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System Frequency Support of Permanent Magnet Synchronous Generator-Based
Wind Power Plant

Abstract

With ever-increasing penetration of wind power into modern electric grids all over the world, a trending
replacement of conventional synchronous generators by large wind power plants will likely result in the
poor overall frequency regulation performance. On the other hand, permanent magnet synchronous
generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become
one of the most promising wind turbine technologies thanks to various advantages. It possesses a
significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to
enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of
active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through
full-power converter.

First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for
incorporating the inertial response and frequency regulation of VSWT into the system frequency
regulation. Besides, control classifications, fundamental control concepts and advanced control schemes
implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along
with a comparison of the potential frequency regulation capabilities of four major types of WTs.

Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind
turbine (CART2-PMSG) integrated model representing the typical configuration and operation
characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side
converter control schemes, including rotor speed-based control and active power-based control, are
integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT)
operation over a wide range of wind speeds, respectively.

Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented
into the CART2-PMSG model based on rotor speed control. The proposed control scheme is achieved
through the coordinated control between rotor speed and modified pitch angle in accordance with
different specified wind speed modes. Fourth, an improved inertial control method based on the
maximum power point tracking operation curve is introduced to boost the overall frequency support
capability of PMSG-WTGs based on rotor speed control. Fifth, a novel control method based on the torque
limit (TLC) is proposed for the purpose of maximizing the wind turbine (WT)'s inertial response. To avoid
the SFD caused by the deloaded operation of WT, a small-scale battery energy storage system (BESS)
model is established and implemented to eliminate this impact and meanwhile assist the restoration of
wind turbine to MPPT mode by means of coordinated control strategy between BESS and PMSG-WTG.

Last but not the least, all three types of control strategies are implemented in the CART2-PMSG integrated
model based on rotor speed control or active power control respectively to evaluate their impacts on the
wind turbine's structural loads during the frequency regulation process. Simulation results demonstrate
that all the proposed methods can enhance the overall frequency regulation performance while imposing
very slight negative impact on the major mechanical components of the wind turbine.
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Abstract

With ever-increasing penetration of wind power into modern electric grids all
over the world, a trending replacement of conventional synchronous generators by large
wind power plants will likely result in the poor overall frequency regulation performance.
On the other hand, permanent magnet synchronous generator wind Turbine System
(PMSG-WTG) with full power back to back converters tends to become one of the most
promising wind turbine technologies thanks to various advantages. It possesses a
significant amount of kinetic energy stored in the rotating mass of turbine blades, which
can be utilized to enhance the total inertia of power system. Additionally, the deloaded
operation and decoupled control of active and reactive power make it possible for PMSG-
WTG to provide a fast frequency regulation through full-power converter.

First of all, a comprehensive and in-depth survey is conducted to analyze the
motivations for incorporating the inertial response and frequency regulation of VSWT
into the system frequency regulation. Besides, control classifications, fundamental
control concepts and advanced control schemes implemented for auxiliary frequency
support of individual WT or wind power plant are elaborated along with a comparison of
the potential frequency regulation capabilities of four major types of WTSs.

Secondly, a Controls Advanced Research Turbine2-Permanent Magnet

Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the



typical configuration and operation characteristics of PMSG-WT is established in
Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes,
including rotor speed-based control and active power-based control, are integrated into
this CART2-PMSG integrated model to perform Maximum Power Point Tracking
(MPPT) operation over a wide range of wind speeds, respectively.

Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is
developed and implemented into the CART2-PMSG model based on rotor speed control.
The proposed control scheme is achieved through the coordinated control between rotor
speed and modified pitch angle in accordance with different specified wind speed modes.
Fourth, an improved inertial control method based on the maximum power point tracking
operation curve is introduced to boost the overall frequency support capability of PMSG-
WTGs based on rotor speed control. Fifth, a novel control method based on the torque
limit (TLC) is proposed for the purpose of maximizing the wind turbine (WT)'s inertial
response. To avoid the SFD caused by the deloaded operation of WT, a small-scale
battery energy storage system (BESS) model is established and implemented to eliminate
this impact and meanwhile assist the restoration of wind turbine to MPPT mode by means
of coordinated control strategy between BESS and PMSG-WTG.

Last but not the least, all three types of control strategies are implemented in the
CART2-PMSG integrated model based on rotor speed control or active power control
respectively to evaluate their impacts on the wind turbine’s structural loads during the
frequency regulation process. Simulation results demonstrate that all the proposed
methods can enhance the overall frequency regulation performance while imposing very

slight negative impact on the major mechanical components of the wind turbine.
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Chapter 1 Introduction

1.1 Background and Motivation

Nowadays, a growing penetration of variable-speed wind turbine generators
(VSWTGS) based on permanent magnet synchronous generators (PMSGs) and doubly-
fed induction generators (DFIGs) may result in a decline in the system frequency
regulation capability. That's due to VSWTG's decoupling interface between rotor speed
and grid frequency via power converter as well as the declined inertia from conventional
synchronous generators being gradually replaced or de-committed [1].

However, PMSGs inherently possesses a significant amount of kinetic energy
stored in the rotating mass of their turbine blades and gearbox, and this can be employed
to strengthen total inertia of a power system through fast and flexible power converter
control. Moreover, fully decoupling the rotor speed from the grid frequency allows
PMSGs to remain in stable operation and rapidly respond to grid frequency variations in
any severe frequency event. Compared to DFIGs featured with identical power rating and
inertial constant, PMSGs are capable of providing the larger inertial response and
stronger frequency support thanks to their full power converter, which accommodates a
wider range of rotor speed (0.4 p.u-1.2 p.u) in comparison with that of DFIG-WTG
(0.7p.u. to 1.2p.u.) [2]-[3]. Therefore, it is valuable for the grid to take full advantage of

the potential capability of PMSG-WTGs in supporting system frequency regulation.



From the perspective of secure power grid operation, Regional Transmission
Organizations (RTOs) and Independent System Operator (ISOs) in many countries have
come to realize the potential benefits of inertial response and frequency regulation
provided by wind turbine (WT) in maintaining the dynamic active power balance
between generation and demand. From the perspective of wind turbine manufacturers, the
integration of auxiliary frequency control functions, consisting of de-loaded control,
inertial response and primary droop control and automatic generation control (AGC)
secondary control, can be simply realized by altering the existing control strategy of
power converter and pitch angle control [4]-[5]. Besides, a large number of wind
generators with frequency regulation functions are allowed to be integrated into power
system, which yields extra profits by providing the ancillary service. With a great
potential demand in power market, wind plant manufactures are also encouraged to
further improve the VSWT's auxiliary frequency control customized for specific power
system. On the other hand, especially when the wind power needs to be dispatched down
in case of low load demand and high wind speed condition or according to other
operation constrains, a certain amount of untapped wind power can be harnessed as
spinning reserve to assist in the system frequency regulation under the subsequent severe
disturbances [4]. Therefore, a win-win solution can be achieved by implementing the
frequency control into PMSG-WTG for the mutual benefits of wind power plants and
electrical power grid.

In most current literatures, auxiliary frequency controllers are proposed as add-on
functions for DFIG-WTG. Therein, the inertial control utilizes the kinetic energy in the

rotating mass of wind turbine (WT) to provide the temporary frequency response [6]-[8].
2



The de-loaded control enables the wind turbine to run in the de-loaded mode so as to
reserve partial wind power for the primary and secondary frequency regulations [9]-[13].
The droop control emulates the primary frequency response of conventional synchronous
generators [6],[10],[14]-[15]. A secondary frequency controller in a supervisory wind
farm control system can respond to an AGC signal or the power flow adjustment from the
transmission system operator [11]-[13]. As for the comprehensive control based on the
above controllers, a coordinated frequency regulation scheme is presented for DFIG-
WTG operating under different wind speeds in [16]. The frequency response capability of
the full converter variable speed wind turbine generator in the Maximum Point Power
Tracking (MPPT) mode is investigated under different constant wind speed conditions in
[15]. Overall, the vast majority of current researches are centered on the DFIG-WTG
frequency regulation capabilities due to its current higher market share [2],[6],[9].[11]-
[14],[16]. Very a few published papers or documents emphasize the comprehensive
frequency regulation capacity of PMSG based on rotor speed-based control under
different wind speeds or enhanced inertial response based on active power-based control
when operating in MPPT mode, especially with respect to the potential impact of
frequency regulation on the mechanical components of wind turbines.

Therefore, the research presented herein intends to address the major issues as to
maximize the performance of PMSG-WTG for short-term and long-term frequency
regulations in accordance with its specific operation characteristics and control structure.
Meanwhile, the impact of frequency support on the WT's mechanical stress and structural
load should be carefully observed when enabling PMSG-WTG to perform the proposed

frequency regulations.



1.2 Research Objectives

The objective of this research is to provide fundamental knowledge about the
frequency regulation by VSWTGs and advanced controller design that enables PMSG-
WTGs based on rotor speed control or active power control to provide the optimal
frequency support. This dissertation work is mainly focused on the development and
implementation of the enhanced inertial response and primary frequency regulation,
which is suitable for PMSG-WTGs in terms of de-loaded operation and MPPT mode

respectively. Specific objectives and procedures of research project are illustrated in

Figure 1.1:
] Comprehensive
Stepl Survey
Step2 | Adetailed PMSG-WTG
dynamicmodel
Step3
PMSG-WTG based on PMSG-WTG based on
rotor speed control active power control

! | 1

CFR based ; :
R ;SC on Improved inertial TLC control based on Adetailed BESS
iCei0ace quratlon control based on MPPT MPPT operation dynamic model

operation l l

Coordinated controlbetween
PMSG-WTG and BESS

Figure 1.1 Schematic of research project plan
The first objective of this project is to conduct a comprehensive and in-depth

survey on the inertial response and auxiliary frequency regulation provided by various

types of wind generations.



The second objective of this project is to design and develop a detailed PMSG-
WTG model with aerodynamic and mechanical components represented by the FAST-
based CART2 model. The purpose of this work aims to construct a reliable simulation
platform that is able to accurately represent the physical characteristics and dynamic
performance of real PMSG-WTG over different wind speeds, so that the development
and validation of the proposed frequency control schemes can be carried out by
investigating their impacts on the power grid and wind turbine simultaneously.

The third objective of this project is to develop a novel comprehensive frequency
regulation (CFR) scheme for PMSG-WTGs based on rotor speed control by combining
rotor speed control with modified pitch angle control. The implementation of this control
strategy is based on the de-loaded operation of PMSG-WTG over a wide range of wind
speeds.

The fourth objective of this project is to develop an improved inertial control to
enable the PMSG-WTG based on rotor-speed control to improve the overall frequency
support in case of large supply-demand imbalances. The implementation of this control
strategy is based on MPPT operation without additional power reserve required. If
necessary, Battery Energy Storage System (BESS) can be employed to coordinated with

the PMSG-WTG to accomplish the temporary frequency support.

1.3 Contributions

The main contributions of this project are listed as follows:
1) To come up with a novel comprehensive frequency control (CFR) scheme, which

is suitable for PMSG based on rotor-speed control to achieve both constant
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2)

3)

4)

inertial response and variable droop frequency regulation by coordinating the
rotor speed control and pitch angle control. Moreover, a complete operation of
PMSG is categorized into the low, medium and high wind speed modes according
to the deloaded margin level and rotor speed limit. By implementing the proposed
CFR scheme, the rotor-speed-control oriented PMSG-WTG is enabled to
optimally participate in the short-term and long-term frequency regulation over a
full range of wind speeds.

To present an improved inertial control method based on the maximum power
point tracking operation curve to enhance the overall frequency support capability
of power control-based PMSG-WTGs when they are operating in MPPT mode. In
the meanwhile, the possible secondary frequency drop (SFD) can be mitigated in
case of severe frequency disturbance.

To make the same PMSG-WTG perform much stronger inertial response, a
follow-up control method based on the torque limit (TLC) is proposed to
signifcantly enhance the temporary frequency support within the mechanical
constraint. To avoid its subsequent Secondary SFD issue resulting from WT's
inertial energy recovery, a small-scale BESS is employed to eliminate this impact
and meanwhile assist the wind turbine in restoring the rotor speed to MPPT mode
through the proposed coordinated control strategy of BESS and PMSG-WTG.
Last but not the least, all three types of control strategies are implemented in the
CART2-PMSG integrated model based on rotor speed control or active power
control to study their impacts on the wind turbine’s structural loads during the

inertial response process.



1.4 Outline of Dissertation

The remaining parts of this dissertation presents a detailed study of three control
methods discussed previously, in addition to a comprehensive survey of frequency
regulation by wind farm plants.

Chapter 2 presents a complete literature review on the frequency response by
wind power plants. It specifically describes the control concepts, theories and principles
of prevailing frequency regulation apart from the frequency regulation performance
comparison among four major types of WTG. Furthermore, this review also provide a
overview of the latest industry development and applications, ongoing domestic and
international research activities as well as updated grid codes associated with the VSWT's
emerging frequency regulation technologies. Finally, authors provide a comprehensive
insights and analysis into several critical issues with respect to the participation of
VSWTs in the grid frequency regulation from perspectives of system operation, control,
protection as well as power market.

Chapter 3 presents a detailed CART2-PMSG wind turbine model equipped with
two different control strategies, consisting of rotor speed-based control and active power-
based control. Based on a series of simulation tests, it is proved the proposed CART2-
PMSG integral model can accurately represent the steady-state and dynamic
characteristics of real wind turbine in terms of both mechanical and electrical aspects
when both control strategies are implemented in the rotor-side converter, respectively.

Chapter 4 presents a novel comprehensive frequency regulation (CFR) scheme fit

for PMSG-WTGs based on rotor speed control by combining rotor speed control with



modified pitch angle control. It is concluded that the CFR can enable PMSG-WTG to
contribute to the active power regulation and promote the overall frequency regulation
performance in case of frequency disturbance.

Chapter 5 presents an improved inertial control method based on the maximum
power point tracking operation curve to enhance the overall frequency support capability
of PMSG-WTGs in the case of large supply-demand imbalances. Simulation results
demonstrate that the improved inertial control enables the PMSG-WTG to enhance the
transient frequency regulation performance even in the low wind power penetration
condition, whereas the proper deloaded value can avoid the SFD throughout the rotor
speed recovery process.

Chapter 6 presents a coordinated control strategy of BESS and PMSG-WTG to
improve the overall frequency characteristics. A novel control method based on the
torque limit (TLC) is proposed to maximize the PMSG-WTG's inertial response. To
avoid the undesirable secondary frequency drop (SFD), a small-scale BESS model is
utilized to support the wind turbine to recover to the MPPT state by using the proposed
coordinated control scheme.

Chapter 7 provides a conclusion of the presented research work and several

recommendations for the future work.



Chapter 2 Literature Review on the Frequency Response by Wind

Power Plants in the Power Grid

This work conducts a comprehensive survey on the inertial response and auxiliary
frequency regulation provided by various types of wind generations. It specifically
describes, analyzes and illustrates the prevailing frequency regulation controls of VSWT
from the perspectives of fundamental frequency regulation concepts, control principles
and coordinated control strategies. Besides, a concrete comparison on the potential
performance of four popular types of wind power plants is illustrated with respect to

system frequency regulation capability including their benefits and drawbacks.

2.1 Wind Turbine Ancillary Functions

In principle, grid frequency response can be divided into four regulation stages in
the time scales: inertial response, primary frequency response, secondary frequency
response and tertiary frequency response as shown in Figure 2.1 [17]. Until now, active
power control strategies applied in the rotor side converter of VSWT involve torque
control, active power control and rotor speed control in order to realize the MPPT
operation mode [18],[20]-[24]. To equip VSWT with emulated frequency regulation
functions, supplementary frequency controllers should be carefully designed and

integrated into both converter power control loop and pitch angle control loop to



manipulate the corresponding set points like torque, active power or rotor speed

according to specific frequency regulation requirement[10], [19] ,[25]-[29].

Generation loss or load change occurs

Initial slope of frequency decline depends on system inertia

/ (cumulative inertial response of all generators and loads)

Grid Frequency (Hz)

0 S 5-10s
Inert aI:Response

|
|
|
|
|
|
|
|
>
20-30's 5'1(\)‘ Time (sec)
?T=>rirnary Freq Control: Secondary Freq Control " Tertiary Freq Control
‘ (Droop) (AGC) (Economic Dispatch)

Figure 2.1 Schematic diagram of comprehensive frequency control following a large
generation loss or a sudden load change (Figure derived from Pouyan Pourbeik of EPRI)

2.1.1 Inertial Control

»
»

In a power system, inertial response is an immediate response to severe frequency
excursion within seconds due to the sudden and large power supply-demand imbalance.
The system frequency changes at a certain rate initially determined by the cumulative
inertia of all spinning generations (synchronous generators) and the composite load
damping (motor, pumps and et al) [30]-[32]. The additional energy stored in rotating
mass of both wind turbine and generator can be extracted and then released into the
power grid via grid-side converter to arrest the rate of change of frequency (ROCOF).
For instance, the typical value of wind turbine inertia is approximately 3.5s [33]. The
total moment of inertia of a 2 MW-scale VSWT is approximately six times than that of
the conventional generator [14].
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Once the inertial energy is totally released up at the moment of frequency nadir,
the energy extracted from the rotating mass needs to be recovered from the available
wind power in order to restore the WT rotor speed and Kinetic energy to their pre-
disturbance value. In this sense, the inertial control is essentially “the energy neutral
process” although the total amount of recovery energy can be greater than that of inertial
response due to the WT mechanical and electrical losses during this process [34]. The
duration of the natural recovery depends on the turbine mechanical dynamics and
normally sustains several tens of seconds. A short-term dip may occur to the active power
output during the recovery process for a portion of wind energy is utilized to restore the
kinetic energy. Thus, a large aggregated energy recovery of wind farms will result in a
secondary system frequency drop at some 10 to 15 seconds (even lower than the first
frequency nadir) following the initial generation loss [14],[7]-[8].[35]-[44]. With respect
to the inertial recovery process, three main parameters that determine its behavior include
starting time to reduce active power, generation reduction amount as percentage of WT
rated power (or actual power output level) as well as total duration for generation
reduction [7]. The acceleration period of the WT rotor speed is set to be longer than the
deceleration period by changing the rate of power ramp so as to relieve the pressure
brought about by restoring process on the rest of the system [3]- [4].

