
University of Denver University of Denver 

Digital Commons @ DU Digital Commons @ DU 

Electronic Theses and Dissertations Graduate Studies 

1-1-2016 

Design and Development of the eBear: A Socially Assistive Robot Design and Development of the eBear: A Socially Assistive Robot 

for Elderly People with Depression for Elderly People with Depression 

Amirhossein Kargarbideh 
University of Denver 

Follow this and additional works at: https://digitalcommons.du.edu/etd 

 Part of the Robotics Commons 

Recommended Citation Recommended Citation 
Kargarbideh, Amirhossein, "Design and Development of the eBear: A Socially Assistive Robot for Elderly 
People with Depression" (2016). Electronic Theses and Dissertations. 1101. 
https://digitalcommons.du.edu/etd/1101 

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has 
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital 
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu. 

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.du.edu%2Fetd%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1101?utm_source=digitalcommons.du.edu%2Fetd%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu


Design and Development of the eBear: A Socially Assistive Robot for Elderly Design and Development of the eBear: A Socially Assistive Robot for Elderly 
People with Depression People with Depression 

Abstract Abstract 
There has been tremendous progress in the field of robotics in the past decade and especially developing 
humanoid robots with social abilities that can assist human at a socio-emotional level. The objective of 
this thesis is to develop and study a perceptive and expressive animal-like robot equipped with artificial 
intelligence in assisting the elderly people with depression. We investigated how social robots can 
become companions of elderly individuals with depression and improve their mood and increase their 
happiness and well-being. The robotic platform built in this thesis is a bear-like robot called the eBear. The 
eBear can show facial expression and head gesture, can understand user's emotion using audio-video 
sensory inputs and machine learning, can speak and show relatively accurate visual speech, and make 
dialog with users. the eBear can respond to their questions by querying the Internet, and even encourage 
them to physically be more active and even perform simple physical exercises. Besides building the robot, 
the eBear was used in running a pilot study in which seven elderly people with mild to severe depression 
interacted with the eBear for about 45 minutes three times a week over one month. The results of the 
study show that interacting with the eBear can increase happiness and mood of these human users as 
measured by Face Scale, and Geriatric Depression Scale (GDS) score systems. In addition, using Almere 
Model, it was concluded that the acceptance of the social agent increased over the study period. Videos 
of the users interaction with the eBear was analyzed and eye gaze, and facial expressions were manually 
annotated to better understand the behavior changes of users with the eBear. Results of these analyses 
as well as the exit surveys completed by the users at the end of the study demonstrate that a social robot 
such as the eBear can be an effective companion for the elderly people and can be a new approach for 
depression treatment. 

Document Type Document Type 
Thesis 

Degree Name Degree Name 
M.S. 

Department Department 
Computer Engineering 

First Advisor First Advisor 
Mohammad Mahoor, Ph.D. 

Second Advisor Second Advisor 
Timothy Sweeny 

Third Advisor Third Advisor 
Kimon Valavanis 

Keywords Keywords 
Assistive technologies, Robotics, Socially assistive robotics, Social robots 

Subject Categories Subject Categories 
Engineering | Robotics 



Publication Statement Publication Statement 
Copyright is held by the author. User is responsible for all copyright compliance. 

This thesis is available at Digital Commons @ DU: https://digitalcommons.du.edu/etd/1101 

https://digitalcommons.du.edu/etd/1101


Design and Development of the eBear: A Socially Assistive Robot for Elderly People

with Depression

A Thesis

Presented to

The Faculty of the Daniel Felix Ritchie School of Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Amirhossein Kargarbideh

March 2016

Advisor: Dr. Mohammad Mahoor

http://www.du.edu
mailto:amir.kargarb@gmail.com


Author: Amirhossein Kargarbideh
Title: Design and Development of the eBear: A Socially Assistive Robot for Elderly People
with Depression
Advisor: Dr. Mohammad Mahoor
Degree Date: March 2016

Abstract
There has been tremendous progress in the field of robotics in the past decade and

especially developing humanoid robots with social abilities that can assist human at a

socio-emotional level. The objective of this thesis is to develop and study a perceptive

and expressive animal-like robot equipped with artificial intelligence in assisting the el-

derly people with depression. We investigated how social robots can become companions

of elderly individuals with depression and improve their mood and increase their happi-

ness and well-being. The robotic platform built in this thesis is a bear-like robot called

the eBear. The eBear can show facial expression and head gesture, can understand users

emotion using audio-video sensory inputs and machine learning, can speak and show rel-

atively accurate visual speech, and make dialog with users. the eBear can respond to their

questions by querying the Internet, and even encourage them to physically be more active

and even perform simple physical exercises. Besides building the robot, the eBear was

used in running a pilot study in which seven elderly people with mild to severe depression

interacted with the eBear for about 45 minutes three times a week over one month. The

results of the study show that interacting with the eBear can increase happiness and mood

of these human users as measured by Face Scale, and Geriatric Depression Scale (GDS)

score systems. In addition, using Almere Model, it was concluded that the acceptance of

the social agent increased over the study period. Videos of the users interaction with the

eBear was analyzed and eye gaze, and facial expressions were manually annotated to better

understand the behavior changes of users with the eBear. Results of these analyses as well
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as the exit surveys completed by the users at the end of the study demonstrate that a social

robot such as the eBear can be an effective companion for the elderly people and can be a

new approach for depression treatment.
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1

Introduction

1.1 Introduction and Motivation

With the increase in the population of the aged people in the United States and all other

countries in the world, there is a crucial need for a better personalized health care sys-

tem. Socially Assistive Robotics (SAR), as part of assistive technologies, aims at providing

healthcare for people and particularly for the aging population and decreasing the current

healthcare services’ costs. The estimated five-fold increase in the population of people over

the age of 85 by the end of 2050 (9) points out the importance of such technologies. The

ultimate goal is to treat abnormal social behaviors caused by stroke, childhood diseases,

or depression as well as improving social skills in general. This study mainly focuses on

dealing with elderly people, particularly those who suffer from depression.

Detection and prevalence of major depression has increased over the past 50 years (52).

The World Health Organization has anticipated that depression will be the second cause

of death and disability by the year 2020 which is a severe threat, specifically to adults.

Depression can be recognized in the general population by various signs including in-

crease/decrease in sleep, increase/decrease in appetite, anhedonia, poor concentration, and

1



suicidality (21). Lack of mobility, which is one of the focuses of this thesis, is another

symptom of depression. For instance, individual suffering from depression may spend

hours sitting without much social interaction. In this situation, the best way is to increase

the patients mobility such as asking them to complete some physically related tasks. The

connection between exercise and depression is not completely clear but it has been proven

that in the case of mild to moderate depression, regular exercise can change the individuals’

mood (23). For example, in (60) they have several groups of elderly aging from 60 to 96

years and have concluded that the group that was continuously active had lower depression

than the other groups. Hence, developing an automatic agent such as a robot capable of

motivating the elderly to exercise throughout a day is of great interest. Here we discuss the

taxonomy of social robots:

1.1.1 Social Robotics

The focus of this research is on the applications of social robotics in elderly care, an-

other category of social robots which deals with kids is out of the scope of this research.

There are different viewpoints toward social robot taxonomy (37) (36) (49). Each one tar-

geted the needs of human users and applications of the robot from various perspectives.

However, there is no straight line between different categories. In most robotic platforms,

usually there is more than one type involved. Feil-Seifer (35) categorized the social robots

into three different categories: Assistive Robotics, Socially Interactive Robotics, Socially

Assistive Robotics. Here we describe each briefly:

1.1.1.1 Assistive Robotics

Assistive robots (AR) used to be defined as the type of robots which are used to help

people in a physical manner such as assistive manipulator hands or rehabilitation robots.

Even though this definition includes a vast majority of such robots, it does not cover the

2



robots that aid people in a non-physical manner like the ones assisting elderly people with

socio-emotional disorders. Therefore, a comprehensive definition for Assistive Robots is

the robots that assist or support a person (35). The type of assistance differs based on the

use and place, i.e. care centers, homes, schools.

1.1.1.2 Socially Interactive Robotics

Socially interactive robots (SIR) are the ones in which social interaction plays a key

role. According to Fongs description (37) of socially interactive robots, they should exhibit

such features: express and/or perceive emotions; communicate with high-level dialogue;

learn/recognize models of other agents; establish/maintain social relationships; use natural

cues; exhibit distinctive personality and character; may learn/develop social competencies.

Depending on the purpose and the application, social robots can have different shapes

and functions. Some of the socially interactive robots engage users in conversations pro-

actively, while other ones wait for the prompt from the user to start the conversation.

1.1.1.3 Socially Assistive Robotics

Unlike assistive and socially interactive robotics, socially assistive robotics (SAR) aid

people through non-physical social interaction. Feil-Seife (35) defines socially assistive

robotics as the intersection of socially interactive robotics and assistive robotics. The goal

of assistive robotics is to assist people, whereas the goal of socially interactive robots is to

interact with human users for the sake of interaction. In socially assistive robotics, it aims

at interacting with people in a social manner in order to assist and support them in different

areas such as depression, dementia, rehabilitation.

SAR for the elderly individuals is a relatively new area and there are a limited num-

ber of works with this focus. In (63) a non-autonomous robot was designed as an exercise

demonstrator but it does not have any sensors and therefore no feedback is provided. In (25)
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and (55) they have developed agents with the aim of assisting the elderly people in exer-

cising, however they do not monitor the way the user is performing the exercise. Also

their system is mostly conversational rather than interactive. The other SAR example is

the Social exergame (26) (48) (94) which includes a broad range of games that require

the user to use a remote controller or a motion sensor to play a game. These games aim at

persuading seniors to increase their physical activity. However, as (87) points out, these

games may not be the perfect match for the elderly, because the games are usually so fast

or provide negative feedback sometimes. Also, there is a risk of falling in such games. One

motivation for the SAR is the fact that not always physical contact is the best type of help

for a human user, in some cases the user needs to be treated in a social manner. A good ex-

ample is the post-stroke patients whom need a therapist to remind them of the limbs which

need to be exercised. This type of rehabilitation is called Constraint Induced movement

therapy (93). Furthermore, since SAR does not include physical contact with the patient, it

reduces the risk of falling or any other related damages. There is a type of treatment called

pet-therapy. Some elderly people create closer and more effective interaction with pets

rather than human therapists. Following this inclination, using robots to assist the elderly

might have better results. The social robot developed in this thesis combines the features

of various social robotic research as well as several unique features which are discussed in

the next chapters.

1.2 Contribution

There has been tremendous progress in the field of robotics in the past decade and es-

pecially developing humanoid robots with social abilities that can assist human at a socio-

emotional level. The objective of this thesis is to develop and study a perceptive and expres-

sive animal-like robot equipped with artificial intelligence in assisting the elderly people
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with depression. We investigated how social robots can become companions of elderly

individuals with depression and improve their mood and increase their happiness and well-

being. The robotic platform built in this thesis is a bear-like robot called the eBear. The

eBear can show facial expression and head gesture, can understand users emotion using

audio-video sensory inputs and machine learning, can speak and show relatively accurate

visual speech, and make dialog with users. the eBear can respond to their questions by

querying the Internet, and even encourage them to physically be more active and even per-

form simple physical exercises. ”Autonomous” is the term which made the eBear unique.

The eBear successfully interacted with 7 elderly people with depression for a month in an

automatic manner. To best of our knowledge, the eBear is the first social robot containing

all the following features in one platform:

• The eBear is semi-autonomous in the sense that all the modules are run automatically,

but the order and the time at which the modules were run were determined by the

operator.

• The eBear could be used in a home or care-center setting without the need for any

special setup.

• The eBear could analyze the emotions of users from both visual and speech cues at

the same time.

• The eBear could automatically run a mood evaluation method which could be used

to assess the mood remotely.

• The eBear is proactive.

• The eBear could engage and carry out an open conversation.

• The eBear could motivate and couch users through exercise and provide them with

the required feedbacks.
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Besides building the robot, the eBear was used in running a pilot study in which seven

elderly people with mild to severe depression interacted with the eBear for about 45 minutes

three times a week over one month. The results of the study show that interacting with

the eBear can increase happiness and mood of these human users as measured by Face

Scale, and Geriatric Depression Scale (GDS) score systems. In addition, using Almere

Model, it was concluded that the acceptance of the social agent increased over the study

period. Videos of the users interaction with the eBear was analyzed and eye gaze, and

facial expressions were manually annotated to better understand the behavior changes of

users with the eBear. Results of these analyses as well as the exit surveys completed by

the users at the end of the study demonstrate that a social robot such as the eBear can be

an effective companion for the elderly people and can be a new approach for depression

treatment.
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2

Related Works

Socially Assistive Robotics (SAR) for the elderly people is a relatively new area and

there are a limited number of works with this focus. In (63) a non-autonomous robot was

designed as an exercise demonstrator but it does not have any sensors and therefore no

feedback is provided. In (25) and (55) they have developed agents with the aim of assisting

the elderly in exercising, however they do not monitor the way the user is performing the

exercise. Also their system is mostly conversational rather than interactive. Other SAR

example is the Social exergame (26) (48) (94) which includes a broad range of games

that require the user to use a remote controller or a motion sensor to play a game. These

games aim at persuading seniors to increase their physical activity. However, as (87)

points out, these games may not be the perfect match for the elderly, because the games are

usually so fast or provide negative feedback sometimes. Also, there is a risk of falling in

such games.

(33) is another research which was covered in the eBear. They have developed a robot

exercise instructor to monitor and motivate the elderly to perform physical activities. Their

robot is capable of three exercise games with the user. However, they require the user to

sit in front of the robot with a dark curtain behind him/her. Also, the user communicates
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with the robot via a Wiimote remote control. They have concluded that their SAR system

is intelligent and helpful and gives the user a good mood.

Researchers have been working in the area of social robotics since around two decades

ago. In order to have more organized literature reviews, we continue with introducing some

of the well known robots and then a few of the related research is reviewed in each case.

Table 2.1 illustrates the main limitations of the similar works which are addressed in the

eBear.

2.1 Paro

Paro is a seal-like interactive robot developed by the National Institute of Advanced

Industrial Science and Technology in Japan (18). Paro has been under development since

2003 and as of the time of publication of this research, the 8th generation is out (Figure 2.1).

It has few actuators to respond to the outside environment as well as imitating the voice of

a real baby seal. In addition, it is equipped with five types of sensors: light sensor to

recognize the brightness of the environment (dark or light), tactile sensor to feel when the

robot is being held or stroked by the user, Audio sensor for speech recognition and detecting

the direction of the sound, temperature sensor, and posture sensor. Guinness World Record

has certified this robot as the most therapeutic robot in the world (18). Because of its

appearance and functionalities, it has been shown that it is capable of reducing the stress

of the patient as well as improving the interaction and communication between the patient

and the caregiver (18).

(72) has evaluated Paro robot in a multi-sensory behavioral therapy. Since Paro was

used in a group of adults with cognitive impairments, they concluded that both the people

who were interacting with Paro and the people who were just in the environment have had

improvements in their activity levels. In (90) and (51), they used Paro in a care house
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Table 2.1: Main limitations of the similar works which are addressed in the eBear
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Figure 2.1: Paro Robot - A seal-like interactive robot

and let the elderly residents to freely interact with the robot up to 9 hours per day. They

concluded that Paro encouraged the residents to communicate better with each other. They

also showed that there were improvements in the reactions of the subjects vital organs to

stress. (91) reports the results of an on-going 5 year experiment on using Paro for elderly

people. They showed that Paro improved people mood and the interesting result is that this

improvement showed up during five years and the relationship between the elderly people

and the robot continued during that period.

2.2 AIBO

AIBO or Artificial Intelligence Robot means ”companion” in Japanese and is a dog-

like robot developed by Sony (20). As it can be seen in Figure 2.2, it is equipped with

a wide range of sensors including touch, camera, range-finder, microphone, acceleration,

and angular velocity. AIBO is able to shape its personality based on the interactions with

its owner and surroundings. It has come in three generations and was discontinued by the

manufacture in 2006.

