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This research set out to continue the exploration and diversification of excited 

state o-azaxylylene cycloadditions, utilizing both pre-photochemical and post-

photochemical modifications.   

Pre-photochemical modifications came through the addition of heteroatoms, 

namely nitrogen and oxygen, to the tether that links the unsaturated photopendant to the 

photogenerated o-azaxylylene. Photochemistry resulted in the formation of new, 

interesting N, O, S polyheterocycles. 

Post-photochemical modifications took place through several different 

cycloaddition reactions, including a [4+2] hetero-Diels Alder reaction, a [4+2] Povarov 

cyclization, a [3+2] nitrile oxide addition, and a [3+2] nitrone cyclization. These 

reactions were applied first to a model system, and then to a new scaffold that contained 

the biologically relevant β-lactam fragment. 

  A summation of engineering work is also included to detail the development and 

implementation of several new LED irradiators. These irradiators are key to the 

photochemistry that will be discussed, and their development will serve as a blueprint for 

future work and improvement. 
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Chapter One: Introduction and Background 

 

A Growing Need for Drug Discovery 

With the increasing average age of our country’s population, and with the modern 

advancements in disease diagnostics, there is an ever growing need for new and improved 

pharmaceuticals.1 As will be demonstrated in the following chapters, o-azaxylylene 

photochemistry will hopefully aid in this search.  

In the United States, 44.7 million people were age 65 or older in the year 2014, 

which represents 14.1% of the population. By 2060, this number is estimated to reach 98 

million people, or 21.7% of the population.2 As people age, they are more susceptible to 

the formation of such diseases as atherosclerosis, other cardiovascular diseases, arthritis, 

cancer, osteoporosis, type 2 diabetes, and Alzheimer’s disease.3 Although there are some 

effective treatments for these conditions, some, like Alzheimer’s disease, still remain 

mostly untreatable. These seven diseases alone account for nearly 70% of the deaths in 

the US population of 65 years and older,4 so new more effective treatments should be a 

focus. 

There is another group of diseases, called “orphan” or rare diseases, which 

currently do not have any effective treatments. There are an estimated 7,000 such orphan 

diseases that have been diagnosed,5 having been defined by the Rare Disease Act of 2002 
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as “any disease or condition that affects fewer than 200,000 people in the United 

States.”.7 These diseases are estimated to currently affect about 30 million Americans, or 

about 10% of the population. Although there has been an increase in funding for these 

diseases as a result of the Rare Disease Act of 2002, there are only an estimated 98 

current studies on going, 13 cures developed, and 452 compounds in trials for approval.7  

Another area of need is the growing number of antibiotic-resistant bacterial 

infections, caused by bacteria that have built up a resistance to current generations of 

treatments.8 In the United States alone, it is estimated that 2 million people a year are 

diagnosed with an infection caused by a resistant strain of bacteria, leading to 23,000 

deaths annually, with this number being much higher in less developed countries.9  

For these reasons, and more it is critical for research to continue to find new and 

more effective small molecule drug candidates for the better health and wellbeing of our 

population. The synthesis and diversification of small libraries of o-azaxylylene-derived 

small molecules will help in this search, as will be presented in the following pages. 

 

o-azaxylylenes 

It would be most appropriate to begin the discussion of o-azaxylylenes with a 

historical overview. o-azaxylylenes are reactive, unstable heterodiene intermediates (1.1’) 

capable of undergoing [4+2] cycloaddition reactions with a limited number of 

dienophiles. Although they had been known for many years, their formation traditionally 

required harsh reaction conditions or exotic reagents, which rendered these species 

useless for many drug discovery applications. Their generation could be grouped into six 
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unique reaction types (Scheme 1.1):10 nitrene formation followed by a [1,4]-hydrogen 

shift (1.1a), electrocyclic ring opening of strained benzoazetines (1.1b), thermal 

cheleotropic extrusion of SO2 (1.1c) elimination of CO2 by a [4 + 2] cycloreversion 

(1.1d), ring-opening of heterocyclic systems (1.1e), and base-assisted elimination of HCl 

(1.1f). The latter, which encompasses work put forth by Corey and Steinhagen in 1999, 

represented the first straightforward method of the generation for o-azaxylylenes (1.1f 

and Scheme 1.5).11 With the assistance of an external base, the elimination of HCl 

yielded the desired o-azaxylylene intermediate, pictured center of Scheme 1.2, which was 
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trapped by the tethered unsaturated alkene tail. The resulting scaffolds were obtained in 

moderate to good yields, and in the example of Scheme 1.2, allowed for quick access to 

the structural core of the antiviral drug virantmycin.12. Although on the surface this 

method appeared to be simple, there were some steps in the procedure that made it a bit 

challenging. In particular, the formation of the precursors required the use of phosgene to 

generate a chlorocarbamate intermediate that was then coupled to the aniline of choice. 

Phosgene is extremely toxic if inhaled, causing a wide range of symptoms from 

drowsiness to death by suffocation.13 Precise temperature control is also required for 

precursor formation, in some cases -78°C was to be maintained for 24 hours for proper 

formation.11 Additionally, syringe pump addition of Cs2CO3 over the course of 48 hours 

was required in some cases. Although this procedure represented a huge improvement 

over previous methods, and even though it was used several times in successful 

syntheses, there was still something left to be desired. 

 

Photogenerated o-azaxylylenes 

In 2011, the Kutateladze group published the seminal work on the in situ 

photochemical generation of o-azaxylylenes through an Excited State Intramolecular 

Proton Transfer (ESIPT).14 The ESIPT process was previously described, however the 
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utilization in a synthetic application was completely new. The back-proton transfer 

historically occurred too quickly for trapping, but with the addition of a tethered, 

unsaturated pendant, the intermediate could be captured forming new complex N, O, S, 

polyheterocycles. This new method was preparatively simpler than Corey and 

Steinhagen’s method, as it did not require any additional additives for azaxylylene 

formation. The key features of the method include: (i) modular assembly of the 

photoprecursors; (ii) rapid growth of complexity during the photochemical step, and (iii) 

possibility of post-photochemical modifications.  

The synthesis of the starting materials is straightforward, and in many cases 

involves only a simple acid chloride coupling sequence (Scheme 1.3). Starting from the 

commercially available 3-(2-furyl)propanoic acid (1.2), the acid chloride 1.2’ is 

generated cleanly in situ upon treatment with thionyl chloride (SOCl2), and upon the 

addition to commercially available 2’-aminoacetophenone (1.3), yields the azaxylylene 

precursor (1.4) in two easy steps. The precursor is purified by flash chromatography, and 
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upon irradiation at 350 nm (vide infra) produces a [4+2] scaffold (1.5) and [4+4] scaffold 

(1.6).14 The photoproducts are also easily purified by flash chromatography, with good to 

high yields ranging from 60-89%. The stereochemical control of these reactions is quite 

reliable, with the compounds shown being the major diastereomers. In most cases, the 

structures were elucidated with X-ray crystallography, showing that [4+2] favors the anti 

diastereomer (1.5) and [4+4] favors the syn diastereomer (1.6). Stereochemistry is 

assigned based on the relationship of the hydroxyl group and the bridged heteroatom, 

where anti puts these groups on opposite faces and syn puts them on the same face. 

The photoprecursors generally have a UV absorbance maximum between 340-350 

nm, and are typically irradiated using a 365 nm LED Engin or a Rayonet photoreactor 

fitted with broad UV source lamps ranging from 300-420 nm (emission maximum at 350 

nm). The newest generations of irradiators will be discussed in detail in Chapter 5. 

Solvents for irradiation require optimization depending upon the system, but methanol, 
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acetonitrile, DMSO, toluene, and acetone have all been used with much success. The 

Kutateladze group’s method for azaxylylene generation has allowed for an impressively 

diverse number of small molecule scaffolds to be produced (Figure 1.1). This is 

important as diversity is key in new drug discovery. 

 

Chemical Diversity and Complexity 

Small molecules play an important role in drug discovery, as they themselves can 

be potential new drug candidates, or serve as building blocks for the assembly of larger 

molecules.15 When the structure of a protein target is unknown, the goal of drug 

discovery is to synthesize as many small molecules as possible that cover a large scope of 

chemical diversity. This theoretically yields the highest probability of finding new drug 

candidates, since it allows for the probing of different regions of chemical space.  

Chemical space is a set of descriptors that helps define the physical and chemical 

properties of a compound, which aids in the comparison of a compound to others.1 

Although the number of descriptors is virtually limitless, medicinal chemists have 

traditionally focused on the following six descriptors, as they have proven to be the most 

reliable at describing successful candidates. They are molecular weight (MW), number of 

rotatable bonds (RBs), hydrogen-bond acceptors (HBAs), hydrogen-bond donors 

(HBDs), topological polar surface area (TPSA), and the octanol/water partition 

coefficient (S log P).16 These descriptors and their well-defined range of values were 

developed, in part, by work put forward by Christopher Lipinski in 1997.17 His Rule of 5 

arose from his work at Pfizer, which showed most successful oral drug candidates had a 
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MW less than 500 Daltons (Da), 5 or less HBAs and 10 or less HBDs, the S log P was 

less than or equal to 5, the TPSA was less than or equal to 140 square angstroms, and the 

total number of RBs was less than or equal to 10. While many potential candidates have 

been synthesized using these descriptors, it should be noted that many candidates have 

been found that lie outside of these desired ranges. For instance, the newly approved 

pharmaceutical Linzess®, which is used for the treatment of irritable bowel syndrome, 

violates every rule (Figure 1.2). So while they have been useful to a point, at times they 

have narrowed the scope too much. As new targets emerge, a shift in the space often 

follows, and guidelines are revised to reflect these new discoveries.15 

Despite the large amount of effort put forward in synthesizing libraries of new 

small molecules, the approval of new drug candidates has still been extremely slow. 

There have been many specific reasons suggested as to why this is the case, but many 

agree that simply the wrong kinds of compounds are being synthesized.18 An analysis of 

the Chemical Abstracts Service (CAS), a registry of over 109 million small molecules, 

Figure 1.2: Linzess ® 
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most organic compounds, has shown that nearly half of the registered compounds can be 

represented by 143 framework shapes.19 And of those 143 framework shapes, the top 50 

most abundant are present in 48-52% of the approved pharmaceuticals.20 This is likely 

due to the biases of the chemists synthesizing more drug-like compounds instead of lead-

like compounds.21 Drug-like compounds are defined as those that have a high 

bioavailability, and can be used as is for biological testing. Usually inspired by 

previously synthesized or approved molecules, they sometimes narrow the chemical 

space too quickly. Lead-like compounds are those that are designed to fit to a specific 

target, but might require further optimization to increase bioavailability or druglikeness. 

While they might resemble natural products, their effectiveness lies in the fact that they 

can be optimized. 

When evaluating a small library of compounds,  it is not enough to simply say 

they are diverse, a statistical analyses based on Tanimoto coefficients can be used.22 

Using a binary string of 1’s and 0’s, the presence (1) or absence (0) of a set of structural 

and physical descriptors of a compound is determined. The same is done for a second 

compound, and the coefficient is determined (Figure 1.3).23 The coefficient is equal to 

the sum of the similarities (Nc) divided by the sum of the presence of each descriptor for 

each compound (Na and Nb) minus the sum of the similarities (Nc). A coefficient equal to 

1 therefore means the compounds are identical, and a coefficient of 0 means the 

compounds are completely unique. A large matrix can be created, comparing all of the 

Figure 1.3 
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compounds to one another and giving the chemists a numerical representation of how 

diverse their libraries are (for an example, see chapter 3). 

Modern Approaches to Drug Discovery 

 With the understanding that new drug candidates should be diverse, it is 

imperative to cover the three methods commonly used by synthetic chemists to make 

such compounds. The first approach is called Target-Oriented Synthesis (TOS), and is 

used to synthesis one particular compound. Researchers start by isolating and attempting 

to characterize a new, interesting NP and then test it for biological activity. If some 

activity is observed, chemists then try to use traditional synthetic approaches to make the 

target in reasonable quantities. This has been very successful in the synthesis of several 

important drug candidates, for instance Taxol®, an anti-cancer drug, and Artemisinin, an 

anti-malarial drug (Figure 1.4). The total synthesis of a specific target can usually be laid 

out quite easily by working backwards from the final product, and breaking bonds to 

form simpler subunits, a technique called retrosynthetic analysis. This allows for the 

development of a clear roadmap forward to the final product. TOS does have its 

disadvantages however, namely only one compound is synthesized for biological testing. 

Figure 1.4: Taxol (left) and Artemisinin (right) 
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It results in a very pin point probing of the chemical space (Scheme 1.4) and often does 

not allow for the possibility of major structural modifications. If the target proves to be 

inactive in later-stage testing, there isn’t much information given about what changes 

need to be made for improvement.  

The second approach used by chemists is called combinatorial chemistry (Scheme 

1.5).2 Combinatorial chemistry is defined as “a rapid synthesis and screening of large 

numbers of different but related chemical compounds generated from a mixture of known 

building blocks in order to recover new substances optimally suited for a specific 

function.” 24 This approach uses a core scaffold of interest that contains several built-in 

Scheme 1.4: Target-Oriented Synthesis16 

Scheme 1.5: Combinatorial Chemistry16 
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diversity inputs. These points are decorated with different functional groups, allowing for 

a slightly wider probing of the chemical space as compared to TOS (Scheme 1.4). It is 

however still restrictive to a specific region due to the similarity of the core. This means, 

if the resulting compounds don’t show any desired biological activity, some conclusions 

can potentially be made about which modifications are better than others, but it’s difficult 

to determine if the core scaffold is the issue. 

The third approach used by chemists, which yields the most diverse library of 

compounds, is Diversity-Oriented Synthesis (DOS) (Scheme 1.6).16 This approach, like 

combinatorial chemistry, starts with one core scaffold, but rather than just adding 

functional groups to the core, DOS rapidly grows the complexity of the new compounds 

by changing the structure of the core as well. This allows for a more diverse library of 

compounds to be synthesized, and a much greater probing of the chemical space. Not 

only are insights gained about the nature of the modifications, but the overall scaffolds 

Scheme 1.6: Diversity Oriented Synthesis16 
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are also very different as a result of the series of modifications, that insight is gained 

there as well.16 The photochemical generation of o-azaxylylenes is a perfect example of 

DOS. As can be seen in Scheme 1.7, the rapid growth of complexity and inclusion of 

several diversity inputs allows for the very unique scaffold synthesis. The tethered 

photopendant, as shown can either be an alkene14 or an aromatic heterocycle (Y) such 

furan,14 thiophene,25 or pyrrole,26 and in some cases, a benzoidal aromatic. The tether (X) 

can contain heteroatoms such as nitrogen and oxygen, and can vary in length from two to 

four atoms, yielding photoproducts with new 4, 5, or 6-membered heterocycles. And the 

azaxylylene fragment (R) can be diversified as an aldehyde, ketone, cyclic ketone, or 

imine, all of which can contain their own separate variable fragments for cross-coupling 

reactions.27 The resulting N, O, S, polyheterocycles contain very important biologically 

relevant fragments that can used in a specific type of DOS called Fragment-Based Drug 

Discovery. 
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Fragment-Based Drug Discovery 

Using DOS and computational methods together, there have been multiple new 

techniques developed by which a user can analyze compounds.28 While some focus on 

the discovery of a complete molecule, a particularly successful approach that looks to 

optimize smaller pieces of a molecule is called Fragment-Based Drug Discovery 

(FBDD). This method was first proposed by William Jencks in 1981,29 when he 

suggested that a binding event between a molecule and a protein could be viewed in one 

of two ways: one single event with one large change in energy, or as several smaller 

“fragment” bind events with their own individual changes in energy. Viewing the binding 

as separate events allows for an optimization of each fragment, which can then be 

chemically linked afterwards to create a larger drug candidate. This theoretical discussion 

was put into practice in a high-impact Science paper from Abbott Laboratories in 1996.30  

Using the advancements in Nuclear Magnetic Resonance (NMR) spectroscopy, 

Abbott developed an effective method for analyzing the binding of organic fragments 

with a protein binding site of their interest. They dubbed this new method structure-

activity relationship or “SAR by NMR”. This method uses a 2D NMR technique called 

heteronuclear single quantum coherence (HSQC) which is used to observe the chemical 

shift of 1H-amide and 15N- in the protein target.31 As different fragments are added to the 

protein, the binding causes a change in these chemical shifts. Analysis of these changes 

gives investigators an idea of how strong or weak the fragment is bound, and thus allows 

for optimization of the fragment. The greater a shift the stronger the binding. Proteins 

generally have several regions for interactions in the binding pockets, so each region is 
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probed and optimized with the relevant fragment. When fully optimized, all fragments 

are linked together forming one large candidate. The binding of the large molecule is then 

a sum of the individual binding energies, so even though typical screenings require 

millimolar (mM) concentrations of the fragments, the larger molecule can be 

administered at a more favorable micromolar (µM) concentration.30  

As a result of this new FBDD method, in 2003, Astex Pharmaceticals published a 

new set of guidelines aimed specifically at successful characteristics of fragments.32 Their 

new “Rule of 3” suggested fragments should have a MW less than 300 Da, less than 6 

combined HBAs and HBDs, a S log P of less than 3, less than 3 RBs, and a TPSA of less 

than 60 square angstroms. These guidelines would serve to help keep the overall 

characteristics of the larger molecule in line with Lipinski’s Rule of 5. These are of 

course just guidelines, and like Lipinski’s Rule of 5, are constantly being revised. To 

date, it has been reported that somewhere around 20 new drug candidates have been 

identified using FBDD.33 One notable example is Vemurafenib (Figure 1.5), which was 

developed by Plexxikon in 2011.34 It is used for the treatment of late-stage melanoma, 

and shows a 80% regression rate, which is a significant improvement over its 

predecessors.35  

Figure 1.5 
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While the Kutateladze group does not use any specific computational techniques 

for the synthesis of o-azaxylylenes, the method could be included as a FBDD technique. 

As previously stated, the results of photochemistry incorporate new polyheterocycle 

fragments which are often found in biologically relevant small molecules, and currently 

approved pharmaceuticals. 

 In the following chapters, research will be presented that sets out to build upon 

the body of work previously put forth from the Kutateladze group. Particular attention 

will be given to how azaxylylene photochemistry can be used in FBDD, by incorporating 

fragments of interest both through pre-photochemical modifications as well as post-

photochemical modifications. A new molecular scaffold will also be introduced, one that 

is of particular interest to the pharmaceutical industry. And as previously stated, the latest 

advancements in LED irradiator design will be shared to provide a blueprint for future 

work and improvements. 
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Chapter Two: Pre-photochemical Modifications 

This particular project was exciting for me, because it was my first publication! 