According to the equation (1), the amount of kinetic energy AE for the inertial
response of a single wind turbine is mainly determined by the initial rotor speed w,, rotor
speed variation (Aw = wy — w; ,Aw > 0)[rad/s], the moment of inertia of wind turbine

J [kg'm2] and inertia response duration (to-t1) [S] [63],[45].
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AEinertial = Jyp APertial(Ddt = 3J(03 — 02) = 2](200A0 — Aw? [Joule] (2.1
Furthermore, the inertial response capability of a wind power plants is dependent

on the wind power penetration level, the number of WTs capable of providing inertial
response, initial operation mode of a single WT under full load or partial load as well as
individual WT physical characteristics, including the upper and lower limits of rotor

speed, over-loading capability of power converter and generator, auxiliary controller
: dp .
parameters, maximum rate of change of power (a)max as well as reserve margin level
[39]-[40], [45]-[50]. To alleviate mechanical stresses on WT drive trains and extend its
lifetime, the (%)maX should not exceed 0.45 p.u./s according to several manufacturers'

datasheets [45]. A certain reserve margin can supply power headroom for VSWT to
perform enhanced inertial response, and also eliminate or reduce the impact resulting
from inertial response recovery [7][50]. Under low wind speed condition where WTG
operates just above the minimum rotor speed, Kinetic energy available for inertial
response is quite limited due to stalling prevention and a relatively long response
restoration follows. In between medium and high wind conditions where WTG operates
at MPPT conditions, adequate Kinetic energy is available to provide inertial response, so
as to shorten the recovery period and mitigate the decline in rotor speed. Under high wind
speed condition that rotor speed is maintained at the rated value due to pitch angle control,
kinetic energy cannot be released until rotor speed drops below the rated. The inertia
response is finite since the total power output of a single WT cannot exceed the specified

overloaded value (eg.1.1p.u.) due to the capacity limits of power converter [34].

12



Inertial response dominates initial frequency variation following a frequency
disturbance, so it plays an essential role in determining the sensitivity of system
frequency to power imbalance. In the meantime, emulated inertia control can obviously
improve the system small signal stability since the system damping effect of the
dominant oscillation mode can be further reinforced [51]. In general, the greater the rotor
speed from WT declines, the higher the transient active power surge becomes following
the disturbance and the more positive effect will result in the frequency excursion, despite
more time is needed to arrive at another steady state condition [36]. With the WT's
contribution to system inertia, ROCOF (rate of change of frequency) and frequency nadir
(the lowest point of frequency) can be improved to eliminate the possibility of load
shedding triggered by UFLS (under frequency load shedding) protection scheme, and
thus improve the system reliability during large loss-of-supply events [52]. Meanwhile,
another benefit of enhanced inertia response of VSWT is to decrease the times of peak
power output from the conventional generators, which picks up the load at their slow
rates after the frequency disturbance.

However, the industrial design of inertia response must respect the WTG's
component constrains consisting of converter and generator electrical ratings as well as
mechanical loadings, such as turbulence management, drive-train and tower loads. Until
now, three typical sorts of inertial control have been proposed to equip VSWT with
emulated inertial response, which can be mainly categorized into Natural Inertial Control,
Constant Inertial Control and Virtual Inertia Control [6],[26],[14], [7].[35]-[42].

A. Natural inertia control

13



Natural inertial control is proposed to generate an WT incremental active power

following a severe frequency decline, which magnitude is in proportion to ROCOF %to

emulate a synchronous inertia-alike response [43]. Currently, there are two main types of
natural inertial controllers consisting of a one shot % controller and a continuously acting

2/ controller [16],(44].

The one shot Z—’; controller is proposed to deliver an initial power surge in

proportion to the ROCOF once the frequency event occurs. A certain amount of Kinetic
energy featured with a defined ramp rate and decay period is immediately injected into

grid from the inception of frequency drop. This control scheme can be implemented by
applying a lookup table with the initial Z—’:value as X-coordinate and the corresponding

active power increment as Y-coordinate. As is shown in Figure 2.2, the full active power
output can be achieved within 200ms and then declines exponentially over a specified
duration of Ts. A short power recovery period of 0.95 p.u. or above of nominal power is
allowed but restricted to avoid the risk of subsequent frequency disturbance because other

generation is offline or load unexpectedly rises [44].
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Figure 2.2 Control strategy of one shot % controller

The continuously acting % controller is developed with a continuously acting %

controller, which works through the entire disturbance to regulate the additional active
power injection based on ROCOF . As to this control method, the per unit inertial power

AP;, and per unit inertial torque At;, generated by inertial controller are expressed as

dwy

APy, = Kinertial X Wy X d;

(2.2)
dws

Atin = Kinertial X d_t (2.3)

where, Kipertiai 1S the gain of the inertial controller, wg is the per-unit

synchronous generator speed. Kj,ertia 1S @nalogous to the equivalent moment of inertia.

AP;, corresponds to the part of the rotor kinetic energy extracted for the additional active
S dws dfsys _—
power injection. Usually, the — can be superseded by —. S0 that the WT inertial
t t

response magnitude is directly proportional to the ROCOF. Using traditional method,
Kinertial 1S simplified as twice total inertia constant H of the wind turbine [35],[53].
However, to make PMSG-WT supply the appropriate inertial response, the K;pertia) Value

of PMSG-WT s tuned for the purpose of preventing the wind turbine from rotor speed
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stalling [16]. A low pass filter is added after derivative function block to minimize the
interference from measurement noise. Moreover, the natural inertia control is also named
as delta power control because of the shape of inertial power output resembling “delta”
throughout the overall response process. Figure 2.3 presents the control block diagram of
natural inertia response. The performance of WT's natural inertia response can be
enhanced by either increasing the auxiliary controller gain K or relaxing the limit on the

rate of change of electrical power output [45].

Last but not least, it is noted that the % is inherently a noise amplifying process,
which likely cause unpredictability of emulated inertial response. So, a proper filtering is
required to eliminate this noise. However, the inertial controller relying on the % is

triggered equally by the pseudo generation tripping like switching incidents [46] .

f P (dP/dt), r-~———1
ss | d Low pass max o
| L | pfLo p > K > - > R Converter |
dt filter 7 AP P/ ot Control |
Po/ = (), !
Deadband

A

Figure 2.3 Control block diagram of the continuously acting % controller

B. Constant inertial control

Constant inertial response is defined as a certain amount of constant active power,
which is released from kinetic energy sustaining for up to ten seconds under various wind
speed conditions [3],[42],[54](54]. Compared with natural inertial response, the inertial
power using this control can be tuned in different shapes in accordance with its
magnitude and duration and also its response is much faster without relying on the
measurement of ROCOF. This control method can significantly uplift the frequency nadir

and mitigate the impact of Kinetic energy recovery by tuning a desirable and steady
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additional power injected into the grid, being carried out without relying on the
instantaneous system frequency [43]. The effect of constant inertia response is usually
dependent on several factors including overproduction step amount, duration time, ramp
rate limit for power descending and ascending stages, wind speed (namely, present wind
power output) as well as the inertia constant HWT.

One control method is proposed to generate the constant inertial response by
modifying the rotor speed set point throughout the frequency event. The constant inertial

power is derived from
1, 2 1, 2
Pt = E]wro - Elwrt (2.4)
where, t is the duration for constant inertial power, w, is the initial rotor speed

and w, is the rotor speed at the end of inertial response. Therefore, the reference value of

rotor speed is available as:

Wref = Wp = |02 — Zplﬁt (2.5)

By substituting inertial constant ]=:2HS into (2.5) and defining

base

[0} . Pj o .
Wp.y, = ———as per-unit rotor speed plus P, . = f as per-unit inertial power, the
base -

per-unit rotor speed reference is rewritten in the per-unit form:

Pin pu.
WOrt pu. = \/wlgo_p.u. - nl:lpu t (2.6)

The control block diagram of constant inertial response is depicted in Figure

2.4.
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Figure 2.4 Control block diagram of the constant inertial response based on rotor speed
regulation

The other method to carry out the constant inertial control is proposed in [31] to
increase the actual power reference by adding Temporary Over-Production (TOP) value
APg, on top of the pre-event active power reference Peg in case of frequency disturbance.
The APy, is derived from the kinetic energy stored in the WT rotating masses. Thus, the
generated electrical power output P is defined as:

P, = Poy + AP, AP = AP, or APy, (2.7)

During the normal operation, VSWT runs on the MPPT point according to the
actual wind speed. In the event of frequency, a constant over-production in a quantity
APqp is achieved by quickly altering the active power set point through power converter,
so that the rotor speed maintains deceleration as a result of the increasing imbalance in
mechanical and electromechanical torque. Until the rotor speed reaches wp,, the
overproduction process will be over and then the active power set point will be adjusted
to enable the electrical power output below the mechanical power input by a constant
quantity P,. During this underproduction period, the rotor speed is accelerated and
returned to previous MPPT point for the given wind speed or another operation point
corresponding to the new wind speed. In Figure 2.5, the basic principle of this control
mechanism is illustrated. Note that the value of P, can be constant or variable,

depending on the specific strategy selected during the underproduction period. By
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increasing the Py, the underproduction period is shorten and meanwhile the wind turbine
rotor speed can be restored to the optimal operating point more rapidly. Assumed a
bigger VSWT inertia constant, the overproduction and associated recovery periods are
much longer due to larger kinetic energy stored.

MPPT Function & Mechanical
Power Estimator

P P/ | 0 —————
Peo + = O B Converter |
D PP o, /P | Control
h
f Flag
' Overproduction| APOD
a)t N Function

Figure 2.5 Control block diagram of the constant inertial response based on active power
control

However, the extra active power production using this TOP method is always
followed by an acceleration process, which more likely results in negative effect on the
system frequency due to reduced power output of VSWT. Thus, an Improved Primary
Frequency Response (IPFR) technique based on TOP method is proposed in [2] to avoid
the acceleration phase and reduce the frequency deviation by combing de-loaded
approach with TOP control. This IPFR response is mainly determined by over-production
step magnitude, duration and wind speed condition. IPFR method can allow VSWT to

enhance the overall system inertia response without under-production stage.

C. Virtual inertial control
Recently, another novel inertial control strategy named virtual inertia control

(VIC) is presented to utilize the “hidden inertia” of the turbine blades to provide a fast
dynamic frequency support. One method is to adjust the active power output of DFIG

based on the system frequency deviation in order for contribution to the system inertia
19



response. This type of regulation can be implemented by means of shifting operating
point from the MPPT power tracking cure toward the VIC power tracking curve to
compensate for the mismatch in the power supply and demand and then rotor speed
gradually recovers to initial MPPT point [55]. The upper and lower limits of VIC power
curve are defined as Pyic_maxand Pyvic_min respectively to ensure the DFIG to operate in a
steady state under various wind speed conditions. The coefficient KVIC is a function of
frequency deviation:

3
Wro

Kyic = (Oro+ 204073 Kopt (2.8)

where, A = —i“’r = 2risono

o~ wer oo’ oDt is optimal curve coefficient. Assuming that the
rotor speed of DFIG varies from w,, t0 w;; SO its Kinetic energy to be released acts as
the equivalent amount of kinetic energy from a synchronous generator with rotor speed
varying from we, to we;. A washed out block is utilized to eliminate the steady-state dc

component of the frequency error. The corresponding control block diagram is illustrated

in Figure 2.6.

T, / / P (0P/dt) [
Freq_ref Af Deadband y 2 Eq. (2.8) > —>] |y Converter |
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min
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Figure 2.6 Control block diagram of VIC
An optimal controller for VIC is proposed in [42] to emulate the inertial response

A4

with the purpose of enhancing the frequency regulation in a diesel dominant system. The
optimal virtual inertia factor Ky;c can be identified using deterministic linear quadratic
regulator (LQR) method.
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2.1.2 Primary Frequency Control

Primary frequency control is the automatic governor response in proportion to the
frequency deviation from scheduled value. It belongs to a local automatic control without
communication required between generator and dispatch center. This response, also
named as governor droop control or frequency responsive reserve, is typically provided
by conventional generators with governor control to regulate the power output in terms of
the frequency deviation and droop settings [53], [11]-[13],[56]-[60]. The primary
frequency regulation by WT resembles that of convention generators. It is usually
activated within a few tens of seconds and can sustains for up to 15 min (usually
completed within 12s-14s [30]) when grid frequency deviation exceeds an allowable limit
[59]. This dominates the steady-state frequency deviation after inertial response until
secondary frequency control (AGC) takes over for zero-error frequency regulation.

Unlike inertial response, the power generation needs to be curtailed aforehand by
de-loaded control for wind power plant to actively respond to the under-frequency
disturbance. The abilities of WT primary frequency regulation are evaluated from the
following perspectives: delay time, ramping speed, magnitude and response speed [61]-
[62]. Furthermore, the wind turbine can perform better in the primary frequency
regulation under medium to high wind speed since more kinetic energy is combined to

boost active power output [3].

A. Droop control/governor frequency control

To emulate the governor response of conventional generators for primary

frequency regulation, droop control is implemented in VSWT to correlate variation in
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grid frequency with a corresponding change in the fast active power output through
converter controller. As shown in Figure 2.7, it responds to large deviation in grid

frequency by increasing/decreasing power output in frequency events. The relationship

PVSWT —

between the active power change and frequency deviation can be expressed in APgyoo, =

Karoop (f — fo),where f; is the nominal frequency. The parameter Kgrq0p is the inverse of

speed adjustment rate R as follows.

A1
AP Kdroop

R (2.9)

The value of R usually lies within the range from 3% to 5% for conventional
generators. Large positive values of Kgroop = % can provide a more desirable effect in

reducing the steady-state frequency deviation without obvious influence on the small
signal stability of power system [40],[51]. As shown in Figure 2.7, a high pass filter is
required after the frequency deviation to ensure a permanent small frequency deviation
cannot affect the overall control system accuracy [5]. The frequency deadband is used to

avoid the unnecessary primary response launch during normal operation [63].
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Figure 2.7 Control block diagram of droop response
1) Droop curve parameters:

As depicted in Figure 2.8, there are several important parameters to determine the
droop curve behavior, including droop slopes (up\down), dead-band and ramp rate. These
parameters need to be appropriately selected to ensure that the droop response is able to

perform within the available reserve margin when unacceptable system frequency
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deviation is detected [63],[17]-[46],[64]. Moreover, a droop curve with a suitable dead

band can prevent the droop controller from persistent activation in response to any small

frequency fluctuation. An Integral of Squared Error (ISE) is proposed in [65] to tune the

DFIG controller parameters optimally to improve its frequency regulation capability.

Note that symmetric droops are not required at all to realize the primary frequency

regulation. According to different regulation ranges and stages of frequency deviation,

the active power reference can be calculated using following equations:

Pref :<

~ Puper Af < f -1

= "min DB _ lower

1
I:>deloaded + EX Af fmin - fDB_Iower <Af <0

1 (2.10)

I:>deloaded _R_X Af 0<Af < 1:switch - fDB_upper
2
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Figure 2.8 Frequency-power characteristics of basic droop control

In case the frequency declines above deadband fpg jower, active power reference

of WT can be adjusted based on droop-down control until increasing to Pyppt at given
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wind speed. On the other hand, provided the frequency rises above the deadband
foB_upper» active power reference is increased by raising up the rotor speed along with the
de-loading tracking curve. If frequency keeps rising until the fyiwcn IS reached, the rotor
speed cannot continue to increase due to its upper limit. At this moment, the pitch angle
controller is activated to further reduce the WT active power output by increasing the
pitch angle 3. During this process, the rotor speed remains constant at the maximum
value. It is worth noting that the slope value of R3 mainly depends on the allowable
variation range of (3 [28].

2) Static Droop and Dynamic Droop Controls

Static droop Control is similar to traditional governor control, which is used to
provide additional active power based on the grid frequency deviation. Static droop curve
represents a primary frequency response from WTG by converting measured grid
frequency variation to an expected percentage of the rated power of the turbine [61].
Static droop control features a droop curve with a fixed slope and pre-defined dead band.
Through simulation tests in [17]-[46], this control can assist in arresting system
frequency decline and minimize the steady-state frequency deviation as well.

Dynamic droop control indicates that the slope and dead-band of droop curve can
be tuned in real-time manner according to the ROCOF value, de-loaded level and
variable wind speed conditions. Using this control method, a possible tradeoff between
frequency regulation performance and resulting impacts on the structural and component
loads is attained. A study in [17] demonstrates that dynamic droop curves can effectively

enhance the primary response without dramatically adding the induced structural loads to
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turbine components, such as shaft and tower. Compared with an aggressive static droop
curve, the frequency nadir, steady-state frequency and frequency recovery process can
also be improved by implementing dynamic droop control. On the other side, there is no
sufficient reserve for WTGs operating especially under low wind speed to provide the
primary frequency response. So, a static low droop setting will lead to WT operation
instability. Meanwhile, a static high droop also induces a noticeable oscillation during the
frequency recovery due to its overly fast droop response [50]. To achieve a tradeoff, a
variable droop control is utilized to optimize the power shared among deloaded WTs
during low wind speeds so as to enhance the overall primary frequency contribution of
individual WTs based on their available power reserves corresponding to different wind
speeds [66]. Another similar variable speed-droop mechanism is proposed in [53] for
DFIG wind farm to change their droop coefficients based on the variable power reserve
so that the number of unit output reversals and Root Mean Square (RMS) of frequency
deviation are significantly decreased.

Besides, non-symmetric droop characteristic is proposed in wind power plants as
well [17],[62]. The positive and negative droop coefficients, frequency dead bands and
reserve margin can be properly determined to optimize the primary frequency response of

aggregated WTGs.