In (41) they have developed two recreation games using AIBO for people with demen-

tia. In their games they targeted the ability of memorization and the ability of emotion
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Figure 2.2: AIBO - A dog-like robot developed by Sony

control and accommodation to society. One of the games was card game which was tested

on a one-to-one basis and the other game was a ball game which was done in group. By 5

days of deploying the robot in the field (each game was done once a day), both the care-

givers’ evaluation at the nursing home and the evaluation that was done by the game showed

ability improvements in their subjects. (22) uses AIBO to compare a pet-like robot to a real

dog when it comes to treating loneliness. They had 13 control group and let the residents

of the care facility to interact with both the real dog and AIBO 30 minutes per week for

each. They showed that both the pet-like robot and the real dog can reduce loneliness. (71)

conducted a study on acceptability of AIBO, or an artificial companion in general, by cog-

nitively impaired elderly. They showed that negative feelings towards technology do not

affect the interaction. However, to achieve awareness of the usefulness of the companion-

ship, positive attitude is required. For several other research on AIBO, the reader is referred

to (80), (73), and (64).

11



2.3 Bandit

Bandit is one of the robots used in the University of Southern California’s Robotics

Research Lab (7). It has come in two generations and the current generation has 22 degrees

of freedom in the arms, head, neck, waist, eyebrow, and mouth. Bandit (Figure 2.3) is a

humanoid upper-torso robot which is mounted on a ActivMedia Pioneer 2DX mobile robot

equipped with a range finder, speaker and a Sony Pan-Tilt-Zoom camera.

Figure 2.3: Bandit - A humanoid upper-torso robot of University of Southern California

In (81) they performed a study using Bendit on people with dementia and/or cognitive

impairments. They used Bandit to improve or at least maintain the participants’ cogni-

tive attention by encouraging a music-based cognitive game. Their pilot study consisted

of 9 residents of a senior living care facility. Each participant interacted with the robot 20

minutes per week for a duration of 6 months excluding the 2 months of learning. They con-

cluded that people with dementia and/or Alzheimer can maintain their attention to music

during a long period of time. (86) used Bandit to show the effectiveness of embodiment in
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compare to a screen agent. Similar to their other work (81), they used Bandit to encourage a

music-based cognitive game. They performed a post-experiment evaluation using the Stan-

dardized Mini-Mental State Examination (SMMSE) cognitive test. The participants’ scores

were either maintained or improved after interaction with Bandit for 8 months. In (33) they

used Bandit as an exercise coach. The robot would monitor the user during an exercise and

the aim was to keep the user motivated to finish the exercise. It also would provide some

feedbacks on how to improve the exercise. They need the user to sit on a chair with a cur-

tain behind them. There were no interactive conversations since the user had to respond via

a remote controller with a few buttons on it. Apart from the exercise, user had the minimal

interaction with the robot which does not have much overlap with the definition of SAR

according to (35). For several other studies on Bandit, the reader is referred to (82), (84),

(85), and (83).

2.4 PaPero

PaPero stands for Partner-Type Personal Robot which is developed by Japanese firm

NEC. It is a personal robot with a human-like baby face (figure 2.4). It has been designed

and developed with the purpose of becoming human’s partner so that they can live together.

This 6.5kg robot is capable of recognizing speech, synthesizing speech, recognizing faces,

and reacting to human’s touch (3). PaPero is also equipped with cameras and ultrasonic

sensors so that it can walk around the place without colliding other objects. The good part

about PaPero is that it comes with its own development environment. Using the environ-

ment, the developer can easily add different actions, behaviors, and conversations to the

robot.

PaPero has been used as a socially assistive robot in Australia with the name of Matilda.

In (54) they describe the embodiment of multimodal interaction modules such as gesture,
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Figure 2.4: PaPero - A personal robot developed by Japanese firm NEC

voice, emotion etc in Matilda. They targeted both one-to-one and group based interactions.

The study was done on 34 elderly participants aging from 71 to 98 having various symp-

toms such as dementia, Parkinson disease, depression, and memory loss. The robot was

deployed in three nursing houses and participants interacted with the robot for four days.

This experiment, which is claimed to be the first field trial in Australia, was evaluated using

different measures including questionnaires, observation, recognized facial emotions of the

robot etc. They concluded that such a robot would improve the wellbeing of the partici-

pants as well as care personalization. This study was reported in another publication as

well (53) .

14



2.5 NeCoRo

NeCoRo is a commercial robotic cat developed by Omron Corporation in Japan. It has

15 actuators so that it can responds to others behaviors. It is also covered with synthetic fur

which feels natural and looks like a real cat (Figure 2.5). This 1.6 Kg robot is equipped with

different touch sensors all around its body to react to the user’s touches. One interesting

point about NeCoRo is that its personality gets adjusted to its owner. For example, if the

user call a name over and over, then it will remember its name and will react when that

name is called. Other included sensors are sight, sound, and orientation. NeCoRo provides

both verbal, such as mewing, and nonverbal, such as tail wagging responses.

Figure 2.5: NeCoRo - A catlike robot developed by Omron Corporation

In (66) they did a study on the relationships between robots and human, and the type

of effects the robot might have on the user. There were 12 males and 21 females. They

interacted with NeCoRo for a period of one year in a Elderly-care facility in Japan. Through

their studies, they concluded that interacting with NeCoRo made the users’ expressions
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livelier by having them touching the robot, talking to it and picking it up. It also resulted

in making the user more comfortable and happy via better communications with the robot.

These results were gathered based on staff comments as well as questionnaires which were

filled by staff members. There is another study on using NeCoRo to evaluate the effects

of an interactive robot from psychological point of view (59). Among 32 people who

participated in their experiment, there were 16 Americans and 16 Japanese. These people

were from two age groups of 20-35 and 65-79. They only intrectaed with the robot for 15

minutes. For evaluation purposes, they designed a method called Person-Robot Complex

Interactive Scale (PRCIS). This evaluation method consists of different criteria including

biological, psychological, and social factors. The interesting part of their study is that

they evaluated the robot on people with different diversities (age, geographical). They

showed that older people like the interactions better than the younger age group. They also

concluded that males enjoyed the robot’s active behavior more than females.

2.6 iCat

iCat is a research platform developed by Philips Electronics (19) with the goal of stim-

ulating human-robot interaction research. This 38 cm tall cat-face robot is equipped with

13 servos which control the face, eyes, eyebrows, eyelids, head, and mouth (Figure 2.6).

These servos make the robot capable of making different facial expressions such as sad,

happy, angry etc. A speaker, microphone, camera, and touch sensor are also installed on

iCat.

In (42) they used iCat to examine how users would perceive such a robot with two differ-

ent social capabilities. For this purpose, they designed two different interaction scenarios

where in one of them the robot was more socially interactive. More socially interactive

means it looks at the user and nods the head while the user is speaking. It also remembers
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Figure 2.6: iCat - A research platform developed by Philips Electronics (12)
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and uses the user’s name while speaking as well as showing different facial expressions.

However, the dialog was the same for both scenarios and the difference was not in the

conversations. 40 elderly people participated in their study which took place in Nether-

lands. iCat was used in a Wizard of Oz manner to make sure the interaction pattern was

the same for all the participants. First they met iCat in a 5-minute group section where

the robot told them about its features and the ones that will be done in the private section.

Then participants had a conversation with the robot in which three simple tasks was done

by iCat. The study was evaluated using post-interaction questionnaires. They assessed the

robot from function and conversation point of view. They did not find any significant dif-

ference in using the two modes in terms of robot acceptance. However, participants were

more comfortable with the more sociable version as a conversational partner. The same

group conducted another study in (43) to evaluate the effect of iCat versus a screen agent

in two modes of less and more expressive conditions. The screen agent was a human-like

character which was capable of expressing different facial expressions just like iCat. The

same as the other study 40 elderly people had a group session as an introduction. Then iCat

performed some simple functions such as information providing, agenda keeping etc. The

screen agent performed other tasks such as alarm setting and giving direction which are

not the same as iCat. They concluded that people showed more expressiveness to the more

expressive versions of iCat and the screen agent and this effect is stronger in the case of

iCat. However, these results are difficult to be adjusted since the robots performed different

tasks and they had different appearances. (44) is another study by the same group on iCat

which is done in a similar fashion of comparing a social robot with a screen agent. They

had three hypothesizes and they expected that social presence would result in enjoyment,

enjoyment would result in intention to use, and intention to use would result in the user

actually use the product. These hypothesizes were confirmed. As they mentioned, in these

studies, people interacted with iCat for only 10 minutes. Hence, the results are probably
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affected by the fact that the system was new and interesting for the user and in a long run,

with high probability, it might become boring.

2.7 Healthbot

Healthbot is a joint project between Yujin Robot, University of Auckland and Elec-

tronics and Telecommunications Research Institute (ETRI) in Korea. Unlike the aforemen-

tioned robots, Healthbot does not have a human-like or animal-like appearance and it is

mostly used as a service robot(figure 2.7). It is equipped with a battery-powered differen-

tial drive. Localization is done using a StarGazer system (16) which requires the ceiling of

room to have passive landmarks. This requirement makes the robot not convenient to be

used for daily life purposes. Healthbot is also equipped with a microphone, bumper sensor,

ultrasonic sensor, and a touch screen.

Figure 2.7: Healthbot - Healthbot is a joint project between Yujin Robot, University of Auck-
land and Electronics and Telecommunications Research Institute (ETRI) in Korea
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(78) used Healthbot to evaluate if emotions and attitudes towards the robot are predic-

tors of how they accept the robot. In their study 32 residents and 21 staff of a retirement

village in New Zealand interacted with the robot for a period of 30 minutes. The robot

was designed with seven service applications such as greeting, medication reminding, vital

signs measurement etc. They were given two questionnaires, one before the interaction and

one after the interaction in order to evaluate the effects of interacting with the robot. The

questionnaire included two scales, Robot Attitude Scale (RAS) and Positive and Negative

Affect Schedule (PANAS). Decrease in negative affect towards the robot as well as more

favorable attitude were resulted after interaction with the robot. They also concluded that

changes in emotions and attitudes are predictors of the robot acceptance.

In (47) they used the outcomes of (78) to introduce the second version of Healthbot for

elderly people. In this version they put more focus on the user’s need so that the robot can

be customized in the field. They conducted three parallel studies at a retirement center in

New Zealand. One study was putting the robot in the common areas of the center so that

people can have free interaction with the robot for two weeks. The other one was the same

but in private rooms for two weeks, and the last study was to monitor falls remotely. In case

of a fall the robot would go to the place and perform monitoring session. 67 people with

age 65 or more participated in this study. They evaluated the robot with three questions

including how they enjoyed the robot, how they rate the interaction, and how they would

like to interact with the robot again. Although these questions are good to evaluate the

overall effectiveness of the robot but the questions are rather general to specify the actual

opinion of people and how the robot affected them. However, as they mention, this was an

ongoing research.
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3

Hardware and Software Design of the

eBear

3.1 Hardware Design

This chapter explains the mechanical design, development, and the features of the

eBear. Expressive Bear or the eBear is a bear-like robotic platform developed at the Univer-

sity of Denver Computer Vision Laboratory. We introduced the first version of the platform

in (96). Figure 3.1 depicts the first version of the eBear. Basically, the eBear is a mechani-

cal face equipped with servos which is mounted on a pedestal box that is covered with fur

(Figure 3.2).

3.1.1 The eBear Platform

In this section the mechanical platform of the eBear is described. First the initial version

of the eBear is explained. After that, the modifications which were made to the platform

are discussed. the eBear is equipped with 10 degrees of freedom (DOF) in its head and

the rest of its body is still. As it can be seen from figure 3.3, the degrees of freedom are
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Figure 3.1: eBear - Initial version of the eBear Platform

Figure 3.2: Internal Structure of the eBear - The eBear is a mechanical head mounted on a
pedestal box
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left eyebrow (f1), right eyebrow (f2), forehead tilt (f3), eyeballs (f4), left eyelid (f5), right

eyelid (f6), left ear (f7), right ear (f8)), neck pitch and yaw (f9, f10).

Figure 3.3: The eBear degrees of freedom - 10 degrees of freedom of the eBear (96)

Figure 3.4 illustrates the internal structure of the head. Each degree of freedom is

controlled with a ”Hitec” PWM servomotor (2). ”Mini Maestro (10)” servomotor controller

is used to control the servos. The commands are received from a C# .Net Framework

software.

One of the features that makes the eBear unique is the hybrid face. The problem with

mechanical mouth designs is the lack of enough flexibility for expressing various lip mo-

tions. The eBear’s head is equipped with 10 degrees of freedom but the mouth is replaced

with a LCD display, a 4.3” TFT LCD panel by Sharp. The resolution of the screen is

480× 272 pixel in 16 bit colors. The LCD can be programmed with OpenGl using the

provided APIs. An artist designed the models of visemes in Maya Software. By Blending

proper models with different weights, a natural visual speech was obtained. Bavieca speech

aligner (13) is used to time-align phonetic transcription of the recorded utterances. The an-
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(a)

(b)

(c)

Figure 3.4: The internal structure of the eBear’s head
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(a) Anger (b) Joy (c) Sadness

(d) Disgust (e) Surprise (f) Fear

(g) Neutral (h) Viseme ‘O’ (i) Visime ‘m’

Figure 3.5: Examples of some visemes and expressions

imation system receives the time-aligned phonetic input from Bavieca speech aligner and

produces the related visemes. The visemes specifies the movements of the lips and tongue

which are alignes with the recorded speech. In order to better express the emotions of the

eBear, the lip movements and the visemes are blended:

Fj = Fc +λ j(Fmax
j −F0)

where Fc is the current viseme, Fmax
j is the desired expression at the maximum intensity,

F0 is the neutral mode, and λ j ∈ [0,1] is the intensity of Fj. Figure 3.5 illustrates a few of

the expressions which are shown on the LCD display.
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3.1.1.1 Camera

The platform shown in Figure 3.1 was the initial version of the eBear. However, for

the purpose of this study, the eBear’s body were modified and several hardwares were

integrated to it. In the first version, a camera was mounted on the top of the eBear’s head.

The camera was not secure enough and it could move easily. In order to be able to use the

camera for face tracking as well as facial expression recognition, it had to be mounted in

such a way to minimize any kind of movement with respect to the head. A 3D bracket was

designed in SolidWorks software and printed using a 3D printer so that the camera could

fit inside that (Figure 3.6a). The bracket was glued to behind of the forehead plate and a

hole was made on the head skin so that the camera could see the outside (Figure 3.6b). The

camera is a HD Logitech webcam with resolution of 1280×720 pixels.

3.1.1.2 The Kinect Sensor

Microsoft Kinect sensor is equipped with three sensors which provide extensive infor-

mation regarding the environment around as well as the people in front of it. We use a

Kinect sensor on the body of the robot to monitor and capture the physical movements of

the user. The Microsoft Kinect sensor version 2 is consisted of a depth sensor, an RGB

camera and a microphone array (? ). The depth sensor uses an infrared laser projector and

an IR camera to capture depth images of 512×424 pixel resolution at 30 frames per second.

The minimum depth distance is 50 centimeters and the maximum is around 4.5 meters. The

horizontal field of view is 70 degrees and the vertical field of view is 60. It recognizes 26

joints of the body and can track up to 6 full skeletons. The color camera captures images

of 1920×1080 resolution at 30 frames per second.

As shown in Figure 3.1, the first version of the eBear did not have any space to integrate

the Kinect sensor. We took of the eBear skin and took the mechanical platform(Figure 3.2)
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(a) The camera bracket

(b) The camera hole

Figure 3.6: The camera bracket integrated behind the forehead plate and the camera hole .
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Figure 3.7: The Kinect Sensor - The second version of Microsoft Kinect sensor

to the machine shop of the University of Denver. The front part of one of the body wires

were cut and two supporting wires were welded to secure the Kinect frame. A half semi-

circle pad was designed in SolidWorks software to match the cross section of the eBear,

since the cross section is not a perfect circle. The Kinect base frame was 3D printed and

mounted inside the robot(Figure 3.8).