There is something special in doing something new, and for me to be able to contribute to 

the chemistry community in this fashion with my first publication, was very gratifying. 

The research in this chapter was published in the European Journal of Organic 

Chemistry.36 

 

Introduction  

We have covered methods of drug discovery and why there is a need for more 

diverse scaffolds. As of April 2016, over 109 million compounds have been added to the 

(CAS) registry.37 Of those, only 1513, as of 2011, have been approved by the U.S. Food 

and Drug Administration (FDA) for use as a pharmaceutical.38 Of the 1513 approved for 

disease treatment, there were only 50 scaffolds represented in about 50% of the 

compounds, leading to the conclusions there is a large lack of diversity in these new 

drugs.20  

The aim of the work presented in this chapter was to assemble photoprecursors 

through a DOS modular assembly approach and to test a few new post-photochemical 

modifications. These new techniques have led to the unlocking of unique complex 

scaffolds that are often overlooked by traditional synthetic methods. An overarching 
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theme of FBDD will emerge and be made clear during the synthesis of the post-

photochemical modifications, and will be discussed when appropriate.  

  

Results and Discussion – Pre-photochemical Modifications 

The major focus of this work was on the introduction of additional heteroatoms 

into the tether that links the azaxylylene to the photo-active pendant (position X in 

Scheme 1.7). This would yield new heterocycles or polyheterocycles upon the irradiation 

of the starting materials. Three reactive carbonyl derivatives were chosen as a starting 

point, as they were either easily formed in situ, or were commercially available: furoyl 

isocyanate (2.3’), formed by reacting furoyl chloride (2.3) with sodium cyanate in the 

presence of tin (IV) chloride,39 commercially available furfuryl isocyanate (2.2), and 

furfuryl chloroformate (2.4’), formed by the reaction of phosgene with furfuryl alcohol 

(2.4)51 (Scheme 2.1). The o-amino ketones 2.1a-2.1c were treated separately with these 

three electrophiles in one-step coupling reactions. The yields ranged from moderate to 

good, with products isolated by flash chromatography. When using benzaldehyde 

derivatives, such as 2.11, a second oxidation step is required. Starting from amino alcohol 
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2.8, coupling with furfuryl chloroformate (2.4’) yields benzyl alcohol (2.10) that is 

oxidized by pyridinium chlorochromate (PCC) into the photoactive amidobenzaldehyde.  

The photoprecursors obtained in these reactions are characterized be a broad UV 

absorption from 330 nm to 380 nm, with a maximum around 360 nm. Therefore, they 

were irradiated in a Rayonet photoreactor equipped with RPR-3500 UV lamps to yield 9 

new quinolinol and benzazacane scaffolds containing fused cyclic imidazolinones (2.12b 

and 2.13b), hydantoins (2.14a, 2.14b, 2.15a, and 2.15b), or cyclic carbamates (2.16a, 

2.16b, and 2.17a) (Scheme 2.2). In this particular work, solvent optimization showed 
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that in methanol, the reaction proceeded cleanly and rapidly. After irradiation was 

complete as monitored by 1H NMR, the reaction mixtures were purified by flash 

chromatography to yield the pure photoproducts (Scheme 2.2). Comparing all cases, the 

ratio of the [4+4] and [4+2] photoproducts was noticeably affected by the structure of the 

linker. In compounds 2.12a/b and 2.13a/b, the [4+4] product was formed preferentially, 

with no evidence of any [4+2] formation. However in the case of 2.17a/b, only the [4+2] 

cycloaddition product was present. In the other cases, both isomers formed, although 

their ratios varied. We propose some intermolecular or intramolecular hydrogen bond is 

the cause, which is reasonable given the number of HBDs and HBAs that were present, 

but we have no experimental evidence to support this claim. As with previous works, the 

photochemistry preferentially yielded the syn [4+4] diastereomer and the anti [4+2] 

diastereomer as confirmed by NMR spectroscopy.14 Additionally, structures from 
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compounds 2.14b, 2.15b, and 2.16b were solved unambiguously with X-ray 

crystallography (see experimental for the ORTEP diagrams). 

Two interesting observations were made upon the purification of compounds 

2.13a and 2.12b (Scheme 2.3). The indanone-based [4+2] photoproduct 2.13a, which is 

detectable by NMR before purification, undergoes an eliminative opening of the N, O-

ketal to afford product 2.13a’ upon chromatography on slightly acidic silica media. The 

[4+4] adduct 2.12b is also affected by the slightly acidic silica media, undergoing a 

bicyclo [4.2.1] nonadiene→bicyclo [3.3.1] nonadiene rearrangement of its 2,5-

epoxyazacane core to yield the oxabicyclo [3.3.1] nonene scaffold 2.12b’.40 These 

rearrangements account for some loss in yield and lack of the primary photoproducts 

after purification. 

 

Results and Discussion – Post-photochemical Modifications 

This work also set out to establish that experimentally simple and straightforward 

post-photochemical modifications could be performed, adding diversity to these scaffolds 

via a modular assembly DOS approach. Previous post-photochemical modifications had 

been performed in the group by Cronk et al., via a palladium catalyzed Suzuki coupling.27 

This work added several interesting heterocycles to the azaxylylene fragment both before 

and after photochemistry. Additionally, Nandurkar et al., were successful in the 

dihydroxylation of the [4+4] product.41 These new post-photochemical modifications, 

however, sought to change the core structure of the photoproducts through a 

straightforward, simple, widely applicable protocol. The reactions were specifically 
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aimed at additions to the newly formed double-bond fragment that results from the 

photochemistry.  

Rather than exploring these post-photochemical modifications on the new, more 

complex scaffolds, it was decided that a simpler model system should be used. This 

would allow for easier monitoring of these reactions since they would be performed on a 

well-characterized system. As such, 2.18 and 2.19 (Scheme 2.4), were synthesized as 

previously reported, 14 and utilized for these post-photochemical modifications. A 

straightforward [3+2] cycloaddition was chosen utilizing bromonitrile oxide, which is 

generated in situ from dibromoformaldoxime and potassium bicarbonate.45 In the 

reactions with both 2.18 and 2.19, the addition occurred from the more sterically favored 

exo face, placing the newly formed 4,5-dihydro-1,2-oxazole syn to the oxo-bridge. 
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Interestingly, the [4+2] photoproduct showed complete regiospecificity yielding only 

compound 2.20, and no product with bromine pointing “south”. 

In the case of the [4+4] scaffold 2.19, only weak regiocontrol is seen. The 

addition to either terminus of the double bond is electronically equivalent, so presumably 
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steric hindrance guides the process. The incoming substituent of the nitrile oxide will be 

in close proximity to the methylene group of the linker for the minor regioisomer 2.21, 

whereas the major regioisomer 2.22 minimizes this interaction. As a result, the observed 

ratio was 4:1 in favor of the bromine being in the less sterically hindered position. As of 

note, 2.21 was only observable by NMR, and was not isolated or characterized. The 

regiochemistry of the major product 2.22, which was isolated and characterized, was 

determined by the analysis of its spin–spin coupling constants and a series of NOEDIFF 

experiments.  

In the NMR spectrum of compound 2.22, proton Ha is a doublet at δ = 4.71 ppm 

with 3J = 8.7 Hz, and Hb is a doublet of doublets at δ = 3.75 ppm with 3J = 8.7 and 1.0 Hz 

(the second constant reflects the interaction with Hc). Upon irradiation of the proton at δ 

= 3.75 ppm, a NOE of 4.6% is observed for the doublet of doublets at δ = 4.64 ppm 

belonging to Hd, indicating Hb and Hd are on the same face. Further evidence obtained 

through DFT calculations showed the major isomer, 2.22, to be 2 kcal/mol lower in 

energy than 2.21, most likely due to the previously mentioned unfavorable steric 

interaction of the bromine with the methylene group in the linker. 

An additional scaffold can be formed by the bicyclo [4.2.1] nonadienee→ bicyclo 

[3.3.1] nonadiene rearrangement of 2.19, which is induced by the addition of 

trifluoroacetic acid (TFA). The resulting rearranged vinyl alcohol is oxidized under 

Swern oxidation conditions, affording α,β unsaturated ketone 2.23. When this compound 

is reacted under the same bromonitrile oxide conditions, instead of the expected 2.23’, 

dibrominated 2.24 is observed (Scheme 2.4). It is postulated there is an equilibrium 
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between the enolate and keto tautomer from the excess potassium bicarbonate present. 

The enolate can add a second atom of bromine, which comes from the excess of 

dibromoformaldoxime that is required. The dibrominated product 2.24 was isolated after 

flash chromatography and its structure solved unambiguously by X-ray crystallography 

(see experimental). 

This new post-photochemical modification was then applied to some new 

scaffolds, namely the hydantoins 2.14a and 2.14b. These photoproducts were chosen 

because hydantoins are a fragment of interest for FBDD programs. It can be found in 

several approved pharmaceutical including the anticonvulsants phenyltoin46 and 

fosphenyltoin,47 as well as iprodione,48 a popular fungicide. Not surprisingly exo 

stereochemistry was again observed for the nitrile oxide addition (Scheme 2.5). The 

[4+2] photoproduct 2.14a gave only one regioisomer 2.25, whose stereochemistry was 

solved by X-ray crystallography. The [4+4] photoproduct 2.14b gave two regioisomers, 
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however the ratio was reversed 5:1 in favor of the more sterically crowded 2.26. As of 

note, the minor isomer, 2.27, was only observed by NMR. The regiochemistry of the 

major isomer 2.26 was determined by NOEDIFF experiments. The compound has two 

doublets with a common spin–spin coupling constant of J = 8.8 Hz at δ = 4.92 and 3.85 

ppm, where Hb is at 4.92 ppm and Ha is at 3.85 ppm. Upon irradiation of the methyl 

group, which is a singlet at δ = 1.71 ppm, only the proton at δ = 4.92 ppm was affected 

with a NOE of 2.4%, placing the methyl and Hb proton on the same face. Although Ha is 

also on the same face, it’s possible it was simply too far away to experience any NOE. It 

was then postulated that, in this case, the electrostatic attraction of the lone-pairs from the 

carbonyl oxygen in the linker on the incoming bromine, overrides the stereochemical 

preferences as seen in 2.22. This is supported further with DFT calculations. According 

to B3LYP/6-31G(d) calculations performed by others, major regioisomer 2.26 is about 

0.75 kcal/mol lower in energy than minor regioisomer 2.27. Provided that the transition 

state in these 1,3-dipolar cycloadditions is late, i.e. the vinyl ether double bond is already 

partially broken when the nitrile oxide adds, the relative product stability tracks the 

relative height of the activation barrier. 

This first work has shown that it is possible to further diversify our group’s [4+4] 

and [4+2] scaffolds through the simple pre-photochemical introduction of heteroatoms to 

the linker tethering the azaxylylene to the photo-active pendant. These new precursors 

undergo ESIPT upon irradiation at 350 nm, yielding new polyheterocyclic scaffolds that 

contain interesting fragments for FBDD research. Of special note are the hydantoins, as 

they are found in several approved pharmaceuticals. To add diversity, a new post-
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photochemical modification was introduced that built upon the core scaffolds yielding 

even more interesting and complex products containing 3-bromooxazolines, another 

fragment of interest for FBDD research. 
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Experimental 

Common solvents were purchased from Pharmco and used as is, except for THF, which 

was refluxed over and distilled from potassium benzophenone ketyl prior to use. 

Common reagents were purchased from Aldrich and used without additional purification, 

unless indicated otherwise. NMR spectra were recorded at 25°C on a Bruker Avance III 

500 MHz in DMSO (unless noted otherwise). X-Ray structures were obtained with a 

Bruker APEX II instrument. High resolution mass spectra were obtained on the MDS 

SCIEX/Applied Biosystems API QSTARTM Pulsar i Hybrid LC/MS/MS System mass 

spectrometer by Dr. Jeremy Balsbaugh from the University of Colorado at Boulder.  

Flash column chromatography was performed using Teledyne Ultra Pure Silica Gel (230 

– 400 mesh) on a Teledyne Isco Combiflash Rf using  

Hexanes/EtOAc or DCM/Methanol as an eluent. 

 

 

Synthesis of photoprecursors 

 

General procedure I for the synthesis of compounds 2.6a-2.6b 

1.3 eq of sodium cyanate was suspended in 2 ml of 1,2-dichlorobenzene.  Under a 

nitrogen atmosphere 1 eq of 2-furoyl chloride and 0.05-0.15 eq of tin (IV) chloride were 

added. Upon complete addition the reaction mixture was refluxed for 3 hours, and then 

cooled to ambient temperature. 0.3-1.0 eq of the corresponding amine was then added. 

The reaction mixture was allowed to stir overnight, then filtered through a pad of 
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Celite®. Filter cake is washed with chloroform.  The solvent was evaporated in vacuo, 

and the crude material was purified by flash chromatography.39 

 

N-[(2-acetylphenyl)carbamoyl]furan-2-carboxamide (2.6a): 

General procedure I was followed. From 1.68 g of  NaOCN (26.0 

mmol, 1.3 eq)  2.0 ml of 2-furoyl chloride (20.0 mmol, 1 eq), 0.23 

ml of SnCl4 (2.0 mmol, 0.1 eq) and 2.0 ml of 2’-

aminoacetophenone (16.5 mmol, 0.8 eq) 2.62 g (59%) of the title compound was 

obtained. 1H NMR (500 MHz, DMSO) δ 12.35 (s, 1H), 10.86 (s, 1H), 8.40 (dd, J = 8.5, 

1.2 Hz, 1H), 8.06 (dd, J = 1.8, 0.8 Hz, 1H), 8.03 (dd, J = 8.0, 1.6 Hz, 1H), 7.73 (dd, J = 

3.6, 0.8 Hz, 1H), 7.62 (ddd, J = 8.5, 7.5, 1.6 Hz, 1H), 7.25 (ddd, J = 7.9, 7.5, 1.2 Hz, 1H), 

6.75 (dd, J = 3.6, 1.7 Hz, 1H), 2.64 (s, 3H).13C NMR (126 MHz, DMSO) δ 201.3, 158.0, 

151.7, 148.3, 145.8, 138.2, 134.0, 131.8, 125. 9, 123.5, 122.5, 118.0, 112.9, 29.2. HRMS 

(ESI) calcd for C14H12N2NaO4
+ (MNa+) 295.0695, found 295.0705 

 

N-[(4-oxotetralin-5-yl)carbamoyl]furan-2-carboxamide (2.6b): 

General procedure I was followed. From 1.68 g of NaOCN (26.0 

mmol, 1.3 eq), 2.0 ml of 2-furoyl chloride (20.0 mmol, 1 eq), 0.35 

ml of SnCl4 (3.0 mmol, 0.15 eq) and 0.60 g of 8-amino-tetralone 

(4.1 mmol, 0.3 eq) 0.98 g (88%) of the title compound was obtained. 1H NMR (500 MHz, 

CDCl3) δ 13.28 (s, 1H), 8.56 (d, J=8.4 Hz, 1H), 8.30 (s, 1H), 7.59 (dd, J = 1.8, 0.8 Hz, 
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1H), 7.49 (t, J=7.9 Hz, 1H), 7.46 (dd, J = 3.6, 0.8 Hz, 1H), 7.01 (dd, J = 7.5, 1.1 Hz, 1H), 

6.63 (dd, J = 3.6, 1.7 Hz, 1H), 3.02 (t, J = 6.1 Hz, 2H), 2.77 (m, 2H), 2.12 (m, 2H). 13C 

NMR (126 MHz, CDCl3) δ 201.4, 156.4, 150.6, 145.9, 145.9, 145.6, 140.1, 134.2, 123.7, 

120.3, 119.6, 118.2, 113.2, 40.4, 31.1, 22.7 HRMS (ESI) calcd for C16H14N2NaO4
+ 

(MNa+) 321.0851, found 321.0859 

 

General procedure II for the synthesis of compounds 2.5a-2.5b 

 

1 eq of corresponding amine was dissolved in 20 ml of anh. DCM. To this was added 

dropwise 1 eq of furfuryl isocyanate dissolved in 5 ml of anh. DCM. The mixture was 

allowed to stir at ambient temperature for 8 hrs. The resulting mixture was diluted with 

DCM, washed with water, and then sat. brine. The organic layer was dried over Na2SO4 

before concentrating in vacuo to yield the product which was used in the next step 

without further purification. 

 

1-(2-furylmethyl)-3-(4-oxotetralin-5-yl)urea (2.5a): General 

procedure II was followed. From 0.65 g of 8-amino-tetralone (4.1 

mmol, 1 eq) and 0.5g of furfuryl isocyanate (4.1 mmol, 1 eq), 0.79 

g (68%) of the title compound was obtained. 1H NMR (500 MHz, 

CDCl3) δ 11.68 (s, 1H), 8.46 (dd, J = 8.6, 1.1 Hz, 1H), 7.41 (dd, J = 8.6, 7.5 Hz, 1H), 

7.37 (dd, J = 1.9, 0.8 Hz, 1H), 6.82 (dd, J = 7.5, 1.1 Hz, 1H), 6.33 (dd, J = 3.3, 1.9 Hz, 

1H), 6.29 (m, 1H), 5.30 (t, J = 5.8 Hz, 1H), 4.49 (d, J = 5.7 Hz, 2H), 2.95 (t, J = 6.1 Hz, 
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2H), 2.66 (m, 2H), 2.07 (m, 2H). 13C NMR (126 MHz, CDCl3) δ 203.5, 154.7, 151.8, 

145.8, 143.8, 142.2, 135.1, 121.1, 117.5, 117.2, 110.4, 107.3, 40.7, 37.3, 31.0, 22.8 

HRMS (ESI) calcd for C16H16N2O3
+ (MH+) 285.1239, found 285.1248 

 

1-(2-furylmethyl)-3-(3-oxoindan-4-yl)urea (2.5b): General 

procedure II was followed. From 0.50 g of 7-amino-2,3-dihydro-

1H-inden-1-one (3.4 mmol, 1 eq) and 0.42 g of furfuryl isocyanate 

(3.4 mmol, 1 eq), 0.71 g (77%) of the title compound was 

obtained.1H NMR (500 MHz, DMSO) δ 9.51 (s, 1H), 8.19 (t, 1H), 8.16 (d, J=8.3 Hz, 

1H), 7.60 (dd, J = 1.9, 0.9 Hz, 1H), 7.52 (t, J=7.8 Hz, 1H), 7.04 (dd, J = 7.5, 0.9 Hz, 1H), 

6.41 (dd, J = 3.2, 1.8 Hz, 1H), 6.28 (dd, J = 3.2, 0.9 Hz, 1H), 4.28 (d, J = 5.5 Hz, 2H), 

3.04 (m, 2H), 2.66 (m, 2H). 13C NMR (126 MHz, DMSO) δ 208.5, 156.5, 154.8, 153.2, 

142.6, 140.4, 136.7, 122.1, 118.7, 115.3, 110.9, 107.2, 36.6, 36.4, 25.4 HRMS (ESI) 

calcd for C15H14N2NaO3
+ (MNa+) 293.0902, found 293.0909 

 

 

General procedure III for the synthesis of compounds 2.7 and 2.11 

 

2 eq of a 15% wt phosgene solution in toluene was cooled to -78oC under a N2 

atmosphere. To this was added dropwise 1 eq of furfuryl alcohol dissolved in 3 ml of anh. 

diethyl ether. Upon complete addition, the mixture was warmed to -15oC and stirred for 3 

hrs, followed by an additional 30 mins at 0oC. The chlorocarbamate solution was added 

to a stirring solution of 0.5-1.0 eq of corresponding amine and 1.1-2.0 eq of dry pyridine, 
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dissolved in 10 ml of anh. DCM. The mixture was allowed to stir at ambient temperature 

overnight. The mixture was quenched with water and extracted with DCM. The organic 

layer was washed with sat. brine and dried over Na2SO4 before concentrating in vacuo. 

