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Abstract 

This thesis involves three related topics in the area of thermal stress resulting 

from sliding contact of frictional materials. These three contributions collectively and the 

discussion of them herein form a collective basis furthering the research and 

understanding within this field. Firstly, the effect of convective cooling on thermoelastic 

instability is evaluated using finite element analysis involving insertion of a thermal 

convection term in the formula for frictional heat generation. It has been found that 

convection or radiation heat dissipation can stabilize the thermal-mechanical feedback 

process, leading to a raised critical sliding velocity. Two representative models for brake 

and clutch systems are studied. The computational results reveal that the effect of thermal 

convection on critical sliding speed is significant for liquid cooling, but negligible for air 

convection. With a practical range of convection coefficients estimated from fundamental 

heat transfer theories, critical speed in the presence of convection can be doubled or 

tripled. However, the wave number for the lowest critical speed remains nearly 

unchanged regardless of convective dissipation. Comparisons between linear and 

quadratic finite element interpolations are also made via a set of convergence studies. The 

results show that implementing quadratic elements in the friction layer has an obvious 

advantage over implementing linear elements due to rapidly-oscillating temperature-

variations across the thermal skin layer. This is particularly important for future studies 

when higher-dimension problems are of interest. Secondly, a finite element model is 
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developed for the fractionally excited thermoelastic instability problem in intermittent 

sliding contact with finite geometries and realistic friction materials. Existing analytical 

solutions are used to validate the method in several limiting cases. It is concluded that 

some caution must be taken for the commonly-used strategy of assuming time-averaged, 

frictional heat generation for intermittent contact. Predictions made by half-plane 

analytical solutions that assume thermally-nonconductive, rigid frictional surfaces 

considerably overestimate dimensionless critical speeds of realistic brake and clutch 

systems. Long wavelength perturbations become unstable at a dimensionless sliding 

speed approaching zero, which opposes the convergence of two unity in half-plane 

solutions. Averaging the heat input over the entire circumference is appropriate only 

when the period of frictional contact is longer than that of separation. These results merit 

the use of finite element analysis in more general applications involving intermittent 

contact. Thirdly, in the automotive world, the usage of sliding-disk mechanical systems 

that produce friction has ever led engineers to address problems regarding friction, heat, 

and distortion of materials, particularly friction discs themselves, with many examples 

found when disassembling working systems. Engineers have witnessed the phenomenon 

of thermal buckling, the conditions of which are analyzed herein from the perspective of 

moments that lead to buckling. Various parameters of system configuration, geometry, 

and graphical analyses based on theoretical calculations of buckling potential are 

considered. Distribution of temperature as a system parameter is given particular 

importance. It is our belief that these three contributions each provide further 

understanding of their respective domains while their results and their implications 
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provide bases from which future research can be based to further a more unified 

understanding. 
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CHAPTER I 

Introduction & Literature Review 

1.1 Thermoelastic instability (TEI)  

 When two bodies slide against each other such as automotive disk brake or 

transmission clutch, frictional heat is generated and produces non-uniform thermoelastic 

deformation changes the contact pressure distribution. If the sliding speed is sufficiently 

high, the thermal mechanical feedback process is unstable, leading eventually to the 

localization of the load in a small region of the nominal contact area of the sliding 

surface, this phenomenon, generally known as “Thermoelastic instability “or TEI, was 

first discovered and explained by Barber (1967, 1969) in sliding systems involving 

frictional heating. The phenomenon of TEI has been observed in many experiments 

during the past half century. Parker and Marshall (1948) were the first researchers 

noticing the existence of local heating in railway brake tests. Similar results were later 

observed and reported by Sibley and Allen (1961). However, the mechanism of the 

phenomenon was not fully explained until Barber (1968, 1969). He found that thermal 

deformation is responsible for the change in contact geometry from many small widely 

separated contacting asperities to one or more discrete areas in which all the contact is 

concentrated. When the effect of thermal deformation exceeds that of wear, the contact 

area changes can become unstable [Barber (1969)]. Following Barber’s pioneer works on 
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TEI, much research in this area has been carried out and published. Those works include 

more than 20 publications by Barber, and around 10 publications by R.A. Burton's team. 

Other works include Lee and Barber (1993, 1994), Du, S. (1997, 2000), Yi, Y. B. (1999), 

Kao, T. K (2000). In these works, finite element methods and numerical approaches are 

used to quantify the thermoelastic instability problems. More practically, a team at Ford 

Science Research Laboratory, led by Fash and Hartsock [Harsock and Fash (2000)] work 

intensively and closely with Barber's group but independently on TEI as well, and 

experimentally validated the TEI phenomena and the models by Barber's group. 

 Recent study by Davis, Krousgrill and Sadeghi (2002) on the effect of 

temperature on TEI in thin discs indicates that above critical values of temperature and 

sliding speed, the response of the plate becomes unstable and exhibits large deformations, 

where thermal buckling and bending account for this behavior. A parametric study is 

conducted in this work. In another related work by Krempaszky and Lippmann (2003), 

Kirchhoff plate theory is used to develop a model for TEI in automotive disc clutch 

systems. The model is for a qualitative study of the system parameters. This work 

indicates, in contrast to the finding in previously mentioned work by Davis et al., the 

axiymmetrical buckling mode is of vital importance, if the radial expansion of the outer 

disc radius is constrained. 

 TEI and thermal buckling both can be classified as structure thermal instability 

problems because the structure becomes unstable due to the thermal loads. The sources of 

the instability are not identical; however, they can be interacting. Thermal buckling is 

caused by in-plane excessive thermally induced membrane compressive stresses, and is a 
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result of non-uniformly distributed temperature in disc. TEI is caused by non-uniformly 

distributed contact pressures in typically non-uniform temperature fields, and is a 

function of contact pressures and frictional sliding speed. Thermal stresses can cause 

brake disc distortion, thermoelastic instability, or even thermal buckling, which could 

ultimately result in brake failure. Thermal buckling of disc plate under high temperature 

is another type of instability, which mainly focuses on the relationship of critical thermal 

load (buckling load) and the buckling shape (buckling mode). 

 Evidences of TEI in automotive brake applications were also reported in the past 

decade. Andersin and Knapp (1990) found that there are four types of hot spotting in 

automotive friction: asperity, focal, distortional and regional. Friction material and metal 

counter surface wear consequences wear believed to relate to different hot spotting types. 

They indicate that such hot spots especially focal hot spots can provide a root cause for 

unacceptable performance or durability in automotive friction systems. Lee and Barber 

(1993) identified the onset of TEI through experimental observations and showed the 

stability boundary condition is a function of both the mean temperature and sliding speed. 

This is attributable to the temperature-dependence of the brake pad material properties, 

since the mean pad temperature increases as sliding  

1.2 Intermittent contact 

 Practical brake systems, such as automotive drum brakes and caliper disk brakes, 

differ from the clutch problem in that the pad geometry is not axisymmetric in 

circumference and the sliding surfaces are not coextensive. As a result, the disk and the 

pad experience intermittent contact. In particular, martial points on the disk experience 
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periods of contact with the pad alternating with periods of non-contact. Thermally, these 

periods correspond to periods of frictional heating alternating with periods of convective 

cooling and hence the temperature at such points cannot grow exponentially with time. 

However, if we set up the interment contact problem in a frame of reference that is 

stationary with respect to the pad, exponential solutions are still possible and indeed 

indicated by the separable nature of the variables in the governing equations and the 

linearity of the system. But the Eigen functions would not be sinusoidal in general. 

  Barber et al. (1985), in an analysis of thermoelastic instability in railway brake, 

attempted to allow for this affect by averaging the heat input over the circumference. This 

approximation was based on the argument that the thermal transient for the system is 

generally much longer than the period of one revolution, so that changes in thermal 

distortion during a single cycle are small. However, this hypothesis had never been 

verified by analysis of any intermittent contact system until Ayala, et al., (1996), who 

investigated a simple system consisting of a rotating thin-walled cylinder sliding against 

rigid surface. The results showed that at low wave number, i.e., when the frequency of 

the process is high compared with the thermal transient of the system, only the time 

averaged frictional heat input is important in the critical speed is an inverse linear 

function of the proportion of time and sliding contact. At higher wave number, low 

critical speeds are obtained, but the dependence on Fourier number relatively weak. This 

method could be used in the brake application. But the analysis would clearly involve to 

many simplifications on the brake geometry as well as the boundary conditions, and it is 

difficult to assess the magnitude of the approximation involved. There for it would be 
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very desirable to solve the problem in a more practical way, in particular, using the finite 

element method. Geijselaers and Koning (2000) studied the intermittent contact problem 

in freight train wheels with block breaks using a finite element discretization. The 

perturbation of temperatures and distortions were described by an amplitude function, 

which is spatially fixed multiplied by sinusoidal running wave turn of fixed wave length.  

The intermittent nature of the contact was directly specified through the boundary 

conditions. This approach assumed the brake block to be rigid and non-conducting, and 

thus there was no relative motion of hot spots with respect to the wheel. Since the 

sinusoidal Eigen function was assumed in the analysis, the effect of the free boundary of 

brake blocks on the Eigen mode shape was not taken into account, ether, as a result, the 

approach is essentially an extension of Du’s method (1997). 

1.3 Brake system introduction 

 The study of buckling and instability of a brake rotor disc is initiated by studying 

the buckling of a plate. The fundamental formulas of buckling of a plate are derived from 

the plate theories. Therefore, the brake disc buckling study starts by first reviewing and 

studying the plate theories. Due to the geometric similarity between a brake rotor disc 

and a circular or an annular disc, some of the important research associated with buckling 

theories and thermal buckling of circular and annular plates are reviewed and discussed. 

These reviews and discussions are the basis for the study on thermal buckling of brake 

discs, and lead to the need to study the thermal buckling theories, analysis methods, and 

application of the methods to automotive brake discs. A typical automotive brake system 

is illustrated in Figure 1-1. In general, a brake system consists of a cast-iron rotor disc, 
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which rotates with the hub. When hydraulic pressure is applied, the pistons, which are 

fitted to each half of the caliper, are forced inwards and press segmented friction pads 

against the flat sides of the disc. Most vehicles built since the late 1920s use a brake on 

each wheel. The principle of a brake system is to decelerate and stop the car. The driver 

exerts a force on a brake pedal, and the force on the brake pedal pressurizes the brake 

fluid in a master cylinder.  This hydraulic force is transferred through steel lines to a 

wheel cylinder or caliper at each wheel. The hydraulic pressure to each wheel cylinder or 

a caliper is used to force the friction materials against the brake rotor. 

 The friction between the stationary material and rotating rotor or disc causes the 

rotating part to decelerate and eventually stop. Since the wheels are attached to the rotors, 

the wheels of the vehicles will stop [Halderman (2000), Puhn, F (1985), DuPuy (2000)]. 

        

Figure 1.1: Typical disc brake system and components assembly 

 

 

 The function of the brake system is to convert kinetic energy into thermal energy 

through friction during braking. A brake has to be able to absorb or dissipate the 

generated heat while the brake rotor provides the friction surfaces for the brake pads to 
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rub against. It is a flat circular disc with a contact surface on each side. The rotor is the 

largest and heaviest part of a disc brake, and is usually made of cast iron because of cast 

iron's excellent friction and wear properties. There are two basic types of rotors: solid (as 

shown in Figure 1-1) and vented. Solid rotors were the first type fitted on automobiles, 

and they are still used on most lightweight, low-powered cars. The focus of this 

dissertation is on solid rotors. 

1.4 Problem background  

 Automotive brakes are an energy-absorbing mechanism that converts vehicle 

movement into heat while stopping the rotation of the wheel. To stop a wheel, the 

pressure is applied to each caliper (Figure 1-1) to force the friction materials against the 

brake rotor. The friction force between the stationary material and the rotating rotor (disc) 

causes the rotating part to slow down, and to decelerate the vehicle. An average 

deceleration rate of 15 feet per second per second (FPSPS) (3 m/s/s) can  stop a vehicle 

traveling at 55 mph (88 km/h) in about 200 feet (61m) in  less  than 4 seconds. During a 

standard brake system test, a vehicle is braked at this rate fifteen times. Temperatures 

sometimes can reach as high as 980°C [Halderman (2000)]. 

 One of the functions of a friction brake is to store and/or dissipate thermal energy 

generated at the interface. During braking, the potential energy and kinetic energy of a 

vehicle are converted into thermal energy via the mechanism of friction. Theoretical 

investigations of stop-braking predict that approximate 95% of heat generated is absorbed 

by the disc [Pamphlet (1976) pp. 3-4]. Figure (1.2) shows conversion of the kinetic 

energy of vehicle motion into heat. 
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Figure 1.2: The brake system converts the kinetic energy of vehicle motion into heat     

“http://www.fkm.utm.my/~arahim/daimlerchrysler-gritt.pdf ”  

 The heat energy causes the disc temperature to rise. In general, to provide 

adequate braking force, the disc and a pair of friction pads as a friction pair could operate 

at temperatures up to 800 C, interface pressures up to 10 MPa, and a rubbing speed up to 

22 m/s. 

 The heat generated is usually distributed through the brake structure 

nonuniformly, which leads to temperature gradients through the brake disc. This 

nonuniformly distributed temperature and the physical constraints, restraining the 

structure from expanding freely, generate thermal stresses on the brake structure. Since 

most brakes are made of malleable cast iron, it is expected that this heat generated and 

the induced stresses could affect the properties of the material. 

http://www.fkm.utm.my/~arahim/daimlerchrysler-gritt.pdf
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 The strength may decrease to as much as 20% of the room temperature strength, 

and the elastic moduli could also decrease [(Pamphlet (1976), pp. 3-17]. The non-uniform 

temperature distribution could produce non-uniform properties in the disc material. In 

addition to non-uniformity of heat, the repeated braking action could lead to thermal 

fatigue on the disc. The thermal fatigue could further lead to disc cracking and other 

defect. The high level thermal stresses can result in many thermally induced problems in 

the brake disc, such as thermal cracks on the surface of brake disc, thermal disc distortion 

including coning, disc thickness variation (DTV) thermal growth, disc hot spotting, and 

thermoelastic instability (TEI). 

 The thermal distortion of the disc surface can generate DTV leading to roughness. 

The brake roughness causes unacceptable vibration that is felt on the seat, steering wheel, 

and brake panel while braking. Brake roughness is a major source of customer 

dissatisfaction and one of the biggest sources of noise, vibration and harshness (NVH) 

that concerns both the automakers and customers. The combination of DTV and TEI 

generate disturbances at the brake disc and friction pad interface which cause brake 

torque variation (BTV).  BTV is again a source of vibration which would lead to high 

NVH that leads to premature failure. These distortion and vibrations are also sources of 

discomfort for the passengers, and would lead to customer complaints and dissatisfaction. 

 The significant high level warranty cost, as well as customer complaints 

associated with automotive brakes is one of the most difficult and toughest jobs the 

automakers have to deal with. Therefore, it is very important to study and understand all 

the possible failure modes and design controlling factors that contribute to the problems. 
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1.5 History of buckling studies 

 

 The history of buckling theory of structures begins with the studies by Euler of 

flexible compressed beams in 1744. General theories of stability and bifurcation 

originated in the mathematical studies of Schmidt (1908) and Lyapunov (1947) using the 

inverse and implicit function theorems as basic mathematical tools, which dominate 

studies of buckling and post buckling structures. 

 Particularly, a study of the elastic stability of a thin circular plate was done first 

by Bryan in 1891. The study showed that the critical buckling load for a circular plate 

without a central hole corresponds to a radially symmetric buckling mode. Von Karman 

(1910) formulated the equations for bucking of thin, linearly elastic plates. The buckling 

of a circular annular plate subjected to shearing forces along the edges was first studied 

by Dean (1924). Von Karman published his plate theory in 1924, which is a starting point 

for many later plate theory practices and applications. In 1936, Timoshenko studied plate 

stability problems using thin-plate stability equations based on von Karman's equations. 

These early works focused on plate theory and the closed form solutions to the simple 

geometric structures with simple boundary conditions, such as rectangular and circular 

plates. 

 A state of the art of what was known as the theory of elastic stability, which is 

related to plate buckling, was published by S. Timoshenko in 1936. Relatively recent 

textbooks and monograph on buckling include those by Brush and Almroth (1975), Cox 

(1963), Gerard (1962), Ziegler (1968), Wang (1953), Godoy's (2000). Yamaki (1958) 

approached a study of buckling of a thin annular plate under uniform compression by 
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integrating equilibrium equations to derive the general stability conditions for various 

boundary conditions, to determine the least critical load with the ratio of radii of annular 

plate as the parameters. Yamaki showed that for some cases, a radially symmetric 

buckling mode does not correspond to the lowest buckling load. In another work by 

Majumdar (1971) on the same topic, for a particular case of inner free and outer clamped 

annular plate boundaries, the solution indicates that for small ratios of inner to outer 

radius, the plate buckles into a radially symmetric mode. However, when the ratio 

exceeds a certain value, the minimum buckling load corresponds to buckling mode with 

waves along the circumference. The number of waves depends on the ratio of the inner to 

outer    radii.  Laura et al. (1997) also studied the buckling for the annular plates with 

non-uniform thickness by using Timoshenko's optimal Rayleigh-Ritz method, which 

agrees well with the FEA method. Platt et al. (1992) reviewed the thin-plate stability 

equations in their work, discussed Timoshenko's approach, and derived the acceptable 

form of the thin-plate equations. This work reviews thin-plate equilibrium equations that 

characterize the geometrical nonlinear behavior of thin flat plate under in-plane loading 

based on a model proposed by von Karman. The equations are the coupled set, and the 

coupling of the equations arises from the compatibility condition. This coupling causes 

difficulties in finding solutions, especially for the cases of complex geometric shape 

structures. 

 There are also many studies using Mindlin theory applied to plate buckling. 

Among these works, Chang et al. (1990) studied Mindlin-thick plate applications with 

interior cutouts by adapting the incremental deformation concept from FEA, and 
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validated the results by checking against existing solutions for full-plate buckling. The 

study was limited to simple geometric structure and simple boundary conditions. Wang et 

al. (1993) presented a Rayleigh-Ritz formulation for the axisymmetric buckling analysis 

of radially loaded circular Mindlin plates with internal concentric ring supports. The 

results show that the buckling factors for circular plate with one concentric ring support 

decrease with increasing thickness radius ratio due to the increasing shear deformation 

effect. Simple buckling formulas for simple supported and clamped plates were 

presented. 

 In another work by Wang (1997), he presented the relationships between the 

buckling loads determined using classical Kirchhoff plate theory, and shear deformable 

plate theory, which consider the first order shear deformation plate theory of Reissner-

Mindlin. 

 For buckling load predictions with thick plate theory, Chen et al. (1988) 

demonstrated that the Finite Element method with selective high order elements can 

estimate the buckling loads. However, as indicated in Chen's work, so far, there are few 

references in the literature devoted to the stability analysis of thick annular plates under 

in-plane forces. Kumelj et al. (1993) investigated the elastic stability of thin annular 

plates; the numerical solutions were obtained on the basis of the energy method, and the 

Kirchoff-Love hypothesis was adopted for relative thin plates. In another work by Pi et 

al. (1993), through examining thin-walled beam columns, they showed that the classic 

predictions of the lateral buckling loads of beams and beam-columns are generally 

conservative, but the predications obtained by linearized procedure are overestimated. 
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The predictions by the nonlinear iteration procedure agree well with the experimental 

results. In this work, the buckling is assumed to be independent of the prebuckling 

deflections, the buckling loads obtained by including the effects of the prebuckling 

deflecting may significantly exceed the classical predictions. Matsunaga (1995) used 

another approach based on power series expansion of displacement components through 

the principle of virtual displacements, and presented approximate theories. He showed 

that this method can predict the buckling loads of an extremely thick plate more 

accurately compared with other refined theories and classical plate theory.  