3.1.1.3 Screen

One of the purposes of the eBear was to engage the elderly people in activities such as

exercise or games. For this purpose a screen was required to be integrated into the bear.

Similar to the camera and the Kinect sensor, the eBear’s platform was not designed to have

such a screen. A frame was designed in SolidWorks software and was 3D printed. As

it is shown in figure 3.10a, the frame is designed in a way to let the screen slides into

it(Figure 3.10b). Another frame was fabricated in the University of Denver Machine Shop

which was attached to the belly of the eBear. The 3D printed frame fits into the main frame

in a way that only the screen is visible to the user (Figure 3.11). The screen is an Intel-based
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(a)

(b)

Figure 3.8: An inside look to the Kinect base and how it is mounted inside the eBear.
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Figure 3.9: The mounted Kinect sensor - An outside look to the mounted Kinect sensor

Quad Core HP tablet. A small window was cut out of the tablet frame so that the charger

and USB cable could be plugged in through that.

3.1.2 The eBear’s Facial Expression Generation

One of the challenges of developing the eBear was to design realistic facial expressions

using the 10 degrees of freedom and the mouth animation. Facial Action Coding System

(FACS) was introduced in (32) to taxonomize human facial expressions. In this method,

each facial expression is expressed as a combination of different FACS units. FACS is

designed for human faces and most of the units cannot be properly transfered to animals’

faces. The eBear is an animal-like companionbot which is able to talk. Hence, we wanted

the eBear to have both human-like and animal-like facial expressions. The eBear has 10

degrees of freedom which enables it to create a few of the FACS units. In order to create

animal-like facial expressions, Darwin’s interpretation of the expression of the emotions in

animals (28) were used.
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(a) (b)

Figure 3.10: A frame was 3D printed so that the screen slides into it.

Figure 3.11: The 3D printed frame is fit into the main frame
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3.1.2.1 Design of Facial Expressions

(77) introduces a systematic methodology on how to design on facial expressions for

robot with limited degrees of freedom. The design is based on psychological literature

about emotional facial expressions and has been proved to be effective. According to their

methodology, the first step is to project all the Action Units (AU) to the available degrees

of freedom of the robot’s face. The second column of table 3.1 illustrates the AUs related

to each of the expressions of column one. Third column of Table 3.1 shows the degreees

of freedom which are chosen for each specific expression. Since the face is hybrid, the

mouth-related AUs are shown on the LCD. In case of mouth, there is no limit on portraying

facial expressions. Because of the limited degrees of freedom on the rest of the head, a few

of the AUs such as Cheek Raiser (AU6) or Brow Lowerer (AU4) could not be displayed.

The AUs which the robot was able to make are shown in bold. One challenge of designing

facial expressions for robots is the disgust emotion. The key part of disgust emotion is the

nose wrinkle which is difficult to be shown on robots’ face. The eBear has a forehead plate

where the servos of eyebrow, eyelid, and eyes are placed in. This forehead plate is able to

move up and down ( f3 in Figure 3.3 ).

As it was discussed, the third column of table 3.1 illustrates the projection of AUs

to available degrees of freedom of the face. We wanted the facial expressions to be as

expressive as possible. The eBear is a bear-like robot but the third column of table 3.1

does not utilize the animal side of the eBear. Darwin in (28) talks about the expression

of emotions in human and animals. This study inspired us to use his definitions of animal

emotions in the design of the eBear’s facial expression. He describes animal’s emotions in

terms of various organs of their body, however we were only interested in head and face

movement. Below are some of the observations that Darwin made:
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• ”When mammals are suddenly frightened, as by a thunderstorm, or when they are

made angry, as by being teased, their hair become erect. (P. 95)”

• ”The ears through their movements are highly expressive in many animals. (P. 110)”

• ”In very many animals, whenever they feel slightly savage, or pretend in their play

to be savage, their ears are drawn back. (P. 111)”

• ”When a dog feels pleased and is caressed by his master, the ears fall down and are

drawn back slightly. (P. 111) ”

• ”Some kinds of monkey, which have moveable ears, and which fight with their teeth,

draw back their ears when irritated just like dogs. (P. 114)”

• ”All animals, when they are startled, or when they closely observe any object, direct

their ears to the point towards which they are looking, in order to hear any sound

from this quarter. (P 114)”

• ”The movements of a dog whilst exhibiting affection: these consist in the head and

whole body being lowered and thrown into flexuous movements. The ears fall down

are are drawn somewhat backwards, which causes the eyelids to be elongated. (P.

117)”

• ”Attention is shown by the head being raised, with ears erected, and eyes intently

directed towards the object. (P. 121)”

• ”Dogs, when feeling affectionate, lower their ears in order to exclude all sounds. (P.

118)”

• ”A dog is disappointed with his head, ears, body, tail, and chops drooping, and eyes

dull. (P. 120)”
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• ”When dogs feel fear, ears are drawn backwards; but they are not pressed closely

to the head, as in snarling, and they are not lowered, as when a dog is pleased or

affectionate.”

Based on these observations it can be concluded that ears are highly expressive organ

among many animals. As an example, when dogs are pleased their ears are drawn back

and fall down, in case of fear ears are drawn back but without being close to the head,

to show attention ears are erected. We also consulted with a few of dog owners and they

were mostly agree with the descriptions of Darwin’s book. In addition, several cartoon

animations such as ”Kung Fu Panda” and a few teddy bear animations were watched to have

a better understanding of emotion expression among animals, in particular bears. These

cues were taken into consideration while designing the animal-like facial expressions for

the eBear. The fourth column of Table 3.1 illustrates the redesigned degrees of freedom

involved in each of the expressions.

Table 3.1: Corresponding DOF in AU based and AU+Animal based expressions

FACS AUs
Corresponding DOF

AU based AU+Animal based

Happiness AU6, AU12 LCD* LCD, f7, f8

Sadness AU1, AU4, AU15 LCD, f1, f2, f5, f6 LCD, f1, f2, f3, f5, f6, f7, f8

Fear AU1, AU2, AU4, AU5,
AU20, AU26

LCD, f1, f2, f5, f6 L, f1, f2, f3, f5, f6, f7, f8

Disgust AU9, AU15, AU16 LCD, f3 LCD, f3, f7, f8

Anger AU4, AU5, AU7, AU23 LCD, f1, f2, f5, f6 LCD, f1, f2, f5, f6, f7, f8

Surprise AU1, AU2, AU5B, AU26 LCD, f1, f2, f5, f6 LCD, f1, f2, f3, f5, f6, f7, f8,
f9

Figure 3.12 depicts all the two versions of emotions on the eBear’s face. Note that

some parts of the expressions are dynamic and cannot be seen in the pictures. To express

the joy of the eBear, ears are moved in reverse directions for 0.5 to 1.5 seconds based on the

intensity of the emotion( 3.12c). In sadness, ears are drawn forward along with eyelids are

slightly closed. For fear, the forehead tilt is used to look downward while ears are drawn
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(a) Joy: AU based (b) Joy:
AU+Animal
based

(c) Sadness: AU
based

(d) Sadness:
AU+Animal based

(e) Fear: AU based (f) Fear:
AU+Animal
based

(g) Disgust: AU
based

(h) Disgust:
AU+Animal based

(i) Anger: AU based (j) Anger:
AU+Animal
based

(k) Surprise: AU
based

(l) Surprise:
AU+Animal based

Figure 3.12: Examples of expressions on the eBear.

back. Disgust is expressed with ears being drawn forward as well as the forehead tilts looks

downward so that a kind of wrinkle is created around the nose. In anger, ears are erected to

show the angriness. We called the simple expressions ”AU based” and the modified version

”AU+Animal based”.

We designed the bear to not only have facial expressions, but also be able to make

expressions with different intensities. For this purpose, for each degree of freedom fi there

is a f 0
i and a f max

i, j which denotes the natural state and the maximum expressiveness for that

degree of freedom. Hence, the movement of each degree of freedom can be expressed as:
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fi, j = f 0
i +µi, j( f max

i, j − f 0
i ) (3.1)

where, µi, j ∈ [0,1] represents the intensity of fi.

3.1.2.2 Evaluation of Designed Facial Expressions

An experiment was designed to compare the effectiveness of AU based and AU+Animal

based expressions. In this experiment, subjects interpreted the eBear’s facial expressions.

21 subjects were chosen with the age ranging from 21 to 51 years old. They were selected

from various cultural backgrounds and none of them were exposed to the eBear before the

experiment. 6 AU based and 6 AU+Animal based expressions were shown to them in a

random order. It took around 1.5 seconds for the robot to start with neutral emotion and

change to the final position of one of the six expressions: Joy, Surprise, Sadness, Disgust,

Anger, Fear. Participants were supposed to choose of the expressions on the questionnaire

and they could take as much time as they needed. There was also a ”None” option in case

they could not recognize the correct expression.

Table 3.2 and 3.3 illustrate the confusion matrices of the AU based and AU+Animal

based expressions respectively. The recognition rate in case of Joy, Anger, Disgust, and

Surprise were increased in AU+Animal based mode in compare to AU based mode. In

AU+Animal mode, subjects confused Sadness with Disgust more than AU based mode

which resulted in a 4.8% decrease in the recognition rate. One possible for this confusion

is that in the AU+Animal mode of Sadness, the forehead tilt is involved which is common

with Disgust. Fear recognition rate was also decreased from 33.3% in AU based to 19.0%

in AU+Animal based expressions. Lowering the forehead is common between Sadness and

Fear which might be the reason behind this confusion.
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Table 3.2: AU based expressions confusion matrix

% Joy Angry Sad Disgust Surprise Fear Neutral None

Joy 90.5 0 0 0 9.5 0 0 0

Anger 0 80.9 0 4.8 14.3 0 0 0

Sadness 0 0 100 0 0 0 0 0

Disgust 0 0 80.9 9.5 0 0 4.8 4.8

Surprise 0 0 14.3 0 61.9 23.8 0 0

Fear 4.8 0 14.3 19.0 28.6 33.3 0 0

Table 3.3: AU+animal based Expressions confusion matrix

% Joy Angry Sad Disgust Surprise Fear Neutral Nn

Joy 95.2 0 0 0 0 0 4.8 0

Anger 0 85.7 0 0 4.8 9.5 0 0

Sadness 0 0 95.2 4.8 0 0 0 0

Disgust 0 0 23.8 42.8 4.8 9.5 4.8 14.3

Surprise 0 0 0 0 71.4 28.6 0 0

Fear 0 0 47.6 23.8 4.8 19.0 0 4.8

3.2 Software Design

The eBear is equipped with several input and output devices: Tablet, Head Camera,

Head Servos, Mouth LCD, and the Kinect Sensor. A C# based software was developed

in Microsoft Visual Studio environment to control and manage all these devices. Except

the screen, all of the other devices are connected to the main PC via a USB connection.

A UDP protocol was utilized to connect the tablet to the main PC. When the eBear turns

on, it keeps looking for a person to start a conversation. They keep talking as an open

conversation until the user asks for other programs such as exercise session. To achieve

this goal, several threads were defined as background workers which run in parallel:

• A main thread for the open conversation which is always active.

• A thread for switching to other modes of the interaction such as exercise session

which runs when the user asks for it.
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• A thread for acquiring the skeleton data from the Kinect sensor which is always

running.

• A thread for reading facial expressions from the head camera which is always run-

ning.

• A thread for sending/receiving UDP commands to/from the remote screen which is

always running.

In the following each software module is explained in details.

3.2.1 Interactivity

One difficult challenge in designing social robots is developing the spoken dialog sys-

tem and natural language processing. An ideal social robot should be able to completely

understand the spoken dialogs while fully interpreting all the visual cues such as the facial

expressions or body gestures. There is a huge variety in natural languages which makes the

Natural Language Processing (NLP) a challenging task. One of the objects of the eBear was

to gather visual and speech information and provide an appropriate response. NLP still is

an open research and there is no full language processor available that could be integrated

into the robot. Online chatter robots are the closest programs to a full natural language

processor (14) (17). Most of the chatter robots or chatbots provide answers using different

pattern matching algorithms. Therefore, if their database is huge then the provided answers

will be more logical. A rule-based dialog manager was also integrated into the robot. For

each of the dialog managers, chatter robot and the rule-based dialog manager, the speech

had to be recognized, then processed in the dialog manager and at the end was synthesized

using a Text-To-Speech engine. Here each part is discussed separately:
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3.2.1.1 Speech Recognition

As it was discussed in the hardware design section, the eBear is equipped with the Mi-

crosoft Kinect sensor version 2. The Kinect sensor comes with a microphone array which

provides useful features, in particular for robotic purposes such as sound direction detec-

tion. We used this microphone array as our main sound input to the system. Microsoft

provides a full Software Developer Kit (SDK) for Kinect sensor which comes in different

programming languages. The C# SDK was chosen to be compatible with the main soft-

ware. We used Intel RealSense SDK (8) as the speech to text engine. Intel RealSense SDK

is free for non-commercial purposes. Most of the avaiabale speech recognition modules

require the user to define a set of words as a dictionary which can be useful in some ap-

plications. One advantage of Intel RealSense speech recognition module is that it already

comes with a full dictionary and it can be used as a dictation engine. The other good fea-

ture of RealSense speech recognition is a set of flags which take care of various speech

conditions such as ”Speech started” or ”Volume is high”. We used these flags to notify the

eBear when the user starts talking and when the speech is finished.

3.2.1.2 Emotion Recognition

The eBear utilizes both facial and speech emotions of the subject while interacting.

These emotions are used to generate more suited facial expressions. In another word, the

goal is to make the user feels that the eBear understands his/her emotions. In the fol-

lowing, the facial expression recognition and the speech emotion recognition modules are

explained.

Facial Emotion Recognition Intel RealSense SDK provides an accurate facial expres-

sion recognition software. It is capable of recognizing the 6 main facial expressions includ-
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ing: Neutral, Happy, Sadness, Surprise, Angry, disgust. By default, the eBear recognizes

the facial expression of the subject and replicates the emotion.

Speech Emotion Recognition Aylien (1) is an on-line natural language processing plat-

form. In order to extract the emotion of the speech, their text sentiment analysis API is

used. This API takes the speech text as input and provides the sentiment of the speech

which can be either of the following: Positive, Negative, and Neutral. It also outputs a

confidence level between 0 and 1 showing the accuracy of the analyzed sentiment. When

the sentiment of the speech is negative the eBear should feel sad and when it is positive the

eBear should feel happy.

In order to combine the results of the facial and speech emotion recognitions, the con-

fidence measure of the speech emotion is utilized. If the confidence level of the speech

emotion is less than 0.7, the facial emotion results are used and the eBear replicates them.

If the confidence level goes above 0.7, the sentiment is used to make the robot happy, sad,

or neutral. The sentiment confidence threshold is adjusted experimentally.

3.2.1.3 Dialog Management

We developed and integrated two different natural language processors for different

interaction scenarios into the robot. For the open dialog conversation, we used one of the

chatter robots of Pandorabots (17). The chatter robot was not used in any of the private

conversations such as the mood evaluation part which will be discussed in section 3.2.3.

For the other parts of the conversation, we designed a rule-based dialog manager which

was further developed through the interaction sessions. The two dialog managers run in

parallel. When the speech recognition module provides a text, in the open conversation

part, the input from the speech recognition module is fed into the chatter robot interface

40



and the output is sent to the Text-To-Speech engine. If the input text includes a set of

keywords in a specific order which were defined in advance, the related session is started.

3.2.1.4 Speech Synthesizer

Basically speech synthesizer is a Text-To-Speech or TTS engine. We decided to use

a male voice with a tonality matching the eBear’s appearance. Most of the TTS engines

have a robotic like voice which is not desirable for the eBear. Neospeech (6) is a TTS

engine which has a wide verity of voices with different genders and accents. We contacted

them and they agreed to provide us with a 6-month full academic license to use their TTS

engine in the eBear. We integrated their TTS in the eBear but there was a compatibility

issue between the rate that speech was prodcued by the TTS and the aligner software. The

aligner software is used to align the lip movements with the speech. This issue would

happen several times in each session and we had to change the TTS engine. Microsoft

provides a few voices which could be used in our software for free. We chose Microsoft

Mike which is a mid-age male voice as the TTS engine.

