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Abstract

Most of the companies in Iraq spend significant amounts of time and money

when transferring employees between home and work. In this thesis, we model the

problem of the Dhi Qar Oil company (DQOC) transportations using three modeling

languages from AI: Constraint Programing (CP), Boolean Satisfiability (SAT), and

Maximum Satisfiability (MAX-SAT). We then use solvers to find optimal solutions

to this problem.

We show which of these solvers is more efficient when finding optimal solutions.

For this purpose, we create a test suite of 360 problems to test these solvers. All

solvers are applied to these problems and the final efficiency is shown.
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Chapter 1

Introduction:

1.1 The Problem

Many fields in computer science have been used directly for solving real-world

problems. One such field is artificial intelligence (AI). The goal of this thesis is to

use work from the field of AI to address the problem of hiring cars in the Dhi Qar

Oil company (DQOC). DQOC has many employees and engineers living in the cities

around the Dhi Qar province. On a daily basis, they must move from their homes

to their workplaces and the oil fields, which are far from any city. The company is

responsible for hiring a car for each employee to pick him or her up from home in

time to arrive at work for his or her shift and return him or her home after work.

Right now, they hire cars as follows:

They hire one car for each group of fewer than four employees that they can move

from the same city to the same workplace at the same time. They keep the car with

them until the work day is finished. As a result, DQOC hires an enormous number

of cars that are largely idle during the day. Cars are currently scheduled by hand

at great cost. For example, DQOC sometimes hires a car for just one employee for

the whole day. Therefore, the question of this thesis is how to optimize the use of
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each car, with the goal of decreasing the number of hired cars and the total cost of

hiring these cars.

1.2 The Suggestion Solutions, The Optimizing Process

The central idea of how to optimize the use of each car and reduce the total

cost to make each car serve more than one employee or more than one group of

employees. The optimization is executed assuming that the times for starting work

and for departure for all the staff are known, along with the roads between the cities

and the workplace locations.

Additional planning can further optimize the usage of the hired cars. For exam-

ple, if a human hires the cars arbitrarily, he or she may hire many cars in a city that

contains few employees and hire few cars in a city that contains many employees.

This leads to inefficient use of the cars, as they must travel before they can pick up

passengers. Therefore, by making the system distribute the cars between the cities

as needed, the total number of cars can be reduced.

In order to build a system that can optimize the use of the cars, reduce the total

number vehicles required, and meet all the requirements, we model this problem with

three different artificial intelligence modeling languages: Constraint Programming,

Boolean Satisfiability (Boolean SAT), and Maximum Satisfiability (MAX-SAT). We

use these solvers to find optimal solutions to the transportation problem and show

that with our formulation we are able to find optimal solutions most efficiently with

a CP solver.
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Figure 1.1: [16], Some Dhi Qar Roads Map:
This map is example to show that the short roads is not always useful for

optimizing, it is not a real road map for Dhi Qar.

3



Chapter 2

Problem Definition

The Dhi Qar Oil Company has a number of oil fields scattered on the outskirts of

the cities of the province of Dhi Qar; Figure 1.1 shows the map of Dhi Qar province.

All company staff travel between these fields, the company’s administrative de-

partments, and the cities in which they live. Many of the employees’ traveling times

are known, but some of them are not known for special reasons (e.g., emergency

workers). The company is responsible for all the transportation of the employees, so

they hire vehicles for this purpose. The scheduling and allocating vehicles for each

employee are currently performed by hand. Therefore, DQOC hires many more cars

than are needed. To reduce the number of hired cars and optimize the use of each

hired car, we must consider the people, the environment, and the resources.

• The people: we have to consider a schedule just for the employees who have

a known traveling time. If there is no regular work schedule, there is no way

to make a travel schedule. We call the employees who have known traveling

times passengers.

• The environment: environment is places and times people work.
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– We call each of the cities in Figure 1.1, the administrative departments,

and the oil fields, a Car Station. Each of these car stations is connected

with at least one another Car Station by a road. The connected car

stations are called Adjacent Car Stations.

– The company divides the work day into several time units; each time unit

called Timei

• The resources: the hired cars can travel between the Adjacent Car Stations.

They start in different cities depending on where the passengers live. The

hired cars always start work at 8 am; they are hired on a daily basis.

2.1 Constraints in the Problem

There are many constraints that should be considered to solve this problem:

• The passengers have a fixed starting and departure time. The passengers

should arrive on time to begin their work and to allow the previous shift to

depart in the shift system. Time arrival is the responsibility of the company.

They must hire a car for each passenger, and the company must have cars

ready to take the passengers home when they set off work. Each passenger

has a home location and a work location. The passenger can switch between

cars during the trip to work or home. Also, the passengers are free to take

their own cars after work, but they must notify the company ahead of time.

Any passenger can leave the hired car during his trip to home. If the employee

requests permission to leave work early for special circumstances, the company

is only responsible for the transfer of that employee in the case of sick leave.

If any employee does not come to work for the whole day if she or he is

sick for instance, she or he should notify the company in the previous work

day. Otherwise, they will hire a car for that employee. Also, there are some
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special constraints like if one employee and his wife are both employees in

the company, they could request to be transferred in the same car if they are

in the same workplace, but we are not to consider these constraints because

they occur very rarely. Other rare constraints, include if employees request

personal protection during their travel to and from work (general manager

of the company, and heads of departments, for example). The company also

sometimes send an employee to another province (usually Basra or Baghdad),

and they hire a car for him or her.

• The hired cars have a fixed starting time. Because the company hires cars on

a daily basis, a car finishes after dropping off the last passenger. The start

locations of all the cars are known in one of the Dhi Qar province cities or

the oil fields; the company tells the hired cars where to start depending on

passengers density in each city and each oil field, but who decides the starting

location of the cars is not part of the problem. The capacity of each car is

less than four passengers at any time. The cars must follow the roads between

the cities and the oil fields. In addition to public roads, there is a network of

private roads. In other words, the cars can travel just between the adjacent

cities or oil fields. Each car can service multiple passengers at one time, even

if they are from different cities, if they can be brought to their destinations in

time.

• The cost is the number of the hired cars. The company hires cars on a daily

basis and the cost on a daily basis is the same for all the cars.

• The primary goal is to find a feasible schedule that shows the times and the

locations of all the passengers and all the cars during the day, as well as which

car will service which passengers. A secondary goal is to minimize the total

number of hired cars.
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In the next three chapters, all of these constraints must be taken into consideration

to find a solution for the problem using CSP, SAT, and MAX-SAT solvers.
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Chapter 3

Formulate as Constraint Program

3.1 Define CP

Constraint Programming is a programming paradigm that focuses on the vari-

ables, values, and constraints of the problem. The goal is to find a feasible solution

to a problem rather than finding the optimal solution. CP has been used for many

areas of logic programming, optimization, and others [5].

The constraint program consists of a set of variables, domains which are the

possible values that each variable can take, and a set of constraints C = {c1, ..., cm}

on the values that a variable can take. The constraints depend on the properties of

a solution to be found.

A constraint consists of a finite number of variables c(x1, ..., xn). Each variable

xi has a domain Di which consists of a finite number of possible values (v1, ..., vn).

The constraint is a relation between the set of domains D. A constraint problem

is satisfiable or solvable if each variable takes one of the values in its domain and

satisfies all the constraints in the problem. If the problem is solvable, then we can

apply a function F on all or some of the variables to maximize or minimize the

solution. The constraints are classified into many types. One such type is a global
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constraint. Global constraints are the constraints that apply to all or some of the

variables to specify a relation between them; for instance, the alldifferent constraint

means that all variables under that constraint should take distinct values. One of the

other types is an arithmetic constraint. Arithmetic constraints are the constraints

that make arithmetic relations between two or more variables like linear or nonlinear

equations and inequalities. For example, if there are three variables A, B, and C, one

of the arithmetic constraints in these variables A= B + C, or C 6=B. Also, arithmetic

constraints can apply to one variable, for instance, C6=0.

3.2 Map Problem to CP

To map the problem to CP, we have to specify the variables, domains and the

constraints in the problem.

3.2.1 The Problem Variables and the Domains

Suppose the company has n passengers; the company can hire up to m cars to

transfer those n passengers; also it divides the day into t times, and there are c car

stations.

Let us symbolized for passengers by P , cars by C, times by T , and car stations by

S

So the list of variables as follows:

• Passengers variables: to build a reliable schedule, the company should keep

track of where each passenger is at all times. Therefore, they should know

where each P is at all times ( t times). passengers variables are in the form

Pij where i is the passenger’s id, and j is the time. For example, if n = 2 and

t = 3, the passengers variables will be as follows:

For P1 there are three variables which are P11, P12, P13. Where P11 means

9



passenger1 at time1,P12 means passenger1 at time2, and P13 means passenger1

at time3.

For P2 there are three variables also P21, P22, P23.

In general, for any n passengers and t times, the variables would be:

P11,P12,P13,...,P1t

P21,P22,P23,...,P2t

...

Pn1,Pn2,Pn3,...,Pnt.

So there are n× t variables for the passengers.

The domain of these n× i variables is the c car stations. This means that for

each variable, there are c possible values.

• Cars variables: if the company wanted to keep track of where each car is

at all times ( t times), they should know where each C is at t times. cars

variables are in the form Cij where i is the car’s number, and j is the time.

For example, if m = 2 and t = 3, the cars variables will be as follows:

For C1 there are three variables which are C11,C12,C13.Where C11 means car1

at time1,C12 means car1 at time2, and C13 means car1 at time3.

For C2 there are three variables also C21,C22,C23.

In general, for any m cars and t times, the cars variables would be:

C11,C12,C13,...,C1t

C21,C22,C23,...,C2t

...

Cm1,Cm2,Cm3,...,Cmt.

So there are m× t variables for the cars.

The domain of these m × t variables is the c car stations. This means that

for each car variable, there are c possible values.

10



• Flag variables: there are two types of flag variables, one for passengers, and

the other for cars.

– Passengers flag variables (PFV): each passenger should be either in

a car station or in a car. If that passenger is in one of the cars at a

particular time, then there is a boolean variable to indicate that. PFVs

are in the form PFVijk where i is the passenger’s id, j is the car’s number,

and k is the time. For each of the n× t passengers variables, there are m

variables, such that PFV111 means P1 in C1 at T1, PFV121 means P1 in

C2 at T1,PFVnmt means Pn in Cm at Tt.

There are n × m × t PFV variables. The domain of these n × m × t

variables is (0,1).

– Cars flag variables (CFV): if at least one of the n passengers is in one

of the m cars at any time, that means that car is used for some time.

Therefore, there is one boolean variable per car to show if it is used or

not.

As a summary, the total number of variables is

= P + C + PFV + CFV

= (n× t) + (m× t) + (n×m× t) + (m)

3.2.2 The Problem Constraints

Since the computer does not understand how to make each car service a partic-

ular number of passengers, nor how the cities are connected, the system should be

built with some constraints. There are six main types of constraints in the problem:

• Initial constraints: for the system to allocate a car for a particular passen-

ger, it should know at least where that passenger is at the beginning time and

11



the departure time. So Pp1,Ppt where p=1 to n, which means ∀ P , T1 and Tt

should be already known. In addition, if other times are known, they should

be set; for example, if the P1 will stay in carstation8 for the first five times

then P11=8, P12=8, P13=8, P14=8, P15=8.

So there are at least 2× n initial constraints for the passengers.