1.6 Thermal buckling problems 

 The previous sections presented a review of some key research works on buckling 

of plates; this section focuses on the review of thermal buckling of plates. 

Thermal buckling of a plate is a result of excessive in-plane compressive, thermally 

induced membrane stresses, and plate buckling occurs when compressive membrane 

forces are large enough to reduce the bending stiffness to zero for some physically 

possible deformation modes [Cook (1989)]. The plate in-plane thermal compressive 

membrane stresses are the result of non-uniformly distributed temperature in the plate 

structure. These stresses are thermally induced rather than induced by external 

mechanical loads. Gossard et al. (1952) described the buckling and post-buckling 

behavior of rectangle plates. In this work, the critical buckling temperature was 

analytically determined, and the post-buckling non-linear, out-of-plate bending 

displacement was studied analytically and experimentally. They found that the critical 

temperature is independent of the modulus of elasticity. Heldenfels and Roberts (1952) in 
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another related work investigated the plane stresses due to temperature in plates 

theoretically and experimentally, and correlated the results well. The most important 

point, however, is that the unrestrained plate with initial transverse deflection may 

experience thermal buckling due to compressive stresses induced by the spatial 

temperature  gradients. 

 Mote (1966) and Mote et al. (1969) studied the membrane temperature 

distributions and their influences on disc natural frequencies in discs. The theories and 

formulations for obtaining membrane thermal stresses and equation of motion provide 

good reference for studying and solving plate thermal buckling problems. Limpert (1972) 

published a dissertation on temperature and stresses analysis of solid-rotor discs, with the 

focus on investigating the thermal stress behavior of automotive disc brake rotors as it is 

affected by design parameters, operating characteristics, and environmental conditions, as 

well as on determining the effects of heat generation on the thermal crack   

characteristics. 

 A survey of thermally induced flexure and buckling of plates by Tauchert, T. R. 

(1986) provides a review of thermal buckling of plates, in which the classical plane stress 

problem consisting of a thin, perfect plate, isotropic plate is studied.  Thornton et al. 

(1994) conducted an experimental study of a global-buckling response in a plate by 

spatial temperature gradients, and also reaffirmed that localized heating can cause 

substantial out-of-plane bending of real plates. The work indicates that small initial 

warpage with compressive membrane thermal forces are sufficient to initiate substantial 

transverse bending. 
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 Some post buckling works associated to plates, some under thermal loadings, 

have been intensively studied by a group led by Rao, G. V and Raju, K. K. (1982, 1983, 

1985, 1991, 1994, and 1995). In those works, the finite element method is employed to 

solve the post-buckling problems and behaviors on mainly the elastic circular plates, 

including the thermal post-buckling behavior on circular plates. One of the important 

findings in their works is that the effect of non-linearity on the load parameter is found to 

be much higher in the cases of thermal loading than in the case of mechanical loadings. 

Shih et al. (1995) studied a circular disc with axially symmetric internal membrane force 

with a non-uniform radial temperature distribution in the disc. They showed when the 

temperature is higher at the disc center, the first buckling mode is dome shaped,   which   

maintains   the   polar   symmetry; however,   when   the radial temperature is reversed, 

the mode of buckling changes to  a  saddle  shape  (potato chip). The Timoshenko and 

Woinowsky-Krieger plate equations were used for this study. 

1.7 Objective and scope of the research 

 The objectives and scope of this research are divided into several, interrelated 

parts. Firstly, this work intends to establish a current understanding of thermoelastic 

instability (TEI) and the mechanism of convective cooling on TEI with specific focus on 

the use of finite element analysis (FEA). Secondly, this work intends to develop a finite 

element model (FEM) for the frictionally-excited thermoelastic instability problem in 

intermittent sliding contact with finite geometries and realistic friction materials along 

with validating the model in several limiting cases using analytical solutions. Finally, this 

work intends to establish a current understanding of thermal buckling and its associated 
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behavior in regard to rotor discs, specifically in regards to modes of failure, and provide 

results and discussion of an analytical experiment with established material properties 

and thermal loadings where properties of disc geometry were varied. 

1.8 Overview of dissertation 

 This dissertation contains five additional chapters. The second chapter discusses 

the effect of convective cooling on thermoelastic instability through the FEM. The third 

chapter develops a FEM for the frictionally-excited thermoelastic instability problem in 

intermittent sliding contact with finite geometries and realistic friction materials and 

validates the model in several, limiting cases using existing analytical solutions. The 

fourth chapter presents an analysis of the conditions of thermal buckling from the 

perspective of moments that lead to buckling and details the results and discussion of an 

experiment where various parameters for system configuration and geometry were 

considered under several models of thermal loading. The fifth chapter provides a 

collective summarization and corresponding discussion and conclusions of the second 

through fifth chapters along with recommendations for future study. 
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CHAPTER 2 

Effect of Convective Cooling on Frictionally Excited Thermoelastic 

Instability 

2.1 Introduction 

It is well known that thermoelastic instability (or TEI) occurs in high speed 

frictional sliding systems such as disc brakes or clutches [1]. If the sliding speed exceeds 

a critical value, a small perturbation in the system can lead to an exponentially growing 

temperature or contact pressure due to the thermal-mechanical feedback. To predict the 

growth rate of temperature/pressure at a given sliding speed or the critical value of the 

speed above which the system becomes unstable, the perturbation method, sometimes in 

conjunction with the finite element formulation, is applied in a variety of applications. 

This typically leads to an eigenvalue equation in the matrix form, from which the critical 

sliding speed of the system can be found by searching for the lowest speed at which the 

leading mode has a positive growth rate.  

Since the mechanism of TEI was first discovered by Barber in 1969 [2], both the 

analytical [3, 4] and numerical [5, 6] approaches have been widely used in the stability 

analyses. For the latter, the demand for extensive numerical iterations may impose a 

major hurdle especially on transient analyses. In automotive applications involving 

axisymmetric disc-like geometries, the Fourier reduction method has proven an efficient 
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way to overcome this difficulty [7]. Linear perturbation solutions [8] are sought that vary 

sinusoidally in the circumferential direction, resulting in an eigenvalue problem defined 

on the cross-sectional thickness domain. 

The effects of various geometric configurations [9, 10] as well as material 

properties [11, 12] on the stability boundaries of the TEI phenomenon were investigated. 

However, traditionally the conductive heat transfer inside the moving solids was the only 

concern in most of the formulations. Other sources of heat dissipation including 

convective cooling and radiation were nearly always neglected. Convective cooling, in 

fact, is a major heat dissipation mechanism and plays an important role in brake and 

clutch systems. Without conductive cooling, temperatures may exceed 1000°C on some 

brake disc surfaces in the friction contact region [13] and in some extreme situations can 

reach as high as 2000°C for carbon-carbon composite multidisk brakes in aircraft 

applications [14].  

It is well known that convective cooling is important in lowering the maximum 

bulk temperatures of brake or clutch systems, the effect of thermal convection on the TEI 

phenomenon, however, is much less studied, mainly because of the fact that the theory of 

TEI is concerned about the temperature variation rather than the steady state temperature 

level. It was believed that the majority part of heat exchange in the system occurs 

between the alternating hot and cold regions of the solids, as opposed to the heat transfer 

taking place on the fluid-solid interface in convective cooling. Due to the high sliding 

speed in the automotive applications, the rate of heat exchange inside the solids is 

typically much faster than the convective cooling, especially when the system is cooled 



19 

 

by air. This is because air has a relatively low convection coefficient.  Some heavy duty 

clutches and brakes used in naval and aerospace applications, however, are liquid cooled 

with the cooling water contained in the water jackets [15]. Transmission fluids used in 

wet clutch systems may also play an important role in convective cooling. While the 

coefficient of air convection rarely exceeds 200 W/m
2
K, it is not unusual to have a 

convection coefficient for liquid cooling greater than 10,000 W/m
2
K [16]. It is noticed 

that some pioneering work was already made by Zagrodzki regarding the effect of 

Newtonian cooling on TEI [17], however a systematic investigation on the phenomenon, 

e.g. how and to what extent the convective cooling rate can affect the stability boundaries 

of TEI, is still unavailable in the literature. Additionally thermal radiation may also 

contribute to the overall heat dissipation. It will be shown later that the effect of radiation 

is analogous to that of convection by introducing an equivalent convection coefficient, 

which can be readily obtained from the Stefan-Boltzmann Law. 

2.2 Basic methodology 

2.2.1 Heat transfer equation 

The two-dimensional heat conduction equation for the sliding bodies in the fixed 

frame of reference x and y shown in Fig (2.1) can be written as  
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where k is the thermal diffusivity. If the sliding takes place in the y-direction, then one 

can assume an exponentially growing perturbation solution of the following form 

)}({),(),,( 0 xeyxTtyxT jmybt    (2.2) 
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Where T0 is the steady state solution, b is a complex exponential growth rate and m is the 

wave number defined as the number of oscillations for perturbation within a length of 2. 

Note that m can take any positive real value and it has a unit m
-1

.  represents the real 

part of a complex number. Substitution of Eq. (2.2) into Eq. (2.1) yields 
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Applying the Galerkin finite element formulation leads to a matrix equation in the form 

0QH)ΘR(K  b                                                                                                  (2.4) 

Where Q is the nodal heat flux and the rest are the matrices evaluated from the 

aggregation of the following elemental matrices: 
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where N(x) is the shape function. 

2.2.2 Frictional heat generation  

The rate of frictional heat generation on the contact interface of the sliding bodies 

is given by 

ΦPQ fVfric   (2.8) 
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Figure 2.1: Schematic of the computational model 

where Q is the nodal heat generation (heat flux), P is the nodal contact pressure defined 

at the contact nodes only, and f is the coefficient of Coulomb friction.  is a coefficient 

matrix constructed in the following way 

 T0IΦ   (2.9) 

2.2.3 Convective heat dissipation  

Assuming a constant heat transfer coefficient h over the entire contact area, the 

convection heat loss expressed in the matrix form is then given by 

ΘQ hconv   (2.10) 

Where both Qconv is defined as the nodal heat loss due to convection. 

Considering the net heat generation on the contact interface, Q, we have 

ΘΦPQQQ hfVconvfric   (2.11) 
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Please note that the terms in the above equation contain the variable components only. 

The constant quantities such as the ambient temperature in the convective heat dissipation 

satisfy the steady state heat transfer equations and therefore do not appear here. It should 

also be pointed out that this formulation does not apply to the clutch system described in 

reference [15] where water jackets cool the back side of the metal plate rather than the 

sliding interface. However, the temperature variation on the back side is generally much 

lower than that on the sliding interface, and therefore it is believed that the effect of 

convective cooling on TEI is less important in that situation. 

2.2.4 Thermoelasticity 

For plane strain problems, the constitutive law for thermoelasticity is 

                             Te DC                                                                                     (2.12) 
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Where  is Poisson’s ratio, E is the elastic modulus,  is the coefficient of thermal 

expansion and e is the strain, which can be expressed in the matrix form in terms of the 

nodal displacement vector U. That is 

BUe  (2.15) 
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By assuming the displacement components in the perturbation forms: 

)(),,( 0 x

jmybt

xx Ueutyxu   (2.16) 

And 

)(),,( 0 y

jmybt

yy Ueutyxu   (2.17) 

One can obtain an additional matrix equation 

ΦPGΘLU   (2.18) 

Where G is a square matrix and L is a rectangular matrix. The elemental matrices for L 

and G are defined by 
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Here Ni represents the shape function of the ith node in a given element. Rearranging Eq. 

(2.18) in the partitioned form yields 
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where I is the identity matrix of order nc, the number of the contact nodes. Therefore 
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In the above formulation, the nodal vectors are partitioned according to whether they 

belong to the contact nodes. This is because the contact node pairs share the same normal 

displacements, and also because the frictional heat is presumably generated at the contact 

nodes. Equation (2.22) immediately yields 
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2.2.5 Eigenvalue equation 

Combining Eqs. (2.4), (2.11) and (2.23) yields the following eigenvalue equation: 

HΘMΘ b  (2.24) 

Where 

hfV   RK)GLLG(M 2

1

211  (2.25) 

Note that it is a standard eigenvalue equation without considering the inertial effects. 

2.2.6 Convective heat transfer coefficient 

In automotive applications it is generally believed that both laminar and turbulent 

flows are viable depending on design and operational parameters. For simplicity, here we 

neglect the laminar flow regions and assume an idealized situation in which the turbulent 

flow covers the entire sliding surface. For an external, turbulent flow over an isothermal 

flat plate, the local convection heat transfer coefficient can be approximated from the 

Reynolds Analogy [16] as 

3/15/4 PrRe0296.0 xxNu  , where 60Pr6.0   (2.26) 
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In the above approximation, Pr is the Prandtl number, and Nux is the Nusselt number 

defined by 

f

x
x

K

xh
Nu   (2.27) 

where hx is the local convection coefficient and Kf is the thermal conductivity of the fluid 

inside the boundary layer. The Reynolds number is defined by 



Ux
x Re  (2.28) 

where Rex is the Reynolds number,  is the fluid density,  is the fluid viscosity, U is the 

linear velocity component parallel to the plate. Assuming a typical clutch or brake disc 

diameter as the characteristic length, and the maximum sliding speed to be 5,000 rpm, it 

has been estimated that in the presence of water, the maximum convection coefficient can 

reach 20,000~30,000 W/m
2
K, and this result is in fact quite consistent for a wide range of 

the characteristic length of the sliding bodies. The result is also consistent with the order 

of magnitude of the convection heat transfer coefficients reported in the literature 

regarding the wet clutch applications [18]. Note that in the above approximation, linear 

motion at a constant speed and parallel flow over a flat plate were assumed. In reality, 

however, it may vary depending on the flow conditions and geometric configurations 

such as grooves. Nonetheless it is expected that the actual result should have the same 

order of magnitude. If the transmission lubricant instead of water is used as the coolant, 

the high viscosity of the lubricant can bring down the Reynolds number and hence reduce 

the overall convection coefficient. In addition, in the above estimation the external flow 

condition was assumed, which is actually not the case when the lubricant is confined 
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between the two sliding surfaces. Hence the above result is a rough estimate and its real 

value should be measured from experiments. Since in the current work we are primarily 

concerned about the range of the parameters covered in some worst scenarios, it is 

reasonable to set 30,000 W/m
2
K as the upper limit of the coefficient of convection in the 

discussions.   

2.2.7 Radiative cooling 

In addition to convection, radiation may also affect the overall heat dissipation 

rate due to the high operating temperatures. The Stefan-Boltzmann law denotes 

)-εσ(rad

44 TTQ   (2.29) 

where  is the surface emissivity and  is the Stefan-Boltzmann constant. By 

differentiating the above equation, one may obtain a linearized radiation rate in the 

perturbation form 

ΘT4Q 3

avgrad   (2.30) 

where Tavg is the average surface temperature. If this equation is combined with the 

convective heat rate, then the radiation heat transfer can be incorporated into the above 

formulation by augmenting the convection coefficient with a correction term as following 

hhh   (2.31) 

Where 

34 avgh T  (2.32) 

With this correction, both radiation and convection can be incorporated into the overall 

heat transfer coefficient h. 
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2.2.8 Mesh considerations 

In the TEI problem involving two sliding bodies, it is well characterized that there 

is a thermal skin in the vicinity of the contact surface of the poor conductor [7]. This is 

because the disturbance moves relatively slowly over the good conductor but with a 

speed close to the sliding speed over the friction material. As a result, any given location 

on the surface of the friction material experiences an oscillatory temperature at a very 

high frequency, which in turn generates very short heat waves in a direction 

perpendicular to the surface. To describe the temperature field adequately it is essential to 

use a graded mesh in this region to ensure that enough elements are generated in the 

thermal skin layer. In reference [7] the criteria were developed to determine the mesh 

refinement for this purpose and those criteria are equally applicable to the present 

problem. Based on these criteria a mesh bias ratio of 2.0 has been used in the friction 

layer and 1.5 in the metal layer, with more elements created towards the sliding interface 

2.3 Computational results 

2.3.1 Model parameters 

The parameters used in the finite element analyses were obtained from the 

literature [1] and they are tabulated in (Table 2.1) and (Table 2.2). These parameters 

reflect the realistic clutch and brake systems used in the automotive industry, although 

the actual values may vary in different applications. Note that in the brake model, a 1/6 

coverage, or 60 degrees of pad section was assumed and therefore the equivalent 

coefficient of friction is 0.4/6 = 0.0667 for the full coverage. Both clutch and brake 
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models assume an antisymmetric boundary condition along the midplane of the rotor Fig 

(2.1) because the antisymmetric modes have proved more susceptible to TEI based upon 

the previous researches. Therefore a half thickness has been used for the metal layer 

(steel or cast iron) in both models. In all the following discussions, the sliding velocity V 

is normalized as V* defined by 

mk

Va
V *  (2.33) 

 Steel Disk Friction Layer 

Young’s modulus, E (GPa) 200 0.11 

Poisson’s ratio, v 0.30 0.25 

Thermal expansion coefficient ,α(     1.2 x      1.4 x      

Thermal conductivity , K (W        42 0.22 

Thermal diffusivity, k (        11.9 0.122 

Thickness (mm) 1.375 0.673 

Coefficient of friction 0.12 0.12 

Table 2.1: Parameters used in the clutch model. 

 Cast iron Disk Friction Layer 

Young’s modulus, E (GPa) 112.4 2.03 

Poisson’s ratio, v 0.25 0.35 

Thermal expansion coefficient ,α(     1.325 x      3.0 x      

Thermal conductivity , K (W        57 0.93 

Thermal diffusivity, k (        17.2 0.522 

Thickness (mm) 14 10 

Coefficient of friction 0.4 0.4 

Table 2.2: Parameters used in the brake model. 
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where a and km are the half thickness the thermal diffusivity of the metal disc, 

respectively. This is consistent with the dimensionless velocity defined in Lee and 

Barber’s work [3]. The convection coefficient h is normalized as Bi, i.e. the Biot number 

defined by 

mK

ha
Bi   (2.34) 

where Km is the thermal conductivity of the metal disc. A convection coefficient of 

10,000 W/m
2
K is equivalent to a Biot number of 0.3274 in the clutch model or 2.456 in 

the brake model being discussed. 

2.3.2 Comparisons between linear and quadratic elements 

A series of convergence tests were attempted to study the effect of the mesh size 

on the result. Figure 2.2 shows the critical speed as a function of the element number in 

the friction layer, for three different wave numbers m=100, 200 and 400.  

 

Figure 2.2: Critical speed as a function of the element number in the friction disc 

(pad) of the clutch model 
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A comparison has been made between the two finite element types: linear 

elements and quadratic elements. The element number in the friction layer varies between 

6 and 12 in both cases. It can be seen that at lower wave numbers m=100 or 200, there is 

virtually no difference between the two element types whereas the difference is 

appreciable when m=400 and when the element number is less than 10.  The main reason 

is that the temperature field oscillates at a higher frequency for shorter wavelengths, thus 

requiring a finer mesh to capture the variations in the temperature field. In this case use 

of quadratic elements has an obvious advantage over the linear elements. In fact, when 

the element number is less than seven, the solution using the linear elements diverges 

quickly. In contrast the model using the quadratic elements is still capable of yielding an 

acceptable solution. An inspection on the results shown in Figure 2.3, where the critical 

speed is expressed as a function of the element number in the steel layer, has revealed a 

similar trend. That is, the linear elements lead to a solution very close to that obtained 

from the quadratic elements at lower wave numbers, yet they exhibit a significant 

difference for higher wave numbers in terms of the convergence speed. For the quadratic 

elements, a surprisingly accurate result, which deviates merely about 1.5% from the 

convergent solution at m=400, can be obtained using only one element across the 

thickness of the metal rotor. Although the computational efficiency is generally not a 

major concern in the current problem, it has a significant importance for higher 

dimensions. The previous work showed that the computational time for a three 

dimensional system is very sensitive to the total DOFs (degrees-of-freedom). The results 

presented in Fig (2.2) and Fig (2.3) imply that a fine mesh is not always necessary and a 
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fairly coarse mesh in the metal disc using quadratic elements, for example, is a potential 

solution to improve the numerical efficiency for problems defined in higher dimensions.  

