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ABSTRACT 

 
Prior statistical shape models have not considered multiple structures in the knee 

joint to characterize anatomic variations which are required to investigate joint mechanics 

further for the successful knee replacement.  Accordingly, the study’s objective was to 

develop statistical shape and alignment model (SSAM) to capture intersubject variability 

and demonstrate the ability to generate realistic instances for use in finite element 

analysis (FEA).  SSAM described the variability in the training set of 20 subjects with a 

series of modes of variation obtained by performing principal component analysis (PCA).  

PCA produced modes of variation with the first 3 modes representing 70% and 10 modes 

representing 95% variability when only bones of the joint were studied.  Modes were 

perturbed by ± 2σ and computational models of new virtual subjects were generated.  

FEA successfully confirmed the fidelity of the SSAM approach.  The relationship 

between SSAM and function (motion) were investigated through the shape-function 

model. The framework can create new subject and predict the kinematic behavior.  The 

approach can be an investigative tool to differentiate in the shape-function relation 

between healthy normal and pathologic groups. 
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CHAPTER 1 – INTRODUCTION 

 

1.1 Background 
 

Performance of orthopaedic implants varies dramatically between subjects 

because of natural intersubject variability and surgical skill.  However, natural 

intersubject variability is ignored and the majority of studies use a single or limited 

number of bone models [Bryan et al., 2010].  Therefore, it is vital to consider intersubject 

variability.  Intersubject variability is inherently present in bone quality, patient anatomy, 

and representation of both variation in shape and relative alignment of the articular 

geometry [Laz and Browne, 2010;  Bryan et al., 2010]. 

Computed tomography (CT) and magnetic resonance (MR) images, at present, are 

the method of choice for the generation of subject-specific models.  It has made it 

possible to define the geometry and the local tissue properties of the bone segment to be 

modeled [Taddei et al., 2006].  Increasing availability of imaging techniques provide 

information to diagnose pathologies (e.g. patellar maltracking, cartilage degradation, joint 

laxity, etc.) and also help understand variability in patient anatomy.  Subject-specific 

anatomy consideration is becoming popular in designing customized instruments and 

implants, and in making surgical decisions. So, understanding the variability associated 
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with anatomy and alignment has a larger role to play in the future in pathologies 

diagnosis, surgical procedures, and the development of customized and robust implants 

for patient care. Recently, hip resurfacing implants were recalled due to concern over 

their robustness to malalginment.  Capturing subject-specific anatomy and alignment 

variability and then integrating that with kinematic predictions will be useful to 

understand the variability in the joint mechanics.  For example, patellofemoral pain has 

been related to abnormal PF kinematics [Fizpatrick et al., 2011]. 

Statistical shape models have been widely used to characterize variability of a 

population data set and in predicting a new instance among that population.  Particularly 

in orthopaedics domain, shape models have been applied to characterize variability in the 

bone morphology for training sets of subjects representing the population; for example, in 

the femur [Bryan et al., 2010; Bredbenner et al., 2008], pelvis [Meller and Kalender, 

2004] and shoulder [Yang et al., 2008].  Variability in the bone material density along 

with bone morphology has also been studied [Bryan et al., 2010; Fritscher et al., 2009].  

Statistical shape models use a point distribution model to establish point-to-point 

correspondence between the instances in a training set [Cootes et al., 1995; Meller and 

Kalender, 2004; Behiels et al., 2002].  

Principal component analysis is a method to describe the variability in the set of 

corresponding points with a series of common modes of variation.  It provides amount 

and direction of change information [Jolliffe, 2002] which has ability to characterize the 

variability in the data.  It has benefits in 1) variability quantification, 2) predicting new 

virtual geometries (based on the prior population data) with direct application in finite 
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element analysis, and 3) efficiently predicting a subject-specific representation from 

incomplete or sparse data sets from less invasive methods (e.g. ultrasound) [Barratt et al., 

2008; Shim et al., 2008; Rajamani et al., 2007]. 

So far, shape models have focused on individual bones which can provide 

benefits like development of implant sizing lines [Fitzpatrick et al., 2007] or the 

evaluation of bone fracture risk because of shape and material properties inclusion 

together [Bryan et al., 2010; Fritscher et al., 2009].  Quantitative differences in femur and 

tibia surface geometry have been characterized through shape models to distinguish 

between two groups  who are not expected to develop osteoarthritis [Bredbenner et al., 

2010].  Patello-femoral joint has been also studied utilizing shape model approach 

[Baldwin et al., 2010]. 

Eventually, in order to utilize statistical models in evaluations of joint mechanics 

(patellofemoral as well as tibiofemoral), the statistical model must consider all important 

structures comprising the joint, their interdependencies and their relative alignment.  A 

complete knee statistical shape model can be comprised of all major bones (femur, tibia, 

and patella), major cartilages (femoral, tibial-medial, tibial-lateral, and patellar), major 

ligaments (medial-collateral, lateral-collateral, posterior-cruciate, and anterior-cruciate).  

In this way, the statistical model will preserve common changes in shape between 

structures, such as the influence of size across the femur, tibia and patella, or the 

mirroring of the shape of the patella and the trochlear groove of the femur.  In addition, 

the relative alignment of the structures will be preserved, which influence a subject’s 

joint mechanics.  [Baldwin et al., 2010; Fizpatrick et al., 2011; Bredbenner et al, 2010]. 
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Previous shape models have considered the relative position of structures by using 

global scan space coordinates, but this does not discriminate between differences in 

anatomic alignment and artifacts resulting from differences in the scanned position (knee 

flexed slightly or internally rotates).  Choosing a known flexion where quadriceps is 

loaded for relative alignment of bones can rule out limitations of the scanned position.  

So, this study focuses on developing statistical shape models for characterizing shape and 

alignment variability of the complete knee joint from a population data set.  Application 

of shape models will be demonstrated by generating new subjects, and performing finite 

element analysis for contact mechanics, and characterizing relationship with function-

kinematics. 

1.2 Motivation 
 

Knee osteoarthritis (OA) affects millions of people worldwide.  In most cases, 

loss of cartilage in the joints happens due to aging and causes activity limitation in older 

age groups [http://oai.epi-ucsf.org].  OA is the most prominent cause for total knee 

replacement (TKR), an ultimate solution to treat the affected knee and again restore the 

motion of the knee.  

 Success of TKR depends on the resultant post-operative knee joint mechanics 

which should be reasonably close to natural knee joint mechanics.  Therefore, it becomes 

necessary to understand knee joint mechanics which can results in better inputs for 

implant design.  Knee joint mechanics are subject-specific and clinical and in-vitro 

studies report significant levels of intersubject variability in terms of kinematics, joint 
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loading, knee structures and bone and soft tissues material properties.  Most importantly, 

anatomical variation is the main contributor to intersubject joint mechanics variability. 

Hence, to achieve a successful TKR, it is necessary to characterize the intersubject 

variability and use those characteristics for implant design. 

 Due to technological advancement, the standard process to develop a subject-

specific model is to reconstruct bony structures along with soft tissues from CT or MR 

images.  However, adopting this process for subject-specific model is a labor intensive 

and time consuming process.  On the other hand, from a training set across population, 

using statistical shape model (SSM) more realistic subject specific model prediction can 

be achieved in shorter time.  Recently, SSM have characterized bony morphology and 

have included shape and intensity representing density and material property variability 

[Bryan et al., 2010; Fritscher et al., 2009].  Statistical shape models have applications to 

population-based evaluations (e.g. osteoarthritis [Bredbenner et al., 2010]) and in the 

efficient development of subject-specific models from a subset of measurements 

[Rajamani et al., 2007].  Statistical shape models have the potential to represent a 

population-based model and efficiently generate subject-specific model for surgical 

planning through computer assisted surgery.  Previous studies of statistical shape 

modeling have focused on the partial structure of a joint and have limited application.  

But applying this approach to a joint consisting of bones, cartilage, ligaments and other 

structures will have many clinical applications in population-based customized treatment 

of OA.  Moreover, representing the variability of the complete knee joint which has a 

higher degree of complexity through SSM is more challenging.  It requires not only 
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registration of the structures of the knees in the training set but also preservation of 

relative position of the structures, a challenging task.  Inclusions of ligaments 

surrounding the knee which provide unique motion constraint have heavy influence to the 

knee mechanics.  As knee mechanics is important for the proper mobility of the subject, it 

becomes important to account for the ligament attachment variability (inter-subject 

variability) and hence develop a robust SSAM model for patient's surgical need and 

ensuring success of TKR.  This thought was motivational in applying SSM concept to a 

challenging situation like representing a joint that contains bones, cartilages and 

ligaments, and then characterizing the intersubject variability, and demonstrating the 

ability to generate new virtual subjects for use in finite element analysis and TKR implant 

design, will be useful with many clinical applications. 

 There are other potential areas where further research is required. SSAM can also 

be utilized in conjunction with correlated anatomical measurement (e.g. femoral 

epicondyles distance, femoral radius) to predict accurate patient's specific geometry for 

pre-operating planning and surgical decisions like identifying mechanical axes, bone cut, 

component sizing, and placement.  It could greatly drive patient’s specific customized 

implants manufacturing and hence would serve patient's specific need rather than 

available standard size implants.  