For the cars, just the beginning time should be set, and then the system lets

the cars go anywhere, so there are m initial constraints for the cars.

• Adjacent constraints: since the cars can only move from a car station to

its adjacent car stations, we have to Figure out the adjacency constraints.

Suppose d is the number of the adjacent car stations for a car station s, and

the adjacent car stations = {s1, s2, s3, ..., sd}, then if the car i at the car station

s at timek, it must be at car station s or at one of its d adjacent car stations

at timek+1.

(C11 = s) =⇒ (C12 = s) ∨ (C12 = s1) ∨ (C12 = s2) ∨ (C12 = s3) ∨ . . . ∨ (C12 =

sd)

(C12 = s) =⇒ (C13 = s) ∨ (C13 = s1) ∨ (C13 = s2) ∨ (C13 = s3) ∨ . . . ∨ (C13 =

sd)

(C13 = s) =⇒ (C14 = s) ∨ (C14 = s1) ∨ (C14 = s2) ∨ (C14 = s3) ∨ . . . ∨ (C14 =

sd)

...

(C1(t−1) = s) =⇒ (C1t = s) ∨ (C1t = s1) ∨ (C1t = s2) ∨ (C1t = s3) ∨ . . . ∨ (C1t

= sd)

12



So there are (t-1) adjacent constraints for only car1 and the same number of

adjacent constraints for each car, therefore, the total adjacent constraints is

(t− 1)×m.

• Capacity constraints: each car j has its capacity, if the capacity = r, and

because the PFV are boolean we have to be sure that the summation of the

PFV at time k for all the passenger is less than or equal r

PFV1jk + PFV2jk + PFV3jk + ... + PFVnjk =

n∑
x=1

PFVxjk 6 r (3.2.1)

So there are t capacity constrains for each car. The total number of the

capacity constrains are m× t.

• One car at a time constraints: this type of constraint is to prevent the

passenger from being in two or more cars at the same time. If there are m

cars, the form of this constraint for passenger p at time k is:

PFVp1k + PFVp2k + PFVp3k + ... + PFVpmk =
m∑
j=1

PFVpjk = 1 (3.2.2)

So there are t one car at a time constraints for each passenger. The total

number of the one car at a time constraints are n× t.

• Traveling constraints: for any car i and passenger p at time k, the flag

variables would be True if Cik = Ppk and Ci(k+1) = Pp(k+1)

PFVpik =⇒ (Cik = Ppk) ∧ (Ci(k+1) = Pp(k+1)) (3.2.3)

Since there are n ×m × t PFV (see PFV on page 11 ), the total number of

traveling constraints is n×m× t.
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• Location constraints: we must ensure that the passengers ride one of the

cars and also move to the next car station. In other words, the case of the

PFV gets True depending on traveling constraints but the passenger stays in

the same car station. Because the passenger either rides a car and transfers

to another car station or does not ride a car and does not transfer, we need

to consider the location Constraints. Suppose the passenger p in car station

s at time k, and j is the car number from 1 to m, then either all PFVpjk are

false and Ppk =Pp(k+1) or one of the PFVpjk is true and Ppk 6=Pp(k+1), so the

following constraints for only passengerp are:

(Pp1 6= Pp2) =⇒ PFVp11 ∨ PFVp21 ∨ PFVp31 ∨ ... ∨ PFVpm1

(Pp2 6= Pp3) =⇒ PFVp12 ∨ PFVp22 ∨ PFVp32 ∨ ... ∨ PFVpm2

(Pp3 6= Pp4) =⇒ PFVp13 ∨ PFVp23 ∨ PFVp33 ∨ ... ∨ PFVpm3

...

(Pp(t−1) 6= Ppt) =⇒ PFVp1(t−1) ∨ PFVp2(t−1) ∨ PFVp3(t−1) ∨ ... ∨ PFVpm(t−1)

So there are (t-1) location constraints for only one passenger, and the total

location constraints =n× (t− 1) .

3.3 Solving Sample Problem by CP

The primary algorithm to solve the CPs is the backtracking which is simply

assigned variables with values depending on the constraints in the problem, and

then if all the variables have values the problem is solved. If one of the variables

does not get assigned with a value that satisfied all the constraint then backtrack

and try other values for the variables. For example, if there are three variables

A=(1), B=(1,3,2), C=(3,5) and there is one constraint which is B≥C, then to solve

14



the problem assign A=1, B=1, C=3 but the value assigned for B does not satisfy the

constraint B≥C. So backtrack to assign A=1, B=3, C=3 and the problem is solved

in that way. CP strategies could be applied to check if the problem of transportation

in DQOC is solvable with a particular number of cars, then if it is solvable, apply

an objective function to minimize the number of cars.

The constraint programming solver used to solve DQOC transportation problem

is called Minion [7]. Minion can find the solution of the problem, and it can find

all the solution if there are some solutions. If the problem is not solvable, it will

report that. The technique used by Minion is called branching and propagation.

The branching is to assign value to each variable with consideration to the values

that other variables had taken. For the example above, the branching assignments

will be in the following tree. A=1

B=1

C=3 C=5

B=3

C=3 C=5

B=2

C=3 C=5

Propagation simplifies the problem by ignoring branches. For example, during the

search for a solution in the example above, if there is a constraint (A6= B), the

propagation here means ignore all the first branch of the tree above whatever its

size.

3.3.1 Map Sample Problem to CP

Since the problem of transportation in DQOC is complex, the best way to de-

scribe it in CP is to take a small sample problem and build it in CP, then extend

the solution of that sample to the general problem.

To formulate a sample problem, consider a company that has two passengers

{P1, P2}, the company can hire up to two cars to take these two passengers, {C1,
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C2}, and it divides the day into three times. To make them readable let us suppose

the times are {9am, 10am, 11am}, and there are three car stations {S1, S2, S3}. We

have to establish the variables as in section 3.2.1.

There are four types of variables in Minion: DISCRETE, BOOL, BOUND,

and SPARSEBOUND [4], where DISCRETE is for variables with integers domain,

BOOL is for the variables with domain {0, 1}, BOUND is also for variables with

integers domain, and SPARSEBOUND is for variables with a domain of an arbitrary

range of integers. So the variables for this sample will be as follows:

• Passengers:

p19 {1..3}, p110 {1..3}, p111 {1..3}, p29 {1..3}, p210 {1..3}, p211 {1..3} where,

for example, p19 is the name of the variable for P1 at Time 9, and {1..3} is

the domain of the variable p19 which means the car stations. So the type of

that variable is DISCRETE.

• Cars:

the same number of variables, the same domains, and the same type for the

cars as for the passenger because n equals m and the possible values for this

type of variable are the car stations. So the cars variables in this sample

problem are c19 {1..3}, c110 {1..3}, c111 {1..3}, c29 {1..3}, c210 {1..3}, and

c211 {1..3}.

• Flag variables:

– Passengers Flag Variables (PFV): since there are two passengers, two

cars, and three times and there is no need for the passenger in the last

time in this case, so there are 2 × 2 × 2 =8 PFV variables, which are

p1c19, p2c19, p1c110, p2c110, p1c29, p2c29, p1c210, and p2c210, where,

for example, p1c19 is the name of PFV of passenger 1 in car 1 at time 1,

and there is no need to declare the domain if the type is boolean.
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– Cars Flag Variables (CFV): in CP, the goal is just to check if the problem

is solvable with this number of cars rather than to optimize the number

of the cars, so there is no need to have (CFV).

Next we have to establish the constraints as in section 3.2.2. Constraint in

Minion is the same as a function in programming languages and there are no nested

constraints except in reify and reifyimply constraints [4]. So the constraints in this

sample are as follows:

• Initial constraints: the initial constraints for passengers and cars in this

sample are mentioned for every passenger when the location is known and for

the cars at time1 only. Minion has the constraint eq, in the form eq(x0,x1),

which is equivalent to x0=x1. [4]. The initial values for this sample are as in

Table 3.1 where ” ” means unknown location.In this table, both cars start work

at carstation3 and both passengers live in carstation3 but passenger1 gets to

work at carstation1 by time 11 and passenger2 gets to work at carstation2

by time 10. See the initial constraint part from the solution on page 20.

carNumber at 9 at 10 at 11

1 3 - -

2 3 - -

passengers

1 3 - 1

2 3 2 2

Table 3.1: The initial values for passengers and cars

• Adjacent constraints: this type of constraint in this sample depends on the

map in Figure 3.1, so the passengers in Al-Rifa’i can transfer directly just to

Al-Shatra and the same for the passengers in Nassariya but for passengers in
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Al-Shatra they can transfer to Al-Rifa’i or Nassariya directly. Therefore,

the adjacent constraint for C1 at time1 (for example) will be in the form:

(C19 = 1) =⇒ (C110 = 1) ∨ (C110 = 2)

In logic, A =⇒ B is the same as ¬A ∨ B, where ¬A denotes negation A, so

the form of adjacent constraint above would be:

(C19 6= 1) ∨ (C110 = 1) ∨ (C110 = 2)

in Minion there is no ∨ and no 6= but there is a constraint called watched-or

in the form watched-or(C1,...,Cn), which is equivalent to C1∨C2∨,...,∨Cn, and

a constraint called diseq in the form diseq(v0,v1) ensures two variables take

different values [4]. Therefore, the adjacent constraint for C1 at time1 would be

watched-or(diseq(c19,1),eq(c110,1),eq(c110,2)). See the adjacent constraints

part from the solution on page 20.

Figure 3.1: CarStations Sample Map

• Capacity constraints: this constraint is in the form
n∑

x=1
PFVxct 6 r so for car1 for example, the capacity=r=1,and time1 = 9 then
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2∑
x=1

PFVx11 6 1 ⇒ (PFV111 + PFV211) 6 1 ⇒ (p1c19 + p2c19) 6 1

Since there is no + constraint in Minion, we can avoid that in this sample by

making one of (p1c19, p2c19)=0, and by that we can ensure that one of the

passengers could take car1 at time1. So the Capacity Constraint for car1 at

time1 is watched-or(eq(p1c19,0),eq(p2c19,0)). See the Capacity Constraints

part from the solution on page 21.

• One car at a time constraints: this constraint is in the form
m∑
j=1

PFVpjk = 1 so,for example, for passenger1 and time1 = 9 then

2∑
j=1

PFV1j1 = 1 ⇒ (PFV111 + PFV121) = 1 ⇒ (p1c19 + p1c29) = 1

Since there is no + constraint in Minion, we can avoid that in this sample by

making one of (p1c19, p1c29)=0, and by that we can ensure that passenger1

could take only one car at time1. So this Constraint for passenger1 at time1

is watched-or(eq(p1c19,0),eq(p1c29,0)). See the one car at a time constraints

part from the solution on page 22.

• Traveling constraints: the form of this type of constraints is in the Equa-

tion 3.2.3. Instead of =⇒ there is a constraint in Minion called reifyimply

in the form reifyimply(constraint, r) where r is a boolean variable [4], and

instead of ∧ there is a constraint called watched-and in the form watched-

and(C1,...,Cn), which is equivalent to C1∧C2∧,...,∧Cn. By this constraint,

the Equation 3.2.3 would be

reifyimply(watched-and({eq(Ppk, Cjk), eq(Pp(k+1), Cj(k+1))}), PFVpjk).

See the traveling constraints part from the solution on page 22.