 

Figure 2.3: Critical speed as a function of the element number in the steel disc (rotor) 

of the clutch model 

2.3.3 Effect of convective cooling on temperature growth rate 

To investigate the effect of the convection heat transfer coefficient, the 

exponential temperature growth rate b has been plotted against the sliding velocity V in 

the clutch model using three different values of the convection coefficient when m was 

chosen as 200 Fig (2.4). This value of m is approximately located at the lowest critical 

sliding speed among all wave numbers. The results are presented in an effort to 

demonstrate the transition of the system from a stable mode to an unstable mode as the 

sliding speed increases.  
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Figure 2.4: temperature growth rate as a function of the sliding velocity in the clutch 

model for m=200 

When the convection heat dissipation is absent, the growth rate is negative at a 

low sliding speed showing that the temperature perturbation decays with time. When V* 

is close to 1,652, the growth rate b approaches zero, which corresponds to a transition 

stage where the perturbation starts to grow. Beyond that point, the growth rate becomes 

positive, representing a thermoelastically unstable condition. Therefore this particular 

location on the horizontal axis corresponds to the critical speed of the system. It appears 

that the relationship between the growth rate and the sliding speed is almost linear in the 

unstable region. In the stable region, on the other hand, it starts with a nonlinear profile at 

a low speed, but becomes nearly linear in the remaining part. This is consistent with the 

prior results reported in the literature [8]. The addition of a nonzero convection 

coefficient has apparently shifted the curve to the right side, resulting in an increase in the 
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critical speed, but it does not alter the overall shape of the curve, i.e. it begins with a 

slightly nonlinear region and smoothly transits to a nearly linear profile. The three curves 

shown in Figure 2.4 are approximately parallel to each other. It is estimated that an 

increase of the convection coefficient by 10,000 W/m
2
K (Bi=0.327) approximately raises 

the critical speed by V*=347 in the current clutch model, or around 20% of the value 

without convection. 

2.3.4 Effect of convective cooling on critical speed 

Further, the critical speed was obtained as a function of the wave number m under 

a set of different convection coefficients ranging h=0, 10,000, 20,000 and 30,000 W/m
2
K 

(i.e. Bi=0, 0.327, 0.655 and 0.982) for the clutch problem, as shown in Fig (2.5). When 

the convection heat dissipation is absent, the lowest critical speed is located at the 

dimensionless wave number around ma=0.234 with a value of V*=1,537. This is very 

close to the critical value 1,652 obtained at m=200 (i.e. ma=0.275) shown in Fig (2.4).  

The entire curve has been raised by the addition of thermal convection, but the overall 

shape of the curve does not change much, with the lowest critical speed maintained at the 

same location of m. Presented in Fig (2.6) is the similar results for the brake model with 

the lowest critical speed occurring at ma=0.532. Unlike the clutch results shown in the 

previous figure, the V-m curve seems to keep changing its shape as the convection 

coefficient increases. A close look at the data, however, has shown that the wave number 

corresponding to the lowest critical speed does not change as the convection coefficient 

increases. An immediate implication of the result is that there should not be any change 
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in the dominant mode shapes at any given sliding speed, either. That is, the eigenmodes 

change their b values at the same rate as the convection coefficient changes.   

 

Figure 2.5: Critical speed as a function of the wave number in the clutch model 

 

Figure 2.6: Critical speed as a function of the wave number in the brake model 
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Figure (2.7) shows how the minimum critical speed varies with the convection 

coefficient under three representative wave numbers m=100, 200 and 400 in the clutch 

model. It can be seen that the critical speed is almost a linear function of the convection 

coefficient. When m=100, the critical speed changes from V*=2,692 at h=0 (Bi=0) to 

V*=4,553 at h=30,000W/m
2
K (Bi=0.982), with an approximately 69% increase.  

 

Figure 2.7: Minimum critical speed as a function of the convection coefficient in the 

clutch model. 

In terms of percentage change this is the maximum among the three curves in          

Figure (2.7). For example, at m=400 the change in the critical speed is from V*=9,579 to 

12,756, with an approximately 33.2% increase.  A similar conclusion can be drawn from 

the brake model, as shown in Figure (2.8). The four curves representing m=20, 40, 60 and 

80 shown in the figure have different slopes, implying different degrees of dependence of 

the critical speed on the convection rate. This dependence is the strongest at the lowest 
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wave number (m=20) among the four. Compared to the clutch model this time the 

difference is even more drastic: the critical V*=4,233 at h=0 (Bi=0) versus V*=14,651 at 

h=30,000 W/m
2
K (Bi=7.368). That is equivalent to an increase of 246%.  At m=40 where 

the critical speed almost reaches the valley in the V-m curve, it is found that the critical 

speed changes from V*=1,799 to 6,390 when h varies from 0 to 30,000 W/m
2
K 

(Bi=0~7.368), or an approximately increase of 255%. In fact, even with h=1000 W/m
2
K 

(Bi=0.246), the increase in the critical speed for m=40 is as much as 10.4% in 

comparison with the result at h=0, which is a non-negligible difference. On the other 

hand, at m=80, percentage change of the critical speed is close to 65% for the full range 

of the convection coefficient. Therefore it has been seen that the effect of convection 

coefficient is more significant for the Eigenmodes with shorter wave lengths. 

 

Figure 2.8: Minimum critical speed as a function of the convection coefficient in the 

brake model. 
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2.3.5 Effect of radiation cooling 

Figure (2.9) shows the equivalent coefficient h as a function of the surface 

temperature under the different values of thermal emissivity  ranging from 0.2 to 1.0, 

based on Eq. (2.32). Clearly, the thermal radiation rate is much less significant than 

convection. Even with =1 and Tavg=1500K, the equivalent coefficient h is still below 

1000 W/m
2
K (i.e. Bi<0.0327 in the clutch model or Bi<0.246 in the brake model), 

which is an order of magnitude less than the convection coefficients of common liquids. 

With a practical disc surface temperature around 500 C and a realistic thermal emissivity 

of the material, it is found that h is well below 100 W/m
2
K.   Therefore the effect of 

thermal radiation on TEI is usually negligible compared to convective cooling.  

 

Figure 2.9: Equivalent Biot number for thermal radiation as a function of the surface 

temperature. 
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2.4 Conclusions 

A finite element method is implemented to investigate the effect of convective 

cooling on the stability boundaries of thermoelastic instability in a couple of 

representative brake and clutch systems. By adding a negative term representing the 

convective heat dissipation to the frictional heat generation rate, convective cooling is 

successfully incorporated into the finite element formulation. This is analogous to a 

system with a reduced frictional heat rate, and therefore can stabilize the thermal-

mechanical process. As a consequence it has been found that the previous analyses on 

TEI typically overestimated the critical sliding speeds. Liquid cooling such as water and 

lubricants removes heat at a much faster rate than gases such as air, and therefore affect 

the system stability more significantly. The parametric studies have shown that the 

critical speed in some cases where the system is cooled by water can be three times as 

high as the value without convective cooling. However, the wave number corresponding 

to the lowest critical speed is nearly independent of the convection effect. This implies 

that the dominant mode pattern at a given sliding speed remains unchanged as well.  

Further, in comparison with the linear elements, the quadratic elements are capable of 

accurately capturing the oscillatory patterns of the temperature in the vicinity of the 

friction interface, and therefore provide a better numerical accuracy with the same 

computational effort.  Although using quadratic elements is not necessary in lower 

dimensions, it will potentially permit efficient solutions for problems defined in higher 

dimensions. 
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CHAPTER 3 

Finite Element Analysis of Thermoelastic Instability in Intermittent 

Sliding Contact  

3.1 Introduction 

Thermoelastic instability (TEI) theory states that in frictional sliding 

systems such as disk brakes or clutches, the thermal-mechanical feedback can be 

unstable if the sliding speed exceeds a certain threshold [19]. The theoretical 

models were developed over the past decades to investigate the phenomenon, 

both analytically [20] and numerically [21], using either the eigenvalue formulation 

[22] or transient simulation [23],  the  former  of  which  assume  a  perturbation  of  

the  solution  in the exponentially growing form, and an eigenvalue equation is 

constructed from the governing differential equations. The growth rates of the 

variables, and further the critical sliding velocity, can then be recovered from the 

eigenvalues of the equation. The majority of these works assume coextensive 

contact, especially for clutch systems, due to the fact that they have annular 

geometries, moving continuously in the circumferential direction. Many other 

sliding surfaces, such as those in disk brake systems, are not coextensive as the 

brake pads do not cover the e n t i r e  rotor surface, and the material points on a 

surface always experience alternating periods of contact and separation. For 
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axisymmetric plates in clutches, intermittent processes are also possible, e.g., in 

the presence of initially uneven surfaces as a result of surface separation, 

manufacturing imperfection, or misalignment of the axles during mounting. 

These intermittent processes can be expected to alter the stability 

boundaries of the TEI problem. Barber et al. [24] suggested us to allow for the 

intermittent contact in TEI by averaging the heat input over the circumference. This 

strategy was later reiterated by some other researchers, such as Hartsock and Fash 

[25]. However, the hypothesis was not verified until Ayala et al. [8], who 

explored a simplified intermittent contact problem in which an infinite, conductive 

material slides a g a i n s t  a rigid nonconductive surface. Their results show that at a 

low Fourier number, i.e. when the thermal transient is much longer than the 

period of one revolution, the method by averaging the frictional heat input over 

the circumference works fairly well, and the critical speed is an inverse linear 

function of the proportion of time in sliding contact. However, at higher Fourier 

numbers the critical speed becomes lower, although the dependence of the critical 

speed on the Fourier number becomes relatively weak. 

These conclusions, however, were based on the assumption that the 

friction material is rigid and nonconductive, and that the other material has an infinite 

extension. Realistic geometries do not satisfy these idealized conditions. Prior 

researches on continuous contact revealed considerable differences between the half- 

plane solutions and the models with finite dimensions and real materials [9,28]. It 

is not clear at this point whether the same conclusions obtained from the idealized 
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half-plane solutions equally work for more realistic systems involving finite 

geometries with both materials being deformable and   conductive. 

The analytical approaches have proved difficult in handling this type of 

problems due to the demand for numerical convergence and iterations, which are 

sometimes computationally prohibitive. The finite element method developed by Yi 

et al. [7] is therefore a preferable tool, and the present work is devoted to solving 

the intermittent contact problem using the same strategy. It should be pointed out 

that some preliminary discussions on this issue can be found in the literature [30]; 

however, a systematic exploration of the problem including the method validation 

has never been attempted. 

3.2 Finite Element Models 

3.2.1 General Formulation 

We assume a two-dimensional configuration to approximate a brake or clutch. 

The circumference of a brake or clutch disk is spread out along the sliding direction, 

and the effect of the radial thickness is ignored in our model. The solution method 

follows the standard procedure for the problems in this category [7]. Briefly one 

can start from the governing equations of heat conduction, thermoelasticity and 

frictional heat generation. It is followed by a search for the constant speed solution 

in linear perturbations that grow exponentially in time. For the temperature field, 

the perturbation solution can be written as 

          T(x, y, t) = T0(x, y) + ℜ {ebt T1(x, y)}                                                 (3.1) 
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Where T0 is the steady-state solution, b is a complex exponential growth rate. 

ℜ represents the real part of a complex number. The amplitude of oscillation T1 

is typically complex to reflect the change in the phase angle of temperature across 

the thickness. Similar assumptions in the perturbation form can be made on other 

key variables including the displacement and the contact pressure. A direct result 

from the perturbation assumption is that time is eliminated from the governing 

equations, leading to a generalized eigenvalue equation in the following matrix 

form after an implementation of the finite element method: 

                                      MΘ = bΗΘ                                                                     (3.2) 

Where Θ is the nodal temperature vector; M and H are the coefficient matrices 

determined from the material properties and the finite element shape functions. 

Given appropriate boundary conditions the critical speed can be 

determined from the sliding speed at which the real part of the growth rate is zero. 

Notice that in the above formulation, the wave number (i.e., the number of higher 

temperature regions in the sliding direction) is not a predefined parameter. Rather, 

it is a result obtained from the computed eigenfunctions. Therefore the method 

can be used to solve problems for both continuous and intermittent contacts. 

The details on the matrix derivations are omitted here, as they are modified 

versions of those used in the finite element scheme previously developed by the Yi 

et al. [7]. In intermittent contact the critical speed is presented as a function of the 

Fourier number, which is defined by 

                                              F0   = km2t0                                              (3.3) 
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Where                                  
 

 
    ,           

 

 
                                                     (3.4)       

Here, n is the total number of waves in the circumference; r is the radius of the 

rotating disk, L is the circumferential length; V is the sliding v e l o c i t y . 

 3.2.2 Two-Dimensional (2-D) Finite Element M o d e l  

In the 2-D finite element model, the mesh is generated uniformly in the  sliding 

direction, but biased towards the contact surfaces in both materials. The 

implementation of the quadratic element type more accurately approximates the 

nonlinear distributions of temperature in both thickness and longitudinal directions, 

and it can thus improve the numerical efficiency. The total length of the model in the 

y-direction is set to the circumferential length of the disk. In a continuous contact 

situation, both layers in contact are coextensive with the same length, whereas in an 

intermittent contact the friction layer has a reduced length see Figure (3.1). 

 

Figure 3.1: Schematic of the intermittent contact model: (a) a conductive 

half plane sliding against a rigid nonconductor, and (b) a conductive plate of 

finite thickness sliding against a deformable and conductive surface 
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The frame of reference is fixed to the friction layer to ensure that the 

problem has a fixed boundary as opposed to a moving one, which is 

mathematically more difficult to handle. A cyclic boundary condition, i.e., all the 

quantities on one end are assumed to be the same as those on the other end, is 

applied to the conductive layer in the direction of sliding to model the closed disk 

ring configuration. Notice that there are no constraints applied on the ends of the 

friction pad in the direction of sliding. To simplify the model, the symmetric-

antisymmetric boundary conditions are assumed across the thickness see Figure 

(3.1), with the symmetric condition specified on the poor conductor (i.e., the 

friction material) and the antisymmetric condition on the good conductor (i.e., the 

metal plate), due to the fact that this mode pattern has been found dominant in 

many practical applications. Particularly, on the symmetric boundary 

                        qx  = 0;      ux  = 0;     σxy  = 0                                               (3.5) 

And on the antisymmetric   boundary, 

                                  T = 0;      uy  = 0;     σxx  = 0                                     (3.6) 

Where u, q, and a represent the displacement, heat flux and stress, respectively. It 

should be reiterated that the wave number is not predesignated in the two- 

dimensional model, nor a monotonic function of the sliding speed. Therefore 

iterations are required to determine the critical speeds and the associated wave 

numbers. More specifically the critical speed is sought on the basis of the following 

procedure: 

1. The analysis is performed at a number of different sliding speeds with a 
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prescribed interval, and the growth rates of temperature at each sliding speed 

are computed. 

2. The wave number associated with each growth rate b is determined by the Fast 

Fourier Transform (FFT) technique. This is not a trivial part of the work since 

the sinusoidal profiles of the eigenfunctions in continuous contact become highly 

distorted when intermittent contact is   involved. 

3. The growth rates of temperature for each wave number at the different sliding 

speeds are sorted following the above two steps. Three successive sliding speeds 

with positive growth rates are then identified. 

4. The value of the sliding speed at zero growth rates, i.e., the critical speed for each 

wave number, is extrapolated by quadratic curve fitting on the basis of the three 

different pairs of growth rate and sliding speed. 

3.2.3 Fourier Model for Continuous Contact 

The one-dimensional Fourier finite element model serves for the validation 

and convergence study of the continuous contact solution. It is constructed in a 

way similar to the one used in Yi [31]. The model is discretized in the thickness 

only and each node has two degrees of freedom along the x- and y-directions. The 

wave number appears in both stiffness and thermal matrices in the finite element 

equations. The cyclic boundary conditions and coextensive contact are the intrinsic 

features of the model. Therefore the computational effort is minimized in the 

Fourier model as the finite element discretization is not needed in the direction of 

sliding. 
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3.2.4 Nonconductive Rigid Friction Plate 

To consider the extreme situation where a conductive half plane slides against 

a rigid nonconductive surface in the finite element models, a sufficiently large 

thickness equal to the circumferential length of the disk is assumed in the conductive 

material so that the boundary effects are minimized. Meanwhile the elastic modulus 

of the insulating material is set to value five orders of magnitude higher than that of 

the conductive material, and a single element is used across the thickness of the 

insulator. Other parameters remain   unchanged. 

3.3 Analytical Models for Comparison 

3.3.1 Continuous Contact 

Burton et a l .  [32]  showed  that  for  plane  strain,  the  critical  speed  of 

a conductive surface sliding against a rigid nonconductive surface is linearly 

proportional to the wave number according    to   

                                              
        

   
                                                      (3.7) 

where K is the thermal conductivity; m is the wavenumber per 2π of length; E, α, 

v, f are Young’s modulus, the coefficient of thermal expansion, Poisson’s ratio 

and the coefficient of Coulomb friction, respectively. 

3.3.2 Intermittent Contact 

For a conductive half plane sliding against a rigid nonconductive surface, 

we define the following dimensionless velocities following Ayala’s notations [26]:    
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                                                                             (3.8) 

Where V is the critical sliding velocity in the intermittent contact,   and 

                                    
 

  
                                                                                (3.9) 

We further define a dimensionless speed             by taking the ratio of V   

to V 0 . 

                                                  
  

  
 

 

  
                                                                   (3.10) 

It was shown [8] that at sufficiently small F0 << 1, 

                                                      
 

  
                                                                        (3.11) 

Namely, the critical speed is the same as that of a system in continuous contact with 

the heat generation rate replaced by the average rate during the intermittent process. 

Detailed numerical studies show that the critical speed differs from that predicted 

from Eq. (3.11) by less than 1% for Fo < 0 . 1 . 

As Fo → ∞, it is found   that    

                                        
     

   
                                                                    (3.12) 

Where R1 is t1/t0, i.e., the ratio of the contact period to the overall time. For large 

but finite Fourier numbers, one has to solve a nonlinear equation in the following 

form for b , the dimensionless growth rate: 

   
                                        

                         
  

       
        (3.13)             

from which      can be computed from 

                      
 

 
                                                                                  (3.14) 
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Notice that “erfc” in Equation (3.13) is the complementary error function. 

Equations (3.11) through (3.14) are adapted from Ayala’s solutions   [26]. 

3.4 Results    

3.4.1 A Conductive Half Plane Sliding Against a Rigid Nonconductive Surface 

Continuous contact.   This is a limiting case of intermittent contact with the contact 

ratio R1 = 1. In continuous contact it is expected that the one-dimensional Fourier 

finite element model yields the same result as Burton’s solution. In Figure (3.2) 

clearly        of the Fourier model remains at 1.0 for the entire range of Fo. The Fourier 

number covered in the range corresponds to the wave number n = 1−20, or m = 

6.25−125 when the disk radius r is set to 0.16 m. A convergence study for the two-

dimensional finite element model is also shown in the same figure. It   converges to 

unity at lower Fo but deviates from unity at larger Fo. We found that 24 elements in 

the circumference result in a maximum numerical error of approximately    20%. 

