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On Thermal Aging Prevention in Polymer Core Composite Conductor Rods

Abstract

Increased energy usage in the United States and worldwide is driving the demand for new technologies to
transmit electrical power in greater quantities and with reliable, safe, and more efficient methods. One
recent innovation is to replace the standard Aluminum Conductor Steel Reinforced electrical transmission
conductor with a new conductor design that utilizes a fiber reinforced polymer core rod to support a fully
annealed aluminum conductor. This new technology that includes a hybrid carbon fiber/epoxy and glass
fiber/epoxy support core allows for better efficiency and for greater current to be transmitted in the same
size and weight line. These new conductor lines are part of a new class of conductors called High
Temperature Low Sag (HTLS) for their ability to transmit more current while still providing appropriate
ground clearance over vegetation. However, long-term exposure to high temperatures can diminish the
flexural properties of the hybrid composite core rods.

This dissertation contributes unique and innovative multiscale approaches to understand and reduce the
impact of thermal aging on the core rods. The research demonstrates that the source of flexural failure in
the rods moves from predominantly physical aging to predominantly chemical aging as a function of time
and temperature, a brand new explanation that is validated both experimentally and numerically. Further,
for the first time, it is shown that coating the rods with a barrier that may delay thermal oxidation is an
effective method of reducing and delaying chemical aging and therefore can be a practical method for
increasing their service life. It also finds that while the detrimental impact of physical aging escalates with
increasing temperature as expected, the effect of chemical aging is in fact mitigated by moving from
aging at 180 °C to 200 °C. In addition, the dissertation evaluates the benefit of increasing radiative cooling
on the operating temperature of the conductor in order to find a method of transmitting the same current
while reducing the thermal aging. Lastly, the impact of incorporating nanoparticles into the epoxy matrix
is assessed to identify an additional method of retarding thermal aging.

Thus, instead of simply identifying and explaining problems, this research goes a step further and offers a
comprehensive approach to preventing thermal aging of the conductors and other structures utilizing
polymer matrix composites. It offers significant advances in the use of nanotechnology to reduce aging
of polymer composites; it identifies a coating to reduce the impact of chemical aging; and it suggests a
radiative cooling as an important approach to reduce both physical and chemical aging in the rods. All of
these tactics are evaluated both experimentally and numerically in this work. Most importantly, this
research advances the understanding and improves the performance of polymer core HTLS conductors
along with other polymer composites subjected to high temperatures. With the improvement and
adoption of the techniques presented, confidence in the safety and endurance of the novel conductor is
increasing its implementation in this country and around the world.
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ABSTRACT

Increased energy usage in the United States and worldwide is driving the demand
for new technologies to transmit electrical power in greater quantities and with reliable,
safe, and more efficient methods. One recent innovation is to replace the standard
Aluminum Conductor Steel Reinforced electrical transmission conductor with a new
conductor design that utilizes a fiber reinforced polymer core rod to support a fully
annealed aluminum conductor. This new technology that includes a hybrid carbon
fiber/epoxy and glass fiber/epoxy support core allows for better efficiency and for greater
current to be transmitted in the same size and weight line. These new conductor lines are
part of a new class of conductors called High Temperature Low Sag (HTLS) for their
ability to transmit more current while still providing appropriate ground clearance over
vegetation. However, long-term exposure to high temperatures can diminish the flexural
properties of the hybrid composite core rods.

This dissertation contributes unique and innovative multiscale approaches to
understand and reduce the impact of thermal aging on the core rods. The research
demonstrates that the source of flexural failure in the rods moves from predominantly
physical aging to predominantly chemical aging as a function of time and temperature, a
brand new explanation that is validated both experimentally and numerically. Further, for
the first time, it is shown that coating the rods with a barrier that may delay thermal



oxidation is an effective method of reducing and delaying chemical aging and therefore
can be a practical method for increasing their service life. It also finds that while the
detrimental impact of physical aging escalates with increasing temperature as expected,
the effect of chemical aging is in fact mitigated by moving from aging at 180 °C to 200
°C. In addition, the dissertation evaluates the benefit of increasing radiative cooling on
the operating temperature of the conductor in order to find a method of transmitting the
same current while reducing the thermal aging. Lastly, the impact of incorporating
nanoparticles into the epoxy matrix is assessed to identify an additional method of
retarding thermal aging.

Thus, instead of simply identifying and explaining problems, this research goes a
step further and offers a comprehensive approach to preventing thermal aging of the
conductors and other structures utilizing polymer matrix composites. It offers significant
advances in the use of nanotechnology to reduce aging of polymer composites; it
identifies a coating to reduce the impact of chemical aging; and it suggests a radiative
cooling as an important approach to reduce both physical and chemical aging in the rods.
All of these tactics are evaluated both experimentally and numerically in this work. Most
importantly, this research advances the understanding and improves the performance of
polymer core HTLS conductors along with other polymer composites subjected to high
temperatures. With the improvement and adoption of the techniques presented,
confidence in the safety and endurance of the novel conductor is increasing its

implementation in this country and around the world.
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CHAPTER 1 INTRODUCTION

New High Temperature Low Sag Conductors (HTLS) offer several benefits over
standard Aluminum Conductor Steel Reinforced (ACSR) electrical transmission lines
[1,2]. First, HTLS conductors have a stronger and lighter core which can fully support
the line and can therefore use a lower mechanical strength annealed aluminum as the
conductive material. Fully annealed aluminum has lower resistance than the aluminum
used in ACSR lines and thus transmits power with lower line losses. Secondly, HTLS
conductors are capable of running at higher temperatures, allowing more power to be run
through the same diameter lines, reducing the need to add additional or stronger towers.
The low sag nature of the lines allows the lines to be run at high temperatures while still
maintaining required ground and vegetation clearance which is now a federal requirement
in the United States.

There are several types of HTLS conductors. Some examples are Polymer Core
Composite Conductors (PCCC) which use Polymer Matrix Composite (PMC) core rods
and Aluminum Conductor Composite Reinforced (ACCR) which use Metal Matrix
Composite (MMC) strands based on alumina fibers in an aluminum matrix as the core.
One manufacturer of PCCC conductors is CTC Global which offers the Aluminum
Conductor Composite Core (ACCC®) conductor. This conductor has a hybrid core with

a unidirectional carbon fiber epoxy composite inner core for strength surrounded by a



unidirectional glass fiber epoxy composite that serves as a galvanic reaction barrier (see
Figure 1-1). The carbon fiber volume fraction is 69% and the glass fiber volume fraction
is 64% [3]. Because of the prior mentioned advantages, the manufacturer states that 2-3x
the amount of power can be transmitted in the same size and weight line. In order to
reach this level of transmission, however, the conductor must be run at a high
temperature. The manufacturer has indicated that the conductor can be run at up to 180

°C for long periods of time [1].

Aluminum Conductor

Glass Fiber
Epoxy
Composite

Carbon Fiber
Epoxy Composite

Figure 1-1. Aluminum Conductor Composite Core
(ACCC®)
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Figure 1-2. Flexure Load at Failure and

Flexural Modulus of uncoated rods aged at
180 °C in air. Data courtesy of Burks et al [4].

Barjasteh et al [3] found that while there was surface oxidation present in the
ACCC rods after thermal aging, tensile strength was little affected by aging at 180 °C or
200 °C for up to one year. However, Burks et al [4] found that there was a significant
reduction in flexural strength and flexural modulus of the same ACCC rods due to
thermal aging in air at 180 °C for one year (see Figure 1-2). Burks et al [4] found a
significant reduction in fatigue properties. Decreases of 20 - 30% in the number of cycles
to failure for high cycle fatigue after 6 months of 180 °C exposure were attributed to
surface oxidation; reductions of about 90% after 12 months of 180 °C exposure were
attributed to physical aging leading to fiber matrix interface degradation.

Recently Middleton et al [5] showed that there were no reductions in mechanical

properties of the rods due to exposure to high concentrations of ozone at both room

3



temperature and at 140 °C. In a different study, Middleton et al [6] used a finite element
model to demonstrate that residual stresses from physical aging in the hybrid composite
core increase significantly with extended thermal aging at temperatures of 180 °C and
above. In this same paper, Middleton et al indicated that experimental results showed
there was no significant reduction of flexural strength or modulus after 12 months of
aging at 140 °C. They also found that the composite rods experience postcure when first
exposed to high temperatures. The rods are manufactured in a pultrusion process which
limits the amount of time for the curing cycle. Thus for the first 3 months of aging at 180
°C, there would be a postcure process and the stiffness of the rods would increase [6,7].
After curing of a thermoset such as epoxy, the polymer is not in a state of
equilibrium; instead there is additional free volume caused by random orientations of the
polymer chains locked in during the cooldown after curing. Over time, the chains realign,
relaxing the polymer to a lower energy state, reducing free volume, and producing
volumetric shrinkage [8,9]. Below the glass transition temperature (Tg), an activation
energy is needed to allow for this reorientation of the polymer chains and higher
temperatures lead to a faster reduction in free volume. This phenomenon is called
physical aging and is better described by Odegard et al [8] and Struik [9]. Physical aging
does not lead to chemical changes or breaking of bonds in the polymer chain. On the
other hand chemical aging through oxidation does lead to chain scission through the
breaking of covalent chemical bonds [10]. Chemical aging also requires an activation

energy to begin the process and higher temperatures lead to more diffusion of oxygen



into the matrix. As noted in [3] and [4] significant surface damage to the ACCC rods is
caused by chemical oxidation.

This dissertation explores several method of reducing the impact of thermal aging
on PCCCs. To reduce the chemical aging or surface damage, a proprietary fluorinated
ethylene propylene (FEP) based coating was applied to the surface. The beneficial impact
of having such a barrier is discussed in Chapter 2. In Chapter 3, the effects of aging at
200 °C are compared to those from aging at 180 °C and a surprising result is reported
about the impact of higher temperatures on thermal oxidation.

Thermal aging can also be controlled by limiting the operating temperature of the
conductor. Simply reducing the transmitted current load would achieve this result, but
that would erase one of the benefits of these new modern conductors. Chapter 4 explores
a different alternative: applying a surface coating to the entire conductor to improve its
radiative cooling.

Another approach to reducing thermal aging is through the incorporation of
nanoparticles into the epoxy matrix to reduce the rate of physical aging that occurs in the
matrix. There have been many studies of the impact of various types of nanoparticles on
the thermal and mechanical properties of assorted epoxy resins. Chapter 5 is a detailed
review of the results of these studies. Due to the numerous types of nanoparticles,
differences within a class of nanoparticles such as size or porosity, assorted dispersion
approaches, concentration levels, and other factors, the results examined in this review

were not always consistent. Additionally, not many studies deal with high temperature



cycloaliphatic epoxies that are used in ACCC conductors and other types of high
temperature and high voltage applications.

Based on generalizations derived from the literature review, three specific
nanoparticles were determined to be the best candidates for achieving a reduction in
physical aging while still preserving important mechanical properties that are critical for
the use of the epoxy matrix in a high temperature low sag conductor. The three selected
nanoparticles were silica, graphene, and carbon black. The results of incorporating these
three types of nanoparticles are presented in Chapter 6.

Chapter 7 explores the use of quantum chemistry utilizing ab initio models to
understand the interaction between the epoxy, the curing agent, and nanoparticles.
Specifically, this chapter discussed the potential of bonding reactions occurring between
graphene nanoparticles, a cycloaliphatic epoxy, and the nadic methyl anhydride (NMA)

hardener.



CHAPTER 2 EFFECT OF A SURFACE COATING ON FLEXURAL
PERFORMANCE OF THERMALLY AGED HYBRID GLASS/CARBON
EPOXY COMPOSITE RODS
2.1 Introduction

Polymer Core Composite Conductors (PCCCs) are subjected in-service to thermal
aging which in some cases can be severe. To reduce aging a proprietary fluorinated
ethylene propylene (FEP) based surface coating was applied to a hybrid glass/carbon
epoxy composite rod used in Aluminum Core Composite Conductors (ACCC®), one
type of PCCC. The rods were aged in air at 180 °C for up to 12 months. Surface damage
was evaluated using optical and scanning electron microscopes and compared to
uncoated rods previously subjected to the same conditions. Subsequently the rods were
tested under four point bending to determine their flexural performances as a function of
aging time. It was found that the uncoated rods lost significantly more flexural stiffness
and strength than the coated rods. To explain the experimental mechanical results a Finite
Elements Modeling (FEM) analysis was performed. A new hypothesis is offered to
explain the strongly beneficial effect of the coating in maintaining mechanical properties
after thermal aging. Thus it appears that FEP or other coatings could be used to
significantly reduce thermal aging of glass/carbon epoxy composites and in particular

extend the life of PCCCs in service.



2.2 Experimental and Numerical Procedures
2.2.1 Materials
ACCC rods were received from Western Area Power Administration (WAPA) in
approximately five foot sections with the aluminum conductor still in place. Core rods
were carefully removed and cleaned with acetone before being sent to a company with

coating expertise, E.L.

Stone. E.L. Stone lightly

Glass Fiber
. Epoxy Region

sandblasted the rods and
coated them with a

proprietary Fluorinated

; > Carbon Fiber
[ Epoxy Region

Ethylene Propylene G O

Figure 2-1. FEP Coated (left) and Uncoated (right) ACCC
composite rods.

(FEP) epoxy coating (see
Figure 2-1). The uncoated rods have an outer diameter of 9.53 mm with the carbon fiber
composite section having a diameter of approximately 6.80mm. The coating was
approximately 25 microns thick. No visible damage to the fibers was evident on the
surface of the rods (see Figure 2-2), even under 100x magnification.

The ends of the rods were capped with a high temperature RTV sealant to
prevent longitudinal oxidation. The rods were then aged in an Econotherm Laboratory
Oven at 180 °C in atmospheric conditions for 3, 6, 9 and 12 months. Ramping up to
aging temperature and down from the aging temperature was done at 5 °C per minute to

avoid thermal shock.



Figure 2-2. 100x optical image of the surface of the
unaged coated rods, showing no damage to glass
fibers.

2.2.2 Testing conditions
The rods were tested in a four-point bend test fixture custom built by Burks et al

[4] inan MTS 858 test frame

(see Figure 2-3). The bottom

support pins were 203 mm apart

and the load pins were 102 mm

apart. The cross head was

lowered at a constant rate of 3

e

mm per minute. The center Figure 2-3. Four-point bend test apparatus.

point vertical displacement was measured by a linear variable displacement transducer
(LVDT), along with instrument readings of crosshead displacement and load. Readings
were taken at 20 Hz. The rods were wrapped with Teflon tape at contact points to avoid
transverse crushing, following the recommendation given in [4].
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Examinations of the rods were performed with an Olympus BX51M optical

microscope as well as by a Jeol LSM-5800LV Scanning Electron Microscope (SEM).