1.3 Objectives 

 
 

As discussed above, statistical shape models have the potential to generate 

subject-specific models from a population and help assist surgeons for surgical planning 
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through computer assisted surgery.  Furthermore, statistical shape model can be used in 

computational analysis to simulate natural and implanted joint mechanics, and then 

evaluate the robustness of implants design. Accordingly, the sequential objectives of this 

study were: 

-To develop an approach to represent a population-based intersubject variability 

in bone morphology and soft issues and alignment for the structures of the knee through 

statistical shape and alignment modeling (SSAM). 

-To demonstrate the ability of statistical models to describe variability in a 

training set and to generate realistic instances for use finite element (FE) analysis related 

to joint mechanics. 

-To apply statistical modeling approach to characterize relationships between 

shape, alignment and kinematics (motions) through the shape-function model 

Moreover, this study will also advance prior statistical shape modeling efforts 

[Baldwin et al., 2010] (Figure 2.10) by isolating the shape and alignment components of 

the variability and reporting alignments in a kinematic form relative to anatomical 

reference frames for a controlled knee position (300 flexion).  A controlled position was 

chosen to avoid capturing variability because of uncontrolled and unloaded scan position.  

If scan position would have been taken then it will be difficult to differentiate whether the 

variability observed is due to relative alignment of knee structures or differences in the 

scan position.  The larger aim of this study is to produce statistical shape models in FE 

model format.  This approach will enable the joint mechanics assessments because of the 

influence of the shape and alignment by evaluating contact mechanics and kinematics for 
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a perturbed shape model (representing a new subject).  Moreover, the FE model is also 

useful for pathological investigation, like patellar mal tracking and patellofemoral pain 

[Fitzpatrick et al., 2011], and robust implant design evaluation with a population of 

subjects.  

1.4 Organization 
 

Chapter 2 consists of literature review, which provides information about basic 

anatomy of the human knee joint relevant to statistical shape models and prior statistical 

shape models and principal component analysis. 

Chapter 3 provides the information of software tools used, methods and 

procedures followed to develop training set data, and statistical method to develop 

statistical shape models.  This Chapter has three different cases: bones only, bones and 

cartilages, and bones and cartilages and ligaments of statistical shape modeling. These 

cases are with increasing complexity. 

Chapter 4 presents the results and analysis of the results for all three different 

cases of SSAM.  It also discusses the fidelity of the SSAM through running a finite 

element analysis and presenting the results. 

Chapter 5 is dedicated to the demonstrated application of SSAM.  In this chapter, 

a developed framework for knee kinematics prediction for the new virtual subject is 

discussed. 

Chapter 6 concludes the dissertation by highlighting the results and making 

recommendations for future work in the field of study. 
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CHAPTER 2 – LITERATURE REVIEW 

 

This chapter provides literature review on general background of clinical 

terminologies, human knee anatomy, prior statistical shape models, and principal 

component analysis. 

2.1 Clinical Terminology 
 

In human anatomy, a well- defined terminology is extremely useful for the 

consistent description of the relative motions of the human body.  Relative motions of the 

body have been described with the help of three anatomical planes: sagittal, coronal 

(frontal), and transverse (axial).  These three planes are based on positions relative to the 

body in standing position with arms at the side and palms facing forwards (Figure 2.1).  

The sagittal plane divides the body into right and left halves from head to toe.  A 

structure is said to be medial to another if it is closer to the midline and lateral if it is 

further away.  The coronal or frontal plane is perpendicular to the sagittal plane, bisecting 

the body into front and back halves and a structure is described to be anterior if it is 

nearer to the front of the body and posterior if it is closer to the back.  The transverse or 

horizontal plane intersects the body at right angles to the sagittal and coronal planes, 

parallel to the ground and divides the body into superior (head) and inferior (toe) 

sections.  A structure is superior if it is at a higher level or closer to the head and inferior 
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if it is at a lower level or away from the head.  Additionally, the terms proximal and distal 

may be used to indicate an object is closer to the center of the body (proximal) or farther 

away from the body center (distal) (Figure 2.2).  Six terminologies: anterior-posterior, 

medial-lateral, inferior-superior, flexion-extension, internal-external and varus-valgus are 

used to describe six degrees of freedom to define the relative motion of the knee joint and 

have been used in this study.  The first three are for three translational degrees of freedom 

of the knee while the next three are for three rotational degrees of freedom (Figure 2.3).  

Flexion is a movement in the sagittal plane reducing the angle between the femur and the 

tibia, while extension is the increase in angle between the two bones.  An internal rotation 

occurs about the inferior-superior axis when one bone rotates toward the midline of the 

body, and an external rotation occurs when the bone rotates away from the midline.  An 

adduction (varus) is the movement toward the midline in the coronal plane while 

abduction (valgus) is the movement away. 

2.2 Anatomy of the Human Knee 
 

This review of the literature is focused on important structures (bones and soft-

tissues) of the human knee joint that influence its functional behavior most and relevant 

to the subject of this study. Functional behavior is controlled by mainly articular surfaces, 

ligaments, and tendons at the knee joints. The articular surfaces of the knee are located on 

the three bony structures: distal end of femur, proximal end of tibia, and posterior face of 

patella (Figure 2.4).  The femur to the tibia articulation occurs at the tibiofemoral or knee 

joint, and the femur and the patella articulation happens at the patellofemoral joint. 
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At the knee, the articular surface of the tibiofemoral and patellofemoral joints are 

covered in a thin layer of highly organized tissue comprised of collagen and elastin fibers 

known as articular cartilage (Figure 2.5).  The articular surface of tibiofemoral consists of 

the medial and lateral femoral condyles, sulcus groove, the posterior aspect of the patella 

and the proximal tibial surface (Figure 2.6).  The primary functions of the articular 

cartilage are to decrease contact stresses by distributing loads over a wide area, and to 

permit relative movement of the opposing joint surfaces with low coefficient of friction 

of around µ = 0.01 [Ramakrishnan et al., 2001] at the joint.  Over time, depending upon 

activities and age, the articular cartilage can wear away and exposes the rough bones in 

direct contact and cause knee pain and restricted knee activities (known as osteoarthritis). 

These degenerated articulating surfaces are removed during total knee arthroplasty. 

The stability of the knee joint is provided by an extensive network of ligaments 

and tendons around the knee joint.  Ligaments are bands of strong fibrous connective 

tissue that fasten together the articular ends of bones and cartilage at the joints to provide 

passive constraint to the knee.  A majority of this constraint is provided by four major 

ligaments: the anterior and posterior cruciate ligaments (ACL and PCL) and the medial 

and lateral collateral ligaments (MCL and LCL) (Figure 2.5).  The ACL and PCL prevent 

sliding of the tibia in the anterior and posterior directions, respectively.  The collateral 

ligaments provide medial-lateral and varus-valgus stability, and limit internal-external 

rotation during extension. 

The three bones listed above (femur, tibia and patella), and their respective 

cartilages, and the attachment sites of four ligaments have been considered in the shape 
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and alignment modelling.  Detailed attachment sites of MCL have been shown in Figure 

2.7.  As in, MCL has three prominent attachment sites- femoral, proximal tibial and distal 

tibial.  Additionally, from a cadaveric specimen the location of MCL and LCL in deep 

knee flexion has been shown in Figure 2.8. 

2.3 Statistical Shape Modeling 
 

In the past, SSM was typically used to investigate individual bone but, have not 

considered multiple structures in a joint that would be required to assess the complete 

joint mechanics.  Numerous studies have investigated relationships between shape of the 

articular geometry and joint mechanics, for example in the patellofemoral joint 

[Fitzpatrick et al., 2011].  Recently, three dimensional statistical shape models of the 

femur for finite element analysis have been created.  These models also characterized 

shape and intensity representing density and material property variability [Bryan et al., 

2010].  The variation in both geometry and material properties were extracted from 

computer tomography (CT) scans and statistical shape models captured that information.  

Similarly, three dimensional statistical shape models of the tibia for finite element 

analysis have been created [Galloway et al., 2012] (Figure 2.9). 

  In another study [Fritscher et al., 2009], shape and spatial intensity distribution of 

the femur were combined and the inner structure of the proximal femur was analyzed to 

predict a biomechanical parameter using appearance statistical models developed from 

CT and X-ray images.  Based on this study, using an automated approach, accurate 

predictions of the bone mineral density and biomechanical properties were achieved, 
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which otherwise would have been inappropriate using conventional methods, such as a 

surgeon's experience.  To summarize, statistical shape models have important application 

in the accurate prediction of bone parameters. 

 SSM also helps assist treatment of knee OA, and provides a mean to describe 

spatial variation in joint surface geometry between healthy subjects and those with 

clinical risk of developing osteoarthritis [Bredbenner et al., 2010].  It has been 

demonstrated that SSM is capable of efficiently describing the quantitative differences in 

tibia and femur articulating geometry.  The study is comprised of two bones of the knee 

joint without considering other structures present in the knee joint.  Notably, the study 

substantiated that SSM has application in OA treatment and how the SSM could be used 

to differentiate between patients who are not expected to develop OA and those who are 

at the clinical risk of OA.  This proven application of SSM developed from just two 

bones, i.e. femur and tibia, guides the path forward to develop SSM from all structures of 

the knee. 

