, are used for nodal correspondence. régRires procedures to find the closest

on the geometric entity to a given point. A geherapose method for registration of 3-
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D shape [Besl et al., 1992] describes that ICPchpabilities to register point sets, curves
and surfaces. However, ICP works on best initis#sg of matching specially rotation
and sometime noise level could be very large aadli®in gross statistical outliers, also
complex geometries are sometimes computationalpeesive. The point distribution
techniqgue (PDM) has also been used for nodal quuretence in the past [Rajamani et
al., 2007]. PDM technique defines handles corredpm to anatomical landmark
locations, including bony features, prominences, @b the segmented geometry of each
subject in the training set. Integrated mesh-mioigpbased segmentation approach was
another technique, recently developed by [Baldwirale 2010] to create hexahedral
meshes (3D) of subject-specific scan data. Thithotkintegrated segmentation of a
structure in a scan image to nodes in the temptesh. The template mesh was the
same for a particular structure and nodal corredpoce was well established. This was
a computationally efficient method as it avoide@ amtermediate step of time consuming
3D meshing. This approach created FE based statisihape models for uncontrolled
and unloaded scan position (Figure 2.10).

Hexahedral meshing is more realistic for deformaitactures like cartilages for
accurate finite element analysis (FEA) results. er€fore, developing SSM from 3D
mesh will have direct application in FEA.

Additionally, intersubject variability has not beassessed to multiple source of
variability like material properties, TKR designdaalignment and then predicting joint
mechanics. So, there is scope for further resdarativestigate the influence of material

properties and TKR implant alignment variability konjunction with geometric
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variability of the knee to predict bounds of penf@nce of joint mechanics for a

population.

2.4 Principal Component Analysis

The second step in the development of statistiba@ps model is principal
component analysis (PCA). PCA is a multivariatistical technique for simplifying
complex data sets. It reduces the dimensionalityraultivariate data set while retaining
as much variation as possible [Jolliffe, 2002].eTgoal of PCA is to find new lesser key
variables termed as principal components (PCs) ¢Raydhuri et al., 2000], which
together accounts as much of the variation presethie original dataset and can be used
to simplify the analysis and visualization of mdithensional data sets. PCs are
eigenvectors of either the correlation or the ciarere matrix, and variation associated
with each PC is quantified by characteristics raoitgshe matrix, popularly called as
eigenvalues. The variation explained by any P(pnssented in the terms of its
contribution to the all PCs, i.e. the eigenvalu¢hef selected PC divided by the sum of all
the eigenvalues. PCs are mutually uncorrelatethogonal, linearly independent
combination of the original variables. The firs€ B a linear function of the variables
and has maximum variance. The second PC is arlimeation of the variables and
orthogonal to the first PC with maximum variandeor a two variables example, an x-y
graph could be plotted. A linear equation of xldoe written in terms of y and vice
versa, but these two equations are different asdhe involved in reducing the points to

line distance in either the x- or the y-directiar bot both, and assume one independent
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and one dependent variable [Fitzpatrick C., PhiBseadtation]. The first PC defines a
best-fit line to the points, which reduces the parcular distance from the points to the
line while the second PC is an orthogonal linehe first (Figure 2.11). The first PC
captures the most variation followed by secondmil@r theory is evolved for multiple
variables case and number of PCs is equal to th&beu of variables, but each PC is
orthogonal to the previous PC and responsibledss hariation than the previous one.
Also, better the correlations among variables, alality captured by first few PCs is
most. It is important to note that PCA only giweseful results if number of PCs are
significantly fewer than the number of variablesp@nsible for most variation. The sign
of a PC coefficient is usually arbitrary but thgrsiof a PC coefficient relative to the
signs of other PCs coefficient is important to east the variability. PC coefficients
with same sign, relate to the variability that agiables have in common while different
signs relate to the differences in the variabilityAlso, if a PC has nearly equal
coefficients with same sign then the PC is a weidhaverage of all variables. An
increase or decrease in one variable will affelitgaaiables equal increase or decrease,
respectively. In anatomic terms, PCs with coeffits of the same sign describe size
variation in the specimen, as all dimensions arging in the same direction; PCs with
coefficients of different signs describe shapeatarn in the specimen. It often happens
that the characteristic roots associated with #s few PCs are small and of similar
magnitude. If characteristic roots are equal,early equal, their PC axes will be almost
equal in length, and have similar variances. Tihentation of the PC axes depends on

the axes of maximum variance. If variances aralainthe axes can be anywhere as
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long as they are orthogonal, hence the orientaifadhe axes are not defined with much
precision and interpretation of these PCs may efommative or misleading.

PCA has been used in a wide range of biomedicddlpms and has been shown
to effectively create statistical shape models authsignificant loss of information from
original data. PCA operates on the registered détéhe training set, develops a
statistical shape model which defines modes ofatian and by perturbing these modes

by some standard deviation, new instances candagect.
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Figure 2.1: Clinical terms for anatomical planesl a@escription of relative position
(SEER'’s Training Website, 2004).
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Figure 2.2: Clinical terms, proximal and distalitmlicate an object proximity to the
center of the body.
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Figure 2.3: Kinematics terminologies to describe $ix degrees of freedom (DOF) of
the knee joint. Three of the DOF are translatialonig the anterior-posterior, medial-
lateral, and inferior-superior axes defined atjthet, whereas the other three DOF are
rotations around the each axis.
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The Human Knee
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Figure 2.4: Diagram of bones and joints of theuradtknee (www.mayclinic.org).

22



Patella (reflected)

Anterior
cruciate

ligament
Patellofemoral

groove

Distal
Posterior
femoral plhesrss

condyle / g, | figament

Lateral
meniscus

collateral
ligament

Fibular \ ;
collateral 4’ bial plateau

Figure 2.5: Diagram representing the soft tisdmectires crossing the tibiofemoral
joint of the knee (www.larsligament.com).
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Figure 2.6: Femoral geometry: Left image showsrtieelial and lateral condyle,
sulcus groove and intercondylar notch, viewed saodgrin the axial plane; Right
image shows the distal and posterior segments efldteral condyle, viewed
laterally in the sagittal plane. (Source: Ph.Dseitation, Fitzpatrick C.).
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Figure 2.7: lllustration of the sMCL (superficiatedial collateral ligament)
attachment sites at femoral, proximal tibial arstalitibial (Laparde et al., 2007).
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Figure 2.8: The location of the medial collatdighment (orange) and lateral

collateral ligament (purple) in deep knee flexiddo(@rce: Ph.d. Dissertation,
Chadd Clary).
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Figure 2.9: Tibia shapes of the first 3 PCs itaon. Top to bottom are modes 1

to 3, left to right are PC weights sampled at Bdsv, O std dev, and +3 std dev
(Source: Ph.d. Dissertation, Francis Galloway).
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Figure 2.10: Statistical shape model of the kneewsng mean and *1 std dev
geometries for the first 4 modes of variation (Bdluet al., 2010).