In fact, when n = 20, each wave is covered by only one element, hence 

inadequate  to  delineate  the  profile  of  the  Eigenfunction  at  larger  wave 

numbers. On the other hand, when the element number increases to 40 or 60, a 

much better accuracy is obtained. For example, with the total element number of 60, 

the maximum numerical error obtained is less than 1%. We conclude that the two-

dimensional finite element model for continuous contact must be discretized in 

such a way that each wave is covered by at least two or three elements in order 

to achieve a desirable accuracy in the solution. In the preceding results, 12 biased 
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elements with a bias ratio of 2.0 in the thickness direction of the conductive material 

have been found sufficient to capture the rapid change in the temperature gradient in 

the thickness. 

Intermittent Contact. The plane finite element model was also compared to Ayala’s 

solution when the contact is intermittent. We did not reproduce the entire 

analytical solution; however, the results in the three limiting cases represented by 

Eqs. (3.11), (3.12), and (3.14) are believed to be sufficient for the purpose of 

comparison and validation. In the finite element model for intermittent contact, the 

metal layer has been divided into as many as 90 elements in the direction of 

sliding, so that the contact region is covered by sufficient elements. 

 

Figure 3.2: Convergence studies of the finite element models for continuous 

contact, assuming a conductive half plane sliding against a rigid 

nonconductor. 

The thickness is divided into 12 elements. Figures (3 .3 a, b, and c) show 

the finite element solutions for three different contact ratios 1/2, 1/3, and 1/6,    
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respectively. Clearly, in all three scenarios, the results are bounded between the 

analytical solutions given by Eq. (3.11) and Eq. (3.12). To the right side of the 

figures when Fo increases, the curves gradually approach the asymptotic solutions 

for Fo = ∞. When R1 is reduced, the figures show a reduced range of Fo , e.g., the 

maximum Fo is 2.8 when R1 = 1/6 as opposed to 8.2 when R1 = 1/2. This is because 

the raised critical sliding speed as a result of the reduced R1 leads to a reduction 

in the total period of sliding process, and thus a decreased Fourier   number. 

  

 

Figure 3.3: Finite element (FE) solutions for three different contact ratios 

(a) R1 = 1/2, (b) R1 = 1/3, and (c) R1 = 1/6. A conductive half plane sliding 

against a rigid nonconductor is a ssumed . 
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3.4.2 Two Conductive Plates with Finite Thickness 

Continuous Contact. For the continuous contact problem of two conductive, 

deformable plates with finite thickness, we compared the computational results 

between the two finite element models: (A) the full two-dimensional finite element 

model with both thickness and length directions discretized, and (B) the one- 

dimensional Fourier model defined in the thickness direction only. The parameters 

used in the finite element analysis are shown in Table 1. The element numbers used 

in the length and thickness of model A are 50 and 20, respectively. Notice that both 

materials are conductive now and hence both need to be divided into biased elements 

through the thickness. We define the dimensionless velocity in the following way: 

                                                         
 

  
                                                                 (3.15) 

where V and Vf are the critical speeds determined by model A and B, respectively. 

During the calculation of Vf in the continuous contact model, the time-averaged 

frictional heat input (i.e., the coefficient of friction divided by R1) is already taken 

into consideration. The dimensionless wave number here is defined as following Lee 

and Barber’s notation [33]. 

                                  A = ma                                                               (3.16) 

The reason to change the definition of the dimensionless wave number is 

that the Fourier number Fo defined previously is no longer a monotonic function of 

the wave number m when the disk has a finite thickness. Figures 3.4(a) and (b) 

show the dimensionless critical speed based on Lee’s notation and the definition in 

Eq. (3.15), respectively. It can be seen from Figure 3.4(b) that the full 2-D model 
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agrees quite well with the Fourier model, with a maximum numerical error around 

5%. The contour plots in Figure (3.5) display the temperature distribution with an 

exaggerated thickness. There is a noticeable change in the phase angle across the 

thermal skin layer of the poor conductor. This observation is consistent with the 

prior research on the subject. 

Intermittent contact. Now we turn our attention to the realistic situation in which 

both surfaces in intermittent contact are deformable and conductive. Figure   (3.6) 

shows an example of the finite element mesh used in the computation for R1 = 1/3. 

The model consists of 48 elements in the sliding direction and 24 elements through 

the thickness. For smaller values of R1 such as 1/6, an element number up to 60 

is used in the direction of sliding to ensure that the contact region is covered by 

sufficient elements. The computation is performed iteratively at 20 different sliding 

speeds with a uniform spacing to search for the critical values of the speed. 

 

Table 3 .1: Parameters used in the intermittent contact model with both surfaces 

conductive and deformable 

Figures 3.7(a) and (b) are the results for the intermittent contact model with 

both materials being conductive and deformable. Figure 3.7(b) indicates that the 
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continuous contact model with the time-averaged frictional heating always 

overestimates the critical speed, which is consistent with the conclusion from the prior 

analytical studies. However, Figure ( 3 . 7) reveals several new features that are 

quite different from the half-plane solution. First of all, the dimensionless speed V is 

no longer a monotonic function of the wave number. At smaller wave numbers the 

result is approaching zero rather than converging to Ayala’s solution            . 

 

Figure 3.4: Dimensionless critical speed based on (a) Lee and Barber’s definition 

[15] and (b) t h e  definition given in Eq. (15). A conductive half plane sliding 

against a rigid nonconductor is assumed. 

 

Figure 3.5: Temperature eigenfunction in continuous contact with the thickness 

exaggerated:  (a) the entire model; (b) an enlarged local region on the sliding 

interface. 
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There exists a peak value on the curve (it is actually corresponding to the 

lowest value of the dimensional critical speed) where the two solutions are the 

closest. Particularly, when R1 < 1/2, i.e., the period of contact is longer than the 

period of separation, applying the time-averaged heat input in the continuous 

contact model yields an error less than 10%. When R1 = 1/3, the error becomes 

approximately 20%. The error is even more significant when the contact ratio is 

reduced further. The location of ma at the peak value is dependent on R1 and it 

shifts slightly to the left when R1 is reduced. Moreover, at larger wave numbers, the 

critical speed does not converge to Ayala’s solution, either. This can be seen from a 

comparison between the results shown on the right side of Figure 3.7(b) and Eq. 

(3.12) that indicates 

                                       
       

 
                                                         (3.17) 

 

 

Figure (3.6) A biased finite element mesh generated for the model with R1 = 1/3. Both sliding 

surfaces are conductive and deformable. The thicknesses of both layers are exaggerated. 
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Figure 3.7: critical speed in intermittent contact as a function of the wave number, 

where γ is the reciprocal of the contact ratio, or 1/R1 . Vf is the critical speed in 

the continuous contact model, with the time-averaged frictional heat input    

considered. 

For instance, when R1 = 1/2, the finite element model gives V = 0.5V, w h i c h  

is much lower than Ayala’s solution around 0.85. It is found that for a smaller value 

of R1, the deviation of the result from Ayala’s solution is even more pronounced. In 

fact, Ayala’s solution always overestimates the critical speed, which is not surprising 

because of the significant difference in the fundamental assumptions related to the 

geometrical configurations and materials involved in the two   models. 
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Figure (3.8) Representative Eigenfunctions of temperature in (a) continuous contact 

and (b) intermittent contact with R1 = 1/3. 

 

Figure (3.9) Eigenfunctions of temperature for intermittent contact with the contact 

ratio (a) R1= 1/3 and (b) R1= 1/6, presented in the form of contour plots. The 

thicknesses of both layers are exaggerated. 

The Eigenfunction of temperature shown in Figure 3 .8(b) exhibits two 

distinct zones where the amplitude of oscillation either rises or decays, 

corresponding to the contact zone and the separation zone, respectively.  Thermally, 

these periods are associated with the periods of frictional heating that alternate 

with the periods of conductive cooling. In steady state when the growth rate is 
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zero, the increased temperature variation due to frictional heating during the 

contact period is counteracted by the reduced amplitude in the separation period. 

In contrast, the continuous contact model exhibits no such variations in 

the amplitude as seen in Figure 3.8(a).  The temperature distribution is also presented 

in the contour plots  in  Figure  3.9  where  the  contact  ratios  are  R1  = 1/3  in  (a) 

and R1 = 1/6 in (b). It is seen that the otherwise homogeneous distribution of 

temperature along the contact interface becomes disturbed. A closer inspection on 

the eigenfunctions reveals that the temperature distribution is severely distorted near 

the contact/separation points where the stress concentrations are located. 

3.5 Conclusions 

The finite element scheme based on the eigenvalue method is implemented 

for the analysis of thermoelastic instability in intermittent sliding contact with 

practical model parameters. A numerical algorithm is developed to determine the 

critical velocities by tracking the Eigenmode patterns and the corresponding 

growth rates. The method has been validated by both analytical and numerical 

solutions in some limiting situations. It is concluded that when the realistic 

materials and geometric configurations are considered for intermittent contact, 

neither the strategy of time- averaged heat input nor the analytical solution 

derived from the half-plane model works properly. 

The finite element analysis reveals a bell-shaped relationship between the 

dimensionless critical speed and the wavelength: for longer waves the dimensionless 

critical speed approaches zero rather than unity; for shorter waves the critical speed 
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is much lower than that predicted by the analytical half-plane solution. There   exists 

a location where the dimensionless critical speed is the maximum. In general, the 

strategy by averaging the heat input over the entire circumference is appropriate 

only when the period of frictional contact is longer than the period of separation, 

and when the peak value of the dimensionless critical speed is our primary   concern. 
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CHAPTER 4    

Buckling of Cylindrical Disk Due to Thermal Stress 

4.1 Introduction 

Mechanical systems containing durable, moving parts that are in close contact 

have been extremely common. This contact results in friction, which generates heat. 

Some systems ignore this situation, assuming it as a natural consequence of the materials 

and operations involved. For other systems, such as disc brake systems on modern 

vehicles, friction and the heat which it generates are desired and intended consequences. 

In disc brake systems, kinetic energy of moving wheels is absorbed through frictional 

forces by discs and pads where it is converted into heat and dissipated by convection 

cooling. Ideally, this cooling would be instantaneous so as not to allow heat buildup on 

the surface of the disc. However, real materials and mechanics do not permit such 

idealism. Disturbances due to operation and inconsistent materials, along with the 

particulars of system design may alter what would otherwise be a uniform pressure 

distribution. This causes inconsistent heat distribution and eventually non-uniform 

thermoelastic distortion resulting in an even-further altered pressure distribution. If the 

sliding speed between frictional materials is sufficiently high, the thermal-mechanical 

feedback process becomes unstable, leading eventually to the localization of the heat load 

in a small region of the nominal contact area of the sliding surfaces. This phenomenon, 
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known as thermoelastic instability, was first discovered and explained by J.R. Barber in 

his article on sliding systems involving frictional heating (Barber 1969). 

If the sliding speed within a disc system exceeds a critical value, thermoelastic instability 

may occur. When a small perturbation in the system leads to an exponential growth in 

local temperature or contact pressure due to thermal–mechanical feedback, this is in what 

are known as “hot spots”. For many disc systems, such as a disc brake system, to function 

appropriately, it is important to prevent the formation of such hot spots that quickly lead 

to overall system deterioration. Because hot spots form as a result of material choices and 

system configuration and operation, the prevention of formation of hot spots is dependent 

upon understanding the conditions in which they are produced. From the disassembly of 

affected systems, it is evident that the thermoelastic distortion due to irregular expansion 

and contraction is a cause or consequence of the formation of hot spots. What may not be 

evident from disassembled systems is the distribution of temperatures and perturbations 

that led to thermoelastic distortion. 

 

Figure 4.1: Hot spots in a disk brake system  
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From the physics and mechanics of common disc systems, it is clear that non-

homogeneity of the temperature field inside friction discs causes thermal stresses to 

occur. In order for distortion to result, these stresses must be non-uniform. In support of 

this conclusion, disassembled systems often show discs found to be permanently 

deformed out-of-plane [34, 35]. This deformation commonly takes one of the two modes: 

“cone” or “potato chip”. The “cone” mode is evident when the out-of-plane deformation 

is axisymmetric, resulting in a truncated conical surface [35, 36] like that shown in Figure 

(4.2). The “potato chip” mode is evident when the out-of-plane deformation is sinusoidal 

in the direction of the circumference, resulting in a saddle shape similar to that of a potato 

chip like that shown in Figure (4.3). A wave-number N is associated with the modelling 

of this particular type of distortion with N=2 in the case of a potato chip deformation. The 

two deformation modes show very distinct patterns of distortion related to the variations 

in thermoelastic stress on the systems in which they are found. The two modes of 

buckling are related to inhomogeneous distributions of thermal stress in either a radial or 

circumferential directions. 

In this work, modelling of various environmental, situational, and geometrical 

factors on frictional disc systems illustrates their impacts on thermal distribution and the 

resulting thermal stresses and moments created. This helps in the prediction of buckling, 

a particular type of distortion, based on temperature differences between the inner and 

outer radii of discs responsible for heat dissipation. For example, buckling of an 

automatic transmission clutch depends on a dimensionless geometric shape factor ψ, 

material properties, and the magnitude of the largest thermal excursion [37]. In friction 
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disc systems, it is important to be able to understand and model temperature distributions 

and resulting thermal stresses to configure the system in such a way as to avoid buckling. 

 

Figure 4.2: Cone buckling mode (N=0) 

 

Fig 4.3: Potato chip buckling mode (N=2) 

 



63 

 

In-plane thermal stresses can be expected whenever there is a temperature 

difference between the inner and outer radii of a heat-dissipating disc. Various authors 

[19],[22],[53-55] have shown that non-uniform heating of a frictional sliding surface can 

result in excited thermoelastic instability, whereby thermoelastic distortions of the sliding 

bodies affect the contact pressure distribution, exaggerating an initial non-uniformity and 

leading eventually to incomplete contact between surfaces. Therefore, this work is 

focused upon modelling various temperature distributions upon a disc and determining 

the thermal stresses created, and there are corresponding moments. These moments are 

compared with critical values to indicate buckling. We believe that this will provide 

insight into system design choices and configurations so as to keep the prevention of 

buckling in mind. 

4.2 Modelling Approach 

On the basis that non-uniform temperature is responsible for the creation of 

thermal stresses within frictional discs, the focus of modelling in this work is based 

around the effects of various non-uniform temperature distributions to analyze their 

effects on buckling when paired with changes in other situational and geometrical 

properties of the system. Of primary concern is the exploration of linear, parabolic, and 

power temperature distributions within a disc in regards to buckling. Consider a thin, 

solid circular disc of radius b with a central hole of radius a and uniform thickness h. It 

possesses a central radius R that resides half-way between a, the inner radius, and b, the 

outer radius. Three types of coordinate systems are indicated by this hollow, cylindrical 

disc: r in the radial direction, θ in the circumferential/tangential direction, and h in the 



64 

 

vertical direction normal to the r-θ plane. For our model, temperature differences are 

indicated in the radial direction, thus varying with r. The surface of the disc is assumed to 

be free of traction. 

In approaching our modelling, it was necessary to make certain fundamental 

assumptions.in order for our equations and conjectures to hold. Firstly, physical 

assumptions include that the distribution of heat penetrates the disc evenly and that 

outside connecting structures are rigid and do not affect the distribution of heat. 

Secondly, materials are assumed to be uniform and consistent in qualities and property 

without preexisting flaws or damage. Perhaps what is most important is the assumption 

that heat distribution affects the potential of thermoelastic distortion, the premise upon 

which this work was founded. 

 

Figure 4.4: Disc Geometry 
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Additionally, we assumed that such distortion would be the predominant cause of 

failure of the system and that other forms of failure are prevented to a large enough extent 

by the resiliency and configuration of system and materials such that there are not 

compound effects of failure created by the conglomeration of multiple potential failure 

conditions. These assumptions are to simplify and purify the means of modelling and 

analysis such that the results presented herein are untainted and uncomplicated and 

focused upon the premises of concern. We believe that such assumptions and their 

disclosure are necessary for proper analyses and that the assumptions made herein will 

not affect the validity of the gathered results and that the modification or omission of one 

or more such assumptions can be seen as opportunity for further expansion under more 

specialized situations and conditions. 

Based on assumptions that adhere to Hook's law, the radial and circumferential 

thermal stresses of the circular disc are indicated by the following with terms defined in 

Table 1: 
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Applying boundary conditions to (1) and (2) such that         at     and    , 

constants    and    can be found: 
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This allows (1) and (2) to be simplified to: 

           
 

  
      
 

 
 

 

     
       

 

 
    

  

  
    

          
 

  
      
 

 
 

 

     
       

 

 
    

  

  
      

In order for the surface of the disc to be traction free, there must not exist a net stress 

across the radial axis of the disc as indicated by: 

                                           
   

   
                                                 (4.3) 

This can be rewritten as: 

                                           
 

 
                                                           (4.3) 

However, a section can transmit an axisymmetric moment as indicated by: 

                                  
   

   
                                                              (4.4) 

This can be rewritten as: 

                                   
 

 
                                                                  (4.4) 

Equations (1), (2), and (4) exhibit the relationship between moment and 

temperature distribution through stress distribution in the disc. What remains is to 

determine under what conditions buckling may occur to properly bound the situational 

(temperature distribution and material choice) and geometrical (radii and thickness) 

properties of the system. 

Buckling in the disc results from an in-plane, axisymmetric, residual bending 

moment M. The sign of the moment M indicates the direction of the bending relative to 

the appropriate coordinate (radial or circumferential). However, the simple presence of a 

moment M is not alone enough to result in buckling. Such a moment must exceed a 
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certain critical value, which can differ in the positive and negative directions, in order for 

buckling to occur. This critical value, referred to as the critical moment M0, can be 

determined by treating the disc as a cylindrical disc and applying the results found by 

Timoshenko and Gre [38]. 

For certain friction disc applications, situational factors have been gathered from 

data from reference. For steel as a material choice, the nominal details of the physical 

properties, dimensions, and operating conditions of our disc system are given in Table 1. 

In our experiments, these factors were adjusted to explore their relationships to buckling. 

Inner disc radius (a) 110 mm 

Outer disc radius (b) 140 mm 

Mean disc radius (R) 125 mm 

Disc thickness (h) 2 mm 

Sliding length 20 mm 

Young’s modulus ( E ) 210 x     N/    

Thermal expansion coefficient (α) 12.5 x          

Poisson’s ratio (v) 0.3 

Table 4.1: Example parameters for a friction disc system 

In approaching our experimentations, we assumed various temperature 

distributions were possible and modelled each with other varying parameters. The 

temperature distributions considered were linear, parabolic, and power in the radial 

direction, thus making them a function of r. These T(r) resulted in thermal stress field’s 

 (r) that satisfied (3). The practical choice of materials brought a degree of nonlinearity 

as the thermal expansion coefficient (T) and Young's modulus E (T) depend significantly 

upon temperature. When determining conditions of buckling, the stress fields were 
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utilized to determine the magnitude and direction of moments, which could then be 

compared to corresponding critical moments. 

These critical moments are indicated by: 

                                                  
     

 
                                                                (4.5) 

The dimensionless critical moments for integral wave-number N: 

                                               
     

   

 
   

   

 
 
 

                                              (4.6)                     

For the case of a rectangular cross-section of thickness h and radial thickness (b-a): 
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From these definitions and the quadratic nature of the dimensionless critical moment   
     , 

it can be observed that there exist positive and negative (directional) critical moments. If 

any determined moment for a particular situation and configuration exceeds its 

corresponding directional critical moment, our model indicates that buckling will occur. 

It is from this formulation that we proceeded with our experimentations and gathered our 

results for analysis. 