3.2.2 Entertainment

One of the purposes of the eBear was to entertain the participants with various activities

to improve their mood and cognitive levels. In (65) they developed a set of computer games

as a treatment in geriatric depression (DP). They concluded that computer games can be

more effective than depression drugs. In their study, 4 weeks of treatment using the games

had the same effect as 12 weeks of using depression drugs. A set of entertaining programs

were developed and integrated into the eBear which are discussed in the following.

One of the games was designed based on the ”Catch the Ball” game which was intro-

duced in (65). They provided the general scenario of the game but no image or codes were

provided. We used the same scenario but the game was designed in Unity Software from
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scratch. Figure 3.13 illustrates a screen-shot of the designed game. This game consists of

29 levels. Basically, as it is shown in Figure 3.13, there is a ball moving around the screen.

At some points, the color of the ball changes to a target color which the eBear names at the

beginning of the game. Once the color changes to the target color, the user is supposed to

say ”changed”. If the user say changed before the actual change or 4 seconds after it really

changed, the eBear tells them to repeat that level. As the level go higher, the speed of the

ball increases and more balls are added to the screen.

Figure 3.13: Catch the Ball - A screen-shot of the Catch the Ball environment.

Tic-Tac-Toe was another game which was designed and integrated into the robot. Un-

like ”Catch the Ball”, the Tic-Tac-Toe game required the user to touch the screen. Tic-Tac-

Toe was designed with three levels of difficulty. In each level, the two players play for 5

rounds and whoever wins more times is the winner.

3.2.3 The Face Scale Mood Evaluation

In this section, we talk about a mood evaluation technique which was implemented to

be used by the eBear. As it will be discussed in the evaluation chapter, we evaluated the

study using different measures. However, one of the goals of the eBear was to be able to

automatically assess the mood of the elderly user. Evaluation of the patients condition is a

vital part of each psychological experiment. The Face Scale is a nonverbal mood evaluation
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technique introduced in (61). The advantage of the Face Scale is that this technique is all

pictorial and does not need reading literacy. To best of our knowledge, this is the first

platform which evaluates the patient mood in this manner. Basically, in this method a set

of face pictures with different moods are shown to the participants and they are asked to

choose the one which better describes their current mood. In (61), they used 20 pictures

of genderless faces. Since the eBear is supposed to run this evaluation at least one time

per session, showing 20 pictures in each evaluation would be tiresome. (92) used the same

evaluation methodology but with only 7 pictures. The differences between these 7 pictures

are more than the ones between the original 20 pictures so that they can cover the whole

mood range. We developed a C# based software to perform the evaluation. Each time the

robot wants to perform the evaluation, the user is asked to if he/she is willing to tell the

eBear about his/her mood. The main program activates the evaluation software which is

installed on the screen. The eBear starts with a brief explanation about how the evaluation

works. Then the eBear starts showing each of the 6 face pictures on the screen. The

pictures are depicted in Figure 3.14. As it can be seen, there is a number below each of

the face pictures and the eBear calls the number while showing each of the pictures. At

the end, the eBear shows all the pictures in one frame and asks the user which one of the

faces better describes your feelings in the current moment. The participant is supposed to

say the number of the face. Depending on the selected mood, the eBear provides different

responses. For instance, in case of number 1 the eBear will say ”That is great. I am glad

to hear that.” and in case of number 6 the eBear says ”I am really sorry to hear that but we

should definitely talk more and I promise you will feel better by having me around you.”.

The result of each mood evaluation is logged along with the time stamp for further analysis.
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(a) (b) (c) (d) (e) (f)

Figure 3.14: The 6 face pictures used in the Face Scale mood evaluation (11).
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4

Get Up and Go Test

Human gait parameters are known to contain significant information about individu-

als’ physical mobility and particularly mobility of the elderly who are at risk of falling.

Clinicians have developed methods such as the Get-Up-and-Go Test (GUGT) (69) for gait

analysis and screening of the elderly. Such methods are able to predict subjects mobility

and determine whether they can walk safely without the risk of falling. Since these assess-

ments are done frequently, there is a great need for developing automatic and inexpensive

computer systems capable of performing such assessments in the home of the elderly.

Different technical approaches and sensors have been proposed for gait assessment.

One of the common approaches is the use of wearable sensors such as accelerometers or

gyroscopes (27), (40). These devices mostly provide accurate gait parameters. Besides, not

being expensive, having light weight and being small are other advantages of these sensors.

However, these approaches would need a supervisor to help subjects wear the sensors and

maintain them frequently. As a result, they are mostly suitable for laboratory purposes and

not preferable for the elderly to use them frequently at home (30).

On the other hand vision-based gait analysis systems have received great attention in

recent years (70). Some of these systems use regular RGB cameras while some others use
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more sophisticated sensors such as the Microsoft Kinect. In the camera-based systems,

usually a calibrated array of cameras is utilized to provide a 3D representation of the scene.

It has been shown that these methods are capable of providing an accurate model of the

subject. For example in (58), two calibrated cameras were used to generate a 3D represen-

tation of the scene. Using the 3D model, various gait features were extracted including:

torso angle, thigh angles and shank angles. However, the need of using more than one

camera and their calibration and alignment issues have made it difficult to be used as an

in-home screening system.

The Kinect sensor provides RGB images, depth range information and the human skele-

ton. Using the Kinect sensor for physical mobility assessment was first presented in (79). In

that proposed method both a stereo-vision system and a Kinect sensor were used for com-

parison. In one experiment gait parameters were extracted using the Kinect depth output.

In the second part, the same parameters were extracted using the output of the stereo vision

system. Finally the results of both systems were compared with the results of a Vicon mo-

tion capture system. The experimental results showed that the Kinect sensor measures the

gait parameters with a sufficient accuracy.

Another example is the work reported in (38) where the skeleton data of a Kinect sensor

was utilized for gait analysis. First some features were extracted from the skeleton data

and were fed to a regression model. After that a state machine was used to produce desired

states such as whether the foot touches the ground or not. In addition, other features such

as the arm kinematics were measured, which show that a wide range of parameters can be

extracted from the skeleton data. Nevertheless, they only extracted some features and no

classification results were reported by the authors.

Using Kinect sensor eases the gait analysis and extraction of standard stride informa-

tion with high accuracy in the home environment. Nonetheless, many researchers have

focused on only extracting gait parameters for further analysis and there are limited works
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for automatic classification of subjects’ degree of gait severity (40). Hence, designing an

inexpensive system that extracts discriminative feature for accurate classification can be

useful in alerting patients and clinicians without having a supervisor at home. This chapter

presents a methodology for classification of people into two categories, high fall-risk versus

low fall-risk, based on their performance in the Get-Up-and-Go Test using Kinect sensor.

In our approach, we first use image processing and computer vision algorithms to extract

some desired features from the human skeleton data provided by a Kinect sensor. The fea-

tures include number of steps, average step duration, and turn duration for gait parameters

and distance between the elbows, angle between the legs, and angles between the shank

and the thigh in each leg (knee angles) for anatomical parameters. Then using a Support

Vector Machine (SVM) classifier, subjects are classified into those categories.

4.1 Get-Up-and-Go Test

In terms of physical mobility a person is considered as independent if certain basic

skills can be performed without any help of others (46). Get-Up-and-Go Test (GUGT) is

a well-known simple test for mobility assessment which consists of basic everyday move-

ments (62). In GUGT a subject sits on an arm chair, gets up, walks a three meter path,

turns, walks back to the arm chair, and sits back down. In this test, subjects are asked to

perform the task without any help from other people or objects (unless it is necessary), and

physical mobility of the subject is rated on a scale of one to five according to the observa-

tion of a clinician. The problem with this method is the imprecision of the scoring system.

A modified version of this test is called Timed Up and Go test (69). This test computes

a score based on the time taken by an individual to stand up from an arm chair, walk a

distance of three meters, turn, walk back to the chair and sit down. Due to the timing, this

version is more precise than the GUGT in scoring physical mobility. In (67), it is shown
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that the time score and its variability between test trials correlates well with the physical

mobility.

Using the results of the GUGT and the Timed Up and Go test, clinicians can give an

estimate of the overall muscle strength and balance of the body which can be used in fall

prediction. Generally these tests show whether people are safe on their own or not when it

comes to their mobility. At first, each subject sits on an arm chair and is ready to get up.

One mobility indicator is the smoothness of getting up. When the subject uses any kind of

help to get up or when getting up is not smooth, then it is a sign of abnormality. The next

step is to start walking. Any gap between the time that the subject gets up and the time that

he/she starts to walk is a sign of stabilizing and is abnormal. When the subject is walking,

several abnormalities can be observed such as slow gait speed, feet dragging on the ground,

deviating from the straight path, and having severe side to side movements. One significant

part of the task is the turning part. Usually, one or two steps are enough to make a complete

turn. Using more steps in turning, which corresponds to more turning time, is a sign of

abnormality. In addition, some measurements on the anatomical configuration such as the

angle between legs, the angles of knees and the distance between elbows, can be indicators

of physical mobility while performing the test. In this paper, we extracted some of these

abnormality indicators from a Kinect device automatically.

4.2 Automatic Processing of GUGT

In order to measure the human’s physical mobility in the GUGT, we used a Kinect

sensor to capture a video and track the person’s skeleton model while performing the test.

The Microsoft Kinect sensor contains of an RGB camera, a depth sensor and a multi-array

of microphones. The depth sensor consists of an infrared laser projector and an IR camera

with the sensing range of 0.8 meters to 4.0 meters which captures depth images in resolution
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of 640×480 pixels at 30 frames per second (5). It is capable of tracking the skeleton of one

or two people moving within a practical range of 1.2 to 3.5 meters. The provided skeleton

consists of 20 joints in the body with 30 frames per second. Fig. 4.1 shows a sample layout

and joint indices of the virtual skeleton of the Kinect.

Figure 4.1: Angles - Layout of the Kinect skeleton data

We collected a video dataset of the elderly people performing the GUGT while a Kinect

sensor captured a video and tracked the person’s skeleton model. Twelve subjects with ages

ranging between 65 and 90 enrolled in the study. A geriatric physician reviewed the videos

offline and categorized these subjects based on their gait movement and severity of their

physical mobility into two categories. The first category includes patients that are relatively

safe on their own with low fall risk, and the second one includes patients with high risk of

falling that have severe physical mobility issues. The videos were then processed using

image processing and computer vision algorithms aimed at extracting some features that

were used for classification.
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(a) Sitting (b) Walking (c) Turning (d) Walking-back

Figure 4.2: A subject performing the Get-Up-and-Go Test

4.2.1 Feature Extraction

The Kinect sensor detects and tracks the positions (x, y and z ) of 20 joints of the human

body skeleton. Since the joint points measured by Kinect can be noisy, we apply a median

filter of size 5 to remove the noises and improve the accuracy of the measurements. After-

wards, two types of features are extracted: gait parameters and anatomical parameters.

4.2.1.1 Gait Parameters

In the GUGT a person is instructed to get up from an arm chair, walk, turn, walk back

to the starting point, and sit back down. The path is automatically segmented into three

phases including: Seated phase, Walking phase, and Turning phase.

Using the position of the hip joint (point 1 in Fig. 4.1), we can measure the distance

of the person to the Kinect in z-direction. When the person is seated, the z-coordinate of

the hip joint (z1) does not change and is at its maximum. By measuring z1 in consecutive

frames from the beginning of the test, we can extract the seated phase. As the person
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starts walking towards the Kinect, z1 decreases and when the person is turning, z1 is at its

minimum (we call this point as turn point). Fig. 4.3a shows the position of the hip joint in

z-coordinate (z1), the turn point, and the extracted seated phases.

Since Kinect is mainly designed to track the human body when facing to the camera, it

cannot recognize the skeleton of the body well while the person is turning (see Fig. 4.2c).

The time that a person is turning can be defined as the time that the person starts to rotate

his/her upper part of body to the time that rotation is done and the subject is ready to walk

back. We used the absolute difference between x-coordinates of two elbows (|x6− x10|)

to determine the starting and ending frames of a turn. In other word, when the person

starts turning this difference decreases and when turning is finished, the absolute difference

becomes the same as the value before turn. Measuring this distance in consequent frames

before and after of the turn point, we can extract turning phase. Fig. 4.3b shows |x6− x10|

of a subject, turn point, and extracted turning phase. Extracting seated and turning phases,

we can consider the frames in between as walking phases (Fig. 4.3c).

Based on these three phases, three gait parameters are extracted. One of the gait pa-

rameters in walking phase is the number of steps that a person takes to perform GUGT.

To detect steps, we used the difference between z-coordinates of two heels (z15− z19). Ex-

tremums of this difference indicate feet being far from each other and zeros correspond to

feet being next to each other. Fig. 4.3c shows the difference between z-coordinates of two

heels and the extracted number of steps (where the difference is zero).

Duration of each step is another feature which is important in physical mobility mea-

surement. The difference between z-coordinates of two heels (z15−z19) gives us the starting

frame and the ending frame of each step. For each skeleton data frame, Kinect provides a

time-stamp which is used in calculating the duration of each step.

Number of steps in turning phase is another gait related property that contains sig-

nificant information of the physical mobility. As it was explained before, Kinect cannot
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(a) The position of the hip joint in z-coordinate (z1)

(b) The absolute difference between x-coordinates of two elbows (|x6− x10|)

(c) The difference between z-coordinates of two heels (z15− z19)

Figure 4.3: The extracted seated, walking and turning phases in a GUGT
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recognize the skeleton of the body while the person is turning. One approach to overcome

this issue is to use another Kinect to look at the subject from side. This approach demands

synchronization between Kinects which is against the simplicity of the proposed method.

The other approach is to measure the turning time instead of counting the number of steps.

We extracted the turning phase automatically and the turn duration is calculated based on

the time-stamps of the starting and the ending frames of the turning phase.

4.2.1.2 Anatomical Parameters

The second type of parameters for physical mobility assessment is related to the anatom-

ical configuration of the person while performing GUGT. Various anatomical measure-

ments can be obtained to assess the condition of the body. One feature is the distance

between two elbows (joints 6 and 10). The angle between the legs is another feature that is

used here. This angle is defined as the angle between two vectors connecting joint 1 to 14

and 18. The other extracted features are the right and left knee angles that are the angles

between the shank and the thigh in each leg. This angle is defined as the angle between two

vectors connecting joint 18 to 17 and 19 for the left leg and the angle between two vectors

connecting joint 14 to 13 and 15 for the right leg. These features are shown in Fig. 4.1.

4.2.2 Classification

The features described in the previous section are used in classification of gait via a soft

margin C-SVM classifier. The gait parameters provide us three numerical features for each

sample which are: (1) The number of steps that have been taken to perform the test; (2)

The average duration of steps in seconds; (3) The turn duration in seconds. These numbers

can be fed into the classifier directly.

The anatomical parameters can be easily measured in each frame of the skeleton data,

but to be used as the input of the classifier, they should be comparable. In other words, there
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is no guarantee that subjects finish the task in the same amount of the time and hence there

are different numbers of features for each subject in each test. To overcome this problem

we have used the Bag-Of-Words (BOW) (34). The Bag-Of-Words or Bag-Of-Features is a

simple approach that is commonly used in visual object classification, text categorization,

etc., where there are different number of features for different samples. Assume there

are {N1,N2, ...,Nk} various number of features for k samples, this model represents those

features in M keywords where in this paper M� {N1,N2, ...,Nk}. For this purpose, first

a clustering algorithm is used to cluster all training samples features to M clusters. Each

cluster is known by its center. Each feature of each sample is assigned to one of these

centers, and then for each sample, the histogram of the features in these clusters represents

new M dimensional features of the sample. This M dimensional output along with the three

gait parameters are fed into the classifier.