2.2.3 Modeling

Finite Elements
Modeling of the hybrid
composite rods was
performed using Comsol 4.3.
One quarter of the rod was
modeled under force

boundary conditions (see

Figure 2-4) and two planes of

. Figure 2-4. Finite Elements Model of one
symmery were incorporated to quarter of the hybrid composite rod with its

. L ) mesh alongside. Arrows indicate load.
improve processing time. Elastic

properties of the two composites (glass fiber epoxy and carbon fiber epoxy) were
determined using the Mori-Tanaka approach [11,12] of the Eshelby method [13] utilizing
the initial elastic properties for the glass fiber, the carbon fiber, and the epoxy indicated

in Table 2-1. The resulting stiffness matrices for the epoxy carbon fiber composite
(CFC)section and the epoxy glass fiber composite (GFC) section utilized in the modeling
are shown in Table 2-2 and Table 2-3, respectively. The outer radius of the GFC section
was 4.76 mm and the outer radius of the CFC section was 3.40 mm with perfect bonding
between the 2 sections assumed. Thus there was no slippage allowed. The half-length of
the rod was 102.0 mm and the load was evenly distributed across a surface that rotated
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one eighth of the way around the half circumference (pi/8 radians) of the rod at a distance
between 49 and 51 mm from the transverse symmetric plane of the rod. A fixed point at
the intersection of the longitudinal axis and the transverse symmetric plane was
established to eliminate translational motion. The built-in Comsol free tetrahedral

meshing algorithm was used with an extremly fine setting, producing 69,706 elements.

Table 2-1. Stiffness matrix of carbon fiber, glass fiber and epoxy matrix (GPa).
3 direction is longitudinal.

126 332369 0 O
332 26 369 0 O
3693.69235 0 O
0 0 0 282 0
0O 0 O 0 282
-0 0 0 0 O
86.824.5245 0 O
245868245 0 O
245245868 0 O
0 0 0 311 O
0 0 O 0 311 O
-0 0 O 0 O 31.1

0
0
0
0
0
5.521
0
0
0
0

13.151.48148 0 0 0
1.483.15148 0 0 0
148148315 0 0 0
0 0 0 0833 0 0
0O 0 O 0 0833 0
-0 0 O 0 0 0.833-
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Table 2-2. Stiffness matrix of epoxy carbon fiber composite (GPa).

9.081 3.238 2.169 0 0 0
3.2389.081 2.169 0 0 0
2.169 2.169163.0 0 0 0

0 0 0 6160 O 0

0 0 0 0 6.160 O

0 0 0 0 0 2918

Table 2-3. Stiffness matrix of epoxy glass fiber composite (GPa).

110.05 4.199 3.555 0 0 0
4,199 10.053.555 0 0 0
3.5553.55551.21 0 0 0

0 0 0 5373 0 0
0 0 0 0 5373 0
0 0 0 0 0 4.608-
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2.3 Results and Discussion
2.3.1 Surface Characteristics

Optical images of the surface of the aged rods show a significant difference
between the coated and the uncoated rods, the disparity increasing with aging time (see
Figure 2-5). In the coated rods, no visible surface damage was evident for aging times up
to twelve months. In the uncoated samples from [4], loose fibers were observed which
became very prominent after longer than six months exposure times. SEM images of the
transverse surface of the aged rods also demonstrate a marked difference. Near the
surface of the aged uncoated rods, stray fibers and voids between the fibers can be
observed. In the coated rods, the surface shows much less damage both under optical

imaging (Figure 2-6) and SEM imaging (Figure 2-7).

Figure 2-5. Uncoated (left) and coated rods (right) after
0, 6, and 12 months of aging.
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Figure 2-6. Transverse optical images of the surface of the rods. Teflon tape was
wrapped around rods to prevent damage during cutting and potting.

Figure 2-7. SEM Image (600x) of edge of uncoated rod
(left) and coated rod (right) after 12 months of aging.

2.3.2 Four-point bend test data
In the four-point bend test, with the exception of one rod, all twenty-six coated
specimens broke with a split in the horizontal mid-plane of the specimens (see Figure
2-8). This failure mode is predominantly characteristic of pure intralaminar shear failure
with the effects of other stresses either entirely eliminated or at least significantly

14



reduced. The number of coated samples tested at 0, 3, 6, 9, and 12 months were 3, 6, 6, 6,
and 5 respectively. For uncoated samples, Burks [4] tested 4, 5, 5, 2, and 5 rods for the

same respective aging times.

Figure 2-8. 12 month aged rods after flexural failure. Coated
(top) and uncoated (bottom).

It has been found in [4] that the flexural modulus remained relatively constant for
uncoated rods after 0, 3, 6, and 9 months of aging at 180 °C, but there was a dramatic
decrease of about 14% in this modulus after 12 months of aging (see Figure 2-9 and
Table 2-4). For the coated rods, the result was different: the rods showed a small but
steady increase in flexural modulus up through 12 months of aging at 180 °C. After 12
months of aging, the increase in the flexural modulus of the coated rods compared to the
unaged samples was about 3%.

As for the flexure load at failure (see Figure 2-9), there was no significant
difference between the coated and the uncoated rods before aging. For the uncoated rods,
Burks et al [4] found a steady decline through 9 months of aging followed by a rapid

decrease after 12. Through 9 months, the decrease was about 23%, but after 12 months
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Figure 2-9. Flexural modulus (left) and load at failure (right) of coated
and uncoated aged rods. Error bars are one standard deviation.

the reduction was about 74%. The coated rods showed similar reductions across the first

nine months of aging. However, they only showed a decrease of about 24% even after 12

months of aging. Interestingly, in the coated rods, the load at failure did not show much

change between the various aging lengths, although there was a lot of scatter in the

results as indicated by the size of the error bars.

Table 2-4. Flexural property changes after aging at 180 °C in air

Flexural Modulus

Load at Flexure Failure

Uncoated
Coated
Uncoated
Coated
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Aging time in Months
3 6 9 12
-1% 0% -1% -16%
3% 3% 4% 8%
-10% -23% -23% -74%
21%  -27%  -33%  -24%



2.3.3 FEM results
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Figure 2-10. Comparison of finite elements load deflection

curve versus five unaged uncoated samples tested in 4-

point bend.

As a first step of the numerical analysis, the numerical load deflection diagram

was compared to the experimental load deflection curves for 5 unaged samples tested in a
four point bend configuration. As Figure 2-10 shows, there is a very close match between
the experiments and the model, providing assurance that the FEM model was based on
both the proper stiffness properties and boundary conditions. Subsequently, tensile
stresses were evaluated in the rods at the rated tensile load of 153.5 kN (34.5 kip). The
results shown in Figure 2-11 indicate uniform tensile stresses of 3.2 GPa in the carbon

fiber region and similarly uniform but much lower tensile stresses in the glass fiber

region of about 1.0 GPa in magnitude. As expected a large jump in the longitudinal
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stresses was observed at the glass/carbon fiber interface. Next tensile stresses were

evaluated in a 4 point bend
simulation with an equivalent applied
load of 4800 N, a load slightly larger
than the flexure load at failure for
unaged rods. Tensile stresses under
bending in both the glass fiber and
carbon fiber regions did not exceed

the tensile stresses under axial

3200
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1800
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Glass |
fiber ‘
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Carbon
fiber
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)

-2 0 2
Vertical Distance from Center of Rod (mm)

Figure 2-11. Tensile stresses in modeled rod
subjected to a tensile load of 153.5 kN (the

rated load).

tension, although the glass fiber region maximum tensile loads under bending were about

10% lower than at the rated tensile load (see Figure 2-12). Shear stresses in the rods were

then evaluated at this same flexure load of 4800 N. As expected shear stresses were

greatest in the horizontal mid-plane between the support and load pins. Shear stresses

approached zero between the load
pins and outside of the support pins.

Figure 2-13a shows the xz
shear stress (X is load direction and
z is longitudinal direction) along a
vertical (load direction) radius in the
rod at the midpoint between the

support and load pins and the same
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4

Figure 2-12. Tensile stresses along vertical (load
direction) axis, in the region of maximum
curvature (between load pins) in the rod
subjected to flexural loading.
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xz shear stress along a transverse horizontal radius in the rod at the midpoint between the
support and load pins. Shear stresses are highest in the center of the rod in the carbon
fiber region and diminish towards the edge. A clearly observable jump in the stresses was
noticed at the glass/carbon interface along the horizontal axis. In the vertical direction
(Figure 2-13b) shear stresses are zero at the top and bottom of the rod as expected. At the
carbon/glass interface the stresses exhibit a small discontinuity without, however, any
significant jumps.

To explore the potential impact of surface stress concentrations caused by surface
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Figure 2-13. Shear stresses along the load direction axis (a) and along the
horizontal axis (b). Calculations conducted halfway between the support and load
pins.

damage due to chemical aging, a small conical frustum shaped notch (see Figure 2-14)
was then inserted into the FEM model at the edge of the rod at the end of the horizontal
radius. In spite of the obvious simplicity of this surface damage model, Figure 2-15

shows a significant shear stress concentration at the surface of the notch. Other stresses

are also concentrated in this location.

19



Figure 2-14. Mesh showing conical
frustum shaped notch. Top radius is
5 microns, bottom radius is 1 micron
and height is 10 microns.

2.3.4 Explanation of coating effect

It can be seen in Figure 2-9 and Table 2 that there is a significant difference in the
mechanical performance of the coated versus the uncoated rods after 12 months of aging
in atmospheric conditions at 180 °C. The uncoated rods show a dramatic decrease in
flexural modulus and in flexural load at failure. While there was a steady decline in these
properties during the first nine months of aging, the dropoff became dramatic between 9
and 12 months. After nine months, the rods had only lost 1% of their original flexural
stiffness but after 12 months they had lost 14%. Similarly, the load at flexure failure
dropped 23% after 9 months and 74% after 12 months. In contrast, the coated rods did
not show this dramatic dropoff. In fact, the rods showed a somewhat steady increase in
stiffness up through 12 months and the load at failure was fairly constant after 3 months

of aging up through 12 months.
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Figure 2-15. Shear stresses along a
horizontal radius with a small conical
frustum notch on the edge of the rod at a
point halfway between the load and
support pins.

The flexural property changes summarized in Table 2-4 indicate a potential
change in the mechanism of failure for the 12 month aged rods between the coated and
uncoated samples. There are at least three factors in play in explaining the trends in
flexural strength and stiffness. It is believed that physical aging significantly increases the
residual stresses in the bulk of the composite at temperatures higher than 160 °C as
shown by Middleton et al [6]. This model showed that residual stresses after one year of
aging at 180 °C increased by over 100%, but that they only increased by about 25% for
one year of aging at 140 °C. At these higher temperatures, further crosslinking of the
polymer (commonly called postcuring), occurs in the epoxy, creating a stiffer material.
At the same time, on the surface, there is chemical oxidation and degradation of the
epoxy matrix leading to loss of reinforcement from unconnected or partially connected
fibers (see Figure 2-5). The chemical aging forms a network of surface cracks leading

into the bulk of the composite (see Figure 2-7). These cracks create significant surface
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stress concentrations which, if large enough, affect the overall failure process of the rods.
The effect of the surface cracks on the stresses was shown in the FEM model with the
surface stress concentrators.

Looking at the results presented in Figure 2-9 another significant difference can
be noticed in the loads at failure between the coated and uncoated samples. The scatter in
the loads for the uncoated rods is significantly smaller than in the case of the coated ones.
Clearly different factors must have contributed to the process for the coated and uncoated
rods. This will be further discussed later on in this section.

Burks et al [4] proposed that surface oxidation was responsible for diminished
performance after 6 months of aging; however, his conclusion was that 12 months of
physical aging led to the eventual breakdown of the interface between the fibers and the
epoxy, an explanation supported by his observation of small amounts of matrix cracking
and debonding in the bulk of the carbon/epoxy material. Based on the data presented in
this chapter, an alternative hypothesis based on the three factors in play—postcuring,
physical aging, and chemical aging—is offered. Postcuring, by itself, gradually increases
the stiffness of the composite materials. Physical aging increases the residual stress and
therefore slowly decreases the flexural strength of the composite, as indicated by the
decrease in flexural load at failure for both types of the rods. Surface oxidation gradually
reduces the amount of material providing mechanical support, leading to a gradual
reduction in flexural stiffness and strength. This chemical aging also leads to significant
surface cracks (or even damage zones consisting of numerous cracks), both on the surface
and as pathways for further oxidation into the bulk material. This further reduces the

22



amount of material supporting the rods under bending and the creation of more and
longer cracks.

In a cylindrical rod under bending, the stiffness is proportional to r* where r is the
radius of the rod. Therefore, in a hybrid composite where only one material is eroding
from the surface, the theoretical flexural modulus compared to the original hybrid

modulus will be:

Eg*((RY)*—=rH +Ec*r*
Eg* (R*—r*) 4+ Ecxr*

where

Eg= 47.0 GPa Longitudinal modulus of glass fiber composite region

Ec= 139.2 GPa Longitudinal modulus of carbon fiber composite region
= 4.7625 mm  Original radius of hybrid rod

r= 3.3995 mm  Radius of carbon fiber region

R'= Variable mm Radius after surface damage/erosion

To achieve a 14% reduction in perceived flexural modulus (where no reduction in
measured surface diameter is assumed, but oxidation damage has eliminated the
contribution of some portion of the surface), approximately 270 microns of the glass fiber
region would need to be affected. Barjasteh et al [3] found the visible thickness of the
oxidation layer to be 140 microns as indicated by a color change, but did not search for
additional evidence of oxidation damage deeper into the composite. In our case the
uncoated rods did develop surface damage zones of the same magnitude or even larger

(see Figure 2-6 and Figure 2-7).
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Considering the above, for the uncoated rods, it is believed that during the first
nine months of aging the roughly constant flexural stiffness is a product of the increase in
stiffness from postcuring and physical aging offset by a decrease due to erosion of the
surface layer from chemical aging. The strength gradually declines as residual stresses
build from physical aging in the bulk material and chemical aging leads to surface
damage. At some point between 9 and 12 months, the surface damage produces cracks
that are significant enough both in their numbers and length to produce initiation points
for shear failure leading to a change in the mode of failure from mostly physical aging
dominated to mostly chemical aging dominated and a dramatic reduction in strength (see
Figure 2-9). The FEM model lends support to this hypothesis as it demonstrates
significant stress concentrations can form due to surface damage. It can also be assumed
that the physically aging driven shear failures are less affected by other stresses than in
the case of the chemical aging driven shear failures which could be affected more by
normal stresses from the surface further reducing the overall loads at failure.

Since the inter/intralaminar shear strengths of both glass/epoxy and carbon/epoxy
composites are higher than their transverse tensile strengths [14], any transverse tensile
stresses concentrating around the surface cracks would further reduce the strength of the
rods.

For the coated rods, much of the surface damage from chemical aging is
eliminated even for long aging times. Thus there is an increase in stiffness (see Figure
2-9) from postcuring and physical aging with no counter effect from chemical aging. The
strength is reduced from physical aging but because the coating protects against
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significant surface cracks there is no change in the initiation process of shear failure so
there is no dramatic change in the flexure load at failure. Thus there is no dramatic
dropoff in strength of the coated rods.

The change in the modes of failure from physical aging driven (coated) to
chemical aging dominated (uncoated) could also explain the differences in the scatter in
the loads at failure. Both glass/epoxy and carbon/epoxy composites are brittle materials
and their transverse and shear strengths are very low. In particular, in the case of the
cycloaliphatic resin investigated in this study these strengths at room temperature could
be low. Therefore, the coated rods could be failing similar to very brittle materials with
much more scatter in the failure loads than the uncoated ones which could be failing
more like ductile materials since the crack length effect would be less important.