4.3 Results and Discussion 

Under the models and premises set forth previously, the primary means of 

variance for our experiments was through variation of temperature distribution along the 

radial axis. The three temperature distributions of focus were linear, parabolic, and 

power. Other geometric aspects of the system were varied to show the corresponding 

relationships between temperature distribution and these aspects. The results presented 

herein should be generalizable as the signs, configuration parameters, and structural 
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configurations of the temperature distribution models are all modifiable and readily 

substituted. Of particular note are the general parameters Tmin and Tmax, which 

represent the minimal and maximal temperatures present in the distribution, respectively. 

Choices of maximal temperature were based on material properties and operating 

conditions found from modelling in existing works. For instance, the authors of [6] noted 

that “to provide adequate braking force the disc and pad as a friction pair operates at 

temperatures up to 800 ˚C.” 

4.3.1 Linear Temperature Distribution 

The linear temperature distribution proved the most simple to model. It involved a 

linear increase in temperature from a to b, as illustrated in Figure (4.5). This results in a 

model similar to the ABAQUS model shown in Figure (4.6).  Several existing works 

assume a linear temperature distribution as a starting point for analysis [40, 41]. It can be 

noted that a linear temperature distribution is simply the first-order case of power 

temperature distribution with the zeroth-order case being a constant temperature 

distribution. This logically follows from the fact that the sliding speed involved with 

friction of a disc is linear and proportional to the radius. Thus, as revolutions are made 

during frictional contact, the smaller inner radius will build up heat more quickly than the 

larger outer radius. If this heat buildup is assumed to be evenly distributed with radius, a 

linear distribution results. It is from this that a linear distribution can also be considered 

as a well-distributed, unevenly centered parabolic distribution, as is the case of some 

materials, such as AMC, utilized for rotors in disc systems, such as those discussed by the 

authors of [47, 48, and 49].  
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                                                                                                (4.7) 
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Substituting (4.8) into (4.1) and (4.2) yields: 
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  (4.10) 

These radial and tangential stresses for a linear temperature distribution yield the 

curves shown in Figure (4.7) .While the tangential stress is an order of magnitude greater 

than the radial stress, it depends upon the resulting moment and its relationship to the 

critical moment for each direction as to whether or not buckling occurs. 

 

Figure 4.5: Linear Temperature Distribution 
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Substituting (4.10) into (4.4) yields the moments produced by radial and tangential stress:  

             
 

 
        

 

 
  (4.11) 
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Tmin   +    1    +  21+      

        
 

 
  

   

  
                       

         
 

 
               

 

 

Tmin   +    1    +  2 1+  2    

 

Figure 4.6: Linear Temperature Distribution in Disc 
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Figure 4.7: Stress Distributions for Linear Temperature Distribution 

Graphing both critical moments from (4.5) with (4.11) show the relationships between 

critical moment and the produced moments. Figure (4.8) shows the relationship with 

varying central radius R with various maximum temperatures. Figure 4.9 shows the 

relationship with varying sliding length (b-a) with various maximum temperatures. 

Figure (4.10) shows the relationship with varying thickness h with various maximum 

temperatures. Figure (4.9) clearly shows that a much smaller sliding length is necessary 

to prevent buckling with a maximum temperature of 1000 ˚C than with a maximum 

temperature of 200 ˚C. Figure (4.8) shows that a much smaller central radius and hence a 

much smaller disc is necessary to withstand buckling at higher maximum temperatures. 

Figure (4.10) shows that increasing the thickness (h) by even a millimeter adds resiliency 

against buckling. The obtained results show that the critical moment results in buckling is 

within the range (-115 Nm ~ -140 Nm) as shown in all three figures with the parameters 

utilized in table (4.1). This shows strong similarity to the results presented in ref [37] by 

[Nadine Audebert & J.R.Barber]  in Table 1 on page 314 that indicate that the critical 
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moment that results in buckling is -137 Nm at a thickness 3 mm for N=2. It should be 

noted that the results in ref [37] are based on a changing temperature with time that is 

linear in nature. However, the converse is true as well, which indicates that machining of 

the disc to smooth it to prevent hotspots due to previous deformation results in a much 

increased chance of buckling due to thinness.  

 

Figure 4.8: Relationship between actual moment and critical moments for linear 

temperature distributions with varying central radius 
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Figure 4.9: Relationship between actual moment and critical moments for linear 

temperature distributions with varying Sliding length 

 

Figure 4.10: Relationship between actual moment and critical moments for linear 

temperature distributions with varying thickness 
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Figure (4.11) has shown the thermal buckling for cylindrical disk when the 

temperature distribution is linear at different center radius and Figure (4.13) has shown 

the thermal buckling for cylindrical disk when the temperature distribution is linear at 

different sliding length and Figure (4.15) has shown the thermal buckling for cylindrical 

disk when the temperature distribution is linear at different thickness.  

Table (4.2), Table (4.3), and Table (4.4) and the corresponding Figure (4.12), 

Figure (4.14), and Figure (4-16) show comparison of the analytical and numerical results 

of our experiments for a linear temperature distribution. It is evident that the result for 

varying central radius and sliding length are practically indistinguishable. However, an 

anomaly in the numerical analysis was observed for varying thickness. The reason is not 

clear. 

       

      



76 

 

      

      

 

Figure 4.11: Deformation mode of thermal Buckling at different center radius 

Fixed parameters: 
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R 

(mm) Ra Rb T(Analytical)  
M 

(Analytical) T(Numerical) ʎ1 
M 

(Numerical)  

60 45 75 1000 -289.6 997 0.997 -288.7312 
70 55 85 852 -248.3 849 0.996 -247.3068 
80 65 95 743 -217.2 740 0.996 -216.3312 
90 75 105 660 -193.1 655 0.992 -191.5552 

100 85 115 593 -173.8 589 0.993 -172.5834 
110 95 125 540 -158 534 0.989 -156.262 
120 105 135 494 -144.8 489 0.989 -143.2072 
130 115 145 456 -133.7 451 0.989 -132.2293 
140 125 155 424 -124.1 418 0.985 -122.2385 

Table 4.2: Modeling parameters for changing central radius for linear temperature 

distribution 
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Figure 4.12: Analytical versus numerical results 

 

      

    

0 

200 

400 

600 

800 

1000 

1200 

60 80 100 120 140 

C
ri

ti
ca

l T
e

m
p

e
ra

tu
re

 (
c)

 

Radius (mm) 

T(Analytical)  

T(Numerical) 



79 

 

     

     

     

Figure 4.13: Deformation mode of thermal Buckling at different Sliding length 

Fixed parameters 

Sliding length Mean Radius    

( R ) 

Thickness 

(h) 

Young’s modulus 

(E) 

Thermal Expansion 

(α) 

10 ~ 50 mm 100 mm 3 mm 210x    N/    12.5x     
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Sliding 

Length  Ra Rb T(Analytical)  

M 

(Analytical) T(Numerical) ʎ1 

M 

(Numerical)  

10 95 105 1710 -57.93 1670 0.976 -56.53968 

15 92.5 107.5 1180 -86.89 1150 0.974 -84.63086 

20 90 110 886 -115.86 860 0.97 -112.3842 

25 87.5 112.5 710 -144.8 695 0.978 -141.6144 

30 85 115 593 -173.79 588 0.991 -172.22589 

35 82.5 117.5 510 -202.7 512 1.003 -203.3081 

40 80 120 447 -231.7 443 0.991 -229.6147 

45 77.5 122.5 398 -260.7 399 1.002 -261.2214 

50 75 125 359 -289.6 358 0.997 -288.7312 

Table 4.3: Modeling parameters for changing sliding length for linear temperature 

distribution 
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Figure 4.14: Analytical versus numerical results 
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Figure 4.15: Deformation mode of thermal Buckling at different Thickness 

Fixed parameters: 

Thickness 

(h) 

Sliding length Center Radius 

(R) 

Young’s modulus 

(E) 

Thermal Expansion 

(α) 

0.5 ~ 5 mm 30 mm 105 mm 210x    N/    12.5x     
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H (mm) Ra Rb T(Analytical)  M1(Analytical) T(Numerical) ʎ1 M1(Numerical)  

0.5 85 115 17 -0.8 17 1 -0.8 

1 85 115 66 -6.43 66 1 -6.43 

1.5 85 115 149 -21.7 149 1 -21.7 

2 85 115 264 -51.5 264 1 -51.5 

2.5 85 115 412 -100.5 410 0.995 -99.9975 

3 85 115 593 -173.79 588 0.991 -172.22589 

3.5 85 115 808 -275.97 797 0.986 -272.10642 

4 85 115 1055 -411.9 1036 0.982 -404.4858 

4.5 85 115 1400 -586.5 2600 1.85 -1085.025 

5 85 115 1700 -804.6 3218 1.89 -1520.694 

Table 4.4: Modeling parameters for changing thickness (h) for linear temperature 

distribution 
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Figure 4.16: Analytical versus numerical results 

4.3.2 Parabolic Temperature Distribution 

The parabolic temperature distribution proved more complex than the linear 

temperature distribution model. It involved a parabolic rise and fall in temperature from a 

to b, as illustrated in Figure (4.17). This results in a model similar to the ABAQUS model 

shown in Figure (4.18). The reasoning behind the consideration of a parabolic 

temperature distribution is its correlation to the notion of “hot spots” and its similarity in 

overall temperature change across the surface to the power temperature distribution, 

which is mentioned in numerous existing works [33 and 44]. Though with the notable 

difference of a decreasing increase in temperature resulting in a peak or plateau of overall 

temperature. Some existing works directly note and utilize a parabolic distribution [45 

and 46]. The authors of [47] utilized and referenced the measurement and actual case 

study of the authors of [48 and 49], which they demonstrated in a figure in which the 

measured temperature distribution over the radius was approximately parabolic. 

Typically, the parabolic distribution is skewed with the mode of the distribution being 
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centered towards the smaller, inner radius. In the most extreme cases of this, a power 

distribution has been used rather than a parabolic distribution as discussed in the next 

section. Authors of current works indicated that the AMC brake rotor demonstrates a 

more evenly distributed temperature than a cast iron brake rotor, thereby preventing the 

formation of hot spot zones. The parabolic temperature distribution creates a focal point 

for heat buildup. It involved a parabolic increase with the maximum temperature found at 

R and minimum temperature found at a and b. 

                    (4.12) 
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Substituting (13) into (1) and (2) yields: 
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                                                                                               (4.15)                                                                                                                           

These radial and tangential stresses for a parabolic temperature distribution yield 

the curves shown in Figure (4.19). While the tangential stress is an order of magnitude 

greater than the radial stress, it depends upon the resulting moment and its relationship to 

the critical moment for each direction as to whether or not buckling occurs. The 

sinusoidal pattern of radius stress is highly-indicative of buckling due to the extremes of 
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its crest and trough. Substituting (4.15) into (4.4) yields the moments produced by 

tangential stress:  
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Figure 4.17: Parabolic Temperature Distribution 
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Figure 4-18: Parabolic Temperature Distribution in Disc 

 

Figure 4.19: Stress Distributions for Parabolic Temperature Distribution 
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Graphing both critical moments from (4.5) with (4.11) show the relationships 

between critical moment and the produced moments. Figure (4.20) shows the relationship 

with varying central radius R with various maximum temperatures. Figure (4.21) shows 

the relationship with varying sliding length (b-a) with various maximum temperatures. 

Figure (4.22) shows the relationship with varying thickness h with various maximum 

temperatures. 

Figure (4.21) clearly shows that a smaller sliding length is necessary to prevent 

buckling with a maximum temperature of 2000 ˚C than with a minimum temperature of 

500 ˚C, but not to the extreme that was found with a linear temperature distribution. The 

dependence on sliding length for avoidance of buckling nearly vanishes at around 60 

millimeters. Figure (4.20) shows that central radius does not play an important role until 

it becomes quite large. Figure (4.22) shows that choosing an adequate thickness in the 

presence of a parabolic temperature distribution will prevent buckling for operating 

temperatures in most applications. 
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Figure 4.20: Relationship between actual moment and critical moments for parabolic 

temperature distributions with varying central radius 

 

Figure 4.21: Relationship between actual moment and critical moments for parabolic 

temperature distributions with varying Sliding length 
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Figure 4.22: Relationship between actual moment and critical moments for parabolic 

temperature distributions with varying thickness 

Figure (4.23) has shown the thermal buckling for cylindrical disk when the 

temperature is parabolic distribution at different sliding length, and Figure (4.25) has 

shown the thermal buckling for cylindrical disk when the temperature is parabolic 

distribution at different thickness. Table (4.5), and table (4.6) and corresponding Figure 

(4.24), and Figure (4.26) show comparison of the analytical and numerical results of our 

investigation for a parabolic temperature distribution. The numerical solution for varying 

sliding length produced lower critical moment and corresponding lower critical 

temperature. This is possibly due to additional complexities in the way that cooling is 

modelled within the software package used for numerical analysis. The numerical and 

analytical results for varying thickness proved nearly identical with only a slight 

divergence at larger thicknesses. The numerical results for varying central radius showed 
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no variation with change in central radius. This is likely due to the cross-sectional 

modeling remaining unchanging as the central radius changes. 

      

      

      

Figure 4.23: Deformation mode of thermal Buckling at different sliding length  

Fixed parameters 

Sliding length Center Radius ( R ) Thickness (h) Young modules (E) Thermal Expansion (α) 

15 ~ 40 mm 110 mm 0.5 mm 210x    N/    12.5x     
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Sliding 

Length  Ra Rb T(Analytical)  

M 

(Analytical) T(Numerical) ʎ1 

M 

(Numerical)  

15 92.5 107.5 660 1.24 660 1 1.24 

20 90 110 460 1.65 385 0.84 1.386 

25 87.5 112.5 330 2.05 245 0.73 1.4965 

30 85 115 260 2.47 160 0.62 1.5314 

35 82.5 117.5 200 2.88 120 0.6 1.728 

40 80 120 170 3.29 90 0.53 1.7437 

Table 4.5: Modeling parameters for changing sliding length for parabolic temperature 

distribution 
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Figure 4.24: Analytical versus numerical results 
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Figure 4.25: Deformation mode of thermal Buckling at different Thickness  

Fixed parameters 

Thickness (h) Sliding length Center Radius ( R ) Young modules (E) Thermal Expansion (α) 

0.25 ~ 2 mm 20 mm 110  mm 210x    N/    12.5x     

H(mm) Ra Rb T-A max  T-N max M1(Analytical) ʎ1 M1(Numerical)  

0.25 100 120 98 95 0.187 0.97 0.18139 

0.5 100 120 385 381 1.49 0.99 1.4751 

0.75 100 120 880 855 5.05 0.97 4.8985 

1 100 120 1560 1516 11.9 0.97 11.543 

1.25 100 120 2450 2370 23.4 0.97 22.698 

1.5 100 120 3530 3460 40.4 0.97 39.188 

1.75 100 120 4800 4600 64.19 0.96 61.6224 

2 100 120 6280 5980 95.8 0.95 91.01 

Table 4.6: Modeling parameters for changing thickness (h) for parabolic temperature 

distribution 
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Figure 4.26: Analytical versus numerical results 

4.3.3 Power Temperature Distribution 

The power temperature distribution proved the most complex among the three 

distribution models considered. It involved a parabolic rise and fall in temperature from a 

to b, as illustrated in Figure (4.27). This results in a model similar to the ABAQUS model 

shown in Figure (4.28). Numerous existing works focus on power temperature 

distributions [33 and 44]. The authors of [47] referenced the case study of the authors of 
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[48 and 49] when analyzing temperature distribution, indicating that the study found that 

higher temperature occurs at the center of a rotor surface and spread towards the 

circumferential direction. The thermograph imagery obtained during this study showed 

an increasing temperature radially with a power distribution appearance. The authors of 

[51] illustrated an excellent example of power temperature distribution and its changes 

through time although it is possible to interpret the illustration as a quite-skewed 

parabolic distribution, which seems to concur in the measurements and models of other 

similar works. The choice of consideration of power temperature distribution was based 

on its popularity and validity stemming from existing works as well as the considerable 

variance in temperature that it yields across the surface resulting in great buckling 

potential. In this work, power temperature distribution involved a fourth-order power 

increase in temperature from a to b, though other orders could also be considered, such as 

a first-order, known as a linear temperature distribution.  

           
      

 
            (4.16) 

 where 

          

 making 

       
 

 
 

 

    
                                            

 6+15        2  2  (4.17) 

Substituting (4.14) into (4.1) and (4.2) yields: 
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                  15        2  2]+  1      21+  2                        (4.18) 

   
  

  
 

 

    
                                                

15        2  2    [    +   4          ]+  1   +  21+  2 (4.19) 

 

Figure 4.27: Power Temperature Distribution 
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Figure 4-28: Power Temperature Distribution in Disc 

 

Figure 4.29: Stress Distributions for Power Temperature Distribution 

These radial and tangential stresses for a power temperature distribution yield the 

curves shown in Figure (4.29). While the tangential stress is an order of magnitude 
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greater than the radial stress, it depends upon the resulting moment and its relationship to 

the critical moment for each direction as to whether or not buckling occurs. The sharp 

extremes in tangential stress across the radial axis indicate likelihood of buckling. 

Substituting (19) into (4) yields the moments produced by tangential stress:   

             
 

 
        

 

 
  (4.11) 

 where 

    
 

 
      

  

 
 

 

    
                                            

 

 

 6+15        2  2        [    +   4           ]  

  +    1    +  21+      

        
 

 
  

   

  
 

 

    
                                            

 

 

 6+15        2  2            +   4  

           +    1    +  2 1+  2    

Graphing both critical moments from (4.5) with (4.11) show the relationships 

between critical moment and the produced moments. Figure (4.30) shows the relationship 

with varying central radius R with various maximum temperatures. Figure (4.31) shows 

the relationship with varying sliding length (b-a) with various maximum temperatures. 

Figure (4.32) shows the relationship with varying thickness h with various maximum 

temperatures. 

Figure (4.31) clearly shows the necessity of a large sliding length compared with 

the linear and parabolic temperature models, although the necessity becomes greatly 

diminished for higher temperature differentials once an adequately large radial thickness 
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has been established. Figure (4.30) shows that maintaining a minimal central radius is 

critical for almost all temperature differentials. The window of function becomes so 

narrow that it will likely be unsafe to attempt even moderately-larger radii. Figure (4.32) 

shows that an adequate thickness will overcome the wide spread in moment ranges of 

different temperature distributions. 

 

Figure 4.30: Relationship between actual moment and critical moments for power 

temperature distributions with varying central radius 
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Figure 4.31: Relationship between actual moment and critical moments for power 

temperature distributions with varying Sliding length 

 

Figure 4.32: Relationship between actual moment and critical moments for power 

temperature distributions with varying thickness 
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Figure (4.33) has shown the thermal buckling for cylindrical disk when the 

temperature distribution is power at different center radius and Figure (4.35) has shown 

the thermal buckling for cylindrical disk when the temperature distribution is power at 

different sliding length and Figure (4.37) has shown the thermal buckling for cylindrical 

disk when the temperature distribution is power at different thickness.  