 Another study [Rajamani et al., 2007] has described 3-D model construction by 

fitting statistical deformable model to minimal sparse 3D data consisting of digitized 

landmarks and surface that are obtained intra-operatively.  It presented a novel 

anatomical shape deformation technique, operated on sparse sets of surface points and 

also on small and large sets of digitized points using point distribution model (PDM).  

 A more recent study [Fitzpatrick et al., 2011] investigated the relationship 

between statistical shape models and joint mechanics.  Probabilistic analyses were 

combined with statistical shape model to predict patellofemoral joint mechanics.  This 
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approach was helpful to deal with difficult sensitivity analysis on a larger number of 

parameters.  In the combined probabilistic and statistical shape approach, first 

probabilistic (Monte Carlo) analysis was used on variable parameters to create a training 

set and then statistical shape model development technique was applied to investigate 

variability.  It was applied in biomechanical analysis to characterize the effect of implant 

alignment and loading on the patellofemoral joint mechanics in the TKR.  Though this 

study focused on only patellofemoral joint mechanics, tibiofemoral joint mechanics 

inclusion could be the path forward to complete representation of knee joint mechanics.  

In the above studies, SSM concepts have been appreciably used to characterize the 

variability in the data set and their usages. 

 The methods for developing a statistical shape model are standardized and consist 

of two main steps: 

 1. Establishing nodal correspondence in the training set, and  

 2. Performing principal component analysis, discussed in next section 

 First, and the most important step, in SSM development is establishing accurate 

node to node correspondence between instances in the training set so that realistic 

representation of shape is feasible.  The training set geometries are defined by a set of 

points or nodes representing the surfaces of the structures and the statistical shape model 

then characterize the changes in the location of the nodes for the specimens in the 

training set.  Commonly, iterative closet point (ICP) algorithms, also called registration 

algorithm, are used for nodal correspondence.  ICP requires procedures to find the closest 

on the geometric entity to a given point.  A general purpose method for registration of 3-
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D shape [Besl et al., 1992] describes that ICP has capabilities to register point sets, curves 

and surfaces.  However, ICP works on best initial guess of matching specially rotation 

and sometime noise level could be very large and results in gross statistical outliers, also 

complex geometries are sometimes computationally expensive.  The point distribution 

technique (PDM) has also been used for nodal correspondence in the past [Rajamani et 

al., 2007].  PDM technique defines handles corresponding to anatomical landmark 

locations, including bony features, prominences, etc. on the segmented geometry of each 

subject in the training set.  Integrated mesh-morphing-based segmentation approach was 

another technique, recently developed by [Baldwin et al., 2010] to create hexahedral 

meshes (3D) of subject-specific scan data.  This method integrated segmentation of a 

structure in a scan image to nodes in the template mesh.  The template mesh was the 

same for a particular structure and nodal correspondence was well established.  This was 

a computationally efficient method as it avoided one intermediate step of time consuming 

3D meshing. This approach created FE based statistical shape models for uncontrolled 

and unloaded scan position (Figure 2.10). 

Hexahedral meshing is more realistic for deformable structures like cartilages for 

accurate finite element analysis (FEA) results.  Therefore, developing SSM from 3D 

mesh will have direct application in FEA. 

 Additionally, intersubject variability has not been assessed to multiple source of 

variability like material properties, TKR design and alignment and then predicting joint 

mechanics.  So, there is scope for further research to investigate the influence of material 

properties and TKR implant alignment variability in conjunction with geometric 
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variability of the knee to predict bounds of performance of joint mechanics for a 

population.  

2.4 Principal Component Analysis 
 
 

The second step in the development of statistical shape model is principal 

component analysis (PCA).  PCA is a multivariate statistical technique for simplifying 

complex data sets.  It reduces the dimensionality of a multivariate data set while retaining 

as much variation as possible [Jolliffe, 2002].  The goal of PCA is to find new lesser key 

variables termed as principal components (PCs) [Raychaudhuri et al., 2000], which 

together accounts as much of the variation present in the original dataset and can be used 

to simplify the analysis and visualization of multidimensional data sets.  PCs are 

eigenvectors of either the correlation or the covariance matrix, and variation associated 

with each PC is quantified by characteristics roots of the matrix, popularly called as 

eigenvalues.  The variation explained by any PC is presented in the terms of its 

contribution to the all PCs, i.e. the eigenvalue of the selected PC divided by the sum of all 

the eigenvalues.  PCs are mutually uncorrelated, orthogonal, linearly independent 

combination of the original variables.  The first PC is a linear function of the variables 

and has maximum variance.  The second PC is a linear function of the variables and 

orthogonal to the first PC with maximum variance.  For a two variables example, an x-y 

graph could be plotted.  A linear equation of x could be written in terms of y and vice 

versa, but these two equations are different as they are involved in reducing the points to 

line distance in either the x- or the y-direction but not both, and assume one independent 
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and one dependent variable [Fitzpatrick C., Ph.D. dissertation].  The first PC defines a 

best-fit line to the points, which reduces the perpendicular distance from the points to the 

line while the second PC is an orthogonal line to the first (Figure 2.11).  The first PC 

captures the most variation followed by second.  Similar theory is evolved for multiple 

variables case and number of PCs is equal to the number of variables, but each PC is 

orthogonal to the previous PC and responsible for less variation than the previous one.  

Also, better the correlations among variables, variability captured by first few PCs is 

most.  It is important to note that PCA only gives useful results if number of PCs are 

significantly fewer than the number of variables responsible for most variation.  The sign 

of a PC coefficient is usually arbitrary but the sign of a PC coefficient relative to the 

signs of other PCs coefficient is important to evaluate the variability.  PC coefficients 

with same sign, relate to the variability that the variables have in common while different 

signs relate to the differences in the variability.  Also, if a PC has nearly equal 

coefficients with same sign then the PC is a weighted average of all variables.  An 

increase or decrease in one variable will affects all variables equal increase or decrease, 

respectively.  In anatomic terms, PCs with coefficients of the same sign describe size 

variation in the specimen, as all dimensions are varying in the same direction; PCs with 

coefficients of different signs describe shape variation in the specimen.  It often happens 

that the characteristic roots associated with the last few PCs are small and of similar 

magnitude.  If characteristic roots are equal, or nearly equal, their PC axes will be almost 

equal in length, and have similar variances.  The orientation of the PC axes depends on 

the axes of maximum variance.  If variances are similar, the axes can be anywhere as 
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long as they are orthogonal, hence the orientation of the axes are not defined with much 

precision and interpretation of these PCs may be uninformative or misleading. 

 PCA has been used in a wide range of biomedical problems and has been shown 

to effectively create statistical shape models without significant loss of information from 

original data.  PCA operates on the registered data of the training set, develops a 

statistical shape model which defines modes of variation and by perturbing these modes 

by some standard deviation, new instances can be created.  
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Figure 2.1: Clinical terms for anatomical planes and description of relative position 
(SEER’s Training Website, 2004). 
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Figure 2.2:  Clinical terms, proximal and distal to indicate an object proximity to the 
center of the body. 
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Figure 2.3:  Kinematics terminologies to describe the six degrees of freedom (DOF) of 
the knee joint.  Three of the DOF are translations along the anterior-posterior, medial-
lateral, and inferior-superior axes defined at the joint, whereas the other three DOF are 
rotations around the each axis. 
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Figure 2.4:  Diagram of bones and joints of the natural knee (www.mayclinic.org). 
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Figure 2.5:  Diagram representing the soft tissue structures crossing the tibiofemoral 
joint of the knee (www.larsligament.com). 
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Figure 2.6:  Femoral geometry: Left image shows the medial and lateral condyle, 
sulcus groove and intercondylar notch, viewed superiorly in the axial plane; Right 
image shows the distal and posterior segments of the lateral condyle, viewed 
laterally in the sagittal plane. (Source: Ph.D. dissertation, Fitzpatrick C.). 

 
 
 

Figure 2.7:  Illustration of the sMCL (superficial medial collateral ligament) 
attachment sites at femoral, proximal tibial and distal tibial (Laparde et al., 2007). 
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Figure 2.8:  The location of the medial collateral ligament (orange) and lateral 
collateral ligament (purple) in deep knee flexion (Source: Ph.d.  Dissertation, 
Chadd Clary). 

 
 

Figure 2.9:  Tibia shapes of the first 3 PCs in isolation. Top to bottom are modes 1 
to 3, left to right are PC weights sampled at −3 std dev, 0 std dev, and +3 std dev 
(Source: Ph.d. Dissertation, Francis Galloway). 
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Figure 2.10:  Statistical shape model of the knee showing mean and ±1 std dev 
geometries for the first 4 modes of variation (Baldwin et al., 2010). 