It needs to be noted that the rods used by Burks et al [4] and the coated rods
used in this experiment were not from the exact same batch of rods and it is possible that
there is a slightly different matrix material (still cycloaliphatic but from a different
supplier) leading to the divergent results. The coated rods were received from WAPA and
were produced much earlier than the uncoated rods which Burks et al received directly
from CTC Global about 4-5 years ago. However, the fact that the coated samples were
from an older batch only reinforces the benefits of the coating and strengthens the most

important observations obtained in this study.
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2.4 Summary of Chapter 2

It has been shown in this study that coating glass/carbon/epoxy hybrid rods with a
fluorinated ethylene propylene based coating provides measurable protection from
thermal aging. Coated rods showed significantly better retention of flexural strength and
stiffness after 12 months of aging at 180 °C in air compared to results previously
observed in uncoated rods subjected to the same conditions. Visible surface damage and
stray surface fibers were also eliminated as shown by surface and transverse slice optical
images. A new hypothesis was offered to explain the difference in mechanical properties
of the coated rods versus the uncoated rods. In the uncoated rods, physical aging
dominates the reduction in flexural properties for the first nine months of thermal aging
with some small offset due to postcuring. However, at some point between nine and
twelve months, surface damage on the uncoated rods caused by chemical aging creates
microcracks significant enough to change the dominant mode of failure. This surface
damage leads to a dramatic reduction in flexural strength, a loss that is eliminated by the

protection provided by the coating.
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CHAPTER 3 AGING AT 200 °C
3.1 Introduction

In order to further accelerate the aging process of the hybrid composite rods, it
was decided to age the rods at a higher temperature, 200 °C. Middleton et al [6]
demonstrated using a finite elements model that residual stresses from physical aging
would be greater at a higher temperature for a given aging duration and thus it was
expected that flexural strengths would diminish more quickly for a higher temperature.
The test was also conducted to see if there would also be the same dramatic dropoff in

load at failure and at what aging duration that would occur.

3.2 Methods

Coated and uncoated hybrid composite rods were utilized in this experiment. The
FEP coated rods were from the same batch as in the prior chapter and the uncoated rods
were from the same reel from the Western Area Power Association as those that were
coated. The same process of protecting the ends and aging the rods in atmospheric
conditions was used as in the 180 °C aging experiment from Chapter 2, but in this case
the rods were aged at 200 °C. Three samples of coated and uncoated rods were utilized at
each aging time. Aging times analyzed were 3, 6, and 12 months. Four-point bending was

likewise utilized to assess the flexural modulus and load at failure.
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As in the prior chapter, uncoated ACCC rods were received from the Western
Area Power Administration (WAPA) from an unused full conductor reel. These samples
arrived in 5 foot sections. The hybrid composite cores have an outer diameter of 9.53 mm
with the carbon section having a diameter of roughly 6.8 mm. Some of the hybrid cores
were sent to E.L. Stone Company who applied a proprietary fluorinated ethylene
propylene (FEP) based coating with a thickness of approximately 25 microns. The rods
were lightly sandblasted prior to the application of the coating to improve adhesion. As
noted previously no evidence of surface damage was visible even under 100x optical
imaging (see Figure 2-2).

Coated and uncoated rods were cut to lengths of 28 cm. The ends of each rod
were capped with an RTV sealant to prevent longitudinal oxidation from the ends.
Samples were aged at 200 °C under atmospheric conditions. Three samples of coated and
uncoated rods for each aging duration were produced and tested. Samples were heated
and cooled at a rate of 5 °C per minute to reduce the risk of thermal shock.

Samples were tested in a four-point bend test fixture designed by Burks et al [4].
As suggested in [4], samples were loosely wrapped with Teflon tape at the contact point
with the loading pins to prevent transverse crushing. The load rate was 3 mm/ minute.
Center point displacement measures, using an LVDT, and force measures were taken at a
20 Hz sampling rate. Crosshead displacement continued until failure of the samples.

3.3 Results
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Figure 2-1 shows as received ACC core rods before and after coating. Figure 3-1

shows the rods after 12 months of aging at 200 °C.

Figure 3-1. Aged ACCC core samples. As received (top) and
coated (bottom).

As in the prior chapter, all samples aged at 200 °C failed in shear in the horizontal
midplane of the rods in the four-point bend test. Table 3-1 shows the average load at
failure and flexural modulus of the three samples tested for each aging duration.

Table 3-1. Load at failure and flexural modulus of aged samples

3 6 12
Load at failure (N) Unaged Month  Month  Month

200 °C Coated 4508 2357 2067 1847
200 °C Uncoated 4616 2959 2364 1987

Flexural Modulus 3 6 12
(MPa) Unaged Month  Month ~ Month
200 °C Coated 82.5 79.9 80.3 79.6
200 °C Uncoated 80.9 80.4 81.7 81.6
3.4 Comparison to 180 °C
As noted in Table 3-1 core rods aged at 200 °C lose flexural strength with

increased aging times, but generally maintain or improve their stiffness. It is believed that

stiffness increases with post-curing (the rods are manufactured with a rapid curing cycle
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in a pultrusion process) and from the effects of physical aging. However, physical aging
also increases the residual stresses in the rods as demonstrated by Middleton et al [6]. As
aging time increases, so do the residual stresses leading to a lower flexure load at failure.
Thus, we see a steady drop in the flexure load at failure.

The situation becomes more interesting as a comparison is made to the results of
aging at 180 °C from the prior chapter. Figure 3-2 shows the flexure loads at failure for
the samples aged at 180 °C and 200 °C. From this figure, it can be seen that initially the
loads at failure drop faster for 200 °C aging than for 180 °C. Also, in both cases the load
at failure continues to steadily decline as aging time increases through the first six months
(and in fact 9 months for rods aged at 180 °C, as noted in the prior chapter- see Figure

2-9).
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Figure 3-2. Flexural load at failure for ACCC rods after specified aging time and
temperature.
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However, at 12 months, the uncoated rods aged at 180 °C show a dramatic
dropoff in the load at failure, a reduction that is not seen in the coated rods aged at 180 °C
or in the coated or uncoated rods aged at 200 °C. It is believed that this steep dropoff for

the 180 °C uncoated rods is due to thermal oxidation of the surface of the rods producing
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Figure 3-3: Flexural modulus for ACCC rods after specified aging time and temperature.

cracks large enough to create stress concentrations that can be the initiation point for
shear failures. This chemical aging might not occur on the coated rods aged at 180 °C
because the coating acts as an oxidation barrier. Thus, as opposed to aging at 180 °C we
do not see this same dramatic dropoff in the flexure load at failure. Figure 3-3 shows a
comparison of the changes in flexural modulus for the four aging temperature/coating

conditions. Here again there is a dramatic dropoff for the 180 °C 12 month aged rods and
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again it is believed that chemical aging is responsible for destroying enough of the
surface matrix to reduce the stiffness of the whole material.

So, why is there not this same dropoff for uncoated rods aged at 200 °C?
Barjasteh et al [3] performed oxidation experiments on the core rods and modeled the
oxidation reaction in the epoxy at both 180 °C and 200 °C. What they found was that the
depth of oxygen penetration was actually lower at the higher temperature of 200 °C than
it was for 180 °C. From visual inspection of aged samples they found the oxidation
thickness was 155 um for aging at 180 °C but only 110 um for aging at 200 °C. This
surprising result was reinforced by their numerical model of the oxidation reaction. The
Barjasteh model was reproduced and its results are displayed in Figure 3-4 where the
oxygen concentration is displayed as a function of the depth below the surface after 100
hours of aging. There is negligible change in the modeled oxygen concentration beyond
100 hours at either temperature.

Basically, thermal oxidation occurs through a reaction diffusion mechanism.
While both the diffusion rate and the reaction rate of oxygen with the epoxy polymer
(consumption rate) escalate with increasing temperature, the consumption increases at a
faster rate than the diffusion so the oxygen does not penetrate as far into the bulk of the
polymer, unless as Barjasteh et al [3] points out there is significant cracking or surface

erosion which would allow deeper oxygen penetration.
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Barjasteh Model
Oxidation of Thermally Aged ACCC Rods
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Figure 3-4. Oxygen concentration as a function of distance from the surface.

Thus, it is believed the deeper oxygen penetration at the lesser 180 °C temperature
eventually creates cascading damage on the surface leading to a dramatic drop in flexural
stiffness. The cracks on the surface also create an initiation point for shear failure which
reduces the flexural load at failure. Less chemical aging occurs at the higher 200 °C
temperature and these same dramatic effects are not observed.

3.5 Summary of Chapter 3

Below the glass transition temperature, higher temperatures lead to more rapid
physical aging and increased residual stresses in the bulk of the material. Applying a
coating to the hybrid rods does not affect its physical aging. This physical aging has a
small impact on the stiffness of the rods, but a larger impact on the flexure load at failure.
Thus a higher aging temperature reduced the flexure load at failure at early aging

durations for both coated and uncoated rods.
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However, the chemical aging involves a diffusion-reaction mechanism. While
higher temperatures lead to a more rapid diffusion of oxygen, the oxygen polymer
(epoxy) reaction rate increases even faster with a higher temperature (200 °C vs. 180 °C).
Thus the oxidation thickness actually decreases with increasing aging temperature.
Therefore, at the higher 200 °C aging temperature, there was not a shift in the source of
flexural failure from physical aging to chemical aging and thus there was no dramatic
dropoff in the flexure load at failure for aging durations through twelve months. This
result reinforces the hypothesis that chemical aging led to the dramatic dropoff in flexure

load at failure for the uncoated rods aged at 180 °C.
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CHAPTER 4 EMISSIVITY EFFECT ON OPERATING TEMPERATURE
4.1 Introduction

Another way of reducing thermal aging in polymer core composite conductors is
to reduce the amount of heat to which the conductor core is exposed. Reducing the
current flowing in the conductor is one obvious way to lower the temperature and
diminish the thermal aging. However, this approach reduces the value of this HTLS
conductor to the transmission companies. Wind speed can also significantly reduce the
operating temperature of transmission lines [15, 16, 17] through convective cooling.
However, on very calm days, this reduction does not happen.

An innovative approach to reducing operating temperature is to increase the
radiative cooling from the conductor. Companies are developing coatings to be applied to
the outside surface of the aluminum conductor itself to increase the emissivity. Increasing
the emissivity increases the radiative cooling and can therefore allow the conductor to
transmit the same current while maintaining a lower temperature.

4.2 Methods

An experimental and a modeling approach were used to determine the value of
increasing the emissivity of the conductor. In the experimental approach, two samples of
an ACCC conductor were heated in an oven to a temperature slightly above 80 °C. One

of the samples was as received and the other was painted black in order to increase its
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emissivity. Note that this black painting was simply a method to test the impact of
changes in emissivity and not any commercially developed coating. The as received
conductor was actually from a sample reel that had been exposed to elements in Phoenix,
Arizona for about ten years and as such would represent a conductor with emissivity
closer to that which might be found in-service rather than a brand new conductor. No
attempt was made to eliminate heat loss from the ends of the conductors in this
rudimentary test.

A thermocouple was inserted into the end of each sample and a Lascar datalogger
was used to record the temperature at 1 second intervals. Both samples were allowed to
cool to 80 °C before the measurement period was begun in order to have a fair
comparison of cooling rates. Both samples were cooled in an atmospheric environment

with a temperature of 20 °C.

Figure 4-1. Shiny (as received) and black painted ACCC conductors.
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Figure 4-3. Early heating of the conductor with wind

A finite elements model of the conductor was built to model the impact of wind
speed and emissivity on the temperature of the conductor given a fixed amount of
resistive heating. For this 2 dimensional simulation, the radius of the carbon fiber epoxy
composite portion of the rod was set at 4.0 mm, the glass fiber epoxy radius was set at 4.8
mm, and the aluminum conductor radius was set at 15.9 mm. These components were
modeled as concentric circles, so helical stranding was not considered. The air domain

was 400.0 mm wide and 200 mm high and the center of conductor was positioned one
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fourth of way over from the left and one fourth of the way up in this 2d “box” to allow
for convection in the opposite directions from gravity and simulated wind. The
gravimetric force was set at 9.8 m/s> and laminar flow was utilized with the inlet on the
left and no pressure on the right hand boundary. The starting temperature for all domains
and ambient air temperature were set to 300 K and the pressure was set at 1 atmosphere.
The volume force for the air was determined as —(353.0563/T — 353.0563/300) * G,
where T is the temperature and G is the gravimetric force. The density, thermal
conductivity, and heat capacity are indicated in Table 4-1.

Table 4-1. Density, thermal conductivity, and heat capacity of epoxy carbon fiber
composite (CFC), epoxy glass fiber composite (GFC), aluminum and air.

Material Density Thermal Conductivity Heat Capacity
(kg/m”) (W/(m*K)) (J/(kg*K))

CFC 1043 0.17 800

GFC 1168 0.2 1000

Aluminum | 2700 238 900

Air 0.02897/8.314/T | 0.00227583562 1047.63657-

+1.15480022E-4*T"1 0.372589265*T"1

-7.90252856E-8*T"2 +9.45304214E-4*T"2
+4.11702505E-11*T"3 | -6.02409443E-7*T"3
-7.43864331E-15*T"4 | +1.2858961E-10*T"4

The power of this thermal heating was set at 0.19 watts/cm?® such that with no
wind and no radiative cooling, the temperature of the conductor would asymptotically
approach 180 °C. The simulated heating was applied for 5000 seconds followed by a
cooling period of 1000 seconds. This simulation was conducted under various wind
speeds and emissivity values, using the same resistive heating power level. Figure 4-2

shows a temperature graph of the cross section of the entire conductor and the
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surrounding atmosphere early on in the heating process, indicating convective heat losses
moving away from the conductor fastest in the up (anti-gravity) direction. Figure 4-3
shows the same conductor being heated with the same energy, but with a constant cross
wind. Note forced convective heat losses being carried by the wind.

4.3 Results and Discussion

Figure 4-4 shows the result of the measured cooling rates of the as received
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Figure 4-4. Internal temperature comparison between shiny (as

received) and black ACCC conductors cooling in air at room

temperature
(shiny) conductor and the painted black conductor. Initially, the painted black conductor
cooled at a rate nearly twice that of the as received conductor. These cooling rates
included both radiative and free convective cooling. Thus, as expected, there was a

significant increase in the cooling rate of the painted black conductor due to the
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emissivity increase. Radiative cooling increases with the fourth power of the temperature,
so the difference would be considerably greater as temperatures approach 180 °C rather

than 80 °C.