Table (4.7), Table (4.8), and Table (4.9) and the corresponding Figure (4.34), 

Figure (4.36),   and Figure (4.38) show comparisons of the analytical and numerical 

results of our experiment for a power temperature distribution. The results for varying 

central radius and radial thickness were fairly consistent between the analytical and 

numerical solutions with the numerical results diverging slightly for larger radial 

thicknesses. The numerical results for varying thickness showed a marked anomaly at 

larger thicknesses. This is likely due to the software package used for numerical analysis 

modelling the material differently at a larger thickness. The reason may be related to the 

different theories used in the two methods.  
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Figure 4.33: Deformation mode of thermal Buckling at different Center Radius  

Fixed parameters 

Center Radius ( R ) Sliding length Thickness (h) Young modules (E) Thermal Expansion (α) 

60 ~ 140 mm 20 mm 2 mm 210x    N/    12.5x     

  

R (mm) Ra Rb T(Analytical)  M (Analytical) T(Numerical) ʎ1 M (Numerical)  

60 50 70 730 -57.2 757 1.036 -59.2592 

70 60 80 630 -49 652 1.034 -50.666 

80 70 90 545 -42.9 572 1.049 -45.0021 

90 80 100 500 -38.14 510 1.02 -38.9028 

100 90 110 450 -34.3 460 1.022 -35.0546 

110 100 120 400 -31.2 419 1.04 -32.448 

120 110 130 370 -28.6 384 1.03 -29.458 

130 120 140 340 -26.41 355 1.044 -27.57204 

140 130 150 317 -24.52 330 1.04 -25.5008 

Table 4.7: Modelling parameters for changing central radius for power temperature 

distribution 
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Figure 4.34: Analytical versus numerical results 

 

-70 

-60 

-50 

-40 

-30 

-20 

-10 

0 

60 80 100 120 140 

C
ri

ti
ca

l M
o

m
e

n
t 

(N
.m

) 

Radius (mm) 

M (Analytical) 

M (Numerical)  

0 

100 

200 

300 

400 

500 

600 

700 

800 

60 80 100 120 140 

C
ri

ti
ca

l T
e

m
p

e
ra

tu
re

 (
c)

 

Radius (mm) 

T(Analytical)  

T(Numerical) 



106 

 

     

     

     

     



107 

 

 

Figure 4.35: Shows thermal Buckling at different sliding length  

Fixed parameters 

Sliding Length Center Radius ( R ) Thickness (h) Young modules (E) Thermal Expansion (α) 

10 ~ 50 mm 110 mm 2 mm 210x    N/    12.5x     

 

Sliding length 

mm Ra Rb 

T 

(Analytical)  

M 

(Analytical) 

T 

(Numerical) ʎ1 

M 

(Numerical)  

10 105 115 800 -15.6 763 0.95 -14.82 

15 102.5 117.5 540 -23.4 547 1.012 -23.6808 

20 100 120 400 -31.2 419 1.04 -32.448 

25 97.5 122.5 327 -39.01 336 1.027 -40.06327 

30 95 125 263 -46.8 281 1.06 -49.608 

35 92.5 127.5 224 -54.6 241 1.07 -58.422 

40 90 130 195 -62.4 210 1.076 -67.1424 

45 87.5 132.5 173 -70.2 187 1.08 -75.816 

50 85 135 155 -78 168 1.083 -84.474 

Table 4.8: Modelling parameters for changing sliding length for power temperature 

distribution 
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Figure 4.36: Analytical versus numerical results 
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Figure 4.37: Shows thermal Buckling at different Thickness  

Fixed parameters 

Thickness (h) Sliding length R Young modules (E) Thermal Expansion (α) 

0.5 ~ 5 mm 20 mm 110 mm 210x    N/    12.5x     

 

Thickness 

(mm) Ra Rb 

T 

(Analytical)  

M 

(Analytical) 

T 

(Numerical) ʎ1 

M 

(Numerical)  

0.5 100 120 25 -0.487 26 1.04 -0.50648 

1 100 120 100 -3.9 105 1.05 -4.095 

1.5 100 120 226 -13.16 237 1.05 -13.818 

2 100 120 400 -31.2 419 1.05 -32.76 

2.5 100 120 630 -60.9 650 1.03 -62.727 

3 100 120 900 -105.3 929 1.03 -108.459 

3.5 100 120 1225 -167.2 1255 1.02 -170.544 

4 100 120 1600 -249.6 1626 1.02 -254.592 

4.5 100 120 2100 -355.5 3500 1.6 -568.8 

5 100 120 2600 -487.6 5000 1.9 -926.44 

Table 4.9: Modelling parameters for changing thickness (h) for power temperature 

distribution 
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Figure 4-38: Analytical versus numerical results 

4.4 Summary and Conclusions 

Friction disc systems are always subject to constraints of heat dissipation and 

material limitations. Of particular concern is the non-homogeneity of the temperature 

field inside friction discs that causes thermal stresses that can lead to hot spots and 

eventually failure due to thermoelastic distortion that results in buckling. Many 

disassembled systems have found “cone” or “potato chip” deformations out-of-plane of 

the disc. These two modes of deformation show very distinct patterns of distortion related 
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to variations in thermoelastic stress along the radial and circumferential/tangential axes. It 

is from these concepts that we modelled our disc for experimentation in variations of 

temperature distribution and system configuration parameters. 

Based on the related, proven mechanical and thermal concepts, we utilized the 

relationships between  thermal distribution and generation of moments in the radial and 

tangential directions and compared such moments with critical moments that indicate 

buckling, which allowed us to model conditions under which buckling would occur and 

experiment with various system parameters and three primary thermal distribution 

models (linear, parabolic, and power) to draw conclusions regarding the relationships of 

material and geometric configurations to indicated temperature distribution. When a 

critical moment was exceeded in either the radial or tangential direction, buckling 

occurred. Adjustments in system geometry and material properties allowed for higher 

temperature variations before the onset of buckling. In the linear temperature distribution 

case, thickness was the primary controlling factor of buckling with central radius and 

radial thickness being less sensitive in regards to buckling. In the parabolic temperature 

distribution case, central was the primary controlling factor for buckling while radial 

thickness and thickness were far less sensitive. While in the power temperature 

distribution case, both central radius and radial thickness exhibited strong control over 

buckling while thickness was much less sensitive. Overall, these results were conclusive 

and expected though some of the narrowness of windows for parameter change were 

quite small. 
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We believe that the models relayed herein are generalizable for other specific 

situations and that the approaches and findings presented show strong and recognizable 

indications of buckling conditions and how to avoid buckling. We believe that future 

endeavors that follow paths based on the theoretical models and proven mechanical and 

thermal properties upon which our conclusions were based should provide conclusive 

physical evidence of the indications shown in this work. It is our hope that the models 

and approaches detailed and discussed provide clear direction and thought regarding 

design constraints and modelling of frictional disc systems and other similarly-

conditioned thermal-mechanical systems. 
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CHAPTER 5 

Conclusions and Future Work 

5.1 Conclusions  

Several, interrelated objectives were undertaken and accomplished within this 

work. A current understanding of thermoelastic instability (TEI) and the mechanism of 

convective cooling on TEI with specific focus on the use of finite element analysis (FEA) 

was first established. This was followed by the development of a finite element model 

(FEM) for the frictionally-excited thermoelastic instability problem in intermittent sliding 

contact with finite geometries and realistic friction materials along with validating the 

model in several limiting cases using analytical solutions. This was followed by the 

establishment a current understanding of thermal buckling and its associated behavior in 

regard to rotor discs, specifically in regards to modes of failure, and the presentation of 

results and discussion of an analytical experiment with established material properties 

and thermal loadings where properties of disc geometry were varied. 

In regards to the first objective, the phenomenon of frictionally-excited 

thermoelastic instability and thermal buckling in automotive disc brakes and clutches 

were investigated both theoretically and numerically. A finite element method was 

implemented to investigate the effect of convective cooling on the stability boundaries of 

thermo- elastic instability in a couple of representative brake and clutch systems. By 
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adding a negative term representing the convective heat dissipation to the frictional heat 

generation rate, convective cooling is successfully incorporated into the finite element 

formulation. This is analogous to a system with a reduced frictional heat rate and, 

therefore, can stabilize the thermal–mechanical process. As a consequence, it has been 

found that previous analyses of TEI typically overestimated critical sliding speeds. Liquid 

cooling such as water and lubricants removes heat at a much faster rate than gases such as 

air, and therefore affect system stability more significantly. The parametric studies have 

shown that the critical speed in some cases where the water cools the system can be three 

times as high as the value without convective cooling. However, the wave number 

corresponding to the lowest critical speed is nearly independent of the convection effect. 

This implies that the dominant mode pattern at a given sliding speed remains unchanged 

as well. Further, in comparison with linear elements, quadratic elements are capable of 

accurately capturing the oscillatory patterns of temperature in the vicinity of the friction 

interface and therefore provide a better numerical accuracy with the same computational 

effort. Although using quadratic elements is not necessary for lower dimensions, it will 

potentially permit efficient solutions for problems defined in higher dimensions. 

In regards to the second objective, a finite element scheme based on the 

eigenvalue method was implemented for the analysis of thermoelastic instability in 

intermittent sliding contact with practical model parameters. A numerical algorithm was 

developed to determine critical velocities by tracking eigenmode patterns and 

corresponding growth rates. The method was validated by both analytical and numerical 

solutions in some limiting situations. It was concluded that when realistic materials and 
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geometric configurations were considered for intermittent contact, neither the strategy of 

time-averaged heat input nor the analytical solution derived from the half-plane model 

work properly. Finite element analyses revealed a bell-shaped relationship between 

dimensionless critical speed and wavelength: for longer waves the dimensionless critical 

speed approaches zero rather than unity; for shorter waves the critical speed is much 

lower than that predicted by the analytical half-plane solution. There exists a location 

where the dimensionless critical speed is the maximum. In general, the strategy of 

averaging the heat input over the entire circumference is appropriate only when the 

period of frictional contact is longer than the period of separation, and when the peak 

value of the dimensionless critical speed is our primary concern. 

In regards to the fourth objective, friction disc systems have ever been subject to 

constraints of heat dissipation and material limitations. Of particular concern is the non-

homogeneity of the temperature field inside friction discs that causes thermal stresses that 

can lead to hot spots and eventually failure due to thermoelastic distortion that results in 

buckling. Many disassembled systems have found “cone” or “potato chip” deformations 

out-of-plane of the disc. These two modes of deformation show very distinct patterns of 

distortion related to variations in thermoelastic stress along the radial and 

circumferential/tangential axes. It is from these concepts that we modelled our disc for 

experimentation in variations of temperature distribution and system configuration 

parameters. Based on the proven mechanical and thermal concepts, we utilized the 

relationships between  thermal distribution and generation of moments in the radial and 

tangential directions and compared such moments with critical moments that indicate 
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buckling, which allowed us to model conditions under which buckling would occur and 

experiment with various system parameters and three primary thermal distribution 

models (linear, parabolic, and power) to draw conclusions regarding the relationships of 

material and geometric configurations based on the given temperature distribution. When 

a critical moment of appropriate direction was exceeded in either the radial or tangential 

directions, buckling took place. Adjustments in system geometry and material properties 

allowed for higher temperature variations before the onset of buckling. In the linear 

temperature distribution case, thickness was the primary controlling factor of buckling 

with central radius and radial thickness being less sensitive in regards to buckling. In the 

parabolic temperature distribution case, the central radius does not play an important role 

until it becomes quite large. While radial thickness and thickness were more sensitive. 

While in the power temperature distribution case, both central radius and radial thickness 

exhibited strong control over buckling while thickness was much less sensitive. Overall, 

these results were conclusive and expected though some of the narrowness of windows 

for parameter change were quite small. 

In conclusion, we believe that the models and analyses relayed herein are 

generalizable for other specific situations and that the approaches and findings present 

specific evidence of the general outcomes. We also believe that future endeavors that 

follow paths based on the theoretical models and proven mechanical and thermal 

properties upon which our conclusions were based should provide conclusive evidence of 

the indications shown in this work. It is our hope that the models and approaches detailed 

and discussed provide clear direction and thought regarding design constraints and 
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modelling of frictional disc systems and other similarly-conditioned thermal-mechanical 

systems. 

5.2 Future work 

 The methods, observations, analyses, and conclusions presented within work lead 

to suggestions of expansion for future endeavors. Some of these come as direct variations 

in properties or subjects of the current work, while others are suggested by limitations 

due to assumption or structure within the current work. 

5.2.1 Experimental Verifications 

Analytical and numerical methods were used in this study on thermal buckling of 

an annular disc. The results show the possible buckling loads and modes for certain 

conditions. However, no experimental verifications were performed to verify the findings 

from this study. These experimental verifications would not only provide further support 

to the validity of this work, but potentially yield new areas for exploration or further 

caveats for modeling. 

5.2.2 Increased Model Complexity 

In the present work of thermal analysis of disc brakes and clutches, a simplified 

model of the discs without any vents has been used. In the future work, a more complex 

model with ventilated disc could be taken into consideration and thereby forced 

convection would be involved in the analysis. The linear, parabolic and power 

temperature distributions have been investigated and compared with the numerical results 

assuming linear elasticity. In the future it is suggested to investigate the elastoplastic 



119 

 

buckling performance along with more practical loading conditions and geometric 

structures. Also the effect of periodic temperature distribution along the circumference on 

the critical buckling temperature and the thermal stresses could be investigated. 

5.2.3 Material Variance 

The current work is limited to particular materials and structures with specific 

properties. More complex materials could be considered including multi-layered 

materials and composite materials. Such efforts would expand the scope of this work into 

additional domains to allow a greater understanding of buckling across materials to 

enable better material choices and designs. 

5.2.4 Additional Temperature Models 

The current work styles temperature models based on classical patterns that have 

existing research and applications from which to draw information and comparisons. 

Additional temperature models could be considered, which could include sinusoidal or 

reverse-parabolic models, among others. 

5.2.5 Dimensional Variations 

The current work investigates temperature, moments, and buckling primarily in 

the spatial domain. Future endeavors could investigate buckling with time to allow 

variations in loading with time as well as other complex effects that vary with time. 

These investigations would allow a greater understanding of the developing conditions of 

buckling along with the effects of applied physical forces that could accelerate, 

decelerate, or perturb buckling behaviors. 
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5.2.6 TEI and Buckling 

The models of TEI and buckling on cylindrical disk systems could be 

comparatively investigated to understand the influences of the two models and the 

separate and collective implications they bring. These investigations would allow a more 

unified understanding of thermal modeling and potentially lead to combinational or 

alternative models. 

 

 

 

 

 

 

 

 

 

 

 

 



121 

 

 

 

Publication 

1. Yun-Bo Yi , Ali.Bendawi , “Effect of convective cooling on frictionally excited 

thermoelastic instability “, Wear 296 pp. 583–589 (2012)  (published) 

2. Yun-Bo Yi, Ali Bendawi, Heyan Li, and Jiaxin Zhao “ Fininte element analysis of 

thermoelastic  instability in intermittent sliding contact “ , Journal of Thermal 

Stresses 37, pp. 670 – 883 (2014) (published) 

3.   Ali Bendawi, Yun-Bo Yi, Heyan Li “ Buckling of cylindrical Disk due to 

thermal stress”, International  Journal of Vehicle Engineering. (submitted) 

4. Zhuo Chen, Ali Bendawi, Yun-Bo Yi, “A reduced Fourier model for prediction of 

thermal buckling”, in preparation. 

 

 

 

 

 

 



122 

 

 

 

References 

[1] Yi, Y. B., (2001), “Thermoelastic Instability in Automotive Brakes 

and Clutches.” Ph.D. Dissertation., the University Of Michigan.  

[2] Barber, J.R., (1969), “Thermoelastic instabilities in the sliding of 

conforming solids.” Proceedings of the Royal Society of London, 

Series A 312, pp. 381–394. 

[3] Lee, K.J., Barber, J.R., (1993), “Frictionally-excited thermoelastic 

instability in automotive disk brakes”, ASME Journal of Tribology 

115:   607–614. 

[4] Afferrante, L., Ciavarella, M., Barber, J.R., (2006), 

“Thermoelastodynamic instability (TEDI): a new mechanism for 

sliding instability”, Proceedings of the Royal Society of London 

Series A 462:  2161–2176. 

[5] Du, S., Zagrodzki, P., Barber, J.R., Hulbert, G.M., (1997), “Finite 

element analysis of frictionally-excited thermoelastic instability”, 

Journal of Thermal Stresses 20:  185–201. 

[6] Zagrodzki, P., (2009), “Thermoelastic instability in friction 

clutches and brakes-transient modal analysis revealing 

mechanisms of excitation of unstable modes”, International 

Journal of Solids and Structures 46: 2463–2476. 

[7] Yi, Y. B., Barber, J.R., Zagrodzki, P., (2000), “Eigenvalue solution 

of thermoelastic instability problems using Fourier reduction”, 

Proceedings of the Royal Society of London Series A 456:  2799–

2821. 

[8] Burton, R.A., Nerlikar, V., Kilaparti, S.R., (1973), “Thermoelastic 

instability in a seal-like configuration.”   Wear 24 (1973):177–188. 

[9] Yi, Y. B., Du, S., Barber, J. R., and Fash, J. W., (1999), “Effect of 

Geometry on Thermoelastic Instability in Disk Brakes and 

Clutches”, ASME Journal of Tribology, Vol. 121, pp. 661-666. 



123 

 

[10] Hartsock, D.L.,   Fash, J.W., (2000), “Effect of pad/caliper 

stiffness, pad thickness, and pad length on thermoelastic 

instability in disk brakes”, ASME Journal of Tribology 122: 511–

518. 

[11] Lee, S.W., Jang, Y.H., (2009), “Effect of functionally graded 

material on frictionally excited thermoelastic instability”, Wear 

266:  139–146. 

[12] Decuzzi, P., Demelio, G., (2002), “The effect of material 

properties on the thermoelastic stability of sliding systems”, Wear 

252:   311–321. 

[13] Ramousse, S., Hoj, J.W., Sorensen, O.T., (2001), “Thermal 

characterisation of brake pads”, Journal of Thermal Analysis and 

Calorimetry 64: 933–943. 

[14] Choi, J.H., Han, J.H., Lee, I., (2004), “Transient analysis of 

thermoelastic contact behaviors in composite multidisk brakes”, 

Journal of Thermal Stresses 27: 1149–1167. 

[15]Anonymous, AquaMaKKs, (2011), “clutches and brakes stop 

corrosion, with new composite water jackets that allow cooling 

with salt water”, Anti-Corrosion Methods and Materials 58: 

155–155.  

[16] Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P., (2007), 

“Fundamentals of Heat and Mass Transfer”, 7th ed., John Wiley & 

Sons, Inc, Hoboken, NJ. 

[17] Zagrodzki, P.,(2009), “Effect of Newtonian Cooling on 

Frictionally-Excited Thermo- elastic Instability in Wet Friction 

Clutches and Brakes”, In: Proceedings of the 8th International 

Congress on Thermal Stresses, June 1–4, 2009, Urbana-

Champaign, USA. 

[18] Payvar, P., Laminar, (1991), “heat-transfer in the oil groove of 

a wet clutch”, International Journal of Heat and Mass Transfer 

34:   1791–1798. 

 [19] Barber, J.R., (1969), “Thermoelastic Instabilities in the Sliding 

of Conforming Solids”, Proceedings of the Royal Society of 

London Series A, vol. 312, pp. 381–394. 

[20] Afferrante, L., Ciavarella, M., and Barber, J.R., (2006), 



124 

 

“Thermoelastodynamic Instability (TEDI): A New Mechanism 

for Sliding Instability”, Proceedings of the Royal Society of 

London Series A, vol. 462, pp. 2161–2176. 

[21] Zagrodzki, P., Lam, K.B., Al-Bahkali, E., and Barber, J.R., 

(2001), “Nonlinear Transient Behavior of a Sliding System with 

Frictionally Excited Thermoelastic Instability”, ASME Journal of 

Tribology, vol. 123, pp. 699–708. 

[22] Du, S., Zagrodzki, P., Barber, J.R., and Hulbert, G.M., (1997), 

“Finite Element Analysis of Frictionally-Excited Thermoelastic 

Instability”, Journal of Thermal Stresses, vol. 20, pp. 185–201. 

[23] Zagrodzki, P., (2009), “Thermoelastic Instability in Friction 

Clutches and Brakes Transient Modal Analysis Revealing 

Mechanisms of Excitation of Unstable Modes”, International 

Journal of Solids and Structures, vol. 46, pp. 2463–2476. 