Figure 2.11: Left: Two variables, independent ® dependent y. Right: PC1 axis lies
along the axis of maximum variation, with PC2 ogboal to PC1, lying along the axis
of maximum variation (Source: Ph.D. dissertatiatggatrick C.).
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CHAPTER 3 — METHODS

3.1 Training Set Preparation

The training set taken for statistical shape m¢8&M) consists of MR image of
20 cadaveric specimens (Figure 3.1) and simulasir data. The specimens were all
male with an average age of 66 years, average wefgh/ kg and average body mass
index (BMI) of 25. The statistics of the specimérawe been shown in Table 3.2. The
training set data of this study basically contashsipe and relative alignment data in
terms of nodal co-ordinates and transformation imatrespectively. Anatomical
structures were constructed from MR image and tble@ipe was represented by nodes
linked to finite element meshes, while relativggainent between structures was obtained
from simulator test data. Iterative closet poif€R) was used to establish nodal
correspondence of training set data and transfaematatrices was used to characterize
the relative alignment between the structures.s Way, each member of the training set

was represented by an equal number of data point.
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3.1.1 Knee Construction

The structures of the 20 cadaveric knees (Figugg, 3cluding femur, tibia,
patella, associated cartilage and major ligamelt&SL( LCL, PCL, and ACL), were
segmented from MR images with an in-plane resatutb0.35 mm and an axial slice
thickness of 1 mm, using ScanIP (Simpleware, Exétf). As the scanned field of
view varied between specimens in the training thet,femur and tibia were transected
based on a constant aspect ratio between the mathedl width and the inferior-
superior length. The details of the measurememtisteansected length of femurs and

tibias have been shown in Table 3.3 and Tabler8spectively.

3.1.2 Registration for Correspondence

A template mesh for each bony structure was deeeldpr an average member
of the training set using tetrahedral elements fEg3.3). An iterative closest point
(ICP) algorithm was utilized to register the traigiset geometries to the template mesh.
To facilitate registration, the subject meshes weesiderably finer than the template
mesh; average edge lengths were 0.4 mm for therfama tibia and 0.15 mm for the
patella compare to 3.0 mm for the template. InI@ algorithm, the nearest neighbor
searching was accelerated using k-dimensional tkeds similar to [Bryan et al., 2010]
and distance along the normal of an element wad oser Euclidean distance for
structures with high curvature (femoral condyle)n this process each bone was

registered to each other with nodal correspondérigeire 3.4).
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The cartilage structures were represented by helxahéhex) meshes because of
their improved behavior in finite element analyseth contact. Each cartilage was
segmented and aligned with the associated bonedalN@ndles were used to volume-
morph the hexahedral mesh template to the subpesd{sc model using custom
TCL/VTK script and Hypermorph (Altair, Troy, MI)[Ezpatrick et al., 2012]. The script
generated 1200, 264, 240 and 390 handles for fdroartiage, tibial-medial-cartilage,
tibial-lateral-cartilage, and patellar-cartilageogeetries, respectively, and produced three
layers of hexahedral elements (2748, 990, 825, %% elements for each cartilage,

respectively) across the thickness of each caeilag

3.1.3 Relative Alignment and Transformation Vector

MR scans are typically performed in full extenswithout an applied load on the
qguadriceps or a known flexion angle. If alignmehtthe structures was based on this
uncontrolled, unloaded position, it is difficult tdetermine whether the variability
observed is due to relative alignment of the stmes or differences in scan position.

Based on the as-scanned position, knee flexioreddrom -2° to 18°. As an
alternative to reporting alignment based on thisomtrolled and unloaded position, the
structures of the knee were aligned to a knowntjposin the Kansas knee simulator with
the quadriceps loaded to maintain a tibiofemorekifin angle of 30°. The process
aligned each meshed structure to kinematic dataatetl during the experiment and test

probed point data for each structures (Figure 3.5).
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Local anatomic coordinate systems were develope@&doh bone based on the
articular geometry and anatomical landmarks [Pagtdgl., 1997; Morton et al., 2008]
(Appendix A). The femoral coordinate system was defined vinéhdrigin at the center of
the axis of the cylinder fit through the medial datkral condyles of the femur [Pandy et
al., 1997; Della et al., 1999], medial and latezpicondylar points and the line passing
through the centroids of three slices at the prakiend of the femur [Morton et al.,
2008]. The tibial coordinate system was constdigtéh the origin at the medial tibial
eminence, using lines passing through centroid¢hife slices at the distal end, and
through the centers of the tibial condyles [Mortdral., 2008]. The patellar coordinate
system was developed using the proximal, distal, lateral points around the articular
periphery with the origin located at the geometricantroid [Morton et al., 2008;
Armstrong et al., 2003]. The kinematic alignmehttlee tibial and patellar coordinate
systems relative to the femoral coordinate systexs r@presented by 4x4 transformation
matrices. A transformation matrix is a tool formeilification of coordinate
transformations and it includes information abaanslations and rotations. A typical

4x4 transformation matrix (TF) has been shown magign 3.1.

J Equation 3.1
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The position vector P represents the translatiomfthe global to the local
coordinate systems and the rotation sub-matrix s the rotations of each axis in
body 1 about body 2. Note that the rotation subtrixis a multiplication matrix of the
dot products of the unit vectors of the two bodgrcinate systems; therefore each
column of R indicates the orientation of the lomails with respect to the corresponding
global axis.

During the process of alignment of constructedcstmes to the probed points and
the development of relative transformation mataseries of steps were followed. The
cartilage probed point test data were reportechair trespective rigid body frame. As
each rigid body reference frame transformation Y4xds given with respect to the global
origin (camera origin), tibial and patellar cariaprobed points were transformed to the
femoral rigid body space for an unknown flexion lang\Next, the constructed geometries
from their local coordinate space were aligned heirt respective probed points and
during this process their coordinate systems wks@ moved along. In this way, local
anatomical axes of each bone was made availabl¢héoifurther transformation and
structures were aligned to the’3hown flexion position with femoral origin as gklb
origin. Further, relative transformation of titaad patella to the femur was developed in

the form of 4x4 transformation matrix (Equation)3.1
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3.2 Principal Component Analysis

The variability in shape and alignment was charastd by performing a
principal component analysis (PCA) on the trainsgf data. PCA is a statistical
technique to decompose a large data set intogisfisiant principal components in terms

of eigenvalues and eigenvectors.