• Locations constraints: for this type of constraints, we can modify the form

(Pp1 6= Pp2) =⇒ PFVp11 ∨ PFVp21 ∨ PFVp31 ∨ ... ∨ PFVpm1.

As addressed in the Adjacent Constraints, A =⇒ B is an abbreviation for
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¬A∨B, so the form above would be:

(Pp1 = Pp2) ∨ PFVp11 ∨ PFVp21 ∨ PFVp31 ∨ ... ∨ PFVpm1

See the locations constraints part from the solution on page 22 which contain

watched-or and eq constraints in Minion.

The Solution1:

MINION 3

**VARIABLES**

#passenger1

DISCRETE p19 {1..3}

DISCRETE p110 {1..3}

DISCRETE p111 {1..3}

#passenger2

DISCRETE p29 {1..3}

DISCRETE p210 {1..3}

DISCRETE p211 {1..3}

#car1

DISCRETE c19 {1..3}

DISCRETE c110 {1..3}

DISCRETE c111 {1..3}

#car2

DISCRETE c29 {1..3}

DISCRETE c210 {1..3}

DISCRETE c211 {1..3}

#Flag variables

1MINION 3 to start of the minion file, # means comments in Minion,**VARIABLES** to
start the Variables part in Minion, **CONSTRAINTS** to start Constraints part in Minion, and
**EOF** is the end of minion file.
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BOOL p1c19

BOOL p2c19

BOOL p1c110

BOOL p2c110

BOOL p1c29

BOOL p2c29

BOOL p1c210

BOOL p2c210

**CONSTRAINTS**

#initial constraints

eq(c19,3)

eq(c29,3)

eq(p19,3)

eq(p111,1)

eq(p29,3)

eq(p210,2)

eq(p211,2)

# adjacent constraints

watched-or(diseq(c19,1),eq(c110,1),eq(c110,2))

watched-or(diseq(c110,1),eq(c111,1),eq(c111,2))

watched-or(diseq(c19,3),eq(c110,3),eq(c110,2))

watched-or(diseq(c110,3),eq(c111,3),eq(c111,2))

watched-or(diseq(c29,1),eq(c210,1),eq(c210,2))

watched-or(diseq(c210,1),eq(c211,1),eq(c211,2))

watched-or(diseq(c29,3),eq(c210,3),eq(c210,2))

watched-or(diseq(c210,3),eq(c211,3),eq(c211,2))

#Capacity Constraints
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watched-or(eq(p1c19,0),eq(p2c19,0))

watched-or(eq(p1c110,0),eq(p2c110,0))

watched-or(eq(p1c29,0),eq(p2c29,0))

watched-or(eq(p1c210,0),eq(p2c210,0))

#One car at a time constraints

watched-or(eq(p1c19,0),eq(p1c29,0))

watched-or(eq(p1c110,0),eq(p1c210,0))

watched-or(eq(p2c19,0),eq(p2c29,0))

watched-or(eq(p2c110,0),eq(p2c210,0))

# traveling constraints

reifyimply(watched-and({eq(p19,c19),eq(p110,c110)}),p1c19)

reifyimply(watched-and({eq(p110,c110),eq(p111,c111)}),p1c110)

reifyimply(watched-and({eq(p19,c29),eq(p110,c210)}),p1c29)

reifyimply(watched-and({eq(p110,c210),eq(p111,c211)}),p1c210)

reifyimply(watched-and({eq(p29,c19),eq(p210,c110)}),p2c19)

reifyimply(watched-and({eq(p210,c110),eq(p211,c111)}),p2c110)

reifyimply(watched-and({eq(p29,c29),eq(p210,c210)}),p2c29)

reifyimply(watched-and({eq(p210,c210),eq(p211,c211)}),p2c210)

#Locations Constraints

watched-or({eq(p19,p110),eq(p1c19,1),eq(p1c29,1)})

watched-or({eq(p110,p111),eq(p1c110,1),eq(p1c210,1)})

watched-or({eq(p29,p210),eq(p2c19,1),eq(p2c29,1)})

watched-or({eq(p210,p211),eq(p2c110,1),eq(p2c210,1)})

**EOF**
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3.4 Solving the Problem with lots of Passenger, Cars,

Times, and CarStations by CP

To formulate the DQOC transportation problem with n Passanger, m cars, t

times, and c car stations, we can just modify the sample in section 3.3 by using a

matrix for the variables as follows:

• Passengers:

DISCRETE p[n,t] {1..c}

where DISCRETE means the type is integer, p is the name of the array of

variables of n rows and t columns, and {1..c} is the domain of the variables

where c is the total number of car stations.

• Cars:

DISCRETE cs[m,t] {1..c}

where cs is the name of the array of variables of m rows and t columns.

• Flag variables:

– Passengers F lagV ariables(PFV ) :

BOOL PFV[n,m,t-1]

where BOOL means the type is Boolean, PFV the name of the Three-

dimensional array for PFV variables. Since there are n passengers, m

cars, and t times and there is no need to the PFV in the last Time, so

there are n×m× (t− 1) PFV variables.

– Cars′ Flagvariables(CFV ) : there is no need to Cars′ Flagvariables(CFV )

as addressed in section 3.3.
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The constraints are the same as in the sample in Section 3.3 with some changes

to work with arrays as follows:

• Initial constraints: for every cars j, time1 should be known. For every

passengers p time1 and timet should be know. So the initial constraints

eq(cs[j,0],s) for j={0... m-1}, and s = one possible value of the range {1...c}

eq(p[p,0],s) for p={0... n-1}, and s = one possible value of the range {1...c}

eq(p[p,i-1],s) for p={0... n-1}, and s = one possible value of the range {1...c}

and any other known locations for any passenger at the other times

• Adjacent constraints: suppose d= the number of the adjacent car stations

for car station s, and the adjacent car stations = {s1, s2, s3, ..., sd}, then the

adjacent constraints for car j=0...m-1

watched-or({diseq(cs[j,0],s),eq(cs[j,1],s),eq(cs[j,1],s1),eq(cs[j,1],s2),eq(cs[j,1],s3)

,...,eq(cs[j,1],sd)})

watched-or({diseq(cs[j,1],s),eq(cs[j,2],s),eq(cs[j,2],s1),eq(cs[j,2],s2),eq(cs[j,2],s3)

,...,eq(cs[j,2],sd)})

watched-or({diseq(cs[j,2],s),eq(cs[j,3],s),eq(cs[j,3],s1),eq(cs[j,3],s2),eq(cs[j,3],s3)

,...,eq(cs[j,3],sd)})
...

watched-or({diseq(cs[j,t-2],s),eq(cs[j,t-1],s),eq(cs[j,t-1],s1),eq(cs[j,t-1],s2),

eq(cs[j,t-1],s3),...,eq(cs[j,t-1],sd)})

• Capacity constraints: by modifying the form 3.2.1 to work with arrays, it

will be
n∑

x=1
PFV [x, j, i] 6 r for j={0...m-1},i={0...t-1}, so for car1, at time1,

and if the capacity=r=3, then
n∑

x=1
PFV [x, 0, 0] 6 3.
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In Minion, there is a constraint called ”occurrenceleq(vec, elem, count) ensures

that there are at most count occurrences of the value elem in the vector vec

(elem and count must be constants)” [4]. We use instead of a row or a

column, if we want to get that row or column. So by occurrenceleq(bool[ -

,j,i], 1, r),we ensure that the capacity for car j at timei=r. So the capacity

for car1 will be:

occurrenceleq(bool[ ,0,0], 1, 3)

occurrenceleq(bool[ ,0,1], 1, 3)

occurrenceleq(bool[ ,0,2], 1, 3)

...

occurrenceleq(bool[ ,0,t-1], 1, 3)

Moreover, the same for all the cars.

• One car at a time constraints: by modifying the form 3.2.2 to work

with arrays, it will be
m∑
j=1

PFV [i, j, k] = 1 for i={0...n-1},k={0...t-1}, so for

passenger1, this constraint will be
m∑
j=1

PFV [0, j, 0] = 1.

By occurrenceleq(bool[i, ,k], 1, 1),we ensure that passenger i will ride only

one car at timek. So the one car at a time constraints for passenger1 will be:

occurrenceleq(bool[0, ,0], 1, 1)

occurrenceleq(bool[0, ,1], 1, 1)

occurrenceleq(bool[0, ,2], 1, 1)

...

occurrenceleq(bool[0, ,t-1], 1, 1)

Moreover, the same for all the passengers.

• Traveling constraints: by modifying the Equation 3.2.3 and its version in

the sample in section 3.3, the form will be:

reifyimply(watched-and({eq(P[p,k],C[i,k]),eq(P[p,k+1],C[i,k+1])}), PFV[p,i,k])
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therefore the traveling constraints for passenger1 at time1 are:

reifyimply(watched-and({eq(p[0,0],c[0,0]),eq(p[0,1],c[0,1])}),PFV[0,0,0])

reifyimply(watched-and({eq(p[0,0],c[1,0]),eq(p[0,1],c[1,1])}),PFV[0,1,0])

...

reifyimply(watched-and({eq(p[0,0],c[m-1,0]),eq(p[0,1],c[m-1,1])}),PFV[0,m-1,0])

And the same at all other times, and the same for all other passengers at all

times.

• Locations constraints: for this type of constraints, by modifying the form

sample in section 3.3

(Pp1 = Pp2) ∨ PFVp11 ∨ PFVp21 ∨ PFVp31 ∨ ... ∨ PFVpm1

will get:

watched-or({eq(p[p,0],p[p,1]),eq(bool[p,0,0],1),eq(bool[p,1,0],1),eq(bool[p,2,0],1)

,...,,eq(bool[p,m-1,0],1)})

watched-or({eq(p[p,1],p[p,2]),eq(bool[p,0,1],1),eq(bool[p,1,1],1),eq(bool[p,2,1],1)

,...,,eq(bool[p,m-1,1],1)})

watched-or({eq(p[p,2],p[p,3]),eq(bool[p,0,2],1),eq(bool[p,1,2],1),eq(bool[p,2,2],1)

,...,,eq(bool[p,m-1,2],1)})
...

watched-or({eq(p[p,t-2],p[p,t-1]),eq(bool[p,0,t-2],1),eq(bool[p,1,t-2],1),eq(bool[

p,2,t-2],1),...,eq(bool[p,m-1,t-2],1)})

For p={0,1,2,...,n-1}
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Chapter 4

Boolean Satisfiability (SAT) For-

mulation

The Boolean Satisfiability Problem (SAT) is a decision problem where a solver

must determine if a boolean expression (also called a formula) is satisfiable. That is,

there is an assignment of values that make the expression true. Boolean expressions

are expressions with boolean variables (with domain {true, false}), logic operations:

AND (conjunction), OR (disjunction), and NOT (negation) and parenthesis. A

boolean expression is satisfiable if all its boolean variables are assigned with values

(true or false) in a way that yields the boolean expression to be true. In SAT, the

variables are with Boolean domains, and the constraints are translated to clauses to

represent the CP problem in a very simple language instead of high-level representa-

tion by CSP. The simple representation of SAT leads to an efficient implementation

for the problem, but it increases the effort to express the problem as SAT instance

[3, 12, 17, 2, 1]. Moreover, because constraint programming solvers have a library

of constraints that helps the user to address the problems in a very direct way as

we will see how to map the CSP constraints to SAT. Therefore Using CP (high-
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level paradigm) allows a more natural expression of the problem, and then the CP

instance will be translated into SAT. In the following sections, the logic operations

AND, OR, and NOT are symbolized by ∧, ∨, and ¬ respectively.