The crude product was further purified by flash chromatography.11 

 

2-furylmethyl N-(2-formylphenyl)carbamate (2.7): General 

procedure III  was followed. From 6.42 ml of 15% wt phosgene 

solution in toluene (9.0 mmol, 2 eq), 0.44 g of furfuryl alcohol 

(4.5 mmol, 1 eq), 0.55 g of 2-aminobenzyl alcohol 2.8 (4.5 mmol, 1 eq), and 0.41 ml of 

dry pyridine (5.1 mmol, 1.1 eq),  0.33 g (29%) of  2-furylmethyl N-(2-

(hydroxymethyl)phenyl)carbamate (2.10) was obtained. 1H NMR (500 MHz, CDCl3) δ 

7.96 (s, 2H), 7.47 (dd, J = 1.9, 0.9 Hz, 1H), 7.35 (td, J = 7.8, 1.6 Hz, 1H), 7.18 (dd, J = 

7.5, 1.6 Hz, 1H), 7.06 (td, J = 7.5, 1.2 Hz, 1H), 6.49 (dd, J = 3.2, 0.8 Hz, 1H), 6.41 (dd, J 

= 3.3, 1.8 Hz, 1H), 5.18 (s, 2H), 4.70 (s, 2H), 2.14 (s, 1H). 13C NMR (126 MHz, CDCl3) 

δ 153.71, 149.67, 143.28, 137.40, 129.16, 129.11, 128.83, 123.61, 121.09, 110.77, 

110.63, 64.02, 58.73. To 0.33 g of 2.10 (1.3 mmol, 1 eq) dissolved in 20 mL of 

anhydrous DCM was added 0.43 g of PCC (2.0 mmol, 1.5 eq). The mixture was stirred at 

ambient temperature overnight. The solution was filtered through a pad of silica gel and 

washed thoroughly with DCM. The resulting organic layer was concentrated in vacuo to 

yield 0.27 g (83%) of pale yellow solid 2.7. 1H NMR (500 MHz, CDCl3) δ 10.66 (s, 1H), 

9.92 (d, J = 0.7 Hz, 1H), 8.50 (d, J = 8.5 Hz, 1H), 7.67 (dd, J = 7.7, 1.7 Hz, 1H), 7.63 

(ddd, J = 8.8, 7.3, 1.7 Hz, 1H), 7.48 (dd, J = 1.9, 0.8 Hz, 1H), 7.21 (td, J = 7.5, 1.0 Hz, 
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1H), 6.50 (dd, J = 3.3, 0.7 Hz, 1H), 6.41 (dd, J = 3.3, 1.9 Hz, 1H), 5.21 (s, 2H). 13C NMR 

(126 MHz, CDCl3) δ 195.0, 153.2, 149.4, 143.4, 141.1, 136.0, 122.1, 121.4, 118.4, 

110.9, 110.6, 77.2, 58.8 HRMS (ESI) calcd for C13H11NNaO4
+ (MNa+) 268.0586, found 

268.0594 

 

2-furylmethyl N-(4-oxotetralin-5-yl)carbamate (2.11): General 

procedure III  was followed. From 6.42 mL of 15% wt phosgene 

solution in toluene (9.0 mmol, 2 eq), 0.44 g of furfuryl alcohol 

(4.5 mmol, 1 eq), 0.38 g of tetralone (4.5 mmol, 0.5 eq), and 0.9 

mL of dry pyridine (5.1 mmol, 2.0 eq), 0.35 g (30%) of  the title compound was obtained. 

1H NMR (500 MHz, CDCl3) δ 11.70 (s, 1H), 8.34 (dd, J = 8.6, 1.1 Hz, 1H), 7.45 (m, 

1H), 7.43 (d, J = 8.0 Hz, 1H), 6.89 (dt, J = 7.4, 1.0 Hz, 1H), 6.48 (dd, J = 3.3, 0.8 Hz, 

1H), 6.39 (dd, J = 3.2, 1.9 Hz, 1H), 5.17 (s, 2H), 2.96 (t, J = 6.1 Hz, 2H), 2.68 (dd, J = 

7.3, 5.8 Hz, 2H), 2.07 (p, J = 6.4 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 202.7, 153.5, 

149.8, 146.0, 143.2, 142.1, 134.9, 122.2, 118.2, 116.7, 110.6, 110.5, 58.6, 40.6, 31.0, 

22.7. HRMS (ESI) calcd for C16H15NO4
+ (MH+) 286.1074, found 286.1079 

 

Photochemical cycloaddition 

 

General procedure IV for irradiation:  Solutions with ca. 3.0 mM of the photo-

precursors in methanol (except where noted) were degassed and irradiated in Pyrex or 

borosilicate glass reaction vessels in a Rayonet reactor equipped with RPR-3500 UV 

lamps (broadband 300-400 nm UV source with peak emission at 350 nm) until the 
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reaction was complete, as determined by 1H NMR.  The solution was concentrated and 

the mixture was purified by flash chromatography. 

 

2.6a (0.20 g, 0.74 mmol) was irradiated following general procedure IV with acetonitrile 

as a solvent. Flash chromatography yielded 0.13 g (63%) of 12-hydroxy-12-methyl-16-

oxa-3,5-diazatetracyclo[11.2.1.01,5.06,11]hexadeca-6(11),7,9,14-tetraene-2,4-dione 

(2.14b) and 0.039 g (19%) of  11-hydroxy-11-methyl-7-oxa-2,4-

diazatetracyclo[10.4.0.02,6.06,10]hexadeca-1(12),8,13,15-tetraene-3,5-dione (2.14a). 

 

2.14b: 1H NMR (500 MHz, DMSO) δ 11.58 (s, 1H), 7.58 (dd, J = 8.2, 

1.5 Hz, 1H), 7.57 (dd, J = 8.1, 1.6 Hz, 1H), 7.28 (ddd, J = 8.3, 7.1, 1.5 

Hz, 1H), 7.17 (ddd, J = 8.4, 7.2, 1.5 Hz, 1H), 6.65 (dd, J = 5.9, 1.7 Hz, 

1H), 5.93 (dd, J = 5.9, 1.3 Hz, 1H), 5.53 (s, 1H), 4.78 (t, J = 1.5 Hz, 

1H), 1.59 (s, 3H). 13C NMR (126 MHz, DMSO) δ 169.4, 153.0, 137.7, 135.8, 132.2, 

129.0, 127.81, 126.01, 125.61, 124.51, 97.31, 90.31, 78.51, 26.3. HRMS (ESI) calcd for 

C14H12N2NaO4
+ (MNa+) 295.0695, found 295.0709 

 

2.14a: 1H NMR (500 MHz, DMSO) δ 11.59 (s, 1H), 7.37 (m, 3H), 

7.28 (td, J = 7.2, 2.0 Hz, 1H), 6.52 (t, J = 2.8 Hz, 1H), 5.47 (s, 1H), 

4.87 (dd, J = 2.9, 2.2 Hz, 1H), 3.88 (t, J = 2.5 Hz, 1H), 1.66 (s, 3H). 

13C NMR (126 MHz, DMSO) δ 171.6, 154. 5, 146.9, 136.4, 133.5, 128.0, 126.2, 125.5, 
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125.1, 100.3, 94.0, 69.0, 58.7, 24.2 HRMS (ESI) calcd for C14H12N2NaO4
+ (MNa+) 

295.0695, found 295.0703 

 

2.6b (0.36 g, 1.2 mmol) was irradiated following general procedure IV. Flash 

chromatography yielded 0.15 g (43%) 1-hydroxyl-19-oxa-7,9-

diazapentacyclo[8.7.1.12,5.05,9.014,18]nonadeca-3,10(18),11,13-tetraene-6,8-dione 

(2.15b) and 0.072 g (19%) of 11-hydroxy-7-oxa-2,4-

diazapentacyclo[9.7.1.02,6.06,10.015,19]nonadeca-1(19),8,15,17-tetraene-3,5-dione 

(2.15a) 

 

2.15b: 1H NMR (500 MHz, DMSO) δ 11.52 (s, 1H), 7.33 (dd, J = 7.9, 

1.2 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H), 6.95 (dd, J = 7.5, 1.4 Hz, 1H), 

6.68 (dd, J = 5.9, 1.7 Hz, 1H), 5.90 (dd, J = 5.9, 1.2 Hz, 1H), 5.39 (d, J 

= 1.3 Hz, 1H), 4.62 (t, J = 1.5 Hz, 1H), 2.81 (m, 1H), 2.70 (ddd, J = 

17.2, 12.9, 5.6 Hz, 1H), 2.01 (m, 1H), 1.87 (m, 1H), 1.69 (m, 2H). 13C NMR (126 MHz, 

DMSO) δ 169.4, 153.0, 138.9, 137.9, 133.4, 132.3, 127.6, 127.3, 124.7, 124.3, 97.3, 89.0, 

75.5, 35.7, 31.5, 17.4 HRMS (ESI) calcd for C16H14N2NaO4
+ (MNa+) 321.0851, found 

321.0856 
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2.15a: 1H NMR (500 MHz, DMSO) δ 11.59 (s, 1H), 7.25 (t, J = 7.7 

Hz, 1H), 7.17 (dd, J = 7.6, 1.1 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 6.54 

(t, J = 2.8 Hz, 1H), 5.45 (s, 1H), 4.95 (dd, J = 3.0, 2.2 Hz, 1H), 3.90 (t, 

J= 2.4 Hz, 1H), 2.72 (m, 1H), 2.60 (m, 1H), 1.90 (m, 3H), 1.72 (m, 

1H). 13C NMR (126 MHz, DMSO) δ 172.1, 155. 0, 147.2, 138.4, 133.9, 131.4, 127.8, 

127.2, 123.4, 101.1, 94.5, 67.9, 57.9, 35.4, 29.5, 18.4 HRMS (ESI) calcd for C16H14N2O4
- 

(MH-) 297.0875, found 297.0886 

 

2.5a (0.50 g, 1.8 mmol) was irradiated following general procedure IV. Flash 

chromatography yielded 0.27 g (54%) of 1-hydroxy-19-oxa-7,9-

diazapentacyclo[8.7.1.12,5.05,9.014,18]nonadeca-3,10,12,14(18)tetraen-8-one (2.13b) and 

0.077 g (15%) of 2-hydroxy-19-oxa-7,9-diazapentacyclo[8.7.1.11,5.05,9.014,18]nonadeca-

3,10,12,14(18)tetraen-8-one (2.13a). 

 

2.12b: 1H NMR (500 MHz, DMSO) δ 7.21 (s, 1H), 7.09 (m, 2H), 6.87 

(m, 1H), 6.53 (dd, J = 5.7, 1.8 Hz, 1H), 5.77 (dd, J = 5.7, 1.1 Hz, 1H), 

4.46 (m, 1H), 3.80 (dd, J = 10.8, 1.1 Hz, 1H), 3.48 (dd, J = 10.7, 1.4 Hz, 

1H), 2.79 (m, 1H), 2.68 (ddd, J = 17.4, 12.9, 5.5 1H), 2.00 (m, 1H), 1.84 

(m, 1H), 1.68 (m, 3H). 13C NMR (126 MHz, DMSO) δ 157.0, 138.3, 136.2, 135.1, 133.1, 

128.1, 126.9, 126.6, 126.0, 99.6, 87.6, 75.5, 46.4, 36.0, 31.51, 17.7 HRMS (ESI) calcd 

for C16H16N2O3
- (MH-) 283.1083, found 283.1087 
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2.12b’: 1H NMR (500 MHz, CDCl3) δ 7.64 (d, J = 8.1 Hz, 1H), 7.25 (t, 

J = 7.8 Hz, 1H), 6.92 (d, J = 7.6 Hz, 1H), 6.22 (dd, J = 9.7, 5.4 Hz, 1H), 

5.93 (d, J = 9.7 Hz, 1H), 5.69 (s, 1H), 3.84 (d, J = 5.4 Hz, 1H), 3.68 (d, 

J = 1.1 Hz, 2H), 3.51 (s, 1H), 2.90 (m, 2H), 2.49 (ddd, J = 12.2, 6.8, 2.4 

Hz, 1H), 2.11 (m, 2H), 1.96 (m, 1H), 1.56 (td, J = 12.3, 7.7 Hz, 1H). 13C NMR (126 

MHz, CDCl3) δ 157.55, 136.1, 131.2, 130.0, 128.8, 127.9, 125.5, 123.8, 118.0, 84.3, 

77.1, 64.3, 49.4, 29.1, 26.1, 15.9. HRMS (ESI) calcd for C16H16N2LiO3
+ (MLi+) 

291.1321, found 291.1328 

 
2.5b (0.30 g, 1.1 mmol) was irradiated following general procedure IV. Flash 

chromatography yielded 0.15 g (52%) 1-hydroxyl-18-oxa-7,9-

diazapentacyclo[8.6.1.12,5.05,9.014,17]octadeca-3,10,12,14(17)-tetraen-8-one (2.13b) and 

0.077 g (26%) 2-(8-hydroxy-3-oxo-2,4-diazatertacyclo[6.6.1.02,6.011,15]pentadeca-

1(14),5,11(15),12-tetraen-7-yl)acetaldehyde (2.13b’). 

 

2.13b: 1H NMR (500 MHz, DMSO) δ 7.33 (d, J = 8.1 Hz, 1H), 7.23 (s, 

1H), 7.15 (dd, J = 8.1, 7.3 Hz, 1H), 6.96 (d, J = 7.3 Hz, 1H), 6.53 (dd, J = 

5.8, 1.9 Hz, 1H), 5.80 (dd, J = 5.8, 1.2 Hz, 1H), 5.09 (s, 0H), 4.77 (t, J = 

1.5 Hz, 1H), 3.80 (d, J = 10.6 Hz, 1H), 3.48 (dd, J = 10.7, 1.4 Hz, 1H), 3.11 (m, 1H), 

2.75 (m, 1H), 1.93 (m, 2H). 13C NMR (126 MHz, DMSO) δ 156.73, 145.44, 136.75, 
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136.44, 132.62, 128.45, 128.24, 122.64, 120.73, 100.31, 89.03, 85.93, 47.15, 36.20, 

30.37. HRMS (ESI) calcd for C15H14N2O3
+ (MH+) 271.1083, found 271.1091 

 

2.13b’: 1H NMR (500 MHz, DMSO) δ 10.03 (d, J = 2.4 Hz, 1H), 

9.56 (d, J = 2.7 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.30 (t, J = 7.8 

Hz, 1H), 7.03 (d, J = 7.5 Hz, 1H), 6.36 (d, J = 2.3 Hz, 1H), 5.24 (s, 

1H), 3.67 (dd, J = 8.9, 5.7 Hz, 1H), 3.19 (m, 1H), 2.82 (dd, J = 15.8, 8.4 Hz, 1H), 2.59 

(dd, J = 16.8, 5.7 Hz, 1H), 2.11 (m, 1H), 1.97 (m, 2H). 13C NMR (126 MHz, DMSO) δ 

202.24, 172.47, 151.90, 144.33, 132.09, 132.01, 130.28, 121.43, 120.34, 113.62, 107.15, 

78.74, 46.23, 40.89, 39.54, 36.63, 36.36, 30.81, 21.52 HRMS (ESI) calcd for 

C15H14N2O3
- (MH-) 269.0926, found 269.0928 

 

2.7 (0.26 g, 1.1 mmol) was irradiated following general procedure IV. Flash 

chromatography yielded 0.076 g (29%) 12-hydroxy-3,16-dioxa-5-

azatetracyclo[11.2.1.01,5.06,11]hexadeca-6,8,10,14-tertaen-4-one (2.16b) and 0.15 g 

(58%) 11-hydroxy-4,7-dioxa-2-azatetracyclo[10.4.0.02,6.06,10]hexadeca-1(16),8,12,14-

tertaen-3-one (2.16a) . 
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2.16b: 1H NMR (500 MHz, DMSO) δ 7.71 (dt, J = 8.0, 1.4 Hz, 1H), 7.34 

(m, 1H), 7.30 (tdd, J = 7.8, 1.8, 0.7 Hz, 1H), 7.25 (td, J = 7.5, 1.7 Hz, 1H), 

6.55 (dd, J = 5.8, 1.8 Hz, 1H), 6.18 (d, J = 6.4 Hz, 1H), 5.95 (dd, J = 5.8, 

1.0 Hz, 1H), 4.91 (dd, J = 6.4, 3.3 Hz, 1H), 4.85 (ddd, J = 3.2, 1.8, 1.0 Hz, 1H), 4.75 (d, J 

= 10.2 Hz, 1H), 4.49 (d, J = 10.2 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 158.6, 142.0, 

140.4, 136.2, 132.7, 132.3, 131.9, 131.3, 130.8, 104.2, 88.5, 79.4, 73.9 HRMS (ESI) 

calcd for C13H11NNaO4
+ (MNa+) 268.0586, found 268.0596 

 