B. Deloaded Control
To enable VSWT to participate in the primary, secondary and tertiary frequency

control, VSWT needs to be operated in the sub-optimal mode through the de-loaded
control. So, an adequate spinning reserve margin\headroom is established to deliver the

additional active power in the frequency event.
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Nowadays, the common primary reserve is achieved through either "Balance"
type control that reserves the power output at a scheduled constant amount (namely, a
constant percentage of rated power) [25],[53] or "Delta" type control that reserves a fixed
proportion of available maximum aerodynamic power regardless of wind speeds [40],
[67], [68]. Another de-loading approach is "De-rating” type that restricts maximum
available wind power at a specific level only when wind speed goes beyond the rated
value [63]. These three types of de-loaded operations for frequency regulation are

mathematically described as follows [63]:

1) Balance type:

0, PAvail < APReserve
Pref = |:)Avail - APReserve' |:)Avail < PR ated (211)
Prated _APReserve’ I:’Avail > PRated

APgeserve € [0.0, ..., APy ax]

2) Delta type:

(l_ KReserve).PAvail' PAvail <P

Rated

P = (2.12)

ref

(1 -K Reserve )' PRated ' |:’Avail > PR ated

Kreserve € [0.0, ...,1.0]

3) De-rating type:

AP, AP,

Derating ! Derating < PRated

Pe

ated

(2.13)

ref

P >P

Rated ! AP Rated
APDeratting € [0-0' (R PRated]

Derating
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Where, P.¢ Is the active power reference for individual wind turbine
generator, Praeq IS the rated power of wind turbine generator, APreserve 1S @ fixed
amount of active power for spinning reserve operation over a full scope wind speeds,
Pavail IS the total amount of available wind power at the given wind speed, Kgeserve IS @
fixed percentage of spinning reserve from the available wind power. Pperating is the de-
rating amount of available wind power when wind speed goes beyond the rated value.
Compared with the balanced type, the delta is higher energy efficient due to the long-
term power reserve guaranteed regardless of wind velocities. So, a massive cost on the
energy loses is saved without excessively compromising the wind power production. It is
shown in [69] that offshore wind farms with state-of-the-art technology is capable of
maintaining a 5% of the rated power as reserve sustaining for up to 89% of the event
duration under varying wind speed conditions. Usually, VSWTs are de-loaded by 5% to
20% below the MPPT operation condition to ensure the sufficient reserve margin for
primary frequency regulation [44]. On the other side, a certain amount of spinning
reserve margin can enable the inertial control to perform a better function during the
initial frequency regulation since the temporary active power injection is much larger [3].
In contrast, short-term rapid change in wind plants output can be effectively mitigated
using balance type so as to enhance the certainty of wind power production and minimize
the variability in power system operation and dispatch [4],[25],[40],[16],[66],[70]. Note
that the reserve margin level are dependent on prevailing wind speeds, prediction errors

and allowable upper limit of the VSWT's rotor speed [45],[66]. One dynamic reserve
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allocation approach is presented in [9] to distribute the total wind farm reserve according
to individual wind velocities of each wind turbine.

Lastly but not least, the investment on conventional reserve can be decreased with
the de-loaded control implemented. That's due to its frequency response is much faster
and more accurate by means of power converter control [9]. Thus, de-loaded control
plays an essential role in supporting long-term frequency regulation from the perspectives

of system dynamics and economics.

C. Pitch Angle Control

The original objective of pitch angle control in WT is to prevent the power output
of generator from overloading or rotor speed from overspeed [23]. To provide a
supplementary frequency regulation, the pitch control needs to be modified in terms of
various wind conditions. Moreover, the primary frequency response can be effectively
supplied under the high and medium wind speeds although the rotor speed is maintained
as the maximum rotor speed. Meanwhile, the initial pitch angle 3, is regulated to keep a
certain power reserve. Due to the servo time constant of the pitch controller, the response
of pitch control appears to be slower than that of over-rotor speed control through power
electronic converter. As illustrated in Figure 2.9, two types of modified control
approaches are integrated into the pitch angle controller according to different control

objectives [3].
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Figure 2.9 Schematic diagram of modified pitch angle control strategy
D. Rotor Speed Control

In accordance with a PMSG-WT sub-optimum power extraction curve in Figure
2.10, the WTG output is deloaded by shifting the operation point toward the left or right
side of the maximum power point tracking curve during low-to-medium wind speed
without hitting the rotor speed upper limit. The WTG output can be adjusted between
Pgeload and Pmax by altering its rotor speed between mgeioad aNd ®max [3],[16]. The operating
power reference (Prs) Of the deloaded WTG under the given rotor speed can be acquired

using a simplified linear equation (2.14) or referring to a predefined look-up table in [66].

|

Prer = Pyel + (Pmax - Pdel) [

29

Wy del~Wr,meas

Wr del~®r,max

(2.14)




where, Pmax 1S maximum power [p.u.]; Pge is deloaded power [p.u.]; ®rmax IS
DFIG rotor speed corresponding t0 Prax [p-U.]; ®r el IS rotor speed at Pge [P.U.]; ©r meas IS
measured rotor speed [p.u.].

The left sub-optimal operation point is unstable because it is more likely to cause
the wind turbine to stall under the frequency event. The wind turbine is bound to operate
along the right sub-optimal curve in order to maintain a stable operation when providing
the frequency response over a full scope wind speeds. Another benefit of right sub-
optimal operation is to enable VSWT to contribute the combined reserved active power
and more Kinetic energy stored in a faster rotating mass to frequency response when
operating point moves from the de-loaded state to the maximum power state. Moreover,
it can minimize the tear and wear losses of pitch angle during the process of system
frequency regulation.

Considering that the possible rotor speed w required for de-loading operation
exceeds the rotor speed mmax maximum under medium and high wind speeds, three types
of wind speed modes is determined in terms of control objectives and secure operation
constraints: low wind speed mode where the de-loading operation is carried out merely
by rotor speed control, medium wind speed mode where the de-loading operation is
conducted by combined pitch angle control and rotor speed control as well as high wind
speed mode where the modified pitch angle control needs to be adopted for the de-loaded
operation [19],[16],[5]. It is noted that limited Kkinetic energy is available for inertial
response under high wind speed condition due to constant rotor speed and rated power

condition [33] .
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2.1.3 Secondary Frequency Control /AGC

Secondary frequency control, also called Automatic Generation Control (AGC) or
Load Frequency Control (LFC), is implemented during both emergency events and
normal condition [9]-[53]. The secondary frequency control starts within several tens of
seconds and sustains for up to several tens of minutes [59]. This control is a minute by
minute continuous response to allocate the load change among individual WTs with the
purpose of maintaining both the system frequency deviation and the tie line power flow
deviation as zero [47]. In figure 11, a simplified frequency control model is applied to
validate the dynamic characteristics of each generation participating in the AGC
regulation [71]. The AGC set-point of each WT depends on the PI controller parameters
and participation factors (PFs). The optimal method to decide PFs is developed by taking
into account the up/down ramp rate, operating reserves, dispatch limit and generating cost

[72].
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A secondary frequency controller based on a Supervisory Wind Farm Control
System (SWFCS) fully utilize secondary frequency reserve to respond the command
from the system operator including AGC demand (power set-point) and power flow
adjustment [53],[13],[9]. Another novel control system is proposed in [73] to enable wind
turbine to change the active power reference in accordance with AGC or set-point power
command so as to meet the system operators' requirement. In [72], a coordinated AGC
control strategy between WTs and combined heat and power plants (CHPS) is proposed
to mitigate the real-time power imbalance by down-regulating the wind power production
when CHPs are unable to track the required response. Due to the fast ramp rate of WTs,
area control error (ACE) can be greatly reduced so as to make the system frequency more

reliable and secure.

2.1.4 Tertiary Frequency Control

Compared with other frequency controls mentioned above, tertiary frequency
control is a much slower power balance control with the long decision time step from the
order of minutes to hours, which is activated only after the secondary control is
completed [59],[62],[74]. This control method comprises dispatching actions commanded
by the system operator to fulfill the reserve deployment and restoration for the WT's
tertiary frequency control that enables unit commitment, economic dispatch and optimal
power flow according to marketing signals or other system requirements [27]. As shown
in Figure 2.11, the actual operation reference value of conventional generators and wind
farms equal to the sum of AGC and economic dispatch set points. Economic dispatch

usually updates this operating set point every 1-5 min while AGC does the same every
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0.1-1 sec [75]. Nowadays, there are two types of power markets associated with tertiary
frequency control, including intraday real-time market with every minute economic

dispatch and day-ahead market with every day economic-unit commitment [32].
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2.1.5 Coordinated Frequency Control

Considering the initial operation condition, frequency fault magnitude and
duration, a combined inertial response, primary frequency control and secondary
frequency control by VSWT can enhance the overall frequency regulation capability of

power system and alleviate the burden of frequency regulation on conventional units once
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large frequency contingency occurs [3],[45],[16],[62]. The basic process of coordinated
down-frequency regulation can be described as below: during the first transient process
of frequency drop event, inertial response plays a key role in reducing ROCOF and
increasing the frequency nadir point. Once deadband is hit for more than a specified
delay time, the primary frequency response further enhance the frequency regulation
capability by using a droop control until the frequency settles into another steady state, so
that the nadir is greatly lifted and smoothly restored within an acceptable limit. Lastly,
AGC control is activated to achieve the zero-error frequency regulation through PI
controller. According to different control strategies, the coordinated frequency controllers
can be designed as shown in Figure 2.12.
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Several coordinated control strategies based on pitch angle control and rotor

speed control are subsequently proposed to improve VSWT’s frequency regulation

capability, enhance the system damping and mitigate the power oscillation. Without de-

loaded control, a temporary up-regulated and down-regulated frequency support can be

provided by VSWTs through an adaptively combined pitch angle and rotor speed control
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over different wind speeds [76]. The work in [25],[53] considers a K deviation method
for DFIG-WTG to perform frequency regulation in real-time variance tracking mode. The
study in [16] proposes a novel coordinated frequency regulation strategy for DFIG-based
WT according to low, medium and high wind speed conditions. In [3], a coordinated
frequency control scheme appropriate for PMSG-WT is designed by synthesizing the
constant inertial control, over-rotor speed control and pitch angle control under a full
range of wind speed. The work in [19] is focused on the combined pitch angle and rotor
speed control to achieve the frequency regulation throughout the frequency event. A
coordinated control strategy in [11]-[12] employs a direct control on the electromagnetic
torque and rotor speed of DFIG-based wind turbine to allow for additional active power
control based on operator’s request under the varying wind conditions. In [70], a
Kinetic/Inertia, Proportional gain & Enhanced Pitch (KIPEP)-control is presented to
support the primary and secondary frequency regulation and smooth out the wind power

output in the short-term frame as well.

2.2 Performance of Various Speed Wind Turbine Generations on

Frequency Regulation

A WTG possesses a certain amount of Kinetic energy stored in the rotating mass
which can be utilized to provide a short-term frequency support in the event of power
imbalance. In general, wind turbine can be divided into two main groups: fixed-speed
WTs (FSWT) and variable-speed WTs (VSWT). Each group has its own benefits and
drawbacks in terms of their contributions to the system frequency support. The FSWT

inherently can provide a certain inertial response to minimize the ROCOF, so integration
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of these types cannot obviously mitigate the system inertia. In contrast, VSWTs cannot
naturally supply any inertial power into the electrical grid due to partially or fully
decoupling between generator rotor speed and grid frequency through power converter.
However, modern VSWT is able to provide the emulated inertial response and frequency
regulations by equipping with supplementary control loops on the converter controller
and pitch angle controller. Furthermore, it is emphasized in several literatures that
VSWTs are capable of providing superior inertial response to conventional generators
due to their faster power response, a wider variation range of rotor speed and larger
inertia constant [5],[7],[15],[26],[33],[77]. In addition, another novel type of VSWT
based on the electromagnetic coupler (WT-EMC) is studied with respect to its frequency
contribution through the emulated inertial response and droop frequency regulation over

a full scope wind speed conditions [29].

2.2.1 Type 1 and Types 2 FSWTs

Thanks to a direct coupling between the rotational rotor speed and system
frequency, Type 1 Induction Generator with Fixed Speed and type 2 Wound-rotor
Induction Generator with Adjustable External Rotor Resistance-Variable Slip can
contribute to the system frequency by providing the limited inertial response. For type 1,
inertial response is a passive process in which the kinetic energy stored in the generator,
gearbox and wind blades is intrinsically released or absorbed as system frequency
decreases or increases. Commercial fixed speed wind turbines (FSWT) with rated above
1 MW possesses 3-5s inertial constant H [77]. The stored energy in each FSWT is

basically unrelated with wind speed, and the aggregated kinetic energy of wind farm
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increases with the number of turbines online [71]. Generally, the larger kinetic energy
stored in type 1 wind turbine will be released in the form of extra inertial power as the
initial rate of change of frequency (ROCOF) decline faster. However, it is difficult to
tune the inertial response to meet the system requirement without supplementary
controller adopted. So, inertial response from type 1 WTGs is limited and uncontrollable.
Type 2 WTGs maintain the power output at the rated value despite a abrupt frequency
drop occurs because the external rotor resistance regulates the power output at all times
according to the target value. Therefore, type 2 hardly makes any contribution to the
system inertial response [67],[23].

However, it is noted that both types can allocate a constant amount or a constant
proportion of available aerodynamic power as reserve margin by pitch angle controller.
In this way, they are capable of delivering the surplus power into the grid based on
primary droop control, so as to improve the frequency regulation capability even if

productivity loss of wind power results.

2.2.2 Type 3 and Type 4 VSWTs

Type 3 Double Fed Induction Generators (DFIG) with Variable Speed and type 4
Direct Drive Permanent Magnet Synchronous Generator with Variable Speed and Full
Converter System (PMSG) inherently cannot provide any inertia response. However, they
are capable of achieving a fast, flexible and accurate active power regulation through
power electronic converter. Compared with type 1 and type 2 FSWTSs, the rotor speed of
VSWT can operate at the lower rotor speed to release the kinetic energy for inertial

response according to the specific operation mode. Meanwhile, due to variation in
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regional wind profiles, their kinetic energy available from VSWTs always changes
significantly in magnitude [77]. These two types of VSWTs act like a fly-wheel device to
mitigate the power fluctuations resulting from variable wind conditions, which can be
stored as kinetic energy in the rotating mass. In contrast with FSWTs, inertial response of
VSWTs is an active process in which the system frequency or ROCOF is monitored and
measured in real time, so that their response can be tuned by setting proper control
parameters to enhance the system comprehensive frequency regulation capabilities. To
better arrest the frequency decline, a certain headroom for inertial power release is
required for VSWTSs to provide more active power within the maximum power capability
of converter and generator[14]-[15],[19],[16], [77].

Due to asynchronous operation, speed variation of type 3 is much larger than
system frequency variation [77]. The rotor speed of type 3 WTGs can be controlled
between 0.67p.u-1.33p.u through modern power converter technology [66]. Thus, the
emulated inertia of type 3 is as large as several times of its inherent inertia by using
inertial control loop. The partial-scale power converter (20%-30% of full rating) utilized
in the rotor circuit of type 3 imposes certain limitation on the de-loaded level, maximum
inertial response as well as the rotational speed variation range (within £20%-+30% of
synchronous speed) [2]. Compared to type 3 with the same rated power capability and
inertia constant H, type 4 is capable of providing greater frequency regulation capabilities
and stronger inertia response due to its wider operating range of rotor speed and a full

power converter employed [77].
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2.3 Conclusion and Discussion

In this chapter, the motivation for incorporating the inertial response and
frequency regulation of VSWT into the system frequency regulation is summarized.
Moreover, the classifications, fundamental concepts and control schemes implemented
for auxiliary frequency control of individual WT and wind farm are clarified in detail.
Also, the potential frequency regulation capabilities of four main types of WTs are

discussed.

40



Chapter 3 Modeling and Simulation of a CART2-PMSG Integrated
Model

According to basic operation characteristics and key physical parameters of
Controls Advanced Research Turbine (CART2) Test Bed, a 600kW CART2-PMSG
integrated model is developed as a simulation platform using MATLAB/Simulink in
attempt to investigate the impact of the proposed inertial response and primary frequency
regulation on the wind turbine’s structural and component loads. In the meanwhile, the
frequency regulation performance can be fully evaluated by means of CART2-PMSG-
based wind farm model in case of one generator trip.

A complete CART2-PMSG wind turbine system mainly consists of CART2
aerodynamic model, a permanent magnet synchronous generator (PMSG) and a full-scale
average voltage-sourced converter (VSC). Each component of the entire model is
established in Simulink based on its mathematical equations. This control scheme can
achieve the maximum power operation and active/reactive power decoupling control:
generator-side converter can control the generator rotor speed or its active power to fulfill
the MPPT operation while grid-side converter can maintain the dc-link capacitor voltage
constant as well as the reactive power exchanged with grid at the specified value. Lastly,
validity of established model equipped with corresponding control strategy for MPPT
operation is assessed through simulation study considering the step-change of wind speed
and real wind speed conditions respectively.
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3.1 CART2 Test Bed

The Controls Advanced Research Turbine (CART2) is a two-bladed, teetered,
upwind, active-yaw, variable-speed wind turbine located at the National Wind
Technology Center (NWTC) of the National Renewable Energy Laboratory (NREL).
Currently, two types of generators are available in CART: a wound field synchronous
generator for CART3 and a squirrel-cage induction generator for CART2. These two sets
of system serves as a test bed for various aspects of advanced control schemes for
medium- to large-scale machines. For the real CART2 machine, it is a gearbox-operated
wind turbine equipped with squirrel cage induction generator and connected through a
full-scale power converter to the power grid [80]. Each blade can be independently
pitched through its own electromechanical servo system. These make it possible to
control the torque from minus rating (—Traeq, Motoring) to plus rating (+Trated
generating) at an acceptable range of the rotor speed by power electronics, which are
utilized to command the specified generator torque. In the meanwhile, the full-span blade
pitch controls the rotor speed. Figure 3.1 illustrates four operation regions where wind
power generator safely and efficiently operate according to different wind speed
conditions. The rated electrical power is 600 kW at a low-speed shaft speed of 48.32 rpm,
and it is maintained in Region 3 using a conventional variable-speed approach as shown

in Figure 3.1
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Figure 3.1 Variable-speed turbine operating regions of the CART2 model
In addition, the machine is installed with a full complement of instruments that

gather meteorological data at four heights. Blade-root flap and edge-strain gages, tower-
bending gages as well as LSS and high-seed shaft (HSS) torque transducers gather load
data [80]. Accelerometers in the nacelle measure the tower's fore-aft (f-a) and side-side
(s-s) motion. Absolute position encoders gather data on pitch, yaw, teeter, LSS, and HSS
positions with a sample of 100 Hz. The custom-built control system collects these data

and controls the turbine at a control loop cycle rate of 100 Hz [80].