 

 
 
 
 

 

Figure 2.11:  Left: Two variables, independent x and dependent y.  Right: PC1 axis lies 
along the axis of maximum variation, with PC2 orthogonal to PC1, lying along the axis 
of maximum variation (Source: Ph.D. dissertation, Fitzpatrick C.). 
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CHAPTER 3 – METHODS 

3.1 Training Set Preparation 

 

The training set taken for statistical shape model (SSM) consists of MR image of 

20 cadaveric specimens (Figure 3.1) and simulator test data.  The specimens were all 

male with an average age of 66 years, average weight of 77 kg and average body mass 

index (BMI) of 25.  The statistics of the specimens have been shown in Table 3.2.  The 

training set data of this study basically contains shape and relative alignment data in 

terms of nodal co-ordinates and transformation matrix, respectively.  Anatomical 

structures were constructed from MR image and their shape was represented by nodes 

linked to finite element meshes, while relative alignment between structures was obtained 

from simulator test data.  Iterative closet point (ICP) was used to establish nodal 

correspondence of training set data and transformation matrices was used to characterize 

the relative alignment between the structures.  This way, each member of the training set 

was represented by an equal number of data point. 
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3.1.1 Knee Construction 

 

The structures of the 20 cadaveric knees (Figure 3.2), including femur, tibia, 

patella, associated cartilage and major ligaments (MCL, LCL, PCL, and ACL), were 

segmented from MR images with an in-plane resolution of 0.35 mm and an axial slice 

thickness of 1 mm, using ScanIP (Simpleware, Exeter, UK).  As the scanned field of 

view varied between specimens in the training set, the femur and tibia were transected 

based on a constant aspect ratio between the medial-lateral width and the inferior-

superior length.  The details of the measurements and transected length of femurs and 

tibias have been shown in Table 3.3 and Table 3.4, respectively. 

3.1.2 Registration for Correspondence 

 

A template mesh for each bony structure was developed for an average member 

of the training set using tetrahedral elements (Figure 3.3).  An iterative closest point 

(ICP) algorithm was utilized to register the training set geometries to the template mesh.  

To facilitate registration, the subject meshes were considerably finer than the template 

mesh; average edge lengths were 0.4 mm for the femur and tibia and 0.15 mm for the 

patella compare to 3.0 mm for the template.  In the ICP algorithm, the nearest neighbor 

searching was accelerated using k-dimensional (k-d) trees similar to [Bryan et al., 2010] 

and distance along the normal of an element was used over Euclidean distance for 

structures with high curvature (femoral condyle).  In this process each bone was 

registered to each other with nodal correspondence (Figure 3.4). 
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The cartilage structures were represented by hexahedral (hex) meshes because of 

their improved behavior in finite element analyses with contact.  Each cartilage was 

segmented and aligned with the associated bone.  Nodal handles were used to volume-

morph the hexahedral mesh template to the subject-specific model using custom 

TCL/VTK script and Hypermorph (Altair, Troy, MI)[Fitzpatrick et al., 2012].  The script 

generated 1200, 264, 240 and 390 handles for femoral-cartilage, tibial-medial-cartilage, 

tibial-lateral-cartilage, and patellar-cartilage geometries, respectively, and produced three 

layers of hexahedral elements (2748, 990, 825, and 504 elements for each cartilage, 

respectively) across the thickness of each cartilage.  

3.1.3 Relative Alignment and Transformation Vector 

 

MR scans are typically performed in full extension without an applied load on the 

quadriceps or a known flexion angle.  If alignment of the structures was based on this 

uncontrolled, unloaded position, it is difficult to determine whether the variability 

observed is due to relative alignment of the structures or differences in scan position. 

Based on the as-scanned position, knee flexion varied from -2° to 18°.  As an 

alternative to reporting alignment based on this uncontrolled and unloaded position, the 

structures of the knee were aligned to a known position in the Kansas knee simulator with 

the quadriceps loaded to maintain a tibiofemoral flexion angle of 30°.  The process 

aligned each meshed structure to kinematic data collected during the experiment and test 

probed point data for each structures (Figure 3.5). 
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Local anatomic coordinate systems were developed for each bone based on the 

articular geometry and anatomical landmarks [Pandy et al., 1997; Morton et al., 2008] 

(Appendix A).  The femoral coordinate system was defined with the origin at the center of 

the axis of the cylinder fit through the medial and lateral condyles of the femur [Pandy et 

al., 1997; Della et al., 1999], medial and lateral epicondylar points and the line passing 

through the centroids of three slices at the proximal end of the femur [Morton et al., 

2008].  The tibial coordinate system was constructed with the origin at the medial tibial 

eminence, using lines passing through centroids of three slices at the distal end, and 

through the centers of the tibial condyles [Morton et al., 2008].  The patellar coordinate 

system was developed using the proximal, distal, and lateral points around the articular 

periphery with the origin located at the geometrical centroid [Morton et al., 2008; 

Armstrong et al., 2003].  The kinematic alignment of the tibial and patellar coordinate 

systems relative to the femoral coordinate system was represented by 4x4 transformation 

matrices.  A transformation matrix is a tool for simplification of coordinate 

transformations and it includes information about translations and rotations. A typical 

4x4 transformation matrix (TF) has been shown in equation 3.1.  
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The position vector P represents the translation from the global to the local 

coordinate systems and the rotation sub-matrix R denotes the rotations of each axis in 

body 1 about body 2.  Note that the rotation sub- matrix is a multiplication matrix of the 

dot products of the unit vectors of the two body coordinate systems; therefore each 

column of R indicates the orientation of the local axis with respect to the corresponding 

global axis. 

During the process of alignment of constructed structures to the probed points and 

the development of relative transformation matrix, a series of steps were followed.  The 

cartilage probed point test data were reported in their respective rigid body frame.  As 

each rigid body reference frame transformation (4x4) was given with respect to the global 

origin (camera origin), tibial and patellar cartilage probed points were transformed to the 

femoral rigid body space for an unknown flexion angle.  Next, the constructed geometries 

from their local coordinate space were aligned to their respective probed points and 

during this process their coordinate systems were also moved along.  In this way, local 

anatomical axes of each bone was made available for the further transformation and 

structures were aligned to the 300 known flexion position with femoral origin as global 

origin.  Further, relative transformation of tibia and patella to the femur was developed in 

the form of 4x4 transformation matrix (Equation 3.1). 
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3.2 Principal Component Analysis 
 

The variability in shape and alignment was characterized by performing a 

principal component analysis (PCA) on the training set data.  PCA is a statistical 

technique to decompose a large data set into its significant principal components in terms 

of eigenvalues and eigenvectors.  

3.2.1 Bones Only 

 

In the bones only case, SSAM was developed by PCA on the following data: x,y,z 

coordinates defining the knee structures (2384, 1101 and 472 nodes for the femur, tibia 

and patella, respectively) reported in their local anatomical coordinate system and 24 

terms of  the transformation matrix relating the position of the tibia and patella to the 

femur (4x4 transformation: 3x3 rotations and 3 translations for each tibiofemoral and 

patellofemoral joint).  Matrix size for the PCA was 11895x20 and contains: 

-x,y,z coordinates defining the nodes for the knee bones: femur, patella, and tibia 

reported in their local anatomical coordinate system  

-Components of the transformation matrix relating the position of the tibia and 

patella to the femur (4x4 transformations) 

 PCA was performed on the covariance matrix after the mean was subtracted from 

the original data 
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3.2.2 Bones and Cartilages 

 

In this case, bones cartilages: femoral, tibial-medial, tibial-lateral and patellar 

cartilages were added to bones. In addition to 11895 terms for each member in the 

training set, 6282 terms were added for the cartilages. Hence, each member of the 

training set is represented by the following data points: 

-x,y,z coordinates defining the nodes and morphing handles for the knee 

structures reported in their local anatomical coordinate system  

-Components of the transformation matrix relating the position of the tibia and 

patella to the femur (4x4 transformations) 

For reference, the template mesh for the femur, tibia and patella consisted of 

2384, 1101 and 472 nodes, respectively.  The cartilage structures were represented by 

2094 nodes, which served as morphing handles for a finer mesh.  The alignment 

transformations included 24 terms, defining 3x3 rotations and 3 translations for the 

tibiofemoral and patellofemoral transformations. PCA was performed on the covariance 

matrix after the mean was subtracted from the original data. As a result, a series of modes 

of variation-some corresponding to size and shape, others were corresponding to relative 

alignment of the structures.  

The most common changes in shape and alignment can be visualized by 

perturbing specific modes of variation based on their corresponding eigenvalues and 

eigenvectors. 
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3.2.3 Bones and Cartilages and Ligament Attachments Site  

 

After demonstrating SSAM generation for bones and cartilages successfully, four 

major ligaments (MCL, LCL, PCL, and ACL) attachment points were added for the 

training set.  MCL was represented by 3 attachment sites: medial femoral epicondylar 

point, medial proximal tibia and medial distal tibia while LCL was represented by two 

attachment sites: lateral femoral epicondylar point and fibula proximal end (Figure 3.6).  

Cruciate attachment areas were taken as antero-medial (amACL) and postero-lateral 

(plACL) for the ACL and postero-medial (pmPCL) and antero-lateral (alPCL) for the 

PCL (Harner et al., 1999) (Figure 3.7).  Femoral and tibial cruciate attachment areas were 

approximately quartered (Appendix B) to place four attachment points at the centroid of 

each quadrant while each collateral ligament site was represented by a point.  All 

considered ligament attachment points have been shown for mean specimen of training 

set specimen in Figure 3.8. 