3.2.1 Bones Only

In the bones only case, SSAM was developed by PCthe following data: x,y,z
coordinates defining the knee structures (2384114t 472 nodes for the femur, tibia
and patella, respectively) reported in their loaaktomical coordinate system and 24
terms of the transformation matrix relating thesipon of the tibia and patella to the
femur (4x4 transformation: 3x3 rotations and 3 stations for each tibiofemoral and
patellofemoral joint). Matrix size for the PCA wa$895x20 and contains:

-X,y,z coordinates defining the nodes for the kbeees: femur, patella, and tibia
reported in their local anatomical coordinate gsyste

-Components of the transformation matrix relatihg position of the tibia and
patella to the femur (4x4 transformations)

PCA was performed on the covariance matrix aftemhean was subtracted from

the original data
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3.2.2 Bones and Cartilages

In this case, bones cartilages: femoral, tibial-mledibial-lateral and patellar
cartilages were added to bones. In addition to 21&9ms for each member in the
training set, 6282 terms were added for the cgdsa Hence, each member of the
training set is represented by the following daianfs:

-X,y,z coordinates defining the nodes and morphhandles for the knee
structures reported in their local anatomical cowte system

-Components of the transformation matrix relatihg position of the tibia and
patella to the femur (4x4 transformations)

For reference, the template mesh for the femura tdmd patella consisted of
2384, 1101 and 472 nodes, respectively. The agdiktructures were represented by
2094 nodes, which served as morphing handles fdnex mesh. The alignment
transformations included 24 terms, defining 3x3ations and 3 translations for the
tibiofemoral and patellofemoral transformations.AP®@as performed on the covariance
matrix after the mean was subtracted from the woaigilata. As a result, a series of modes
of variation-some corresponding to size and shejhers were corresponding to relative
alignment of the structures.

The most common changes in shape and alignmentbearvisualized by
perturbing specific modes of variation based orirtherresponding eigenvalues and

eigenvectors.
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3.2.3 Bones and Cartilages and Ligament Attachntgitgs

After demonstrating SSAM generation for bones amtilages successfully, four
major ligaments (MCL, LCL, PCL, and ACL) attachmgmiints were added for the
training set. MCL was represented by 3 attachnsées: medial femoral epicondylar
point, medial proximal tibia and medial distal #bivhile LCL was represented by two
attachment sites: lateral femoral epicondylar paimd fibula proximal end (Figure 3.6).
Cruciate attachment areas were taken as anteram@mACL) and postero-lateral
(plACL) for the ACL and postero-medial (pmPCL) aadtero-lateral (alPCL) for the
PCL (Harner et al., 1999) (Figure 3.7). Femoral @ibial cruciate attachment areas were
approximately quartere@hppendix B) to place four attachment points at the centroid of
each quadrant while each collateral ligament sites wepresented by a point. All
considered ligament attachment points have beewrsfior mean specimen of training
set specimen in Figure 3.8.

Inclusion of the ligaments attachments sites addedodes on the femur and 11
nodes on the tibia, resulting 63 more rows (x,pe dach nodes) to each member of
training set and making the matrix size as 18240xPCA was performed in the same

way as described above.
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Posterior Anterior

Figure 3.1: Knee structures reconstruction froaclkst of 2-dimensional MR images
(left image) in the form of 3-dimensional Sterelbigraphy (.stl) format (right image).
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Figure 3.2: Reconstructed and processed bone® sp@cimens of the training set in
scan space and illustrating the shape and sizabity among them.
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Figure 3.3: An average template mesh with 3.0 niement edge length, used for

establishing nodal correspondence through ICP,dmvraining set.
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Figure 3.4: Left- Unregistered femurs before I@Bistration technique, Middle- shell
representation of registered femurs to the tempfataur for establishing nodal
correspondence and each femur has equal numberodésn Right- Wireframe
representation of registered femurs.

Figure 3.5: Left- A cadaveric specimen is beingtéd for an activity in the Kansas
Knee Simulator, Middle-Computational model repréagon of knee simulator with a
virtual knee model, Right- Reconstructed knee @&rio cartilage probed points
corresponding to 30 degree flexion, obtained dukimge simulator test.
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Figure 3.6: Constructed collateral ligament attaeht sites surface geometry from cne
of the subject in the training set; Left- laterallateral ligament represented by lateral
femoral epicondylar site and fibula proximal enig sRight- medial collateral ligaments
represented by medial femoral epicondylar, mediakimal tibia and medial distal tibia
site.

Figure 3.7: Constructed cruciate ligament attacttrsées surface geometry from one
of the subject in the training set; Left- posterapuciate ligament attachment site on
femur and tibia, Right- anterior cruciate ligamattachment site on femur and tibia.
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Figure 3.8: Ligament attachment sites for the m&anect of the training set; Left-
lateral collateral ligaments represented by latéraioral epicondylar point and fibula
proximal end, Middle- femoral and tibial cruciateaghment areas were quartered to
place four attachment sites at the centroid of epadrant, Right- medial collateral
ligaments represented by medial femoral epicondytant, medial proximal tibia and
medial distal tibia.
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Table 3.1: Demographic details of specimens usetiidy.

. Height | Height | Weight | Weight
Subjects | Sex | Age (years) (m) (in) (kg) (Ibs) BMI

BB02 M 80 1.83 72 92.98 205 27.80
BB03 M 55 1.68 66 81.64 180 29.05
BB04 M 59 1.78 70 63.50 140 20.09
BBO06 M 59 1.78 70 63.50 140 20.09
BBO7 M 80 1.83 72 92.98 205 27.80
BBO08 M 61 1.83 72 90.72 200 27.12
BB09 M 80 1.83 72 92.98 205 27.80
BB11 M 55 1.68 66 81.64 180 29.05
BB12 M 59 1.78 70 63.50 140 20.09
BB14 M 68 1.83 72 100.0(¢ 220 29.90
BB16 M 72 1.66 65 68.18 150 24.95
BB17 M 63 1.85 73 77.11 170 22.45
BB24 M 74 1.75 69 81.65 180 26.66

BB25 M 60 1.75 69 60.78 134 19.79
BB26 M 52 1.73 68 72.58 160 24.33
BB27 M 79 1.73 68 74.39 164 24.94
BB29 M 77 1.73 68 86.18 190 28.89
BB30 M 52 1.73 68 72.58 160 24.33
BB32 M 64 1.75 69 61.24 135 19.94
BB34 M 71 1.78 70 70.31 155 22.24

Table 3.2: Statistics of specimens used in study.