3.2 CART2 Simulink Model

To simulate the characteristics of the CART2 test bed before the field test is
carried out, a CART2 model is developed in MATLAB/Simulink based on the Fatigue,
Aerodynamics, Structures, and Turbulence (FAST) module [81]. In Figure 3.2, CART2
model incorporates a simplified generator model, yaw controller, and pitch angle
controller. Figure 3.3 shows a typical relationship among FAST, the generator model,

pitch controller, and yaw controller. Figure 3.1 illustrates four regions wherein the wind
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power generator safely and efficiently operates under different wind speed conditions. In
Region 1, the wind turbine stays in a stall state due to the low wind speed. In Region 2,
the wind turbine runs in MPPT mode when the tip speed ratio (TSR) is maintained
constant at the optimal value to maximize the wind energy capture through the generator
torque control. At the same time, the blade pitch is held constant at its run-pitch value (-1
degree). In Region 2.5, the rotor speed starts at a value lower than the rated value and
gradually reaches the rated torque at the rated speed or slightly below it for the sake of
safety margin. In this way, a smooth transition is achieved from Region 2 to Region 3. In
Region 3, the generator torque remains constant at the rated value, and the pitch angle
controller is activated under the high wind speed condition to restrict the rotor speed
below the rated value [23],[81]. Since the Region 2.5 is not operation area that this work
intends to focus on, it is neglected and will be discussed in the future research. Therefore,
there is no transition zone between region 2 and region 3 for the CART2-PMSG model
used herein, which means that active power output of CART2-PMSG is kept as rated

value corresponding to the nominal rotor speed without pitch angle control involved.
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Figure 3.2 The configuration of CART2 simulink model
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3.3 CART2-PMSG Integrated Model

As discussed before, the CART?2 turbine at NREL consists of multi-blade turbine
system connected to a variable frequency controlled induction generator via a mechanical
gearbox. For the purpose of research objectives intended in this project, the aerodynamic
model of CART2 turbine is used, whereas the electrical generator and the power
converter used for this simulation is a PMSG with a full power conversion (Type
4). This integrated model is named as "CART2-PMSG".

To be specific, the simplified generator in the CART2 model is fully replaced
with a detailed PMSG and average back-to-back power converter to constitute a 600-kW
CART2-PMSG integrated model [82]. In addition, the major operating scheme is fulfilled
by the generator-side converter control, so that this model resembles the realistic
operating characteristics of the CART2 machine in view of different wind speeds. The
fundamental control structure of the CART2-PMSG integrated model is shown in Figure
3.4. And Figure 3.5 shows the overall configuration of CART2-PMSG in

Matlab/simulink.
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The values of key parameters for the developed CART2-PMSG integrated model

are summarized in Table 3.1.

Table 3.1 List of CART2 modified parameter values

R (rotor radius) 21.336 m
p (air density) 1.03kg/m3
Cp_max (the maximum power coefficient) 0.396
Aopt (the optimum TSR) 8.49
Trated_gen (Q€NETator rated torque) 3524.4 N-m
Orated_gen (g€Nerator rated speed) 1800rpm (188.5rad/s)
Orated_wt (Wind turbine rated speed) 48.32rpm (5.06rad/s)
Ngear (gearbox ratio) 37.25
The pitch angle for Cpmax -1 degree
Rated wind speed (m/s) 12.718
Rated mechanical power 6e5 W
Rated apparent power 664349.4 W
Rated power factor 0.903
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3.3.1 Modeling of Pitch control model

One typical model of wind turbine pitch controller is used to carry out the
dynamic pitch angle regulation in the operational zone 3 in Figure 3.1. The basic control

block diagram of this wind governor is shown in Figure 3.6 [23].

S Mode 1: Active power-based rotor-side converter control
Actuator Mode 2: Rotor speed-based rotor-side converter control
gen_pu
B Rmax l +
max
Mode2 AP — Pr=1.0p.u.
1 [P~
Bactual Nt 1 B 1 + B
.‘ § W Tservo "‘ |
+ jJ - 5 Model m AP @ — Wer=1.0p.u.
Bmin Rmin ¥+

Wmech_pu

Figure 3.6 Schematic of pitch angle control
In this work, a model of 2 blades pitch mechanism is developed for CART?2

model in order to carry out the generator power regulation or rotor speed regulation in
coordination with the rotor-side converter control. For the rotor speed-based rotor-side
converter control in mode 2, dynamic pitch control strategy is designed to maintain the
actual output power of generator within the rated capacity (1.0 p.u.) for the sake of
security by increasing the pitch angle when the wind speed exceeds the rated value. But,
it is worth noting that modern PMSG-WTG system, including the power converter and
generator, is actually capable of carrying out the overloaded operation (1.0p.u.-1.5p.u.)
for a specified short period of time (30seconds to several minutes). For the active power-
based side converter in mode 1, the pitch angle control is employed to keep the rotor
speed of generator below the rated rotor speed (1.0 p.u.) by increasing the pitch angle
when the wind speed exceeds the rated value. In this way, the mechanical and electrical

components of CART2-PMSG can be protected effectively under the over-wind speed
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condition. Note that Figure 3.4 shows a baseline pitch angle control that doesn't consider

any other additional control such as frequency regulation control or load mitigation.

3.3.2 Modeling of Permanent Magnet Synchronous Generator

The general dg-axis model of permanent magnet synchronous generator is
established in MATLAB/Simulink. The rotor excitation of the PMSG is generated by
permanent magnets as constant value, so the model of PMSG in the synchronous
reference frame is given as [19],[83]:

{ Vis = —Rsigs + weLqiqs — Lapigs

_ _ . 3.1
Vgs = —Rsigs — WeLigigs + weAr — LgPigs G

The electromagnetic torque produced by PMSG-WTG is calculated as follows:

Te = 15P((Ld - Lq)idsiqs + iqslpf) (32)

The PMSG rotor mechanical speed w,, is given by motion equation
Wy = ]%(Tm —T,) (3.3)
where, subscripts ‘d’ and ‘q’ respectively represent the physical quantities
transformed into the d-q synchronous rotating reference frame; R is the stator resistance;
Lq and Lq are the generator inductances on the d- and g-axis, respectively (For the
nonsalient PMSG applied, the d- and g- axis magnetizing inductances are equal L4=Ly);
Vgs and Vg, are the d- and g- axis components of stator voltage, respectively; igs and igs
are the d- and g-axis components of stator current, respectively; w, is the rotor electrical
angular speed; w, is the rotor mechanical speed; P is number of pole pairs; y; is the
permanent magnetic flux; T, is the electromagnetic torque; Ty, is the mechanical torque; J

is moment of inertia.
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3.3.3 Modeling of Power Converter System

a) Rotor-Side Converter

As shown in Figure 3.7, a coordinated control strategy of back to back double
PWM converter is proposed based on the dynamic characteristics of CART2 test bed.
There are currently two types of control methods available to achieve the MPPT
operation of PMSG-WTG. One method is to have a direct control over the generator
electromagnetic power P,., based on the measured rotor speed to ensure that the rotor
speed runs at the optimal power capture mode in Region 2. The other method is to
directly adjust the rotor speed based on the measured wind speed so as to maintain the
optimal tip speed ratio that enables the PMSG-WTG to extract the maximum wind
energy under the different wind speeds. In this work, these two types of control schemes
have been considered for the MPPT operation of rotor-side converter, respectively.
Moreover, the synchronous generator of CART2-PMSG system is controlled by the
rotor-side converter using the rotor magnetic flux oriented control technique, which is
implemented at the rectifier for a decoupling control of d-and g-axis stator current
components of PMSG. For this purpose, the controller of the rotor-side converter has a
cascaded structure: a faster inner current loop for g-axis currents control in conjunction
with middle loop for electromagnetic torque control and a slower outer loop for the
optimal active power control in mode 1 (optimal rotor speed control in mode 2). By this
means, the active power output of PMSG is dynamically modified in accordance with the
measured rotor speed in mode 1 (measured wind speed in mode 2) so as to make wind

turbine perform at the MPPT mode corresponding to the optimal C,, value [19],[83].

50



The other control loop is used to regulate the d-axis current component for
controlling the excitation flux of the generator. As the iy is usually set to 0, the stator
current can be completely utilized for generating the maximum electromagnetic torque.
Furthermore, the d-and g-axis voltage control signals of the machine-side converter are
obtained by comparing the d-axis and g-axis currents references with the actual generator
stator d-axis and g-axis current values. With this control design, the current-regulated
voltage-source PWM converter performs the optimal operation of PMST-WT system.

b) Generator-Side Converter

For the grid-side converter, a control method with a reference frame aligned along
the inverter ac voltage (Voltage Oriented Control) is adopted, so that the active power
and reactive power delivered from PMSG to the grid can be fully independently
controlled. The grid-side converter takes advantage of two outer PI control loops that
define reference values iz and i for two inner current control loops that control the dg-
axis decoupling current components. Meanwhile, the inner current control loops define
the PWM modulation indices for the inverter control [19],[83].

Using this method, a grid-side converter is able to maintain the dc link voltage
constant and control the reactive power at the desired value. In addition, once the
reference value of reactive power is set as 0, the inverter is ensured to operate in the unity

power factor mode to produce the maximum active power output.
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3.4 Simulation Results and Discussion

The dynamic response of a single CART2-PMSG based on active power control and
rotor speed control are compared through the following three simulation cases: wind
speed step change, real wind speed condition as well as transient voltage sag. Simulation
results and analysis are presented as follows.

Case 1. Dynamic response of CART2-PMSG model under step-change wind speeds

1) Simulation Results from PMSG Simulink model
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Figure 3.8 Simulation results for the PMSG model under step-wise wind speed conditions
As shown in Figure 3.8, wind speed changes from 11 m/s to 13m/s and returns to

11m/s with a step change of 1m/s. For the active power-based control, it is observed that
the rotor speed have a slight overshoot of 1.5% of the rated value due to the slow
response of pitch angle regulation mechanism when wind speed rises from 12 m/s to 13

m/s. For every step change of 1m/s in wind speed below the rated value, rotor speed
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regulated by active power-based control takes approximately 22s to reach the steady state
because of CARTZ2's large inertia constant. In contrast, it takes about 10s to settle down if
the rotor speed-based control is adopted by imposing a direct control over the rotor speed.
For the step change in wind speed above the rated value, the rotor speed needs longer
duration (35s) to enter another steady status due to the combined large inertia of WT and
slow response of pitch control. During the wind speed change, the DC link voltage can be
maintained constant around 1200V in the step-change wind speed condition. It is due to
the fact that size of DC capacitor is large enough to mitigate the impact resulting from the
power imbalance and meanwhile generator-side converter can perform well in
maintaining the DC voltage as the targeted value. Although there is a fast step changes in
the wind speed, the active power output is well controlled to track the optimal power
reference while the reactive power is kept at 0 throughout the entire simulation. By
comparison, there is a faster but step-wise change in the active power output when rotor
speed-based control is implemented for generator-side converter. That is because the
rotor speed variation is subject to the limit of 0.01p.u./s, for the purpose of avoiding the
potential risk of power overloading and sudden power drop as a result of excessive
inertial power exchange when the rotor speed rapidly varies. The pitch angle motion
responding to the step change of wind speed. Note that the variable pitch angle control is
hardly activated to regulate and limit the generator rotor speed (active power-based
control) or the generator active power output (rotor speed-based control) below 1.0 p.u.
until wind speed goes beyond the nominal value.

Thus, the established CART2-PMSG model equipped with the active power-

based control and rotor speed-based control are capable of fulfilling the independent real
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and reactive power control while the MPPT operation is achieved throughout the
stepwise wind speed conditions, respectively.
2) Simulation Results from FAST model
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Figure 3.9 Simulation results for FAST-based CART2 model under step-wise wind speed
conditions

As the wind speed changes, it is noted that significant variations occur in the
blade 1 out-of-plane shear force at the blade root, blade 1 flap-wise shear force at the
blade root, the tower base fore-aft shear force and low speed shaft thrust force. As wind
speed rises at every interval, these shear forces will increase correspondingly due to the

increased rotor speed, and vice versa. For other shear forces including rotating low-speed
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shaft shear force and Blade 1 in-plane shear force at the blade root, no significant
variations can be observed. The low-speed shaft strain gage azimuth angle remains the
almost same during the variable wind speeds and shows no difference between two
control methods as well. However, there is a smaller oscillation on the tower base side-to-
side shear force when rotor speed-based control is used.

Case 2. Dynamic response of CART2-PMSG model under the real wind speeds

1) Simulation Results from PMSG Simulink model
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Figure 3.10 Simulation results for the PMSG model under realistic wind speed conditions
As shown in Figure 3.10, wind speed changes abruptly around the average value

of 11 m/s with about 3m/s amplitude of variation (Note: The wind profile is created
artificially based on the actual wind speed variations). In this case, rotor speed-based
control and active power-based control show different characteristics in terms of rotor
speed and active power output, but changing trends seem quite similar for each other. It is

shown that the generator rotor speed controlled by active power-based control varies
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within the range of 20% of the rated value because of the large inertia of CART2. In
contrast, the generator rotor speed adjusted by rotor speed-based control changes within
the range of 15% due to the rotor speed upper and lower limit applied.. During the wind
speed variation above the 12.718/s (rated value), active power can be well regulated
around 0.9 p.u (generator capacity is selected as base value) thanks to the pitch angle
control system with which rotor speed-based control is coordinated. However, it cannot
be promptly controlled below 0.9 p.u. due to the sluggish mechanical response of pitch
angle actuator in the presence of highly rapid wind speeds. For both rotor-side converter
control, the DC link voltage is maintained constant at 1200V without obvious oscillation
caused by the strong changes in wind speed. With continuous changes in wind speeds, the
active power generated through the active power based control has a mean value of 0.537
p.u. over this time period, while the counterpart through rotor speed based control shows
a mean value of 0.5353 p.u. during the same period. At the same time, the reactive power
generated with both rotor-side converter control remains as zero. The pitch angle of WT
is dynamically regulated via pitch mechanism in conjunction with rotor-side converter in
limiting the rotor speed or active power output below the rated value. Therefore, the
established PMSG-WTG model is demonstrated once again to be effective in realizing
the independent real and reactive power decoupling control using a fully decoupled
current control strategy in the synchronously rotating d-q frame.

2) Simulation Results from FAST model
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Figure 3.11 Simulation results for FAST-based CART2 model under realistic wind speed
conditions

As the wind speed changes, significant variations occur in the blade 1 out-of-
plane shear force at the blade root, blade 1 flap-wise shear force at the blade root, the
tower base fore-aft shear force and low speed shaft thrust force. At the same time, it is
worth noting that these shear forces for active power-based control tend to be slightly

larger than those for rotor speed-based control. That is due to the fact that its rotor speed
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is always smaller than that managed by the active power-based control throughout the
variable wind speed conditions. As rotor speed suddenly rises up as a result of increased
wind speed, these shear forces will rise correspondingly, and vice versa. Due to the large
inertia in wind turbine, the changes in these shear forces tend to become smoother. For
other shear forces including rotating low-speed shaft shear force and Blade 1 in-plane
shear force at the blade root, no dramatic variations show up in the process of these
drastic wind speed variations. Note that the vibrations in those shear forces associated
with tower base appear to be much larger once the pitch angle is activated with respect to

rotor speed-based control.

3.5 Conclusion

Based on the simulation results of above cases, it can be concluded that the
established CART2-PMSG integral model with two different control strategies applied
can accurately represent the actual steady-state and dynamic characteristics in terms of
both mechanical and electrical aspects. Thus, it can serve as a reliable platform to carry
out the design and analysis with respect to the auxiliary frequency regulation control for

PMSG-WTG.

69



Chapter 4 A Comprehensive Frequency Regulation Scheme for PMSG-
WTG with pre-deloaded operation

In this work, a novel comprehensive frequency regulation (CFR) scheme is
proposed for PMSG-WTGs based on rotor speed control by combining rotor speed
control with modified pitch angle control. Constant inertial power control emulates the
inertial response using the kinetic energy stored in the rotating mass so as to achieve a
short-term frequency support. The rotor speed and pitch angle controls are coordinated to
curtail the wind power output for maintaining a certain reserve margin during the de-
loaded operation, but also prepared to fulfill the long-term frequency regulation through
variable slope droop control during severe frequency event. Furthermore, this CFR
control strategy is integrated into the CART2-PMSG model so as to investigate the
potential impact on the wind turbine's structural loads when CFR is implemented. From
simulation results considering three different types of wind speed scenarios, the proposed
CFR can dramatically enhance the frequency regulation capability of PMSG-WTG and
well damp the frequency oscillation over a full range of wind speed conditions.
Meanwhile, no significant negative impact is imposed on the major mechanical

components of wind turbine .
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4.1 Coordinated Frequency Controller Design for PMSG-WTG System

In Figure 4.1, the general control structure of a single PMSG-WTG equipped
with the proposed CFR control is illustrated. The constant inertial control and droop
control are added into the rotor-speed controller to generate the rotor speed reference for
the generator-side controller through which the frequency regulation function is enabled.
Under the normal grid operation, the rotor-speed controller regulates the rotor speed so
that the PMSG-WTG is able to operate in the de-loaded mode regardless of wind speed
conditions. At this moment, both Switch 1 and Switch 2 remain in 0 mode.