Inclusion of the ligaments attachments sites added 10 nodes on the femur and 11 

nodes on the tibia, resulting 63 more rows (x,y,z for each nodes) to each member of 

training set and making the matrix size as 18240x20.  PCA was performed in the same 

way as described above. 
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Figure 3.1:  Knee structures reconstruction from stacks of 2-dimensional MR images 
(left image) in the form of 3-dimensional  StereoLithography (.stl) format (right image). 
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Figure 3.2:  Reconstructed and processed bones of 20 specimens of the training set in 
scan space and illustrating the shape and size variability among them. 
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Figure 3.3:  An average template mesh with 3.0 mm element edge length, used for 
establishing nodal correspondence through ICP, between training set.  
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Figure 3.4:  Left- Unregistered femurs before ICP registration technique, Middle- shell 
representation of registered femurs to the template femur for establishing nodal 
correspondence and each femur has equal number of nodes, Right- Wireframe 
representation of registered femurs.  

 

 

Figure 3.5:  Left- A cadaveric specimen is being tested for an activity in the Kansas 
Knee Simulator, Middle-Computational model representation of knee simulator with a 
virtual knee model, Right- Reconstructed knee aligned to cartilage probed points 
corresponding to 30 degree flexion, obtained during knee simulator test. 
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Figure 3.6:  Constructed collateral ligament attachment sites surface geometry from one 
of the subject in the training set; Left- lateral collateral ligament represented by lateral 
femoral epicondylar site and fibula proximal end site, Right- medial collateral ligaments 
represented by medial femoral epicondylar, medial proximal tibia and medial distal tibia 
site. 

 

  

Figure 3.7:  Constructed cruciate ligament attachment sites surface geometry from one 
of the subject in the training set; Left- posterior cruciate ligament attachment site on 
femur and tibia, Right- anterior cruciate ligament attachment site on femur and tibia. 
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Figure 3.8:  Ligament attachment sites for the mean subject of the training set; Left- 
lateral collateral ligaments represented by lateral femoral epicondylar point and fibula 
proximal end, Middle- femoral and tibial cruciate attachment areas were quartered to 
place four attachment sites at the centroid of each quadrant, Right- medial collateral 
ligaments represented by medial femoral epicondylar point, medial proximal tibia and 
medial distal tibia. 
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Table 3.1:  Demographic details of specimens used in study. 

Subjects Sex Age (years) 
Height 

(m) 
Height 

(in) 
Weight 

(kg) 
Weight 
(lbs) 

BMI 

BB02 M 80 1.83 72 92.98 205 27.80 
BB03 M 55 1.68 66 81.64 180 29.05 
BB04 M 59 1.78 70 63.50 140 20.09 
BB06 M 59 1.78 70 63.50 140 20.09 
BB07 M 80 1.83 72 92.98 205 27.80 
BB08 M 61 1.83 72 90.72 200 27.12 
BB09 M 80 1.83 72 92.98 205 27.80 
BB11 M 55 1.68 66 81.64 180 29.05 
BB12 M 59 1.78 70 63.50 140 20.09 
BB14 M 68 1.83 72 100.00 220 29.90 
BB16 M 72 1.66 65 68.18 150 24.95 
BB17 M 63 1.85 73 77.11 170 22.45 
BB24 M 74 1.75 69 81.65 180 26.66 
BB25 M 60 1.75 69 60.78 134 19.79 
BB26 M 52 1.73 68 72.58 160 24.33 
BB27 M 79 1.73 68 74.39 164 24.94 
BB29 M 77 1.73 68 86.18 190 28.89 
BB30 M 52 1.73 68 72.58 160 24.33 
BB32 M 64 1.75 69 61.24 135 19.94 
BB34 M 71 1.78 70 70.31 155 22.24 

 
 

 

Table 3.2:  Statistics of specimens used in study. 

 Age 
(years) 

Weight 
(kg) 

BMI 
 (kg/m2) 

Mean 66 77.42 
 

24.86 
Standard 
Deviation  

9.90 12.26 
 

3.57 
 Max 80 100.00 29.90 
 Min 55 60.78 19.79 
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Table 3.3:  The details of the truncated femur length to achieve same aspect ratio (BB27 
was the reference) for the training set subjects. 

Subjects  ML 
width 
(mm) 

SI 
length 
(mm) 

Width/Length 
(Ratio) 

New SI length 
(Length/ Max. 

Ratio) 

Truncated SI 
length (mm) 

BB02 82.96 94.56 0.88 74.36 20.20 
BB03 84.098 100.404 0.84 75.38 25.03 
BB04 88.91 105.66 0.84 79.69 25.97 
BB05 78.76 101.58 0.78 70.59 30.99 
BB06 91.906 100.866 0.91 82.38 18.49 
BB07 81.122 94.772 0.86 72.71 22.06 
BB08 88.327 95.327 0.93 79.17 16.16 
BB09 90.62 104.21 0.87 81.22 22.99 
BB11 87.7 101.13 0.87 78.61 22.52 
BB12 87.42 105.22 0.83 78.36 26.86 
BB13 87.62 103.13 0.85 78.53 24.60 
BB14 83.97 101.17 0.83 75.26 25.91 
BB16 86.95 93.23 0.93 77.93 15.30 
BB17 90.72 89.36 1.02 81.31 8.05 
BB18 80.8 89.15 0.91 72.42 16.73 
BB19 90.383 94.617 0.96 81.01 13.61 
BB20 82.992 87.461 0.95 74.39 13.07 
BB24 84.331 85.007 0.99 75.59 9.42 
BB25 84.635 90.061 0.94 75.86 14.20 
BB26 80.54 84.58 0.95 72.19 12.39 
BB27 81.78 73.3 1.12 73.30 0.00 
BB29 88.94 99.6 0.89 79.72 19.88 
BB30 82.2 90.3 0.91 73.68 16.62 
BB31 88.816 90.877 0.98 79.61 11.27 
BB32 84.364 88.624 0.95 75.62 13.01 
BB34 86.17 85.167 1.01 77.23 7.93 
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Table 3.4:  The details of the truncated tibia length to achieve same aspect ratio (BB16 
was the reference) for the training set subjects. 

Subjects  ML 
width 
(mm) 

SI 
length 
(mm) 

Width/Length 
(Ratio) 

New SI length 
(Length/ Max. 

Ratio) 

Truncated SI 
length (mm) 

BB02 78.65 79.73 0.99 62.76 16.97 
BB03 78.782 83.736 0.94 62.86 20.87 
BB04 79.7 77.07 1.03 63.59 13.48 
BB05 74.75 84.12 0.89 59.64 24.48 
BB06 85.234 85.187 1.00 68.01 17.18 
BB07 79.733 83.293 0.96 63.62 19.67 
BB08 84.24 89.765 0.94 67.22 22.55 
BB09 81.71 82.6 0.99 65.20 17.40 
BB11 79.6 83.04 0.96 63.51 19.53 
BB12 79.52 81.44 0.98 63.45 17.99 
BB13 79.35 83.7 0.95 63.32 20.38 
BB14 78.59 85.46 0.92 62.71 22.75 
BB16 79.03 63.06 1.25 63.06 0.00 
BB17 80.55 67.52 1.19 64.27 3.25 
BB18 72.97 65.4 1.12 58.22 7.18 
BB19 83.744 69.955 1.20 66.82 3.13 
BB20 75.581 67.678 1.12 60.31 7.37 
BB24 79.466 80.321 0.99 63.41 16.91 
BB25 72.67 59.53 1.22 57.98 1.55 
BB26 72.68 72.4 1.00 57.99 14.41 
BB27 76.29 70.6 1.08 60.87 9.73 
BB29 82.89 80.5 1.03 66.14 14.36 
BB30 72.66 63.92 1.14 57.98 5.94 
BB31 81.731 86.667 0.94 65.22 21.45 
BB32 78.224 75.801 1.03 62.42 13.38 
BB34 80.889 69.079 1.17 64.54 4.54 
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CHAPTER 4 – RESULTS 

4.1 Shape and Size and Alignment Variability 

 
The findings of the current study are dually in the methodology to develop and the 

creation of the statistical shape and alignment model.  The SSAM model described the 

variability in the training set with a series of modes of variation defined by eigenvalues 

and eigenvectors.  By applying PCA, the data representing the variability in the training 

set is essentially reduced from the 18240 individual variables (nodal coordinates and 

transformations) to a series of nominally a dozen orthogonal variables.  Each orthogonal 

variable represents a mode of variation described by an eigenvalue related to how much 

variability is explained by the mode and an associated eigenvalue depicting how each 

original variable is transformed.  

4.1.1 Bones Only  

 

The SSAM of the knee characterized the common modes of variation with the 

first 3 modes representing 70% of the variability and 10 modes representing 95% (Table 

4.1).  Characterizing 49% of the variability, mode 1 corresponded primarily to scaling 

with changes in size of the structures and associated scaling of alignment, but also 

included tibial varus-valgus (VV) alignment (Figure 4.1).  Mode 2 (13% of variability) 
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captured changes in patella inferior-superior (alta-baja) position and tibial anterior-

posterior (AP) position, while Mode 3 (8%) described changes in femoral condylar and 

trochlear geometry, patellar shape and tibial VV alignment (Figure 4.2). 