Age Weight BMI
(years) | (kg) (kg/n)
Mean 66 77.42| 24.86
Standard 9.90 | 12.26 3.57
Max 80 100.00 29.90
Min 55 60.78 19.79
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Table 3.3: The details of the truncated femur tlerig achieve same aspect ratio (BB27
was the reference) for the training set subjects.

Subjects| ML SI Width/Length New Sl length Truncated SI
width length (Ratio) (Length/ Max. length (mm)
(mm) (mm) Ratio)
BB02 82.96 94.56 0.88 74.36 20.20
BBO3 | 84.098| 100.404 0.84 75.38 25.03
BB04 88.91 | 105.66 0.84 79.69 25.97
BBO05 78.76 | 101.58 0.78 70.59 30.99
BBO6 | 91.906| 100.866 0.91 82.38 18.49
BBO7 | 81.122| 94.772 0.86 72.71 22.06
BB0O8 | 88.327| 95.327 0.93 79.17 16.16
BB09 90.62 | 104.21 0.87 81.22 22.99
BB11 87.7 101.13 0.87 78.61 22.52
BB12 87.42 | 105.22 0.83 78.36 26.86
BB13 87.62 | 103.13 0.85 78.53 24.60
BB14 83.97 101.17 0.83 75.26 25.91
BB16 86.95 93.23 0.93 77.93 15.30
BB17 90.72 89.36 1.02 81.31 8.05
BB18 80.8 89.15 0.91 72.42 16.73
BB19 | 90.383| 94.617 0.96 81.01 13.61
BB20 | 82.992| 87.461 0.95 74.39 13.07
BB24 | 84.331| 85.007 0.99 75.59 9.42
BB25 | 84.635| 90.061 0.94 75.86 14.20
BB26 80.54 84.58 0.95 72.19 12.39
BB27 81.78 73.3 1.12 73.30 0.00
BB29 88.94 99.6 0.89 79.72 19.88
BB30 82.2 90.3 0.91 73.68 16.62
BB31 | 88.816| 90.877 0.98 79.61 11.27
BB32 | 84.364| 88.624 0.95 75.62 13.01
BB34 86.17 85.167 1.01 77.23 7.93
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Table 3.4: The details of the truncated tibia tenig achieve same aspect ratio (BB16
was the reference) for the training set subjects.

Subjects|] ML SI Width/Length| New Sl length Truncated Sl
width length (Ratio) (Length/ Max. length (mm)
(mm) (mm) Ratio)

BB02 78.65 79.73 0.99 62.76 16.97
BB0O3 | 78.782| 83.736 0.94 62.86 20.87
BB0O4 79.7 77.07 1.03 63.59 13.48
BBO05 74.75 84.12 0.89 59.64 24.48
BB06 | 85.234| 85.187 1.00 68.01 17.18
BB0O7 | 79.733| 83.293 0.96 63.62 19.67
BBO08 84.24 | 89.765 0.94 67.22 22.55
BB09 81.71 82.6 0.99 65.20 17.40
BB11 79.6 83.04 0.96 63.51 19.53
BB12 79.52 81.44 0.98 63.45 17.99
BB13 79.35 83.7 0.95 63.32 20.38
BB14 78.59 85.46 0.92 62.71 22.75
BB16 79.03 | 63.06 1.25 63.06 0.00
BB17 80.55 67.52 1.19 64.27 3.25
BB18 72.97 65.4 1.12 58.22 7.18
BB19 | 83.744| 69.955 1.20 66.82 3.13
BB20 75.581| 67.678 1.12 60.31 7.37
BB24 | 79.466| 80.321 0.99 63.41 16.91
BB25 72.67 59.53 1.22 57.98 1.55
BB26 72.68 72.4 1.00 57.99 14.41
BB27 76.29 70.6 1.08 60.87 9.73
BB29 82.89 80.5 1.03 66.14 14.36
BB30 72.66 63.92 1.14 57.98 5.94
BB31 | 81.731| 86.667 0.94 65.22 21.45
BB32 | 78.224| 75.801 1.03 62.42 13.38
BB34 80.889| 69.079 1.17 64.54 4.54
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CHAPTER 4 — RESULTS

4.1 Shape and Size and Alignment Variability

The findings of the current study are dually in thethodology to develop and the
creation of the statistical shape and alignmentehod’he SSAM model described the
variability in the training set with a series of d&s of variation defined by eigenvalues
and eigenvectors. By applying PCA, the data reg@sg the variability in the training
set is essentially reduced from the 18240 individiegiables (nodal coordinates and
transformations) to a series of nominally a dozghagonal variables. Each orthogonal
variable represents a mode of variation describedrbeigenvalue related to how much
variability is explained by the mode and an asdedi@igenvalue depicting how each

original variable is transformed.

4.1.1 Bones Only

The SSAM of the knee characterized the common moflesriation with the
first 3 modes representing 70% of the variabilityl 40 modes representing 95% (Table
4.1). Characterizing 49% of the variability, motecorresponded primarily to scaling
with changes in size of the structures and assatiataling of alignment, but also

included tibial varus-valgus (VV) alignment (Figu€l). Mode 2 (13% of variability)
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captured changes in patella inferior-superior {afig@) position and tibial anterior-
posterior (AP) position, while Mode 3 (8%) descdbehanges in femoral condylar and

trochlear geometry, patellar shape and tibial Vigrahent (Figure 4.2).

4.1.2 Bones and Cartilages

In the statistical shape and alignment model, ftre#¢ 3 modes of variation
explained 47% of the variability, with 10 and 15 ame capturing 84.8% and 95.6%
respectively (Table 4.2). Individual modes of afion are perturbed to visualize the
modes of variation. Mode 1 (20% of variability exipled) described scaling of all of the
structures of the joint and also included pateallisa-baja alignment relative to the femur
(Figure 4.3). Mode 2 (16%) described tibial armteposterior (AP) alignment and
associated patellar alta-baja alignment, and thpesland internal-external (IE) alignment
of the articular surfaces in the patella femorahtjaFigure 4.3). Mode 3 (11%)
characterized tibial IE rotation and patellar shagpgecifically the medial-lateral facet
ratio (Figure 4.4). Mode 4 (8%) described tibialws-valgus alignment and patellar alta-
baja (Figure 4.4). Mode 5 (7%) captured subtleapshchange in multiples structures,

including medial-lateral width of the femoral amoial cartilage (Figure 4.5).

4.1.3 Bones and Cartilages and Ligaments Attach®iees

Addition of ligaments attachment sites point da¢d egnly added only 63 new
rows (21 points x 3 coordinates) to bones plusilagds data set. Hence, results were

very much similar to previous case. So, in thisecaf statistical shape and alignment
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modeling the first 3 modes (Table 4.3) of variatexplained 47% of the variability with
10 and 15 modes captured 84.6% and 95.5%, resplctiv

Mode 1 represented 20.6% of the variability andoanted for primarily scaling
driven change in the size of the structures. Aswdaling of alignment with patella alta-
baja and medial-lateral position variability wesptured (Figure 4.5).