Based on the measured wind speed and monitored grid frequency at the point
of interconnection, the coordinated frequency controller can carry out the specific
frequency control strategy where sub-controllers are coordinated to execute the inertial
response and frequency regulation when severe frequency disturbance occurs. If a large
frequency drop is detected through the coordinated frequency controller, the sub-
controller 1 changes Switch 2 mode from 0 to 1. Once the inertial response is completed,
sub-controller | returns Switch 2 mode from 1 to 0 and meanwhile the sub-controller 11
mode changes the Switch 1 mode from 0 to 1. Since then, the droop controller and de-
loaded controller function together to generate a new rotor-speed reference for the
primary frequency regulation. In the medium and high wind speed conditions, sub-
controller 11l aims to coordinate the modified pitch angle controller with rotor speed
controller for inertial response and frequency regulation. However, in the low wind speed,

it serves to maintain the pitch angle fixed at -1 degree. By this means, the frequency
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change is linked with the rotational speed variation so as to fulfill the PMSG-WTG's

frequency regulation function.
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4.1.1 Rotor Speed Control

a. Constant inertial power control

Using inertial controller, a portion of rotor kinetic energy is quickly delivered to
the grid through power converter. The main purpose of this control is to mitigate the rate
of change of frequency (ROCOF) and arrest the frequency nadir during the initial few
seconds of the frequency event [16]. Until now, there are three main types of inertial
control methods including natural inertial, constant inertial and virtual inertial response
[4].[42],[79]. In this study, the constant inertial power response is employed since it is
more suitable for PMSG-WTG based on the rotor speed control to achieve the
controllable and fast inertial response by directly adjusting the rotor speed.

As for constant inertial power control, the inertia refers to a constant amount of
active power extracted from WT's kinetic energy in the rotating mass, which is utilized to
improve the system frequency performance for a specified duration [4]. The equation for

constant inertial power is defined as
1 1
Pint = SJwf, — S Jwf (4.1)
where, t is the duration of time for the constant inertial power injection (),

o 1S the initial rotor rotational speed (rad/s) and w, is the rotor rotational speed (rad/s)

at the moment t. So, the reference value for rotor rotational speed is given by:

lJin
Oref = Opp = /cofo — ZTt (4.2)

Pin

By defining o, = —2__ as per-unit rotor speed and Pinpu =

Obase Sbase

as per-unit

inertial power output (Spase IS the nominal apparent power of PMSG-WTG), the total
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moment of inertia of the rotating masses ] = ZZHS is substituted into (4.2) so that the per-

Opase

unit rotor speed reference is expressed as

P.
Wrt_pu = \/(‘)%o_pu - lrll_ipu t (4.3)

The constant inertial power response mainly aims to reduce the ROCOF by
providing a continuous and steady amount of extra active power Py, ,, for a required
period of time t. In general, the desired duration t and power magnitude P;, ,,, are largely
dependent on the disturbance magnitude and current grid operation condition [79]. In this
paper, the appropriate duration of inertial response alone is determined as 3s through trial
and error method. According the equation below, Pi, nu is set as 20% of the current
deloaded power output and emulated H time constant is set to 7.118s according to Table
3.1

Pin pu = 0.2 X Pge pu 4.4

It is assumed that inertial response is still available in the high wind speed
condition due to transient overloading capacity of power converter. The block diagram of
constant inertial power control is shown in Figure 4.2. According to Eq.(4.3) and Eq.(4.4),
rotor speed reference w..¢ IS calculated and then error between .. and measured
Ormeas Passes through Pl controller to generate the direct-axis current reference that

controls the active power output.
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Figure 4.2 Control block diagram of constant inertia response
b. De-loaded operation
In order for PMSG-WTG to participate in the primary frequency regulation, a

certain amount of spinning power reserve needs to be made in the acceptable range of
wind speed conditions.

According to the power reserve requested from system operator, the primary
power reserve is carried out through either “balance” or “delta” control method [40]. In
this paper, delta control is adopted based on MPPT strategy so as to allow PMSG-WTG
for the de-loaded operation with a fixed percentage of available aerodynamic power. In
view of upper rotor speed limit, PMSG-WTG operation is classified into low, medium
and high wind speed modes. Regardless of wind speed, the rotor speed reference is
obtained from the de-loaded operation curve, which is established through the de-loaded
algorithm and implemented by the look-up table in the Simulink simulation.

In Figure 4.3, the left and right de-loaded operation curves are depicted in terms
of high, medium and low wind speed regions. Compared with the active-power-oriented
control, one of greatest strengths of the rotor-speed-oriented control is to allow PMSG to
steadily operate either in the left de-loaded or right de-loaded manner [3]-[4],[14]. With
the typical Pl controller used, the rotor speed of PMSG can be well controlled to remain

stable at the specified rotor speed. In this work, the right de-loaded mode is implemented
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since more Kinetic energy is available to enhance the constant inertial power response due
to its over-rotor-speed condition. Over-rotor-speed condition refers to the scenario that
the VSWT remains in the deloaded operation with the rotor speed higher than the
corresponding optimal rotor speed under the same wind speed [4], which is represented

by dotted line in Figure 4.3.

1.20
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Figure 4.3 80% de-loaded operation curve with the rotor speed limitation (0.5 p.u.-1.0
p.u.) over a full scope of wind speeds

c. Variable slope droop control

Similar to the turbine governor characteristic of traditional synchronous generator,
the droop control of PMSG-WTG utilizes the primary reserve power to generate the
additional active power as a function of frequency deviation. So, PMSG-WTG is able to
coordinate with other synchronous generators to share the load variation. Unlike the
inertia control without requiring the deloaded operation, the droop control is dependent
on the reserve margin in order to raise up the frequency nadir and minimize the post-
disturbance steady-state frequency deviation toward the acceptable range [16]. The extra

active power through the droop control is defined as
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APy py = Pae — Py = — 2eref (4.5)

Where, f,. is the actual system frequency [p.u.] and f.ef IS nominal system
frequency [p.u.], R is the rotor speed adjustment rate [%]. P, is the actual active power
output [p.u.] corresponding to f,.. and P, is the initial power corresponding to f..;. The
value of R usually lies in the range between 3% and 6%, depending on the specified grid
codes of different countries [84]. APy, ,, represents the active power change [p.u.]
through the droop control. As shown in Figure 4.4, a high pass filter is employed to
ensure that small frequency deviation cannot inherently impact the whole control system.
Meanwhile, a deadband module is added so that this droop function is activated only

through the severe frequency event.

Pmax
far & Figh pass|__ [T/ AF T T14% j Converter |
filter 1/ AP* | Control |
= Deadband T T
f Pde_pu

ref min

Figure 4.4 Control block diagram of droop response
Considering that reserve power changes throughout the entire frequency

regulation, PMSG-WTG operating with higher reserve power is able to deliver more
active power that contributes to a stronger droop response than case with lower reserve
power. For this reason, the variable droop response is designed to optimize the primary
droop response by setting R value inversely proportional to the reserve power margin as
shown in Figure 4.5 [66]. Using this method, the hazards leading to WTG's operation

instability and excessive mechanical stress on the drive train can be mitigated since
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power utilized for the primary frequency support is not allowed to exceed the current

reserve margin.

A
Rmax
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I:)de_min Pde_act Pde_max
Reserve Power (p.u.)
Figure 4.5 The variable slope droop curve versus the reserve power
The value of R, for any specific wind speed is calculated as follows:
Pde_act—Pde_min
Ract = Rmax — (Rmax — Rmin) - [%] (46)
de_max~— Fde_min

where, Pge act 1S the actual power margin [p.u.] corresponding to R, for a
specific wind speed. It is obtained from:

Pde_act = PmppT — Pact (4.7)

where, Pyppr iS the maximum wind power output corresponding to the present

wind speed [p.u.]. P, is the actual wind power output [p.u.]. In EQ. (4.4-4.6), Rk 1S

chosen as 6% and Ry, is 2% respectively. The maximum margin Pye max IS 20

percentage of Pyppr and minimum margin Pye min IS O percentage of Pyppr, wWhich

corresponds to Ry, and R,,.x respectively.
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4.1.2 Modified Pitch Angle Control

A modified pitch angle controller is designed to coordinate pitch angle with rotor
speed for the primary frequency regulation in accordance with various wind speed
conditions.

As shown in Figure 4.6, variable pitch servo system is represented with a first-
order module. S1 is used to pass the pitch angle reference according to different wind
speed modes. S2 is applied to maintain the pitch angle control disabled in the low wind
speed mode when S2 is set as 0, or conduct the inertial response and droop control in
medium or high wind speed mode when S2 is set as 1. Note that the power reference is
APy py in the medium wind speed while the power reference is APyr py + APipert pu iN
the high wind speed. That is because inertial response in the medium wind speed is a
short-term frequency response that can be completely achieved by rotor speed
deceleration and acceleration control of the rotor side converter. In contrast, pitch angle is
required to perform the inertial response in the high wind speed since the rotor speed
remains fixed at around 1.0 p.u. Using this modified control method, the dynamic power
balance between the mechanical power input and electrical power output of PMSG is

made when performing the proposed comprehensive frequency regulation.
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Figure 4.6 Schematic of modified pitch angle controller

4.2 Comprehensive Frequency Control Scheme

From the perspective of operation security, the comprehensive frequency
regulation of PMSG-WTG can fit into a wide range of wind speeds. The value of ®
resulting from the de-loaded operation in between medium and high wind speeds exceeds
the maximum rotor speed limit ®max (1.0 p.u.). Thus, in order to facilitate the proposed
scheme with the predefined deloaded margin, three types of wind speed modes are
defined: Low wind speed mode where the de-loaded operation and frequency regulation
is fulfilled only by rotor speed control; medium wind speed mode where a coordinated
frequency regulation is achieved through both modified pitch angle control and rotor
speed control; high wind speed mode where modified pitch angle control alone is used
for the de-loaded operation and frequency regulation. As shown in Figure 4.3, 80% de-
loaded operation is achieved when the generator rotation speed moves along the purple

solid line GCH under differing wind speeds.
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Figure 4.7 Schematic of comprehensive frequency regulation controller at the rotor-side converter
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(1) Mode 1: in the low wind speed range from cut-in speed to 9.4 m/s, the rotor
over speed control can realize the 80% de-loaded operation without pitch angle control
involved. The active power output for inertial response and frequency regulation is

regulated only by rotor speed controller as well. The rotor speed reference ope is

obtained in Figure 4.3 by tracking the line segment G-F-C. Meanwhile, the pitch angle
controller is deactivated by setting the pitch angle reference as zero in Figure 4.6. For
instance, if frequency abruptly drops, the rotor speed control will inject a constant-wise
inertial power into grid through the rotor speed deceleration. Next, the droop control will
kick in once frequency deviation goes beyond the safety limit. The operating point moves
towards the MPPT curve corresponding to the current wind speed. If rotor speed
continues to decline through the inertial response and hit the lower rotor speed limit (0.5
p.u.), it will be locked on to this value with the inertial control suspended. In this case,
PMSG-WTG only afford the limited frequency regulation due to its minimum rotor speed
constrain.

(2) Mode 2: in the medium wind speed range from 9.4 m/s to rated wind speed
(12.718m/s), extra active power for frequency support require a coordinated control
between rotor speed and pitch angle controller. That is because that rotor-speed controller
alone is unable to maintain 80% de-loaded operation due to the upper rotor speed limit
(2.0 p.u.) as indicated in the line C-A-H. The rotor speed control combined with pitch
angle control is illustrated in Figure 4.6 and Figure 4.7. Assuming that initial wind speed
is 11m/s in Figure 4.3, the rotor speed remains at Point A through the modified pitch

angle controller by setting S1 to 1. The final steady-state operating point E is dependent
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on the primary droop control in accordance with the dashed straight line A-B. The rotor
speed reference value w.o; Will change from 1.0 p.u. to og, which is calculated by the

linear interpolation method as follows [16].

WE-WA — Pg_Pp (4 8)
wp—wap  Pp—Pa '

Where, wg is the optimal rotor speed on the MPPT curve [p.u.]. Pg is the optimal
active power [p.u.]. P4 is equal to 80% of optimal active power [pu]. So, if there is an
increase AP = APy, ,, On top of the active power output Py, ,, the total power output
Pg corrresponding to operating point E will be Pz = Py + AP = 0.8Pyppr + AP with

®wa = 1.0 p.u. The rotor speed reference w,¢ for generator-side converter is expressed as

Wyref = WE = 1.0 + L ((*)MPPT - 10) (49)
0.2PvppT

All the variables in Eq. (4.4-4.9) are measured in per unit. Using this method,
combined rotor speed and pitch angle controller is capable of operating wind turbine at
the deloaded operation and meanwhile participate in the constant inertial power response
and primary frequency regulation under the medium wind speed.

(3) Mode 3: in the high wind speed range from rated wind speed to cut-out speed,
only pitch angle control is responsible for maintaining 80% de-loaded operation as well
as implementing the variable droop and inertial response in the frequency event.

From the perspective of response time, the proposed comprehensive frequency
control strategy is implemented through the following two stages in case that system
frequency abruptly declines due to a heavy load increase or a large-capacity generator
trip. At the initial state, once the absolute value of ROCOF is larger than "a" (e.g.0.8Hz/s)

in Figure 4.7. for at least delay period time "t;" (e.g.100ms), inertial control comes into a
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play. As shown in Figure 4.7, the sub-controller 1 will switch the S1 from normal
deloaded mode 1 to constant inertial power control mode O while S3 remains in the
default mode 0. Then the new rotor speed reference is generated for PMSG-WTG
generator-side converter to perform the constant inertial power response. This process
assists in arresting the initial ROCOF to prevent the triggering of under frequency load
shedding (UFLS) relay protection. (2) Primary frequency regulation will be activated to
take over the subsequent frequency regulation when the absolute value of frequency
deviation exceeds deadband threshold "b" (e.g. 0.3Hz) for at least delay time period "t,"
(e.g. 50ms). In Figure 4.7, sub-controller Il will change S2 from default mode 0 to
variable droop control mode 1 and meanwhile the sub-controller I switches S1 from 0
back to 1. In the case of medium and high wind speed conditions, rotor speed controller
needs to be coordinated with pitch angle controller to achieve a long-term primary
frequency regulation using the reserve power [16]. Furthermore, Rate Limiter for rotor
speed is used to eliminate the impact of undesirable inertia on the active power output
that results from the overly fast rotor deceleration or acceleration. The power rate limiter
with 0.45 p.u./s and torque limiter with 1.1 p.u./s are added to reduce mechanical stresses
on the drive train. Therefore, inertial response and primary frequency regulation are
performed safely within the available reserve margin, namely 0.2 p.u. of maximum power
output Pyppr. Accordingly, upper limit and lower limit of Power Limiter are set as
0.2Pyppt and -0.2Pyppt respectively. The upper limit of power limiter for modified pitch
angle controller is set as 1.1 p.u. of rated power with the assumption that both generator

and power converter are able to undertake a certain short-term overload.
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4.3 Test System with Integration of CART2-PMSG Model

A small power system model is established in the Matlab/Simulink platform. As
depicted in Figure 4.8, a 60Hz simple power system consists of an aggregated CART2-
PMSG based wind farm, three synchronous generators and one constant power load. The
3MW wind farm consisting of 5 single CART2 wind turbines is connected to the point of
common coupling (PCC) via a 575/35kV step-up transformer. The three synchronous
generators are based on the thermal power plant with IEEE standard steam turbine
governor and type 1 excitation system [47]. The inertial time constant for the 12-MVA
SG1, 5-MVA SG2, and 0.8MVA SG3 are set as 5s, 4.2s and 3.5s respectively while
droop coefficient for all generators is uniformly set as 5%. The baseline operating points
for SG1 and SG2 are set to 0.8 p.u. of their rated capacities to ensure a certain power
headroom for performing the primary frequency regulation. And the initial operating
point of SG3 is 1 p.u., namely operating at the rated condition. The wind power
penetration level of this small grid system is approximately 19.4% when CART2-PMSG
operates at the rated wind speed.

In order to evaluate the effectiveness of the CFR method, the SG3 is tripped off
the grid at t=30s, resulting in a severe frequency decline due to the power imbalance and
reduced system inertia. Thus, differences in the frequency regulation performance can be
noticeably observed through the following four scenarios: no auxiliary frequency control,
constant inertial power control, fixed slope droop control as well as the proposed CFR

control.
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Figure 4.8 Basic configuration of a small test system

4.4 Simulation Results

4.4.1 Simulation Results for Electrical System

Case 1. Low wind speed condition (8/s)
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Figure 4.9 Simulation results of electrical system under the low wind speed.
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Figure 4.11 Simulation results of electrical system under the high wind speed.

4.4.2 Simulation Results for FAST Mechanical Stresses
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Case 2. Medium wind speed
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Figure 4.13 Simulation results of mechanical stresses under the medium wind speed.
Case 3. High wind speed
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Figure 4.14 Simulation results of mechanical stresses under the high wind speed.
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4.4 Comparison and Discussion

From Figure 4.9. to Figure 4.11, dynamic characteristic and frequency regulation
performance of CART2-PMSG are compared between using proposed CFR and other
single traditional controls under various wind speed modes. Meanwhile, the impact of
CFR control on the essential mechanical components including blade, shaft and tower is
examined by comparing with the baseline case as shown in Figure 4.12-Figure.4.14. In
case 1, additional active power is regulated only by using the rotor speed control while
the modified pitch angle is maintained as -1 degree. In case 2, pitch angle control and
rotor speed control are coordinated as a means of generating the extra active power. In
case 3, the extra power is controlled entirely by the modified pitch angle control while the
rotor speed remains around 1 p.u..

