
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2016

Implementing Agile Development at Scale: An Industry Case Implementing Agile Development at Scale: An Industry Case

Study Study

Nikita Kataria
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kataria, Nikita, "Implementing Agile Development at Scale: An Industry Case Study" (2016). Electronic
Theses and Dissertations. 1125.
https://digitalcommons.du.edu/etd/1125

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.du.edu%2Fetd%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1125?utm_source=digitalcommons.du.edu%2Fetd%2F1125&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

Implementing Agile Development at Scale: An Industry Case Study Implementing Agile Development at Scale: An Industry Case Study

Abstract Abstract
Agile software development methodologies are extremely popular. Their dynamic restructuring of the
development process has been seen as the silver bullet for increasing the productivity of software
development. A significant number of studies have analyzed the impact of implementing agile
techniques. However these are mostly evaluated only in smaller team settings. There is very little
reporting done on how agile development methods can be implemented at the team level and scaled up
at the program/portfolio level in large software organizations.

We present the results of an empirical study conducted at Pearson Education. The study focuses on the
penetration of agile development in the organization, agile development practices followed at the team
and program level and the perception of agile development by the people in diverse roles.

The study shows that about 90% of the respondents use agile development. Of those working in agile
development 13% work at the program level and 87% work at the team level. Similar to the practices at the
team level, there are standard practices followed at the program level with varying rigor. Most view agile
development favorably due to the benefits of agile development. Top benefits reported are improved
communication between team members, quick releases and the increased flexibility to changes. Our
analysis also indicates that among the population using the non-agile methods, 83% would like to switch
to agile methods, while 11% of the agile users would like to switch to non-agile methods. Agile practices
are followed more rigorously in larger teams. Respondents who only have experience working with agile
methods practice agile techniques more rigorously and perceive it more positively. Respondents with
training in agile methods are significantly more inclined to adhere to the process and have an
overwhelmingly positive opinion about it. However, challenging conventional wisdom is the finding that
experience does not impact the rigor or perception of agile methods. Dependencies among projects seem
to have negative impact on the success at the program level due to the challenges in coordination. There
is an increased need to focus on testing at the project level; however the rest of the aspects like
estimation, prioritization, productivity and time tracking, reviews and continuous integration are working
well at the project level. There can be an increased focus on some of the less rigorously used practices at
the program level. As training seems to have a significant positive impact on the overall experience of
agile development, it would help to increase the focus on training at an organizational level.

In conclusion the data indicates that there is a way of successfully scaling up agile methods from the
team/project level to the program level by following a disciplined approach. Teams and programs have
dependencies, so better synchronization and coordination can be achieved if the agile methods are
implemented across all the teams and programs. Training resources, defining and rigorously practicing
agile techniques at the program and project level and reducing dependencies are key factors in the
success of scaling agile methodologies.

Document Type Document Type
Thesis

Degree Name Degree Name
M.S.

Department Department
Computer Science

First Advisor First Advisor
Matthew J. Rutherford, Ph.D.

Second Advisor Second Advisor
Susanne Sherba, Ph.D.

Third Advisor Third Advisor
Catherine Durso

Keywords Keywords
Agile, Case study, Scaling, Software development

Subject Categories Subject Categories
Computer Sciences

Publication Statement Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.

This thesis is available at Digital Commons @ DU: https://digitalcommons.du.edu/etd/1125

https://digitalcommons.du.edu/etd/1125

Implementing Agile Development At Scale : An Industry

Case Study

A Thesis

Presented To

The Faculty of the Daniel Felix Ritchie School of Engineering and Computer

Science

University Of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Nikita Kataria

June 2016

Advisor: Dr. Matthew Rutherford

Author: Nikita Kataria
Title: Implementing Agile Development At Scale: An Industry Case Study
Advisor: Dr. Matthew Rutherford
Degree Date: June 2016

Abstract

Agile software development methodologies are extremely popular. Their dynamic

restructuring of the development process has been seen as the silver bullet for increas-

ing the productivity of software development. A significant number of studies have

analyzed the impact of implementing agile techniques. However these are mostly

evaluated only in smaller team settings. There is very little reporting done on how

agile development methods can be implemented at the team level and scaled up at

the program/portfolio level in large software organizations.