2.16a: 1H NMR (500 MHz, DMSO) δ 7.50 (dd, J = 7.8, 1.3 Hz, 1H), 

7.44 (dt, J = 7.4, 1.4 Hz, 1H), 7.31 (tdd, J = 7.7, 1.7, 0.9 Hz, 1H), 7.25 

(td, J = 7.5, 1.3 Hz, 1H), 6.43 (t, J = 2.7 Hz, 1H), 5.97 (d, J = 5.5 Hz, 

1H), 4.95 (t, J = 5.9 Hz, 1H), 4.84 (dd, J = 3.1, 2.2 Hz, 1H), 4.76 (d, J = 10.1 Hz, 1H), 

4.62 (d, J = 10.1 Hz, 1H), 3.96 (dt, J = 6.2, 2.3 Hz, 1H). 13C NMR (126 MHz, DMSO) δ 

153.5, 146.6, 134.4, 131.9, 127.4, 125.9, 125.3, 120.9, 99.6, 98.0, 73.4, 65.8, 54.1 HRMS 

(ESI) calcd for C13H11NNaO4
+ (MNa+) 268.0586, found 268.0594 

 

2.11 (0.10 g, 0.35 mmol) was irradiated following general procedure IV. Flash 

chromatography yielded 0.063 g (63%) 11-hydroxy-4,7-dioxa-2-

azapentacyclo[9.7.1.02,5.06,10.015,19]nonadeca-1(18),8,15(19),16-tetraen-3-one (12b) 
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2.17a: 1H NMR (500 MHz, CDCl3) δ 8.00 (s, 1H), 7.56 (dt, J = 7.9, 1.1 

Hz, 1H), 7.31 (t, J = 7.8 Hz, 1H), 7.02 (dq, J = 7.7, 1.0 Hz, 1H), 6.31 (t, 

J = 2.9 Hz, 1H), 4.73 (dd, J = 3.2, 2.3 Hz, 1H), 4.71 (d, J = 9.4 Hz, 1H), 

4.60 (d, J = 9.5 Hz, 1H), 3.75 (t, J = 2.4 Hz, 1H), 2.97 (d, J = 0.4 Hz, 

1H), 2.89 (d, J = 0.7 Hz, 1H), 2.82 (m, 1H), 2.72 (m, 1H), 2.21 (s, 1H), 2.07 (m, 1H), 

1.92 (m, 1H). 13C NMR (126 MHz, CDCl3) δ 146.9, 138.0, 133.2, 128.8, 128.5, 126.7, 

121.2, 99.1, 97.4, 77.2, 75.4, 69.3, 58.3, 35.4, 29.5, 18.5. HRMS (ESI) calcd for 

C16H15NLiO4
+ (MLi+) 292.1161, found 292.1169 

 

Post-photochemical cycloadditions 

 

The model system, an equimolar mixture of 4-hydroxy-2,3-benzo-8-oxa-1-

azatricyclo[7.3.0.05,9]dodeca-2,6-dien-12-one (2.18) and 2-hydroxy-3,4-benzo-12-oxa-

5-aza-tricyclo[7.2.1.05,9]dodec-3,10-dien-6-one) (2.19), was synthesized as previously 

described.14 

 

 16-oxa-5-azatetracyclo[10.3.1.0¹,⁵.0⁶,¹¹]hexadeca-6(11),7,9,14-tetraen-

4,13-dione (2.23): A 0.50 g mixture of 2.18 and 2.19 (2.1 mmol, 1 eq), 

was dissolved in 40 ml of CHCl3. To this was added 5 ml of TFA. The 

mixture stirred at room temperature overnight. The reaction was quenched with sat. 

NaHCO3 solution, followed by washing of the organic layer with brine, drying over 

anhydr. Na2SO4, and concentration in vacuo. The resulting residue was purified by flash 
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chromatography to yield 0.19 g of 13-hydroxy-16-oxa-5-

azatetracyclo[10.3.1.0¹,⁵.0⁶,¹¹]hexadeca-6(11),7,9,14-tetraen-4-one (39%). 1H NMR 

(500 MHz, CDCl3) δ 8.38 (dd, J = 8.3, 1.2 Hz, 1H), 7.41 (dddd, J = 8.1, 7.4, 1.7, 0.5 Hz, 

1H), 7.30 (m, 1H), 7.22 (td, J = 7.5, 1.2 Hz, 1H), 6.13 (d, J = 9.9 Hz, 1H), 6.07 (ddd, J = 

9.8, 5.0, 1.2 Hz, 1H), 5.31 (s, 1H), 5.17 (dd, J = 5.0, 1.2 Hz, 1H), 2.77 (m, 2H), 2.45 (m, 

2H). 13C NMR (126 MHz, CDCl3) δ 171.4, 133.6, 132.6, 129.3, 125.5, 124.6, 121.3, 

120.9, 120.3, 85.8, 73.8, 71.0, 30.2, 29.7. 0.07 ml of oxalyl chloride (0.84 mmol, 1.1 eq) 

was dissolved in 0.9 ml of anhydrous DCM  and cooled to -78oC before 0.12 ml of dry 

DMSO (1.7 mmol, 2.2 eq) was slowly added. Upon complete addition, the mixture stirred 

for 2 mins while the evolution of gas stopped. Then, 0.19 g of the alcohol (0.77 mmol, 1 

eq) dissolved in 1.5 ml of anhydrous DCM was added dropwise. After stirring for 15 

mins, 0.54 ml of NEt3 (3.9 mmol, 5 eq) was slowly added. Upon complete addition, the 

mixture was slowly warmed to RT at which it was stirred overnight. The reaction mixture 

was quenched with water, and extracted with DCM. The resulting organic layer was 

washed with brine, dried over Na2SO4, and concentrated in vacuo to yield 0.11 g of 2.23 

(60%). The resulting solid was used in the next step without further purification. 1H NMR 

(500 MHz, CDCl3) δ 8.46 (dd, J = 8.4, 1.2 Hz, 1H), 7.41 (ddd, J = 8.6, 7.3, 1.6 Hz, 1H), 

7.27 (dd, J = 7.8, 1.7 Hz, 1H), 7.19 (td, J = 7.5, 1.2 Hz, 1H), 6.79 (d, J = 10.0 Hz, 1H), 

6.19 (dd, J = 10.1, 0.7 Hz, 1H), 5.22 (s, 1H), 2.79 (m, 2H), 2.55 (ddd, J = 13.5, 7.1, 4.5 

Hz, 1H), 2.41 (dt, J = 13.5, 10.4 Hz, 1H).  13C NMR (126 MHz, CDCl3) δ 192.5, 170.9, 

143.2, 132.3, 129.5, 126.3, 125.8, 125.0, 119.9, 119.3, 86.3, 78.7, 31.0, 29.7. HRMS 

(ESI) calcd for C14H11NO3
+ (MH)+ 242.0812 found 242.0816 
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Synthesis of dibromoformaldoxime:45 To a solution of 20.3 g of glyoxylic 

acid monohydrate (0.22 mol, 1 eq) in 160 ml of water (1.4M) was added 19.4 g 

of hydroxylamine hydrochloride (0.28 mmol, 1.3 eq). The mixture was stirred at ambient 

temperature for 24 hrs. 47.7 g of NaHCO3 (0.57 mmol, 2.58 eq) was slowly added, 

followed by 70 ml of DCM. Upon cooling the resulting mixture in the ice bath, 19.5 ml 

of Br2 (0.38 mol, 1.7 eq) in 100 ml of DCM was slowly added maintaining the 

temperature at or below 10oC. Upon complete addition, the mixture was stirred at room 

temperature for 3 hrs. The resulting mixture was diluted with 100 ml of water, extracted 

with 3x30 ml of DCM, dried over Na2SO4, and concentrated in vacuo. The resulting solid 

was recrystallized from hexanes to yield 12.5 g (28%) of a white crystalline solid. mp 65-

66oC (lit. 65-66oC).45  

General procedure V for nitrile oxide addition:45 1 eq of photoproduct(s) was 

dissolved in EtOAc or EtOAc/DCM mixture. To this was added 3 eq of 

dibromoformaldoxime and 6 eq of KHCO3. An additional 3 eq of dibromoformaloxime 

and 6 eq of KHCO3 were usually added after stirring for 12 hrs. The reaction was 

monitored by NMR until the starting materials were consumed. The resulting mixture 

was diluted with water, extracted with 3x20 ml of EtOAc or DCM, washed with brine, 

dried over Na2SO4, and concentrated in vacuo. The mixture was then purified by flash 

chromatography. 
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15-bromo-12-hydroxy-17,19-dioxa-5,16-

diazapentacyclo[11.5.1.01,5.06,11.014,18]nonadeca-6(11),7,9,15-

tetraen-4-one (2.22): General procedure V was followed using 

EtOAc. From 0.19 g of 2.19 (0.76 mmol, 1 eq), 0.46 g of dibromoformaloxime (2.3 

mmol, 3 eq), and 0.46 g of KHCO3 (4.6 mmol, 6 eq), 0.17 g (63%) of a 4:1 mixture of 

two regioisomers were obtained. 1H NMR (500 MHz, DMSO) δ 7.39 (m, 3H), 7.27 (m, 

1H), 5.53 (d, J = 5.8 Hz, 1H), 4.71 (d, J = 8.6 Hz, 1H), 4.64 (dd, J = 5.8, 4.3 Hz, 1H), 

4.53 (d, J = 4.2 Hz, 1H), 3.75 (dd, J = 8.6, 1.1 Hz, 1H), 2.68 (ddd, J = 16.1, 9.9, 8.8 Hz, 

1H), 2.55 (m, 1H), 2.46 (m, 1H), 2.07 (m, 1H). 13C NMR (126 MHz, DMSO) δ 173.3, 

140.0, 134.3, 134.2, 133.4, 128.9, 128.4, 126.9, 104.1, 88.1, 81.7, 76.4, 61.0, 29.5, 27.3. 

HRMS (ESI) calcd for C15H13N2LiO4Br+ (MLi+) 371.0219, found 371.0219 

 
15-bromo-12-hydroxyl-17,19-dioxa-5,16-

diazapentacyclo[11.6.0.01,5.06,11.014,18]nonadeca-6,8,10,15-

tetraen-4-one (2.20): General procedure V was followed. From 

0.20 g 2-Hydroxy-3,4-benzo-12-oxa-5-aza-

tricyclo[7.2.1.05,9]dodec-3,10-dien-6-one (2.18) (0.82 mmol, 1 eq), 1.0 g of 

dibromoformaloxime (4.9 mmol, 6 eq), and 1.0 g of KHCO3 (9.8mmol, 12 eq), 0.19 g 

(65%) of the title compound was obtained. 1H NMR (500 MHz, CDCl3) δ 7.92 (d, J = 7.9 

Hz, 1H), 7.49 (td, J = 7.8, 1.5 Hz, 1H), 7.37 (dd, J = 7.5, 1.5 Hz, 1H), 7.25 (td, J = 7.5, 

1.2 Hz, 1H), 5.65 (d, J = 6.0 Hz, 1H), 4.79 (t, J = 2.9 Hz, 1H), 3.51 (s, 1H), 3.45 (dd, J = 

6.0, 3.6 Hz, 1H), 3.37 (dd, J = 3.5, 2.9 Hz, 1H), 2.85 (ddd, J = 16.6, 9.9, 8.7 Hz, 1H), 
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2.48 (m, 3H). 13C NMR (126 MHz, CDCl3) δ 173.2, 140.8, 134.2, 130.8, 129.0, 128.7, 

126.1, 123.7, 106.8, 101.2, 71.0, 61.6, 41.0, 34.2, 29.9. HRMS (ESI) calcd for 

C15H13N2O4Br+ (MH+) 366.0168, found 366.0181 

 

 

 

14,15-dibromo-17,19-dioxa-5,16-

diazapentacyclo[10.6.1.01,5.05,11.01,18]nonadeca-6,8,10,15-tetraene-

4,13-dione (2.24): General procedure V was followed using 

EtOAc/DCM mixture. From 0.11 g of 2.23, 0.13 g of the title compound was obtained 

after flash chromatography (62%).  1H NMR (500 MHz, CD2Cl2) δ 8.44 (m, 1H), 7.49 

(ddd, J = 8.4, 7.4, 1.8 Hz, 1H), 7.28 (m, 2H), 5.41 (s, 1H), 5.15 (s, 1H), 3.04 (ddd, J = 

13.8, 8.1, 3.7 Hz, 1H), 2.74 (m, 2H), 2.30 (dt, J = 13.8, 10.1 Hz, 1H). 13C NMR (126 

MHz, CD2Cl2) δ 191.8, 172.6, 141.4, 134.1, 131.0, 126.4, 126.0, 120.8, 118.1, 92.7, 

90.1, 78.2, 57.7, 30.1, 28.8. HRMS (ESI) calcd for C15H10Br2N2O4Li (MLi+) 448.9148, 

found 449.1726 

 

15-bromo-12-hydroxy-12-methyl-17,19-dioxa-3,5,16-

triazapentacyclo[11.5.1.01,5.06,11.014,18]nondeca-6(11),7,9,15-

tetraene-2,4-dione (2.26): General procedure V was followed. 

From 0.16 g of 2.14b (0.58 mmol, 1 eq), 0.70 g of 

dibromoformaloxime (3.4 mmol, 6 eq), and 0.70 g of KHCO3 (12.0 mmol, 12 eq), a 5:1 

mixture of two regioisomers of the title compound was observed. After purification, 0.12 

g (53%) of the major isomer was isolated. 1H NMR (500 MHz, DMSO) δ 11.89 (s, 1H), 
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7.66 (dd, J = 8.1, 1.4 Hz, 1H), 7.54 (dd, J = 8.1, 1.5 Hz, 1H), 7.37 (m, 1H), 7.25 (ddd, J = 

8.7, 7.3, 1.4 Hz, 1H), 5.44 (s, 1H), 4.92 (d, J = 8.7 Hz, 1H), 4.54 (d, J = 0.7 Hz, 1H), 3.85 

(dd, J = 8.7, 0.7 Hz, 1H), 1.71 (s, 3H). 13C NMR (126 MHz, DMSO) δ 166.5, 152.8, 

136.2, 135.2, 133.4, 128.8, 128.3, 127.1, 126.5, 94. 9, 91.3, 88.5, 73.6, 63.5, 26.0. HRMS 

(ESI) calcd for C15H12BrN3LiO5
+ (MLi+) 401.0132, found 401.0136 

 

15-bromo-12-hydroxy-12-methyl-17,19-dioxa-3,5,16-

triazapentacyclo[11.6.0.01,5.06,11.014,18]nonadeca-6(11),7,9,15-

tetraene-2,4-dione (2.25): General procedure V was followed. 

From 0.15 g of 2.14a (0.55 mmol, 1 eq), 0.66 g of 

dibromoformaloxime (3.2 mmol, 6 eq), and 0.66 g of KHCO3 (6.6 mmol, 12 eq), 0.14 g 

(65%) of the title compound was obtained. 1H NMR (500 MHz, DMSO) δ 11.68 (s, 1H), 

7.49 (m, 2H), 7.38 (m, 2H), 5.71 (d, J = 6.0 Hz, 1H), 4.02 (dd, J = 6.0, 4.2 Hz, 1H), 3.20 

(d, J = 4.2 Hz, 1H), 2.55 (s, 1H), 1.77 (s, 3H).13C NMR (126 MHz, DMSO) δ 170.5, 

154.7, 142.9, 135.0, 133.4, 129.0, 126.6, 126.0, 107.7, 93.9, 69.0, 59.6, 57.5, 30.6, 24.2. 

HRMS (ESI) calcd for C15H12N3LiO5
+ (MLi+) 402.0102, found 402.0110  
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X-Ray Structures 

X-Ray structures were obtained with a Bruker APEX II instrument and the structure was 

refined using XShell software.  The goodness of fit “S” is listed after each entry. 

Structures have been deposited with the Cambridge Crystallographic Data Centre  

(CCDC). 

 

1. 12-hydroxy-12-methyl-16-oxa-3,5-diazatetracyclo[11.2.1.01,5.06,11]hexadeca-

6(11),7,9,14-tetraene-2,4-dione  S = 0.910 

2. 1-hydroxyl-19-oxa-7,9-diazapentacyclo[8.7.1.12,5.05,9.014,18]nonadeca-

3,10(18),11,13-tetraene-6,8-dione (2.15b)  S = 0.853 

3. 12-hydroxy-3,16-dioxa-5-azatetracyclo[11.2.1.01,5.06,11]hexadeca-6,8,10,14-

tertaen-4-one (2.16b)  S = 0.983 
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4. 15-bromo-12-hydroxyl-17,19-dioxa-5,16-

diazapentacyclo[11.6.0.01,5.06,11.014,18]nonadeca-6,8,10,15-tetraen-4-one (2.20)  

S = 1.019 

5. 15-bromo-12-hydroxy-12-methyl-17,19-dioxa-3,5,16-

triazapentacyclo[11.6.0.01,5.06,11.014,18]nonadeca-6(11),7,9,15-tetraene-2,4-

dione (2.25)  S = 1.032 
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Chapter 3: Post-photochemical Modifications 

 The exciting result of several successful modifications opened the door to explore 

other reactions capable of a spectacular growth of complexity. The work in this chapter 

builds upon the simple, yet elegant nitrile oxide addition, with three new post-

photochemical modifications. These modifications add to the diversity of our libraries 

and allows for a more effective probing of the chemical space. This work was published 

in the Australian Journal of Chemistry.25 

 

Introduction 

With the discovery that it is possible to perform post-photochemical modifications 

on our diverse azaxylylene scaffolds, effort was focused on finding additional reactions 

that would continue to increase complexity and probe the chemical space. A small 

sampling of previously synthesized compounds (Figure 3.1) shows that the cores 

themselves are very diverse, and they fit the criteria of Lipinski’s Rule of 5 perfectly. The 

MWs are less than 500 Da, the S log Ps are less than 5, and the number of rotatable bonds 

are less than 5. An additional descriptor is included, the newly derived Lovering 

saturation coefficient, or fsp3. This new descriptor has been developed to provide more 

information as to what makes a successful drug candidate, by comparing the number of 
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saturated sp3 carbons to the total carbon count.49 Lovering and co-workers found that 

most successful drug candidates in the Glaxo-Smith Kline BIO database had an fsp3 on 

average around 0.47, and that later stage drug candidates showed a higher average fsp3 

than the early stage candidates.49 As show in Figure 3.1, many of the scaffolds produced 

from azaxylylenes are near to or greater than Lovering’s findings of 0.47. The closeness 

of our compound’s fsp3 values to what is known to be a successful drug candidate’s fsp3 

values is very promising for our compounds, and thus the development of new scaffolds 

from azaxylylenes should seek to match or improve upon this finding. 
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Results and Discussion – Synthesis of Starting Materials and Nitrile Oxide Addition 

 The previous successes of post-photochemical modifications were continued 

using the model system from the end of the last chapter (Scheme 3.1). Its simple 

assembly and high yields (89%) made it the best candidate for this exploration. The [3+2] 

nitrile oxide cycloaddition from the previous chapter was modified by addition of a 

phenyl group in replacement of bromine. As previously seen, the benzonitrile oxide 

addition occurs from the exo face (Scheme 3.2). From 3.4, only one regioisomer, 3.5, is 

seen due to the charge controlled intermediate. From 3.3, two regioisomers 3.6 and 3.6’ 

form with a ratio of 3:1, of which 3.6 is the major. As reasoned previously, this structure 

is more energetically favored due to the steric strain from interaction of phenyl and the 

methylene bridge of the linker. As of note, 3.6’ was only observed in NMR and not 

isolated for characterization. The structure of 3.6 was determined by NMR and 

comparison to the previously synthesized analogs.  