In the finite elements model, there was a significant difference in the equilibrium

Temperatures after heating for 5000 s at 0.19 W/cm3

B Emissivity O

A Emissivity 0.3

® Emissivity 0.9

£0.2235 m/s Wind

+ 0.4470 m/s Wind
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Temperature (°C)

0 1000 2000 3000 4000 5000 6000
Time (s)

Figure 4-5. Temperature under heating and cooling for various wind and
emissivity conditions

temperature of the conductor given different wind and emissivity conditions. Figure 4-5
shows that the temperature of the conductor with no wind and no radiative cooling
approaches an equilibrium temperature of 180 °C when heated at 0.19 watts/cm®.
However, when radiative cooling is considered with an emissivity value of 0.3, the
equilibrium temperature approaches about 145 °C, or about 35 °C less. With an
emissivity of 0.9, there is enough radiative cooling to bring the equilibrium temperature
down to about 115 °C.

Wind can also make a significant difference in the equilibrium temperature of the
conductor. A constant transverse wind speed of only 0.224 m/s (0.806 km/h) ona 0

emissivity conductor produces a very similar heating and cooling pattern as the 0.3
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emissivity simulation. Likewise, doubling the wind speed to 0.447 m/s (1.61 km/h)
produces a heating/cooling pattern that is very close to the 0.9 emissivity model. While
these may be low wind speeds, as pointed out in [15] the angle of the wind can have a
significant impact on the convective cooling. Hot calm days may also increase electricity
demand in the United States as air conditioning usage increases [18].
4.4 Summary of Chapter 4

A surface coating that provides an emissivity increase can potentially reduce the
operating temperature of a conductor. For this approach to be effective and beneficial, the
coating must increase the emissivity to hasten radiative cooling; however, the coating
must be carefully designed so that the emissivity increase does not also increase radiative
absorption from the sun. This selective tuning can be accomplished by selecting materials
that emit and absorb higher at specific wavelengths in order to increase the emissivity in
the infrared range but reduce it in the wavelength range of sunlight. Thus, a surface
coating to increase emissivity for certain wavelengths can be one element in the

protection against thermal aging.
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CHAPTER S5 RESEARCH ON EPOXY NANOCOMPOSITES

5.1 Introduction
5.1.1 Overview
Nanoparticles added to epoxies can dramatically change the thermoset’s thermal

and mechanical properties. Trying to identify the optimal nanoparticle to tune specific
properties is a challenging task. There is a large and growing population of studies that
look at incorporating different types of nanoparticles into various epoxy systems to see
the impact on the glass transition temperature (Tg), strength, stiffness, toughness, and
other mechanical properties. The effects not only depend on the type of nanoparticle, but
also its size, dispersion, and functionalization, as well as the amount (concentration) of
the nanoparticle added. In some cases there is a monotonic material property response,

but in others an optimal concentration can be identified.

5.1.2 Background
For years researchers have been searching for ways of improving the thermal and
mechanical performance of polymers. Fillers have been used to improve toughness,
stiffness and resistance to oxidation. Recently, researchers have turned to a new type of

filler: nanoparticles. Nanoparticles are often described as particles with at least one
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dimension less than 100 nanometers (100 x 10 meters). Because of their large surface to
volume ratio, nanoparticles of a material can have significantly different properties from
larger bulk portions of the same material.

There are a significant number of epoxy resins, hardeners, and nanoparticles. To
make a useful epoxy thermoset, there must be at least one epoxy and one hardener. There
are published books on the properties of various combinations of epoxies and curing
agents (see, for example, ‘Handbook of Epoxy Resins’ [19]). One possibility to improve
the long-term performance of the epoxies in the new electrical conductors is to
incorporate nanoparticles into the epoxy matrix to protect against thermal damage. There
have been a large number of studies looking at the impact of various nanoparticles on
mechanical, thermal and electrical properties of epoxies. Common nanoparticles added
to epoxies to modify properties include silica (SiO;), alumina (Al,O3), graphene, carbon
nanotubes, nanoclays, and carbon black. As will be seen, it is not enough to simply
specify the nanoparticle and the epoxy/ resin combination; different concentrations of
nanoparticles can create significantly different properties. The property changes are
usually non-monotonic, with optimal concentrations only determined by experiments.
Different sized nanoparticles can also be utilized, creating different properties. Within
each class of nanoparticles, there are various properties of the nanoparticles themselves
such as porous and non-porous silica, multiwalled and single walled carbon nanotubes,
and highly conductive and not as highly conductive carbon black. Of course, one can also
use a combination of nanoparticles to create even more possible nanocomposites, as well
as changing the approach to dispersion or functionalizing (adding functional groups or
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coatings to the surface of the nanoparticles) in order to achieve different results. Thus,
there are an infinite number of possibilities. In order to help select appropriate
nanoparticles to enhance the material properties of the epoxies utilized in high voltage
applications, this chapter summarizes the recent published experiments with silica,
carbon black, graphene, nanoclay, carbon nanotubes, and alumina nanoparticles.
5.2 Epoxy Nanocomposites
5.2.1 Silica

There are many types of silica (SiO;) nanoparticles [20,21]. The silicon atom
forms a tetrahedral bonding structure with its neighboring oxygen atoms. While quartz is
a well-known crystalline silica structure, most of the nanoparticles utilized in polymer
nanocomposite studies are amorphous forms of silica, i.e., there is no long range regular
crystal structure. Within the amorphous class of silica particles, there are many different
forms. One classification is the porosity of the particles: P identifies porous structures,
those with large pores; N identifies nonporous structures, particles with very small pores.
Nonporous structures are denser than porous structures. Mesoporous silica falls in the
middle, with medium size pores (2-50 nm). The structure of the surface and whether or
not there are hydroxyl (OH) groups present, determines the hydrophobicity or
hydrophilicity of the nanoparticle. Silica is electrically non-conductive. Most of the
nanoparticles that are reviewed in the following studies are in the size range of 7-30 nm
with a couple of studies looking at larger nanoparticles.

Zhang et al [22] conducted experiments adding various concentrations (0-22.7 wt
%) of 25 nm silica nanoparticles to a cycloaliphatic epoxy with an anhydride hardener.
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They found that the flexural modulus increased with increasing silica content, improving
from 3.05 GPa for the neat epoxy to 4.18 GPa for the epoxy with 22.7% silica. For small
concentrations of silica, the flexural strength was diminished by about 7%; for larger
concentrations in excess of 10 wt%, there was a small improvement. The strain at failure
was reduced for all concentrations of silica, but was not monotonic with silica content.
Both the microhardness and toughness showed improvements with increasing silica
content. The glass transition temperature (Tg) generally decreased with increasing silica
content, moving from 222 °C for the neat epoxy to 208 °C for 22.7% silica.

Ou et al [23] worked with different sized silica nanoparticles at different
concentrations to determine the impact on glass transition temperature (measured by
DSC) and water permeability. This group used three different sized nanoparticles, 20, 12,
and 7 nm, and varied the concentration from 0.3 wt% to 7 wt% in a DGEBF epoxy
hardened by m-phenylenediamine. There was an immediate increase in the glass
transition temperature, moving from 63 °C (for the neat epoxy system) to 72 °C for the
0.3 wt% concentration of 20 nm silica and to 83 °C for the same concentration of 7 nm
nanoparticles. In general, the glass transition temperature continued to improve as the
concentration of nanosilica was increased, with 7 wt% 20 nm particles reaching 79 °C
and 7 wt% 7 nm particles reaching 98.2 °C, an overall increase of 35 °C. The authors
attributed the T, increase to good adhesion between the nanoparticles and the matrix and
the ability of the nanoparticles to restrict segmental motion of the polymer. The authors
also found that silica nanoparticles would reduce water permeability of the epoxy. Again,
the best improvements were found for the 7 wt% 7 nm silica nanoparticles, reducing the
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water permeability by 30%. The same concentration of 20nm silica reduced the water
permeability by only 10%. Thus the authors found that the impact of silica nanoparticles
was influenced both by the size and the concentration of the particles.

Allahverdia et al [24] also conducted experiments with nanosilica and epoxy,
utilizing bisphenol A and epichlorohydrin hardened by a cycloaliphatic amine. The
nanosilica particles were 10 nm in size and were used in concentrations of 1, 3, and 5
wt%. In these experiments, a small increase in Ty of about 5 °C was found for the 3 wt%
nanocomposites (an increase from 48.9 °C to 54.2 °C, as found by DMA), with slightly
lesser improvements for the other concentrations. Both the nanohardness and elastic
modulus increased with increasing silica content, increasing more than 20% each for the
5 wt% nanocomposites.

Tzetzis et al [25] performed nanoindentation and tensile tests on epoxy with
fumed silica nanoparticles. The epoxy was bisphenol A and epichlorohydrin epoxy resin
(Epikote 816) with an amine curing agent. The nanoparticles were untreated fused silica
with an average particle size of 20 nm. They performed tests on samples with 0.5, 1, 2,
and 3 wt% silica and found that the elastic modulus calculated by both the tensile test and
the nanoindentation method was reduced with increasing silica content. The modulus was
reduced by about 25% for the 3 wt% sample. They attributed the reduction to the
formation of agglomerates of silica, in which the modulus was less than in the epoxy.
Thus poor dispersion could have been the problem leading to the reduction in modulus.

On the other hand, Conradia et al [26] found improved mechanical properties
upon including silica nanoparticles in an epoxy composed of bisphenol A and
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epichlorohydrin (Epikote 828LVEL) with 1,2-Diaminocyclohexane as the hardener. In
these experiments, two different sizes of nanoparticles, 30 nm and 130 nm, were first
treated with diglycidyl ether of bisphenol A (DGEBA) and then added to the epoxy at a
concentration of 0.5 vol% in order to compare the impact of the size of the nanoparticles.
For both sizes of nanoparticles, the tensile modulus, the tensile strength, and the fracture
toughness of the nanocomposites were improved compared to the neat epoxy. In general,
the 130 nm nanosilica created the better improvement, with the tensile modulus
increasing about 15%, the tensile strength improving about 11%, and the fracture
toughness improving about 38%. The corresponding improvements for the 30 nm
nanosilica were 8%, 11%, and 41%.

Dittanet and Pearson [27] studied the impact of different sized organosilane
coated silica nanoparticles on DGEBA cured with piperidine. They used 23, 74, and 170
nm nanoparticles with volume concentrations ranging from 2.5 to 30% for each sized
particle. They found that the Ty varied with particle size and concentration, but that it
generally remained within = 2 °C from the value for the neat epoxy, not a very significant
change. Similar to T, the yield strength also varied about the reported value for the neat
epoxy, with the results generally within 2% of the value for the neat epoxy. On the other
hand, the authors found a significant stiffening of the nanocomposites which increased
with nanoparticle concentration. The largest increase in the Young’s Modulus was for the
30 vol% 170 nm silica nanoparticles, increasing the stiffness by 65%. The coefficient of
thermal expansion (CTE) was also improved (reduced) with increasing particle content,
but this time the largest reductions came with the smallest (23 nm) particles. Small
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reductions of about 7% were found for the 2.5 vol% samples, but the CTE for 30 vol% 23
nm silica was reduced by 54%. Fracture toughness also improved significantly with all of
the tested concentrations, but showed further large increases as the concentration was
increased. For example, for the best performing 74 nm particles, the fracture toughness
increased 58% for the 2.5 vol% samples and 160% for the 30 vol% samples.

Sajjad et al [28] looked at the impact of 9 and 74 nm silica nanoparticles, surface
functionalized with diethyleneglycol-based capping agents, on a DGEBF epoxy cured
with diethylenetriamine (DETA). This study evaluated the impact on T, storage
modulus, and hardness for volume concentrations of 1.7, 2.9, and 5.8%. The authors also
used two different sized nanoparticles, 9 nm and 74 nm, in order to see if there was also
an impact due to size. The authors found that adding and increasing the concentration of
nanoparticles reduced the T4 and even more significantly reduced it for the larger
nanoparticles. At the 1.7 vol% concentration of 9nm nanoparticles, the Ty was reduced by
about 7 °C; for the 74 nm nanosilica at 5.8 vol%, the Ty was reduced by about 30 °C. The
storage modulus at room temperature, however, improved with increasing nanoparticle
content, with the best increase (about 25%) occurring for the larger particles at the
highest concentration of 5.8%. Similarly, the hardness measured by the Vickers hardness
test increased 40% for the larger nanoparticles at the highest concentration with much
lesser improvements for the smaller nanoparticles (only 10% improvement for the highest
concentration).

Johnsen et al [29] looked at the impact of organosilane coated 20 nm silica on
DGEBA epoxy cured with methyl-hexahydrophthalic acid anhydride (MHHPA). They
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measured the T4 using both DMTA and DSC and found little or no change even with
weight concentrations up to 20.2%. However, they found an increase in both stiffness and
fracture toughness with increasing silica content. For the Young’s Modulus, they found a
30% increase with a silica content of 13.4 vol%. For fracture toughness, the Gy value
increased by 140% for the same 13.4 vol%. There were lesser, but still significant,
improvements in both of these material properties for lower vol% of nanosilica. In this
paper, they also discussed the mechanisms for the significant increase in fracture
toughness. They propose that the main factor leading to increased toughness is debonding
of the particles followed by plastic void growth. Due to the size of the particles being
much smaller than the calculated crack tip opening displacement, they discount the
contribution from crack pinning. Similarly, because the roughness of the fracture surface
does not correspond to the increased fracture toughness, they rule out crack deflection as
a significant factor in the improvement in Gyc.

In a study with very similar materials, Hsieh et al [30] evaluated the impact of
silica nanoparticles on a DGEBA epoxy with a methylhexahydrophthalic acid anhydride
hardener. They looked at T, tensile modulus, and fracture toughness. For T, they found
little change with the addition of the nanoparticles, but found increasing stiffness and
fracture toughness with increasing wt% of silica. For 4 wt% silica, the stiffness increased
by about 8%, while for 20 wt% the stiffness improved by 30%. Similarly, fracture
toughness increased by about 25% for the 4 wt% silica and by about 72% for the 20 wt %

silica.
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Zheng et al [31] first examined the impact of uncoated 20 nm silica nanoparticles
on the glass transition temperature and the thermal mechanical properties of an MHHPA
cured cycloaliphatic epoxy. The impact on the glass transition temperature varied
depending on the method used: using DSC, they found a small decrease in Ty for 1, 2,
and 3 wt%, but a large decrease of 11 °C for 5 wt%; using DMA, there was a small
decrease for 1 and 2 wt%, but a small increase for 3 and 5 wt%. They also found that
flexural strength increased with increasing silica content, as much as a 19% improvement
for 5 wt%. On the other hand, they found that the impact strength as measured by a
Charpy test was highest for 3 wt%, with a falloff in strength for 5 wt%. The 3 wt%
nanocomposites improved the impact strength by 24%. In a follow-up study, Huang and
Zheng [32] explored the impact of surface treatment on the electrical resistivity and
dielectric breakdown strength of the cycloaliphatic epoxy silica nanocomposites. Since,
as they noted, cycloaliphatic epoxies are often used as an insulative material in electrical
applications, they sought to understand whether surface treating the nanosilica could
improve its electrical properties. They found that incorporating (3-Glycidoxypropyl)
methyldiethoxysilane (GPMDS) as the silane coupling agent improved both the
resistivity and dielectric breakdown strength, especially at higher temperatures.