There are three standardizations for the boolean expression: disjunctive normal

form (DNF), conjunctive normal form (CNF) and negation normal form (NNF. The

SAT solvers use the CNF.

4.1 Conjunctive Normal Form (CNF)

CNF is a boolean formula which consists of a group of boolean expressions

separated by a conjunction (∧) while each boolean expression consists of one or more

variables or their negation separated by disjunction (∨). The boolean expression

is called clause that consists of some literals (the variable or its negation) and

disjunction. For example, (A ∨ B) ∧ (¬B ∨ C) is a CNF with two clauses each

of them with two literals. In other words, boolean expression is in CNF if it is a

conjunction of clauses and each clause is a disjunction of literals or their negation.

4.2 Map Problem to CNF

To map a problem to CNF, we have to specify the variables and the constraints

in the problem in a CNF format.

4.2.1 The Problem Variables

Suppose the company has n passengers, the company can hire up to m cars to

transfer those n passengers between c car stations, the company divides the day into

t times, and there are c car stations.

Let us symbolized for passengers by P , cars by C, times by T , and car stations by

28



S

So the list of variables as follows:

• Passengers variables: Because the domain of the variable in CNF is {0, 1},

so we have to modify the passengers’ variables with a domain {1,...,c} to be

with a domain {0, 1}. In order to set that, we make each passengers’ variables

with domain {1,...,c} of c boolean variable. The new passengers’ variables are

in the form Pijk where i is the passenger’s id, j is the time, and k is the car

station number. For example, if n=2, t=3 and c=3, the passengers’ variables

will be:

For P1 there are nine boolean variables which are P111, P112, P113, P121,

P122, P123, P131, P132, P133. For example, P111 means passenger1 at time1

in carstation1, and P112 means passenger1 at time1 in carstation2.

For P2 also there are nine boolean variables P211, P212, P213, P221, P222, P223,

P231, P232, P233.

In general, for any n passengers, t times, and c car stations, the variables

would be

P111, P112, P113, ..., P1tc

P211, P212, P213, ..., P2tc

...

Pn11, Pn12, Pn13, ..., Pntc.

So there are n× t× c boolean variables for the passengers.

• Cars variables: To modify the cars’ variables from being with a domain

{1,...,c} to be with a domain {0, 1}, we do the same as for passengers’ variables.

The new cars’ variables are in the form Cijk where i is the car number, j is the

time, and k is the car station number. There are m× t× c boolean variables

for the cars.
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• Flag variables: The flag variables in the problem as SAT are the same as in

CP. There are two types of Flag variables, one for passengers, and the other

for cars.

– Passengers flag variables (PFV): PFVs are in the form PFVijk where

i is the passenger’s id, and j is the car’s number, and k is the time. For

each of the n × t passengers variables, there are m variables, such that

PFV111 means P1 in C1 at T1, PFV121 means P1 in C2 at T1,PFVnmt

means Pn in Cm at Tt.

So there are n ×m × t PFV variables. The domain of these n ×m × t

variables is (0,1).

– Cars flag variables (CFV): if at lease one of the n passengers in one

of the m cars at any time, that means that car is used for sometime.

Therefore, there is one boolean variable per car to show if it used or not.

4.2.2 The Problem Constraints

The problem constraints in SAT are as follows:

• One location constraints: In addition to the five types of constraints in

section 3.2.2, there is a need to a new constraint to keep each passenger and

each car at any time in only one of the car stations. In other words, this

constraint is to keep only one of the c boolean variables for passenger i at time

j equals true. For example, if there are three car stations, only one of the

passenger1 variables at time1 equals true. So the one location constraint for

passenger1 at time1 if there are three car stations would be:

(¬P111 ∨ ¬P112) ∧ (¬P111 ∨ ¬P113) ∧ (¬P112 ∨ ¬P113) ∧ (P111 ∨ P112 ∨ P113).

By this constraint, we ensure that passenger1 at time1 will be in only one

car station, and we have to repeat this constraint for passenger1 for all the
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times and all the passengers at all the times. In general, for c car stations,

the one location constraint consists of the disjunction between every possible

pair of the negation of the passengers variables at a particular time and one

more clause of the disjunction of all the c variable at that time. The same

applies for the cars. So there are n × t × (
(
c
2

)
+ 1) clauses for the passengers

and m× t× (
(
c
2

)
+ 1) clauses for the cars.

• Initial constraints: In this type of constraint, the clauses will be only of one

literal. The beginning time and the departure time for the passengers must be

known. So the initial constraint will be Pp1k ∧ Pptk where p=1 to n and k=1

to c. If other times are known, they should be set, for example, if the P1 will

stay in carstation8 for the first five times, then P118∧P128∧P138∧P148∧P158.

So there are at least 2 × n clauses for initial constraints for the passengers.

For the cars, there are m clauses because only the beginning time should be

set.

• Adjacent constraints: As addressed in section 3.2.2 in the adjacent con-

straints on page 12, since there is no =⇒ in the CNF, and in logic, A =⇒ B

is the same as ¬A ∨ B. So the adjacent constraint for car1 if d is the number

of the adjacent car stations for a car station s, and the adjacent car stations

= {s1, s2, s3, ..., sd} will be:

(¬C11s ∨ C12s ∨ C12s1 ∨ C12s2 ∨ C12s3 ∨ . . . ∨ C12sd) ∧ (¬C12s ∨ C13s ∨ C13s1 ∨

C13s2 ∨C13s3 ∨ . . .∨C13sd)∧ (¬C13s∨C14s∨C14s1 ∨C14s2 ∨C14s3 ∨ . . .∨C14sd)∧

. . . ∧ (¬C1(t−1)s ∨ C1ts ∨ C1ts1 ∨ C1ts2 ∨ C1ts3 ∨ . . . ∨ C1tsd)

And the same for all other cars.

• Capacity constraints: for each car j at time k, the capacity constraints

consist of the disjunctions between any possible subset of size = capacity +1

of the negation of the PFVijk for i= 1 to n. For example, if the car capacity
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is 1 and there are only three passengers, then the capacity constraint for car1

at time 1 will be:

(¬PFV111 ∨ ¬PFV211) ∧ (¬PFV111 ∨ ¬PFV311) ∧ (¬PFV211 ∨ ¬PFV311)

But if the capacity is 2, then the capacity constraint will be:

(¬PFV111 ∨ ¬PFV211 ∨ ¬PFV311)

And the same for all other times and for all other cars at all times. So there

are m× t×
(

n
capacity+1

)
clauses for the capacity constraints.

• One car at a time constraints: for each passenger i at time k, the one car

at a time constraints consist of the disjunctions between any possible subset

of size = 2 of the negation of the PFVijk for j= 1 to m. For example, if there

are only three cars, then the One Car at a Time constraint for passenger1 at

time 1 will be:

(¬PFV111 ∨ ¬PFV121) ∧ (¬PFV111 ∨ ¬PFV131) ∧ (¬PFV121 ∨ ¬PFV131)

And the same for all other times and for all other passengers at all times. So

there are n× t×
(
m
2

)
clauses for the One car at a time constraints.

• Traveling constraints: The form of these constraints is:

PFVpik =⇒ (Cik = Ppk) ∧ (Ci(k+1) = Pp(k+1))

Since there is no =⇒ in the CNF, and in logic, A =⇒ B is the same as ¬A

∨ B. So, the form above will be:

¬PFVpik ∨ (((Ppk1 ∧Cik1)∨ (Ppk2 ∧Cik2)∨ (Ppk3 ∧Cik3)∨ . . .∨ (Ppkc ∧Cikc))∧

((Pp(k+1)1∧Ci(k+1)1)∨(Pp(k+1)2∧Ci(k+1)2)∨(Pp(k+1)3∧Ci(k+1)3)∨. . .∨(Pp(k+1)c∧

Ci(k+1)c))).

Then we have to modify this form to be in the CNF, and there is a tool to

convert any boolean expression to CNF [15].For example, if there are 3 car

stations, the form above will be:

(¬PFVpik ∨Ppk1 ∨Ppk2 ∨Ppk3)∧ (¬PFVpik ∨Ppk1 ∨Ppk2 ∨Cik3)∧ (¬PFVpik ∨
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Ppk1∨Cik2∨Ppk3)∧ (¬PFVpik ∨Ppk1∨Cik2∨Cik3)∧ (¬PFVpik ∨Cik1∨Ppk2∨

Ppk3) ∧ (¬PFVpik ∨ Cik1 ∨ Ppk2 ∨ Cik3) ∧ (¬PFVpik ∨ Cik1 ∨ Cik2 ∨ Ppk3) ∧

(¬PFVpik ∨Cik1 ∨Cik2 ∨Cik3) ∧ (¬PFVpik ∨ Pp(k+1)1 ∨ Pp(k+1)2 ∨ Pp(k+1)3) ∧

(¬PFVpik ∨ Pp(k+1)1 ∨ Pp(k+1)2 ∨Ci(k+1)3) ∧ (¬PFVpik ∨ Pp(k+1)1 ∨Ci(k+1)2 ∨

Pp(k+1)3)∧ (¬PFVpik ∨Pp(k+1)1 ∨Ci(k+1)2 ∨Ci(k+1)3)∧ (¬PFVpik ∨Ci(k+1)1 ∨

Pp(k+1)2 ∨Pp(k+1)3)∧ (¬PFVpik ∨Ci(k+1)1 ∨Pp(k+1)2 ∨Ci(k+1)3)∧ (¬PFVpik ∨

Ci(k+1)1 ∨ Ci(k+1)2 ∨ Pp(k+1)3) ∧ (¬PFVpik ∨ Ci(k+1)1 ∨ Ci(k+1)2 ∨ Ci(k+1)3).

The same for each PFV.

• Locations constraints: By modifying the form of locations constraints in

section 3.2.2 on page 14, which is:

(Pp1 6= Pp2) =⇒ PFVp11 ∨ PFVp21 ∨ PFVp31 ∨ ... ∨ PFVpm1

(Pp2 6= Pp3) =⇒ PFVp12 ∨ PFVp22 ∨ PFVp32 ∨ ... ∨ PFVpm2

(Pp3 6= Pp4) =⇒ PFVp13 ∨ PFVp23 ∨ PFVp33 ∨ ... ∨ PFVpm3

...

(Pp(t−1) 6= Ppt) =⇒ PFVp1(t−1) ∨ PFVp2(t−1) ∨ PFVp3(t−1) ∨ ... ∨ PFVpm(t−1)

and its modification on page 19, which is (for passenger1 at time1):

(Pp1 = Pp2) ∨ PFVp11 ∨ PFVp21 ∨ PFVp31 ∨ ... ∨ PFVpm1

the location constraint form in SAT at time k will be:

((Ppk1∧Pp(k+1)1)∨(Ppk2∧Pp(k+1)2)∨(Ppk3∧Pp(k+1)3)∨ ...∨(Ppkc∧Pp(k+1)c))∨

PFVp1k ∨ PFVp2k ∨ PFVp3k ∨ ... ∨ PFVpmk.