 

Results and Discussion – [3+2] Nitrone Cycloaddition 

A new [3+2] cycloaddition was introduced, utilizing the addition of a nitrone.50 

Due to the high temperature required for the reaction, 3.4 decomposes, not allowing for 
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any product isolation. However, upon addition to 3.3, two regioisomers 3.7 and 3.7’ are 

formed in a 2:1 ratio, with 3.7 being the major isomer. The same argument can be made 

for this regiochemistry as was made for the nitrile oxide addition: steric strain favors the 

phenyl group being away from the methylene group in the linker. The addition also 

occurs on the exo face, similar to the nitrile oxide addition. The structure of major isomer 
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3.7 was unambiguously solved by X-ray crystallography. The structure of minor isomer 

3.7’, was assigned based on NOE experiments (Figure 3.2). The aliphatic regions of the 

1H NMR spectra of both stereoisomers 3.7 and 3.7’ possess two separate spin systems: 

Ha–Hb and Hc–Hd–He. The spin–spin coupling constant Hb–He is not observed 

experimentally. In both cases, He signal is a triplet at 2.73 (3.7) or 2.82 (3.7’) ppm. In 3.7, 

upon irradiating the triplet He at 2.73 ppm, a NOE of 3% with Ha is observed, which is 

indicative of the regiochemistry shown, as well as a NOE of 13% on Hb and Hc. Of note, 

signals for protons Hb and Hc overlap, so their assignment was difficult; we assigned the 

Ha signal to the doublet in the lowest field. No signal from Hd is observed, which implies 

that protons Hd and He reside on the opposite faces of the isoxazoline ring. Similarly, in 

3.7’, upon irradiating the triplet He at 2.82 ppm, an observed NOE of 8% with protons Ha 

and Hb (signals overlap) again indicated that the phenyl group is located on the ‘northern’ 

side of the molecule, syn to the benzylic OH group and anti to the pyrrolidone moiety. 

Additionally, we see NOE on both Hc and Hd (13% and 11 %, respectively), suggesting 

that all three protons are syn to each other. 

 

Results and Discussion – Chlorocarbene Addition 

Throughout all of the post-photochemical modifications, it was clear that the 

standard [4+4] scaffold was recalcitrant towards several different conditions. Because of 

that the previously mentioned bicyclo [4.2.1] nonadiene→bicyclo [3.3.1] nonadiene 

rearrangement and oxidation (Scheme 3.3) was performed to yield the more reactive α,β 

unsaturated ketone (3.9).36 The dichlorocarbene was generated in situ from chloroform 
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and sodium hydroxide, but rather than the expected cyclopropanation, the carbene adds 

directly to the carbonyl yielding α-chloroester 3.10, which is presumably formed as a 

result of Jocic–Reeve reaction.51 We hypothesized that the carbene attacked from exo-

side of the bicyclic benzoazacane ring, and the initially formed epoxide is ring-opened by 

the nucleophile (Cl-) from the sterically accessible exo-side.  

 

Results and Discussion – [4+2] hetero Diels-Alder and Povarov Cyclizations 

Not surprisingly, the [4+4] scaffold was recalcitrant toward milder cycloaddition 

reactions such as [4+2] hetero Diels-Alder and Povarov cyclization. These reactions only 

proceeded on the [4+2] scaffold. The Povarov cyclization was conducted in 2,2,2-

trifluoroethanol, as a solvent, at 40°C (Scheme 3.4).52 As previously seen, the 2-azadiene 

attacks from the less hindered exo-face, yielding only product 3.11, with the pyridine ring 

pointing down in the thermodynamically favored equatorial position. The structure of the 

product was supported by the NMR data (Figure 3.3). Among the aliphatic protons, Hc 
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has the highest chemical shift, observed at 5.25 ppm as a doublet, J = 7.7 Hz. Hb is 

characterized by a ddd at 2.54 ppm with the spin–spin coupling constants of 10.4 Hz 

(with Ha), 7.8 Hz (with Hc), and 2.9 Hz (with Hd). The value of the biggest constant 

corresponds to axial–axial interaction, which puts the pyridine ring in equatorial position. 

Next, we tried several hetero-Diels–Alder reactions using oxabutadienes generated in situ 
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from 1,3-dicarbonyl compounds (Meldrum’s acid and dimethylbarbituric acid). The 

reaction with both Meldrum’s acid and 1,3-dimethylbarbituric acid proceeds smoothly. 

However, while the reaction of 1,3-dimethylbarbituric acid yields the expected exo-

addition product 3.12, the initially formed product from the reaction with Meldrum’s acid 

reacts further, yielding the unexpected 3.13”, whose structure was solved unambiguously 

by X-ray crystallography. We proposed that the initially formed 3.13 was unstable and 

underwent ketal hydrolysis giving intermediate 3.13’ (not isolated), followed by 

decarboxylation to give the isolated product 3.13”. 

To demonstrate the scope of the reaction, we also carried out the 

dimethylbarbituric acid hetero-Diels Alder reaction on the thiophene-based photoproduct 

(3.14).54 The single isomer 3.15 (Figure 3.4) was formed as confirmed by 1H NMR, and 

further supported by comparison of the experimental and predicted spin–spin coupling 

constants (SSCCs). For this, an in house density functional theory (DFT) relativistic force 

field method, developed by Kutateladze and Mukhina,53 was used. The method is based 

on fast and accurate scaling of Fermi contacts.53 Using this method, spin-spin coupling 

constants can be accurately predicted in under an hour for most conformationally rigid 

organic molecules.53 As shown in Figure 3.5, the green experimental constants (top 



 

 57 

number) match up exceptionally well with the pink predicted constants (bottom number) 

from this method, rendering support to our stereochemical assignments.  

To continue to test the scope, we used the enantiopure phenylalanine derived 

pyrrole 3.16, which was synthesized according to the previously published method.54 The 

irradiation took place in DMSO, affording the pyrroline 3.17, which is not isolated, but 

rather used directly in the hetero-Diels Alder reaction with dimethylbarbituric acid 

(Scheme 3.5). Rather than yielding the expected mono addition product 3.18, the reaction 

continued further, producing the bis-spiro cycloadduct 3.19, which was isolated after 

chromatography. This bis-spiro adduct was unexpected, and from our search, only one 

other such example exists in the literature.55 We proposed that the initially formed mono 

adduct 3.18 exists in an equilibrium with its opened, zwitterionic form 3.18 +/-, which is 

formed by the assistance of the lone-pairs on nitrogen and the added stability of the 
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formed iminium ion. The zwitterion 3.18 +/- can then add to a second molecule of 

dimethylbarbituric acid, yielding the bis-spiro final product 3.19. 

The structure of 3.19 was supported by more advanced NMR experiments such as 

13C attached proton test (APT), heteronuclear multiple-bond correlation (HMBC), and 

heteronuclear multiple-quantum correlation (HMQC), as well as the previously 

mentioned RFF calculations. HMBC allows for the detection of long-range 13C-1H 

coupling constants that cannot be detected by other types of 2D experiments. 
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HMBC analysis for 3.19 revealed the pyrrolo-quinolinone skeleton, similar to 3.17, 

remained unchanged in the final product (Figure 3.7). A characteristic feature of the 

spectrum are the two protons on Cd (Figure 3.6), which are represented by two doublets 

at 2.14 and 2.48 ppm with 2J = 15.3 Hz. In the HMBC spectrum, these doublets exhibit 

cross-peaks with quaternary carbons Cc and Ce at 51.5 and 56.1 ppm. The peak at 56.1 

ppm is attributed to carbon Ce judging by the cross-peaks with Cf–H and Ca–H. The peak 

at 51.5 ppm, which has a cross-peak with Cb–H, is attributed to carbon Cc. HMQC, which 

is also a 2D NMR technique, was then run to confirm this structure. Unlike HMBC, this 

technique only shows a correlation for protons and carbons that are directly attached to 

each other. The spectrum for this compound showed the proposed structure was in fact 

what was isolated (Figure 3.6). The structure was independently confirmed by 

calculation and comparison of spin–spin coupling constants. The calculated constants 

shown in green (top), agreed excellently with the experimentally obtained constants in 

pink (bottom) (Figure 3.8). 

Figure 3.8 
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With these new compounds in hand, it is important to reflect back on the purpose 

of this chemistry: to synthesize new potential drug candidates that reflect good fit to the 

desired descriptors used by FBDD researchers. Several of the compounds synthesized in 

this work are included in Figure 3.9. As is demonstrated, these new compounds have 

very good fsp3 values, even as high as 0.50 for the barbituric acid derivative 3.12. The 

number of rotatable bonds is less than or equal to 5, as criterion of Lipinski’s rule of 5, 

and all except for 3.19 have molecular weights less than 500 Da. And all excluding 3.19 

fit or are close to Astex’s Rule of 3 for fragments. So, whether using our azaxylylenes as 

drug candidates or as fragments, these new compounds show a range of diversity sought 

after by DOS and FBDD researchers. 
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Additionally, we tried to assess the diversity of the library generated using a table 

of Tanimoto coefficients. We supplemented this library with some previous examples 

from our group (Figure 3.1). The results show that the small library is quite diverse 

(Figure 3.10). Along the diagonal of the table the compounds are compared to each 

other, hence the coefficient of 1. But the off diagonals show coefficients less than 0.70, 

and in most cases less than 0.50, which is considered statistically non-similar. 

 So, to summarize, this chapter contains an elaboration of previous post-

photochemical modifications, which were intended to add diversity to the azaxylylene 

scaffolds previously synthesized by the Kutateladze group. The rapid growth in 

complexity is representative of a DOS approach to drug discovery, and statistical analysis 

shows a much greater area of chemical space could be probed when testing for biological 

activity.  



 

 

 

6
5
 

 

 A B C D E F G H 3.5 3.6 3.7 3.10 3.11 3.12 3.13” 3.15 3.19 

A 1 0.37 0.44 0.47 0.27 0.33 0.43 0.38 0.44 0.56 0.6 0.42 0.48 0.43 0.52 0.33 0.42 

B 0.37 1 0.41 0.32 0.24 0.34 0.46 0.27 0.34 0.36 0.38 0.63 0.4 0.31 0.37 0.26 0.26 

C 0.11 0.41 1 0.31 0.22 0.27 0.33 0.32 0.44 0.42 0.46 0.52 0.55 0.39 0.52 0.28 0.37 

D 0.47 0.32 0.31 1 0.33 0.43 0.3 0.46 0.4 0.36 0.4 0.35 0.5 0.4 0.45 0.36 0.4 

E 0.27 0.24 0.22 0.33 1 0.37 0.22 0.34 0.29 0.25 0.25 0.21 0.33 0.31 0.3 0.28 0.33 

F 0.33 0.34 0.27 0.43 0.37 1 0.4 0.34 0.35 0.34 0.36 0.29 0.37 0.34 0.38 0.32 0.35 

G 0.43 0.46 0.33 0.3 0.22 0.4 1 0.25 0.32 0.42 0.46 0.45 0.34 0.32 0.39 0.25 0.26 

H 0.38 0.27 0.32 0.46 0.34 0.34 0.25 1 0.39 0.33 0.34 0.3 0.52 0.37 0.44 0.36 0.67 

3.5 0.44 0.34 0.44 0.4 0.29 0.35 0.32 0.39 1 0.7 0.5 0.42 0.58 0.52 0.65 0.37 0.42 

3.6 0.56 0.36 0.42 0.36 0.25 0.34 0.42 0.33 0.7 1 0.7 0.42 0.47 0.42 0.5 0.32 0.33 

3.7 0.6 0.38 0.46 0.4 0.25 0.36 0.46 0.34 0.5 0.7 1 0.44 0.54 0.45 0.53 0.35 0.35 

3.10 0.42 0.63 0.52 0.35 0.21 0.29 0.45 0.3 0.42 0.42 0.44 1 0.48 0.37 0.49 0.28 0.31 

3.11 0.48 0.4 0.55 0.5 0.33 0.37 0.34 0.52 0.58 0.47 0.54 0.48 1 0.53 0.65 0.38 0.46 

3.12 0.43 0.31 0.39 0.4 0.31 0.34 0.32 0.37 0.52 0.42 0.45 0.37 0.53 1 0.57 0.62 0.38 

3.13” 0.52 0.37 0.52 0.45 0.3 0.38 0.39 0.44 0.65 0.5 0.53 0.49 0.65 0.57 1 0.38 0.49 

3.15 0.33 0.26 0.28 0.36 0.28 0.32 0.25 0.36 0.37 0.32 0.35 0.28 0.38 0.62 0.38 1 0.38 

3.19 0.42 0.26 0.37 0.4 0.33 0.35 0.26 0.67 0.42 0.33 0.35 0.31 0.46 0.38 0.49 0.38 1 
 

Figure 3.10 
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Experimental 

Common solvents were purchased from Pharmco and used as is, except for THF, which 

was refluxed over and distilled from sodium benzophenone ketyl prior to use. Common 

reagents were purchased from Aldrich and used without additional purification, unless 

indicated otherwise. NMR spectra were recorded at 25°C on a Bruker Avance III 500 

MHz in CDCl3 (unless noted otherwise). X-Ray structures were obtained with a Bruker 

APEX II instrument. High resolution mass spectra were obtained on the MDS 

SCIEX/Applied Biosystems API QSTARTM Pulsar i Hybrid LC/MS/MS System mass 

spectrometer from the University of Colorado at Boulder.  Flash column chromatography 

was performed using Teledyne Ultra Pure Silica Gel (230 – 400 mesh) on a Teledyne 

Isco Combiflash Rf using Hexanes/EtOAc as an eluent. 

 

Synthesis of Photoprecursors and Photoproducts 

Compounds 3.3, 3.4 and 13 were synthesized as previously described by our group14.  N-

hydroxy-benzenecarboximidoyl bromide,39 (1E)-N-phenyl-1-pyridin-2-

ylmethanimine,52 N-oxide-N-(phenylmethylene)-methanamine50 were prepared 

according to the existing procedures. 
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Postphotochemical Modifications 

 

Addition of nitrile oxide, general procedure I: 1 eq of photoproduct was dissolved in 

EtOAc. To this was added 3 eq of N-hydroxy-benzenecarboximidoyl bromide and 6 eq of 

KHCO3. An additional 3 eq of N-hydroxy-benzenecarboximidoyl bromide and 6 eq of 

KHCO3 were added after stirring for 12 h. The reaction was monitored by NMR until the 

starting photoproduct was consumed. The resulting mixture was diluted with water, 

extracted with 3x20 ml of EtOAc, washed with brine, dried over Na2SO4, and 

concentrated in vacuo. The mixture was then purified by flash chromatography. 

 

 12-hydroxy-15-phenyl-17,19-dioxa-5,16-

diazapentacyclo[11.5.1.01,5.06,11.014,18]nonadeca-6,8,10,15-

tetraen-4-one (3.6): General procedure I was followed. From 0.25 

g of 3.3 (1.0 mmol), 1.2 g of N-hydroxy-benzenecarboximidoyl bromide (6.2 mmol), 

and 1.2 g of KHCO3 (12.3 mmol), 0.15 g (61%) of the title compound was obtained.  1H 

NMR (500 MHz, CDCl3) δ 7.65 (m, 2H), 7.57 (dd, J = 8.4, 1.3 Hz, 1H), 7.48 (m, 5H), 

7.35 (m, 1H), 4.86 (d, J = 8.8 Hz, 1H), 4.78 (m, 2H), 3.87 (dd, J = 8.8, 1.0 Hz, 1H), 2.88 

(m, 2H), 2.77 (dt, J = 14.1, 9.9 Hz, 1H), 2.66 (ddd, J = 16.7, 9.5, 0.9 Hz, 1H), 2.46 (ddd, 

J = 14.1, 8.8, 1.0 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 173.8, 156.3, 133.4, 133.1, 

132.6, 130.7, 129.9, 129.2, 128.5, 127.6, 127.5, 126.7, 104.9, 88.1, 82.2, 77.6,  56.3, 29.4, 

27.2. HRMS (ESI) calcd for C21H18N2O4Li+ (MLi)+ 369.1427 found 369.1405  
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12-hydroxy-15-phenyl-17,19-dioxa-5,16-

diazapentacyclo[11.6.0.01,5.06,11.014,18]nonadeca-6(11),7,9,15-

tetraen-4-one (3.5): General procedure I was followed. From 0.25 

g of 3.4 (1.0 mmol), 1.2 g of N-hydroxy-benzenecarboximidoyl 

bromide (6.1 mmol) and 1.2 g of KHCO3 (12.4 mmol), 0.14 g (59%) of the title 

compound was obtained. 1H NMR (500 MHz, CDCl3) δ 7.98 (d, J = 8.0 Hz, 1H), 7.73 

(m, 2H), 7.54 (m, 3H), 7.49 (td, J = 7.9, 1.5 Hz, 1H), 7.46 (dd, J = 7.5, 1.3 Hz, 1H), 7.27 

(td, J = 7.5, 1.2 Hz, 1H), 5.81 (d, J = 6.2 Hz, 1H), 4.97 (d, J = 3.0 Hz, 1H), 3.84 (dd, J = 

6.2, 3.3 Hz, 1H), 3.29 (t, J = 3.1 Hz, 1H), 2.84 (m, 1H), 2.40 (m, 3H).13C NMR (126 

MHz, CDCl3) δ 173.3, 158.7, 134.5, 130.8, 130.0, 129.8, 129.2, 128.7, 127.7, 127.1, 

125.5, 122.9, 107.0, 101.4, 70.7, 57.1, 55.1, 34.1, 30.1. HRMS (ESI) calcd for 

C21H18N2O4Li+ (MLi)+ 369.1427 found 369.1407  

 

Nitrone Cycloadditions: 1 eq of photoproduct was dissolved in 1 ml of anhyd. toluene 

along with 4 eq of N-oxide-N-(phenylmethylene)-methanamine. The reaction was 

sealed in a high pressure reaction vessel and heated to completion as shown by 1H NMR. 