4.1.2 Bones and Cartilages  

 

 In the statistical shape and alignment model, the first 3 modes of variation 

explained 47% of the variability, with 10 and 15 modes capturing 84.8% and 95.6% 

respectively (Table 4.2).  Individual modes of variation are perturbed to visualize the 

modes of variation. Mode 1 (20% of variability explained) described scaling of all of the 

structures of the joint and also included patellar alta-baja alignment relative to the femur 

(Figure 4.3).  Mode 2 (16%) described tibial anterior-posterior (AP) alignment and 

associated patellar alta-baja alignment, and the shape and internal-external (IE) alignment 

of the articular surfaces in the patella femoral joint (Figure 4.3).  Mode 3 (11%) 

characterized tibial IE rotation and patellar shape, specifically the medial-lateral facet 

ratio (Figure 4.4).  Mode 4 (8%) described tibial varus-valgus alignment and patellar alta-

baja (Figure 4.4).  Mode 5 (7%) captured subtler shape change in multiples structures, 

including medial-lateral width of the femoral and tibial cartilage (Figure 4.5).   

4.1.3 Bones and Cartilages and Ligaments Attachment Sites 

 

Addition of ligaments attachment sites point data set only added only 63 new 

rows (21 points x 3 coordinates) to bones plus cartilages data set.  Hence, results were 

very much similar to previous case.  So, in this case of statistical shape and alignment 
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modeling the first 3 modes (Table 4.3) of variation explained 47% of the variability with 

10 and 15 modes captured 84.6% and 95.5%, respectively. 

Mode 1 represented 20.6% of the variability and accounted for primarily scaling 

driven change in the size of the structures.  As in, scaling of alignment with patella alta-

baja and medial-lateral position variability were captured (Figure 4.5). 

Mode 2 (16 % of variability) captured changes in tibial anterior-posterior 

alignment, shape; internal-external alignment of the patellofemoral joint; and femoral 

articular surface and depth of sulcus geometry (Figure 4.6).  

Mode 3 (Figure 4.7) captured 11% of the variability and characterized tibial IE 

rotation and patellar shape, specifically the medial-lateral facet ratio. 

4.1.4 Leave One Out Analysis 

 
Leave one out analysis was performed on the bone plus cartilage training set data. 

This analysis evaluates the predictive capability [Ph.D. Dissertation, Galloway F., 2012] 

of the SSAM.  During the analysis each knee was left out in turn and a SSAM was 

created using the remaining training set data.  In this process, for each leave out case 

important PC vectors were calculated.  These PC vectors and adjusted mean of variable 

of original (without left out) training set data were used to reconstruct the left-out knee.  

This was done for increasing number of the PCs, and each time the left out knee was 

estimated.  As per the reconstruction test, the vertex position error was then computed 

between the ‘left-out’ tibia and ’estimated’ tibia.  The mean Euclidean distance error and 

inter-quartile range between model predicted and actual geometries is reported as a box 

plot (Figure 4.8) showing that the errors reduce with an increasing number of the modes 
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of variation included.  The distribution represented in the box plot characterizes the 

variability in the analysis leaving out each member of the training set.  The results 

converge when more than 12 modes are included in the model prediction.  Using the first 

15 modes of variation (which characterized 95% of the variability), the average mean 

error was 1.64 mm with a standard deviation of 0.21. 

4.2. Fidelity of Statistical Shape Models 

 
Finite element analyses were performed on models generated from the statistical 

shape and alignment.  Joint mechanics were evaluated for the average and first 2 modes 

at +/- 1 standard deviation.   

4.2.1 Finite Element Analysis  

 

Further, the link to joint mechanics prediction is demonstrated by evaluating the 

contact mechanics with finite element analyses for a series of virtual subjects: mean and 

modes 1 and 2 evaluated at ± 1 standard deviation.  The model geometry and alignment 

was derived from the statistical shape and alignment model.  The extensor mechanism, 

based on [Baldwin et al., 2009] and [Fitzpatrick et al., 2011] was morphed to the new 

geometry.  In the analysis, the tibia was fixed with a load representative of body weight 

(660N) applied to the femur and a distributed 1000 N load applied through the extensor 

mechanism. Bones were modeled as rigid and cartilage was modeled as a fully 

deformable linear elastic material [Mesfar and Shirazi–Adl, 2005]. Contact pressure and 

area are shown at 30° tibiofemoral flexion (Figure 4.9). 
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4.3 Discussion 

 
This study developed a methodical approach for statistical shape modeling of the 

knee joint.  The statistical shape model characterized intersubject variability for a 

population of knees.  The statistical model was developed with the shape of the knee 

described relative to the local anatomic coordinate system for each structure, while 

alignment between the structures of the joint was determined for controlled, known 

position. 

The shape model included tibiofemoral (TF) and patellofemoral (PF) joints of the 

knee in the study.  Knee joint structures: bones- femur, tibia, and patella; cartilages- 

femoral, tibial-medial, tibial-lateral, and patellar; ligaments- attachment sites of MCL, 

LCL, PCL, and ACL were used to represent each knee. 

The structures of knee were segmented from MR images using ScanIP 

(Simpleware, Exeter, UK).  The femur and tibia were transected based on a constant 

aspect ratio between the medial-lateral width and the inferior-superior length to 

normalize the intersubject bone length because of the variation in the scanned field of 

view.  The images had an in-plane resolution of 0.35 mm (pixel size) and an axial slice 

thickness of 1 mm.  The slice thickness and pixel size of a scan determine the accuracy of 

the reconstructed model.  During the process of reconstruction the curvature of the bone 

is obtained by interpolating between the slices.  Therefore, it is important to note that the 

interpolation may have caused some detail loss but the overall shape of the bone was 

maintained by visual inspection.  Also, a relatively finer mesh (close comparison to the 

in-plane resolution of the scan) with average element length of 0.4 mm for femur and 
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tibia and 0.15 mm for patella were used for the registration to the template.  However, 

analysis to measure out the repeatability of methods can be a quantifying tool for the 

segmentation error. 

  MR scans are typically performed in full extension without an applied load on 

the quadriceps and hence flexion angle varied from -2° to 18°.  So, instead of scan 

position, loaded position from the knee simulator activity was used to capture the relative 

alignment between knee structures.  The relative alignment between knee structures was 

based on the time point corresponding to the desired flexion during the simulator activity.  

In this approach, the time point varied across the subjects to achieve a fixed flexion.  It is 

important to note that there can be variability in the load applied to the knee to achieve a 

fixed flexion position.  Two instances of loaded position, i.e. 300 and 150 flexion, were 

used in the study. 

The availability of simulator data limited the size of the training set to 20 

specimens and an all-male population.  The test probed points of the four cartilages 

(femoral, tibial-medial, tibial-lateral, and patellar) collected during the simulator activity 

were first aligned relative to each other using transformation matrices data collected 

during the experiment.  Segmented geometries of each knee were discretized in the nodal 

form and the positioning was done to test probed points data for each structure for an 

unknown flexion. The test probed points collected for random locations during the 

experiment were not sufficient enough to perfectly position the structures.  Therefore, 

using best judgment was the basis for positioning the structures to the probed points and, 

utilizing the reference axes of each bone and the activity data, the structures were rotated 
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to obtain a fixed flexion.  Moreover, a slight positioning error of the structures to the 

probed points was carried over to the fixed flexion position during the rotation of the 

structures.  The local coordinate systems were developed for the template subject using 

established procedures and subsequently transferred to each subject in the training set 

after performing the iterative closest point alignment.  The iterative closet point 

alignment also registered training set subjects to the template subject for node-to-node 

correspondence.  Local coordinate systems of each structure were preserved while 

positioning the registered model from template space to simulator space. The reported 

alignment was based out of positioned structures for fixed flexion in the simulator space. 

Notably, there is a greatest uncertainty associated with aligning the segmented geometry 

to experimentally-measured limited probed point cloud data. This could be  a potential 

source of error. 

Principal component analysis on the data consisting of shape and relative 

alignment yielded important modes captured together with all variability in the data.  The 

shape and alignment model representing new virtual subjects was developed by 

perturbing the modes with +/2 std. dev. Important modes of variations were studied with 

additional structural complexities and for two known positions, i.e. 300 and 150 flexion.   

Investigations of the modes yielded insight into the shape and alignment 

relationships between the structures.  In the study involving bones, cartilages, ligament 

attachment sites, and 300 flexion, the first 3 modes of variation explained 47% of the 

variability with 10 and 15 modes capturing 84.6% and 95.5%, respectively.  Mode 1 

represented 20.6% variability, primarily scaling driven.  Mode 2 (16% of variability) 
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captured changes in tibial anterior-posterior alignment, internal-external alignment of the 

patellofemoral joint, and femoral articular surface and depth of sulcus geometry.  Mode 3 

(11%) characterized tibial internal-external rotation and patellar shape, specifically the 

medial-lateral facet ratio.  

Strong correlations are desirable in reducing the number of relevant modes.  The 

strength of the PCA-based statistical modeling approach is its ability to capture and 

maintain these subtle geometric and alignment changes.  In the present study when 

multiple structures of the knee were considered, the first few modes of variation (20.6%, 

16% and 11% for modes 1, 2 and 3) explained less variability. Bryan et al. [2009] 

reported 45% of the variability was explained by mode 1 and more than 75% was 

captured with the first 8 modes in their study of  the femur.  When considering only the 

bones (femur, tibia and patella) and alignment in the current study, the first mode of 

variation explained 49% of the variability.   