And this is the same for all other times for this passenger and the same for all

other passengers at all the times. Then we have to modify this form to be in

the CNF by using the same tool [15]. For example, if there are 3 car stations

and 2 cars, the form above at time 1 will be:

(Pp11∨Pp12∨Pp13∨PFVp11∨PFVp21)∧(Pp11∨Pp12∨Pp23∨PFVp11∨PFVp21)∧
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(Pp11∨Pp22∨Pp13∨PFVp11∨PFVp21)∧(Pp11∨Pp22∨Pp23∨PFVp11∨PFVp21)∧

(Pp21∨Pp12∨Pp13∨PFVp11∨PFVp21)∧(Pp21∨Pp12∨Pp23∨PFVp11∨PFVp21)∧

(Pp21∨Pp22∨Pp13∨PFVp11∨PFVp21)∧(Pp21∨Pp22∨Pp23∨PFVp11∨PFVp21).

4.3 Solving Sample Problem by CNF

The SAT solver used to solve the DQOC transportation problem is called UBC-

SAT [14]. The solver can find one solution, many solutions, or prove that there are

no solution. The input file format for UBCSAT solver is called DIMACS format.

For example, if there are five variables and three clauses as follows:

Variables: v1, v2, v3, v4, v5.

Clauses: (v1 ∨ ¬v5 ∨ v4) ∧ (¬v1 ∨ v5 ∨ v3 ∨ v4) ∧ (¬v3 ∨ ¬v4).

The DIMACS format for this example will be:

c comment

p cnf 5 3 c 5 variables 3 clauses

1 -5 4 0 c v1 ∨ ¬v5 ∨ v4

-1 5 3 4 0 c ¬v1 ∨ v5 ∨ v3 ∨ v4

-3 -4 0 c ¬v3 ∨ v4

c the comments can be anywhere in the file

The line ”p cnf numbervar numberclauses” means the format is CNF; numbervar is

”the number of variables in the file; numberclauses is the number of clauses in the

file. The clause is a sequence of distinct non-null numbers between -numbervar and

numbervar ending with 0 on the same line” [8]. The clause will ignored if it contains

the ”opposite literals i and -i simultaneously. Positive numbers denote the corre-

sponding variables. Negative numbers denote the negations of the corresponding

variables” [8]. The lines that begin with the character c indicating comments.
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4.3.1 Map Sample Problem to CNF

To formulate a sample problem, let us use the same sample in section 3.3, which

suppose a company that has two passengers {P1, P2}, the company can hire up to

two cars to take these two passengers, {C1, C2}, and it divides the day into three

times. Because the variables are only numbers, and because we should make it easy

to track those variables and the expected solution for this sample, we need to set

up the variables in a way that can be easy to remember:

• Passengers:

Since the day is divided into three times and there are three car stations, there

are nine variables for each passenger. Passenger1’s variables are P111, P112,

P113, P121, P122, P123, P131, P132, P133, which in DIMACS format are variables

1, 2, 3, ..., 9, respectively. Passenger2’s variables are P211, P212, P213, P221,

P222, P223, P231, P232, P233, which in DIMACS format are variables 10, 11, 12,

..., 18, respectively.

• Cars:

As for the passengers, there are nine variables for each car. Car1’s variables

are C111, C112, C113, C121, C122, C123, C131, C132, C133, which in DIMACS

format are variables 19, 20, 21, ..., 27, respectively. Car2’s variables are C211,

C212, C213, C221, C222, C223, C231, C232, C233, which in DIMACS format are

variables 32, 33, 34, ..., 40, respectively.

• Flag variables: The PFVs are the same as in the sample in section 3.3,

which are PFV111, PFV112, PFV211, PFV212 for car1, and PFV121, PFV122,

PFV221, PFV222 for car2. And, in DIMACS format these are variables 28, 29,

30,31 for car1 and 41, 42, 43, 44 for car2.

Next, we have to establish the constraints as in section 4.2.2. The constraints

in this sample are as follows:

35



• One location constraints: As addressed in section 4.2.2, the form of this

constraint for passenger1 (for example) in this sample is:

(¬P111 ∨ ¬P112) ∧ (¬P111 ∨ ¬P113) ∧ (¬P112 ∨ ¬P113) ∧ (P111 ∨ P112 ∨ P113)

Where the corresponding numbers in DIMACS format for P111, P112, P113 are

1, 2, and 3 respectively. So the One location constraints for passenger1 at

time1 will be:

-1 -2 0

-1 -3 0

-2 -3 0

1 2 3 0

and the same for passenger1 for the other times and for all other passengers

at all the times. The same applies to the cars as for the passengers. See the

One location constraints part in the solution for this sample on page 40.

The number of the clauses in this constraint as addressed in section 4.2.2, and

it is n× t× (
(
c
2

)
+ 1)+m×t× (

(
c
2

)
+ 1)= 2×3× (

(
3
2

)
+ 1) + 2×3× (

(
3
2

)
+ 1)=48.

• Initial constraints: The initial values for this sample are the same for the

sample in section 3.3, which are illustrated in Table 4.1.

carNumber at 9 at 10 at 11

1 3 - -

2 3 - -

passengers

1 3 - 1

2 3 2 2

Table 4.1: The initial values for passengers and cars

See the initial constraint part from the solution on page 40.
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• Adjacent constraints: As in the adjacent constraints in section 3.3, this

type of constraint in this sample also depends in how the map works in Figure

3.1. So, the adjacent constraint for C1 at time1, if it is in car station 1 (for

example) will be in the form:

(¬C111 ∨ C121 ∨ C122) ∧ (¬C121 ∨ C131 ∨ C132), which is in DIMACS format

-19 22 23 0

-22 25 26 0

And, the same for car1 if it is in car station 2 and the same for car2. See the

adjacent constraints part from the solution on page 40.

• Capacity constraints: Since the car capacity in the sample is 1, then the

capacity constraint for car1 will be: (¬PFV111 ∨ ¬PFV211) ∧ (¬PFV112 ∨

¬PFV212), which is in DIMACS format:

-28 -30 0

-29 -31 0

See the Capacity Constraints part from the solution on page 43.

• One car at a time constraints: Since there are only two cars in this sample,

then the One Car at a Time constraint for passenger1 will be: (¬PFV111 ∨

¬PFV121) ∧ (¬PFV112 ∨ ¬PFV122), which is in DIMACS format:

-28 -41 0

-29 -42 0

See the one car at a time constraints part from the solution on page 43.

• Traveling constraints: The form of these constraints is:

PFVpik =⇒ (Cik = Ppk) ∧ (Ci(k+1) = Pp(k+1))

Since there is no =⇒ in the CNF, and in logic, A =⇒ B is the same as ¬A

∨ B. So, the form above will be:

¬PFVpik∨(((Ppk1∧Cik1)∨(Ppk2∧Cik2)∨(Ppk3∧Cik3))∧((Pp(k+1)1∧Ci(k+1)1)∨
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(Pp(k+1)2 ∧ Ci(k+1)2) ∨ (Pp(k+1)3 ∧ Ci(k+1)3))). For example, PFV111, which

means P1 rides C1 at time1 will be true in this form ¬PFV111∨(((P111∧C111)∨

(P112 ∧C112)∨ (P113 ∧C113))∧ ((P121 ∧C121)∨ (P122 ∧C122)∨ (P123 ∧C123))).

Then, after converting this form to CNF by using the tool in [15], it will be:

(¬PFV111∨P111∨P112∨P113)∧ (¬PFV111∨P111∨P112∨C113)∧ (¬PFV111∨

P111∨C112∨P113)∧ (¬PFV111∨P111∨C112∨C113)∧ (¬PFV111∨C111∨P112∨

P113) ∧ (¬PFV111 ∨ C111 ∨ P112 ∨ C113) ∧ (¬PFV111 ∨ C111 ∨ C112 ∨ P113) ∧

(¬PFV111∨C111∨C112∨C113)∧ (¬PFV111∨P121∨P122∨P123)∧ (¬PFV111∨

P121∨P122∨C123)∧ (¬PFV111∨P121∨C122∨P123)∧ (¬PFV111∨P121∨C122∨

C123) ∧ (¬PFV111 ∨ C121 ∨ P122 ∨ P123) ∧ (¬PFV111 ∨ C121 ∨ P122 ∨ C123) ∧

(¬PFV111 ∨ C121 ∨ C122 ∨ P123) ∧ (¬PFV111 ∨ C121 ∨ C122 ∨ C123), which in

DIMACS format is:

-28 1 2 3 0

-28 1 2 21 0

-28 1 20 3 0

-28 1 20 21 0

-28 19 2 3 0

-28 19 2 21 0

-28 19 20 3 0

-28 19 20 21 0

-28 4 5 6 0

-28 4 5 24 0

-28 4 23 6 0

-28 4 23 24 0

-28 22 5 6 0

-28 22 5 24 0

-28 22 23 6 0
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-28 22 23 24 0

See the traveling constraints part from the solution on page 43.

• Locations constraints: By modification the form of locations constraints on

page 19, which is (for passenger1 at time1):

(Pp1 = Pp2) ∨ PFVp11 ∨ PFVp21 ∨ PFVp31 ∨ ... ∨ PFVpm1

the location constraint form for this sample in SAT at time k will be:

((Ppk1 ∧ Pp(k+1)1) ∨ (Ppk2 ∧ Pp(k+1)2) ∨ (Ppk3 ∧ Pp(k+1)3)) ∨ PFVp1k ∨ PFVp2k.

For example, this form for P1 at time1 will be:

((P111 ∧P121)∨ (P112 ∧P122)∨ (P113 ∧P123))∨PFV111 ∨PFV121. Then, after

converting this form to CNF by the tool in [15], it will be:

(P111 ∨ P112 ∨ P113 ∨ PFV111 ∨ PFV121) ∧

(P111 ∨ P112 ∨ P123 ∨ PFV111 ∨ PFV121) ∧

(P111 ∨ P122 ∨ P113 ∨ PFV111 ∨ PFV121) ∧

(P111 ∨ P122 ∨ P123 ∨ PFV111 ∨ PFV121) ∧

(P121 ∨ P112 ∨ P113 ∨ PFV111 ∨ PFV121) ∧

(P121 ∨ P112 ∨ P123 ∨ PFV111 ∨ PFV121) ∧

(P121 ∨ P122 ∨ P113 ∨ PFV111 ∨ PFV121) ∧

(P121 ∨ P122 ∨ P123 ∨ PFV111 ∨ PFV121),

which in DIMACS format is:

1 2 3 28 41 0

1 2 6 28 41 0

1 5 3 28 41 0

1 5 6 28 41 0

4 2 3 28 41 0

4 2 6 28 41 0

4 5 3 28 41 0
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4 5 6 28 41 0

See the locations constraints part from the solution on page 48.

c The CNF Solution:

p cnf 44 227

c One location constraints

c passenger1 time 1

-1 -2 0

-1 -3 0

-2 -3 0

1 2 3 0

c passenger1 at time 2

-4 -5 0

-4 -6 0

-5 -6 0

4 5 6 0

c passenger1 at time 3

-7 -8 0

-7 -9 0

-8 -9 0

7 8 9 0

c passenger2 at time 1

-10 -11 0

-10 -12 0

-11 -12 0

10 11 12 0

c passenger2 at time 2
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-13 -14 0