Without the auxiliary frequency control scheme, the output of CART2-PMSG
does not respond to the frequency disturbance. So, from the Figure 4.9(a) to Figure
4.11(a), the overall frequency performance is the least desirable. The frequency nadir
dropped below 59.5Hz (assumed as the minimum permissible frequency), so that the
Under Frequency Load Shedding (UFLS) relay is triggered by tripping a certain amount
of loads. In contrast with the natural inertia response in [26], constant inertial power
response is able to deliver the additional active power in a controllable and sustainable
manner. During the inertial response in Figure 4.9 (b) to 4.11 (b), the Kkinetic energy
stored in the rotating mass is extracted and injected into the grid in conjunction with the
released reserve power when rotor speed decreases. By doing this, this combined active

power fed into the grid can significantly enhance the short-term frequency regulation by
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mitigating the ROCOF and lifting the frequency nadir. In this case, the UFLS load
shedding is avoided under the disturbance conditions. Nevertheless, the steady-state
frequency deviation cannot be reduced since the power output of CART2-PMSG finally
returns to the pre-disturbance value. Moreover, once the frequency begins to rise
following the frequency nadir, a significant portion of aerodynamic wind energy will be
utilized to accelerate the rotor speed and restore the kinetic energy rather than being
converted to additional real power. As a result, due to this temporary decline in the
electrical power output, a secondary frequency drop (SFD) may takes place, even with
the subsequent nadir lower than the previous one as shown in Figure 4.10 (b). Therefore,
it is necessary to choose the appropriate value of Py, ,, in equation (4) and rotor
restoration speed to achieve a tradeoff between increasing the frequency nadir and
mitigating the SFD issue.

With the fixed slope droop control, CART2-PMSG can share the sudden increase
in the power load with other conventional synchronous generators, so that frequency
nadir can be raised as shown in Figure 4.9 (a) to 4.11 (a) In this way, the spinning reserve
of conventional generators for the primary frequency regulation can be reduced by de-
loading the wind power output. Moreover, the steady-state frequency deviation is
mitigated to a certain extent since a certain amount of reserve power is put into use for a
long-term primary frequency support. However, the droop control itself cannot
substantially improve the ROCOF because its control effect mainly depends on the
magnitude of frequency deviation. During the initial stage of frequency decline, the
frequency deviation gradually increases so that the droop control reaches the optimal

performance at the frequency nadir by providing the largest additional power.
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Table 4.1 Result comparisons among various frequency regulation methods in case 1

Post- The overshoot
ROCOF freque_ncy disturbance Se_ttlmg during the
Methods nadir stable time frequency
frequenc recovery (Hz
(Hz/s) (H2> quency () y (Hz)
(Hz)
No auxiliary
frequency -0.23 59.48 59.82 49.8 59.88
control
Constantinertia | ) 59.5 50.82 49.8 59.91
power response
Fixed slope -0.23 50.61 50.83 48.7 50.84
droop control
Proposed CFR -0.15 59.64 59.83 41.6 59.79

Table 4.2 Result comparisons among variou

s frequency regulation m

ethods in case 2

Post- The overshoot
ROCOF frequ(;e_ncy disturbance Se_ttllng during the
Methods nadir f stable time frequency
reguenc recovery (Hz
(Hz/s) (H2> quency (s) y (Hz)
(Hz)
No auxiliary
frequency -0.3 59.48 59.82 55 59.87
control
-0.18 59.33 59.82 55 60.09

Constant inertia
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power response

Fixed slope 0.3 50.62 59.84 85 59.89
droop control
Proposed CFR |  -0.18 59.65 59.85 74 59.82

Table 4.3 Result comparisons among various frequency regulation methods in case 3

Post- The
. i overshoot
ROCOF frer?;deir:cy dIStltJrE?nce S:it:]l: ’ during the
Methods Sabie
(Hz/s) frequency frequency
(H2) () recovery
(Hz) (Hz)
No auxiliary 0.2 59 49 59.83 50.3 59.88
frequency control
Constant inertia 0.1 59.68 59.83 50.3 59.83
power response
Fixed slope droop .0.18 59.53 59.85 42 59.87
control
Proposed CFR -0.1 59.68 59.86 37.7 59.86

As shown in Table 4.1-4.3, the proposed CFR control shows the best performance
in enabling the CART2-PMSG to participate in both short-term and long-term frequency
regulation. It not only helps arrest the ROCOF, but also boost the frequency nadir as well
as avoids the secondary frequency drop. Moreover, the primary frequency regulation is
significantly enhanced through the variable droop control in an effort to further reduce
the steady-state frequency deviation and smoothen the frequency recovery. The duration
that frequency restores to the post-disturbance stable state is shortened with much smaller

overshoot in the recovery process. However, it is noted that the frequency recovery
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period for CFR in case 2 is much longer compared with other two cases without droop
control applied. That is due to the fact that the variable droop control is carried out based
on coordinated control between the rotor speed and pitch angle. Thus, it more likely
results in a relatively long adjustment process due to the mutual effect between large
inertia of rotating mass and slow mechanical response of pitch mechanism.

In Figure 4.12 to Figure 4.14, there are no significant impacts on the wind
turbine's tower, blade and shaft because of the sudden increase in the electrical power
when CFR control is carried out at the low wind speed condition. Actually, out-of-plane
shear force and flap-wise shear force in blade 1, tower base fore-aft shear force as well as
rotor thrust force tend to become slightly smaller during the frequency response phase
when CFR is deployed. This is mainly because the decreasing rotor speed leads to
reduced tip speed ratio and eventually causes less force [85]. Similarly, all the shear
forces on the blade and tower as well as the rotor thrust force seems to have the same
trend as the rotor speed variation in Figure 4.10 (c). With active involvement of pitch
angle control in the high wind speed case, magnitude of these forces are slightly larger
than those in Figure 4.12-4.13. In Figure 4.14 (a)-(e), due to the fact that the rotor speed
is restricted as 1.0 p.u., these shear force and rotor thrust force change accordingly when
the pitch angle is adjusted to increase the active power through the CFR control.
Nevertheless, this increase is still regarded as acceptable from the perspective of secure
operation when compared with the structural loads imposed by the gusty and turbulent
wind conditions. Therefore, the implementation of the CFR approach in the low wind

speed mode does not negatively impact the mechanical components, and potentially
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induce more but not severe stresses on those components in the medium and high wind

speed modes.

4.5 Conclusion

A novel CFR control scheme is developed and implemented into the CART2-
PMSG model based on rotor speed control. It comprises the constant inertia power
response and dynamic variable droop control, which are carried out during two sequential
stages of frequency event: in the short term, constant inertial power controller emulates
the inertial response aiming to improve the transient frequency characteristics; in the long
term, based on the available reserve margin, variable droop control allows PMSG-WTG
to participate in the enhanced primary frequency regulation along with other synchronous
generators. More importantly, this control scheme needs to be achieved through the
coordinated control of both rotor speed and pitch angle in accordance with various wind
speed modes. To verify the effectiveness of CFR control and its impact on the
mechanical loads, a series of simulation cases are carried out in Matlab/Simulink.

It is concluded that the CFR can enable PMSG-WTG to contribute to the active
power regulation and promote the overall frequency regulation performance in case of
frequency disturbance. The presented CFR control is capable of reducing the initial
ROCOF, raising the frequency nadir as well as minimizing the steady-state frequency
deviation. Also, this control scheme can retain a constant percentage of delta reserve
power ready for the long-term frequency regulation. Moreover, the presented method can
be widely applied for the rotor-speed-control-oriented PMSG-WTG or DFIG-WTG over

a wide range of wind speeds. What is important, the implementation of CFR does not do
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large damage to major mechanical components of wind turbine and affect wind turbine's
safe operation. In this sense, the established CART2-PMSG model with CFR function
can serve as a theoretical tool to study the secure integration of PMSG-WTG-based wind

farm and their potential contribution to the system frequency regulation as well.
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Chapter 5 Frequency Support of PMSG-WTG Based on Improved

Inertial Control without Pre-deloaded Operation

In this work, an improved inertial control method based on the maximum power
point tracking operation curve is introduced to enhance the overall frequency support
capability of PMSG-WTGs in the case of large supply-demand imbalances. Moreover,
this method is implemented in the CART2-PMSG integrated model in
MATLAB/Simulink to investigate its impact on the wind turbine’s structural loads during
the inertial response process. Simulation results indicate that the proposed method can
effectively reduce the frequency nadir, arrest the rate of change of frequency (ROCOF)
and mitigate the secondary frequency drop (SFD) while imposing no negative impact on

the major mechanical components of the wind turbine.

5.1 Improved Inertial Control Method of PMSG-WTG

Figure 5.1 shows a complete set of improved inertial control strategy, which is
composed mainly of three sequential stages as highlighted in the red line: inertial
response (Line A-B-C), temporary deloaded operation (Line C-D-E), and rotor speed
recovery (Line E-A). The blue line represents the maximum power characteristics under
different rotor speeds, and the black line indicates the mechanical power characteristics
corresponding to a given wind speed and optimal pitch angle. Besides, the dashed

magenta line presents the torque limit that WT's active power output must comply with.
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The green line shows the electrical power reference that is in parallel with the maximum
mechanical power curve by AP. During the inertial response, the kinetic energy stored in
the rotating mass can be released by decelerating the rotor speed, wywr, because the
electromagnetic torque is larger than the available mechanical torque. The rotor speed
declines along Line B-C and eventually settles down at Point C due to the decreasing
power imbalance. To achieve this function, the active power command P.¢¢ 1 Of rotor-

side converter comprises a constant AP and the regular reference Pyppr. (Puppr =

3 _ l 5 Cpmax
Kw k = > pmR —(Aopt)3)'

Pref 1 = Puppr + AP (5.1)

where, Pyppr IS the maximum active power captured from the wind energy at a
certain wind speed, AP is a constant value in proportion to the rotor speed; wyy, Which is
a certain percentage of the actual output power level instead of the wind turbine's rated
power. It is more favorable to provide stronger inertial response in the relatively high
rotor speed condition by setting a larger value of AP. On the other hand, a lower inertial
response is still available for system frequency support in the low wind speed condition
without causing the over-deceleration of the rotor speed. It is worth noting that the value
of AP cannot be set too high because the green line should intersect with or be tangent to
the black line to assure the rotor speed stabilizes at the w;. Moreover, due to the
maximum torque limit and maximum power constrain of the power converter, the value
of AP cannot be kept setting high but being reduced especially as rotor speed rises toward
the rated one. So, the proper adjustment of AP in the high rotor speed condition is very

necessary in order to optimally perform the SAI function. It will be further studied in the
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later work. For the temporary deloaded operation, the active power command Py , IS
described as
Pref 2 = P* — APge (5.2)
where, P* is the active power value corresponding to the intersection Point C
between the mechanical power curve and the electrical power curve, and APy is a
constant value for the deloaded margin that drives the rotor speed to be accelerated due to
the power imbalance. The larger the AP, value is, the faster the rotor speed returns to the
optimal Point E, but the more likely a secondary frequency drop (SFD) occurs. So it is
necessary to determine the appropriate value for APy to achieve a desirable trade-off
between the recovery speed and frequency performance. During the rotor speed recovery,
the rotor speed can smoothly move toward the original Point A along Line E-A, and it
finally settles down at Point A due to the decreasing power imbalance. At this stage, the

active power command P, 3 remains constant as the optimal value:

Prer 3 = Pyppr = K(wt)3 (5.3)
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Figure 5.1 Power—rotor speed trajectory

The specific control strategy of improved inertial response implemented in
MATLAB/Simulink is illustrated in Figure 5.2 [86]. A disturbance detector is utilized to
trigger the inertial response as the frequency deviation exceeds 0.02 Hz and sustains for a
period of 100 ms. When the rotor speed decreases to w, and the condition (5.4) is met for
a specified period of time (1s), in this case the rotor speed has basically reaches the stable
state at the point C and the frequency support is completed. At this moment, the power
command is switched from the inertial response to temporary deloaded operation through
the deloaded operation detector.

oy — wi—q] 0.5 X 1073 p.u. (5.4)
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where w; is the rotor speed at the moment t (s) and w_; is the rotor speed at the
moment t-1 (s). During the deloaded operation, the power command is changed to MPPT
mode using the inertial recovery detector if the condition (5.5) is satisfied for a specified
period of time (50 ms). This criterion can make sure that the active power output is able
to increase from Point E moving along Line E-A without undergoing any possible decline.

W¢ = WMPPT (5.5)

where wyppt IS the optimal rotor speed when WT operates at the deloaded power

level, P.ef, = Pp. In other words, wyppr cOrresponds to the rotor speed w, at the point
E.

Note that the power magnitude limiter, torque magnitude limiter, and their rate
limiters are added to this integrated model to avoid the excessive stress and overload
imposed on the wind turbine’s mechanical components (blade, drive train, and tower)
when performing the inertial response.
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Figure 5.2 Complete set of the improved inertial control scheme
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5.2 Model System and Case Study

Figure 5.3 shows a small power grid system consisting of three steam turbine
generators and one aggregated CART2-PMSG-based wind farm as established in
MATLAB/Simulink. The inertial time constant for the 10-MVA SG1, 5.2-MVA SG2,
and 0.9MVA SG3 are set as 5s, 4.2s and 3.5s, respectively while droop coefficient for all
generators is set as 5%. The initial operating points for SG1 and SG2 are set to 0.76 p.u.
of their rated capacities to secure a certain power headroom to participate in the primary
frequency regulation. The initial operating point of SG3 is 1 p.u., namely operating at the
rated condition. The 3MW wind farm incorporating 5 single CART2 wind turbines is
connected to the point of common coupling (PCC) via a 575/35kV step-up transformer.
The pre-disturbance power output of WTG is 0.44 p.u., so the wind power penetration is
approximately 10.4% in this scenario. In this work, the penetration level is defined as the
percentage of total demand served by the actual wind power output. Automatic
generation control is disabled in this work, thus the steady-state error following the
frequency disturbance remains.

At the moment of 30 s, the SG3 rated at 900 kW is tripped out of the grid and a
rapid frequency decline immediately follows. To eliminate the influence of wind
variation on the structural loads, CART2-PMSG operates at the constant wind speed of
10 m/s wherein it is capable of providing 0.3 percentage of the available optimal power
output for the inertial response. In this case, the performance of the proposed inertial
scheme and its effect on the grid frequency is fully evaluated by comparing it to the case

that uses no inertial control. Meanwhile, two different values of the deloaded margin,
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APy, are chosen to explore its impact on the system frequency recovery process and
structural loads of the wind turbine. Therefore, a series of results regarding the grid side,
electrical and mechanical features as well as the selected loading variables are made
available in three scenarios. The black line is the basic case without the wind turbine’s
inertial response. The blue line represents the proposed inertial response with APy, =0.03
percentage of the current wind power output, and the red line shows the proposed inertial

response with APy, = 0.0044 percentage of the current wind power output.

CART2-based
wind farm Rectifier Inverter

—~ /| |

575V/35kV

| | ST~

SG3 13.8kV/35kV BR3
@ 0O—

Transmission
G2 13.8kV/35kV BR2 Line

@%

SG1 13.8kV/35kV BR1 Load

@%

Figure 5.3 Basic configuration of a small-scale power grid system
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5.3 Simulation Results
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Figure 5.6 Simulation results for the mechanical stresses of CART2-PMSG

5.4 Comparison and Discussion

During the 1st stage of inertial response from 30s to 50s, Figure 5.4 shows the
inertial response is activated to increase the electrical power to compensate for the power
deficit caused by the SG3 trip. With the proposed inertial response, the kinetic energy

stored in the rotating mass of the wind turbine is rapidly released and injected into the
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grid through the power converter control. As a result, the overall frequency performance
is substantially improved in terms of ROCOF, frequency nadir, and percentage overshoot,
as shown in Table 5.1. Meanwhile, the risk of load disconnection triggered by the under-
frequency load-shedding protection (UFLS) scheme is reduced throughout the initial
inertial response. During this process, more response time is allowed for the online SG1
and SG2 with slow ramp rates to respond and fulfill the subsequent primary frequency
regulation after WTG's inertial response. For this reason, the duration of the overloading
operation for these two synchronous generators is shortened accordingly.

Table 5.1 Comparison of system frequency characteristics

Post- The
i i overshoot
ROCOE | Frequency | disturbance | Settling overshoc
Methods nadir stable time uring the
(Hz/s) frequency frequency
(Hz) (s) recovery
(H2) (H2)
No auxiliary 0,269 £9.40 5081 48,37 o 66
control
The proposed
inertial
response with -0.178 59.63 59.81 59.81 59.82
small deloaded
margin

In Figure 5.5, the rotor speed begins to decline as a result of the mechanical and
electrical torque imbalance, and eventually it arrives at the secondary steady state, where
the torque balance is reestablished. According to the lookup table about the power

coefficient C, versus TSR under a certain pitch angle, it is observed that the calculated
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mechanical torque gradually rises until it reaches toward the steady value equal to the
electrical torque. That is because the rotor speed, w,, corresponding to the MPPT power
at Point A is higher than the counterpart corresponding to the maximum torque under a
constant wind speed condition. As a result, the new steady-state torque is larger than the
previous steady torque since the rotor speed gradually decreases. The DC link voltage is
well maintained constant at a rated value of 1,200 V during the entire inertial response.

In Figure 5.6, there are no noticeable impacts on the tower and blade stress
because of this sudden increase in electrical power. when the improved inertial response
is performed. Actually, Blade 1’s shear force, tower base flap-wise shear force as well as
shaft thrust force tend to become slightly smaller through this inertial response stage.
This is mainly because the decreasing rotor speed leads to decreasing TSR and likely
decreasing thrust [85]. Therefore, the implementation of the proposed inertial control
scheme in Region 2 does not adversely impact the mechanical components between the
blades and the generator and thus is unlikely to jeopardize the wind turbine’s lifetime.