Leave one out analysis was performed and the results converged when more than 

12 modes were included in the model prediction.  For the first 15 modes of variation 

(which characterized 95% of the variability) the average mean error was 1.64 mm with a 

standard deviation of 0.21. 

The fidelity of shape models was studied after performing finite element analyses 

for joint mechanic predictions.  Joint mechanics were evaluated for the average and the 

first 2 modes at +/- 1 standard deviation.  In the study, a fixed loading was applied to the 

models evaluated.  However, it would be more realistic to scale the applied loading 

proportionate to specific anatomic measurements [Bryan et al., 2009]. 
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This piece of study demonstrated the workflow for the development of the 

statistical shape modeling to characterize anatomical variability of the knee and generated 

new virtual subjects in finite element analysis format. 

Table 4.1:  Bone Only: Cumulative variability explained and description of characterized 
behavior for the most significant modes of variation. 

Mode Variability explained 
(Percent) 

Mode characteristics 

1 49 Scaling with changes in size of the structures and 
associated scaling of alignment, but also included 

tibial varus-valgus (VV) alignment 
2 13 Patella inferior-superior (alta-baja) position and 

tibial anterior-posterior (AP) position 
3 8 Changes in femoral condylar and trochlear 

geometry, patellar shape and tibial VV alignment 
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Figure 4.1:  Modes of variation for the statistical shape and alignment model shown at 
+/- 2 standard deviations. Mode 1 capturing scaling in size and tibiofemoral VV 
alignment. 

 

Figure 4.2:  Mode 2 relation between tibial AP position and patella alta-baja.  Mode 3 
relation in shape for the trochlear groove and patella . 
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Table 4.2:  Bone Plus Cartilages: Cumulative variability explained and description of 
characterized behavior for the most significant modes of variation. 

Mode Cumulative variability 
explained (Percent) 

Mode characteristics 

1 20.2 Scaling, patellar alta-baja 
2 36.1 Tibial anterior-posterior alignment, 

shape and internal-external alignment of the 
patellofemoral joint 

3 47.5 Tibial internal-external rotation, 
patellar shape (medial-lateral facet ratio) 

4 55.5 Tibial varus-valgus and patellar alta-baja 
5 62.6 Medial-lateral width of femoral and tibial 

cartilage 
 

 

 

Figure 4.3:  Modes of variation (1 and 2) for the statistical shape and alignment model 
shown at +/- 2 standard deviations. Mode 1 captured scaling in size as well as patella 
alta-baja. Mode 2 showing variability captured for tibial AP alignment, shape and IE 
alignment of the patellofemoral joint. 
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Figure 4.4:  Modes of variation (3, 4 and 5) for the statistical shape and alignment model 
shown at +/- 2 standard deviations. Mode 3 primarily captured tibial IE rotation, Mode 4 
captured patella alta-baja and tibial VV rotation, and Mode 5 captured ML width of 
femoral and tibial cartilages.  

 

Table 4.3:  Bone Plus Cartilages Plus Ligaments Attachment Points: Cumulative 
variability explained and description of characterized behavior for the most significant 
modes of variation. 

Mode Cumulative variability 
explained (Percent) 

Mode Characteristics 

1 20.06 scaling, patellar alta-baja 
2 35.9 tibial AP translation, 

shape and IE rotation of the patellofemoral 
joint 

3 47.24 Tibial IE rotation, 
patellar shape (medial-lateral facet ratio) 
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Figure 4.5:  Mode 1 of the statistical shape and alignment model shown at +/- 2 standard 
deviations. 
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Figure 4.6:  Mode 2 of the statistical shape and alignment model shown at +/- 2 standard 
deviations. 
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Figure 4.7:  Mode 3 of the statistical shape and alignment model shown at +/- 2 standard 
deviations. 
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Figure 4.8:  Box plots for the mean Euclidean distance error and inter-quartile range 
between model predicted and actual geometries, evaluated in the leave one out analysis 
as a function of the number of modes of variation included in the model prediction.  
Error is computed as the distance of nodal coordinates between the left-out geometry 
and its model prediction.  Results are shown for median, 25th  and 75th percentiles, 
minimum and maximum for the series of analyses leaving out each member of the 
training set. 
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Figure 4.9:  Tibiofemoral and patellofemoral contact mechanics shown for mean and ±1 
standard deviation for modes 1 and 2 (Assisted by Azhar Ali, Computational 
Biomechanics Lab, University of Denver). 
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CHAPTER 5 – RELATIONSHIP BETWEEN SHAPE AND FUNCTION 

5.1 Introduction 

Prior statistical shape models have investigated multiple structures in a joint for 

shape and alignment [Rao et al., 2012; Baldwin et al., 2010; Bredbenner et al., 2010] that 

are required to further investigate joint mechanics for the success of the knee 

replacement.  Also, previous studies have investigated relationships between shape of the 

articular geometry and joint mechanics, but have not investigated complete knee joint 

mechanics.  Accordingly, the objective of this study was to use the statistical shape 

models, developed from magnetic resonance (MR) images and simulator test data, and 

include the kinematic variability of the same knees, and demonstrate the ability to 

generate realistic instances for kinematic prediction for the use in finite element analysis.  

Specifically, the study performed principal component analyses on training set data 

consisting of shape, alignment, and experimentally measured knee joint kinematics, and 

generated the statistical shape-function model.  

5.2 Methods 

The shape-function model was created with the shape and alignment model, and 

with tibiofemoral (TF) and patellofemoral (PF) kinematics.  Initially, a statistical shape 
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and alignment was created from 20 cadaveric specimens.  They were the same subjects 

used in the shape and alignment model (SSAM).  

Digitized points represented these knee joint structures- bones:- femur, tibia, and 

patella, cartilages:- femoral, tibial-medial, tibial-lateral, and patellar, ligaments:- 

attachment points of MCL, LCL, PCL, and ACL were considered structures for each 

knee in the training set. 

 Relative alignment was done for the known flexion angle of 150 by aligning the 

knee structures to the probed points of the Kansas knee simulator (KKS).  Local anatomic 

coordinate systems of each bone were used to derive transformation matrices for relative 

alignment; the positions of the tibial and patellar coordinate systems were relative to the 

femoral coordinate system in the KKS. 

Utilizing the digitized points of knee structures and the transformation matrices in 

principal component analysis, each member of the training set was represented by a series 

of principal component (PC) scores that defined the structures. 

In the KKS experiment, the cadaveric specimen was subjected to a deep knee 

bend loading condition and the 6 degree-of-freedom of TF and PF kinematics were 

measured [Baldwin et al., 2009].  Kinematic data of all the subjects were normalized 

from 0 to 100% cycle time and discretized into a fixed number of points (51 points) for 

each degree of freedom. 

To develop the relationships between shape and function, a second principal 

component analysis was performed to create the statistical shape-function model using 

the PC shape representation and kinematic data for the training set.  The size of input 
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matrix for second principal component was 531 x 20.  It consisted of  PC information 

data (19x20, principal components of each member of the training set) from the shape 

and  alignment model and kinematic data (TF kinematics: 306 points, 51 x 6 dof and PF 

kinematics: 306 points, 51 x 6 dof). 

5.3 Results 

 

The statistical shape-function model of the knee characterized the common modes 

of variation with the first 3 modes representing 42.7% of the variability and 15 modes 

representing 95%.  Anatomic (shape and alignment) variability captured by first three 

modes with +/- 2 std. dev. is shown is Figure 5.1.  This statistical model detected the 

differences in the alignment which influences the motion throughout the cycle. 

Shape and alignment modes were in strong agreement with the function modes. 

Shape figures presented to describe the anatomical variability have no ligament 

attachment points to simply avoid cumbersome pictures and obtain a better understanding 

of the shape-function relationship. 

Mode 1 represented 16.6% of the variability in the shape-function combined 

model.  The shape and alignment model captured scaling of the structures with varus-

valgus (VV) rotational and medial-lateral (ML) translational alignment. The shape model 

was created for 150 flexion position.  Corresponding to the same flexion angle on the 

kinematic (function) plot, a strong correlation between shape and function was observed.  

Figure 5.2 and 5.3 describe the shape and alignment model by perturbing modes with +/2 

std. dev.  As seen in the picture, TF- VV, TF- and PF- ML have been captured by the first 
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mode and the function (Figure 5.8) establishes correlated relationship with the shape 

model.  

Mode 2 (14.4%) described relationships between TF- anterior-posterior (AP) 

position (Figure 5.4) and TF- AP translation (Figure 5.8); an anterior femoral position 

resulted in more posterior femoral translation.  This mode also captured highest TF- 

internal-external rotation (IE) of all three modes (Figure 5.4) and the function (Figure 

5.8) predicted the same.  In addition, in Mode 2, a lower (baja) patella experienced 

greater flexion and lesser anterior translation during the cycle (Figure 5.5).  

Mode 3 (11.7%) described changes in TF- AP translation (Figure 5.6) and PF- 

VV rotation (Figure 5.7) which were strongly supported by kinematic functions (Figure 

5.8 and 5.9).  As in, mode 3 in function plots predicted high AP translation (close to 

mode 2) of TF joints and highest VV rotation for PF joint. 