[24] Barber, J.R., Beamond, T.W., Waring, J, R., and Pritchard, C., 

(1985), “Implications of Thermoelastic Instability for the Design 

of Brakes”, ASME Journal of Tribology, vol. 107, pp. 206–210. 

[25] Hartsock, D.L., and Fash, J.W., (2000), “Effect of Pad/Caliper 

Stiffness, Pad Thickness, and Pad Length on Thermoelastic 

Instability in Disk Brakes”, ASME Journal of Tribology, vol. 122, 

pp. 511–518. 

[26] Ayala, J.R.R., Lee, K., Rahman, M., and Barber, J.R., (1996), 

“Effect of Intermittent Contact on the Stability of Thermoelastic 

Sliding Contact”, ASME Journal of Tribology, vol. 118, pp. 102–

108. 

[27] Godoy, L. A. (2000), “Theory of Elastic Stability: Analysis and 

Sensitivity”,   Taylor & Francis. 

[28] Decuzzi, P., and Demelio, G., (2002), “The Effect of Material 

Properties on the Thermoelastic Stability of Sliding Systems”, 

Wear vol. 252, pp. 311–321. 

[29] Hartsock, D. L., and Fash, J. W., (2000) “Effect of Pad/Caliper 

Stiffness, Pad Thickness, and Pad Length on Thermoelastic 

Instability in Disk Brakes”, Journal of Tribology, Vol. 122, July, 

pp. 511-518. 

[30] Yi, Y. B, (2001) “Finite Element Analysis of Frictionally Excited 



125 

 

Thermoelastic Instabilities in Automotive Brakes and Clutches”, 

Ph.D. Dissertation, University of Michigan. 

[31] Yi, Y. B, (2006), “Finite Element Analysis of 

Thermoelastodynamic Instability Involving Frictional Heating”, 

ASME Journal of Tribology, vol. 128, pp. 718–724.  

[32] Burton, R.A., Netlike, V., and Kilaparti, S.R., (1973) 

“Thermoelastic Instability in a Seal-Like Configuration”, Wear 

vol. 24, pp. 177–188. 

[33] Lee, K.J., and Barber, J.R., (1993), “Frictionally-Excited 

Thermoelastic Instability in Automotive Disk Brakes”, ASME 

Journal of Tribology, vol. 115, pp. 607–614, 1993. 

[34] Straub, H., Der Lamellenverschleiss als Lebensdauergrenze, 

VDI-Berichte, (1963) vol. 73, pp. 81-87. 

[35] Newcomb, T.P., and Spurr, R.T., (1973), “The Interaction 

Between Friction Materials and Lubricants”, Wear vol. 24, pp. 69-

76. 

[36] Zagrodzki, P., (1985), “Numerical Analysis of Temperature 

Fields and Thermal Stresses in the Friction Disks of a Multidisc 

Wet Clutch”, Wear, vol. 101, pp. 255-271. 

[37] Nadine Audebert, Barber, J.R., Zagrodzki, P., (1998), “Buckling 

Of Automatic Transmission Clutch Plates Due To Thermoelastic / 

Plastic Residual Stresses”, Thermal Stresses, 21:309-326. 

[38] Timoshenko, Stephen.P., Gere, James.M., (1961), “Theory of 

Elastic Stability” published by the Mc Graw-Hill Book Company, 

Inc. 

[39] Kao, T.K., Richmond, J.W., Douarre, A., (2000), “Brake disc hot 

spotting and thermal judder: an experimental and finite element 

study”, Int. J. of Vehicle Design, Vol. 23, No. ¾, pp. 276-296 

[40] Matysiak, S.J., Yevtushenko, A.A., and Ivanyk, E.G., (2002), 

“Contact temperature and wear of composite friction elements 

during braking”, International Journal of Heat and Mass Transfer, 

Volume 45, Issue 1, pp. 193–199 

[41] Ashby, M.F., Abulawi, J., Kong, H.S., (1991), “Temperature 

Maps for Frictional Heating in Dry Sliding”, Tribology 



126 

 

Transactions. Volume 34, Issue 4, pp.577-587.  

[42] Fan, X, and Lippmann, H., (1996), "Elastic-Plastic Buckling of 

Plates under Residual Stress", Advances in Engineering Plasticity 

and Its Applications. Proc. AEPA/ 96, 21-24 Aug., pp. 95-100.  

[43] Halderman, J. D. and Mitchell, C. D., (2000), “Automotive 

Brake Systems”, 2nd Ed. Prentice Hall Multimedia Series in 

Automotive Technology. 

[44] Yi, Y. B., Barber, J. R., and Hartsock, D. L., (2002), 

Thermoelastic instabilities in automotive disc Brakes - Finite 

element analysis and experimental verification, in J.A.C.Martins 

and Manuel D.P.Monteiro Marques eds., Contact Mechanics, 

Kluwer, Dordrecht, pp. 187-202. 

[45] Dufrénoy, P., & Weichert, D., (2003), “Thermomechanical 

model for the analysis of disc brake fracture mechanisms”, 

Journal of Thermal Stresses Volume 26, Issue 8, pp. 815-828. 

[46] Quinna, T.F.J., (1967), “The Effect of “Hot-Spot” Temperatures 

on the Unlubricated Wear of Steel”, A S L E Transactions 

Volume 10, Issue 2, pp.158-168.  

[47] Adebisi, A.A., Maleque, M.A., and Shah, Q.H., (2011), “Surface 

temperature distribution in composite brake rotor”, International 

Journal of Mechanical and Materials Engineering (IJMME), Vol.6 

(2011), No.3, pp. 356-361 

[48] Choi, J. H. and Lee I. (2004). “Finite element analysis of 

transient thermoelastic behaviors in disk brakes”. Wear, 257 (1-2), 

47-58. 

[49] Eltoukhy, M., Asfour, S., Almakky, M., and Huang, C., (2006), 

“Thermoelastic Instability in Disk Brakes: Simulation of the Heat 

Generation Problem”, Proceedings of the COMSOL Users 

Conference, Boston, USA. 

[50] Turvey, G. J. and Drinali, H., (1985), "Elastic Postbuckling of 

Circular and Annular Plates with Imperfections", Proc. 3rd Int. 

Conf. Composite Structure, Applied Science Publication. pp. 315-

335. 

[51] Singh, H., Shergill, H., (2012), “Thermal Analysis of Disc Brake 

Using Comsol”, International Journal on Emerging Technologies 



127 

 

3(1): pp.84-88. 

[52] Chen, L. W., and Hwang, J. R. (1989) “Finite Element Analysis 

of Thick Annular Plates under Internal Forces", Computers & 

Structures, Vol. 32. No. 1, pp. 63-68. 

[53] Dow, T.A., and Burton, R.A., (1972), “Thermoelastic Instability 

of Sliding Contact in the Absence of Wear”, Wear vol. 19, pp. 

315-328. 

[54] Kennedy, F.E., and Ling, F.F., (1974), “A Thermal, 

Thermoelastic and Wear Simulation of a High Energy Sliding 

Contact Problem”, ASME J. Lub. Tech., vol. 96, pp. 497-507. 

[55] Zagrodzki, P., (1990), “Analysis of Thermomechanical 

Phenomena in Multidisc Clutches and Brakes”, Wear, vol. 140, 

pp. 291-308. 

[56] Chang, J. S. and Shiao, F. J., (1990), “Thermal Buckling 

Analysis of Isotropic and Composite Plates with a Hole”, Journal 

of Thermal Stresses, Vol. 13, pp. 315- 332. 

[57] Bruno A. Boley, Jerome H. Weiner.  (1960) “Theory of Thermal 

Stresses”, by John Wiley & Sons, Inc. 

[58] Yi, Y.B., Bendawi, A., Li, H., and Zhao, J., (2014), “Finite 

Element Analysis of Thermoelastic Instability in Intermittent 

Sliding Contact”, Journal of Thermal Stresses Vol 37:pp. 870–

883. 

[59] Yi, Y.B. and Bendawi, A., (2012), “Effect of Convective 

Cooling on Frictionally Excited Thermoelastic Instability”, Wear, 

Vol. 296, pp. 583-589. 

[60]. Yi, Y.B., (2010), “Finite Element Analysis of Thermoelastic 

Damping in Contour-Mode Vibrations of Micro- and Nanoscale 

Ring, Disk, and Elliptical Plate Resonators”, ASME Journal of 

Vibration and Acoustics, Vol. 132 (4), art. 041015, pp.1-7. 

[63] Avalos, D. R. et al. ,(1995), "Transverse Vibrations and Buckling 

of Circular Plates of Discontinuously Varying Thickness subject 

to an In-plane State of Hydrostatic Stress", Ocean Engineering, 

Vol. 22, no. 1, pp. 105-110. 

[61] Azarkhin, A. and Barber, J. R., (1986), "Thermoelastic 



128 

 

Instability for the Transient Contact Problem of Two Sliding Half-

Planes", Journal of Applied Mechanics, Vol. 53, pp. 565-571. 

[62] Barber, J. R., (1984), "Thermoelastic Displacements and Stresses 

due to a Heat Source Moving over the Surface of a Half Plane", 

Journal of Applied Mechanics, Vol. 51, pp. 636-640. 

[63] Barber, J. R., (1986), "Nonuniqueness an Stability for Heat 

Conduction through a Duplex Heat Exchanger Tube", Journal of 

Thermal Stresses, Vol. 9, pp.69-78. 

[64] Barber, J. R., (1987), "Thermoelastic Distortion of the Half-

Space", Journal of Thermal Stresses, Vol. 10, pp.  221-228. 

[65] Bargmann, H. W., (1985), "Thermal Buckling of Elastic Plates", 

Journal of Thermal Stresses, Vol. 8, pp. 71-98. 

[66] Berger, E. J.,  Krousgrill, C. M.  And Sadeghi, F., (1997), 

"Stability of Sliding in a System Excited by Rough Moving 

Surface", Journal of Tribology, Vol. 119, pp. 673-680. 

[67] Bloom, F. and Goffin, D., (2001), Hand book of Thin Plate 

Buckling and Postbuckling, Chapman & Hall/CRC 

[68] Boley, B. A., (1969), “On Thermal Stresses and Deflections in 

Thin Ring", 

        International Journal of Mech. Science, Vol. 11, pp. 781-789. 

[69] Boley, B. A., and Weiner, J. H. (1960), “Theory of Thermal 

Stresses”, John Wiley and Sons, New York. 

[70] Brush, D. O., and Almroth, B. O., (1975), “Buckling of Bars, 

Plates and Shells”, McGraw Hill. 

[71] Bryan, G. H., (1891), "Buckling of Plates", Proceedings of the 

London Mathematical Society, Vol. 22, pp.54. 

[72] Chang, C. N., and Chiang, F. K., (1990), “Stability Analysis of a 

Thick Plate with Interior Cutout “, AlAA Journal, Vol. 28, no. 7, 

pp.  1285-1291. 

[73] Chang, T. P., and Chang, H. C., (1997), "Vibration and Buckling 

Analysis of Rectangular Plates with Nonlinear Elastic End 

Restraints Against Rotation", International Journal of Solid s 

Structures, Vol. 34, No. 18, pp. 2291-2301. 

[74] Cook, Robert D., Malkus, David S., and Plesha, Michael, E., 



129 

 

(1989), “Concepts and Applications of Finite Element Analysis”, 

John Eiley & Sons, Inc. 

[75] Dean, W. R., (1924), "The Elastic Stability of an Annular Plate," 

Proceedings of the Royal Society of London, England, Ser. A, 

Vol. 106, p.268. 

[76] Du, S., Zagrodzki, P., Barber, J. R., & Hulbert, G. M. (1997) 

"Finite Element Analysis of Frictionally-Excited Thermoelastic 

Instability", Journal of Thermal Stress, Vol. 20, pp.  185-201. 

[77] Du, S., and Fash, J. W. (2000) "Finite Element Analysis of 

Frictionally-Excited Thermoelastic Instability in 3D Annular 

Disk", International Journal of Vehicle Design, Vol. 23, nos. 3/4, 

pp. 203-217. 

[79] DuPay, R. K. et al., (2000), “Automotive Brake Systems”, 3rd 

Ed., Chek-Chart Publications.  Prentice Hall. 

[80] Elishakoff, I., and Tang, J., (1988), "Buckling of Polar 

Orthotropic Circular Plates on Elastic Foundation by 

Computerized Symbolic Algebra", Computer Method s in Applied 

Mechanics and Engineering, Vol. 68, pp. 229-247. 

 [82] Fuad, K., Daimaruya, M. and Kobayashi, H., (1994), 

"Temperature and Thermal Stresses in a Brake Drum Subjected to 

Cyclic Heating", Journal of Thermal Stresses, Vol. 17, pp.  515-

527. 

 

 

 

 

 

 

 

 

 



130 

 

Appendix A 

1 Example of Matlab Program  

1.1 Linear Temperature & Stress Distribution  

clc; 

format; 

alpha = 12.5e-6; % thermal expansion coefficient (should vary with temperature?) 

E = 210e3; % N/mm^2 Young’s modulus (should vary with temperature?) 

v = 0.3; % Poisson's ratio 

ra = 60; % radius of hole 

rb = 80; % maximum radius of disc 

h = 2; % thickness of chunk (mm) 

Tmin = 0; 

Tmax = 800; 

Trange = Tmax - Tmin; 

rinc = 1.0; % increments of r from ra to rb to use for calculation 

r = ra:rinc:rb; 

R = (ra+rb)/2; 

y = 0:20; 

m =(Tmax-Tmin)/(rb-ra); 

T =(m*(r-ra))+Tmin; 

intr_f = @(r) (1/6)*((-3*ra*m*r.^2)+(2*m*r.^3)+(3*r.^2*Tmin)); 

intr = intr_f(r) - intr_f(ra); 

C1 = (1-v)*alpha ./ (rb^2 - ra^2) * intr(end); 

C2 = (1+v)*alpha*ra^2 ./ (rb^2 - ra^2) * intr(end); 

stressr = -(alpha*E./r.^2).*intr + E*(C1/(1-v) - C2./((1+v)*r.^2)); 

stressphi = (alpha*E./r.^2).*intr - alpha*E*T + E*(C1/(1-v) + C2./((1+v)*r.^2)); 

% Figures 

figure(1); 

plot(y',stressr','-*'); 

title('stress vs y'); 

xlabel('y(mm)'); 

ylabel('stress'); 

hold on 

plot(y',stressphi','-'); 

legend('stress_r','stress_P_h_i'); 

figure(2); 

plot(y',stressr','-'); 

title('stress_r vs y'); 

xlabel('y(mm)'); 

ylabel('stress_r'); 

figure(3); 

plot(y',stressphi','-'); 

title('stress_p_h_i vs y'); 
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xlabel('y(mm)'); 

ylabel('stress_p_h_i'); 

figure(4); 

plot(y',T','-'); 

title('T vs y'); 

xlabel('y(mm)'); 

ylabel('T'); 

 

1.2   Relationship between actual moment and critical moments for linear 

temperature with varying central radius 

%close all; 

clear; 

clc; 

format; 

% --- Independent Variables --- 

alpha = 12.5e-6; % thermal expansion coefficient (should vary with temperature?) 

E = 210e3 ; % Young's modulus (should vary with temperature?) 

v = 0.3; % Poisson's ratio 

G = E/(2*(1+v)); % N.mm-2    

h = 3; % thickness of chunk (mm) 

a = 30; % radial thickness 

Tmin = 0; 

Tmax = 456; 

rpoints = 30; % number of points between ra and rb 

 Rrange =  80:10:140; 

%Rrange = 125; 

stressr(rpoints,length(Rrange)) = 0; 

stressphi(rpoints,length(Rrange)) = 0; 

M(length(Rrange)) = 0; 

Mcr(length(Rrange),2) = 0; 

for Ri = 1:length(Rrange) 

R = Rrange(Ri) 

ra = R - a/2; % radius of hole 

rb = R + a/2; % maximum radius of disc 

r = linspace(ra,rb,rpoints); 

y = r - R; 

m =(Tmax-Tmin)/a; 

T =(m*(r-ra))+Tmin; 

intr_f = @(r) (1/6)*((-3*ra*m*r.^2)+(2*m*r.^3)+(6*r.*Tmin)); 

intr = intr_f(r) - intr_f(ra); 

%C1 = (1-v)*alpha ./ (rb^2 - ra^2) * intr(end); 

C1 = alpha ./ (2*(1-v)*(rb^2 - ra^2)) * intr(end); 

C2 = (1+v)*alpha*ra^2 ./ (rb^2 - ra^2) * intr(end); 

stressr   = -alpha*E * (intr ./r.^2      + intr(end)/(rb^2 - ra^2) * (1 - ra^2 ./ r.^2)); 
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stressphi =  alpha*E * (intr ./ r.^2 - T + intr(end)/(rb^2 - ra^2) * (1 + ra^2 ./ r.^2)); 

qL1 = @(r) ((-(ra*m - Tmin) / 2) * r.^2 / 2 + (m / 3) * r.^3 / 3)   -   ((-(ra*m - Tmin) / 2) * 

ra^2 + (m / 3) * ra^3) * log(r); 

qL2 = @(r) m * r.^3 / 3 + (Tmin - m*ra) * r.^2 / 2; 

qL3 = @(r) (-(ra*m - Tmin) / 2) * (rb^2 - ra^2) + (m / 3) * (rb^3 - ra^3); 

QphiL_f = @(r) (alpha*E/2 * (qL1(r) - qL2(r) + (r.^2 / 2 + ra^2 * log(r)) * qL3(r) / (rb^2 

- ra^2))); 

QphiL = QphiL_f(rb) - QphiL_f(ra); 

qR1 = @(r) ((-(ra*m  - Tmin) / 2) * r + (m / 3) * r.^2 / 2)   -   ((-(ra*m  - Tmin) / 2) * ra^2 

+ (m / 3) * ra^3) * - 1 ./ r; 

qR2 = @(r) m * r.^2 / 2 + (Tmin - m*ra) * r; 

QphiR_f = @(r) alpha*E * (qR1(r) - qR2(r) + (r + ra^2 * -1 ./ r) * qL3(r) / (rb^2 - ra^2)) 

* ra ; 

QphiR = QphiR_f(rb) - QphiR_f(ra); 

M(Ri) = (QphiL-QphiR)*h 

K = (1+v) /2; 

N = 2 ; 

McrNoDimPos = (1 + K) / 2 + hypot((1-K)/2, sqrt(K)*N); 

McrNoDimNeg = (1 + K) / 2 - hypot((1-K)/2, sqrt(K)*N); 

Mcr(Ri,1) = McrNoDimPos*G*a*h^3/(3*R); 

Mcr(Ri,2) = McrNoDimNeg*G*a*h^3/(3*R) 

end 

% Figures 

figure(1001); 

plot(Rrange',Mcr,'s-'); % comment out for combined 

hold on; 

plot(Rrange',M','k'); 

title('Moment vs Critical Moment'); 

xlabel('Center Radius (mm)'); 

ylabel('Moment (N.mm) '); 

%legend('Critical Moment (+)','Critical Moment (-)','Moment (r)','Moment (phi)'); % 

uncomment for combined 

legend('Critical Moment (+)','Critical Moment (-)','Moment (phi)at T= '); % comment out 

for combined 

 

1.3 Parabolic Temperature Distribution & Stress Distribution 

close all; 

clear; 

clc; 

format; 

alpha = 12.5E-6; % thermal expansion coefficient (should vary with temperature?) 