The toluene was removed in vacuo and the residue purified by flash chromatography. 

 

anti-12-hydroxy-16-methyl-15-phenyl-17,19-dioxa-5,16-

diazapentacyclo [11.5.1.01,5.06,11.014,18]nonadeca-6,8,10-trien-4-

one (3.7): From 100 mg of 3.3 (0.41 mmol) and 0.22 g of N-

oxide-N-(phenylmethylene)-methanamine (1.6 mmol), 98.0 mg 
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(63%) of title compound was isolated. 1H NMR (500 MHz, CDCl3) δ 7.50 (d, J = 8.0 Hz, 

1H), 7.39 (m, 4H), 7.32 (m, 2H), 7.24 (m, 2H), 4.59 (d, J = 4.4 Hz, 1H), 4.38 (m, 2H), 

3.32 (d, J = 8.6 Hz, 1H), 2.87 (m, 1H), 2.74 (t, J = 7.5 Hz, 1H), 2.58 (m, 2H), 2.43 (m, 

1H), 2.20 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 173.9, 134.0, 133.6, 132.5, 129.5, 

129.1, 128.7, 128.2, 127.8, 127.8, 127.1, 102.6, 84.2, 81.4, 79.5, 77.4, 61.2, 29.6, 27.1. 

HRMS (ESI) calcd for C22H22N2O4Li+ (MLi)+ 385.1740 found 385.1724   

 

syn-12-hydroxy-16-methyl-15-phenyl-17,19-dioxa-5,16-

diazapentacyclo [11.5.1.01,5.06,11.014,18]nonadeca-6,8,10-trien-4-

one (3.7’): General procedure IV was followed. From 0.10 g of 

3.3 (0.41 mmol) and 0.22 g of N-oxide-N-(phenylmethylene)-methanamine (1.6 

mmol), 33.0 mg (21%) of title compound was isolated. 1H NMR (500 MHz, CDCl3) δ 

7.55 (dd, J = 8.0, 0.9 Hz, 1H), 7.39 (m, 6H), 7.25 (m, 2H), 4.33 (d, J = 7.0 Hz, 1H), 4.19 

(m, 2H), 3.61 (d, J = 7.7 Hz, 1H), 2.92 (m, 1H), 2.81 (t, J = 7.4 Hz, 1H), 2.68 (m, 1H), 

2.58 (s, 3H), 2.54 (m, 1H). 13C NMR (126 MHz, CDCl3) δ 173.9, 135.8, 133.9, 133.8, 

132.5, 129.4, 128.9, 128.3, 128.2, 128.0, 126.8, 103.6, 83.9, 78.7, 77.7, 75.4, 55.9, 43.6, 

29.9, 26.7. HRMS (ESI) calcd for C22H22N2O4Li+ (MLi)+ 385.1740 found 385.1724  

 

Ethyl 13-chloro-4-oxo-16-oxa-5-azatetracyclo[10.3.1.01,5.06,11] 

hexadeca-6,8,10,14-tetraene-13-carboxylate (3.10): 0.14 g of 3.9 

(0.58 mmol) was dissolved in 50 ml of chloroform. To this was 

added 30 mg of tetrabutylammonium hydrogen sulfate (0.084 mmol) and 10 ml of a 50% 
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w/w solution of NaOH. The mixture was vigorously stirred at ambient temperature for 20 

h, then poured into 200 ml of water and extracted with CHCl3. The organic layer was 

separated, dried over anh. Na2SO4, and concentrated in vacuo. The mixture was purified 

by flash chromatography to yield 0.12 g (66%) of the title compound. 1H NMR (500 

MHz, CDCl3) δ 8.42 (dd, J = 8.3, 1.0 Hz, 1H), 7.38 (ddd, J = 8.7, 7.5, 1.6 Hz, 1H), 7.19 

(dd, J = 8.0, 1.4 Hz, 1H), 7.09 (td, J = 7.7, 1.3 Hz, 1H), 6.38 (dd, J = 9.9, 1.2 Hz, 1H), 

5.83 (d, J = 9.9 Hz, 1H), 5.47 (s, 1H), 4.27 (m, 2H), 2.74 (m, 2H), 2.42 (m, 2H), 1.30 (t, J 

= 7.2 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 170.8, 167.3, 133.1, 129.7, 126.9, 126.8, 

126.4, 123.8, 120.4, 119.9, 85.9, 77.3, 64.2, 62.9, 30.3, 29.9, 13.8. HRMS (ESI) calcd for 

C17H16NO4ClLi+ (MLi)+ 340.0928 found 340.0920  

 

14-hydroxy-11-(pyridin-2-yl)-2-oxa-10,21-

diazahexacyclo[11.11.0.01,21.03,12.04,9.015,20] tetracosa-

4(9),5,7,15,17,19-hexaen-22-one (3.11): 0.22 g of (1E)-N-

phenyl-1-pyridin-2-ylmethanimine (1.2 mmol) and 0.15 g of 

3.4 (0.61 mmol) were dissolved in 1.5 ml of 2,2,2-trifluoroethanol and warmed to 40oC 

until the reaction was complete as observed by 1H NMR. The resulting mixture was 

concentrated in vacuo and purified by flash chromatography, yielding 80 mg (31%) of the 

title compound. 1H NMR (500 MHz, CDCl3) δ 8.74 (ddd, J = 4.9, 1.8, 0.9 Hz, 1H), 7.88 

(td, J = 7.7, 1.8 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.57 (d, J = 7.9 Hz, 1H), 7.39 (m, 3H), 

7.17 (td, J = 7.6, 1.0 Hz, 3H), 7.11 (td, J = 7.5, 1.1 Hz, 2H), 6.85 (td, J = 7.5, 1.2 Hz, 

1H), 6.77 (dd, J = 7.4, 1.1 Hz, 2H), 5.25 (d, J = 7.7 Hz, 1H), 4.82 (d, J = 1.4 Hz, 1H), 
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4.65 (s, 1H), 3.38 (dd, J = 10.4, 2.5 Hz, 1H), 3.10 (d, J = 2.5 Hz, 1H), 2.69 (ddd, J = 16.3, 

10.9, 8.2 Hz, 1H), 2.54 (ddd, J = 10.4, 7.9, 2.5 Hz, 1H), 2.18 (dd, J = 16.6, 8.6 Hz, 1H), 

2.06 (ddd, J = 12.4, 10.9, 8.8 Hz, 1H), 1.68 (dd, J = 12.6, 8.0 Hz, 1H). 13C NMR (126 

MHz, CDCl3) δ 173.7, 159.2, 149.5, 143.4, 137.1, 134.0, 130.6, 130.0, 129.9, 128.9, 

128.6, 125.5, 123.8, 123.1, 121.6, 120.8, 119.3, 115.6, 100.2, 77.2, 74.7, 70.2, 56.6, 50.5, 

45.9, 36.0, 29.9. HRMS (ESI) calcd for C26H23N3O3Li+ (MLi)+ 432.1900 found 432.1889  

 

General Procedure II for oxa-Diels-Alder Reactions: 1 eq of photoproduct and 1 eq of 

1,3-dicarbonyl compound were dissolved in 0.7 ml of dry acetonitrile. To this was added 

0.08 eq of L-proline and 1.3 eq of 37% aq. formaldehyde solution. The reaction stirred at 

ambient temperature until full consumption of the photoproduct, as determined by 1H 

NMR. The reaction was diluted with water and extracted with EtOAc. The organic layer 

was separated, dried over Na2SO4, and concentrated in vacuo. The mixture was then 

purified by flash chromatography. 

 

12-hydroxy-16-methylidene-18,20-dioxa-5-

azapentacyclo[11.7.0.01,5.06,11.014,19]icosa-6,8,10-triene-4,17-

dione (3.13”): General procedure II was followed. From 0.10 g 

of 3.4 (0.41 mmol), 0.06 g of Meldrum's acid (0.41 mmol), 3.8 

mg of L-proline (0.033 mmol), and 0.04 ml of 37% w/w formaldehyde solution in water 

(0.53 mmol), was obtained 52 mg (35%) of the title compound. 1H NMR (500 MHz, 

CDCl3) δ 7.82 (d, J = 8.0 Hz, 1H), 7.42 (td, J = 7.7, 1.5 Hz, 1H), 7.33 (d, J = 7.3 Hz, 1H), 
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7.21 (td, J = 7.7, 1.2 Hz, 1H), 6.59 (s, 1H), 5.77 (s, 1H), 5.66 (d, J = 4.8 Hz, 1H), 4.64 (d, 

J = 2.4 Hz, 1H), 2.89 (dd, J = 11.0, 2.5 Hz, 1H), 2.75 (m, 3H), 2.47 (dd, J = 12.6, 8.4 Hz, 

1H), 2.35 (tdd, J = 12.7, 9.8, 1.7 Hz, 1H), 2.23 (dt, J = 16.4, 8.1 Hz, 1H), 2.16 (dtd, J = 

11.3, 4.7, 2.6 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 173.7, 173.7, 163.5, 133.4, 130.9, 

130.0, 130.0, 129.8, 129.3, 125.9, 123.8, 102.9, 102.0, 68.8, 51.7, 40.4, 35.8, 29.6, 27.3. 

HRMS (ESI) calcd for C18H17NO5Li+ (MLi)+ 334.1267 found 334.1253  

 

14-hydroxy-6,8-dimethyl-2,4-dioxa-6,8,21-

triazahexacyclo[11.11.0.01,21.03,12.05,10.015,20]tetracosa-

5(10),15,17,19-tetraene-7,9,22-trione (3.12): General 

procedure II was followed. From 100 mg of 3.4 (0.41 

mmol), 0.064 g of 1,3-dimethylbarbituric acid (0.41 mmol), 3.8 mg of L-proline (0.033 

mmol), and 0.04 ml of 37% w/w formaldehyde solution in water (0.53 mmol), was 

obtained 76 mg (45%) of the title compound. 1H NMR (500 MHz, CDCl3) δ 7.89 (d, J = 

8.0 Hz, 1H), 7.48 (td, J = 7.8, 1.6 Hz, 1H), 7.36 (dd, J = 7.5, 1.5 Hz, 1H), 7.26 (td, J = 

7.4, 1.2 Hz, 1H), 5.57 (d, J = 4.0 Hz, 1H), 4.79 (d, J = 2.6 Hz, 1H), 3.42 (s, 3H), 3.39 (s, 

3H), 2.90 (m, 1H), 2.85 (dd, J = 11.6, 2.6 Hz, 1H), 2.77 (d, J = 17.1 Hz, 1H), 2.56 (dd, J 

= 17.1, 6.5, 1H), 2.42 (m, 4H), 2.16 (dddd, J = 11.6, 6.5, 4.0, 1.4 Hz, 1H). 13C NMR (126 

MHz, CDCl3) δ 173.4, 163.0, 154.0, 151.0, 133.2, 130.3, 129.8, 129.1, 126.1, 124.0, 

102.1, 100.0, 82.5, 69.2, 51.6, 39.6, 36.5, 29.6, 28.7, 28.1, 18.1. HRMS (ESI) calcd for 

C21H21N3O6Li+ (MLi)+ 418.1591 found 418.1571   
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14-hydroxy-6,8-dimethyl-4-oxa-2-thia-6,8,21-

triazahexacyclo[11.11.0.01,21.03,12.05,10.015,20]tetracosa-

5(10),15,17,19-tetraene-7,9,22-trione (3.15): General 

procedure II was followed with DMSO as a solvent. From 

70.0 mg of 3.14 (0.27 mmol), 0.13 g of 1,3-dimethylbarbituric acid (0.81 mmol), 7.5 mg 

of L-proline (0.065 mmol, and 0.08 ml of 37% formaldehyde in water (1.1 mmol), was 

obtained 36 mg (31%) of the title compound. 1H NMR (500 MHz, CDCl3) δ 7.78 (d, J = 

7.9 Hz, 1H), 7.49 (td, J = 7.7, 1.2 Hz, 1H), 7.35 (dd, J = 7.5, 1.5 Hz, 1H), 7.27 (dd, J = 

7.5, 1.0 Hz, 1H), 5.55 (d, J = 3.1 Hz, 1H), 4.84 (d, J = 3.1 Hz, 1H), 3.40 (s, 3H), 3.38 (s, 

3H), 2.86 (dd, J =  12.1, 2.3 Hz, 1H), 2.78 (dd, J = 17.0, 0.8 Hz, 1H), 2.65 (m, 2H), 2.60 

(dd, J = 17.0, 6.5 Hz, 1H),  2.50 (m, 2H), 2.39 (dddd, J = 12.05, 6.5, 3.2, 0.8 Hz, 1H), 

2.30 (s, 1H). 13C NMR (126 MHz, CDCl3) δ 171.8, 163.1, 154.5, 150.9, 133.5, 130.9, 

130.4, 128.9, 126.4, 124.4, 88.8, 85.0, 82.9, 70.4, 56.2, 45.4, 42.4, 30.7, 28.7, 28.1, 20.3. 

HRMS (ESI) calcd for C21H21N3O5SLi+ (MLi)+ 434.1362 found 434.1353  

 

14-benzyl-5-hydroxy-5,21,23,28,30-pentamethyl-17,19-

dioxa-12,15,21,23,28,30-

hexaazaoctacyclo[16.8.4.14,12.01,18.03,16.06,11.020,25. 

015,31]hentriaconta-6,8,10,20(25)-tetraene-13,22,24,27,29-

pentone (3.19): 0.10 g of (S)-N-(2-acetylphenyl)-3-phenyl-

2-(1H-pyrrol-1-yl)propanamide (3.16) (0.3 mmol) was dissolved in 1.5 ml of DMSO. 

This was degassed and irradiated in Pyrex reaction vessel in LED-365 until the reaction 
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was complete, as determined by 1H NMR. The solution was then added directly to 0.05 g 

of 1,3-dimethylbarbituric acid (0.3 mmol). To this was added 3.0 mg of L-proline (0.024 

mmol), and 0.03 ml of 37% w/w formaldehyde solution in water (0.39 mmol). The 

reaction was heated to 70oC until full consumption of the photoproduct, as determined by 

1H NMR. The reaction was diluted with water and extracted with EtOAc. The organic 

layer was separated, dried over Na2SO4, and concentrated in vacuo. The mixture was then 

purified by flash chromatography, yielding 46 mg (23%) of the title compound. 1H NMR 

(500 MHz, CDCl3) δ 8.63 (dd, J = 8.3, 1.2 Hz, 1H), 7.58 (dd, J = 7.8, 1.5 Hz, 1H), 7.37 

(ddd, J = 8.5, 7.3, 1.6 Hz, 1H), 7.19 (m, 6H), 5.04 (d, J = 4.5 Hz, 1H), 4.34 (d, J = 11.1 

Hz, 1H), 3.76 (dd, J = 11.2, 3.4 Hz, 1H), 3.40 (s, 3H), 3.27 (s, 3H), 3.22 (s, 3H), 3.17 (dd, 

J = 10.6, 4.5 Hz, 1H), 2.99 (s, 3H), 2.96 (dd, J = 13.6, 3.4 Hz, 1H), 2.78 (dd, J = 13.5, 

11.3 Hz, 1H), 2.75 (dd, J = 13.5, 11.3 Hz, 1H), 2.53 (qd, J = 11.2, 7.2 Hz, 1H), 2.52, (d, J 

= 14.8 Hz, 1H), 2.45 (dd, J = 13.6, 7.1 Hz, 1H), 2.32 (d, J = 14.8 Hz, 1H), 2.04 (s, 1H), 

1.65 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 173.6, 172.1, 171.3, 170.7, 170.6, 150.7, 

150.3, 138.2, 132.4, 130.4, 129.7, 128.8, 127.8, 126.6, 126.1, 124.7, 117.9, 78.3, 71.9, 

71.5, 66.7, 56.0, 53.3, 51.4, 39.1, 37.1, 36.5, 36.0, 34.6, 29.4, 29.4, 29.3, 29.1. HRMS 

(ESI) calcd for C35H36N6O8Li+ (MLi)+ 675.2755 found 675.2742 
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X-Ray Structures 

X-Ray structures were obtained with a Bruker APEX II instrument and the structure was refined 

using XShell software.  The goodness of fit “S” is listed after each entry. Structures have been 

deposited with the CCDC. 

 

1. anti-12-hydroxy-16-methyl-15-phenyl-17,19-dioxa-5,16-diazapentacyclo 

[11.5.1.01,5.06,11.014,18]nonadeca-6,8,10-trien-4-one (3.7)  S = 1.049 

 

2. 12-hydroxy-16-methylidene-18,20-dioxa-5-

azapentacyclo[11.7.0.01,5.06,11.014,19]icosa-6,8,10-triene-4,17-dione (3.13”)  S = 

1.031 
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Chapter 4: β-lactams 

Although this project was the most frustrating at time, my hope is that the work in 

this chapter will contribute the most to the chemistry community and to the greater good 

of society. Applying the post-photochemical modifications from the last chapter to a new 

scaffold containing a β-lactam, a small library of diverse small molecules, which can 

serve as potential new drug candidates, has been prepared. The work in this chapter is in 

preparation for publication. 

 

Introduction 

The need for new drug candidates has been discussed thoroughly up to this point, 

but one area of specific need are antibiotics. The U.S. Center for Disease Control and 

Prevention (CDC) estimates that there are 2 million infections and 23,000 deaths in the 

US annually from antibiotic resistant bacteria.8 It is estimated that this equates to a cost of 

around 20 billion dollars for treatments and care, and an economic impact of around 35 

billion dollars. Several World Health Organization (WHO) countries have even reported 

that nearly 50% of the documented E. Coli related infections are resistant to all current 

drug treatments.8 There have been several severe outbreaks in the past decade or so, 

caused namely by methicillin-resistant Staphylococcus aureus or MRSA, which rapidly 

became resistant to the current approved treatments.  
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This is especially startling in light of the amount of research that goes into 

synthesizing new β-lactam targets annually. Figure 4.1, formed from a Web of Science 

search, shows the frequency with which the term β-lactam appears in synthetic chemistry 

literature. As can be seen, the usage has increased in step with the growing instances of 

antibiotic resistance of the last decade. But yet we still find ourselves unable to discover 

new candidates. This is most likely due, again, to the bias of the researchers looking for 

these scaffolds. Most β-lactam libraries are inspired by already known compounds such 

as penicillin, cephalosporins, monobactams, and carbapenems.56 As such, it is important 

to use the advances in modern computational chemistry, to take advantage of such DOS 

methods as FBDD, and synthesize better libraries of compounds that probe the chemical 

space more effectively. 