5.4 Discussion 

The framework for the shape-function model has been demonstrated in this study. 

The shape model was integrated with the joint kinematics (functions) and kinematics of 

the new virtual subject was predicted.  In this piece of study, a statistical approach was 

developed to quantify the relationship between shape, alignment and kinematics.  To 

quantify the relationship between shape and function, a second principal component 

analysis was performed using PC shape representation and kinematic data of the same 

knees obtained during deep knee bend activity in the simulator.  The use of cadaveric 

simulator data has advantages over prior efforts.  The kinematic data used are direct 
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measurements and accounts for the intersubject variability in anatomy, soft tissues 

constraint and material properties.  

The shape-function model of the knee characterized the common modes of 

variation with the first 3 modes representing 42.7% of the variability and 15 modes 

representing 95%.  The initial first three modes were investigated and it was found that 

the shape and alignment modes were in strong agreement with the function modes.  It 

also highlighted the interdependencies between TF and PF kinematics.   

The developed framework has the ability to capture the influences of complex 

anatomical shape and alignment in predicting the kinematic behavior. 

Table 5.1:  The shape and function statistical model: cumulative variability with 
description of characterized behavior for the first three modes of variation. 

Mode Cumulative 
variability 
explained 
(Percent) 

Shape and alignment 
characteristics 

Kinematic  
characteristics 

1 16.6 Scaling, tibiofemoral 
patellofemoral VV rotation 
and ML translation  

Mode 1 has highest ML 
translation and also VV 
rotation 

2 31.1 Tibiofemoral IE rotation, 
patella alta-baja 

Mode 2 has greatest TF- IE 
rotation and also AP 
translations resulting 
obvious alta-baja 

3 42.7 Tibia AP translation and 
patella VV rotations 

Mode3 has largest VV 
rotation and also AP 
translation 
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Figure 5.1:  Statistical shape and alignment model showing mean and first three modes at 
+/- 2 standard deviations. 
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Figure 5.2:  Results of the shape and alignment statistical model showing Mode 1 at +/- 
2 standard deviations to describe the scaling in size and varus-valgus (one side gap 
between femoral and tibial cartilages). 
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Figure 5.3:  Results of the shape and alignment statistical model showing Mode 1 at 
+/- 2 standard deviations to describe the medial-lateral translational variability 
captured. 
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Figure 5.4:  Results of the shape and alignment statistical model showing Mode 2 at +/- 
2 standard deviations to describe the internal-external rotational variability captured. 

 

 

 

Dark green 
+2 std. dev. 

Light green 
-2 std. dev. 

Lateral 

Anterior 



70 
 

 

Figure 5.5:  Results of the shape and alignment statistical model showing Mode 2 at +/- 
2 standard deviations to describe variability captured for patella alta-baja. 
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Figure 5.6:  Results of the shape and alignment statistical model showing. Mode 3 at +/- 
2 standard deviations to describe tibial anterior-posterior translation. 

 

 

Figure 5.7:  Results of the shape and alignment statistical model showing Mode 3 at +/- 
2 standard deviations to describe patella medial-lateral and superior-inferior translation 
because of varus-valgus rotation. 
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Figure 5.8:  Tibiofemoral kinematics (all six dofs) shown for the first 3 principal 
component modes (+/-2 standard deviations) for the shape-function statistical model.  
Gray lines show data for all members of the training set. 
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PF Kinematics 

 
 

 
 

  

Figure 5.9:  Patellofemoral kinematics (all six dofs) shown with perturbations for the 
first 3 principal component modes (+/-2 standard deviations) for the shape-function 
statistical model.  Gray lines show data for all members of the training. 
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CHAPTER 6 – CONCLUSION 

 

This study developed a methodological approach for statistical shape modeling of the 

knee joint to represent shape and alignment variability.  The shape of the knee was 

described relative to the local anatomic coordinate system for each structure while 

alignment between the structures was determined at a controlled, known position.  This 

approach enabled the development of new virtual subjects for finite element analysis use 

in joint mechanics assessment.  The statistical model characterized the interdependencies 

between shape and alignment of the articular surfaces.  The interdependencies 

characterization was important to assessing relationships between shape, alignment and 

kinematics and was studied through the statistical shape-function model.  The shape-

function model characterized the interdependencies between TF and PF kinematics. 

 

The demonstrated workflow to generate a virtual subject from the statistical model 

has a variety of applications in population-based studies.  As demonstrated, the shape 

model can contribute in joint mechanics evaluation and help in implant designs. The 

shape model can be helpful in subject-specific sizing of implant line based on the 

geometry described by it.  Most current evaluations of implant designs are based on a 

small number of subject-specific models [Martelli et al., 2012].  Since the performance of 
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orthopaedic implants varies dramatically between subjects because of natural intersubject 

variability and surgical skill, an integrated framework will enable probabilistic analyses 

to assess the robustness of an implant design to patient and surgical alignment variability.  

The developed framework has the ability to capture the influences of complex anatomical 

shape and alignment in predicting the kinematic behavior.  This statistical model can also 

be useful to investigate differences in the shape-function relationship between healthy, 

normal and pathologic groups (e.g. patellar maltrackers). 

The availability of the simulator test data limited a smaller training set of only male 

population.  The recommended future work includes growing the training set to include 

males and females to better represent population and using same workflow to develop the 

statistical model.  As the knee anatomy has been represented in the format of finite 

element mesh, performing finite element analysis to predict knee mechanics could be 

another potential future work.  Also, the development of an approach to predict virtual 

subjects based on anatomical landmark points will be useful in patient-specific surgical 

planning and robust customized implant design.  
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APPENDIX A: ANATOMICAL LANDMARK POINTS FOR LOCAL COORDINATE 
SYSTEMS 

  
 
 

 

 

Figure A.1:  Depiction of anatomical landmark points utilized for the construction 
of local coordinate system of each bone. 

 

 

 

 

 

Point 1 – Center of the axis of the fitted cylinder 
(femoral origin) 
Point 2, 3, and 4 – Centroid of three slices at the 
proximal end of femur   
Point 5 – Medial tibial eminence (tibial origin) 
Point 6 – Center of tibial medial condyle 
Point 7 – Center of tibial lateral condyle 
Point 8, 9, and 10 - Centroid of three slices at the 
distal end of tibia 
Point 11 – Centroid of patella (origin) 
Point 12 – Proximal point on patella 
Point 13– Distal point on patella 
Point 14 – Lateral point on patella 
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APPENDIX B: REPRESENTATION OF FEMORAL LIGAMENT ATTCHEMNT 
SITES BY POINTS  

 

 

 

 

 

Figure B.1: For example- femoral ligament attachment point; surfaces of ligaments 
(from 3D constructed geometries) close to bone were extracted; ACL and PCL sites 
were quartered approximately and center of each diagonal (total 4 for each attachment 
site) was taken as an attachment point. MCL and LCL sites surface was diagonally 
divided and intersection of diagonals was taken as attachment point.  
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APPENDIX C: KINEMATIC EXTRACTION PROCESS USING 
TRANSFORMATION MATRICES 

 

Main steps of relative transformation matrices development for kinematics extraction 

are as follows: 

1. Each bone (tibia and patella) local coordinate system was reported in the femoral 
rigid body space. 
 

2. Each bone’s rigid body transformation matrix information was available in the 
global camera space (based on KKS experimental data sheet). 
 

3. inv(CT0)*CF0*tibz' = Transformation of tibial local coordinate system was done 
in the tibial rigid body space using global camera (inv(CT0)*CF0*tibz', where 
CT0 is transformation matrix of tibial rigid body in camera space, CF0 is 
transformation matrix of femoral rigid body in  camera space, tibz is tibial Z-
axis). This was done for particular time point at which tibia local coordinate 
system was reported in the femoral rigid body space. Fixed with time. 
 

4. CTf  = Transformation of tibial rigid body in  global camera space.                                         
Varying in time. 

 
5. inv(CFf) = Transformation of  global camera space with respect to femoral rigid 

body. Varying in time. Now, tibia axes information is femoral rigid body space.  
 

6.  inv(CFf)*CTf*inv(CT0)*CF0*tibz' = Transformation gave tibial axes in the 
femoral rigid body space. Varying in time. 
 

7.  Femoral axes were in already in femoral rigid body space. Fixed. 
 

8.  Final transformation, inverse of tibial axes information in femoral rigid     body 
space * femoral axes in femoral rigid body space = Transformation of tibial local 
coordinate system to the femoral local coordinate system, and was used to 
calculate 6 degree of freedom. Varying in time.  
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APPENDIX D: PUBLICATIONS 

 
Journal 

• Rao, C., Fitzpatrick, C.K., Rullkoetter, P.J., Kim, R., Maletsky, L.P., Laz, P.J., “A 
statistical model accounting for intersubject shape and alignment variability in the 
knee”. Medical Engineering and Physics, in review. 
 

Conference 
• Rao, C., Deacy, J S, Kaschinske, S, Fitzpatrick C K, Maletsky, L P, Rullkoetter, P 

J, Laz, P J., “Representing Intersubject Variability with Statistical Shape  and 
Alignment Model of the Knee”. 58th Annual Meeting of the Orthopaedic 
Research Society, February 4-7, 2012, San Francisco, California, poster 
presentation. 
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