E = 210E3; % Young's modulus (should vary with temperature?) 

v = 0.3; % Poisson's ratio 

ra = 60; % radius of hole 
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rb = 80; % maximum radius of disc 

rinc = 1.0; % increments of r from ra to rb to use for calculation 

h = 1; % thickness of chunk (mm) 

Tmax = 1000; 

r = ra:rinc:rb; 

R = (ra+rb)/2; 

thickness = rb - ra; 

%y = r - R; 

y = 0:20 

a = rb-ra; 

T = Tmax - (r - R).^2 * (Tmax / (a/2)^2); 

Q = Tmax / (thickness/2)^2; 

%intr_f = @(r) -Q*r.^4/4 + 2*Q*R*r.^3/3 + (Tmax - Q*R^2)*r.^2/2; 

intr_f = @(r) 1/12*(-3*Q*r.^4 +8*r.^3*Q*R -6*r.^2*Q*R^2 +6*r.^2*Tmax); 

intr = intr_f(r) - intr_f(ra); 

C1 = alpha ./ (2*(1-v)*(rb^2 - ra^2)) * intr(end); 

C2 = (1+v)*alpha*ra^2 ./ (rb^2 - ra^2) * intr(end); 

stressr = -(alpha*E./r.^2).*intr + E*(C1/(1-v) - C2./((1+v)*r.^2)); 

stressphi = (alpha*E./r.^2).*intr - alpha*E*T + E*(C1/(1-v) + C2./((1+v)*r.^2)); 

% Figures 

figure(1); 

plot(y',stressr','-*'); 

title('stress vs y'); 

xlabel('y(mm)'); 

ylabel('stress'); 

hold on 

plot(y',stressphi','-'); 

legend('stress_r','stress_P_h_i'); 

figure(2); 

plot(y',stressr','-'); 

title('stress_r vs y'); 

xlabel('y'); 

ylabel('stress_r'); 

figure(3); 

plot(y',stressphi','-'); 

title('stress_p_h_i vs y'); 

xlabel('y'); 

ylabel('stress_p_h_i'); 

figure(4); 

plot(y',T','-'); 

title('T vs y'); 

xlabel('y (mm)'); 

ylabel('T'); 
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1.4 Relationship between actual moment and critical moments for parabolic 

temperature distribution with varying central radius 

% close all; 

Clear ; 

clc; 

format; 

alpha = 12.5e-6; % thermal expansion coefficient (should vary with temperature?) 

E = 210e3; % Young's modulus (should vary with temperature?) 

v = 0.3; % Poisson's ratio 

G = E/(2*(1+v)); % GPa 

h = 1 ; % thickness of chunk (mm) 

a = 20; % radial thickness  

Tmax = 630; 

rpoints = 30; % number of points between ra and rb 

Rrange = 40:10:160; 

stressr(rpoints,length(Rrange)) = 0; 

stressphi(rpoints,length(Rrange)) = 0; 

M(length(Rrange)) = 0; 

Mcr(length(Rrange),2) = 0; 

for Ri = 1:length(Rrange) 

R = Rrange(Ri) 

ra = R - a/2; % radius of hole 

rb = R + a/2; % maximum radius of disc 

r = linspace(ra,rb,rpoints); 

y = r - R; 

A=((rb-ra)/2)^2; 

Q = Tmax/A; 

T = Tmax - (r - R).^2 * Q; 

intr_f = @(r) (1/12)*(8*Q*R*r.^3 -3*Q*r.^4 -6*R^2*r.^2*Q +6*r.^2 *Tmax); 

intr = intr_f(r) - intr_f(ra); 

C1 = alpha ./ (2*(1-v)*(rb^2 - ra^2)) * intr(end); 

C2 = -(1+v)*alpha*ra^2 ./ (ra^2 - rb^2) * intr(end); 

stressr = -(alpha*E./r.^2).*intr + E*(C1/(1-v) - C2./((1+v)*r.^2)); 

stressphi = (alpha*E./r.^2).*intr - alpha*E*T + E*(C1/(1-v) + C2./((1+v)*r.^2));   

L1=alpha*E/12*(ra^2*log(rb/ra)*(3*ra^2*Q-8*ra*Q*R+6*Q*R^2-6*Tmax) + 

Q/12*(32*rb^3*R-32*ra^3*R-9*rb^4+9*ra^4-

36*R^2*rb^2+36*R^2*ra^2)+3*Tmax*(rb^2-ra^2)); 

L2=alpha*E/12*(Q*(3*ra^4-3*rb^4+8*rb^3*R-8*ra^3*R-

6*rb^2*R^2+6*ra^2*R^2)+6*Tmax*(rb^2-ra^2)); 

L3=E*C1/(2*(1-v))*(rb^2-ra^2); 

L4=E*C2/(1+v)*log(rb/ra); 

LL=L1-L2+L3+L4; 
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W1=alpha*E*ra/12*(ra^2/rb*(8*ra*Q*R-3*ra^2*Q+6*Tmax-6*Q*R^2)+4*ra^3*Q-

12*ra^2*Q*R+12*ra*Q*R^2-12*ra*Tmax+6*rb*Tmax-Q*rb^3+4*Q*rb^2*R -

6*Q*R^2*rb );  

W2=alpha*E*ra /3*((ra-rb)*(ra^2*Q +ra*Q*(rb-3*R) +Q*rb^2 -3*rb*R*Q +3*Q*R^2-

3*Tmax));   

W3=(E*C1*ra)/(1-v)*(rb-ra); 

W4=(E*C2)/(v+1)*(1-(ra/rb)); 

WW=W1-W2+W3+W4; 

M(Ri) = (h*(LL - WW)) 

K = (1+v) / 2; 

N = 2; 

McrNoDimPos = (1 + K) / 2 + hypot((1-K)/2, sqrt(K)*N); 

McrNoDimNeg = (1 + K) / 2 - hypot((1-K)/2, sqrt(K)*N); 

Mcr(Ri,1) = McrNoDimPos*G*a*h^3/(3*R); 

Mcr(Ri,2) = McrNoDimNeg*G*a*h^3/(3*R) 

end 

figure(1003); 

plot(Rrange',Mcr,'s-'); % comment out for combined 

hold on; 

plot(Rrange',M','r'); 

title(''); 

xlabel('Center Radius (mm)'); 

ylabel('Moment (N.mm)'); 

%legend('Critical Moment (+)','Critical Moment (-)','Moment (r)','Moment (phi)'); % 

uncomment for combined 

legend('Critical Moment (+)','Critical Moment (-)','Moment (phi)'); % comment out for 

combined 

 

1.5 Power Temperature Distribution & Stress Distribution 

%close all; 

clear; 

clc; 

format; 

% --- Independent Variables --- 

alpha = 12.5e-6; % thermal expansion coefficient (should vary with temperature?) 

E = 210e3; % Young's modulus (should vary with temperature?) 

v = 0.3; % Poisson's ratio 

G = E/(2*(1+v)); % N.mm-2  

h = 2; % thickness of chunk (mm) 

a = 20; % radial thickness 

rinc = 1.0; % increments of r from ra to rb to use for calculation  

Tmax =    1000;  

rpoints = 30; % number of points between ra and rb 

R =70; 
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ra =60; % radius of hole 

rb =80; % maximum radius of disc 

r = ra:rinc:rb; 

y =0:20; 

B=(rb-ra)^4; 

T = (r-ra).^4/B * Tmax ; 

intTrdr_f = @(r)   (Tmax/(30*B))*(15*r.^2*ra^4 -40*ra^3*r.^3 +45*ra^2*r.^4 -

24*ra*r.^5 +5*r.^6); 

intTrdr = intTrdr_f(r) - intTrdr_f(ra); 

C1 = alpha ./(2*(1-v)*(rb^2 - ra^2)) * intTrdr(end); 

C2 = (1+v)*alpha*ra^2 ./ (rb^2 - ra^2) * intTrdr(end); 

stressr  = -(alpha*E./r.^2).*intTrdr + E*(C1/(1-v) - C2./((1+v)*r.^2)); 

stressphi = (alpha*E./r.^2).*intTrdr - alpha*E*T + E*(C1/(1-v) + C2./((1+v)*r.^2));   

figure(1); 

plot(y',stressr','-*'); 

title('stress vs y'); 

xlabel('y(mm)'); 

ylabel('stress'); 

hold on 

plot(y',stressphi','-'); 

legend('stress_r','stress_P_h_i'); 

figure(2); 

plot(y',stressr','-'); 

title('stress_r vs y'); 

xlabel('y'); 

ylabel('stress_r'); 

figure(3); 

plot(y',stressphi','-'); 

title('stress_p_h_i vs y'); 

xlabel('y'); 

ylabel('stress_p_h_i'); 

figure(4); 

plot(y',T','-'); 

title('T vs y'); 

xlabel('y (mm)'); 

ylabel('T'); 

1.6  Relationship between actual moment and critical moments for Power 

temperature distribution with varying central radius 

%close all; 

clear; 

clc; 

format; 

alpha = 12.5e-6; % thermal expansion coefficient (should vary with temperature?) 

E = 210e3; % Young's modulus (should vary with temperature?) 
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v = 0.3; % Poisson's ratio 

G = E/(2*(1+v)); % N.mm-2 

h = 2; % thickness of chunk (mm) 

a = 20; % radial thickness  

Tmax =    318;  

rpoints = 30; % number of points between ra and rb 

Rrange = 90:10:140; 

stressr(rpoints,length(Rrange)) = 0; 

stressphi(rpoints,length(Rrange)) = 0; 

M(length(Rrange)) = 0; 

Mcr(length(Rrange),2) = 0; 

for Ri = 1:length(Rrange) 

R  = Rrange(Ri) 

ra = R - a/2; % radius of hole 

rb = R + a/2; % maximum radius of disc 

r = linspace(ra,rb,rpoints) ; 

y = r - R; 

B=(rb-ra)^4; 

T = (r-ra).^4/B * Tmax ; 

intTrdr_f = @(r)   (Tmax/(30*B))*(15*r.^2*ra^4 -40*ra^3*r.^3 +45*ra^2*r.^4 -

24*ra*r.^5 +5*r.^6); 

intTrdr = intTrdr_f(r) - intTrdr_f(ra); 

C1 = alpha ./(2*(1-v)*(rb^2 - ra^2)) * intTrdr(end); 

C2 = (1+v)*alpha*ra^2 ./ (rb^2 - ra^2) * intTrdr(end); 

stressr(:,Ri)   = -(alpha*E./r.^2).*intTrdr + E*(C1/(1-v) - C2./((1+v)*r.^2)); 

stressphi(:,Ri) = (alpha*E./r.^2).*intTrdr - alpha*E*T + E*(C1/(1-v) + C2./((1+v)*r.^2)); 

L1=alpha*E*Tmax/(950*B)*(60*ra^6*log(ra/rb) +450*ra^4*rb^2 -800*ra^3*rb^3 

+675*ra^2*rb^4 -288*ra*rb^5 +50*rb^6 -87*ra^6);  

L2=alpha*E*Tmax/(30*B)*(15*rb^2*ra^4 -40*rb^3*ra^3 +45*ra^2*rb^4 -24*ra*rb^5 

+5*rb^6-ra^6); 

L3=E*C1/(2*(1-v))*(rb^2-ra^2); 

L4=E*C2/(1+v)*log(rb/ra); 

LL=L1-L2+L3+L4; 

W1=alpha*E*ra*Tmax/(30*B)*((ra^6/rb) +15*ra^4*rb -20*ra^3*rb^2 +15*ra^2*rb^3 -

6*ra*rb^4 +rb^5 6*ra^5); 

W2=alpha*E*ra*Tmax/(5*B)* (rb-ra)^5; 

W3=(E*C1*ra)/(1-v)*(rb-ra); 

W4=(E*C2)/(v+1)*(1-(ra/rb));  

WW=(W1-W2+W3+W4);  

M(Ri) = h*(LL - WW) 

K = (1+v) / 2; 

N = 2; 

McrNoDimPos = (1 + K) / 2 + hypot((1-K)/2, sqrt(K)*N); 

McrNoDimNeg = (1 + K) / 2 - hypot((1-K)/2, sqrt(K)*N); 
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Mcr(Ri,1) = McrNoDimPos*G*a*h^3/(3*R); 

Mcr(Ri,2) = McrNoDimNeg*G*a*h^3/(3*R)  

end 

figure(1001); 

plot(Rrange',Mcr,'s-'); % comment out for combined 

hold on; 

plot(Rrange',M','r'); 

title(''); 

xlabel('Radius (mm)'); 

ylabel('Moment (N.mm) '); 

legend('Critical Moment (+)','Critical Moment (-)','Moment (phi)'); % comment out for 

combined 
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Appendix B 

2. Examples of Abaqus INP File 

2.1 Linear temperature distribution at center radius change 

*Heading 

** Job name: R60 Model name: Model-1 

** Generated by: Abaqus/CAE 6.13-1 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Part-1 

*Node 

      1,          45.,           0.,           0. 

      2,          45.,           0.,           3. 

      3,         -45.,           0.,           3. 

      4,         -45.,           0.,           0. 

      5,          75.,           0.,           3. 

      6,         -75.,           0.,           3. 

      7,         -75.,           0.,           0. 

      8,          75.,           0.,           0. 

      9,   44.9440613,   2.24306488,           3. 

      10,   44.7763863,   4.48055315,           3. 

      11,   44.4973869,   6.70690203,           3. 

      12,   44.1077614,   8.91657639,           3. 

      13,   43.6084785,   11.1040831,           3. 

      14,   43.0007744,   13.2639828,           3. 

      15,   42.2861671,   15.3909063,           3. 

    ~ ~ ~ 

      2765,  -66.3462906,  -27.9673061,           0. 

      2766,  -67.6578674,  -24.6254501,           0. 

      2767,   -68.801239,  -21.2223721,           0. 

      2768,  -69.7735672,  -17.7665329,           0. 

      2769,  -70.5724182,  -14.2665224,           0. 

      2770,   -71.195816,  -10.7310429,           0. 

*Element, type=C3D8I 

      1,  274,  284, 1099,  541,    1,    2,    9,  132 

      2,  541, 1099, 1100,  542,  132,    9,   10,  131 

      3,  542, 1100, 1101,  543,  131,   10,   11,  130 

      4,  543, 1101, 1102,  544,  130,   11,   12,  129 

      5,  544, 1102, 1103,  545,  129,   12,   13,  128 

      6,  545, 1103, 1104,  546,  128,   13,   14,  127 
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     7,  546, 1104, 1105,  547,  127,   14,   15,  126 

     8,  547, 1105, 1106,  548,  126,   15,   16,  125 

~~~~ 

    1258,  538,  419,  418,  539, 2212, 2770, 2771, 2213 

    1259,  539,  418,  417,  540, 2213, 2771, 2772, 2214 

    1260,  540,  417,    7,    6, 2214, 2772,  265,  275 

*Nset, nset=Set-1, generate 

    1,  2772,     1 

*Elset, elset=Set-1, generate 

    1,  1260,     1 

** Section: Section-1 

*Solid Section, elset=Set-1, material=Steel 

*End Part 

**   

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name=Part-1-1, part=Part-1 

*End Instance 

 

2.2 Parabolic temperature distribution at sliding length change 

*Heading 

** Job name: A10 Model name: Model-1 

** Generated by: Abaqus/CAE 6.13-1 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Part-1 

*Node 

      1,          95.,           0.,           0. 

      2,          95.,           0.,          0.5 

      3,         -95.,           0.,          0.5 

      4,         -95.,           0.,           0. 

      5,         105.,           0.,          0.5 

      6,        -105.,           0.,          0.5 

      7,        -105.,           0.,           0. 

      8,         105.,           0.,           0. 

      9,   94.9566574,   2.86928773,          0.5 

     10,   94.8266754,   5.73595715,          0.5 

*Element, type=C3D8I 

     1,  424,  427, 1047,  841,    1,    2,    9,  214 
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    2,  841, 1047, 1048,  842,  214,    9,   10,  213 

    3,  842, 1048, 1049,  843,  213,   10,   11,  212 

    4,  843, 1049, 1050,  844,  212,   11,   12,  211 

    5,  844, 1050, 1051,  845,  211,   12,   13,  210 

    6,  845, 1051, 1052,  846,  210,   13,   14,  209 

    7,  846, 1052, 1053,  847,  209,   14,   15,  208 

*Nset, nset=Set-1, generate 

    1,  1664,     1 

*Elset, elset=Set-1, generate 

    1,  624,    1 

** Section: Section-1 

*Solid Section, elset=Set-1, material=STEEL 

*End Part 

**   

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name=Part-1-1, part=Part-1 

*End Instance 

**   

*Nset, nset=Set-1, instance=Part-1-1 

     2,    3,    5,    6,    9,   10,   11,   12,   13,   14,   15,   16,   17,   18,   19,   20 

     21,   22,   23,   24,   25,   26,   27,   28,   29,   30,   31,   32,   33,   34,   35,   36 

     37,   38,   39,   40,   41,   42,   43,   44,   45,   46,   47,   48,   49,   50,   51,   52 

*Elset, elset=Set-1, instance=Part-1-1, generate 

     1,  624,    1 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=STEEL 

*Conductivity 

   43., 

*Elastic 

    210000., 0.3 

*Expansion 

    1.25e-05, 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=NO, perturbation 
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*Buckle 

    6, , 12, 90 

**  

** PREDEFINED FIELDS 

**  

** Name: Predefined Field-1   Type: Temperature Using Field: AnalyticalField-1 

*Temperature 

Part-1-1.2, 0. 

Part-1-1.3, 0. 

Part-1-1.5, 0. 

Part-1-1.6, 0. 

Part-1-1.9, -0.000845284 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, variable=PRESELECT 

*End Step 

 

2.3 Power temperature distribution at main center change 

*Heading 

** Job name: R80 Model name: Model-1 

** Generated by: Abaqus/CAE 6.13-1 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** 

** PARTS 

** 

*Part, name=Part-1 

*Node 

      1,          70.,           0.,           0. 

      2,          70.,           0.,           2. 

      3,         -70.,           0.,           2. 

      4,         -70.,           0.,           0. 

      5,          90.,           0.,           2. 

*Element, type=C3D8I 

  1,  348,  355, 1181,  689,    1,    2,    9,  172 

  2,  689, 1181, 1182,  690,  172,    9,   10,  171 

  3,  690, 1182, 1183,  691,  171,   10,   11,  170 

*Nset, nset=Set-1, generate 

    1,  2656,     1 

*Elset, elset=Set-1, generate 
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** Section: Section-1 

*Solid Section, elset=Set-1, material=STEEL 

*End Part 

**   

** 

** ASSEMBLY 

** 

*Assembly, name=Assembly 

**   

*Instance, name=Part-1-1, part=Part-1 

*End Instance 

**   

*Nset, nset=Set-1, instance=Part-1-1 

    2,    3,    5,    6,    9,   10,   11,   12,   13,   14,   15,   16,   17,   18,   19,   20 

    21,   22,   23,   24,   25,   26,   27,   28,   29,   30,   31,   32,   33,   34,   35,   36 

    37,   38,   39,   40,   41,   42,   43,   44,   45,   46,   47,   48,   49,   50,   51,   52 

*Elset, elset=Set-1, instance=Part-1-1, generate 

    1,  1162,     1 

*End Assembly 

**  

** MATERIALS 

**  

*Material, name=STEEL 

*Conductivity 

   43., 

*Elastic 

   210000., 0.3 

*Expansion 

   1.25e-05, 

** ---------------------------------------------------------------- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=NO, perturbation 

*Buckle 

   6, , 12, 60 

**  

** PREDEFINED FIELDS 

**  

** Name: Predefined Field-1   Type: Temperature Using Field: AnalyticalField-1 

*Temperature 

Part-1-1.2, 0. 

Part-1-1.3, 0. 

Part-1-1.5, 1000. 
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Part-1-1.6, 1000. 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, frequency=0 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, variable=PRESELECT 

*End Step 
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