This work sets out to synthesize a small library of chemically diverse compounds 

to do that. Inspired by the post-photochemical modifications from the last chapter, these 
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new β-lactams are a departure from the currently approved molecules, as they contain a 

different substitution pattern of the β-lactam, which will hopefully allow them to serve as 

better drug candidates. 

 

Results and Discussion – Starting Material 

As is the case with most of the azaxylylene photoprecursors discussed so far, the 

assembly of the β-lactam precursors was very straightforward (Scheme 4.1). First, the 

commercially available 2-amino benzyl alcohol (4.1) was protected with trimethylsilyl 

chloride (TMSCl) yielding the protected 2-amino benzyl alcohol 4.2. Separately, the 

commercially available 2-furan acetic acid 4.3 was reacted with carbonyldiimidazole 

(CDI) forming the activated carbonyl species 4.4.57 4.2 and 4.4 were then coupled, and 

oxidized using Swern oxidation to yield the β-lactam photoprecursor 4.5. Irradiation 

conditions were optimized and found to yield clean photoproducts 4.6 and 4.7 in a 3:1 

mixture of EtOH/H2O. Given the usual high reactivity of β-lactams, it is surprising to 
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note that during purification, and the subsequent post-photochemical reactions, little to no 

decomposition of the β-lactams is observed.  

 

Results and Discussion – [3+2] Cycloadditions  

Post-photochemical modifications began with the [3+2] nitrile oxide addition, 

both with bromine and with phenyl substituents. As was the case previously, the addition 

of bromo nitrile oxide only yields one regioisomer 4.8, resulting from the exo face 

addition (Scheme 4.2). The addition of phenyl nitrile oxide also only yields one 
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regioisomer 4.9. The bromo nitrile oxide addition to the [4+4] scaffold yields two 

regioisomers 4.10 and 4.10’, both adding from the exo face (Scheme 4.3). The ratio of 

products observed by NMR was 1.5:1, which is drastically different from the previous 

cases. We reasoned previously that the steric hindrance of the linker determines the ratio. 

When the heterocycle on the “south” side of the molecule is a five-membered ring, the 

substituent clashes with the methylene group favoring a “north” facing addition. However 

with the β-lactams, the methylene group in the four-membered ring is farther away and 

therefore does not interfere as greatly. This would explain the almost 1 to 1 ratio of 
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products for the bromo nitrile oxide addition. As of note, the two regioisomers were 

inseparable by column chromatography.  

The phenyl nitrile oxide addition also yields two regioisomers 4.11 and 4.11’, 

with 4.11 being the major product, however the ratio is greater than 6:1 in favor of phenyl 

pointing north (Scheme 4.3). Phenyl is certainly a larger substituent than bromine, and 

since the four-membered ring is quite rigid, there is a large steric clash if phenyl was to 

face south. The minor isomer 4.11’ was only observed by NMR and not isolated for 

characterization. The nitrone cycloaddition was again not compatible with the [4+2] 

scaffold, however [4+4] yielded two isomers 4.12 and 4.12’, with 4.12 being the major 

(Scheme 4.3). The structure of major isomer 4.12, was assigned based on NOE 

experiments (Figure 4.2). The signal corresponding to proton He is a triplet at 3.03 ppm 

(4.12). Upon irradiating this triplet, a NOE of 11% with Ha is observed, which is 

indicative of the regiochemistry shown, as well as an NOE of 4% on Hb and 10% on Hc. 

No signal from Hd is observed, which implies that protons Hd and He reside on the 

opposite faces of the isoxazoline ring. Comparison of the minor isomer 4.12’ with 

previously synthesized nitrone compounds shows the constants for all signals matches 
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very closely, suggesting the regiochemistry shown. The minor isomer 4.12’ could not be 

isolated cleanly, so a definite set of NOE experiments could not be run. 

 

Results and Discussion – [4+2] Cycloadditions 

The Povarov cycloaddition on the [4+2] scaffold yielded cleanly one isomer 4.13. 

To show some diversity from the previously synthesized 3.19, 2-pyridyl imine was 

substituted by phenyl. The reaction still led to the formation of one isomer with the 

phenyl group anti to the hydroxyl group. The hetero Diels-Alder cycloaddition utilizing 

1, 3-dimethylbarbituric acid yielded one clean isomer 4.14. 

 The next step in this project should be the testing of the biological activity of this 

small library. We have shown that even molecular fragments that are usually quite 

difficult to work with, in this case β-lactams, are amenable to our group’s azaxylylene 
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photochemistry as well as the rapid growth in complexity from post-photochemical 

modifications. 
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Experimental 

Common solvents were purchased from Pharmco and used as is, except for THF, which 

was refluxed over and distilled from sodium benzophenone ketyl prior to use. Common 

reagents were purchased from Aldrich and used without additional purification, unless 

indicated otherwise. NMR spectra were recorded at 25°C on a Bruker Avance III 500 MHz 

in CDCl3 (unless noted otherwise). X-Ray structures were obtained with a Bruker APEX 

II instrument. High resolution mass spectra were obtained on the Waters Synapt G2 ESI-

MS mass spectrometer from the University of Colorado at Boulder.  Flash column 

chromatography was performed using Teledyne Ultra Pure Silica Gel (230 – 400 mesh) on 

a Teledyne Isco Combiflash Rf  using Hexanes/EtOAc as an eluent. 

 

Synthesis of Photoprecursor 

 

Dibromoformaldoxime,36 N-hydroxy-benzenecarboximidoyl bromide,58 (1E)-N-

phenyl-1-pyridin-2-ylmethanimine,52a N-oxide-N-phenylmethylene)-methanamine50 

were prepared according to the existing procedures. 

 

1.0 g of 2-furanacetic acid (8.5 mmol, 1 eq) was dissolved in 10 mL 

of anhydr. DCM along with 1.6 g of CDI (9.8 mmol, 1.15 eq). This 

reaction stirred at ambient temperature for 15 mins. The consumption 

of the starting 2-furanacetic acid was monitored by TLC. Upon full consumption, 1.6 g of 

2-{[(trimethylsilyl)oxy]methyl}aniline14 (8.5 mmol, 1 eq) was added and the reaction 
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stirred for an additional 6 hrs, before quenching with 20 mL of water. The organic layer 

was separated, washed with sat. brine, dried over Na2SO4, filtered, and concentrated in 

vacuo to yield 1.6 g of a crude mixture of 2-(furan-2-yl)-N-(2-

{[(trimethylsilyl)oxy]methyl}phenyl)acetamide and 2-(furan-2-yl)-N-[2-

(hydroxymethyl)phenyl]acetamide, which was used in the next step without separation 

or purification34. 

0.49 mL of oxalyl chloride (5.7 mmol, 1.1 eq) dissolved in 6.4 mL of anhydr. DCM (0.9M 

solution) was cooled to -78oC before 0.82 mL of dry DMSO (11.5 mmol, 2.2 eq) was 

slowly added. Upon complete addition, the mixture stirred for 2 mins while the evolution 

of gas stopped. Then, 1.6 g of a crude mixture of 2-(furan-2-yl)-N-(2-

{[(trimethylsilyl)oxy]methyl}phenyl)acetamide and 2-(furan-2-yl)-N-[2-

(hydroxymethyl)phenyl]acetamide (5.2 mmol, 1 eq) dissolved in 10.0 mL of anhydrous 

DCM (0.5M solution) was then slowly added to the activated DMSO solution. Upon 

complete addition, the mixture stirred for 15 mins. After 15 mins, 3.6 mL of NEt3 (26.1 

mmol, 5 eq) was slowly added. Upon complete addition, the mixture was slowly warmed 

to RT where it stirred overnight. The reaction was quenched with water and extracted with 

DCM. The organic layer was separated, washed with sat. brine, dried over Na2SO4, filtered, 

and concentrated in vacuo. The crude product was purified by flash chromatography from 

hexanes/EtOAc yielding 1.0 g of N-(2-formylphenyl)-2-(furan-2-yl)acetamide (57% 

over two steps). 1H NMR (500 MHz, CDCl3) δ 11.17 (s, 1H), 9.85 (s, 1H), 8.75 (d, J = 8.5 

Hz, 1H), 7.64 (dd, J = 7.6, 1.6 Hz, 1H), 7.61 (ddd, J = 8.5, 7.6, 1.6 Hz, 1H), 7.47 (dd, J = 

2.0, 0.8 Hz, 1H), 7.23 (td, J = 7.5, 1.0 Hz, 1H), 6.45 (dd, J = 3.3, 2.0 Hz, 1H), 6.39 (dd, J 
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= 3.3, 0.6 Hz, 1H), 3.85 (s, 2H). 13C NMR (126 MHz, CDCl3) δ 195.2, 168.3, 147.5, 142.9, 

140.5, 136.1, 135.9, 123.2, 122.0, 120.0, 110.8, 109.4, 38.1.  

 

Synthesis of Photoproducts 

 

General Procedure I for irradiation 

A solution with ca. 3.0 mM of N-(2-formylphenyl)-2-(furan-2-yl)acetamide in 3:1 

ethanol/H2O was degassed and irradiated in a Pyrex or borosilicate glass reaction under 

LED-365 LED Engins (360-370nm UV source with peak emission at 365 nm) until the 

reaction was complete, as determined by 1H NMR.  The solution was concentrated and the 

mixture was purified by flash chromatography. 

 

11-hydroxy-15-oxa-4-azatetracyclo[10.2.1.01,4.05,10]pentadeca-

5,7,9,13-tetraen-3-one: From 1.0 g of N-(2-formylphenyl)-2-(furan-2-

yl)acetamide was obtained 0.39 g (39%) of the title compound. 1H NMR 

(500 MHz, CDCl3) δ 7.79 (dd, J = 8.0, 1.3 Hz, 1H), 7.76 (dt, J = 8.0. 1.2 Hz, 1H), 7.32 (td, 

J = 7.6, 1.6 Hz, 1H), 7.20 (td, J = 7.7, 1.3 Hz, 1H), 6.71 (dd, J = 5.8, 1.9 Hz, 1H), 6.10 (dd, 

J = 5.8, 0.9 Hz, 1H), 5.26 (t, J = 4.7 Hz, 1H), 4.99 (dt, J = 3.9, 1.4 Hz, 1H), 3.51 (d, J = 

15.5 Hz, 1H), 3.46 (d, J = 15.5 Hz, 1H), 2.33 (d, J = 7.0 Hz, 1H). 13C NMR (126 MHz, 

CDCl3) δ 160.6, 135.0, 131.2, 129.9, 128.6, 128.4, 128.3, 124.9, 121.3, 94.0, 84.4, 76.2, 

45.7. HRMS (ESI) calcd for C13H11NO3
+ (MH)+ 230.0817 found 230.0816 
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10-hydroxy-6-oxa-2-azatetracyclo[9.4.0.02,5.05,9]pentadeca-

1(15),7,11,13-tetraen-3-one: From 1.0 g of N-(2-formylphenyl)-2-

(furan-2-yl)acetamide was obtained 0.41 g (41%) of the title compound. 

1H NMR (500 MHz, CDCl3) δ 7.53 (m, 1H), 7.32 (m, 4H), 6.39 (t, J = 2.8 Hz, 1H), 5.03 

(dd, J = 3.0, 2.4 Hz, 1H), 4.95 (d, J = 6.4 Hz, 1H), 4.22 (dt, J = 6.4, 2.4 Hz, 1H), 3.61 (d, J 

= 15.7 Hz, 1H), 3.46 (d, J = 15.7 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 164.7, 147.3, 

132.4, 132.3, 128.1, 127.2, 124.9, 122.7, 99.3, 91.5, 67.6, 52.0, 50.3. HRMS (ESI) calcd 

for C13H11NO3
+ (MH)+ 230.0817 found 230.0821 

 

Post-photochemical Modifications 

 

Addition of nitrile oxide, general procedure I:25 1 eq of photoproduct was dissolved in 

EtOAc. To this was added 3 eq of N-hydroxy-benzenecarboximidoyl bromide or 

dibromoformaldoxime and 6 eq of KHCO3. An additional 3 eq of N-hydroxy-

benzenecarboximidoyl bromide or dibromoformaldoxime and 6 eq of KHCO3 were added 

after stirring for 12 h. The reaction was monitored by NMR until the starting photoproduct 

was consumed. The resulting mixture was diluted with water, extracted with 3x20 mL of 

EtOAc, washed with brine, dried over Na2SO4, and concentrated in vacuo. The mixture 

was then purified by flash chromatography. 
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14-bromo-11-hydroxy-16,18-dioxa-4,15-

diazapentacyclo[10.6.0.0¹,⁴.0⁵,¹⁰.0¹³,¹⁷]octadeca-5,7,9,14-tetraen-

3-one: From 0.14 g of 10-hydroxy-6-oxa-2-

azatetracyclo[9.4.0.02,5.05,9]pentadeca-1(15),7,11,13-tetraen-3-

one, 0.37 g of dibromoformaldoxime, and 0.36 g of KHCO3, was obtained 85.0 mg (40%) 

of  the title compound. 1H NMR (500 MHz, DMSO) δ 7.44 (dd, J = 7.8, 1.2 Hz, 1H), 7.37 

(m, 2H), 7.20 (ddd, J = 8.7, 7.0, 1.9 Hz, 1H), 6.04 (d, J = 6.0 Hz, 1H), 5.81 (d, J = 5.8 Hz, 

1H), 4.82 (t, J = 5.4 Hz, 1H), 4.39 (dd, J = 5.9, 0.5 Hz, 1H), 3.28 (d, J = 15.5 Hz, 1H), 3.14 

(d, J = 15.5 Hz, 1H). 13C NMR (126 MHz, DMSO) δ 165.5, 142.4, 131.8, 131.0, 129.2, 

127.6, 124.9, 118.5, 107.5, 88.5, 63.8, 59.0, 51.9, 43.9. HRMS (ESI) calcd for 

C14H12BrN2O4
+ (MH)+ 350.9980 and 352.9960 found 350.9981 and 352.9962 

 

11-hydroxy-14-phenyl-16,18-dioxa-4,15-

diazapentacyclo[10.5.1.0¹,⁴.0⁵,¹⁰.0¹³,¹⁷]octadeca-5,7,9,14-tetraen-

3-one: From 200 mg of 11-hydroxy-15-oxa-4-

azatetracyclo[10.2.1.01,4.05,10]pentadeca-5,7,9,13-tetraen-3-one (1.0 mmol) was 

obtained 94.0 mg (31%) of the title compound. 1H NMR (500 MHz, CDCl3) δ 7.89 (m, 

3H), 7.86 (dt, J = 8.0, 1.4 Hz, 1H), 7.47 (m, 3H), 7.39 (td, J = 7.4, 1.4 Hz, 1H), 7.31 (td, J 

= 7.9, 1.3 Hz, 1H), 4.99 (m, 1H), 4.94 (d, J = 8.5 Hz, 1H), 4.73 (dd, J = 3.0, 0.8 Hz, 1H), 

4.09 (dd, J = 8.6, 1.0 Hz, 1H), 3.68 (d, J = 15.7 Hz, 1H), 3.52 (d, J = 15.7 Hz, 1H), 2.73 (d, 

J = 5.5 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 161.1, 157.0, 132.2, 130.6, 129.5, 129.0, 
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128.9, 128.0, 127.6, 127.2, 125.6, 120.9, 94.1, 87.2, 85.1, 77.2, 73.8, 53.9, 44.0. HRMS 

(ESI) calcd for C20H16N2O4
+ (MH)+ 349.1183 found 349.1183  

 

11-hydroxy-14-phenyl-16,18-dioxa-4,15-

diazapentacyclo[10.6.0.0¹,⁴.0⁵,¹⁰.0¹³,¹⁷]octadeca-5,7,9,14-tetraen-

3-one: From 150 mg of 10-hydroxy-6-oxa-2-

azatetracyclo[9.4.0.02,5.05,9]pentadeca-1(15),7,11,13-tetraen-3-

one (0.7 mmol) was obtained 0.11 g (47%) of the title compound. 1H NMR (500 MHz, 

CDCl3) δ 7.75 (m, 2H), 7.56 (dd, J = 8.2, 1.1 Hz, 1H), 7.49 (m, 3H), 7.42 (td, J = 7.7, 1.4 

Hz, 1H), 7.22 (td, J = 7.6, 1.2 Hz, 1H), 6.36 (d, J = 6.3 Hz, 1H), 4.97 (dd, J = 8.9, 5.1 Hz, 

1H), 4.69 (d, J = 6.3 Hz, 1H), 3.49 (d, J = 16.0 Hz, 1H), 2.96 (d, J = 16.0 Hz, 1H), 2.85 (d, 

J = 5.2 Hz, 1H), 1.83 (d, J = 8.9 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 164.5, 131.3, 

131.0, 130.5, 130.3, 129.4, 126.9, 125.1, 124.5, 119.2, 107.7, 103.3, 100.0, 87.8, 66.0, 53.8, 

52.2, 45.2. HRMS (ESI) calcd for C20H16N2O4
+ (MH)+ 349.1183 found 349.1179  

 

Nitrone Cycloaddition: 1 eq of photoproduct was dissolved in 1 mL of anhyd. toluene 

along with 4 eq of nitrone. The reaction was sealed in a high pressure reaction vessel and 

heated to completion as shown by 1H NMR. The toluene was removed in vacuo and the 

residue purified by flash chromatography. 
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anti-11-hydroxy-15-methyl-14-phenyl-16,18-dioxa-4,15-

diazapentacyclo[10.5.1.0¹,⁴.0⁵,¹⁰.0¹³,¹⁷]octadeca-5,7,9-trien-3-

one: From 100 mg of 11-hydroxy-15-oxa-4-

azatetracyclo[10.2.1.01,4.05,10]pentadeca-5,7,9,13-tetraen-3-one (0.44 mmol) was 

obtained 51.0 mg (32%) of the title compound. 1H NMR (500 MHz, CDCl3) δ 7.80 (dt, J 

= 7.8, 1.4 Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.39 (m, 3H), 7.33 (m, 3H), 7.26 (td, J = 7.6, 

1.4 Hz, 1H), 4.92 (dd, J = 5.5, 3.5 Hz, 1H), 4.65 (d, J = 7.0 Hz, 1H), 4.52 (d, J = 3.0 Hz, 

1H), 3.44 (d, J = 15.3 Hz, 1H), 3.30 (d, J = 8.5 Hz, 1H), 3.23 (d, J = 15.3 Hz, 1H), 3.03 (t, 

J = 7.7 Hz, 1H), 2.51 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 160.6, 131.6, 131.0, 129.3, 

129.0, 128.6, 128.5, 127.7, 125.6, 121.3, 93.1, 84.9, 81.5, 72.4, 61.9, 43.3, 42.3. HRMS 

(ESI) calcd for C21H21N2O4
+ (MH)+ 365.1496 found 365.1502 

 

Povarov Cycloaddition:52b A solution was prepared with 2 eq of the corresponding imine 

and 1 eq of corresponding photoproduct in 1.5 mL of 2,2,2-trifluoroethanol. This was 

warmed to 40oC until the reaction was complete as observed by 1H NMR. The resulting 

mixture was concentrated in vacuo and purified by flash chromatography. 