Mode 2 (16 % of variability) captured changes ibidai anterior-posterior
alignment, shape; internal-external alignment of gatellofemoral joint; and femoral
articular surface and depth of sulcus geometryufeid.6).

Mode 3 (Figure 4.7) captured 11% of the variabilityd characterized tibial IE

rotation and patellar shape, specifically the mddizral facet ratio.

4.1.4 Leave One Out Analysis

Leave one out analysis was performed on the baregartilage training set data.
This analysis evaluates the predictive capabilty.p. Dissertation, Galloway F., 2012]
of the SSAM. During the analysis each knee wasdaf in turn and a SSAM was
created using the remaining training set data.this process, for each leave out case
important PC vectors were calculated. These P@keand adjusted mean of variable
of original (without left out) training set data meused to reconstruct the left-out knee.
This was done for increasing number of the PCs, eawh time the left out knee was
estimated. As per the reconstruction test, théexgoosition error was then computed
between the ‘left-out’ tibia and ’estimated’ tibidlhe mean Euclidean distance error and
inter-quartile range between model predicted andah@eometries is reported as a box

plot (Figure 4.8) showing that the errors reducthwein increasing number of the modes
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of variation included. The distribution represehtia the box plot characterizes the
variability in the analysis leaving out each membérthe training set. The results
converge when more than 12 modes are includeceimitdel prediction. Using the first
15 modes of variation (which characterized 95%haf variability), the average mean

error was 1.64 mm with a standard deviation of 0.21

4.2. Fidelity of Statistical Shape Models

Finite element analyses were performed on modeisrgéed from the statistical
shape and alignment. Joint mechanics were evadldatehe average and first 2 modes

at +/- 1 standard deviation.

4.2.1 Finite Element Analysis

Further, the link to joint mechanics predictiondsmonstrated by evaluating the
contact mechanics with finite element analysesafgeries of virtual subjects: mean and
modes 1 and 2 evaluated at + 1 standard deviafldre model geometry and alignment
was derived from the statistical shape and alignmeosdel. The extensor mechanism,
based on [Baldwin et al., 2009] and [Fitzpatrickakf 2011] was morphed to the new
geometry. In the analysis, the tibia was fixechvatload representative of body weight
(660N) applied to the femur and a distributed 18Dad applied through the extensor
mechanism. Bones were modeled as rigid and cagtilgs modeled as a fully
deformable linear elastic material [Mesfar and &hirAdl, 2005]. Contact pressure and

area are shown at 30° tibiofemoral flexion (Figdr®).
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4.3 Discussion

This study developed a methodical approach forssitzdl shape modeling of the
knee joint. The statistical shape model charamtdriintersubject variability for a
population of knees. The statistical model wasettgped with the shape of the knee
described relative to the local anatomic coordinggetem for each structure, while
alignment between the structures of the joint watemnined for controlled, known
position.

The shape model included tibiofemoral (TF) and lpEftamoral (PF) joints of the
knee in the study. Knee joint structures: bonesaur, tibia, and patella; cartilages-
femoral, tibial-medial, tibial-lateral, and patelldigaments- attachment sites of MCL,
LCL, PCL, and ACL were used to represent each knee.

The structures of knee were segmented from MR isiagsing ScanlP
(Simpleware, Exeter, UK). The femur and tibia wé@nsected based on a constant
aspect ratio between the medial-lateral width ahd inferior-superior length to
normalize the intersubject bone length becausé@fvariation in the scanned field of
view. The images had an in-plane resolution o60r8n (pixel size) and an axial slice
thickness of 1 mm. The slice thickness and piiaa ef a scan determine the accuracy of
the reconstructed model. During the process adnstrtuction the curvature of the bone
is obtained by interpolating between the sliceber&fore, it is important to note that the
interpolation may have caused some detail lossthmitoverall shape of the bone was
maintained by visual inspection. Also, a relatywé&her mesh (close comparison to the

in-plane resolution of the scan) with average el@ntength of 0.4 mm for femur and
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tibia and 0.15 mm for patella were used for thastegtion to the template. However,
analysis to measure out the repeatability of methcah be a quantifying tool for the
segmentation error.

MR scans are typically performed in full extemsiwithout an applied load on
the quadriceps and hence flexion angle varied fr@Mmto 18°. So, instead of scan
position, loaded position from the knee simulaiivaty was used to capture the relative
alignment between knee structures. The relatigm@ent between knee structures was
based on the time point corresponding to the deiegion during the simulator activity.
In this approach, the time point varied acrossstiitgects to achieve a fixed flexion. It is
important to note that there can be variabilitgha load applied to the knee to achieve a
fixed flexion position. Two instances of loadedsjion, i.e. 36 and 18 flexion, were
used in the study.

The availability of simulator data limited the sioé the training set to 20
specimens and an all-male population. The tesbgufgpoints of the four cartilages
(femoral, tibial-medial, tibial-lateral, and pat#l) collected during the simulator activity
were first aligned relative to each other usinghgfarmation matrices data collected
during the experiment. Segmented geometries df kiaee were discretized in the nodal
form and the positioning was done to test probedtpadata for each structure for an
unknown flexion. The test probed points collected fandom locations during the
experiment were not sufficient enough to perfegibgition the structures. Therefore,
using best judgment was the basis for positionnegstructures to the probed points and,

utilizing the reference axes of each bone and thigity data, the structures were rotated
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to obtain a fixed flexion. Moreover, a slight pasiing error of the structures to the
probed points was carried over to the fixed flexmsition during the rotation of the
structures. The local coordinate systems wereldped for the template subject using
established procedures and subsequently transfesredch subject in the training set
after performing the iterative closest point aliggmh The iterative closet point
alignment also registered training set subjectthéotemplate subject for node-to-node
correspondence. Local coordinate systems of eétittgre were preserved while
positioning the registered model from template sptacsimulator space. The reported
alignment was based out of positioned structure$ixed flexion in the simulator space.
Notably, there is a greatest uncertainty associaiédaligning the segmented geometry
to experimentally-measured limited probed pointudlaata. This could be a potential
source of error.

Principal component analysis on the data consisbhgshape and relative
alignment yielded important modes captured togethtr all variability in the data. The
shape and alignment model representing new virgwdjects was developed by
perturbing the modes with +/2 std. dev. Importaodes of variations were studied with
additional structural complexities and for two knopositions, i.e. 3tand 18 flexion.