4.3 Experimental Results

The Kinect sensor was mounted on a table with an approximate height of 120cm. As

the maximum practical range of Kinect sensor is 3.5 meters (5), and we want Kinect to view

the whole body during the test, the arm chair was located at a distance of approximately 3.5

meters to Kinect and subjects walked a path of approximately two meters instead of three

meters in original GUGT. Subjects, with their normal clothes, were instructed to first sit on

the chair, stand up and start walking for two meters, then turn in place and walk back to the

chair and sit back down. They were asked to walk completely normally during the test.

We measured the accuracy of the proposed classification technique on the dataset of

12 elderly patients collected at the clinic. Among those 12 patients, five subjects are cate-

gorized as low risk of falling and seven of them had high fall risk by an expert physician.

Each patient repeated the test three to six times (each time is called a sample). A total
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of 50 samples were captured. We have used K-means clustering to cluster the anatomical

parameters for the Bag-Of-Words and a C-SVM with radial basis kernel for classifying. K-

means requires the number of clusters (K) to be defined which corresponds to the number

of words in BOW. We evaluated the algorithm using 4 to 24 clusters, and it turned out that

10 clusters gave us the best classification rate.

To measure the performance of the proposed classification, we used a leave-one-subject-

out technique. Particularly, the classifier is trained with samples of all subjects except one

subject. For testing, the classifier classifies all samples of the left out subject. Every time

one subject is left out and the training and testing procedure are repeated till all subjects

are covered. Finally, the accuracy of the classification is reported as the average of samples

being classified correctly. As K-means takes random initial clusters, BOW may generate

different features each time which may affect the classification performance. We repeated

the whole procedure ten times and on average the classification accuracy is 67.40% with

standard deviation of 4.72%. Table 4.1 shows the average confusion matrix of the classifi-

cation.

Table 4.1: Classification Confusion Matrix

Low Risk High Risk
Low Risk 16.2 7.8
High Risk 8.5 17.5

Results suggest that the classification method and features we designed provide an ef-

fective means of distinguishing patients who have a high risk for falling from patients with

a lower fall risk. This inexpensive, easy to use, Kinect sensor-based approach can easily

be used in the subject’s home or by lower skilled healthcare personnel and relayed to a

physician to further investigate as appropriate.

In this study, we extracted only three gait parameters. Using depth data as well as

skeleton tracking, we can extract more complicated gait parameters indicating abnormality
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in physical mobility such as smoothness of getting up, using any kind of help to get up, and

feet dragging on the ground.
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5

Activity Assessment

In this chapter we present two methods for coaching users through exercise. As said,

it has been proven that lack of mobility is a major sign of depression and this project aims

at developing methods for minimizing this factor as well. We want the companionbot

platform to engage users in conversation and prompt them to exercise with the aim of

increasing their mobility. The user should be monitored while performing the exercise and

the related feedbacks should be provided to keep the user engaged and motivated. The

Microsoft Kinect sensor is used as the eyes of the system to constantly monitor the users

activities. In case where the user does not move for a period of time, the robot starts a

conversation with the user. During the conversation, the user is prompted to start some

pre-defined exercises. The proposed algorithm analyzes the users movements and provides

positive feedback to correct the movements as well as keeping the user engaged. The

feedback is provided during the exercise. Toward that goal, this chapter addresses the

computer vision and feedback algorithm needed for the robot.

As mentioned before, we aim to take the companionbot to the house of elderly people

so that it becomes a companion, be trusted and treated as a member of the family and

eventually improves their quality of life. The robot will be placed in a corner of the main

57



hall of the house, where the user spends most of the day. It has been assumed that in

such a position, the Kinect sensor will see the user most of the time. In the designed

scenario, when the person is in the view angle of the Kinect sensor, he/she is tracked all

the time. When the Kinect detects that the user has not moved for a period of time, the

robot starts a conversation with the aim of motivating the person to move. One way of

prompting the user to move is to ask them to perform an exercise. If he/she accepts to do

the exercise, the system will monitor the movements. Using a vision algorithm, movements

are analyzed and according to the quality of their moves, appropriate feedback is provided.

Utilizing feedbacks not only corrects the way users perform the exercise, but also keeps a

conversation between the robot and the user so that the user remains engaged. Because this

system is mainly designed for the elderly people, not all types of exercise can be asked to

be performed. Chair exercise (23) is a type of movement which is mostly recommended

for elderly people and is used in our system. This type of exercise decreases the risk

of falling caused by balance problems. Also, it has been proven that such exercise has

many positive effects on their bodies including lubricating joints, strengthening muscles

and increasing the blood circulation (29). Method 1 that is presented in Section 5.1 was

designed and developed to assess the quality of exercises. However, since this method uses

low level features for evaluation, it requires the user to follow the exercise pattern and if

they perform an additional movement, the system might provide inaccurate assessments.

The second method (presented in Section 5.2) is our modification of the algorithm proposed

in (68) which utilizes high level features and is more robust against input variability and

noises.

58



5.1 Method 1

5.1.1 Vision algorithm

The vision algorithm of the system consists of several steps. To create our model for

a specific exercise, we first record a trainer while performing the desired exercise in front

of the Kinect several times. Then the input stream is preprocessed which consists of angle

calculation and filtering. After that, the input is segmented using a Support Vector Machine;

each segment includes a single exercise, which has been repeated several times. Finally,

Dynamic Time Warping (74) is used to compare each segment to the reference model.

We use a Kinect V1 sensor placed on the body of the robot to monitor and capture the

physical movements of the user. The version one of Microsoft Kinect sensor consists of a

depth sensor, an RGB camera and a microphone array. The depth sensor uses an infrared

laser projector and an IR camera to capture depth images of 640×480 resolution at 30

frames per second. The sensing range of the Kinect sensor is between 0.8 meters to 4.0

meters (5). Because of this limitation, we assume that the robot is within this distance

range to the user. In addition to the depth image, the Kinect can detect the skeleton of the

person in front of it. The skeleton output contains the positions (x, y and z) of 20 joints in

the body with respect to the Kinect coordinate system. Fig. 5.1 depicts the layout and joint

indices of the skeleton of the Kinect.

5.1.1.1 Preprocessing

Since the joints’ positions measured by the Kinect can be noisy, a median filter of size

5 is applied to the input data to remove noise and improve the accuracy of the algorithm.

To analyze the skeleton, three possible measures can be utilized: absolute position of

the joints, relative position of the joints, or the angle at each joint. On the other hand, we
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Figure 5.1: Kinect Layout - Layout of the Kinect skeleton data (5)
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need the measure to be independent of the body shape and measurements of the user. In

addition, in the Kinesiology’s standard, the position of each bone is determined using its

angles in relation to the reference planes which are sagital, frontal and horizontal (88).

For these reasons, we use the spherical coordinate system to represent each bone. In this

system, each bone is represented using a polar angle (θ ) and an azimuthal angle (ϕ). As

explained before, positions of joints are determined with respect to the Kinect coordinate

frame. Because we need the angles to be independent of the direction of the person in

relation to the Kinect, a new coordinate frame was defined with respect to the skeleton

itself. After analyzing different skeleton data, we noticed that joints number 3, 5 and 9

are the ones with the least amount of noise and error. Using these points a new coordinate

frame was defined with its origin on the HIP point of the body (joint 3).

Based on Fig. 5.1, it can be seen that the Kinect defines 19 segments in the body.

Because we aim at chair exercises, we are only interested in the ones that define bones

of the arms and legs. We further simplify and assume that only arms are utilized in the

exercises. However, it can be easily extended to all segments of the body. There exist three

segments in each arm which result in 12 angles in total.

After the conversion, all the angles are smoothed using a first order Butterworth low-

pass filter with a normalized cutoff frequency of 0.9. Fig. 5.2 shows the data of one angle

of the reference model of a particular exercise. It also illustrates the same angle data of a

user while performing that model exercise with different speeds and intensities.

5.1.1.2 Segmentation

We do not limit the way that the users should perform the specified exercise. They may

perform the desired exercise as many times as they wish and there is no need to perform

each repetition consecutively. Because of this assumption, the segmentation problem can

be divided into two stages. First we need to detect whether the person is doing the desired
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Figure 5.2: - Reference Model and its variations in speed and intensity

exercise or not. After that, in case of repeating an exercise several times, the input stream

should be broken down into each individual repetition so that the comparison could be done

more accurately.

For the first stage of the segmentation, two assumptions are made (the results show the

validity of each). First we assume that when the person is performing, the majority of the

angles are in a specified range. In the training phase, we calculate the minimum and the

maximum of each angle as angleMin and angleMax. Because of the first assumption, we

extend each side of the interval by 20% of the range. The second assumption is that for

each type of exercise, the ratio of each angle to the rest can be considered as an identifier of

that specific exercise. These ratios are calculated for each angle in the training phase and

their minimums and maximums are stored. For 12 angles, there are 132 ratios. Each ratio’s

range is extended by 0.2.

These two identifiers result in 144 thresholds ranges. The thresholds are applied to the

input stream. For each frame, if at least 70% of the thresholds confirm the existence of the

desired exercise, it will be assumed that in that frame the exercise is being performed. A
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mode filter of size 10 is used to filter out unexpected noise in the output of the thresholds.

Basically, this part defines a mask on the input stream which locates the moments that the

exercise is being done.

After applying the mask, we should detect each exercise in the input stream. One ex-

ercise can be performed at different speeds or various intensities. For instance, in a simple

hand clapping gesture, one may clap faster than he/she is supposed to clap or open his/her

hands more than another person. On the other hand, the start index of each exercise is

unknown. These variations have made the matching problem challenging. Fig. 5.2 illus-

trates a few variations of an original template. It can be seen that variations can happen in

any order with any intensity. To overcome this problem, a classification technique is used.

For classification, we determine parts of the input signal that represent the beginning of

an exercise, and parts that correspond to the ending of the signal. For this purpose, each

angle signal is windowed into 6-frame windows and each window shares 1 frame with the

previous window. In case of using 6 segments or 12 angles of a hand (It varies with the

number of segments), we define 450 features for each 6-frame window to make sure that

we have utilized various aspects of the input stream:

Angles : Because of the fact that angles are person-independent, they are used as a part

of the feature vector. This part results in a feature vector of size 6 for each angle.

Ratios : For this set of features we calculate the mean of each angle in each window and

also calculate the ratio of each one to the rest. The same as the first stage of segmentation,

this part produces 132 features.

PCA : This feature is the projection of all 12 angles onto the first principal component

of those angles which produces a feature vector of size 6.

Statistical f eatures : Difference between mean and the maximum of the segment, min-

imum, maximum, mean, median, variance, standard deviation, root mean square, first
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derivative, and peak-to-peak amplitude of the segment. This part results in a feature vector

of size 10 for each angle (39).

Morphological f eatures : values of morphological points, time of the morphological

point, first derivative and second derivative. This part results in a feature vector of size 10

for each angle (39).

In the training phase, first the training data are windowed into 6-frames ones and we

labeled each of them as ”Begining”, ”Ending” or ”Middle”. Then for each window, 450

features are computed. Two linear Support Vector Machines (SVM) are used to classify

each 6-frame window into either ”Beginning” or ”Ending”. A mode filter of size 5 is used

as a simple post-processing technique to decrease any possible false prediction.

Fig. 5.3b and fig. 5.3c show the result of the classification method applied on fig. 5.3a.

It should be noted that only transitions and their directions are of interest. In fig. 5.3b

it can be seen that even after applying the post-processing method, some transitions are

falsely detected. To make the algorithm robust against these false predictions, an extra step

is taken to complete the segmentation part. In this step, we define three events that must

happen consecutively, so that a segment can be detected as an exercise. Each exercise starts

with one transition from zero to one in the output of the ”Beginning” SVM and ends with

a transition from zero to one in the output of the ”Ending” SVM. But the algorithm looks

for the ”Ending” transition after a transition from one to zero happens to the ”Beginning”

SVM output. This part rejects any other transitions that may happen as a result of error in

the predictions. Fig. 5.3d illustrates the segmented areas.

5.1.1.3 Comparison

Now that we have all the exercises sub-actionssegmented, they have to be compared to

the reference model. It should be mentioned that we aim at elderly people, in particular

people with depression. Because of this, we do not need to provide a detailed comparison
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of the movements. However, our method of comparison provides more details than we

need for our purpose.

This comparison should be done with respect to two criteria: speed and intensity. In

the first type we evaluate whether the user is exercising fast, slow or at a normal pace. We

have the reference model and the number of frames it takes to be performed. The segmen-

tation section gives us the starting and ending points of each exercise. Using these, we can

calculate the number of frames of each performed exercise. For comparison, we define an

interval around the model’s number of frames. If the number of frames of the performed

exercise falls within this range, then the exercise is categorized as normal pace. Similarly,

if the number of frames is less than or more than the defined range, the exercise will be

considered as fast or slow, respectively. The accuracy and sensitivity of the comparison

depends on the size of the defined interval.

Dynamic Time Warping (DTW) (24) is utilized to compare each performed exercise

with the reference model in terms of intensities. In terms of intensities, the mean of each

angle is compared with its reference to see whether it is smaller or bigger than its model.

DTW finds the optimal path between two time series, which has been used for many pur-

poses including: classification, similarity measurement and finding the related segments of

two time series. Fig. 5.4 illustrates the idea behind DTW. Using this technique each point

of one of the time series is connected to the most similar point in the other time series.

After applying DTW on all the detected exercise segments, the corresponding areas are

recognized. According to the required accuracy, different evaluations can be performed.

In our case, because of dealing with depressed elderly, we do not want to provide detailed

feedback. Due to this, first the differences between the unwarped version of the reference

and the exercise segments is calculated. Then we apply two thresholds on the magnitude

of the difference and the number of points that have that difference. If the final thresh-

old output is bigger or smaller than a specific value then the algorithm decides that the
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corresponding angle should be decreased or increased respectively. The specific value is

determined through experiments.

(a) The input (b) Detected beginning points

(c) Detected ending points (d) Segmented exercises

Figure 5.3: The output of the classifier

5.1.2 Decision algorithm

It needs to be noted that this decision algorithm is different from the final algorithm

which was used in the field trial. This simple decision algorithm was designed toward

that ultimate goal so that we can assess people’s opinions about the robot and modify the

algorithm based on their ideas. Fig. 5.5 depicts the flowchart of the proposed algorithm.

A speech recognition module is developed in order to process the feedback of the users.

Because we only want the user to agree or disagree with the spoken sentences, the module

only detects ”Yes” and ”No”.
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Figure 5.4: Dynamic Time Warping (75)

In SAR, because robots have to make decisions and speak with people, one of the

concerns is the repetitiveness of their language. In order to decrease the repetitiveness in

the robot’s feedbacks, for each comment, various equivalent sentences are selected. Each

time, one of the sentences is selected randomly. According to (33), this randomness has

a positive effect on the user’s perception of the robot’s intelligence. In addition, special

attention was placed on the type of sentences and the way that they make the person feel.

The user should see the robot as a friend and a companion not as an extra tool, which might

make them feel nervous or under pressure. For this purpose, all the sentences, even the

negative ones have a sense of friendliness. Another point which is taken into account is the

facial expression of the robot. Based on the type and meaning of the feedback, the robot

shows appropriate expressions.

According to the described scenario and the flowchart, the robot is placed in a corner

of the target house. First the robot looks for the person and if no one was within its view

angle, it will keep searching until a person is detected. We assume that there exists only one

person in the room. Once a person is detected it waits for a number of seconds, which varies

from person to person and is determined practically. After that amount of time, the robot

starts encouraging the user to exercise. In case the user rejects the exercise offer, the robot

will totally agree with that decision and will not force the user at all. The user is assumed
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to be aware of the type of the exercise in advance. If the user gets motivated to exercise,

the robot will coach him/her and after finishing the exercise, appropriate comments will be

provided. Then the user is asked to perform the exercise again. This process will continue.