Ragosta et al [33] explored the impact of 10-15 nm nanosilica on the glass
transition temperature and fracture toughness of TGDDM epoxy cured with
diaminodiphenylsulfone (DDS). They found a small decrease in T4 of about 7 °C at both
5 and 10 wt% from the neat epoxy value of approximately 240 °C. They attributed this
loss to unreacted epoxide groups in the presence of the nanoparticles. In spite of the lack
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of a complete reaction, they found a significant improvement in the elastic modulus and
yield strength. These enhancements showed nearly linear increases with increasing wt%
of silica. At 10 wt%, the improvement was about 50% for stiffness and 28% for strength.
Similarly, they found a large increase with increasing silica content in both the critical
stress intensity factor K. and the strain energy release rate G.. K. approximately doubled
and G, approximately tripled at 10 wt% silica.

In summary, nanosilica can have impacts on thermal and mechanical properties.
The effect on the glass transition temperature is inconsistent; some studies show
improvements, others little impact, and still others show a reduction. However,
concentrations of nanosilica can be optimized to achieve improvements in elastic
modulus and toughness. Dispersion is important and functionalization of nanosilica
especially with silane containing molecules can bring about more significant
improvements. Electrical properties can also be improved by the incorporation of

nanosilica.
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5.2.2 Carbon Black

Carbon black is a paracrystalline form of carbon, formed from the incomplete
combustion of petroleum products [34]. Its primary particle size can be as small as 20
nm, but agglomerates tend to form creating larger amorphous structures. It is generally a
conductive material, but its conductivity can be tuned. Historically, it has been used as a
reinforcing agent in tires to increase wear resistance.

Kosmidou et al [35] tested thermal and mechanical properties of various
concentrations of carbon black with a DGEBA epoxy cured with triethylenetetramine
(TETA). The carbon black was described as highly conductive and had particle sizes of
25-75nm. The researchers varied the carbon black weight percentage from 0.05% to 2.0%
and found dramatic changes in T4. Small increases in T, were noted for concentrations of
0.05 and 0.1%, but for a concentration of 0.5%, a dramatic increase of 37 °C was found.
For higher concentrations, the T4 was still significantly increased but was less than for the
0.5% concentration. For example, the 2.0% concentration had only a 13 °C increase in
Tg. They also found small improvements in the storage modulus with the addition of
carbon black, but the optimal concentration depended on testing temperature.

Ma et al [36] explored the addition of D-220 carbon black (24-33 nm particle
size) to a Bisphenol-A epichlorohydrin epoxy cured with Methyl-tetrahydrophalic
anhydride (MeTHPA). In their experiments they used different concentrations (1-5 wt%)
of carbon black coated with a silane coupling agent. They found significant
improvements in tensile strength, elongation at break, and flexural strength, with the
greatest increase coming from a 2.0 wt% loading of carbon black. With the 2% loading,
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the tensile strength increased 32% and the flexural strength increased by 89%, while the
elongation at break increased by 40%. Smaller improvements were found for lower and
higher concentrations of carbon black. They also found an increase in T4 at 2 wt% and an
even larger increase at 5 wt%.

Kim et al [37] explored the impact of 35nm carbon black (Ketjenblack EC-300J)
of various concentrations on the fracture toughness of bisphenol-A epoxy cured with
polyetheramine. At room temperature, they found a significant increase of 18% and 23%
in Ky for the 2 wt% and 3 wt% concentrations respectively. Smaller increases were
found for lesser concentrations.

While there are not a large number of studies evaluating the impact of carbon
black on thermal and mechanical properties of epoxies, there seems to be the potential for
significant improvement in the glass transition temperature, strength and toughness.
Electrical resistivity drops after reaching the percolation threshold, so for certain

applications care will need to be taken to avoid this situation.
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5.2.3 Graphene

Graphene is composed of a single layer of sp-2 bonded carbon atoms that form a
hexagonal pattern. A pure sheet of graphene has only carbon atoms and is highly
conductive. It is also one of the strongest and stiffest materials in the world. While it is
only one atom thick, its in-plane dimensions can be significantly larger (on the order of
microns). Graphite is composed of multiple layers of graphene and graphite oxide
contains not just carbon sheets, but also hydroxyl, epoxide and carbonyl groups bonded
to the carbon atoms.

Wang et al [38] experimented with graphene and silane functionalized graphene
to understand the impact on tensile stiffness and strength on a polyamide cured DGEBA
epoxy. They used 1 wt% graphene and functionalized graphene and found that the
functionalization further improved the mechanical properties. Both stiffness and strength
improved, but the best improvement was for the functionalized graphene with a 50%
improvement in strength and a 9% improvement in stiffness. They attributed the
additional improvement for the functionalized graphene to the silane preventing stacking
leading to improved dispersion and a stronger interfacial interaction between the silane
and the epoxy. While they did not report any T4 experiments, they did find an
improvement in thermal degradation properties.

King et al [39] incorporated graphene at various concentrations into a
diethyltoluenediamine (DETDA) cured DGEBF epoxy and explored the impact on
mechanical properties. While they saw a monotonic increase in stiffness with increasing
graphene content, the tensile strength went the opposite direction. At 6 wt% graphene,
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they found a 24% improvement in tensile stiffness but a 54% reduction in tensile
strength. Because graphene is conductive, they also reported a significant reduction in the
electrical resistivity for graphene concentrations in excess of 1 wt%. For 1 wt% there was
only a very slight reduction in resistivity, with a small 4% improvement in modulus but a
27% reduction in strength.

Ribeiro et al [40] added exfoliated graphite (EG) and triethylenetetraamine
(TETA) functionalized graphite oxide (GO-TETA) to TETA hardened DGEBA epoxy.
The glass transition temperature and the hardness of composites made from both
nanoparticles at concentrations of 0.5, 1, and 3 wt% were compared to the neat epoxy.
They saw a significant improvement in the Ty, as much as 19 °C for both the 3 wt%
exfoliated graphite and 1 wt% TETA functionalized graphite oxide. Other concentrations
also showed significant increases but not quite as much (10 — 17 °C). This group also
used nanoindentation to calculate the elastic modulus at different penetration depths.
They found nearly a 10% increase for both EG and GO-TETA at depths of 300 and 600
nanometers, but a much smaller change at a depth of 1.3 microns. Values of Vickers
hardness also showed significant increases with added nanoparticles of both types.

Zaman et al [41] looked at the effect on thermal and mechanical properties of
adding graphene nanoplatelets (GnP) to DGEBA epoxy cured by polyoxypropylene and
DGEBA cured by 4,4’-diaminodiphenyl sulfone (DDS). They looked at 4 different vol%:
0.244, 0.489, 0.984, and 1.988%. They found that increasing the concentration of GnP
caused an increase in stiffness, but a decrease in tensile strength. The increases in
Young’s modulus for the highest concentrations (1.988 vol%) of both epoxy systems
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were about 10-15%, while the reductions in strength were about 45-55%. At the lowest
concentration level (0.244 vol%), the strength reduction for the polyoxypropylene cured
epoxy was about 5% (with a 3% increase in modulus), while the strength reduction for
the DDS cured epoxy was about 28% (with an 8% increase in modulus). However, even
at the lowest concentrations, the T4 showed a significant increase of about 15 °C for both
epoxy systems, with only a minimal change in resistivity (in fact the reported resistivity
of the polyoxypropylene system increased). Both systems showed significant and
monotonically increasing fracture toughness with increasing nanoplatelet concentration.

In an earlier study by the same lead author (Zaman) [42], the group added
graphene platelets (GP) and graphene platelets modified by 4,4’-methylene diphenyl
diisocyanate (m-GP) to a DGEBA epoxy with a polyoxyalkyleneamine curing agent.
They used concentrations of the nanoplatelets at 1, 2.5, 4, and 5.5 wt%. Similar to the
other experiment they found an increase in stiffness and a reduction in tensile strength
with the addition of the graphene; however, in this experiment there was an optimal
concentration level (lower than the maximum tested level) that produced the best increase
in stiffness. In the case of GP, 2.5 wt% produced a 25% improvement in stiffness while 4
wt% m-GP produced a 22% increase. Higher concentrations achieved lesser levels of
improvement. At the optimized concentration levels, the T4 was improved by 8 °C for GP
and 12 °C for m-GP.

Based on these results, it seems graphene can increase the glass transition
temperature and improve the stiffness and toughness of an epoxy. The results are
generally significant. Strength, however, seems to be reduced by the addition of
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graphene. With the exception of one study, all of the experiments that reported on

strength showed a large decrease, worsening with an increase in graphene content.
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5.2.4 Nanoclay

Nanoclays are layered mineral silicates. Montmorillonite (MMT), one of the
common nanoclays used in studies, has a theoretical chemical formula of
(OH)4SigAl4O29-nH,0 [43]. Magnesium (Mg) can sometimes replace some of the
aluminum atoms. MMT is made of 2 tetrahedral sheets surrounding an octahedral sheet
[44]. Layers one nm thick can cleave off to form exfoliated nanoparticles under proper
dispersion conditions [45]. This creates nanoparticles with a very high aspect ratio.

Becker et al [46] investigated the effect of octadecyl ammonium ion-modified
montmorillonite layered silicate (nanoclay) on the thermal and mechanical properties of 3
different types of epoxy: DGEBA, triglycidyl p-amino phenol (TGAP), and tetraglycidyl
diaminodiphenylmethane (TGDDM), all hardened with DETDA. They used
concentrations of 2.5, 5, 7.5, and 10 wt%. They found that T4 was reduced with the
addition of the nanoclay and higher concentrations produced more significant reductions.
With 10 wt% nanoclay, the T4 was reduced about 15 °C for DGEBA and TGAP and
about 20 °C for TGDDM. The mechanical properties, however showed significant
improvement. The flexural modulus increased with increasing clay content for all 3
epoxies, with the improvement very similar on a percentage basis. At the highest
concentration of 10 wt%, the improvement was about 20% for all 3 systems. Similarly,
the toughness was improved as evidenced by the K. increasing 100% for the DGEBA
and TGDDM epoxies; the TGAP system only improved about 10% at the same
concentration.
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On the other hand, Ratna et al [47], found an increase in T4 using DGEBA,
DETDA and the same nanoclay as Becker [46] with 2.5 and 5 wt% nanoclay. Both of
these researchers used similar preparation techniques with the following exceptions:
Becker used an excess of epoxy in order to avoid what was reported as a detrimental
effect of non-reacted amine groups while Ratna used a stoichiometric amount of hardener
and Ratna also added a sonication step to the mixing process. Ratna found an increase in
the Ty of 11 °C and 22 °C at 2.5 and 5 wt% respectively, compared with reductions of 2-3
°C for the same concentrations found by Becker [46]. Both groups used Dynamic
Mechanical Analysis to identify the T.

Thelakkadan et al [48] added cloisite 30B, a nanoclay, to a DGEBA epoxy
hardened by polyoxypropylene diamine and examined the effect on Ty and dielectric
breakdown strength. They found that while the T4 was improved, it was not directly
correlated with the amount of nanoclay. In fact, for the concentrations that varied
between 0.5 to 10 wt%, the T, improvement was generally about 10 °C. On the other
hand, the dielectric breakdown strength showed a steady improvement up to 5 wt%
nanoclay, but then the improvement dropped off significantly at 10 wt%. At 5 wt% the
improvement in dielectric breakdown strength was 14%.

Wang et al [49] explored lower nanoclay concentrations using silane modified
montmorillonite in a DGEBA epoxy cured with DDS. They used concentrations of only
1, 2 and 3 wt% and found significant differences in thermal and mechanical properties
depending on the concentration. For Tg, the 1 wt% nanocomposite produced an increase
in Ty of 10 °C, while the higher concentrations produced a decrease. For strength, the 2
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wt% composite produced the best result of a 25% improvement over the neat system, but
the other nanocomposites also produced significant improvements. Stiffness on the other
hand increased nearly linearly with increasing modified clay content up to a 13%
improvement at 3 wt%.

Zaman et al [50] investigated the impact of modifying montmorillonite with a
polyether(mono)amine and a polyether(di)amine and adding the nanoparticles to a
DGEBA epoxy and polyoxypropylene hardener. They used a nominal nanoparticle
content of 2.5 wt%. In both systems, they found a small increase in T4 with the diamine
system having a better improvement of 7 °C. In stiffness and toughness, the diamine
modified system produced a better improvement (16% for stiffness and 58% for
toughness) than the monoamine modified system (10% for stiffness and 44% for
toughness). The strength for both nanocomposites showed a decrease from the neat epoxy
system, with the monoamine system dropping 18% and the diamine system showing a
7% worsening. Thus in all cases the diamine system performed better.

In other studies, Garea et al [51] looked at functionalizing the nanoclay with
monoamine and diamine adducts. They found a decrease in T4 with increasing modified
nanoclay content (from 5 wt% up to 30 wt%) in a DGEBA epoxy hardened by
polyoxypropylene diamine. Xu [52] et al compared the T4 for montmorillonite (clay),
polystyrene-co-methyl acrylate modified clay (PSMA) and polystyrene-co-acrylic acid
modified clay (PSAA) with an unfilled DGEBA/DDM epoxy system. They used 3 wt%
of clay and found a small increase in Ty in all the systems with clay, with the largest
increase of about 6 °C from the PSAA system.
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From these studies, there is no definitive answer as to whether nanoclay increases
or decreases the glass transition temperature. Even with the same materials, researchers
found conflicting results [46,47]. In general the changes were significant (often greater
than 10 °C). For stiffness and toughness, there were more consistent results. Nanoclay
improves the stiffness of the epoxy system and higher concentrations produce larger
improvements. Toughness was also improved by the incorporation of nanoclay. Only two
of these studies looked at strength: one saw an increase and the other a decrease. Thus,
there seems to be an opportunity for additional studies that clarify the variations found in

these studies.
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5.25 Alumina

Alumina (Al,O3) nanoparticles are spherical. Being an oxide, they are non-
conductive. The alumina nanoparticles in the studies summarized below were in the
range of 20-80 nm.

Zabihi et al [53] studied the impact of 50 nm alumina particles on the Ty of a
DGEBA epoxy hardened with poropane diamine. They found a significant increase in Ty
at the low wt% nanocomposites. The 1 wt% sample showed an increase of 20 °C; the 2.5
wt% sample had an increase of 17 °C. The higher wt% nanocomposites showed lesser
improvements with the 10 wt% sample increasing 9 °C and the 15 wt% sample
increasing only 4 °C.

Omrani et al [54] examined the impact of 50 nm alumina particles on the T, and
flexural stiffness of a DDM hardened DGEBA epoxy. They found that the optimal
concentration was 2 parts per hundred resin (phr). This concentration showed an 8 °C
increase in Ty and a 13% improvement in flexural stiffness. Both lower and higher
concentrations showed lesser improvements. In a similar study [55], Omrani used the
same 50 nm alumina, DGEBA, and a TETA hardener. In this study, they found that T
only improved for the lowest 0.5 phr alumina nanocomposites, while it decreased for
higher concentrations. However, in this study, the flexural modulus increased 60% at 2
phr, a much more significant result.