During the 2nd stage of deloaded operation from 50s to 72s, the wind turbine with
the AP4. of 0.03 p.u. can accelerate toward w, and enter MPPT mode much faster than
the case with the APy, of 0.004, as shown in Figure. 5.4. During this course, SG1 and
SG2 will increase the active power output by using droop control respectively to offset
the reduced power output in the WTG and the frequency declines slightly as a result.
Thus, the larger APy, can make a quicker recovery of the rotor speed, whereas the more
severe SFD occurs as shown in the enlarged image of Figure 5.4 (a). Thus, a small APy,

is preferred from the perspective of improving the frequency stability. In Figure 5.6, it is
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noted that the blade 1 out-of-plane shear force and blade 1 flap-wise shear force gradually
increases up toward the pre-disturbance value when rotor speed decelerates back to the
previous optimal point. In meanwhile, the tower base fore-aft shear force continue to
decline.

During the 3rd stage of the rotor speed recovery from 72s to 90s, Figure 5.5 (b)
shows that the active power output of PMSG-WTG finally restores to the initial optimal
state when rotor speed arrives at the pre-disturbance value. Due to the increase in the
power output of PMSG-WTG, SG1 and SG2 smoothly decrease until getting stabilized at
another steady state. For the case with the smaller de-loaded magnitude APy., WTG
requires much longer time length to settle down at the MPPT point. However, Figure 5.4
shows there is no obvious impact on the grid frequency stability in contrast with the case
with bigger AP,.. Similarly, all the shear forces tend to increase back to their original

values, respectively except the tower base fore-aft one displayed in Figure 5.6.

5.3 Conclusion

In this work, an improved inertial control method based on the MPPT
characteristic is presented for the purpose of enhancing the frequency regulation
capability of PMSG-WTGs without additional power reserve. To illustrate its
effectiveness, an integrated CART2-PMSG model equipped with the proposed inertial
control is established in MATLAB/Simulink, and its frequency regulation performance is
evaluated in the event of a single generator loss. Simulation results demonstrate that the
improved inertial control enables the PMSG-WTG to arrest the ROCOF and improve the

frequency nadir even in the low wind power penetration condition, whereas the proper
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deloaded value can avoid an SFD throughout the rotor speed recovery process. Moreover,
the application of the improved inertial control into the PMSG-WTG cannot cause any
potential damage to the wind turbine’s mechanical components when it is operating at a

certain wind speed.
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Chapter 6 Coordinated Control Strategy of BESS and PMSG-WTG to
Enhance the Frequency Regulation Capability

A novel control method based on the torque limit (TLC) is proposed in this work
for the purpose of maximizing the wind turbine (WT)'s inertial response and thus
enhancing the temporary frequency support. To avoid the secondary frequency drop
(SFD) caused by the WT's rotor speed recovery and deloaded operation, a small-scale
battery energy storage system (BESS) is established and implemented to eliminate this
impact and meanwhile assists the wind turbine in restoring to the MPPT mode by using
the coordinated control strategy between BESS and PMSG-WTG. For the sake of
reducing the costly use of BESS, this control strategy also enables BESS to withdraw
smoothly while maintaining the system frequency within the scheduled range through
coordination with other conventional generators using automatic generation control
(AGC) system. Based on the simulation results, it is concluded the overall system
frequency regulation performance can be significantly improved by coordinating BESS
with PMSG-WTG for the inertial response. Furthermore, the potential impact of TLC on
the WT's mechanical components during the inertial response is investigated by using the

CART2-PMSG integrated model.
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6.1 Torque Limit Control for Enhanced Inertial Response

Figure 6.1 illustrates the TLC-based inertial control strategy, which consists of
three sequential stages as highlighted in the red line: inertial response (Line A-B-C),
temporary deloaded operation (Line C-D-E), and rotor speed recovery (Line E-A). The
dotted purple line represents the maximum power characteristics versus different rotor
speeds along with the torque limit trajectory, and the black line indicates the mechanical
power characteristics corresponding to a given wind speed and optimal pitch angle (-1
degree). The black dashed line shows the maximum mechanical power curve. Prior to a
severe frequency event, a PMSG-WTG remains stable in MPPT mode, corresponding to
wymppr and Pyppr at Point A. At the moment when an unacceptable frequency decline
occurs, the PMSG-WTG instantly increases its active power output stepwise to Point B
corresponding to the torque limit at the current rotor speed:
Pref 1 = 1.2wpppt (6.1)
Equation (6.1) is presented in per-unit and the torque limit is set to 1.2 p.u. to
prevent the permanent damage due to an aggressive incremental torque. During the TLC-
based inertial response, a certain amount of kinetic energy stored in the rotating mass is
released when the rotor speed wyr i decelerated, since the electromagnetic torque is
larger than the available mechanical torque. The active power output declines along Line
B-C as rotor speed slows down.
Next, deloaded operation is triggered as long as rotor speed reaches the lower

speed limit (e.g. 0.5p.u.) or frequency hits the nadir at the point C during the inertial
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response. For the temporary deloaded operation, the active power command Ppef , is
described as
Pref2 = Pge = Pref1 — APge (6.2)
where, APy, is the deloaded margin with 0.5p.u. set in this work. Note that the
value of APy, should be at least larger than the difference between P.ef 1t and Ppec ¢ at
the moment t when PMSG-WTG switches to temporary deloaded mode from inertial
response mode. During the rotor speed recovery, the rotor speed can smoothly move
toward the original Point A along Line E-A, and it finally settles down at Point A as a
result of the decreasing power imbalance. At this stage, the active power command
P.e 3 remains constant as the optimal value:
Prer s = Puppr = K(wp)® (6.3)
Note that the duration t for the inertial response and the deloaded value AP, for
the deloaded operation significantly impact the subsequent rotor speed recovery stage.
That is because a relatively long-time inertial response tends to result in a much lower
rotor speed and then a larger deloaded power is required to make the mechanical torque
larger than the electrical torque so that the rotor speed is able to return to the point D. In
this case, the duration for rotor speed from D to E will take much longer accordingly. In
addition, a larger APy will more likely contribute to a more severe secondary frequency
drop (SFD) due to the resulting temporary power shortage between Pc and Pp. Therefore,
the application of BESS is introduced in the following section so as to prevent the SFD

issue and assist the fast rotor speed recovery of wind turbine.
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Figure 6.1 Power—rotor speed trajectory for TLC
The detailed control strategy of TLC implemented in MATLAB/Simulink is

described in Figure 6.2. A disturbance detector is utilized to trigger the inertial response

if the frequency deviation exceeds 0.1 Hz and meanwhile sustains for a period of 50 ms.

Provided either condition

in (4) is met for a specified period of time (50ms), the

deceleration of rotor speed will suspend and then the frequency support is accomplished.

At this moment, the power

command is switched from the inertial response to temporary

deloaded operation via the deloaded operation detector.

where f; is the freq

ft - ft—l > 0 & (l)t > (.l)min (0.5 p.u.)
or fi —fi_1 < 0& w = Wyin (0.5p.u.) (6.4)

uency at the moment t (s) and f,_; is the frequency at the

moment t-1 (). w;, is the rotor speed at the moment t (s). During the deloaded operation,

the power command is changed to MPPT value through the inertial recovery detector if

the condition (5) is met for

a specified period of time (50 ms). This criterion ensures that
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the active power output can rise from Point E moving along Line E-A without causing
any possible decline.

Wt = WMPPT (6.5)

where wyppr ge 1S the optimal rotor speed when WT operates at the deloaded

power level, P.of, = Pye. In Other words, wyppr ge COrresponds to the rotor speed at the

point E. Note that the power magnitude limiter and its rate limiters are also added to this

integrated model to avoid the excessive stress and over load imposed on the wind

turbine’s mechanical components when performing the proposed inertial response.
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Figure 6.2 Control block of the complete TLC inertial response scheme

6.2 Dynamic Modeling of BESS

6.2.1 Modelling of Battery Module

The dynamic model of 1IMWh battery energy storage system (BESS) is designed
based on the built-in battery module in MATLAB/Simulink. The basic parameters of
BESS are listed in the Table 6.1. An aggregated model is used to represent the general
characteristics of energy storage station that comprises a multiple of single cells

connected in parallel and series combination. It serves the purpose of improving the
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simulation efficiency and accurately representing the dynamic characteristics of BESS
that participates in the coordinated system frequency control [87].

Table 6.1 The parameters of lead-acid battery

Battery Type Lead-acid
Rated power output (MW) 2

Rated energy capacity (MWh) 1
Nominal voltage (V) 769
Rated capacity (Ah) 1302.1
Initial state of charge (%) 50

Fully charged voltage (V) 895.11
Nominal discharge current (A) 2600.8
Internal resistance (ohms) 0.00295
Capacity (Ah) @ nominal voltage 1177.55

The Simulink module of battery implements a generic dynamic model to carry out
the corresponding simulations in accordance with various type of rechargeable batteries.
Compared with the real physical model, this module shows a maximum error of 5% when
SOC is between 10% and 100% for charge current between 0 and 2C as well as discharge
current between 0 and 5C. So, it completely satisfied the demand on simulation accuracy.

The equivalent circuit of battery model is depicted in Figure 6.3.
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Figure 6.3 Equivalent circuit of the generic battery [87]

The mathematical equations of charge and discharge modes for Lead-Acid

model are expressed:

Discharge mode (i*>0)

« 2 i k2 xi XP(s)
f,(it,i",i, Exp)=E,-K ot i -K ot it+Laplace™ ( Sel(s) x0) (6.6)

Charge mode (i*<0)

N e Q Q . xp(s) 1
f (it,i,i,Exp)=E,-Kx it+0.1><QXI Kx Q_it><|t+LapIace (———= Sel(s) S) (6.7)

where,

Epart = Nonlinear voltage (V)

Eo = Constant voltage (V)

Exp(s) = Exponential zone dynamics (V)

Sel(s) = Represents the battery mode:
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Sel(s) = 0 during battery discharge, Sel(s) = 1 during battery charging

K = Polarization constant (Ah™) or Polarization resistance (Ohms)

i* = Low frequency current dynamics (A)

I = Battery current (A)

it = Extracted capacity (Ah)

Q = Maximum battery capacity (Ah)

Depending on the specific battery type, the typical discharge-characteristic curve

can be shown in the Figure 6.4.

| _— Discharge curve
Fully Charged f----------------- i ----------------------- |:| Nominal area |
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Figure 6.4 Typical discharge characteristics of generic battery [87]
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Figure 6.5 Nominal current discharge characteristic for specified lead-acid battery [87]
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In Figure 6.5, the curve includes three different sections during the battery
discharge process. The yellow exponential area represents the exponential change in the
voltage when the battery is in full charge mode. According to various battery types, the
size and shape of area vary slightly. The grey nominal area indicates the total energy
discharged from the battery until the voltage drops below the nominal value. Lastly, the
blank section shows the voltage tends to decline rapidly when the battery totally

discharges.

6.2.2 Modeling and Control of BESS Inverter

As shown in Figure 6.6, the DC power output of battery energy storage system

can be converted into the three-phase 60Hz AC power through the power inverter[78]-

[79].
L o
E. R L | fﬁ% g3j§ 83 5
Y S BN N Blp c=u, | E
UESC R A _ E. . S
82JKI} g4j$ g6Jl<§i S

0
Figure 6.6 Inverter structure of BESS in the charging mode

According to the Kirchhoff's Law, assuming the impact of zero-sequence and
modulation frequency is neglected, differential equations of current and voltage in 3-

phase coordinate system can be expressed as follows:
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di,

dt

dip,

dt
di .

| L5+ Rie = Egc — B

L<2 4 Ri, = E, — E,

L + Rlb == Esb - Eb (68)

During the inverter operation, switching signals of upper and lower bridge arms
work as complementary PWM signals. At one moment, only one bridge is on while the
other is off. The correlation is described as

S — {1 k phase upper bridge arm is on and lower one is off
k™ 10 k phase lower bridge arm is on and upper one is off

(k=a,b,c) (6.9)
Take phase A as an example, when the upper bridge arm is on (g, = 1), the lower
bridge arm is off (g, = 0). The voltage E,, between point "a" and point 0" should be
equal to Ug.. In contrast, when the upper bridge arm is off (g, = 1), the lower bridge
arm is on (g, = 1). The voltage E,, between point "a" and point "0" should be 0. The
other two phases can apply in the same way. The correlation equation can be expressed:
Exo = sk - Ugc (k=1a,b,¢) (6.10)
Assume Eyq is voltage between AC-side neural point and DC-side "O" point, the
three-phase voltages are obtained:
Ean = Eao — Eno
Epn = Epo —Eno (6.11)
Ecn = Eco — Eno
From the above equations, we can derive the following ones:
Eno = 3 (Bao + Epo + Eco) =5 (Ean + Epn + Eay) (612
Since three phases variables are balanced at AC side, we can have the equation as

Ean + Epn + Ecn = 0. Thus, e.q. (6.12) can be rewritten as
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Eno = g(an + Epo + Eco) (6.13)

Accordingly , three phase voltages are represented as

1
E.n = (Sa - 52k=a,b,c Sk) “Uqgc
1
Epn = (Sb — 5 Zk=ab,c Sk) “Udc (6.14)
1
\Een = (Sc — 5 2k=ab,c Sk) “Ugc
Based on e.q. (6.14), AC voltages of inverter are determined by the switching

signal Si. And the switching functions are defined as
1
|{mal =Sa— 52k=a,b,c Sk
1
4 My, = Sp = 3 Xk=ab,c Sk (6.15)

1
me =S¢~ EZk=a,b,c Sk
According to three-phase current and voltage equations of inverter, the following

equations can be obtained:

L3+ Ri, = Egy — myUsgc
Ld& + Rlb = ESb — mbUdc (616)

dt

di¢ .
(Ld—‘t + Ri. = Eqc — mUgc

where, the relation between DC-side voltage Uy and DC-side current iy, is given
by
dUge . . . . .
CT = igc — Ip = myi, + myiy + meic (6.17)
Since the above model is established in the 3 phase stationary reference frame, the

voltages and currents at the AC side are time-varying variables. To facilitate the design

and application of controllers, the mathematical model represented in three-phase (abc)
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stationary reference frame can be transformed into two-phase model in a rotational
reference frame defined by the d (direct)-q (quadrature) axes that are perpendicular to
each other, so that the DC variables can be acquired. So, equations of inverter at the DC
and AC sides are converted as:

Udcmd Esq

d [iq i
Shl=L s [ ‘|- i (6.18)
dUdC _ mdid + mqiq - iO (619)
dt C

where, w is angular frequency of phase voltage at the AC side, E¢q is direct-axis
component of AC voltage, ig and iq are direct-axis and quadrant-axis components of AC
current, respectively. Similarly, mgq and mg are the d and g-axis components of switching
function respectively.

The real and reactive power output can be given by

{ P = Esdid
Q= _Esdiq

(6.20)
If the AC side three-phase parameters are exactly same, Eqq remains constant
value. So, real and reactive power outputs are related with iy and ig, respectively. In

other words, iq and iy can be independently controlled by adjusting P and Q separately.

To achieve this objective, the converter model in d-q reference frame is transformed in

the following way:

2 = —Rig + wLiq + Egq — V4
i | | (6.21)
E = —qu — (Dle + Esq - Vq
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where, Vg and V, are the d-axis and g-axis components of AC-side voltage output
of inverter. According to e.qg. (6.21), it indicates id and iy will be affected by the controls
of V4 and V; respectively, but also influenced by current coupling items of wLiy and
wLig as well as AC voltage Egq and Egq. In order to eliminate their impacts, one feed-
forward compensation method is adopted to realize the decoupling control.

Vg, Vg and Aug, Aug can be defined as:

! di .
Va = Ld_s +Rig {Auq = wLig

; , (6.22)
L4 4 Rig

' Aug = wLi
=L d d
Vq dt

The inverter model in the d-q reference frame can be transformed as follows:

{Vd = Egq — vq + Aug 6.23)

Vq = Esq — vq + Aug
Due to the first order differential relation between vy and ig as well as vg and ig,

decoupling item vg and vq can be obtained using Proportional-Integral loop:

{an = Kp1 (igref — ia) + ki1 J (arer — ia)dt (6.24)

Va1 = kpz (igrer — i) + KizJ (igrer — iq)dt
where, igrer and igrer are reference values for active power current iy reactive

power current ig, respectively.
Based on the above analysis, the state equations can be fully decoupled by adding
the voltage decoupling compensation items Aug and Aug. As shown in Figure 6.7, a
phase locked loop (PLL) is utilized for the detection of the grid voltage angle that
synchronizes the BESS with power grid during the dg/abc or abc/dg transformation. The

d-axis of the synchronous frame is aligned with the grid voltage vector, so that the d-axis
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grid voltage is equal to the magnitude of grid voltage and meanwhile g-axis voltage is
equal to zero. Due to the inverter's PWM four-quadrant operation, the BESS is capable of
adjusting the magnitude and direction of real power and reactive power respectively
according to the system operation requirement. The inverter control is implemented in the
grid voltage oriented d-q reference frame where the direct-axis current component ig is in
charge of the real power regulation while the quadrature-axis current component iq is
responsible for the reactive power regulation. Note that the power flow direction can be
determined by setting the sign of P and Q reference values: positive (deliver power to

grid) or negative (absorb power from grid), respectively [79], [88]-[89].

Inverter

DC
AC Y'Y Y\ I m
Grid 1 N
M 1T |m
Power Pret Uq
Computation ;
v Urd
abc - PWM
Uy

Figure 6.7 Control structure of BESS's inverter

6.2.3 Frequency Support Control of BESS for Inertial Recovery of
PMSG-WTG

In order to eliminate the SFD as a result of the PMSG-WTG's deloaded operation,
a novel frequency support control strategy is designed for BESS with the purpose of

assisting the inertial recovery of PMSG-WTG and reducing its power output to previous
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level (zero) when the frequency reaches the post-disturbance steady state [79]. The

specific control strategy is illustrated in Figure 6.8.