Figure 5.5: The decision algorithm of the proposed system

5.1.3 Evaluation and Discussion

In order to evaluate the proposed system, two experiments are designed and tested:

User feelings about the robot, and the accuracy of the vision algorithm.
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5.1.3.1 User Feelings Towards the Robot

Although the robot is designed to deal with elderly people, this part experiment was

designed to understand general users’ feelings toward the robot. The aim is to apply their

comments on the proposed system in order to improve that. To do so, 9 participants (3

females and 6 males) aging from 22 to 45 years old (mean=30.33) were asked to test the

proposed platform. In each session, one participant was in one room with the robot and the

whole procedure took around 15 minutes depending on the user’s answers to the feedback.

They were given a questionnaire to rate the robot from various viewpoints. Below is the

list of the questions:

How naturalistic is the robot?

How intelligent is the robot?

How helpful is the robot?

Would you like to have such a robot in your house?

Is it boring?

They were asked to rate each of these questions from 1 to 5. For the first four questions,

1 represents ”Not at all” and 5 means ”Very”. In the last question 1 means ”It is not”

and 5 means ”It is”. Before each session the meanings of these questions were explained

in detail so that all the participants had the same understanding of the questions. The

first question aims to assess whether the robot’s appearance and actions are viewed as

a cartoonish character or a simple mechanical device, which convey no feelings. Being

intelligent means that the robot’s decisions and actions are similar to those of a human.

The robot is helpful when its interaction with a participant is perceived to make him/her do

the exercises and eventually increase their overall mobility. Participants also were asked if

they would like to have such a robot in their own houses or not. The last question asks if

the robot can be perceived as repetitive or predictable.
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Figure 5.6 summarizes the users’ responses to survey questions. The results are promis-

ing in three of the cases. The users have rated to robot’s intelligence with a score of more

than 4 which illustrates the way it provides feedbacks is smart. A score of more than 3.5 in

helpfulness suggests that having such a robot in a house will get the person to have more

physical mobility. An interesting result is that most of the participants would like to have

such a robot in their house. A smart robot is always fascinating, hence this case might

raise some ambiguity because it is not clear whether their opinion is because of an exciting

robot or the fact that it gets them to exercise. This case can be investigated in more detail

in future work. The average rating for being naturalistic is approximately 2.5 which shows

either its appearance and mechanical features or the way the robot speaks with the user is

not natural. The robot was also rated to have a score of approximately 2.5 in boringness,

which suggests it might be repetitive or predictable for the user. As discussed, the robot has

various versions of each answer and each time one of them is randomly selected, however

it seems this in not enough. In future work, other modules, like telling the news or showing

some TV shows, will be integrated to the system to add variety.

Figure 5.6: Graph of the users’ ratings about various aspects of the robot
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5.1.3.2 Vision Algorithm

The data of all the 9 participants were recorded and used in the evaluation part. In

addition, 2 other users were recorded while performing the same exercise but in different

ways including various speeds and intensities. In total, 74 instances of the same exercise

segment were captured and used in the evaluation. The evaluation is done in two parts, first

the accuracy of the segmenter is analyzed, then the comparison stage is evaluated.

Segmentation Results To form the ground truth, the indices of the starting and ending

points of each exercise segment in all the captured videos were manually extracted. In

order to calculate the accuracy of the segmentation, three notations are defined the same

as ref18: ”Traditional means the predicted segment should overlap with the ground truth”.

”Close means both boundaries of the predicted segment should fall within 20 frames of the

corresponding ground truth’s boundaries”. ”Tight means both boundaries of the predicted

segment should fall within 10 frames of the corresponding ground truth’s boundaries”.

Table 5.1 illustrates the accuracy of the segmenter. All the predicted segments over-

lapped the corresponding ground truth segments, but in 5 cases boundaries of the predicted

segments fell outside 20 frames of the corresponding segments. In addition, 14 of the cases

did not pass the Tight definition.

Table 5.1: Segmentation Results

Accuracy
Traditional 100%
Close 93.24%
Tight 81.08%

Comparison Results To compare the pace of the detected segments, three metrics are de-

fined: Normal means the number of the predicted segments’ frames falls within 70 frames
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of the reference model’s number of frames. Fast means the number of the predicted seg-

ments’ frames is less than the reference model’s number of frames by a difference of more

than 70. Slow means the number of the predicted segments’ frames is more than the ref-

erence model’s number of frames by a difference of more than 70. The number 70 was

determined practically by the trainer. Because speed of each segment is defined based on

the difference between its starting frame and ending frame, the segmentation results also

reflect speed comparison results as well. But to be more specific, in 97.29% of cases the

speed was determined correctly. Table 5.2 presents the confusion matrix of the speed re-

sults.

As discussed in the vision algorithm section, for each segment two thresholds should

be calculated. They were determined practically, since it is the trainer’s opinion whether

a person is performing correctly or not and the threshold can be modified according to the

type of exercise or the person. For the intensity comparison, all the videos were reviewed

by the trainer and for each segment, a label of ”Good” or ”Not good” was assigned, which

formed the ground truth. Using the thresholds and the ground truth, in 77.02 % of the

cases the algorithm predicted right. Because each exercise includes various parts of a body,

it is difficult to come up with perfect criteria for each exercise. The result can be easily

changed by modifying the thresholds, which means more flexibility will be given to the

way an exercise should be performed. Hence, this accuracy is not of much importance to

this system.

Table 5.2: Confusion Matrix of Speed Comparison Results

Predicted
Slow Normal Fast

Slow 100% 0 0
Normal 0 95.65% 4.54%
Fast 0 2.70% 97.30%
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5.2 Method 2

In the first method all the features were low-level hand-crafted. This made the method

not robust against the changes and noises of the input. If the user follows the order if

exercise, the algorithm detects all the different segments and provides accurate feedbacks.

However, since the robot will deal with elderly people, we cannot expect the elderly user

to carefully watch the instructions and perform them in order. (68) introduces a general

framework for assessing the quality of actions. They chose two different Olympic sports

to show the generality of their method. Since they used game videos for this purpose, we

had to modify the algorithm to work with the skeleton output of the Kinect sensor. Here

we briefly describe their method and then will explain how the modified version works

in details. The input to the algorithm is a video of an action. They extract two sets of

features. The first set is low level feature which is extracted using the hierarchical feature

described in (56). For the high level features, they ran Flexible Parts Model (95) on the

sport videos to calculate the pose of the human performers. They applied DTC on the

normalized version of the joint positions and applied a low pass filter to get rid of the

noises. They trained a linear Support Vector Regression (SVR) on the result of previous

parts to predict the judge scores. For the feedback part, using the mathematical formulation

of the SVR, they calculated the gradient of the score with respect to any of the joints. The

maximum gradient corresponds to the joint and the direction where the performer should

move to get a better result. Since Flexible Parts Model provides the joint positions in 2D

space, we had to modify the algorithm so that it could be used with the skeleton output of

the Kinect sensor. In addition, other modifications were also made to increase make the

algorithm more customizable which will be explained in details.
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5.2.1 Vision Algorithm

5.2.1.1 Preprocessing

The authors of(68) applied Flexible Parts Model (95) to extract the joint positions. We

use the Kinect sensor for this purpose. The skeleton output of the Kinect version 2 is

depicted in figure 5.7. As it can be seen, it can track up to 26 joints whereas the version 1

of Kinect tracks up to 20 joints. Depending on the type of exercise, different joints might

be involved in the exercise. This algorithm describes a general framework which can be

applied on any set of the joints. In the algorithm description, for the sake of generality, we

assume all the joints are involved. We assume the performer is in the sight of the Kinect

sensor and all his/her joint positions are being tracked. In case some of the joints are not

in the sight of the sensor, Kinect provides an estimation of the positions. For each joint

we have the corresponding x, y, and z. Kinect version 2 provides more accurate tracking

than the version 1, however still there are some noises in the input data which needs to be

filtered. We used a median filter of size 3 which means for every x, y, or z the value of the

previous three frames as well as the next three frames are taken into account. Since there

is much variety in people’s heights as well as the size of different limbs among different

people, the position of joints are normalized relative to the head positions. Joint number 21

is the head in Kinect version 2:

x′( j)( f ) = x( j)( f )− x(21)( f )

y′( j)( f ) = y( j)( f )− y(21)( f )

z′( j)( f ) = z( j)( f )− z(21)( f )

74



Figure 5.7: Kinect V2 Layout - The skeleton layout of Kinect v2 (5)
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Where f is the frame number and j is the joint number. At this point, the joints of

interest can be chosen and the unrelated ones can be discarded.

5.2.1.2 Feature Extraction

The joint positions are functions of time and we want to represent them in frequency

domain. To do so, we apply Discrete Cosine Transform (DCT) on the joint positions to

transfer to frequency domain. Matrix q is created by putting x, y, and z of all joints as its

rows. DCT is applied as follows:

Q = Aq

Where A is the DCT transformation matrix. In order to further remove the noises, the

first k rows of the matrix A is chosen. This basically acts as a low-pass filter that removes

the high frequency components which are most probably related to the input noise. After

applying DCT and the low-pass filter, the rows of Q are concatenated to form the final

feature vector. (68) argues that even though DCT and Discrete Fourier Transform (DFT)

are close to each other, but DCT performs a better job in this case. They believe that this

is because of the fact that DCT provides a more compact representation of the signal. In

addition, DCT provides real number which as opposed to the complex numbers of DFT

results, less information is lost during the absolute value operations.

5.2.1.3 Learning

The final feature vector is of size k× n where k is the number of low frequency com-

ponents and n is the number of selected joints. For each video there will be a score y

indicating the ground truth score. The training phase will be done in a supervised manner

using Linear Support Vector Regression (L-SVR).
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5.2.1.4 Feedback

Providing feedbacks on how to improve the quality of the activity is the other part which

was proposed in (68). Basically, L-SVR calculates a weight matrix which will be applied

on the input feature vector to produce the output score. The dot-product equation is as

follows:

S =
k

∑
f=1

n

∑
j=1

Wf jφ f j

Since there is a mathematical relation between the input feature vector and the output

score, we can calculate the gradient of the score with respect to each of the input features.

In this way, by finding the maximums and minimums of the gradient, we can calculate the

joints which were responsible for increasing or decreasing the score the most. In (68) they

calculate the gradient as follows:

∂S
∂ p j(t)

=
k

∑
f=1

A f tWf j · sign(
T

∑
t′=1

(A f t′(p( j)(t′)− p(21)(t′))))

Then they find the maximum of this equation and which provides the joint number

as well as the direction which that joint must move in order to increase the score. In

our algorithm, we used the same gradient approach. However, instead of calculating the

maximum of the gradient, we experimentally calculated a set of thresholds for all the joints.

For each joint, if the corresponding gradient is more than the related threshold, then it

means this joint should move in the direction that the gradient shows. Using this method,

we are able to provide feedbacks on more than one joint. To summarize, here are the

modifications which were applied on the algorithm that was described in (68):

• The algorithm is designed on the 3D position of the joints.

• Depending on the exercise, only a few of the joints were selected for the calculations.
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• A filter was applied on the input raw data.

• The feedback method is changed so that feedbacks can be provided for all the joints.

• We apply the algorithm on real-time data as opposed to a stored database

The next section explains the implementation details as well as the data collection part.

5.2.2 Implementation

(68) has released the source code of their algorithm which is written in Matlab Software.

In their paper, they talk about a set of low-level features, but low-level feature extraction

was not included in the source code. The code includes the feature extraction and the

training section, but not the feedback part. We first modified their Matlab code to meet

our requirements. All the trainings and testings were done in Matlab. Then the code was

rewritten in C# language in the Microsoft Visual Studio environment to be integrated into

the eBear.

A C# software was developed to record the skeleton output of the Kinect sensor. We

setup a laboratory setting in the Computer Vision Laboratory at University of Denver. Three

exercises were selected so that it adds variety to the program. The exercises were all chair

exercises to omit the risk of falling and only shoulders and arms were involved in all ac-

tivities. It was assumed that the scores are between 0 and 100. Since a regression model

is used to give the scores, the training data have to include wide range of scores to better

model the activity. To achieve this variety, for each exercise, three people performed the

exact activity for 20 times. The score of these exercises were the maximum which was

100. Then they were asked to perform random movements in front of the sensor. Differ-

ent segments with various lengths were chosen from the random movements to increase

the number of samples. Three L-SVR were trained using these samples. The calculated

parameters of L-SVR were stored as an input to the C# program for activity assessment.
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One of the problems of the method 1 5.1 was the segmentation. Since DCT is applied

on the input joint positions, even if the segmentation is not exact, the algorithm still would

provide a score and the related feedbacks. However, to increase the accuracy of the system,

the eBear was programmed to guide the user to perform one repetition at a time.

5.2.3 Exercise Session

In this section the scenario in which the exercise is instructed is explained in details.

Note that for each sentence, there are a few replacement which are chosen randomly. This

randomness decrease the probability of boringness of the program. Hereafter, for each

instruction, we only show one of the sentences. Three different exercises are programmed

so that the user chooses from them. Figure 5.8 depicts the major parts of these exercises.

The exercise section is activated in three cases: if the user asks for exercise, if the operator

push the exercise button, or if the user does not move for a period of time the robot activates

the exercise. Except the case when the user asks fot the exercise, in the two other cases,

the robot starts with asking if the user is willing to perform some exercises: ”Do you want

to have some exercises?”. If the user rejects the robot will not insist on it: ”Sure. That

is totally fine. Please let me know if you wanted to exercise later. ”. The robot starts the

exercise session by asking the user to choose among the three different exercises that are

being shown on the screen as illustrated in 5.8.

To be able to provide detailed feedbacks on each exercise, the first part of the exercise

session is to perform only one repetition of the exercise. The eBear asks the user to say

”Start” before starting, and ”Stop” after finishing the one repetition: ”Once you say start I

will show a start sign so that you know I heard you and I will show a stop sign as well.”.

Once the user say start, the eBear shows a start sign on its screen to let the user know that the

capturing is started. Stop sign is shown as well. The signs are shown in 5.9. The next step

is to analyze this one repetition using the aforementioned method 2. We chose 70 out of
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(a) Exercise 1 step
1

(b) Exercise 1 step
2

(c) Exercise 1 step
3

(d) Exercise 1 step
4

(e) Exercise 2 step
1

(f) Exercise 2 step
2

(g) Exercise 2 step
3

(h) Exercise 2 step
4

(i) Exercise 3 step 1 (j) Exercise 3 step
2

(k) Exercise 3 step
3

(l) Exercise 3 step
4

Figure 5.8: The major steps of the exercises
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(a) (b)

Figure 5.9: The Start and Stop signs used to show the starting and ending of each repetition
of the first part of each exercise session.

100 as the threshold for the exercises. If the result was more than this threshold, the eBear

proceeds to the next step, otherwise feedback is provided. According to the algorithm

of method 2, if the gradient of each of the joints exceeds a threshold, feedbacks will be

provided for that joint. Since the feedback is expressed in terms of numbers (direction in

degree), we defined a set of sentences/commands for each joint. The direction is discretized

into the main directions: up, down, left, right, back, forward. Depending on the direction,

the eBear provides the related sentences/commands. For example, the sentences/commands

for the right elbow are as follow:

• You should move your right elbow up.

• You should move your right elbow down.

• You should move your right elbow left.

• You should move your right elbow right.

• You should move your right elbow back.

• You should move your right elbow forward.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.10: The numbers shown on the screen after the user counts after each repetition of
the exercise

The feedback step is repeated until the score passes the threshold. There can be times

when the user is not able to perform the exercise the same as the reference. After a few

tries, if the user could not pass the score, the operator can pass the step manually.

In the next step, the user is asked to perform the same exercise 10 times. The eBear tells

the user to say start at the beginning and count up after each repetition. Once each number

is called the screen shows the same number (figure 5.10) so that the user makes sure that

the eBear understood correctly.

After showing number 10, the eBear starts the analysis. Each repetition is analyzed

separately and the average of the scores is reported to the user. If the average score is less

than 70, the user is suggested to start the first step of the exercise again, otherwise the user

can repeat the 10 times again, quit the exercise session, or change to another exercise.