 

(1S,11S,13S,14S)-14-hydroxy-11-(phenyl)-2-oxa-10,21-

diazahexacyclo[11.10.0.0¹,²¹.0³,¹².0⁴,⁹.0¹⁵,²⁰]tricosa-

4(9),5,7,15,17,19-hexaen-22-one: From 50.0 mg of 10-

hydroxy-6-oxa-2-azatetracyclo[9.4.0.02,5.05,9]pentadeca-

1(15),7,11,13-tetraen-3-one  *Results are ongoing*  
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Hetero Diels-Alder Cycloaddition:59 1 eq of photoproduct and 1 eq of 1,3-dicarbonyl 

compound were dissolved in 0.7 mL of dry acetonitrile. To this was added 0.08 eq of L-

proline and 1.3 eq of 37% aq. formaldehyde solution. The reaction stirred at ambient 

temperature until full consumption of the photoproduct, as determined by 1H NMR. The 

reaction was diluted with water and extracted with EtOAc. The organic layer was 

separated, dried over Na2SO4, and concentrated in vacuo. The mixture was then purified 

by flash chromatography. 

 

(1S,13S,14S)-14-hydroxy-6,8-dimethyl-2,4-dioxa-6,8,21-

triazahexacyclo[11.10.0.0¹,²¹.0³,¹².0⁵,¹⁰.0¹⁵,²⁰]tricosa-

5(10),15,17,19-tetraene-7,9,22-trione: From 100.0 mg of 

10-hydroxy-6-oxa-2-

azatetracyclo[9.4.0.02,5.05,9]pentadeca-1(15),7,11,13-tetraen-3-one (0.42 mmol) and 65 

mg of 1,3-dimethyl barbituric acid (0.42 mmol) was obtained 55.2 mg (33%) of the title 

compound. 1H NMR (500 MHz, DMSO) δ 7.65 (dt, J=7.4, 1.4 Hz 1H), 7.40 (td, J = 7.5, 

1.3 Hz, 1H), 7.36 (tq, J= 7.5, 1.7, 0.80 Hz, 2H), 7.19 (dd, J = 7.5, 1.2 Hz, 1H), 6.14 (d, J = 

5.3 Hz, 1H), 5.80 (d, J = 4.0 Hz, 1H), 4.93 (t, J = 5.8 Hz, 1H), 3.74 (d, J = 15.8 Hz, 1H), 

3.42 (d, J = 15.8 Hz, 1H), 3.24 (s, 3H), 3.18 (s, 3H), 2.97 (d, J = 15.9 Hz, 1H), 2.40 (d, J = 

15.9 Hz, 1H). 13C NMR (126 MHz, DMSO) δ 19.5, 28.0, 28.8, 38.3, 39.5, 39.6, 39.8, 40.0, 

40.1, 40.1, 40.2, 40.3, 40.4, 40.5, 40.6, 46.8, 51.2, 66.7, 82.9, 93.2, 103.6, 123.1, 126.5, 

127.6, 128.2, 132.2, 134.7, 151.0, 154.4, 162.7, 165.5. HRMS (ESI) calcd for C20H20N3O6
+ 

(MH)+ 398.1347 found 398.1342  
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Chapter 5: LED Irradiator Design 

 Photochemistry has often been stereotyped as being “messy”, resulting in 

reactions that are difficult to predict or control.  Additionally, there is a misconception 

that photochemistry is expensive and requires specific light conditioning apparatus such 

as water cooling jackets and filters. These factors have prevented many chemists from 

utilizing this powerful synthetic tool. This section is intended to dispel these myths, and 

to demonstrate that photochemistry powered by LEDs is actually quite inexpensive, and 

that the equipment is easy to build and maintain. This will also serve as an instructional 

Figure 5.1 

Figure 5.2 
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on how to build the LED irradiators utilized by the Kutateladze group for its 

photochemistry.  

 

Rayonet Photo-Reactors (RPR) 

In the work by Mukhina et al., it was discovered that azaxylylene photochemistry 

could be initiated at wavelengths above 300 nm, with most azaxylylene precursor’s 

absorption maximum ranging from 330 nm to 380 nm. The original generation of 

Rayonet Photo-Reactors (RPR) from The Southern New England Ultraviolet Co. (Figure 

5.1) contained broad UV source lamps that emitted light from 300-420 nm, with an 

emission maximum at 350 nm, thus they are called RPR-3500 (Figure 5.2). This 

irradiator consists of 16 individual UV lamps that output 8 W each, or a combined 128 W 

of power. A particular drawback to this apparatus is the amount of energy waste, as not 

all 128 W is going to produce the desired wavelengths of irradiation. Integration of the 

area under the power output curve shows the irradiator is only producing around 20 W at 

the emission maximum. One of the major focuses in engineering a new generation of 

irradiators should be to improve upon this wastefulness. Additionally, the average cost 

for one of these units ranges from 3000 to 4000 dollars depending upon the specifications 

of the desired unit, not including the lamps. For a group attempting to start a 

photochemistry project, this could present too large of a barrier for entry. New 

generations of irradiators should seek to improve on this price point. 
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Power and Photon Flux 

 Before building a new irradiator, it is important to understand the relationship 

between power and the number of photons being emitted, or photon flux. For o-

azaxylylene photochemistry, the desired outcome of a perfect system would be every one 

photon captured by the sample leads to one azaxylylene formation event. This is never 

the case, as many other side processes lead to a return to ground state without productive 

photochemistry. However, the more photons that are produced and captured by the 

sample, the faster the reaction will be. The photon flux of a light source can be calculated 

using the power and the wavelength of the light. This calculation is not completely 

accurate for many light sources as this is assuming the light being emitted is only a single 

wavelength. In reality, many UV sources emit over a range, such as is the case for the 

RPR-3500. However, the newest generation of LEDs that will be described later, have an 

emission band of 360 to 370 nm, with a maximum emission at 365 nm. They are rated to 

produce exactly 2.9 W at this 365 nm, so in this case the calculation is accurate. The 

energy of this wavelength of light can be calculated using the energy equation (Figure 

5.3). Photon flux is then calculated by the photons/sec equation (Figure 5.3), and if 

desired, photon flux can be converted into mols of photons per sec by dividing photon 

flux by Avogadro’s number (Figure 5.3). For the LEDs in focus, the photon flux is 

E=h * (c/λ)

where:

h = Planck's Constant

λ = wavelength in meters

Photons/sec = Power (W) / E

mols of photons per sec = (Photons/sec)/Avogadro's Number

Figure 5.3 
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calculated at 5.3*10^18 photons/sec or 8.0 µmol photons/sec. So, if the setups had a 

100% absolute quantum yield, theoretically 1 mol of starting material could be irradiated 

in 124,378 secs or 34.5 hrs. using one of these LEDs.  

 

Light Emitting Diodes (LEDs) and UV LED Irradiators with λ > 350 nm 

With the recent drop in the price of manufacturing LEDs, it is now more 

advantageous for the Kutateladze group to make its own irradiators. Supplies were easily 

purchased online from either Newegg or Mouser Electronics. Mouser offers a wide range 

of LEDs from visible to UV, as well as a wide range of power supplies depending on the 

application. The first generation of LED irradiators built in the Kutateladze group ranged 

from 0.5 W to 1.25 W. While these were powerful enough for NMR scale experiments 

and some smaller scale reactions, large scale reactions simply took too long. Therefore a 

more powerful LED irradiator needed to be built, one that matched the power of the 

RPR-3500 (~20 W). This new setup consisted of seven 2.9 W LED Engin LZ4-44UV00 

LED Emitters (Figure 5.4). When purchased in bulk, these LEDs cost 58 dollars. Each 

LED requires a current of 700 mA and an input voltage of 18 V, so proper power supply 

selection is crucial. Voltage runs in series with the circuit, while current does not, so the 

Figure 5.4 
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power supply has to have a combined voltage higher than the sum of the LEDs, and a 

current at the maximum rating of one LED. Since this irradiator was to contain seven 

LEDs, the power supply needed to provide at least 126 V (18 V * 7) for proper function. 

The power supply that was chosen (Figure 5.5) was rated for 142 V and 700 mA. The 

power supply can supply more voltage than the whole array needs, however higher 

voltage power supplies cost more money, so it is better to only buy what is needed. This 

particular power supply cost 78 dollars from Mouser. Work begun with the selection of a 

proper heatsink that would accommodate all seven LEDs (Figure 5.6). The heat sink 

serves to aid in the dissipation of the heat generated by the LEDs. Every heat sink is rated 

based on how much power in the form of heat it can dissipate. Since each LED requires 

Figure 5.5 

Figure 5.6 Figure 5.7 



 

97 

 

 

18 V, but the actual output is only 4 V (2.9 W), about 14 V is lost to heat formation. The 

heat sink needs to be able to dissipate this heat effectively. As the heat sink gets larger, it 

dissipates more heat, so larger arrays are cooled more efficiently on the necessarily larger 

heat sinks. It is also beneficial to have a fan attached to the back side of the setup to 

provide additional forced cooling (Figure 5.7). The heat sink/CPU fan assembly in 

Figure 5.6 and 5.7 was purchased from Newegg for under 5 dollars and came 

preassembled. Every fan has a different set of criteria for power, but most CPU fans are 

rated for around 12 V and 500 mA. A regular AC adaptor for common household 

electronics can be used, as long as it meets the criteria. The desired LED pattern was then 

decided, and holes marked for drilling (examples shown in Figure 5.6). Several holes 

were drilled using a 7/64” bit fitted to a drill press. The resulting holes were threaded 

using a 6-32 NC tap and some cutting oil to prevent stripping the hole. Small #6 button 

head screws were then used to attach the LED array. On the backside of each LED was 

added some thermal compound, which helps in the transfer of heat from the LED to the 

heat sink. Each LED has 5 pads for creating a circuit (Figure 5.8). A schematic provided 

by the manufacturer shows that pads 1, 2, and 3 are the cathodes (+) of the LED; pads 4 

and 5 are the anodes (-) (Figure 5.8). Every LED is set up differently, so double check 

the manufacturer specifications, but electrons always flow from the anode (-) to the 

cathode (+). Each pad should be cleaned with flux to remove any oils or dirt from the 

manufacturing and handling process. Each pad was “tinned” with a little solder to 

establish a strong connection, followed by the attachment of the wires. Once the circuit 

was complete, the array was attached to the power supply to check for continuity. This 
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new array matched the power of the RPR-3500, without the extra waste (Figure 5.9). The 

calculated photon flux was 3.7 *10^19 photons/sec or 56 µmol photons/sec. At 100% 

efficiency, this irradiator could convert 1 mol of starting material in 4.9 hrs. It has been 

extremely useful in large scale irradiations, allowing for the irradiations of 1.2 g of 3.2 

(Scheme 3.2) in only 30 mins. Total cost to build this array was about 500 dollars, a 

nearly 3500 dollar savings over the Rayonet photoreactor. 

Figure 5.9 

Figure 5.8 
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 The newest generation of LED irradiators were designed to be housing in a 

sealable enclosure, just like the RPR-3500. They each contain two 2.9 W LED Engin 

LZ4-44UV00 LED Emitters, a heat sink and fan, as well as a power supply. Each LED 

still required 18 V and 700 mA, so the power supply needed to supply at least 36 V. The 

power supply chosen supplied a variable 10-43 V and 700 mA, and cost 28 dollars 

(Figure 5.10). Assembly of the irradiator was identical to the previously described 20.3 

W setup (Figure 5.11). Additional holes on the corners of the heat sink were drilled to 

allow for attachment to the irradiation container (Figure 5.12). The housing for these 

Figure 5.10 

Figure 5.11 
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units was a steel electrical junction box, purchased on Amazon for $70. A series of holes 

were drilled in the side to allow for air flow, for feeding the power cords through, and for 

fastening the power supply and irradiator to the inside. Once drilled and tapped, the unit 

was connected to power and checked for continuity (Figure 5.13). To increase the 

ascetics and functionality, a power strip was added to the outside of the box (Figure 

5.14). The power strip also allows for the user to place their reaction inside and turn the 

Figure 5.12 

Figure 5.13 
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unit on without having to look at the LEDs. A ring stand and magnetic stirrer were also 

added, the stirrer to allow for proper mixing during irradiation, and the ring stand for 

extra stability. These new irradiators have a combined 5.8 W of power, or 1.0 * 10^19 

photons/sec or 16.0 µmol photons/sec. The reaction times are therefore on the order of 5 

to 23 times faster than the original 1.25 W and 0.5 W irradiators respectively. The cost to 

build all four of these irradiators was only 900 dollars from easily purchased materials. 

 Further work for these UV irradiators will include experimenting with different 

shapes of arrays, including but not limited to bowls and rings. For now, these new 

irradiator setups represent a huge improvement over previous setups. They are powerful 

and focused, allowing for more efficient photochemistry. The new 20.3 W irradiator 

allows the group to irradiate large quantities of starting materials quickly, or to irradiate 

at low temperatures without a large increase in reaction time. The new 5.8 W enclosed 

irradiators allow for quicker small scale reactions on the order of 23 times faster than 

previous generations, with the added ascetics and protection from the UV sources. Most 

importantly, the dramatic drop in cost has removed a huge barrier for new groups starting 

photochemistry projects that utilize this powerful chemistry.  

Figure 5.14 
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Chapter Six: Conclusions 

 As the global population continues to age, more effective pharmaceutical 

treatments are always needed to combat the new issues that arise. Despite the large 

number of new small organic molecules, new drug approvals have been extremely slow, 

due in part to the lack of diversity in these compounds. The complexity and diversity that 

has been unlocked thanks to the photogeneration of o-azaxylylenes will hopefully be an 

important step towards solving these problems.  

This work has demonstrated that the pre-photochemical modification of o-

azaxylylenes is straightforward, allowing for the addition of heteroatoms to the linker that 

tethers the photoactive pendant to the o-azaxylylene. Irradiation at 350 nm yields new, 

complex N, O, S polyheterocycles, not easily synthesized by conventional benchtop 

methods. 

 This work has also demonstrated that the modular assembly of post-

photochemical modifications can lead to the synthesis of a small, diverse library as 

recognized by analysis of Tanimoto coefficients. These post-photochemical 

modifications allow for additional diversification of the photoproducts, ultimately 

covering more area in the chemical space. 
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 Additionally, a new set of β-lactam scaffolds was shown to be amenable to these 

post-photochemical modifications. As more bacteria build up a resistance to current 

treatments, these new β-lactams could serve as better alternatives to combat these needs. 

 And finally, the misconception has been dispelled that photochemistry is 

expensive. Given the decrease in raw material cost, it is now easier than ever to build in-

house reactors as powerful, if not more powerful than, commercially available units. This 

allows for the user to tailor-make an array that fits the needs of the group. 
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Appendix B: List of Abbreviations  

 

Δ  heat 

 

Ac  acetyl 

 

ACN  acetonitrile  

 

anhydr. anhydrous 

 

aq.  aqueous  

 

Ar  aryl 

 

ca.  circa 

 

calcd  calculated 

 

cat.  catalyst (or catalytic amount) 

 

CDI  1, 1’-Carbonyldiimidazole 

 

CHCl3  chloroform 

 

(COCl)2 oxayl chloride 

 

d  doublet 

 

dd  doublet of doublets 

 

ddd  doublet of doublet of doublets 

 

dddd  doublet of doublet of doublet of doublets 

 

dt  doublet of triplets 

 

DCM  dichloromethane 

 

DFT  density functional theory 

 

DIPEA  N,N-diisopropylethylamine 

 

DMF  dimethylformamide 
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DMSO  dimethyl sulfoxide 

 

DOS  diversity oriented synthesis 

 

ESI  electro-spray ionization 

 

ESIPT  excited state intramolecular proton transfer 

 

Et  ethyl 

 

EtOAc  ethyl acetate 

 

EtOH  ethanol 

 

eq  equivalent 

 

FVT  flash vacuum thermolysis 

 

g  gram(s) 

 

h  hour(s) 

 

hex  hexane 

 

HPLC  high-performance liquid chromatography 

 

HRMS  high-resolution mass spectrum 

 

hν  light (irradiation) 

 

KHCO3 potassium bicarbonate 

 

LED  light emitting diode  

 

LC  liquid chromatography 

 

mA  milli amperes 

 

Me  methyl 

 

mg  milligram(s) 
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min  minute(s) 

 

MS  mass spectroscopy 

 

NaOH  sodium hydroxide 

 

Na2SO4 sodium sulfate 

 

NMR  nuclear magnetic resonance 

 

PCC  pyridinium chlorochromate 

 

Ph  phenyl 

 

Py  pyridine 

 

q  quartet 

 

RPR  Rayonet Photo Reactor 

 

r.t.  room temperature 

 

s  singlet 

 

S  goodness of fit 

 

sat.  saturated  

 

SOC  spin orbit coupling 

 

td  triplet of doublets 

 

TEA  triethylamine 

 

THF  tetrahydrofuran 

 

TMS  trimethylsilane 

 

TMSCl trimethylsilyl chloride  

 

TOS  target-oriented synthesis 

 

UV  ultraviolet 
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V  volt(s) 

 

W  watt(s) 


	Photoassisted Generation of Complex N, O, S Polyheterocycles
	Recommended Citation

	Photoassisted Generation of Complex N, O, S Polyheterocycles
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Second Advisor
	Third Advisor
	Keywords
	Subject Categories
	Publication Statement

	tmp.1487090167.pdf.dGvWa