-13 -15 0

-14 -15 0

13 14 15 0

c passenger2 at time 3

-16 -17 0

-16 -18 0

-17 -18 0

16 17 18 0

c car1 at time 1

-19 -20 0

-19 -21 0

-20 -21 0

19 20 21 0

c car1 at time 2

-22 -23 0

-22 -24 0

-23 -24 0

22 23 24 0

c car1 at time 3

-25 -26 0

-25 -27 0

-26 -27 0

25 26 27 0

c car2 at time 1

-32 -33 0

-32 -34 0
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-33 -34 0

32 33 34 0

c car2 at time 2

-35 -36 0

-35 -37 0

-36 -37 0

35 36 37 0

c car2 at time 3

-38 -39 0

-38 -40 0

-39 -40 0

38 39 40 0

c Initial Conditions

c eq(c19,3)

21 0

c eq(c29,3)

34 0

c eq(p19,3)

3 0

c eq(p111,1)

7 0

c eq(p29,3)

12 0

c eq(p210,2)

14 0

c eq(p211,2)

17 0
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c Adjacent constraints

c car1

-19 22 23 0

-22 25 26 0

-21 24 23 0

-24 27 26 0

c car 2

-32 35 36 0

-35 38 39 0

-34 37 36 0

-37 40 39 0

c Capacity constraints

-28 -30 0

-29 -31 0

-41 -43 0

-42 -44 0

c One car at a time constraints

-28 -41 0

-29 -42 0

-30 -43 0

-31 -44 0

c Traveling constraints:

c reifyimply(watched-and(eq(p19,c19),eq(p110,c110)),p1c19) in CP

c ¬p1c19 ∨ (((p191 ∧ c191) ∨ (p192 ∧ c192) ∨ (p193 ∧ c193)) ∧ ((p1101 ∧ c1101) ∨ (p1102 ∧

c1102)||(p1103 ∧ c1103)))

-28 1 2 3 0

-28 1 2 21 0
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-28 1 20 3 0

-28 1 20 21 0

-28 19 2 3 0

-28 19 2 21 0

-28 19 20 3 0

-28 19 20 21 0

-28 4 5 6 0

-28 4 5 24 0

-28 4 23 6 0

-28 4 23 24 0

-28 22 5 6 0

-28 22 5 24 0

-28 22 23 6 0

-28 22 23 24 0

c reifyimply(watched-and(eq(p110,c110),eq(p111,c111)),p1c110)

-29 4 5 6 0

-29 4 5 24 0

-29 4 23 6 0

-29 4 23 24 0

-29 22 5 6 0

-29 22 5 24 0

-29 22 23 6 0

-29 22 23 24 0

-29 7 8 9 0

-29 7 8 27 0

-29 7 26 9 0

-29 7 26 27 0
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-29 25 8 9 0

-29 25 8 27 0

-29 25 26 9 0

-29 25 26 27 0

c reifyimply(watched-and(eq(p29,c19),eq(p210,c110)),p2c19)

-30 10 11 12 0

-30 10 11 21 0

-30 10 20 12 0

-30 10 20 21 0

-30 19 11 12 0

-30 19 11 21 0

-30 19 20 12 0

-30 19 20 21 0

-30 13 14 15 0

-30 13 14 24 0

-30 13 23 15 0

-30 13 23 24 0

-30 22 14 15 0

-30 22 14 24 0

-30 22 23 15 0

-30 22 23 24 0

c reifyimply(watched-and(eq(p210,c110),eq(p211,c111)),p2c110)

-31 13 14 15 0

-31 13 14 24 0

-31 13 23 15 0

-31 13 23 24 0

-31 22 14 15 0
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-31 22 14 24 0

-31 22 23 15 0

-31 22 23 24 0

-31 16 17 18 0

-31 16 17 27 0

-31 16 26 18 0

-31 16 26 27 0

-31 25 17 18 0

-31 25 17 27 0

-31 25 26 18 0

-31 25 26 27 0

c reifyimply(watched-and(eq(p19,c29),eq(p110,c210)),p1c29)

-41 1 2 3 0

-41 1 2 34 0

-41 1 33 3 0

-41 1 33 34 0

-41 32 2 3 0

-41 32 2 34 0

-41 32 33 3 0

-41 32 33 34 0

-41 4 5 6 0

-41 4 5 37 0

-41 4 36 6 0

-41 4 36 37 0

-41 35 5 6 0

-41 35 5 37 0

-41 35 36 6 0
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-41 35 36 37 0

c reifyimply(watched-and(eq(p110,c210),eq(p111,c211)),p1c210)

-42 4 5 6 0

-42 4 5 37 0

-42 4 36 6 0

-42 4 36 37 0

-42 35 5 6 0

-42 35 5 37 0

-42 35 36 6 0

-42 35 36 37 0

-42 7 8 9 0

-42 7 8 40 0

-42 7 39 9 0

-42 7 39 40 0

-42 38 8 9 0

-42 38 8 40 0

-42 38 39 9 0

-42 38 39 40 0

c reifyimply(watched-and(eq(p29,c29),eq(p210,c210)),p2c29)

-43 10 11 12 0

-43 10 11 34 0

-43 10 33 12 0

-43 10 33 34 0

-43 32 11 12 0

-43 32 11 34 0

-43 32 33 12 0

-43 32 33 34 0
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-43 13 14 15 0

-43 13 14 37 0

-43 13 36 15 0

-43 13 36 37 0

-43 35 14 15 0

-43 35 14 37 0

-43 35 36 15 0

-43 35 36 37 0

c reifyimply(watched-and(eq(p210,c210),eq(p211,c211)),p2c210)

-44 13 14 15 0

-44 13 14 37 0

-44 13 36 15 0

-44 13 36 37 0

-44 35 14 15 0

-44 35 14 37 0

-44 35 36 15 0

-44 35 36 37 0

-44 16 17 18 0

-44 16 17 40 0

-44 16 39 18 0

-44 16 39 40 0

-44 38 17 18 0

-44 38 17 40 0

-44 38 39 18 0

-44 38 39 40 0

c Locations constraints

c watched-or(eq(p19,p110),eq(p1c19,1),eq(p1c29,1))
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c (p191 ∧ p1101) ∨ (p192 ∧ p1102) ∨ (p193 ∧ p1103) ∨ (p1c19) ∨ (p1c29)

1 2 3 28 41 0

1 2 6 28 41 0

1 5 3 28 41 0

1 5 6 28 41 0

4 2 3 28 41 0

4 2 6 28 41 0

4 5 3 28 41 0

4 5 6 28 41 0

c watched-or(eq(p110,p111),eq(p1c110,1),eq(p1c210,1))

4 5 6 29 42 0

4 5 9 29 42 0

4 8 6 29 42 0

4 8 9 29 42 0

7 5 6 29 42 0

7 5 9 29 42 0

7 8 6 29 42 0

7 8 9 29 42 0

c watched-or(eq(p29,p210),eq(p2c19,1),eq(p2c29,1))

10 11 12 30 43 0

10 11 15 30 43 0

10 14 12 30 43 0

10 14 15 30 43 0

13 11 12 30 43 0

13 11 15 30 43 0

13 14 12 30 43 0

13 14 15 30 43 0
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c watched-or(eq(p210,p211),eq(p2c110,1),eq(p2c210,1))

13 14 15 31 44 0

13 14 18 31 44 0

13 17 15 31 44 0

13 17 18 31 44 0

16 14 15 31 44 0

16 14 18 31 44 0

16 17 15 31 44 0

16 17 18 31 44 0

c the end of CNF solution for this sample.

The result for this solution by using UBCSAT solver is:

-1 -2 3 -4 5 -6 7 -8 -9 -10

-11 12 -13 14 -15 -16 17 -18 -19 -20

21 -22 23 -24 25 -26 -27 28 29 -30

-31 -32 -33 34 -35 36 -37 -38 39 -40

-41 -42 43 -44

The variables that are true are 3 5 7 12 14 17 21 23 25 28 29 34 36 39 43, which are

P113, P122 , P131, P213, P222, P232, C113, C122, C131, PFV111, PFV112, C213, C222,

C232, PFV221, respectively.

This variables in this result mean:

• P113: passenger1 at time1 in carstation3

• P122: passenger1 at time2 in carstation2

• P131: passenger1 at time3 in carstation1

• P213: passenger2 at time1 in carstation3

• P222: passenger2 at time2 in carstation2
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• P232: passenger2 at time3 in carstation2

• C113: car1 at time1 in carstation3

• C122: car1 at time2 in carstation2

• C131: car1 at time3 in carstation1

• PFV111: passenger1 in car1 at time1

• PFV112: passenger1 in car1 at time2

• C213: car2 at time1 in carstation3

• C222: car2 at time2 in carstation2

• C232: car2 at time3 in carstation2

• PFV221: passenger2 in car2 at time1

And that shows the problem is solvable, passenger1 transfer by car1 from

carstation3 to carstation1 through carstation2, and passenger2 transfer by car2

from carstation3 to carstation2 and stay in carstation2.
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Chapter 5

Maximum Satisfiability

(MAX-SAT) Formulation

The goal of formulating the problem as Maximum Satisfiability Problem (MAX-

SAT) is to minimize the number and the cost of hired cars not just to determine if

the problem is solvable with a specific number of cars. So, we have to assign a cost

for each hired car. Maximum Satisfiability Problem (MAX-SAT) is an optimization

version of the Boolean Satisfiability Problem (SAT). SAT is to determine if a boolean

expression is satisfiable, while MAX-SAT is to determine the maximum number of

satisfiable clauses in CNF formula [9, 13, 10]. For example, in SAT, the boolean

expression (A∨B)∧(¬A∨¬B)∧(¬A∨B)∧(A∨¬B) is not satisfiable, but in MAX-

SAT, the result will be three, which is the maximum number of satisfiable clauses.

Additionally, in the DQOC transportation problem, if the problem is not solvable

with a particular number of cars, we can check how many passengers can transfer by

that number of cars by applying MAX-SAT. However, the goal of formulating the

problem as MAX-SAT is to minimize the number of used cars in the company. There

are three versions of the MAX-SAT problem the weighted MAX-SAT, the partial
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MAX-SAT problems, and the weighted partial MAX-SAT problem. In the weighted

MAX-SAT problem, each clause is assigned a positive weight, and the goal is to

maximize the sum of weights of satisfied clauses. While in the partial MAX-SAT

problem, some clauses must be satisfied by any solution. The mandatory clauses are

always represented by a clause with a large weight. In the weighted partial MAX-

SAT problem, there are also some mandatory clauses, and the goal is to maximize

the sum of weights of satisfied non-mandatory clauses.

5.1 Define WCNF

WCNF is a boolean expression in the CNF formula with weight assigned to each

clause. For example, (A∨B)∧ (¬B ∨C) is a WCNF with two clauses, each of them

with two literals.

5.2 Map Problem to WCNF

We map the problem of the DQOC transportation to the weighted partial MAX-

SAT because there are many mandatory clauses, and the goal is to minimize the

number of the hired cars. To map a problem to WCNF, we have to specify the

variables and the constraints in the problem:

• The Problem Variables: The passengers variables, the cars variables, and

Passengers flag variables (PFV) are the same as in SAT. We only have to

Figure out the Cars flag variables (CFV), which are if at lease one of the n

passengers in one of the m cars at any time, that means that car is used for

sometime. Therefore, there is one boolean variable per car to show if it used

or not. There are m CFVs in the form CFVi, where i is the car number. For

example, ¬CFV5 shows car5 is not used in the problem while CFV1 shows

car1 is used in the problem.
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• The Problem constraints: In addition to the six types of constraints in

SAT in section 4.2.2, there is a need for two new constraints:

– Used cars constraints: This type of constraint is to label the car as

used if at least one passenger used that car at any time; and if the car is

used that means one of the passengers must ride that car. The used car

constraint is in the form:

CFVi ≡ PFV1i1 ∨ PFV2i1 ∨ PFV3i1 . . . PFVni1 ∨ PFV1i2 ∨ PFV2i2 ∨

PFV3i2 . . . PFVni2 ∨ . . . ∨ PFVnit.