Jiang et al [56] looked at the effects of adding 80 nm alumina to a DDM hardened
DGEBA epoxy. They looked at concentrations between 1 and 4 wt % and found an
improvement in T4 of about 11 °C for all concentrations. They also found a reduction in
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the CTE for all concentrations with the reduction becoming more significant with higher
concentrations. In both the glassy and rubbery regions of the composites, the CTE was
reduced by about 5% at 4 wt% of alumina.

Jin et al [57] added 20 nm alumina nanoparticles to DGEBA epoxy cured with
DDM. They looked at concentrations from 5-15 wt% and found that the Ty, the CTE and
the storage modulus were all improved by adding alumina. The best T increase was 10
°C for the composite with 10 wt% alumina. For the storage modulus and the CTE, the
improvements increased with the concentration of alumina. The CTE was reduced 11%
in the glassy region and 6% in the rubbery region at 15 wt%. The storage modulus
increased 58% in the glassy region for the same highest concentration tested.

From this set of experiments, it can be seen that alumina can improve the
properties of DGEBA epoxy. In general, the Ty can be increased with certain
concentrations providing a significant increase of 10-20 °C. Stiffness also seems to
improve with higher concentrations providing more significant reinforcement. Similarly,

the CTE can be improved (reduced) by adding alumina nanoparticles.
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5.2.6 Carbon Nanotubes

Carbon nanotubes can be thought of as a rolled up sheet or sheets of graphene.
They have the same hexagonal pattern of carbon atoms, but instead of lying in a flat
sheet, they form a tube. A single walled carbon nanotube (SWCNT) has only one tube
and is one of the stiffest and strongest known materials. Multi-walled carbon nanotubes
(MWCNT) are made of two or more concentric tubes held together by Van der Waals
forces. Because the inner tubes can slide out, the MWCNTS provide less mechanical
reinforcement.

Many researchers have studied the incorporation of CNTSs into epoxies to improve
thermal and mechanical properties. To further improve the properties, many scientists
have tried functionalizing the nanotubes in order to improve the interfacial properties
between the nanotubes and the epoxy.

Zhou et al [58] added multi-walled carbon nanotubes to a DGEBF epoxy
hardened with an aromatic amine. The nanotubes had a diameter of 30-60 nm and a
length of 3-10 microns and were incorporated at a concentration of 0.1, 0.2, 0.3 and 0.4
wt%. They found that the flexural modulus increased with increasing concentration of
MWCNTSs up to a 12% increase at 0.4 wt%. However, the flexural strength was
optimized at 0.3 wt% with an improvement of 28%. Fracture toughness also reached its
peak at 0.3 wt% with an improvement in Ky, of about 30%. The authors did not report on
the Ty of the epoxy nanocomposites, but did note a small increase of about 2 °C for a

woven carbon fiber epoxy system by adding 0.3 wt% MWCNTS.
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Hsieh et al [59] added larger MWCNTSs with a diameter of 120 nm and a length of
140 microns to a MHHPA hardened DGEBA epoxy to explore the impact on toughness,
stiffness and Tg. They utilized concentrations of 0.1, 0.2, and 0.5 wt% and found that
toughness and stiffness improved with higher concentration levels. K. and Gy increased
by 42% and 68% respectively at a concentration level of 0.5 wt%. Stiffness also
increased with increasing concentrations up to 12% at 0.5 wt%. However, they reported a
small decrease in the T4 with higher concentration levels. The Ty dropped about 3 °C at
0.5 wt%. In looking at transmission optical microscopy images of the composites, the
authors noted significant agglomerations of nanotubes which may explain the drop in Ty.

Karripal et al [60] researched the effect of adding 60-90 nm MWCNTSs, both with
and without predispersion in acetone, to DGEBA epoxy with a polyamidoamine (PAA)
hardener. They used concentrations of 2, 4, 6, and 8 wt% and looked at the impact on T
and electrical resistivity. The Ty increased with increasing MWCNT content up to a
maximum improvement of 10 °C for 8 wt% MWCNT with no predispersion. For the
MWCNTSs predispersed in acetone, the improvements in Ty were consistently slightly less
at the same concentration levels. Interestingly, they found that SEM images of the epoxy
nanocomposites showed better dispersion of the MWCNTSs when they were predispersed
in acetone, in spite of these reported impacts on the Tg4. On the electrical resistance side,
however, the resistivities dropped more for the predispersed MWCNTS. Higher
concentrations led to more significant decreases, but all nanocomposites tested showed a

significant drop even at the lowest concentrations reported.
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Thakre et al [61] compared the impact of adding SWCNTSs and a conductive
grade CNT mixture of SWCNTs, DWCNTSs, and MWCNTS (with some extraneous
carbon black and metal elements) to a DGEBF epoxy with an aromatic diamine curing
agent. With the conductive grade CNTs costing much less than SWCNTSs, they were
trying to identify a more economical method of improving material properties. They
examined the changes in Ty and electrical conductivity at concentrations of 0.0015,
0.0225, and 0.03 wt%. Other than the 0.03 wt% concentration of conductive grade CNTSs,
they found significant increases of 11-20 °C in the T for the epoxy nanocomposites, with
the largest increases of 20 °C for the 0.03 wt% SWCNT and 0.0225 conductive grade
CNTs. Interestingly, the 0.03 wt% conductive grade CNTs only produced a 4 °C
increase in Tg. Electrical conductivity showed a significant increase starting at 0.015 wt%
for SWCNTSs and at 0.0225 wt% for the conductive grade CNTSs.

Guadagno et al [62] examined the effect of different dispersion approaches on the
T, elastic modulus, and electrical conductivity of adding 0.5 wt% MWCNTSs to a
DGEBA epoxy with a DDS curing agent with a BFz accelerant. Three different
approaches were used to combine the nanoparticles with the epoxy: a ball miller, an
ultrasonic probe, and a magnetic stirrer. All mixing approaches produced a significant
increase in Ty, With the magnetic stirrer and the ultrasonification both producing
improvements of 14 °C. The ultrasonicated nanocomposite also produced an increase of
about 30% in the elastic modulus at 40 and 60 C, and about 60% at 150 C, while the
other dispersion methods showed produced little change in the modulus. The researchers
also found a dramatic increase in conductivity upon adding the MWCNTS.
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Hosur et al [63] explored the impact of different mixing methods and
concentrations of MWCNTSs on the strength, stiffness, and T, of a DGEBA epoxy cured
with a tetra aliphatic amine. Concentrations levels of 0.2 and 0.4 wt% were incorporated
using a centrifugal mixer, a shear roller, and a solvent based approach in combination
with the 2 mixing approaches. In general, they found a small increase in both flexural
strength and stiffness. The best strength improvement of 20% came from the 0.4 wt%
sample incorporating all three mixing methods. This same concentration and mixing
approach produced an 11% improvement in flexural modulus. All concentrations and
mixing techniques showed an improvement in T4 from 8-12 °C.

Other researchers experimented with functionalized nanotubes in order to
improve the interfaces between the epoxy and the nanotubes. Jin et al [64] incorporated 1
wt% MWCNTSs into a DGEBA epoxy with a DDM curing agent. This group explored the
different impacts of pure, acid treated (sulfuric and nitric), and acid followed by dodecyl
amine treated MWCNTS on the T, storage modulus, and toughness properties. While
there was a small increase of 3 °C in T for the pure MWCNT epoxy nanocomposite, the
acid treated and amine treated MWCNTSs produced an improvement of 9 and 11 °C
respectively. Fracture toughness as measured by K. also showed improvements with the
best improvement of 38% achieved with the amine functionalized MWCNTSs. The storage
modulus, however, showed the reverse pattern with decreases for all of the
nanocomposites with the amine functionalized composite showing the largest decrease of

about 5%.
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Jeong Tai Kim et al [65] incorporated non-functionalized and silane (3-APTES)
functionalized MWCNTSs into a DGEBA epoxy with a polyamidoamine hardener (PAA).
The MWCNTSs were 10-15 nm in diameter and were added at 0.5 wt% to identify the
impact on T, flexural strength and flexural modulus. The unmodified MWCNTSs
produced a 3 °C increase in Ty while the silane functionalized MWCNTS produced a 7 °C
increase. Both flexural strength and flexural modulus followed this same pattern: an
improvement for the non-functionalized MWCNTS, and a larger improvement for the
functionalized ones. The silane functionalized MWCNTSs showed a 13% improvement in
stiffness and a 17% improvement in strength. In a similar study by the same group, Hee-
Cheul Kim et al [66] utilized the same materials, but included concentrations of 0.1, 0.2,
0.3, 0.4, along with the previously tested 0.5 wt%. They found the optimal concentration
for improving T4 was 0.3 wt % which produced an increase of 7 °C for non-
functionalized and 13 °C for silane functionalized MWCNTSs. Tensile strength was little
impacted by unmodified MWCNTSs, but 0.3 wt % silane functionalized MWCNTSs
produced an increase of 15%. The tensile modulus continued to increase with additional
MWCNT content, with the modified MWCNTs demonstrating better improvements. The
best result was an increase in tensile modulus of 66% at 0.5 wt% functionalized
MWCNTSs.

Silva et al [67] functionalized MWCNTSs with acid followed by TETA and looked
at the impact on T4 on a DGEBA epoxy hardened with TETA. They found a significant
increase in Ty of 18 °C for both 0.5 and 1.0 wt % nanocomposites for the functionalized
MWCNTSs. For non-functionalized MWCNTS, they found an increase of 15 °C for 0.5
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wt% but only a 3 °C increase of 1 and 3 wt%. They attributed this falloff to
agglomerations at higher concentrations.

Prado et al [68] chose to use melamine to add NH; groups to the surface of
MWCNTSs and DWCNTSs to investigate the impact on a DGEBA epoxy with an amine
hardener. They used a CNT concentration of 0.075 wt%. While they found small declines
in Tq of 3 °C and 2 °C for non-functionalized MWCNTs and DWCNTSs respectively, the
functionalized nanotubes produced an increase of 5 °C and 9 °C respectively.

Thus, in general, CNTSs can significantly improve the T, of various epoxy
systems. There is often an optimal concentration of CNTSs that produces the most
significant result and functionalizing nanotubes can also lead to a better result. Unlike
some of the other nanoparticles, CNTs seem to improve strength and stiffness properties
at the same time. Concentration levels are again important. Electrical conductivity is

drastically increased as well above certain concentration levels.
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5.3 Summary of Chapter 5

While research results are not always consistent, some generalizations can be
made about the impact of adding specific nanoparticles to epoxy systems. Silica generally
improves the toughness of the epoxy, but has mixed results on the strength, stiffness and
Tg. There are a limited number of studies of carbon black with epoxy, but preliminary
results show a significant improvement in Tgy. Graphene studies show an improvement in
T, stiffness, and toughness, but a reduction in strength. Studies on nanoclay show a
stiffness and toughness improvement, but inconsistent results for T4 and strength.
Alumina studies generally show improvements in Ty and stiffness, but the studies
reviewed for this paper did not include any results for strength or toughness. Studies with

carbon nanotubes frequently showed improvements in Tg, strength, and stiffness.
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CHAPTER 6 IMPACT OF NANOPARTICLES ON THE THERMAL AND
MECHANICAL PROPERTIES OF A MODIFIED CYCLOALIPHATIC

EPOXY

6.1 Introduction

As just discussed in the previous chapter, nanoparticles can have a significant
impact on the thermal and mechanical properties of epoxy systems. Due to various
factors including different epoxy systems, varying concentrations of nanoparticles,
diverse functionalization or basic nanoparticle properties and manufacturing methods,
and new approaches to disperse the particles, results from study to study are not always
consistent. Due to their less common use and higher cost, there has also been very little
research on cycloaliphatic epoxy nanocomposites. However, cycloaliphatic epoxies offer
significant advantages in high voltage applications, such as higher T4 and resistance to
ozone [5]. Thus, it was endeavored to conduct experiments to determine the impact of
nanoparticles on the thermal and mechanical properties of cycloaliphatic epoxies.

The findings in Chapter 2 demonstrated that a coating could significantly reduce
the chemical aging on the surface of the hybrid composite rod used in ACCC conductors.

However, in both Chapter 2 and Chapter 3 it was seen that physical aging of the epoxy
7



still had a detrimental effect on the flexural properties of the rods. Physical aging
increased the residual stresses in the composite components of the rods [6] and these
reductions led to reduced flexural properties. Therefore, the goal of the nanoparticle
experiments was to identify a nanoparticle and a concentration level that would
significantly impede physical aging. Because physical aging increases as the temperature
approaches T [6,8], the initial approach was to find a nanocomposite with an increased
Tg; thus, operating the conductor at a given temperature would place it further below its
glass transition temperature.

Of course, nanoparticles, as seen in the previous chapter, do not only impact the
glass transition temperature; other material properties are affected as well. Therefore it is
necessary to test the nanocomposites for changes in mechanical properties that could
affect the performance of the hybrid composite rods. Properties that are important in the
resin include tensile strength, stiffness, and elongation at failure; flexural strength,
stiffness, and strain at failure; and electrical conductivity, especially in the glass fiber
epoxy composite region which serves as a galvanic reaction barrier between the
aluminum and the carbon fiber epoxy composite region. For example, using too much of
a conductive nanoparticle, in excess of the percolation threshold, can reduce the
effectiveness of the galvanic reaction barrier.

Nanoparticles impact material properties in various ways. For example, on the
mechanical front, nanoparticles can change the stiffness of a material through load
transfer by means of covalent or weak van der Waals bonds. Physical aging in polymers
such as epoxies occurs through the movement and reconformation of polymer chains to a
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lower energy state (which also leads to reduction in free volume in the polymer) [8]. The
removal of van der Waals bonds allows the components of the polymer chains to reorient
through the rotation or change in conformation of its various bonds. These reorientations
allow the chains to slide and move to a lower energy state. However, thermal energy is
needed for both the melting of the van der Waals bonds (leading to a rubbery state, not a
full melting of the polymer) and for the rotation of the bonds. This thermal energy is
supplied when the polymer is heated.

While it has not been proven precisely how nanoparticles can impact physical
aging and the glass transition temperature, there are several ways that can be envisioned.
Any process that hinders the rotation of bonds or the movement of chains will raise the
glass transition temperature; conversely, an arrangement that enhances movement or
rotation could reduce the Ty.

A nanoparticle in an epoxy could mechanically block the rotation of a chain,
hindering its movement and raising the glass transition temperature. On the other hand, a
soft nanoparticle could act like a plasticizer and allow for easier rotation of polymer
bonds, thereby reducing the Tq. In the event that there is covalent bonding between the
nanoparticles and the polymer (see Chapter 7), the nanoparticle could act as a cross-linker
and thus block movement of the chains. A nanoparticle could also be pictured as a barrier
between polymer chains leading to additional free volume and easier rotation of bonds.
Additionally, any van der Waals bonding between the nanoparticles and the polymer
chains could have higher or lower energies than the van der Waals bonds between the
chains themselves, leading to higher or lower thermal energy requirements to melt these
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bonds. Thus the nanoparticles can impact the glass transition temperature of the epoxy
systems.

Experiments were therefore conducted to try to identify an optimal nanoparticle
and concentration level that could protect against physical aging and preserve other
important mechanical properties.