Investigations of the modes yielded insight inte tehape and alignment
relationships between the structures. In the stodglving bones, cartilages, ligament
attachment sites, and %Bflexion, the first 3 modes of variation explaind@% of the
variability with 10 and 15 modes capturing 84.6%l &%.5%, respectively. Mode 1

represented 20.6% variability, primarily scalingvdn. Mode 2 (16% of variability)
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captured changes in tibial anterior-posterior afignt, internal-external alignment of the
patellofemoral joint, and femoral articular surfasel depth of sulcus geometry. Mode 3
(11%) characterized tibial internal-external raiatiand patellar shape, specifically the
medial-lateral facet ratio.

Strong correlations are desirable in reducing tnalver of relevant modes. The
strength of the PCA-based statistical modeling @ggin is its ability to capture and
maintain these subtle geometric and alignment amngin the present study when
multiple structures of the knee were considereel fitilst few modes of variation (20.6%,
16% and 11% for modes 1, 2 and 3) explained lesmbikty. Bryan et al. [2009]
reported 45% of the variability was explained bydmol and more than 75% was
captured with the first 8 modes in their studytbie femur. When considering only the
bones (femur, tibia and patella) and alignmenth@ turrent study, the first mode of
variation explained 49% of the variability.

Leave one out analysis was performed and the sesoiiverged when more than
12 modes were included in the model prediction.r the first 15 modes of variation
(which characterized 95% of the variability) theeeage mean error was 1.64 mm with a
standard deviation of 0.21.

The fidelity of shape models was studied afterguenfng finite element analyses
for joint mechanic predictions. Joint mechanicsevevaluated for the average and the
first 2 modes at +/- 1 standard deviation. Inghely, a fixed loading was applied to the
models evaluated. However, it would be more rBali® scale the applied loading

proportionate to specific anatomic measurementgdBet al., 2009].
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This piece of study demonstrated the workflow fbe tdevelopment of the
statistical shape modeling to characterize anat@mariability of the knee and generated

new virtual subjects in finite element analysigiat.

Table 4.1: Bone Only: Cumulative variability exiplad and description of characterized
behavior for the most significant modes of variatio

Mode Variability explained Mode characteristics
(Percent)
1 49 Scaling with changes in size of the structares

associated scaling of alignment, but also included
tibial varus-valgus (VV) alignment

2 13 Patella inferior-superior (alta-baja) positeord
tibial anterior-posterior (AP) position
3 8 Changes in femoral condylar and trochlear

geometry, patellar shape and tibial VV alignment
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Figure 4.1: Modes of variation for the statistisahpe and alignment model shown at
+/- 2 standard deviations. Mode 1 capturing scalimgsize and tibiofemoral VV
alignment.
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Figure 4.2: Mode 2 relation between tibial AP posi and patella alta-baja. Mode 3
relation in shape for the trochlear groove andlfzate
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Table 4.2: Bone Plus Cartilages: Cumulative valitgbexplained and description of
characterized behavior for the most significant egdf variation.

Mode Cumulative variability Mode characteristics
explained (Percent)
1 20.2 Scaling, patellar alta-baja
2 36.1 Tibial anterior-posterior alignment,

shape and internal-external alignment of the
patellofemoral joint

3 47.5 Tibial internal-external rotation,
patellar shape (medial-lateral facet ratio)
4 55.5 Tibial varus-valgus and patellar alta-baja
5 62.6 Medial-lateral width of femoral and tibial
cartilage

Mode 2 \

Figure 4.3: Modes of variation (1 and 2) for thatistical shape and alignment model
shown at +/- 2 standard deviations. Mode 1 captsoading in size as well as patella
alta-baja. Mode 2 showing variability captured fimal AP alignment, shape and IE
alignment of the patellofemoral joint.
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Figure 4.4: Modes of variation (3, 4 and 5) fag 8tatistical shape and alignment model
shown at +/- 2 standard deviations. Mode 3 pripa@ptured tibial IE rotation, Mode 4
captured patella alta-baja and tibial VV rotatiamd Mode 5 captured ML width of
femoral and tibial cartilages.

Table 4.3:

Bone Plus Cartilages Plus Ligamentsachtinent Points: Cumulative
variability explained and description of characed behavior for the most significant
modes of variation.

1

Mode Cumulative variability Mode Characteristics
explained (Percent)
1 20.06 scaling, patellar alta-baja
2 35.9 tibial AP translation,
shape and IE rotation of the patellofemora
joint
3 47.24 Tibial IE rotation,
patellar shape (medial-lateral facet ratio)
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Figure 4.5: Mode 1 of the statistical shape amghaient model shown at +/- 2 standard
deviations.
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Figure 4.6: Mode 2 of the statistical shape aighaient model shown at +/- 2 standard
deviations.
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Figure 4.7: Mode 3 of the statistical shape aighalent model shown at +/- 2 standard
deviations.
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Figure 4.8: Box plots for the mean Euclidean distaerror and inter-quartile range
between model predicted and actual geometriesyatea in the leave one out analysis
as a function of the number of modes of variatinduded in the model predictiol
Error is computed as the distance of nodal cootdaetween the left-out geometry
and its model prediction. Results are shown fodiare 28" and 7% percentiles,
minimum and maximum for the series of analysesitgpwut each member of the
training set.
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-1 standard deviation

+1 standard deviation

Figure 4.9: Tibiofemoral and patellofemoral comntaechanics shown for mean and £1
standard deviation for modes 1 and 2 (Assisted kghaf Ali, Computational
Biomechanics Lab, University of Denver).
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CHAPTER 5 — RELATIONSHIP BETWEEN SHAPE AND FUNCTION

5.1 Introduction

Prior statistical shape models have investigatettiphel structures in a joint for
shape and alignment [Rao et al., 2012; Baldwirl.e2@10; Bredbenner et al., 2010] that
are required to further investigate joint mechanfos the success of the knee
replacement. Also, previous studies have investdyeelationships between shape of the
articular geometry and joint mechanics, but haveinegestigated complete knee joint
mechanics. Accordingly, the objective of this studlas to use the statistical shape
models, developed from magnetic resonance (MR) @mamnd simulator test data, and
include the kinematic variability of the same kneasd demonstrate the ability to
generate realistic instances for kinematic prealicfor the use in finite element analysis.
Specifically, the study performed principal compain@nalyses on training set data
consisting of shape, alignment, and experimentalasured knee joint kinematics, and

generated the statisticadape-function model.

5.2 Methods

The shape-function model was created with the shagealignment model, and

with tibiofemoral (TF) and patellofemoral (PF) kmatics. Initially, a statistical shape
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and alignment was created from 20 cadaveric spe@mdhey were the same subjects
used in the shape and alignment model (SSAM).