We did not run mathematical evaluation on the method 2 of activity assessment. How-

ever it was integrated into the eBear which was tested in the field trial and the exit survey

covered the exercise questions as well. The results are discussed in the evaluation chapter.
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6

Field Test and Evaluation

This chapter presents the results of the comprehensive evaluation techniques which

were conducted to evaluate the effectiveness of interacting with the eBear on health, mood,

and participants perception of the robot and its characteristics. Each of the evaluation tech-

niques focused on the validation of of a different aspect of the robot. Exposure to a social

robot for the first time, might not provide an accurate evaluation of how the participants will

perceive the robot in a period of a month. This is mainly due to the fact that interacting with

an intelligent social agent is exciting and pleasurable since most of its features and charac-

teristics are new to a person who has never been interacting with a social robot (31) (50).

In order to evaluate different aspects of the eBear, a trial study was designed so that elderly

people could interact with the eBear for a long period of time. The required Institutional

Review Board (IRB) approvals were acquired for the human-subject involvements in the

study. In the initial stages of the eBear development, it was taken to two of the assisted

living houses in Denver, Eaton Senior Communities (15) and Mountain Vista Senior Liv-

ing Community (4). Several elderly people at each of the centers interacted with the eBear

in a Wizard-Of-Oz manner. At that time, they expressed their interest in interacting with

such a platform. However, it was a Wizard-Of-Oz interaction and did not include any of
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the games or exercise sessions. For the final evaluation, several assisted living facilities in

Denver of Colorado were asked for permission to take the eBear to their facility. Eaton

Senior Communities (15) is one of the assisted living houses in Denver of Colorado which

agreed to help with the study. They were contacted one month before the evaluation begins

to start recruiting the participants. A set of flyers was distributed in the center which con-

tained a general overview of the experiment. 7 Participants with none to severe depression

were selected among the volunteers to participate in the study. Eaton center is a senior

center and not all the members have depression and they do not run depression evaluation

on the members. The selection of the participants were mainly based on the staff opinions

on the depression levels of the residents. Table 6.1 illustrates the demographic and health

information of the study participants. Throughout the study, in order to keep all the subjects

information private, each participant was identified with an ID. As it is shown the subjects

(n=7) ages range from 63 to 81 with average of 71.8(±7.1). Each subject was supposed to

interact with the eBear three times a week for a period of one month. Each session could

take up to 1 hour. An introductory session was held with all the participants one week

before the study. In the introductory session, each participants defined a schedule for the

interaction sessions. A copy of the schedule was given to each person as their reminders.

A consent form was also given to each of the participants. All the participants agreed to be

recorded in the sessions. The library room was also scheduled to be available during the

study.

6.1 The Study Setup

Figure 6.1 shows the setup that was used in the experiment. The eBear was placed in the

library room of Eaton Communities Center. There were two couches in front of the eBear

which subjects could sit on any of them. Three different lighting source as well as a two
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Table 6.1: The participants information

Participant ID Gender Age Condition
1 Female 64
2 Female 63
3 Female 78 Always on a scooter. Severe Depression.
4 Female 75
5 Male 75 Mild Depression.
6 Male 81 Always with cane. Mild Depression.
7 Male 67 Mild Depression.

fans were used to provide a convenient place for the residents. The whole eBear software

was installed on a Core-i7 laptop with 8GB of RAMs. As it is shown in Figrue 6.2, the

laptop was put next to the eBear so that all the cables could be plugged in. The operator

would sit in front of the laptop. With permission from all the subjects, all the sessions were

recorded using the camera that was setup in figure 6.3. The participant, the eBear’s face

and screen, and the operator were in the sight of the camera.

Figure 6.1: Interaction Setup - The study setup of the the eBear
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Figure 6.2: The Laptop - The laptop was put next to the eBear where the operator sit

Figure 6.3: A camera was setup to capture the sessions
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6.2 Interaction Scenarios

Each participant interacted with the the eBear for three times per week for a period of a

month in December of 2015. The session were held on Tuesday, Thursday and Saturday of

each week. Only one operator was in the room for each session which were responsible for

starting the eBear, capturing videos, and fixing any probable issues with the eBear. Each

subject showed up at the designated time-sluts and sat on a couch in front of the eBear.

Figure 6.4 depicts a participant sitting in front of the eBear ready for the interaction to

start. Each session, the eBear started with greetings followed by a face scale quiz which

described in section 3.2.3. The face scale quiz was performed at the end of each session

as well. After the face scale quiz, they would continue the conversation with the eBear.

In middle of the conversation, the eBear prompted the subject to start different programs

that were integrated into the eBear in section 3.2. The subject could refuse to perform any

of the programs at any time during the sessions. The eBear would prompt one or two of

the programs randomly during each session to decrease the chance of being perceived as

boring. The operator could also choose any of the programs at any time. Each resident was

told to ask for help at anytime during each session when they needed.

6.3 Evaluation Methods

Comprehensive information were gathered throughout the study to assess the eBear and

its effectiveness from different points of view. The resources include:

• Three different questionnaires: Geriatric Depression Scale, Almere Mode, and Exit

Survey.

• All the sessions were recorded.
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Figure 6.4: Example subject interacting with the eBear - Example participant sitting in front
of the eBear ready for the interaction to start.

• The eBear logged all the conversations.

• The eBear logged all the facial expressions.

• The eBear logged all the face scale test results.

Below each of the evaluation methods is described along with the related results.

6.3.1 Exit Survey

An exit survey questionnaire was submitted in along with the consent form for IRB

approval. The survey covers three main parts of the eBear: The general aspects of the

eBear and its effects on their mood and wellbeing, the exercise program, and the games.

All the questions were based on a five point Likert scale where 1 means strongly disagree

and 5 means strongly agree with 3 being neutral. Table 6.2 illustrates the three parts of the

questionnaire and the related questions.
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A: Evaluation of the interaction with the robot

1. I enjoyed interacting with

the robot

2. Learning to interact with

the robot was easy

3. Talking with the robot was

like talking to a person

4. The robot was intelligent

5. The robot was helpful

6. The robot was acting natu-

ral

7. I liked the robot’s facial ex-

pressions

8. The robot’s facial expres-

sions were natural

9. I would like to have this

robot at home

10. I feel less depressed after

talking to the robot

11. The robot encouraged me

to be more active

12. The robot encouraged me

to talk more

B: Evaluation of the exercise program

1. I enjoyed the exercise pro-

gram
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2. The exercise program was

entertaining

3. I would rather have this

robot as my exercise instructor

rather than a real person

4. I liked the way the robot

tells the exercise

instructions

5. The exercise feedbacks

were helpful

6. The exercise feedbacks

were accurate

C: Evaluation of the games

1. I enjoyed the games

2. The games were entertain-

ing

3. I would rather have this

robot as my game partner

rather than a real person

4. I liked the way the robot

tells the game instructions.

5. The games were helpful

Table 6.2: The questions of the exit survey

The participants were given the exit survey in the last session and they were given

one week to fill out the survey. Figure 6.5 illustrates participants answers to the survey

questions. The same answers are highlighted in the same colors.
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(a) Part A

(b) Part B

(c) Part C

Figure 6.5: The answers to the exit survey
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Figure 6.6 and figure 6.7 illustrate mean and median of the responses respectively. The

participants enjoyed interacting with the eBear and learning to interact with the robot has

been an easy task for them. Their impressions from the robot were not like talking to

a real person. However on average rating is close to agree. The eBear is a animal-like

robot which is designed to help people and the participants cannot be expected to perceive

interaction with such a platform as interaction with a human. This result is also more

understandable according to the fact that still there are many factors in a social agent which

make the interaction it different than interacting with a real person. From a hardware point

of view, for instance, in the eBear the movements of the mechanical servos were not natural

in the sense that they do not have the smoothness that a human has while moving different

limbs. Software wise, for instance, there were cases where the eBear misunderstood the

speech which was probably because of the participants accents or environment noises. On

average, most of subjects agreed that the eBear was an intelligent entity. This outcome

can be justified by looking at the similarities between programs of the different interaction

sessions. The purpose of the eBear is to assist people in a social manner which should be

accompanied by an intelligent system but being intelligent was not the main goal of the

eBear. The subjects almost agreed that interacting with the robot was helpful and the robot

acted natural. The eBear’s facial expressions were strongly liked by the subjects. This

outcome was obvious even based on the subjects’ comments on cuteness of the eBear’s

appearance and the facial expressions. The participants did not strongly agree to have

the robot at home which can be justified by the fact that there was a operator next to the

robot and the eBear needed some maintenance throughout the experiment. The target of

this study was elderly people with depression and the results showed that the eBear could

be a possible solution for treating depression as opposed to anti-depressed drugs. Most

of the participants strongly agreed that they felt less depressed after interacting with the

eBear. They roughly agreed that the eBear encouraged them to be more active which can
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be justified by the type of programs, only the exercise program would motivate them to be

more active.

On average all the participants agreed on the part B of the questionnaire. This part was

about the exercise program. Question 2 of this part had less ratings in compare to others

which convey that the exercise programs were not entertaining enough. There were only

three workouts designed for the eBear which were all seated exercises. The exercise pro-

gram can be made more attractive by making it more interactive. This can be achieved by

adding sound and more visual cues to the software. In the current version of the software,

sound was not used in the exercise program.

In part C, the same as part B, the subjects mostly agreed on all the questions. The

question number three received the minimum rating. This question asked if they would

prefer having the eBear as their gaming partner rather than a real person. This answer can

be justified by looking at amount of conversation and excitment which is involved between

the two sides of a game when both sides are human.

6.3.2 Geriatric Depression Scale

Geriatric Depression Scale or GDS is a screening tool used to identify depression in

older adults. The general version of GDS contains 30 ”yes” or ”no” questions. There is a

short version of GDS or GDS-SF which only has 15 questions. GDS-SF has been proved to

be a adequate replacement for the original scale (57). Figure 6.8 depicts the questionnaire

of the short version of Geriatric Depression Scale which was used in this thesis. Each

question is either 0 or 1 point and there are 15 points in total. The depression is identified

as following:

93



(a) Part A

(b) Part B

(c) Part C

Figure 6.6: The mean of the responses to the exit survey
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(a) Part A

(b) Part B

(c) Part C

Figure 6.7: The median of the responses to the exit survey
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• Between 0 and 5 is normal

• A score more than 5 suggests depression

• A score more than 10 suggests severe depression.

Although GDS has been proven to be a reliable scale, but usually it is used along with

other comprehensive geriatric assessments. In this thesis GDS is used along with several

other measures, in particular the staff comments on the participants mood. The elderly

individuals of this study interacted with the eBear for a month. In the beginning of each

week they filled out one GDS form.

Figure 6.9 illustrates the measured GDS over the period of one month for each of the

subjects. As it can be seen, in the beginning of the study, participants 3 and 6 had GDS

scales of more than 5 which suggest depression. The nursing staff comments on these two

participants strengthened the possibility of depression among them. Participant number 5

started with a scale of 5 which is the limit between two areas. Participant number 1 had a

score of 0 and the rest of the participants’ scores were between 0 and 5.

Subject 1 started with a scale of 0 and stayed the same in all the four measures. She

was very active and the caregivers confirm the subject mood. Participant number 5 started

with a score of 5 and the scale constantly dropped during the course of the study down to

scale of 2. Participant number 4 showed almost a similar pattern to participant 5. However

the scale started from 2 and ended in 1, hence the differences were not the same between

the two subjects. These two GDS patterns are fully along with the objective of this study.

Scales of subjects 2 and 7 had some fluctuations during the experiment but stayed close to

0 in all the four weeks. Subject 3 was a 78 year old elderly individual with mild depression.

According to the caregivers, she had been feeling down due to severe health and emotional

problems. As the bar chart shows, she started with a scale of 7 which incremented to 8 in

the next after. However, the scale dropped to 6 and 4 in the next two weeks. This trend
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could be easily seen in her behavior which surprised the caregivers. Subject 3 started with

a scale of 6 but dropped down below 5 in the following weeks. The GDS scale of subject 3

dropped down by 3 scales. This trend is along the goal of this thesis.

In conclusion, the GDS scores of this study backed the hypothesis that a social robot

such as the eBear can have uplifting effects on the elderly individuals mood.

Figure 6.8: Geriatric Depression Scale - The questionnaire of short version of Geriatric De-
pression Scale

6.3.3 The Face Scale

The Face Scale mood evaluation method was described in 3.2.3. Basically it is consisted

of a set of genderless face pictures with different moods. The patient is supposed to pick

the face with the mood that better matches his/her feelings. A software was designed and
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(a) Participant 1 (b) Participant 2

(c) Participant 3 (d) Participant 4

(e) Participant 5 (f) Participant 6

(g) Participant 7

Figure 6.9: The GDS scale of each week
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developed so that the eBear could automatically run the Face Scale method. In the Face

Scale program the user is asked whether he/she wants to tell the eBear about his/her current

mood. In each session, the eBear prompts the Face Scale program two times, once at the

beginning of the session and once at the end of the session. Figure 6.10 illustrates the Face

Scale results of each participant. In the charts, some of the points are missing which is

either because they refused to participate or because they did not show up in that session.

The mean and the related standard deviation, and median of the results are depicted in

Figure 6.11.

According to the average and median of the results, the general mood of the participants

improved over the course of the experiment. However, the improvement is minor and

happened mostly in the last two sessions.The result of each participant better justifies the

patterns of the mean and the median. Participant 1 started with a scale of 2 which is

considered as a good mood. Her Face Scale score increased to 5 but decreased afterward

except the last session when rocketed up to 6 which is the worst case. In the mean chart, the

standard deviation of the last bar shows this behavior. Participant 1 did not have depression

which can be seen from Figure 6.9. In the last session she was not in mood and her behavior

in the last session is less likely to be related to the eBear and might had been affected by

an external cue such as family problem. The scores of subjects 2 and 5 stayed almost the

same around scores 1 and 2, respectively. These scores show a good mood. The score 1

of participant 2 is along her GDS scores which were almost zero. However, for subject 5

the GDS scores decreased while the Face Scale score stayed almost the same. The general

pattern of the Face Scale scores of subject 3 matches her GDS scores pattern, although with

more fluctuations. The scores suggest that subject 3 mood improved over the experiment.

Participants 4 and 6 mood scores fluctuated between 1 and 3.5 and do not follow a specific

pattern. For subject 4, the GDS scores did not have much variations. However, as for

subject 6, the GDS scores improved significantly over the time. Subject 7 scores showed
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(a) Participant 1 (b) Participant 2

(c) Participant 3 (d) Participant 4

(e) Participant 5 (f) Participant 6

(g) Participant 7

Figure 6.10: The Face Scale results
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(a) Average of the results

(b) Median of the results

Figure 6.11: Average and Median of the Face Scale results
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some irregular pattern where in two of the sessions the mood was bad, but for the rest the

mood improved smoothly. In general, the results of the Face Scale tests followed almost

the same pattern of the GDS scores. They proved that interacting with the eBear can have

positive effects on people mood. However, the results suggest that using this evaluation

method with only 6 mood scales might not be a precise method for mood evaluation.

6.3.4 Almere Model

Almere Model is a technology acceptance model designed to assess the acceptance of

social robots by elderly people (45). Almere Model is designed to not only take into account

the functional evaluations of the robot such as usefulness, but also the social interaction

itself which is one important objective of this thesis. Table 6.3 depicts the questionnaire

of this model. As it is shown, each question is related to a code. The codes are defined in

Table 6.4 and each code is related to a construct. Basically each context evaluates a specific

aspect of the robot. The same as the GDS, the participants filled out this questionnaire at

the beginning of each week. Each question should be scored based on a Likert scale from

1 to 5: 5=strongly agree, 4=somewhat agree, 3=neutral, 2=somewhat disagree, 1=strongly

disagree. Figure 6.12 illustrates the average of the responds to each question among all

the participants. In Almere Model, usually the results are expressed as the average of each

construct. Figure 6.13 depicts the average of each construct and the standard deviations.