6.2 Experimental
6.2.1 Materials

Two different epoxy systems were used. One was graciously supplied by Lindau
Chemicals and the other by CTC Global. The Lindau system was a cycloaliphatic epoxy,
Lindoxy 190, with an anhydride hardener, LS 252. The CTC Global system was similar
to, but not exactly the same as, the system used in the actual manufacturing of ACCC
rods. It, too, was a cycloaliphatic epoxy with an anhydride hardener. Middleton et al [5]
demonstrated that the two resin systems are very similar.

Based on the results from Chapter 5, three different types of nanoparticles were
selected to be added to the epoxy systems: graphene, silica, and carbon black.
Researchers at Michigan Technological University (MTU) including Danielle Klimek-
McDonald and Dr. Julie King performed the actual manufacturing of the nanocomposites
to support this research.

Two different graphenes were used, M-5 and TC-307. Graphene M-5 was
supplied by XGsciences and consists of short stacks (6-8 nm) of graphene nanoplatelets

with an average particle diameter of 5 microns [69]. The M-5 was used in combination
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with the Lindau epoxy system. For the CTC resin system, Asbury TC307 Graphene
Nanoplatelets were used. These nanoplatelets are about 1 micron in diameter [70].

Two types of silica were also used. With the Lindau systems, Aerosil A200
(average particle size 12nm) fumed silica was incorporated while in the CTC Resin a
proprietary silica from Cabot was used. Three proprietary carbon blacks, labeled CB1,
CB2, and CB3, also from Cabot, were included in the CTC resin system.

Base concentrations of 1 wt% of nanoparticles were applied for all three types of
nanoparticles and some variations were then manufactured and tested depending on
initial results.

6.2.2 Experiments

Various thermal, mechanical, and electrical tests were conducted at both MTU
and at the University of Denver to characterize the impact of adding nanoparticles.

Dynamic Mechanical Analysis (DMA) on a TA Instruments Q800 DMA was
performed at both sites (Composite Technology Development graciously allowed the use
of their TA Q800 DMA for samples tested in Denver). The glass transition temperature
was determined based on the maximum of the tan 8. At MTU, a single cantilever setup
was used with a sample size of 3 mm thick, 12 mm wide and 35 mm long, with the clamp
distance 17.5 mm. The temperature was swept from 50 °C to 290 °C at 3 °C per minute
with an amplitude of 30 um and a constant frequency of 1 Hz. At DU, a dual cantilever
setup was used with sample sizes of 52 mm long, 13 mm wide, and 3 mm thick with the
clamp distance of 35 mm. The temperature was swept from 35 °C to 290 °C at 5 °C per
minute with an amplitude of 15 um and a frequency of 1 Hz. Comparative samples of
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neat CTC resin analyzed at DU and MTU showed negligible differences in the
determined Tj.

Tensile tests were conducted at MTU according to ASTM D638 utilizing a
InstruMet Sintech screw-driven mechanical testing machine and standard tensile test
specimens. Flexural tests were conducted at DU utilizing a MTS 858 Table Top System
test frame with a 3-point bend fixture. Samples were 61 mm long, 12.7 mm wide, and 3.2
mm thick. The test fixture had support pins with a spread of 50.8 mm. Samples were
loaded at a constant crosshead displacement of 1 mm / minute and measurements were
taken of displacement and load until failure. Electrical tests were conducted at MTU
using 3 mm thick disks with a diameter of 6.4 cm in a Keithley 6517A Electrometer/High
Resistance Meter with an 8009 Resistivity Test Fixture.

6.3 Results and Discussion

Table 6-1 lists the results of the tests conducted on the various epoxy
nanocomposites. In this table, green indicates an improvement in properties with respect
to the application in hybrid composite rods while red indicates a worsening. For example,
a decrease in resistivity is labeled as a worsening since it reduces the impact of the
galvanic reaction barrier. Of course, in other applications, creating a more conductive
polymer may be considered beneficial. Due to a limited number of samples, not all tests

were conducted on all epoxy/nanoparticle composites.
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As noted in the prior chapter, results from incorporating nanoparticles are highly
varied and may depend on dispersion, concentrations, functionalization, specific type of
nanoparticle, size of nanoparticles, type of epoxy, and other factors. Even in highly
experienced laboratories, results may not always be necessarily consistent.

Recalling that the goal was to raise the T4 while preserving the other properties,
these initial forays into epoxy nanocomposites cannot be considered successful, but they
are informative.

Only three of the tested epoxy nanocomposites showed any increase in Tgin
comparison with the neat epoxy systems: 1 wt% silica and 1 wt% M-5 graphene in the
Lindau resin system and 1 wt% Graphene TC307 in the CTC system. However these
increases were minor with the maximum increase only 4 °C for the M-5 graphene. All
other nanocomposites showed minor to moderate decreases (1-8 °C) in T,

For graphene epoxy nanocomposites tested in this study, T4 showed only modest
changes. Aside from the small increase noted above, there was little impact on this
property at 1, 2, and 4 wt% concentrations when tested with the CTC system. These
results are different from those found in studies reviewed in the prior chapter, where in
general, there was an improvement in the glass transition temperature. In the current
study, tensile strength showed a significant drop with the inclusion of graphene but in
general a small increase in stiffness. Higher loadings of graphene led to less strong but
more stiff nanocomposites. These results are consistent with those in prior studies.
Seemingly, there is load transfer to the graphene particles to improve the stiffness, but
there may be stress concentrations around the sharp particles that lead to reduced
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strength. The electrical resistivity at 4 wt% showed a 2 order of magnitude reduction
from the neat epoxy, but still was an electrical insulator at 2.09 E14 ohm-cm.

For the three 1 wt% carbon black nanocomposites, there was a meaningful drop in
T, 6-8 °C. This result differs with that found in the literature noted in the prior chapter,
where significant improvements were seen. However, there were only two studies found
that looked at the impact of carbon black on the glass transition temperature of epoxies
and neither of these used a cycloaliphatic epoxy system. The carbon blacks utilized for
this dissertation also diminished the tensile strengths of the epoxy, but had only minor
impact on the stiffness, with CB2 having a minor increase while CB1 and CB3 had minor
decreases. The electrical resistivities of all three carbon black composites dropped, but
were still in the insulating range, meaning that the percolation threshold was not yet met.

Silica may be the best candidate of the three as the 1 wt% nanocomposite showed
a slight 3 °C increase in Tg with only a minor drop in strength and stiffness. Other
researchers had found mixed results in Tg, strength, and stiffness as noted in Table 5-1.
Since silica is non-conducting, higher loadings may be possible which could lead to
different results.

Looking at the results from the property point of view produces some useful
insights. From the strength standpoint, all of the nanocomposites showed reduced
strength, but silica performed the best. Graphene TC307 and CB2 showed roughly
equivalent results. Higher loadings of graphene further reduced the strengths. On the
stiffness side, the results were generally opposite: silica performed the worst with a
reduction in stiffness, while graphene (both M-5 and TC307) showed an improvement.
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CB2 again performed the same as TC307, while the other two carbon black formulations
showed a slight worsening in strength. On T, 1 wt% loadings of graphene produced
small increases and higher graphene loadings produced small reductions. 1 wt% Silica
produced a small increase and 1 wt% of all three carbon blacks produced moderate
decreases.

6.4 Summary of Chapter 6

Incorporating nanoparticles into epoxy systems produces changes in mechanical
and thermal properties. For some properties such as stiffness, general composite
techniques, such as the rule of mixtures, are effective as predicting the changes in
material properties, provided there is enough load transfer to the reinforcing nanoparticle.
For other properties such as Tg or strength, the task is not as simple. Much remains to be
learned about the mechanisms that create changes in these bulk properties in the
nanocomposites. Research conducted by others and research conducted in this study
reinforce this issue. This study has attempted to produce nanocomposites with improved
properties, but has not succeeded.

Two approaches can be taken moving forward. More types, concentrations,
combinations, or functionalizations of nanoparticles or different dispersion methods
could be manufactured and tested, but this is a very tedious process. A different approach
would be to try to understand the interactions between nanoparticles and the epoxy
polymer in order to better predict resulting properties. The next chapter explores one way

of doing this: looking at the fundamental interactions of epoxy and graphene.
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CHAPTER 7 AB INITIO MODELING OF THE INTERACTION BETWEEN
GRAPHENE AND THE COMPONENTS OF A CYCLOALIPHATIC EPOXY

SYSTEM

7.1 Introduction

While finite elements models break a material into small components in order to
understand the interactions of pieces of the material and molecular dynamics models look
at the interactions at the atomic level using an applied potential to understand the
interactions between atoms, ab initio calculations go a full level deeper. These quantum
chemical computations analyze interactions at a sub-atomic level, utilizing the nuclei and
electrons of all of the atoms. It makes no a priori assumptions about bonds, but instead
calculates the energy of the electrons and the atomic nuclei, utilizing the interactions
among all of these subatomic particles. There are five components of the total energy of
the system: the kinetic energies of all of the electrons (Te), the kinetic energies of all of
the nuclei (Tn), and the potential energies created by the electrical interactions of all pairs
of nuclei (Unn), all pairs of an electron and a nucleus (Uen), and all pairs of electrons
(Uee). Bonds are formed if the lowest energy geometrical configuration of the atoms

produces nearby atoms with an electron buildup between them to act as the glue.
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Computational chemistry programs try to numerically solve the Schrédinger
equation and produce a configuration that minimizes the total energy of a system.
Because the systems that are being analyzed in this research are generally stable, it is
assumed that Tn is negligible (the Born-Oppenheimer assumption [71]). While the kinetic
energy of the electrons, the nuclei-nuclei repulsions, and the electron-nuclei attractions
are somewhat straight-forward to calculate, the electron-electron repulsions are much
more time consuming to calculate.

In this study Gaussian 09 [72], a commercially available computational chemistry
package, was utilized to calculate the energies of three base molecules as well as the
energies produced by all three pairs of two of the molecules when chemically bonded.
Additionally, the transition state for the bonding reaction was determined in order to
analyze the activation energy required for the bonding reaction. The three molecules
utilized were: graphene (with hydrogen caps on the edges), a cycloaliphatic epoxy
monomer (3,4-Epoxycyclohexylmethyl 3, 4-Epoxycyclohexane Carboxylate), and nadic
methyl anhydride (NMA, 8-Methyl-4-oxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione). These

three molecules are presented in Figure 7-1, Figure 7-2, and Figure 7-3 respectively.
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Figure 7-1. Graphene

Figure 7-3. Nadic methyl anhydride (NMA)
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7.2 Modeling Approach

To determine the likelihood of chemical bonds being formed between molecules
in a mixture of graphene nanoparticles, cycloaliphatic epoxy monomers, and NMA, the
curing agent, several steps needed to be taken. First, the energies of the base molecules
were calculated using the semi-empirical approach AM1 in Gaussian 09. Then, three
pairings of the molecules were considered: 1) cycloaliphatic epoxy with NMA, 2)
cycloaliphatic epoxy with graphene, and 3) NMA with graphene.

The first step in a polymer cross linking chain reaction is the hydroxylization of
one of the component molecules. For the cycloaliphatic epoxy with NMA case, NMA
was chosen to be hydroxylated. Thus a hydroxyl group was added to the NMA molecule,
splitting the ring and leaving two free
hydroxyl end groups (see Figure 7-4).
The energy of this new molecule was
calculated. Then the appropriate

crosslinking bond was formed to create

an NMA-cycloaliphatic molecule

Figure 7-4. Hydroxylated NMA

(Figure 7-6) and again the energy was
calculated. The difference between the energy of the crosslinked molecule and the sum of
the energies of the hydroxylated NMA and the cycloaliphatic monomer as stand-alone

molecules is the bond stabilization energy or simply the bond energy.
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Figure 7-5. Covalently bonded cycloaliphatic epoxy and NMA

For the remaining two reactions, the graphene sheet was hydroxylated, with one
hydroxyl group on each side of the sheet (see Figure 7-5). Note that commercially
available graphene is not 100 % carbon. For example, M-5 graphene’s carbon content is
about 99.5% [69]; thus it is
likely to have some oxygen
based groups such as hydroxyl
groups as pendants. These

hydroxyl sites then become

potential ring-opening bonding

Figure 7-6. Hydroxylated graphene

sites when interacting with
either a cycloaliphatic epoxy or an NMA molecule. The energy of the hydroxylated
graphene was calculated as well as the energy of each of the two bonded molecules (see

Figure 7-7 and Figure 7-8). The stabilization energy for the graphene cycloaliphatic
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epoxy bond and the graphene NMA bond was then calculated as the differences between

the energies of the bonded molecules and the sum of each pair of starting reactants.
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Figure 7-7. NMA covalently bonded to hydroxylated
graphene

Figure 7-8. Cycloaliphatic epoxy monomer covalently bonded to hydroxylated
graphene
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However, there is one other factor to be considered. In a chemical reaction, the
reaction path passes through a transition state (Figure 7-9). This transition state is almost
always at a higher energy level than the sum of the energies of the reactants. This
increase in energy is known as the activation energy. The higher the activation energy,

the more energy required to allow the reaction to proceed. In the curing reaction

discussed here, this energy Reaction Path

Sum of energies of
reactants

comes from heat. Additionally,

Activation Energy

a bonding reaction can be

reversed. Generally the

Energy of product

dissociation reaction follows the ———

reverse path of the bonding

reaction, but if the bond energy

is significant, then the activation Figure 7-9. Activation and Bond Energy

energy for the dissociation reaction is considerably higher than the activation energy of
the bonding reaction and is less likely to occur, leaving a considerable likelihood of the
bond to remain in place. Thus the likelihood of having a bonded molecule is based on
both the bond energy and the activation energy.

Gaussian 09 provides the capability of finding the geometry and energy of a
transition state given a starting state, an ending state, and, optionally, a guess at the
transition state. To confirm that a transition state has been found, it is necessary to check
that there is one and only one imaginary vibrational frequency in the transition state.
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Having a single imaginary vibrational frequency indicates that the transition state is a
minimum in the potential energy surface of the geometry of the molecule in all but one
direction where it is a maximum. Thus there is a saddle point for the reaction path.
Using the QST3 option in Gaussian 09, the transition states for all three pairings
of molecules (all three potential bonding reactions) were calculated. Thus both the bond
energies and the activation energies were calculated. The transition states are depicted in

Figure 7-10, Figure 7-11, and Figure 7-12.

Figure 7-10. Transition state for cycloaliphatic epoxy and NMA
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Figure 7-11. Transition state for graphene and NMA

Figure 7-12. Transition state for graphene with
cycloaliphatic epoxy
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7.3 Results and Discussion
The results of the calculations are shown in Table 7-1. The bonding of the epoxy
system components, NMA and the cycloaliphatic epoxy, showed the greatest bond
energy and the lowest activation energy. However, with a curing cycle that includes
temperatures of 200 °C, it is more than likely that there is the possibility of covalent
bonding between NMA and graphene, provided some of the graphene has hydroxyl

groups.