Digitized points represented these knee joint stnes- bones:- femur, tibia, and
patella, cartilages:- femoral, tibial-medial, tibiateral, and patellar, ligaments:-
attachment points of MCL, LCL, PCL, and ACL werensmlered structures for each
knee in the training set.

Relative alignment was done for the known flexagle of 18 by aligning the
knee structures to the probed points of the Kaksas simulator (KKS). Local anatomic
coordinate systems of each bone were used to deansformation matrices for relative
alignment; the positions of the tibial and patetlaordinate systems were relative to the
femoral coordinate system in the KKS.

Utilizing the digitized points of knee structuresdathe transformation matrices in
principal component analysis, each member of #uaitrg set was represented by a series
of principal component (PC) scores that definedsthectures.

In the KKS experiment, the cadaveric specimen wdgested to a deep knee
bend loading condition and the 6 degree-of-freeddnmTF and PF kinematics were
measured [Baldwin et al., 2009]. Kinematic dataatfthe subjects were normalized
from O to 100% cycle time and discretized intoxaed number of points (51 points) for
each degree of freedom.

To develop the relationships between shape andtifumca second principal
component analysis was performed to createstétestical shape-function model using

the PC shape representation and kinematic datthéotraining set. The size of input
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matrix for second principal component was 531 x 20consisted of PC information
data (19x20, principal components of each membeh@ftraining set) from the shape
and alignment model and kinematic data (TF kine@saB806 points, 51 x 6 dof and PF

kinematics: 306 points, 51 x 6 dof).

5.3 Results

The statistical shape-function model of the knesratterized the common modes
of variation with the first 3 modes representing742 of the variability and 15 modes
representing 95%. Anatomic (shape and alignmeatiability captured by first three
modes with +/- 2 std. dev. is shown is Figure 5This statistical model detected the
differences in the alignment which influences thation throughout the cycle.

Shape and alignment modes were in strong agreewigmthe function modes.
Shape figures presented to describe the anatorwiagaability have no ligament
attachment points to simply avoid cumbersome pest@nd obtain a better understanding
of the shape-function relationship.

Mode 1 represented 16.6% of the variability in 8tepe-function combined
model. The shape and alignment model capturedngcaf the structures with varus-
valgus (VV) rotational and medial-lateral (ML) tisdational alignment. The shape model
was created for PHlexion position. Corresponding to the same flexangle on the
kinematic (function) plot, a strong correlationween shape and function was observed.
Figure 5.2 and 5.3 describe the shape and alignmedel by perturbing modes with +/2

std. dev. As seen in the picture, TF- VV, TF- &t ML have been captured by the first
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mode and the function (Figure 5.8) establishesetated relationship with the shape
model.

Mode 2 (14.4%) described relationships between dikterior-posterior (AP)
position (Figure 5.4) and TF- AP translation (Fig&.8); an anterior femoral position
resulted in more posterior femoral translation. isTimode also captured highest TF-
internal-external rotation (IE) of all three mod@sgure 5.4) and the function (Figure
5.8) predicted the same. In addition, in Mode Z2pwer (baja) patella experienced
greater flexion and lesser anterior translationrduthe cycle (Figure 5.5).

Mode 3 (11.7%) described changes in TF- AP tramsiaiFigure 5.6) and PF-
VV rotation (Figure 5.7) which were strongly supigar by kinematic functions (Figure
5.8 and 5.9). As in, mode 3 in function plots pcestl high AP translation (close to

mode 2) of TF joints and highest VV rotation for jekat.

5.4 Discussion

The framework for the shape-function model has lssmonstrated in this study.
The shape model was integrated with the joint kistgrs (functions) and kinematics of
the new virtual subject was predicted. In thiscpief study, a statistical approach was
developed to quantify the relationship between shatignment and kinematics. To
guantify the relationship between shape and fungctep second principal component
analysis was performed using PC shape represemtatid kinematic data of the same
knees obtained during deep knee bend activity ensimulator. The use of cadaveric

simulator data has advantages over prior effofffie kinematic data used are direct
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measurements and accounts for the intersubjecalubty in anatomy, soft tissues
constraint and material properties.

The shape-function model of the knee characterited common modes of
variation with the first 3 modes representing 42.@%the variability and 15 modes
representing 95%. The initial first three modesemavestigated and it was found that
the shape and alignment modes were in strong agrgewith the function modes. It
also highlighted the interdependencies betweenntFP& kinematics.

The developed framework has the ability to capthes influences of complex

anatomical shape and alignment in predicting therkiatic behavior.

Table 5.1: The shape and function statistical rhodamulative variability with
description of characterized behavior for the firsee modes of variation.

Mode Cumulative Shape and alignment Kinematic
variability characteristics characteristics
explained
(Percent)

1 16.6 Scaling, tibiofemoral Mode 1 has highest ML
patellofemoral VV rotation | translation and also VV
and ML translation rotation

2 31.1 Tibiofemoral IE rotation, | Mode 2 has greatest TF- IE
patella alta-baja rotation and also AP

translations resulting
obvious alta-baja

3 42.7 Tibia AP translation and | Mode3 has largest VV
patella VV rotations rotation and also AP

translation

65



TN, +20 -20 +26
UTATATRATAT AT

Mode 1: anterior view Mode 1: posterior view

+26 20 +20 20

AL AV
TSR PAN AV AN ANAY
T AT TR

Mean: anterior view

T AR AT AR AR A Yy o
R e
STEEeay
oA A,

AL ATAN AR AT

PO S

PN AA VAT AYAN AV ATA
AT ATAVAEAVATAN NS
Py ARV VAVAVATATe

i

o

e
Bl A AP AAA A
S
o AT A
T g S AR
e L A
Sinesdbe s
A
1 Bl
sl

Mode 2: anterior view

+26 -20 +26 -20
Sy
e

e ¢ W
AR ey
S
S Rk oot

FAVAYAYAY

T VYA LAV
1%y i
:,"‘%_EVAVAVAVAVAV#"A‘ L

Mean: anterior view

Mode 3: anterior view Mode 3: posterior view

Figure 5.1: Statistical shape and alignment meteiving mean and first three modes
+/- 2 standard deviations.
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Dark red
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Light red
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Figure 5.2: Results of the shape and alignmetisstal model showing Mode 1 at +/-
2 standard deviations to describe the scaling ze sind varus-valgus (one side gap
between femoral and tibial cartilages).
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Figure 5.3: Results of the shape and alignmetisstal model showing Mode 1 at
+/- 2 standard deviations to describe the medtaldh translational variability
captured.
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Figure 5.4: Results of the shape and alignmetis8tal model showing Mode 2 at +/-
2 standard deviations to describe the internalraateotational variability captured.
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Figure 5.5: Results of the shape and alignmetisstal model showing Mode 2 at +/-
2 standard deviations to describe variability cegdufor patella alta-baja.
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Dark blue: +2 std. dev. Light blue: -2 std. dev.