The other measure which is usually used in Almere Model, and in general in Likert scales,

is the Cronbach’s Alpha measure (76). This measure expresses how closely related a set of

values are as a group which can be viewed as a reliability statistics. When the alpha value is

higher, it suggests that the data have relatively high internal consistency. Figure 6.14 shows

the alpha value for each of the constructs. In order to better analyze the subjects data, the

results for each participant is separately depicted in Figure 6.15.
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The lowest score in Figure 6.13 is for ANX construct. ANX stands for anxiety and

represents the emotional or anxious reactions toward the eBear. In fact, ANX is the only

negative construct and the less score means people feel less anxious when interacting with

the robot. The alpha coefficient of this construct is 0.52 which does not strongly suggest

that this construct has a high internal consistency. The results of each question reveals

the reason of the medium alpha coefficient. As it is shown, the scores of this construct’s

questions vary from 1.36 to 2.61. The score 2.61 is for ANX3 which asks if the user is afraid

to make mistakes with it. This result can be justified by the fact that even though the robot

was introduced in the introductory session, still this was their first experience of interacting

with an automatic robot. The user-specific results of ANX construct shows that participant

7 gave the highest score of 3.72 to this construct. In the first few sessions, participant 7

expressed his anxiety to the operator. During the course of the study he was explained a

few times that there is no need to always say yes to the questions that the eBear asks. The

other question which carries a negative meaning is PENJ5 which asks the user if the robot

was boring. This question has a score of 1.5 which means the participants did not find the

robot boring. An alpha coefficient of 0.72 suggests that most of the participants agreed

on th point that the eBear is not boring. This behaviour can be seen in the results of each

participants in Figure 6.15. PAD construct has the only negative value in the Cronbach’s

alpha chart. PAD evaluates if the robot is adaptive to the need of the user. The score of

3.63 suggests that in general participants thought that the eBear is adaptive to their needs.

However, the scores varies from 3.51 to 4.38 which shows rather large variety. The other

large variety is in FC construct which varies from 3.74 to 4.86 that is a high value.

Code Questions
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ANX

1. If I should use the robot, I would be afraid to make mistakes with it

2. If I should use the robot, I would be afraid to break something

3. I find the robot scary

4. I find the robot intimidating

ATT

1. I think its a good idea to use the robot

2. The robot would make life more interesting

3. Its good to make use of the robot

FC
1. I have everything I need to use the robot

2. I know enough of the robot to make good use of it

ITU

1. I think Ill use the robot during the next few days

2. Im certain to use the robot during the next few days

3. I plan to use the robot during the next few days

PAD

1. I think the robot can be adaptive to what I need

2. I think the robot will only do what I need at that particular moment

3. I think the robot will help me when I consider it to be necessary

PENJ

1. I enjoy the robot talking to me

2. I enjoy doing things with the robot

3. I find the robot enjoyable

4. I find the robot fascinating

5. I find the robot boring

PEOU

1. I think I will know quickly how to use the robot

2. I find the robot easy to use

3. I think I can use the robot without any help

4. I think I can use the robot when there is someone around to help me

5. I think I can use the robot when I have a good manual
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PS

1. I consider the robot a pleasant conversational partner

2. I find the robot pleasant to interact with

3. I feel the robot understands me

4. I think the robot is nice

PU

1. I think the robot is useful to me

2. It would be convenient for me to have the robot

3. I think the robot can help me with many things

SI
1. I think the staff would like me using the robot

2. I think it would give a good impression if I should use the robot

SP

1. When interacting with the robot I felt like Im talking to a real person

2. It sometimes felt as if the robot was really looking at me

3. I can imagine the robot to be a living creature

4. I often think the robot is not a real person

5. Sometimes the robot seems to have real feelings

Trust
1. I would trust the robot if it gave me advice

2. I would follow the advice the robot gives me

Table 6.3: Almere Model questionnaire (45)

Code Construct Definition

ANX Anxiety Evoking anxious or emotional reac-

tions when it comes to using the sys-

tem

ATT Attitude Towards Technol-

ogy

Positive or negative feelings about

the appliance of the technology
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FC Facilitating Conditions Factors in the environment that fa-

cilitate use of the system

ITU Intention to Use The intention to use the system over

a longer period in time

PAD Perceived adaptiveness The perceived ability of the system

to adapt to the needs of the user

PENJ Perceived Enjoyment Feelings of joy/pleasure associated

with the use of the system

PEOU Perceived Ease of Use The degree to which one believes

that using the system would be free

of effort

PS Perceived Sociability The perceived ability of the system

to perform sociable behavior

PU Perceived Usefulness The degree to which a person be-

lieves that the system would be as-

sistive

SI Social Influence The persons perception that people

who are important to him think he

should or should not use the system

SP Social Presence The experience of sensing a social

entity when interacting with the sys-

tem

Trust Trust The belief that the system performs

with personal integrity and reliabil-

ity
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Figure 6.12: The mean of the results of each question of Almere Model for all the participants

Use Use The actual use of the system over a

longer period in time

Table 6.4: Almere Model constructs and their definitions (45)

6.3.5 Observation Sheet

In order to better analyze the behavior of the subjects while interacting with the eBear,

all the sessions’ videos were charted on a minute-basis according to an observation sheet (89).

A member of our team charted all the interaction videos based on the Table 6.5. This ta-

ble illustrates the different items which were analyzed in this evaluation method. As it is

shown, four classes are included in the observation sheet. Class ”Context” is used to specify

which program was mostly run in that particular minute of the video. In the ”Expression”
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Figure 6.13: The mean of the results of each construct of Almere Model for all the participants

Figure 6.14: The Cronbach’s Alpha value for each of the constructs
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(a) Participant 1 (b) Participant 2

(c) Participant 3 (d) Participant 4

(e) Participant 5 (f) Participant 6

(g) Participant 7

Figure 6.15: The mean of Almere Model results for each participant
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class, the dominant expression of the subject is recorded. Class ”Gaze” specifies in which

direction the subject was looking at in that minute.

We were interested in evaluating the effect of each context on the subjects mood. Ta-

ble 6.6 illustrates the overall percentage of having each facial expression in different context

of the interaction scenarios. Laughter and smile were most frequently observed while talk-

ing to the robot. The order of the results in ”Laugh” and ”Smile” expressions are totally the

same. After ”Conversation” , playing games and watching videos were the most effective

ones in bringing smile and laugh to the subjects faces. The subjects had the least amount of

laugh and smile in the mood evaluation methods. The evaluation methods showed the same

set of pictures all the times and it might be a possible reason for not smiling or laughing

while answering the mood question. Another justification is that the nature of the mood

evaluation method is in a way that does not make people smile or laugh. This is proved by

the percentage of ”Neutral” expression which is more than all the other expressions. By

neglecting three 0.09% cases, there were not any ”Sad” or ”Hate” minutes except in all

the interaction scenarios. The ”Surprise” expression was most frequently observed while

watching videos. Table 6.7 illustrates the overall percentage of having each facial expres-

sion versus the direction at which the user was looking at. Table 6.7 shows the overall

percentage of having each facial expression versus the speaker.
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Table 6.5: Code of observation sheet

Class Item Code

Context

Conversation C
Video V
Game G
Evaluation Ev
Others O

Expression

Laugh L
Smile S
Sad Sa
Hate H
Surprise Su
Neutral N

Gaze

eBear E
Screen S
Caregiver C
Others O

Talk
eBear E
Participant P
Caregiver C
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Table 6.6: The overall percentage of each facial expression with respect to each context of the
interaction scenarios
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Table 6.7: The overall percentage of each facial expression with respect to the subject’s gaze
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Table 6.8: The overall percentage of each facial expression with respect to the speaker
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7

Conclusion and Future Research

Direction

7.1 Conclusion

The purpose of this thesis was to present the design and development of the eBear, an

expressive animal-like robot equipped with artificial intelligence to socially assist elderly

people, in particular those with depression. Being ”Semi-Autonomous”, in the sense that

the eBear runs all the modules automatically but the operator should schedule the different

programs, and ”Proactive Engagement” are the terms which made the eBear unique. The

eBear successfully interacted with 7 elderly people with depression for a month in an au-

tomatic manner. To the best of our knowledge, the eBear is the first social robot containing

all of the following features in one platform:
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• The eBear is semi-autonomous in the sense that all the modules are executed auto-

matically, but the order and the start time of each the module was determined by the

operator.

• The eBear could be used in a home or a care-center setting without the need for any

special setup.

• The eBear could analyze the emotions of users from both visual and speech cues at

the same time.

• The eBear could automatically run a mood evaluation method which could be used

to assess the mood remotely.

• The eBear is proactive in prompting and motivating the user to involve in the different

programs.

• The eBear could engage and carry out an open conversation.

• The eBear could motivate and coach users through exercise and provide them with

the required feedbacks.

• The eBear could play different games with the user.

Chapter 6 presented the evaluation methods of this thesis. The results showed that the

eBear could make improvements on elderly people lives. With the rising percentage of

the aged population, such an automatic platform could play a major role in providing high

quality individualized health-care in the near future. As discussed before, the purpose of

such platforms is not to remove the need for a care-giver and to act as an assistant to the

caregiver. One item which was not discussed in the thesis evaluation is the comments of

the caregivers. As of the time of this thesis, due to the lack of enough time, only two of

the staff members of Eaton Community Center were asked to report on the changes in the
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Figure 7.1: A surprising email from Eaton Senior Communities

participants mood. Participant 3 had severe depression and according to the staff, she had

not even laugh for a while before the eBear study started. It was a thrilling moment when

her caregiver contacted the eBear’s team to tell how happy subject 3 was after interacting

with the eBear. Figure 7.1 illustrates this email. This mood change was clear in the evalu-

ation results, however the comments of the caregivers showed how significant the change

was on the subject 3 mood. Another case is subject 5 who had mild depression. According

to the caregivers’ comments, subject 5 asked for the eBear after the study was finished. He

told the caregivers about his experience with the eBear, in particular the games and it seems

like he enjoyed to interact with such a companion-bot on a daily basis. The results of this

study even caught the attention of several other organizations in Denver Colorado which

ended up in a media coverage from 9NEWS, a local TV. Figure 6.14 shows the 9NEWS

interview with two of the subjects who participated in the study. These promising results

can be viewed as a motivation for the researchers in this area to develop more adaptive

social robots.

This study was based on a single-subject evaluation method. Basically, each subject

was monitored throughout the study to see whether the eBear would improve their mood

and wellbeing or no. Another type for evaluation is to use two groups, one study group

and one control group. Usually these two groups are chosen to be similar in terms of their
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Figure 7.2: 9NEWS interview with several of the subjects

condition (e.g. depression level). The study group would interact with the robot according

to their schedule, but the control group will be just monitored and evaluated as a basis for

the evaluation results of the study group. In the case of the eBear, the results of the GDS,

Almere Model, or the Face Scale could be better analyzed if compared to the results of

a control group. In order to further analyze different features of the eBear, some features

could be deactivated for some subjects while the rest of the subjects are using those features.

These features can be the visual and speech emotion recognition modules. In this study, it

was observed that the subjects enjoyed the facial expression mirroring feature of the eBear.

The process of design and development of the eBear had various invaluable lessons

which not necessarily a computer engineering student comes across. The eBear develop-

ment consisted of two major parts: hardware and software. In order to make an automatic

robotic platform, each of these parts and their subparts should meet at least some minimum

requirements. While designing the facial expressions of the eBear, we learned how to de-

sign the appearance of a robotic platform in a way that people perceive it as likable and

desirable. The mechanical modifications of the eBear such as the 3D printed tablet frame
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thought us how to design a basic 3D object in Solidwork software and all the processes

involved in 3D printing. Since the initial stages of the planning for the eBear, we studied

various psychological research publications, consulted with several psychologists, and met

with a few senior community centers and their elderly residents to have a better understand-

ing of the target population of the eBear. Meeting with the elderly people with depression

and getting to know their needs, gave us significant motivations while designing the eBear.

Designing software and hardware took time and effort. However, hardware designing

and development introduced many challenges which not necessarily carry a scientific value.

For example, there is a tablet integrated into the eBear’s body which is used as a screen. It

took more than a week to design and 3D print a frame for the tablet, cut and weld an outer

frame inside the eBear, whereas integrating a screen to a robot might seem to be an easy

task which definitely does not contain any scientific contribution.

As of the time of this thesis, the research of the eBear platform is not published yet.

Two research papers were published as following.

• Kargar, B.A.H.; Mollahosseini, A.; Struemph, T.; Pace, W.; Nielsen, R.D.; Mahoor,

M.H., ”Automatic measurement of physical mobility in Get-Up-and-Go Test using

kinect sensor,” inEngineering in Medicine and Biology Society (EMBC), 2014 36th

Annual International Conference of the IEEE, vol., no., pp.3492-3495, 26-30 Aug.

2014

• Xiao Zhang; Mollahosseini, A.; Kargar B, A.H.; Boucher, E.; Voyles, R.M.; Nielsen,

R.; Mahoor, M.H., ”eBear: An expressive Bear-Like robot,” inRobot and Human In-

teractive Communication, 2014 RO-MAN: The 23rd IEEE International Symposium

on, vol., no., pp.969-974, 25-29 Aug. 2014

In general, according to the evaluation methods used in this thesis as well as the Eaton

Senior Community staff members comments, the eBear is proved to be an effective com-
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panion robot capable of uplifting mood of the elderly people with depression. Because

the duration of the trial study was one month and after the period, the residents showed

interest in interacting with the eBear again, this proves that the eBear is not a boring social

platform.

7.2 Future Work

The eBear was designed and developed with the ultimate goal of deployment in the

house of elderly individuals with need. In order to build a robot to be used by an end user

who might not have any familiarity with technology, first we will need to make the eBear

fully autonomous. In this way, it can be left at the house of the elderly people. In this

study people interacted with the eBear for a period of one month, however a longer period

of interaction might reveal more advantages and disadvantages of the eBear which were

not clear in this study. The other potential future research direction is to change the target

population. For example, the elderly people with dementia or children with Autism also

might benefit from such a robotic platform. During this study, all the interactions were

based on a one-on-one communication, one should change conduct the same study with a

group of people in front of the eBear.

One issue which was observed during this study is the fact that the current speech recog-

nition systems do not correctly recognize all voices. In same cases the speech recognition

modules failed to correctly recognize the speech. Since the target population is elderly peo-

ple, we believe there should be more research toward using as many of the human senses

as possible in the interactions. For example, if the robot failed to understand the user’s

speech, the user inputs the required information using the touch screen. Here we describe

the rest of the items which could be added in the next iteration of the eBear:
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Hardware

• The eBear should have a more robust and more durable mechanical design for the

head. Users even might hug the robot and the robot’s body should be able to tolerate

such forces.

• The eBear’s servos make noise while they are being used. These noises could be

annoying in a home setting where is usually quite, in particular in case of an elderly

user. The servos should be replaced with stronger servos to avoid the noise.

• The eBear’s screen is a 10 inch display which is small for elderly users, particularly

the ones with weak eyes. Another solution can be adding a remote screen or even

connecting to the house TV.

• Integrating mechanical arms to the eBear adds more functionality which results in

more interactive programs.

• The servos, sensors of the eBear heats up while they are in use. A ventilation system

should be added to cool down the platform.

• The eBear needs the Internet for several of its functionalities. A GSM cellular com-

munication device should be utilized so that the eBear could be freely used in all the

places.

Software

• The eBear used UDP to communicate between the screen and the main laptop. Better

communication protocols should be used in order to eliminate the risk of loosing data

packets.
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• The open conversation of the eBear was done via an online chatter-bot service. A pri-

vate natural language process module should be developed for the open conversation

module so that it could be modified based on the mood of the user and the situation.

• The games of the eBear were not attractive enough. The eBear should be more

engaged while playing the games. The engagement should be in a way that the user

feels that he/she is playing with the eBear and not only on the eBear’s screen.

• A protocol should be designed so that th eBear sends all the acquired information to

the caregiver.

• A module should be designed so that the eBear could be also be used in a Wizard-

Of-Oz manner.

• The eBear should be able to act as a reminder for different daily schedules of the

user.

• The eBear should be able to make phone calls to emergency contacts of the user.

With these modifications to the eBear’s platform, it will be one step closer to the final

goal of deploying in the house of the user.
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