Table 7-1. Bond energy and activation energy of pairings of molecules

NMA/ Cycloaliphatic Epoxy Graphene with Cycloaliphatic Epoxy Graphene with NMA
kcal/mole kcal/mole kcal/mole
A Cycloaliphatic Monomer -87.4 A Cycloaliphatic Monomer -87.4 A NMA Monomer -41.3
B NMA Monomer -41.3 B Graphene 149.4 B Graphene 149.4
C Hydroxylated NMA -154.4 C Hydroxylated Graphene 86.9 C Hydroxylated Graphene 86.9
Hydroxylated Hydroxylated
NMA/Cycloaliphatic Hydroxylated Graphene/ Graphene/NMA
Monomer -315.2 D  Cycloaliphatic Monomer -29.8 D  Monomer 4.0
E Transition State -231.2 E Transition State 63.6 E Transition State 74.1
(A+C)-D Bond Energy 73.4 (A+C)-D Bond Energy 29.3 (A+C)-D Bond Energy 41.6
E-(A+C) Activation Energy 10.6 E-(A+C) Activation Energy 64.1 E-(A+C) Activation Energy 28.5
7.4 Summary of Chapter 7

While this chapter analyzes one possible interaction between graphene
nanoparticles and a specific cycloaliphatic epoxy, much research remains to be performed
in the field of nanocomposites to fully understand the mechanisms that lead to changes in
thermal and mechanical properties. Not all nanoparticles will form covalent bonds with
all resin systems. However, as noted in Chapter 5, many different nanoparticles can
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impact the performance of various epoxies. Thus there are other interactions and
mechanisms in play which need to be researched in order to be fully understood and in

order to design optimal systems.
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CHAPTER 8 GENERAL DISCUSSION AND FINAL CONCLUSION

New polymer core HTLS conductors can transmit 2-3x the amount of current
through the same size and weight transmission lines as traditional aluminum and steel
(ACSR) lines. In order to reach this level of transmission, however, the lines must be
operated at temperatures much higher than used for ACSR. The genesis of this research
came from a simple manufacturer claim that the hybrid composite rods containing
unidirectional glass and carbon fibers in an epoxy matrix could operate at 180 °C for an
indefinite period of time [1]. Burks and Kumosa [4] found this not necessarily to be the
case: aging at 180 °C under atmospheric conditions for twelve months significantly and
dramatically reduced the flexural properties of composite rods. Thus, this dissertation set
out to find approaches to reduce the impact of thermal aging on polymer based
composites using innovative multiscale approaches both experimentally and numerically.

Initially, the degradation mechanisms in the hybrid rods were not fully
understood. While there was definite aging of the composites, the specific reasons why
the reductions in properties slowly progressed in the first nine months of aging, followed
by a dramatic dropoff after twelve months was not known. Middleton et al [6] modeled
the effect of thermal aging on the residual stresses in the glass fiber and carbon fiber
sections of the composite and found significant buildup with increases in both time and

aging temperature due to physical aging of the epoxy. This research gave a clue as to
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what could be the cause of the initial slow but persistent reduction in flexural properties
during the first nine months, but did not explain the rapid reduction after 9 months.

The early part of the research for this dissertation set out to try to understand if the
rapid dropoff in properties between nine and twelve months could be reduced or
eliminated. It was hypothesized that chemical aging through thermal oxidation of the
surface was responsible for this reduction. Applying a barrier coating to the surface of the
rods as described in Chapter 2 demonstrates that there truly is a different mechanism in
play. While there remained a slow and continuing decline in the flexural properties of the
rods during the first nine months of aging, there was no dramatic decline after twelve
months.

To support the hypothesis that chemical aging can change the initiation point and
source of failure in the uncoated rods after thermal aging, a finite elements model was
built. While this simple model utilized a microscopic notch instead of a sharp crack, it
was an innovative approach that demonstrated that stress concentrations at the tip of the
notch are sufficient to create a new location where shear stresses are at a maximum in the
composite materials of the rod. These stress concentrations, however, do not fully explain
the similar dramatic reduction in flexural stiffness seen after twelve months. There are
several possible causes of this decline in modulus. One theory is that the residual stresses
in the composites between nine and twelve months of aging created enough damage to
the interface throughout the bulk of the material that the load transfer from the matrix to
the fibers was severely compromised. This would explain the 14% drop in flexural
modulus. However, optical and SEM imaging of the composites utilized in this research
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did not reveal any noticeable interfacial damage. Additionally, had this physical aging
been the source of the dramatic decline, the same result should have been seen in the
coated rods, but it was not. Therefore, it was presented that the surface damage to the
rods through chemical oxidation was sufficient to reduce and eliminate the mechanical
contribution of enough of the outer region of the rods to produce this dramatic reduction
in stiffness. An analytical model was then developed that showed that the damage would
need to be about 270 microns in thickness which was a little larger than the
approximately 150 micron oxidation depth that Barjestah et al [3] found in their aging
experiment. Thus, Chapter 2 was a proof of concept that a coating that can significantly
reduce surface oxidation can delay the onset of the dramatic dropoff in flexural properties
of the hybrid composite rods. While the fluoropolymer material used was effective under
the laboratory conditions, it might not survive the operating conditions that would be
experienced in-service. For example, this kind of material will likely not maintain its full
protection when subjected to fretting conditions from Aeolian vibrations or other
degrading conditions experienced in service. Therefore, in future research, experiments
will need to be designed and conducted to test this coating and if necessary to identify
other materials with similar protective capabilities that are able to withstand the extreme
environment in which the conductors operate.

Chapter 3 explored the impact of an even higher aging temperature (200 °C) on
the performance of the rods and the coating. It was assumed that the higher temperature
would speed thermal aging, both chemical and physical. Physical aging seemed to follow
the expected pattern: the flexural load at failure dropped more at each aging duration than

101



the corresponding result at 180 °C for both the coated and the uncoated rods. The results
followed the pattern of increasing residual stresses modeled by Middleton et al [6] for
higher temperatures and longer durations. However, the chemical aging did not seem to
follow the theorized pattern. Instead of a dramatic decline before twelve months of aging
for the uncoated rods which would have occurred if the chemical aging had also been
accelerated by the higher temperature, there was in fact no decline up to and including
twelve months for either the uncoated or the coated rods. There was also no reduction in
the flexural modulus through twelve months. Thus, the chemical aging impact seemed to
have been significantly reduced at the higher temperature. This initially perplexing result
was eventually resolved by integrating results from Barjestah et al [3] who found that
oxidation thickness into the transverse surface of the rod was not as deep for 200 °C as
for 180 °C for the same aging times. Their analysis showed that while the rate of
diffusion of oxygen into the epoxy increased with increasing temperature, the rate of
consumption of the oxygen (reaction with the epoxy) grew at an even faster rate and
therefore the oxygen did not penetrate as far into the polymer matrix. Therefore the
surface damage would be limited.

This reduced depth of damage at higher temperatures combined with the required
damage depth for diminished stiffness calculated in Chapter 2 is consistent with the
maintained flexural stiffness at 200 °C. However, there remains an open question as to
whether limiting the thickness of the surface damage also impedes the development of
microcracks of sufficient size and sharpness to limit any dropoff in flexural load at

failure. It might have been expected that the stiffness would be maintained, but the load
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at failure for the uncoated rods still would show a dramatic dropoff at some point in time.
Future research will need to be performed to continue to understand all of the
mechanisms in play.

It is also interesting to note that at all aging durations at both 180 °C and 200 °C
(with the exception of twelve months at 180 °C when chemical aging is presumed to have
impacted the results for the uncoated rods), the coated rods had a slightly lower (7-20%,
with an average reduction of 12%) load at failure than the uncoated rods. This could be a
coincidence due the scatter of the results, or it could indicate that something involved in
the coating process weakens or damages the rods slightly. In the coating process, the rods
had been lightly sandblasted to improve the adhesion of the coating. While there were no
visible defects in the fibers, there may have been microscopic damage leading to the
worsened results. However, these imperfections would have been limited to the surface
and may not be consistent with the hypothesis that the initiation point for failure due to
physical aging occurs in the bulk of the material and not on the surface. Again, more
research is needed to understand all of the complex mechanisms involved.

Chapters 2 and 3 provide significant evidence that a coating that reduces surface
oxidation also significantly improves the performance of the rods when subjected to long-
term thermal aging at 180 °C. However, Middleton et al [6] also showed that residual
stresses increase with higher temperatures. Conversely, lowering the operating
temperature would reduce the physical aging impact. Transmitting less current would
reduce the resistive heating and thereby lower the operating temperature. However, this

would diminish one of the advantages of the advanced HTLS conductor. Therefore, the
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research in Chapter 4 was conducted to determine if a coating on the surface of the
aluminum that increases its emissivity could significantly reduce the temperature of the
conductor for a given level of current. A simple finite elements model was created to
compare the temperature of the entire conductor with and without an enhanced emissivity
coating. The results were also compared to the temperatures expected with varying levels
of steady wind. The model determined the amount of resistive heating that would lead to
a steady state temperature of 180 °C for the entire conductor if there were no wind and no
radiative cooling. This same amount of heating was then applied with differing levels of
emissivity and different wind speeds to find the new steady state temperatures. As
expected, higher emissivities and higher wind speeds reduced the steady state
temperatures. There was a 30 °C drop for an emissivity increase from 0.3 to 0.9. While
the impact of the emissivity enhancement could be more than matched by a steady wind
of 0.89 m/s (3.2 km/h), the emissivity increase would be quite beneficial on a very calm
day.

An experiment was then conducted to validate the modeled results. An ACCC
conductor was painted black to increase its emissivity. The black conductor and a control
untreated conductor were both heated to 80 °C and then allowed to cool in a room
temperature atmospheric environment. The black conductor cooled up to two times faster
than the uncoated, again indicating the increase in radiative cooling and the value of an
increase in emissivity. Of course, at a given wavelength of electromagnetic radiation the

emissivity of an object is equal to its absorptivity; therefore the appropriate coating for
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in-service use must be carefully designed to avoid increasing the absorption of energy
from the sun which would be detrimental to the desired outcome.

In addition to surface coatings, the research of this thesis then explored ways of
reducing the impact of thermal aging on the bulk of the polymer material utilized in the
ACCC conductor. If physical and chemical aging could be retarded, the conductors could
then operate at high temperatures for longer periods of time and still maintain appropriate
safety margins. Therefore the research turned to identifying ways of modifying the epoxy
matrix of this conductor to improve its thermal performance, while still protecting its
important mechanical characteristics.

Much research in recent years has focused on the property enhancement
capabilities of nanoparticle fillers. Chapter 5 is a review of recent research of the impact
of various types of nanoparticles on epoxies. The goal was to identify nanoparticles that
could be added to the cycloaliphatic epoxy matrix in order to increase its glass transition
temperature (to slow the physical aging processes) while still protecting its strength and
stiffness that are critical to its performance in the conductor rods. Six different types of
nanoparticles were reviewed: silica, carbon black, graphene, nanoclay, alumina, and
carbon nanotubes. In general, published research was conducted on basic epoxies such as
DGEBA or on specific epoxies for a specific aeronautical application. Little research was
available on cycloaliphatic systems such as those utilized in the conductor rods, but it
was felt that summarizing the results would give some insights into potential candidates.

The results were somewhat sporadic and even confusing due to the use of various
resin systems, concentration levels, nanoparticle functionalization approaches, and
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dispersion methods. In some experiments, improvements in glass transitions temperatures
were noted for specific nanoparticles, while the opposite result was presented in other
papers for very similar systems. Many nanocomposite systems did not show monotonic
results with increased concentration levels of nanoparticles; oftentimes there was an
optimal concentration level to maximize a specific property. Carbon nanotubes showed
the most promising results, but because of their high cost and complicated dispersion
protocols utilized in the papers, it was decided that these would not be appropriate for a
large-scale commercial solution. Therefore, of the remaining particles, the top candidates
of graphene, carbon black and silica were selected for initial analysis.

Chapter 6 presents results of preliminary experiments combining nanoparticles
with the cycloaliphatic epoxy system from Lindau chemicals and a system from CTC
Global that is believed to be quite similar. The initial results do not yet identify a good
candidate to be incorporated in the resin system. While 1 wt% graphene and silica
produced a small increase in T,, the increase was too small to be considered a major
success. Additionally, there was a reduction in the other mechanical properties for these
very same nanocomposite systems. However, it is still not clear whether these systems
should be ruled out. The success of the dispersion approach still needs to be evaluated
and if the nanoparticles are not well dispersed, other approaches need to be identified and
tried. It may also be beneficial to functionalize the nanoparticles in order to get a better or
different interaction with the epoxy.

In Chapter 7 the interaction of graphene with the epoxy system was studied at the
ab initio level. Graphene was selected because of its prevalence in experimental research
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and because it is one of the simplest systems to model using quantum chemistry which is
limited in the number of atoms that can be modeled. It is noted that there needs to be
oxygen based groups present on the graphene in order to get a chemical interaction
(covalent bond) with the epoxy. These types of interactions can help with dispersion.
Even without chemical bonds, the functional groups on the nanoparticles may help
increase the van der Waals interactions between the epoxy and the nanoparticles. The
value of these additional interactions may overcome what is lost in properties in the
nanoparticles themselves once they are no longer pristine. For example, graphene oxide
may be a better candidate for this application than graphene (and it also reduces the
conductivity of the nanocomposite, thereby allowing for better maintenance of the
galvanic layer). Additionally, there need to be more concentration levels tried. As noted
in Chapter 5, increased weight percentages do not necessarily mean better results. Very
low concentration levels of carbon black in specific epoxy systems led to big changes in
material properties. Either more concentration levels need to be manufactured and tested
or the ab initio approach in Chapter 7 needs to be greatly expanded in order to understand
the nanoparticle epoxy interactions and therefore more intelligently identify and select
candidate nanoparticles. Of course, multiscale modeling will need to come into play as
the number of atoms that can be modeled with a true ab initio approach is limited by

today’s techniques and computing power.

Overall, this dissertation presents a broad array of innovative approaches,
experimental results, and numerical analyses that lead to an improved design of polymer
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matrix composites utilized in elevated temperature applications in general and
specifically in polymer core composite conductors. First, a novel approach of utilizing a
barrier coating that may prevent thermal oxidation was proposed and demonstrated to
dramatically improve the performance of the rods after being subjected to long-term
thermal aging. A unique finite elements model was developed to explain the source of the
improvements in this approach and supported the newly discovered explanation of the
transition from physical aging to chemical aging based damage being the source of
flexural failure. The simple and effective coating approach should be commercially
scalable. Secondly, it was identified that the diminution of flexural properties due to
chemical aging is not as significant at an even higher temperature of 200 °C as it is at 180
°C. Again, the experimental result was supported by a numerical model and an
amalgamation of results from other researchers. This discovery also reinforces the
hypothesis that chemical aging is the source of the dramatic dropoff in flexural properties
after 12 months of aging of the uncoated rods at 180 °C. The value of utilizing an
enhanced emissivity coating to reduce the operating temperature of the conductor was
proven experimentally and numerically. Lastly, significant progress was made in the
evaluation of incorporating nanoparticles in the epoxy matrix to slow the physical and
potentially chemical aging process and increase the in-service life of the polymer core
composite conductors. The comprehensive research thus completed for this dissertation
has significantly contributed to the rapid improvement, acceptance, and deployment of

the polymer based HTLS conductor technology in this country and worldwide.
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