Anterior
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Figure 5.6: Results of the shape and alignmetisstal model showing. Mode 3 at +/-
2 standard deviations to describe tibial antermsterior translation.

Dark blue: +2 std. dev.
Light blue: -2 std. dev.

Superior
Later

Figure 5.7: Results of the shape and alignmefisstal model showing Mode 3 at +/-
2 standard deviations to describe patella medialdaand superior-inferior translation
because of varus-valgus rotation.
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TF Kinematics
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Figure 5.8: Tibiofemoral kinematics (all six dofshown for the first 3 principal
component modes (+/-2 standard deviations) forsth&pefunction statistical model
Gray lines show data for all members of the trajrsat.
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PF Kinematics
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Figure 5.9: Patellofemoral kinematics (all six gjofhown with perturbations for the
first 3 principal component modes (+/-2 standardiateons) for the shape-function
statistical model. Gray lines show data for alhmbers of the training.
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CHAPTER 6 — CONCLUSION

This study developed a methodological approaclstitistical shape modeling of the
knee joint to represent shape and alignment véitiabi The shape of the knee was
described relative to the local anatomic coordinsystem for each structure while
alignment between the structures was determinedcaintrolled, known position. This
approach enabled the development of new virtuglestdbfor finite element analysis use
in joint mechanics assessment. The statisticaleinctbracterized the interdependencies
between shape and alignment of the articular sesfac The interdependencies
characterization was important to assessing relstips between shape, alignment and
kinematics and was studied through the statisstape-function model. The shape-

function model characterized the interdependenméseen TF and PF kinematics.

The demonstrated workflow to generate a virtualjestbfrom the statistical model
has a variety of applications in population-basedlies. As demonstrated, the shape
model can contribute in joint mechanics evaluattord help in implant designs. The
shape model can be helpful in subject-specificngizof implant line based on the
geometry described by it. Most current evaluatiohgmplant designs are based on a

small number of subject-specific models [Martellaé, 2012]. Since the performance of
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orthopaedic implants varies dramatically betwedrjestis because of natural intersubject
variability and surgical skill, an integrated fram@k will enable probabilistic analyses
to assess the robustness of an implant desigrtiEnpand surgical alignment variability.
The developed framework has the ability to captheeinfluences of complex anatomical
shape and alignment in predicting the kinematicabedr. This statistical model can also
be useful to investigate differences in the shapetion relationship between healthy,
normal and pathologic groups (e.g. patellar matizes).

The availability of the simulator test data limitacsmaller training set of only male
population. The recommended future work includesving the training set to include
males and females to better represent populatidruaimg same workflow to develop the
statistical model. As the knee anatomy has bepresented in the format of finite
element mesh, performing finite element analysipredict knee mechanics could be
another potential future work. Also, the developimef an approach to predict virtual
subjects based on anatomical landmark points eiluseful in patient-specific surgical

planning and robust customized implant design.
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APPENDIX A: ANATOMICAL LANDMARK POINTS FOR LOCAL CAORDINATE
SYSTEMS

Point 1 — Center of the axis of the fitted cylinder
(femoral origin)

Point 2, 3, and 4 — Centroid of three slices at the
proximal end of femur

Point 5 — Medial tibial eminence (tibial origin)
Point 6 — Center of tibial medial condyle

Point 7 — Center of tibial lateral condyle

Point 8, 9, and 10 - Centroid of three slices at th
distal end of tibia

Point 11 — Centroid of patella (origin)

Point 12 — Proximal point on patella

Point 13— Distal point on patella

Point 14 — Lateral point on patella

Figure A.1: Depiction of anatomical landmark peintilized for the construction
of local coordinate system of each bone.
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APPENDIX B: REPRESENTATION OF FEMORAL LIGAMENT ATTEBEMNT
SITES BY POINTS

Figure B.1: For example- femoral ligament attachimenint; surfaces of ligaments
(from 3D constructed geometries) close to bone veatteacted; ACL and PCL sites
were quartered approximately and center of eacjodi@ (total 4 for each attachment
site) was taken as an attachment point. MCL and Is@és surface was diagonally
divided and intersection of diagonals was takeat&@sEhment point.
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APPENDIX C: KINEMATIC EXTRACTION PROCESS USING
TRANSFORMATION MATRICES

Main steps of relative transformation matrices dgwament for kinematics extraction

are as follows:

1.

Each bone (tibia and patella) local coordinateesystvas reported in the femoral
rigid body space.

Each bone’s rigid body transformation matrix infation was available in the
global camera spadgbased on KKS experimental data sheet).

inv(CTO)*CFO*tibz' = Transformation of tibial loc&oordinate system was done
in the tibial rigid body space using global cam@na(CTO0)*CFO*tibz', where
CTO is transformation matrix of tibial rigid body camera space, CFO is
transformation matrix of femoral rigid body in cara space, tibz is tibial Z-
axis). This was done for particular time point dieh tibia local coordinate
system was reported in the femoral rigid body spiaced with time.

CTf = Transformation of tibial rigid body in glabcamera space.
Varying in time.

inv(CFf) = Transformation of global camera spacthwespect to femoral rigid
body.Varying in time. Now, tibia axes information is femoral rigid bodyese.

inv(CFf)*CTf*inv(CTO)*CFO*tibz' = Transformation gze tibial axes in the
femoral rigid body spac&/arying in time.

Femoral axes were in already in femoral rigid begsceFixed.
Final transformation, inverse of tibial axes imf@tion in femoral rigid  body
space * femoral axes in femoral rigid body spadaansformation of tibial local

coordinate system to the femoral local coordingtesn, and was used to
calculate 6 degree of freedoWarying in time.
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APPENDIX D: PUBLICATIONS

Journal
* Rao, C., Fitzpatrick, C.K., Rullkoetter, P.J., KiR,, Maletsky, L.P., Laz, P.J., “A
statistical model accounting for intersubject shapeé alignment variability in the
knee”.Medical Engineering and Physics, in review.

Conference
* Rao, C., Deacy, J S, Kaschinske, S, Fitzpatrick, MKletsky, L P, Rullkoetter, P
J, Laz, P J., “Representing Intersubject Variapiitith Statistical Shape and
Alignment Model of the Knee”58th Annual Meeting of the Orthopaedic
Research Society, February 4-7, 2012, San Francisco, Californiastgo
presentation.
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