In CNF, the used cars constraint will be:

(¬CFVi ∨ PFV1i1 ∨ PFV2i1 ∨ PFV3i1 . . . ∨ PFVni1 ∨ PFV1i2 ∨ PFV2i2 ∨

PFV3i2 . . . PFVni2 ∨ . . . ∨ PFVnit) ∧ (¬PFV1i1 ∨ CFVi) ∧ (¬PFV2i1 ∨

CFVi)∧(¬PFV3i1∨CFVi)∧. . .∧(¬PFVni1∨CFVi)∧(¬PFV1i2∨CFVi)∧

(¬PFV2i2 ∨CFVi)∧ (¬PFV3i2 ∨CFVi)∧ . . .∧ (¬PFVni2 ∨CFVi)∧ . . .∧

(¬PFVnit ∨ CFVi).

– Optimization constraints: To minimize the number of the hired cars,

we add non mandatory clauses in the form (cost ¬CFVi), which means if

cari is unused, then the company will get that cost. The weighted partial

MAX-SAT tries to maximize the sum of weights of satisfied clauses, so

the system will maximize the number of the unused cars.

5.3 Solving Sample Problem by WCNF

The MAX-SAT solver used to solve the DQOC transportation problem is called

toysat [11]. The input file format for the toysat solver is in DIMACS format. For

example, if there are five variables and five clauses as follows,

Variables: v1, v2, v3, v4, v5.

Clauses: (v1 ∨ ¬v5 ∨ v4) ∧ (¬v1 ∨ v5 ∨ v3 ∨ v4) ∧ (¬v3 ∨ ¬v4) ∧ v3 ∧ v4.
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then the DIMACS format for this example will be,

c comment

p wcnf 5 5 100 c 5 variables 5 clauses and top=100

100 1 -5 4 0 c v1 ∨ ¬v5 ∨ v4 (hard clause)

100 -1 5 3 4 0 c ¬v1 ∨ v5 ∨ v3 ∨ v4(hard clause)

100 -3 -4 0 c ¬v3 ∨ ¬v4(hard clause)

10 4 0 c v3 (soft clause)

5 3 0 c v4 (soft clause)

c the comments can be anywhere in the file

The line p wcnf numbervar numberclauses top means the format is WCNF; the first

integer in the clause is the weight, which must be greater than or equal to 1. The

weight of the mandatory clause (also called hard clause) is ”top”, while the weight

of the non-mandatory clause (also called soft clause) is less than ”top”.

5.3.1 Map Sample Problem to WCNF

To formulate a sample problem, let us use the same sample in section 4.3 with

some modification by adding one car to show how the number of the hired cars is

minimized. The problem’s variables are as following:

• Passengers:

The passengers’ variables are the same as in SAT sample in section 4.3, which

are: Passenger1’s variables are P111, P112, P113, P121, P122, P123, P131, P132,

P133, which in DIMACS format are variables 1, 2, 3, ..., 9, respectively. Pas-

senger2’s variables are P211, P212, P213, P221, P222, P223, P231, P232, P233, which

in DIMACS format are variables 10, 11, 12, ..., 18, respectively..

• Cars:

The cars’ variables are the same as in SAT sample in section 4.3,which are:

Car1’s variables are C111, C112, C113, C121, C122, C123, C131, C132, C133, which
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in DIMACS format are variables 19, 20, 21, ..., 27, respectively. Car2’s vari-

ables are C211, C212, C213, C221, C222, C223, C231, C232, C233, which in DI-

MACS format are variables 32, 33, 34, ..., 40, respectively. In addition, car3’s

variables, which are C311, C312, C313, C321, C322, C323, C331, C332, C333, which

in DIMACS format are 45, 46, 47, ..., 53, respectively.

• Flag variables:

– Passengers flag variables (PFV): The PFVs are also the same as in

in section 4.3, which are PFV111, PFV112, PFV211, PFV212 for car1, and

PFV121, PFV122, PFV221, PFV222 for car 2. And, in DIMACS format

these are variables 28, 29, 30,31 for car1 and 41, 42, 43, 44 for car 2. In

addition, PFV131, PFV132, PFV231, PFV232 for car 3, which in DIMACS

format are 54, 55, 56, 57, respectively.

– Cars flag variables (CFV): The CFVs are the new variables, which

are CFV1, CFV2, CFV3. And, in DIMACS format are 58, 59, 60, re-

spectively.

The problem’s constraints are the same as in section 4.3, and adding the Used cars

constraint and the optimization constraints:

• Used cars constraints: Since there are four PFVs associated with each car,

this constraint will be in the form: (¬CFVi ∨ PFV1i1 ∨ PFV2i1 ∨ PFV1i2 ∨

PFV2i2) ∧ (¬PFV1i1 ∨ CFVi) ∧ (¬PFV2i1 ∨ CFVi) ∧ (¬PFV1i2 ∨ CFVi) ∧

(¬PFV2i2 ∨ CFVi). For example, used cars constraint for car1 in DIMACS

format is:

100 -58 28 29 30 31 0

100 -28 58 0

100 -29 58 0

100 -30 58 0
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100 -31 58 0

See the Used cars constraints in the MAX-SAT solution on page 57.

• Optimization constraints To minimize the number of the hired cars, we

add non-mandatory clauses in the form (cost ∨ ¬CFVi), which means if cari

is not used, then the company will get that cost. The weighted partial MAX-

SAT tries to maximize the sum of weights of satisfied clauses, so the system

will maximize the number of the unused cars.

In this type of constraint, which is the only one that consists of non-mandatory

clauses, the weight is the cost of the car. For example, the cost in this sample is

10. See the Optimization constraints in the MAX-SAT solution on page 58.

c The WCNF Solution:

p wcnf 60 328 100

c passenger1 time 1

100 -1 -2 0

100 -1 -3 0

100 -2 -3 0

100 1 2 3 0

...

the same as in SAT Sample, with adding 100 to the front of each clause.

...

c Used cars constraints

c car1

100 -58 28 29 30 31 0

100 -28 58 0

100 -29 58 0
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100 -30 58 0

100 -31 58 0

c car 2

100 -59 41 42 43 44 0

100 -41 59 0

100 -42 59 0

100 -43 59 0

100 -44 59 0

c car 3

100 -60 54 55 56 57 0

100 -54 60 0

100 -55 60 0

100 -56 60 0

100 -57 60 0

c Optimization constraints

10 -58 0

10 -59 0

10 -60 0

c the end of WCNF solution for this sample.

The result for this solution by using the maxhs solver is:

-1 -2 3 -4 5 -6 7 -8 -9 -10

-11 12 -13 14 -15 -16 17 -18 -19 -20

21 -22 23 -24 -25 26 -27 -28 -29 30

-31 -32 -33 34 -35 36 -37 38 -39 -40

41 42 -43 -44 -45 -46 47 -48 -49 50

-51 -52 53 -54 -55 -56 -57 58 59 -60
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The variables that are true are 3 5 7 12 14 17 21 23 26 30 34 36 38 41 42 47 50

53 58 59, which are:

P113, P122, P131, P213, P222, P232, C113, C122, C132, PFV211, C213, C222, C231, PFV121,

PFV122, C313, C323, C333, CFV1, CFV2, respectively.

The literals 58, 59, and -60 are showing that car1 and car2 are used, but car3 is not

used at all. This variables in this result mean:

• P113: passenger1 at time1 in carstation3

• P122: passenger1 at time2 in carstation2

• P131: passenger1 at time3 in carstation1

• P213: passenger2 at time1 in carstation3

• P222: passenger2 at time2 in carstation2

• P232: passenger2 at time3 in carstation2

• C113: car1 at time1 in carstation3

• C122: car1 at time2 in carstation2

• C132: car1 at time3 in carstation2

• PFV211: passenger2 in car1 at time1

• C213: car2 at time1 in carstation3

• C222: car2 at time2 in carstation2

• C231: car2 at time3 in carstation1

• PFV121: passenger1 in car2 at time1

• PFV122: passenger1 in car2 at time2
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• C313: car3 at time1 in carstation3

• C323: car3 at time2 in carstation3

• C333: car3 at time3 in carstation3

• CFV1: car1 is used

• CFV2: car2 is used

And that shows the problem is solvable by only two cars, passenger1 transfer by

car2 from carstation3 to carstation1 through carstation2, and passenger2 transfer

by car1 from carstation3 to carstation2 and stay in carstation2. In addition, this

results shows that only car1 and car2 are used, and car3 is not used at all the times

and it stays in carstation3 for all the times.
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Chapter 6

Experiments

After we model the DQOC transportation problem using CP, SAT, and MAX-

SAT, we have use CP, SAT, and MAX-SAT solvers to produce solutions. If the

solvers can find solutions, then we have to check to see which one is the most

efficient. In particular, we are interested in knowing what is more efficient: multiple

satisfiability queries by CP and SAT or a single optimal query by MAX-SAT.

6.1 Problem setup

In order to check the possibility of applying these solvers, we have to set up

suitable problems with different sizes and with all types of solutions. Therefore;

we run problems that differ in the number of car stations, differ in the number of

passengers, and differ in the number of cars as follows:

• The number of passengers ranges from 10 to 100.

• The number of cities ranges from 3 to 14. For each number of cities, we run

problems with 10 to 100 passengers by increments of 10.
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• CP and SAT solvers perform decidable queries, that is they answer the ques-

tion of whether we can solve an instance with X cars, so we need multiple

queries with different values of X to find an optimal solution. MAX-SAT finds

optimal solution directly. Therefore; the number of cars depends on the type

of solutions:

– In CP and SAT, the number of cars ranges from the ceiling of the number

of passengers divided by the car capacity to the number of cars that makes

the problem solvable. The ceiling of the number of passengers divided by

the car capacity is the smallest number of cars that may make the problem

solvable. We iteratively increase from min to max until we find a solvable

instance. Min numbers of cars=dNumberOfPassengers÷CarCapacitye

to max number of cars= NumberOfPassengers.

– In MAX-SAT, we initially used the number of cars as the number of pas-

sengers. But the solver cannot solve instances with such a large number

of cars. We will see in the Equation 6.1.1 how the number of cars ef-

fects in the number of clauses. Instead, we set the number of cars to be

the ceiling of the number of passengers divided by the car capacity and

then add five, which is always enough to solve the problem. Numbers of

cars=dNumberOfPassengers÷ CarCapacitye + 5.

• The initial constraints in the experiments are as follows:

– The initial constraints for the passenger was just to indicate where each

passenger is living and where is his or her destination. Each passenger

starts in a car station and goes to other car station, in other words, there

is no passenger going to the same car station where they live. These con-

straints are chosen at random. Tabel 6.1 and 6.2 shows these constraints

for some cities while for the other cities is in the same randomness.
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– In the initial constraints for the cars, we change the distribution of the

cars between the car stations. Instead of distributing the cars between

the car stations by the user, we make the system distributes cars between

the car stations by the time of need. By adding an extra car station to

each problem and putting all the cars in that car station in a time before

the beginning time. For example, if the beginning time of the travel is

8:30am, all the cars should be at the extra car station at 8 am, they travel

to any car stations by 8:30am. In order to make these cars can move to

all the car stations and do not come back to the extra car stations to save

the time and cars, we make this extra car station adjacent to all the car

stations in only one way. Figure 6.1 shows how the extra car station is

connected to all car stations.