Mode 1: f,-f,>0& 0,20
Sl orf,—-f_,<0& =0,
f Mode 0: normal frequency condition
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- pl | 1 Pmax
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| /_ By | Control |
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ZErO—+0 I
S2
f =509 .
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Zero—» |/ Mode 1: f >59.8Hz
f "0 Mode 0: <59.8Hz

Figure 6.8 Control block of BESS participating in the coordinated frequency control
S1 normally remains in the mode 0. Provided the PMSG-WTG starts to operate in

the deloaded condition, S1 is switched to mode 1 with the initial power output Pggss ref1
as given by the following equation.
PEss ref1 = Pelet — Pele (6.25)
where, P ¢ refers to the active power output at the moment "t" prior to PMSG-
WTG's deloaded operation. P represents the real-time active power output of PMSG-
WTG throughout the inertial recovery period. Pgess er1 1S Set to compensate for the
power imbalance when the rotor speed and kinetic energy of wind turbine recover to the
pre-disturbance condition. However, this amount of injected power may be excessively
larger than the power deficit demanded by the system, it more likely results in a
overshoot in the steady frequency. To avoid this impact, the power output ought to be
gradually and timely descended to a certain level that allows the frequency to stay in the

acceptable frequency range, at least above the threshold for enabling the inertial response
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of PMSG-WTG (e.g. 59.9Hz). A simple droop method is applied to adjust the power
output according to the frequency measured in real time if the rising frequency exceeds a
certain threshold (59.8Hz). In this case, S2 is switched to mode 1 to fulfill this function in
Figure 6.8. The power reference Pggss aroop Can be accordingly expressed as

(f-59.8)
PeEss_droop = —PBEss_s0.8 X S99-59.8 + PgEss 508 (6.26)

where, Pggss 598 IS the BESS power output recorded at the frequency of 59.8Hz, f
is frequency measured in real time. To mitigate the impact due to the reduction in
Pgess refr2, @n additional control loop is introduced by PI controller so as to maintain the
system frequency eventually stable at the 59.9Hz. Thus, the general power reference of
BESS can be described as

PeEss ref1 = Pele.t — Peles f < 59.8Hz
Pgess ref2 = PeEss_droop + APpr, 58.8Hz < f < 59.9Hz

(6.27)
PeEss_refs = PBEss 5090 + APpy, f = 59.9Hz

lDBESS_ref =

where, Pggss 599 IS the power output of BESS at the moment when the steady
frequency reaches 59.9Hz. APp; refers to the power reference generated from PI
controller. Another function of PI controller is to reduce the BESS's power output toward
zero when other conventional generators raise their power outputs respectively by
allocating Pggss ref3 iN terms of the available reserve margin of each generator. Using this
method, the system frequency can remain around the 59.9 Hz until the proposed
coordinated frequency regulation is completed. During the BESS energy recovery

process, the total power increased by all the conventional generators should be equal to
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the power output of BESS at the moment when frequency is stable at 59.9Hz. The

relevant equations can be expressed as follows:

PBESS_ref3 = Zfl=1 APAGc_Gi (6-28)
P i_re
APpgc i = ﬁ X PgEss refs (6.29)

where, APagc g; IS the incremental power for the i™ generator, n is the total number of the
conventional generators involved in the BESS energy recovery by increasing their own

power outputs, Pg; 1 IS the available reserve margin of the i generator.

6.3 Coordinated Control Strategy of BESS and PMSG-WTG

As discussed before, the application of TLC inertial control enables PMSG-WTG
to maximize its inertial response in order to enhance the temporary frequency support. As
a result, the frequency nadir is dramatically raised and also ROCOF is reduced compared
to the case without auxiliary frequency control. However, severe SFD will follow as a
result of the deloaded power margin AP, before the rotor-accelerating process of wind
turbine proceeds. Thus, a coordinated control strategy is developed for BESS, PMSG-
WTG and other synchronous generators equipped with a certain spinning reserve in a bid
to improve the overall system frequency regulation capability by eliminating the SFD and
accelerating the frequency recovery. Meanwhile, it can ensure that BESS can smoothly
withdraw from the temporary frequency support that can be taken over by other
conventional generators through AGC when the frequency reaches the post-disturbance

steady condition.
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The flow chart of detailed overall coordinated control strategy for PMSG-WTG,
BESS and other selected conventional generators is illustrated in Figure 6.9. It is worth
noting that the proposed control strategy mainly concentrates on how to effectively
coordinate BESS and PMSG-WTG to address the under-frequency and SFD issues, since
the over-frequency event can be easily solved by reducing the wind power output through
the pitch angle control or rotor speed control. The proposed control strategy mainly
include three phases:

Stage 1 - PMSG-WTG Inertial Response: By using frequency detection system,
once system frequency drops below 59.9Hz and sustained time exceeds 50ms of time
delay and meanwhile rotor speed remains above 0.5 p.u.(allowable minimum rotor speed),
PMSG-WTG is allowed to provide the inertial response based on TLC method.

Stage 2 - BESS Frequency Support: When rotor speed reaches 0.5 p.u. and
frequency remains in the declining stage or frequency arrives at the frequency nadir and
rotor speed is above 0.5 p.u., the deloaded operation of wind turbine will come into effect.
At this moment, in order to compensate for the power deficit due to the deloaded margin
and eliminate the resultant SFD issue, BESS will immediately provide the active power
Pgess rer1. During this stage, the system frequency tends to keep rising all the time until
reaching the post-disturbance steady state. To prevent the transient overshoot at the
steady state, one simple preventive measure mentioned above is employed to stabilize the
frequency around 59Hz by gradually reducing the BESS's power output if system
frequency goes higher than 59.8Hz. Note that the PMSG-WTG can continue to restore its

rotor speed to the pre-disturbance level without inducing the potential SFD problem.
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Stage 3 - BESS Energy Recovery: Once the system frequency is able to become
stabilized at a specified value for a period of time delay, a coordinated control scheme for
BESS and other conventional generators will play a role in enabling other synchronous
generators equipped with a certain headroom to take over the active power supplied by
BESS while maintaining the frequency stable at the post-disturbance value. In this way,
BESS can gradually reduce its power output and its operation time participating in the
temporary frequency regulation is shorten. At the same time, other conventional
generators can take sufficient time to proportionally increase the additional power output
of APacc using AGC system, which is in charge of changing the load reference set points
of selected generating units upon the command. The allocation of APagc is in proportion
to the reserve power margin of each synchronous generator available for this control
function. Generally, the larger reserve the generator has, the bigger participation factor it
is given, the more active power the corresponding generator will generate. The entire
coordinated frequency regulation process is accomplished when active power output of
BESS is reduced to zero and its SOC restores to the previous level of 50% by charging

the power from grid.
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Figure 6.9 Flow chart of coordinated control scheme for PMSG-WTG, BESS and other
conventional generators

6.4 Test System with Integration of CART2-PMSG and BESS

A small power system model is established using the Matlab/Simulink platform.
As depicted in Figure 6.10, a 60Hz simple power system consists of an aggregated
CART2-PMSG based wind farm, three synchronous generators, a small-scale BESS and
one constant power load. The 3MW wind farm consisting of 5 single CART2 wind
turbines is connected to the point of common coupling (PCC) via a 575/35kV step-up
transformer. The three synchronous generators are based on the thermal power plant with

IEEE standard steam turbine governor and type 1 excitation system [47]. The inertial
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time constant for the 10-MVA SG1, 5.2-MVA SG2, and 0.9MVA SG3 are set as 5s, 4.2s
and 3.5s respectively while droop coefficient for all generators is uniformly set as 5%.
The baseline operating points for SG1 and SG2 are about 0.76 p.u. of their rated
capacities to ensure a certain power headroom for performing the primary frequency
regulation. And the initial operating point of SG3 is set as 1 p.u., namely operating at the
rated condition. The wind power penetration level of this small grid system is
approximately 10.4% when CART2-PMSG operates at the given wind speed of 10m/s.
The capacity of BESS is 1MW/h and rated power output is LMW as shown in Table 1.

In order to evaluate the effectiveness of the TLC method, the SG3 is tripped off
the grid at t=30s, resulting in a severe frequency decline due to the transient power
imbalance and reduced system inertia. Thus, differences in the frequency regulation
performance can be noticeably observed through the following four scenarios: no
auxiliary frequency control, TLC without BESS involved, as well as the proposed

coordinated frequency control.
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Figure 6.10 Basic configuration of a small-scale power grid system
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6.5 Simulation Results
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6.6 Comparison and Discussion

In Figure 6.11 (a)-(d), dynamics and frequency regulation performance of
CART2-PMSG are compared between the proposed coordinated frequency control and
other two cases consisting of no auxiliary frequency control and TLC without BESS. In
Figure 6.12 (a)-(e), the effects of TLC on the essential mechanical components such as
blade, shaft and tower are presented by comparing with the baseline case. Figure 6.13 (a)-
(e) shows the dynamic characteristics of BESS and other conventional generators when
various frequency control methods are applied separately.

As shown in Figure 6.11(a) and Table 6.2, the proposed coordinated control
combining the WTG's TLC and BESS's restoration support demonstrates the optimal
performance in allowing the CART2-PMSG to participate in the temporary frequency
regulation. It not only can reduce the ROCOF, but also boost the frequency nadir and
reduce the steady frequency deviation. In Figure 6.11(c), the rotor speed restoration of
PMSG-WTG can be smoothly completed at 60s without affecting the frequency recovery
at all. On the contrary, the frequency nadir in the other two cases falls below 59.5Hz (the
minimum permissible frequency), so that UFLS relay is automatically activated to
rebalance generation and load by shedding a certain amount of loads. Furthermore, the
duration that frequency returns to the post-disturbance steady state by using the proposed
coordinated scheme is much shorter and meanwhile a smaller overshoot appears during
the rotor speed recovery process. In addition, TSL is implemented when PMSG-WTG
operates in the MPPT mode without deloaded margin, unlike CFR scheme discussed in

Chapter 4.
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Table 6.2 Comparisons of the frequency response in different scenarios

Post- The
i i overshoot
ROCOF Frenqaljjeircy dIStltJrE?nce Siut:::: ’ during the
Methods Stable
(Hz/s) frequency frequency
(H2) (s) recovery
(Hz) (Hz)
Noauxiiary | o34 | se42 | 5981 | 4837 |  59.86
control
TLC without
BESS -0.26 59.48 59.81 48.37 59.88
The proposed
coordinated -0.26 59.73 59.9 38.42 59.85
control

According to Figure 6.12 (a)-(e), there are no significant impacts on the tower,
drive train and blade as a result of increased electrical power when the proposed TLC is
performed. Actually, shear forces associated with tower and blades as well as thrust
forces related to drive train tend to be slightly smaller during the inertial response. This is
mainly because the descending rotor speed gives rise to the reduced TSR and resultant
less force [85]. Once the rotor speed starts to restore to the pre-disturbance condition,
forces will gradually increases up to the original values in case of constant wind speed.
Therefore, the practical implementation of the proposed TLC scheme should not do any
damage to the mechanical components between the blades and the generator and thus
wind turbine’s lifespan will not be greatly impacted.

Based on results in Figure 6.13, BESS is capable of providing fast and sustained

power support during the Stage 2 of BESS Frequency Support in order to eliminate the

155



possible SFD issue caused by the temporary power imbalance. Meanwhile, the power
output of BESS is gradually reduced down to zero during the stage 3 in coordination with
other two conventional generators increasing the corresponding active power. During this
stage, the frequency can be well maintained around 59.9Hz. In this way, BESS can be
available to offer the similar frequency support when the severe frequency fault occurs
for the second time. The SOC indicates that only a small amount of storage energy is
utilized in order for the coordinated frequency control. There is a small decline in the
DC-link voltage of BESS followed by a rapid rise in the active power output throughout
the Stage 2 and it finally returns to the original level in the Stage 3. Due to the initial
response of PMSG-WTG and frequency support of BESS, other conventional generators
with slow ramp rate gain additional time in response to the frequency change by
increasing their power outputs based on their own reserve margins. As a result, the total
amount of spinning reserve required for emergent frequency response can be minimized
and burden placed on the other conventional generators associated with the inertial

response and primary frequency regulation is further eased as well.

6.6 Conclusion

In this work, a novel inertial control method based on the torque limit curve is
presented for the purpose of maximizing the inertial response of PMSG-WTG without
need to reserve the wind power. To demonstrate its effectiveness, an integrated CART2-
PMSG wind farm model equipped with the proposed TLC is built in MATLAB/Simulink,
and its frequency regulation performance is evaluated in the event of a single generator

loss. To resolve the SFD problem during the inertia restoration, a coordinated frequency
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control scheme between BESS and PMSG-WTG is designed to enhance the frequency
regulation performance by fully taking advantage of BESS's fast response to the system
power deficit when TLC remains in effect. Simulation results prove that the proposed
coordinated frequency control can dramatically improve the overall system frequency
response and minimize the usage of BESS for frequency regulation to a certain extent.
On the other hand, the application of proposed inertial control into the PMSG-WTG
hardly cause any potential damage to the wind turbine’s mechanical components when it

runs at a constant wind speed.
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Chapter 7 Conclusion and Future Work

7.1 Conclusion

Today, the total inertia and droop response of power systems tends to be
deteriorated with the increasing wind power penetrations. A wind turbine generator’s
rotor speed cannot inherently respond to a variation in system frequency due to its
application of the power electronics in Type 3 and Type 4 VSWT. However, the available
equivalent inertial constant of a VSWT is no less than that of conventional generators. It
implies that there is a great potential for VSWTs to participate in system frequency
regulation by implementing the artificial inertial control and frequency regulation control.
Various strategies have been developed by academia and industry to harness this hidden
inertia and emulate the primary frequency regulation based on the wind power reserve.

To enhance the frequency regulation capacity of PMSG-WTG, a mathematical
electromagnetic dynamic model of the studied CART2-PMSG including the mechanical
and electrical wind turbine dynamics is first developed to serve as a baseline for dynamic
analysis as well as auxiliary frequency controller design. The proper system configuration
and associated control schemes, consisting of rotor speed-based control and active power-
based control, can ensure the simulation results are valid respectively when evaluating

the PMSG-WTG's frequency regulation performance ahead of real CART?2 test.
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First of all, this research project concentrated on the design and development of a
novel comprehensive frequency regulation (CFR) into CART2-PMSG model based on
rotor speed control. It comprises the constant inertia power response and dynamic
variable droop control, which are carried out during two sequential stages of frequency
event: in the short term, constant inertial power controller emulates the inertial response
aiming to improve the transient frequency characteristics; in the long term, based on the
available reserve margin, variable droop control allows PMSG-WTG to participate in the
enhanced primary frequency regulation along with other synchronous generators. More
importantly, this control scheme needs to be achieved through the coordinated control of
both rotor speed and pitch angle in accordance with various wind speed modes. To verify
the effectiveness of CFR control and its impact on the mechanical loads, a series of
simulation cases are carried out in Matlab/Simulink considering different wind speed
conditions. It is concluded that the presented CFR control is capable of reducing the
initial ROCOF, raising the frequency nadir as well as minimizing the steady-state
frequency deviation. What is more important, the implementation of CFR does not do
large damage to major mechanical components of wind turbine and affect wind turbine's
safe operation.

Secondly, an improved inertial control method based on the MPPT characteristic
is presented for the purpose of enhancing the frequency regulation capability of active
power control-based PMSG-WTGs while ensuring stable operation during inertial control.
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Simulation results demonstrate that the improved inertial control enables the PMSG-
WTG to arrest the ROCOF and improve the frequency nadir even in the low wind power
penetration condition, whereas the proper deloaded value can avoid an SFD throughout
the rotor speed recovery process. Moreover, the application of the improved inertial
control into the PMSG-WTG cannot cause any potential damage to the wind turbine’s
mechanical components when it is operating at a certain wind speed.

Lastly, another novel inertial control method based on the torque limit curve is
proposed in an effort to maximize the potential inertial response of PMSG-WTG
operating in MPPT mode. To resolve the SFD issue during the inertia restoration, a
coordinated frequency control scheme between BESS and PMSG-WTG is designed to
enhance the frequency regulation performance when TLC remains in effect. Simulation
results prove that the proposed frequency control can dramatically improve the overall
system frequency response and minimize the usage of BESS for frequency regulation to a
certain extent by coordinating with other conventional generators via AGC system. On
the other hand, the application of proposed inertial control into the PMSG-WTG hardly
cause any potential damage to the wind turbine’s mechanical and structural components

when it runs at a constant wind speed.

7.2 Future Work

Future work is intended to implement all these three proposed frequency
regulation control methods into the real CART2 machine at the NWTC to validate the
actual impact on the extreme loads and fatigue loads of a wind turbine when executing

the corresponding frequency response.
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Regarding the first CFR control, the impacts of several key factors on the system
frequency regulation performance and potential risks on the mechanical stresses need to
be further investigated, such as wind speed measurement accuracy, power rate limiter,
inertial gain and inertial duration, droop coefficient and governor deadband, and power
reserve margin. More efforts will be put into the design of adaptive and robust controller
for inertial response and droop control in order to optimize the frequency regulation
performance of individual PMSG-WTGs according to different wind speed conditions.

For the second improved inertial control, the maximum value of AP
corresponding to different wind speeds need to be further studied in terms of various
security constrains, so that the PMSG-WTG is capable of fulfilling the optimum
frequency support and meanwhile maintain the basic safe operation in case of severe
frequency disturbance. The quantitative correlation between the AP and specific
frequency metrics can be regarded as an interesting topic for the future research.

As to the third TLC method, the inertial response of PMSG-WTG can be further
improved by taking into account both MPPT and torque limit curves under different wind
speed conditions so as to enhance the frequency support and mitigate the potential SFD
without dependence on the BESS. If the TLC method is still employed, the appropriate
size of BESS should be identified through a certain optimization algorithm so that a
tradeoff can be achieved between the desired frequency performance and the minimized
power and energy capacity of BESS.

Last but not the least, the presented frequency regulation approaches can be
applicable not only for the transmission grid in this work, but also adopted for the

microgrid. Since the standalone microgrid system is more sensitive and vulnerable to
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dynamic active power imbalance due to the low inertia resulting from high penetration of
power electronics-interfaced renewable resources plus their time-varying power
generation. With the developed CFR, MPPT-based inertial response and coordinated
frequency regulation between PMSG-WTG and BESS, the system inertial response and

frequency stability can be significantly improved to a certain extent.
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