• We run all the experiments in two topology for the car stations as follows:

– The first topology was in a star shape, where one car station in the center

and all other car stations around it and connected to it. The extra city -

the city that contains the cars before the beginning time- is located out

side of the star. Figure 6.1 is example of the first topology. Table 6.1

shows the distribution of the passengers in this topology.
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No of Cities The no of passengers
3 car stations case 10 20 30 c 40 50 60 c 70 c 80 c 90 c 100

1 5 10 15 20 25 30 35 40 45 50
2 0 0 0 0 0 0 0 0 0 0
3 5 10 15 20 25 30 35 40 45 50

4 car stations
1 5 10 10 15 25 30 35 40 45 50
2 0 0 0 0 0 0 0 0 0 0
3 5 0 10 15 20 30 30 40 40 50
4 0 10 10 10 5 0 5 0 5 0

5 car stations
1 4 9 10 15 25 26 35 36 45 45
2 0 0 0 0 0 0 0 0 0 0
3 5 10 10 15 19 30 30 36 40 46
4 0 0 10 10 5 0 5 0 5
5 1 1 0 1 4 0 8 0 9

6 car stations
1 3 6 8 13 23 23 31 32 41 40
2 0 0 0 0 0 0 0 0 0 0
3 5 7 9 13 17 27 27 32 36 42
4 0 10 10 5 0 5 0 5 0
5 1 1 0 0 1 4 0 8 0 9
6 1 6 3 4 4 6 7 8 8 9

7 car stations
1 3 5 8 12 20 23 31 32 37 40
2 0 0 0 0 0 0 0 0 0 0
3 4 7 9 12 16 27 27 32 32 42
4 0 0 10 10 5 0 5 0 5 0
5 1 1 0 0 1 4 0 8 0 9
6 1 6 3 4 4 6 7 8 8 9
7 1 1 0 2 4 0 0 0 8 0

Table 6.1: The initial constraints for the passengers for some car stations in the first
topology
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No of Cities The no of passengers
3 car stations case 10 c 20 c 30 c 40 c 50 c 60 c 70 c 80 c 90 c 100

1 4 7 10 14 17 20 24 27 30 34
2 3 6 10 13 16 20 23 26 30 33
3 3 7 10 13 17 20 23 27 30 33

4 car stations
1 3 5 8 15 10 15 18 20 23 25
2 2 5 7 0 10 15 17 20 22 25
3 3 5 8 15 10 15 18 20 23 25
4 2 5 7 10 10 15 17 20 22 25

5 car stations
1 2 4 6 8 10 12 14 16 18 20
2 2 4 6 8 10 12 14 16 18 20
3 2 4 6 8 10 12 14 16 18 20
4 2 4 6 8 10 12 14 16 18 20
5 2 4 6 8 10 12 14 16 18 20

6 car stations
1 2 4 5 7 9 10 12 14 15 17
2 1 3 5 6 8 10 11 13 15 16
3 2 4 5 7 9 10 12 14 15 17
4 2 3 5 7 8 10 12 13 15 17
5 2 3 5 7 8 10 12 13 15 17
6 1 3 5 6 8 10 11 13 15 16

7 car stations
1 2 3 5 6 8 9 11 12 14 15
2 1 3 5 6 8 9 11 12 14 15
3 2 3 5 6 8 9 11 12 14 15
4 2 3 4 6 7 9 10 12 13 15
5 1 3 4 6 7 9 10 12 13 15
6 1 3 4 6 7 9 10 12 13 15
7 1 2 3 4 5 6 7 8 9 10

Table 6.2: The initial constraints for the passengers for some car stations in the
second topology
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Figure 6.1: Example for the first topology of five car stations

The Figure 6.1 shows the map of the car stations and their destributions in case of

six car stations, and how the extra car station connected to all other car stations.

– The second topology was, in addition to first topology, we add a road

between each two neighbor car stations. Figure 6.2 is example of the

second topology. Table 6.2 shows the distribution of the passengers in

this topology.
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Figure 6.2: Example of the second topology of five car stations

The Figure 6.2 shows the map of the car stations and their destributions in case of

six car stations, and how the extra car station connected to all other car stations.

• All the experiments run in one way and in three time steps, in other words,

we run the problem in only when the passengers are going to work because it

the same when we want to run it in the other way just by change the initial

constraints for the passengers. So, we solve instances for times 8:00am-9:30am.

All the workers are at home at 8:30am, and all of them are at work at 9:30am.

• The car capacity in all the problem that we run was three passengers. This

increases the total number of the clauses in the problems in SAT and MAX-

SAT over a two passengers limit because the number of the clauses in the

capacity constraints depends on the car capacity. See the Equation 6.1.1,

which shows the number of clauses in SAT.
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• The number of problems was one hundred and twenty in each type, so the total

number of problems was three hundred and sixty. As Table 6.3 shows, the size

of the problems in CP ranges from 10,498 bytes (12 KB on disk, different

than on RAM which would be KiB) to 785,310 bytes (791 KB on disk).The

number of constraints in CP ranges from 177 constraints to 8,885 constraints.

The size of the problem in SAT ranges from 199,968 bytes (201 KB on disk) to

27,176,741,630 bytes (27.18 GB on disk, different than on RAM which would be

GiB). The number of variable and clauses ranges from 210 variables and 3,452

clauses to12,948 variables and 521,699,344 clauses. Equation 6.1.1 gives the

number of clauses for SAT and Equation 6.1.2 gives the number of variables

for SAT. The size of the problems in MAX-SAT ranges from 223,552 bytes

(225 kB on disk) to 34,375,119,725 bytes (34.38 GB on disk). The number

of variable and clauses ranges from 369 variables and 8,040 clauses to13,716

variables and 564,918,484 clauses. The number of clauses for MAX-SAT is

calculated by adding 2× cars× (1 + passengers) (used cars constraints plus

optimization constraints) to the Equation 6.1.1 and taking into consideration

the number of cars here is different. The size of the files in MAX-SAT is larger

than the size of files in SAT because the increasing in the number of the clauses

and the weight of each clause.The number of variables is calculated by adding

the number of cars to the equations 6.1.2.
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size
constraints/

clauses
passengers cars

car

stations

CP
small 12 KB 177 10 4 3

large 791 KB 8,885 100 36 14

SAT
small 201 KB 3,452 10 4 3

large 27 GB 521,699,344 100 36 14

MAXSAT
small 225 KB 8,040 10 9 3

large 34 GB 564,918,484 100 39 14

Table 6.3: Size of Experiments

No Of Clauses = one locations for constraints for Passengers

+ one locations for constraints for cars

+ initial constraints+capacity constraints

+ adjacent constraints

+ one car constraints + traveling constrains

(6.1.1)

one locations for constraints for Passengers = (times×
(
carStations

2

)
+ times)×

passengers

one locations for constraints for cars = (times×
(
carStations

2

)
+ times)× cars

initialconstraints = 2× passengers + cars

LocationsConstraints = 2carStations × 2× passengers

OneCarConstraints =
(
cars
2

)
× (times− 1)× passengers

adjacentConstraints = (carStations− 1)× 2× cars + cars

CapacityConstraints =
(
passengers
capacity+1

)
× 2× cars
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TravelingConstrains = 2carStations × 2× 2× passengers× cars

NoOfV ariables = passengers× carStations× times

+ cars× carStations× times

+ passengers× cars× (times− 1)

+ cars + cars)

(6.1.2)

6.2 Results

After running the problems in the three different solvers CP, SAT, and MAX-

SAT solvers, the results were as following:

• In CP problems, one hundred and four problems are solved in only one second,

then some problem are solved in less than eleven seconds and thirteen problems

are not solved during the three hundred seconds in the first topology. Figure

6.3 shows this. In the second topology, all the instance are solved during the

three hundred seconds. In CP, the increase in the number of car stations does

not affect the number of solved instances as shown in Table 6.4 and Table 6.5.

• In SAT, seventy-one problems are solved and the time to solve these problems

ranges from one to eighty-eight seconds in the first topology. In the second

topology, the number of the solved problem is the same as in the first topol-

ogy, but the the time required to solve the instance is less that that in the

first topology. The other fifty problems are not solved in three hundred sec-

onds. From the experiments, the SAT problem with eighty passengers are not

solvable with a number of car stations ranging from three to nine; in ten car

stations, the number of passengers starts decreasing. In fourteen car stations,
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Car Stations
Total
solved

Total
time

Solver 3 4 5 6 7 8 9 10 11 12 13 14
CP 7 9 6 8 7 10 10 10 10 10 10 10 107 29.36
SAT 7 7 7 7 7 7 7 6 6 5 3 2 71 1208.04

MAX-SAT 1 1 1 1 1 1 1 1 1 1 0 0 10 268.75

Table 6.4: The number of solved problems in five minutes in the first topology

only the problems with twenty passengers or less are solvable. In SAT, the

increase in the number of car stations effects in the number of solved instances

as shown in Table 6.4 and Table 6.5 because it increases the number of the

clauses in exponentially functions as Equation 6.1.1 shows.

• In MAX-SAT in both topology, only ten problems are solved, which are con-

sists of ten passengers and less than thirteen car stations. As Figure 6.3 shows,

the solvable problems are solved in a time ranging from one to one hundred

and sixteen seconds. In MAX-SAT, the increase in the number of car stations

effects in the number of solved instances as shown in Table 6.4 and Table 6.5

for the same reason in SAT.

The main points of the results above is that multiple satisfiability queries by CP

and SAT is more efficient than a single optimal query by MAX-SAT because most

of the problems in MAX-SAT are not solvable, and the solve time for the problems

by CP and SAT is smaller than the solve time for the same problems by MAX-SAT.

71



Figure 6.3: The number of solved problems in five minutes

This Figure is to show how many CP, SAT, MAX-SAT problems solved during five

minutes.
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Car Stations
Total
solved

Total
time

Solver 3 4 5 6 7 8 9 10 11 12 13 14
CP 10 10 10 10 10 10 10 10 10 10 10 10 120 454
SAT 7 7 7 7 7 7 7 6 6 5 3 2 71 182

MAX-SAT 1 1 1 1 1 1 1 1 1 1 0 0 10 296

Table 6.5: The number of solved problems in five minutes in the second topology

Figure 6.4: The number of solved problems in five minutes

This Figure is to show how many CP, SAT, MAX-SAT problems solved during five

minutes.
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Chapter 7

Conclusion

In this thesis, we have modeled the DQOC transportation problem using CP,

SAT, and MAX-SAT. The main goal of modeling the problem is to find optimal

solutions. The secondary goal is to check to see which solver and modeling language

is the most efficient.

We showed that finding optimal solutions for the DQOC transportation problem

using multiple queries with CP and SAT solvers is more efficient than finding it by

a single optimal query using aMAX-SAT solver.

7.1 Future directions

There are still many other approaches that we could use to find an optimal

solution for the DQOC transportation problem, such quantified Boolean formulas

(QBF) [6]. Additionally, focusing on the second goal (finding solutions efficiently),

we could perform further tests using different solvers built by other researchers. Fi-

nally, we could investigate alternate formulations of the problem that may represent

the problem more efficiently or be easier for solvers to solve.
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