We present the results of an empirical study conducted at Pearson Education.

The study focuses on the penetration of agile development in the organization, agile

development practices followed at the team and program level and the perception of

agile development by the people in diverse roles.

The study shows that about 90% of the respondents use agile development. Of

those working in agile development 13% work at the program level and 87% work

at the team level. Similar to the practices at the team level, there are standard

practices followed at the program level with varying rigor. Most view agile develop-

ment favorably due to the benefits of agile development. Top benefits reported are

improved communication between team members, quick releases and the increased

flexibility to changes. Our analysis also indicates that among the population using

ii

the non-agile methods, 83% would like to switch to agile methods, while 11% of the

agile users would like to switch to non-agile methods. Agile practices are followed

more rigorously in larger teams. Respondents who only have experience working

with agile methods practice agile techniques more rigorously and perceive it more

positively. Respondents with training in agile methods are significantly more in-

clined to adhere to the process and have an overwhelmingly positive opinion about

it. However, challenging conventional wisdom is the finding that experience does not

impact the rigor or perception of agile methods. Dependencies among projects seem

to have negative impact on the success at the program level due to the challenges

in coordination. There is an increased need to focus on testing at the project level;

however the rest of the aspects like estimation, prioritization, productivity and time

tracking, reviews and continuous integration are working well at the project level.

There can be an increased focus on some of the less rigorously used practices at the

program level. As training seems to have a significant positive impact on the overall

experience of agile development, it would help to increase the focus on training at

an organizational level.

In conclusion the data indicates that there is a way of successfully scaling up agile

methods from the team/project level to the program level by following a disciplined

approach. Teams and programs have dependencies, so better synchronization and

coordination can be achieved if the agile methods are implemented across all the

teams and programs. Training resources, defining and rigorously practicing agile

techniques at the program and project level and reducing dependencies are key factors

in the success of scaling agile methodologies.

iii

Acknowledgments

I wish to thank my academic advisors, Dr. Matthew Rutherford, Dr. Susanne

Sherba and Dr. Cathy Durso, for their strong interest in my research and constant

guidance. Dr. Matthew Rutherford’s insightful suggestions and recommendations

provided direction for my work. Dr. Susanne Sherba’s enthusiasm about software

engineering combined with Dr. Catherine Durso’s deep understanding of statistics

and data analysis improved the quality of my work.

I thank my industry mentors Craig Rudman and Marianne Molberg for providing

me with this great opportunity to work with the resources at Pearson and perform

research with real industry data.

I wish to thank my family, my in-laws for being caring and appreciative, my Dad

and Mom for their constant encouragement throughout the process and strengthen-

ing my belief in myself. Thanks to my motivation, my little sister for encouraging

me to hold the vision for success in life, constantly achieve higher goals and trust

the process. Lastly, I would like to acknowledge my loving husband. Without his

unflagging support, strong conviction and constant reassurance, none of this would

have ever been possible.

iv

Table of Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Method of Approach . 3

1.3 Research Contributions . 4

1.4 Thesis Outline . 5

2 Literature Review 6

3 Background 16

3.1 Software Development methodologies 16

3.2 Agile Manifesto and types of Agile methods 17

3.2.1 Agile Manifesto: . 17

3.2.2 Agile methods: . 18

3.2.3 Scrum: . 19

3.2.4 Kanban . 23

3.2.5 Scrum vs Kanban . 26

3.3 Scaling agile methods . 26

3.3.1 Product Creation Framework: 26

3.3.2 Product Creation Framework values 27

3.3.3 PCF Milestones: . 28

3.3.4 The structural hierarchy in scaling agile methods: 29

4 Research Approach 32

4.1 Survey Population . 32

4.2 Survey Questionnaire . 33

4.3 Pretesting . 36

4.4 Data Analysis methods . 37

5 Findings and Results 39

5.1 Demographics . 39

v

5.1.1 Work area . 39

5.1.2 Location . 41

5.1.3 Role . 42

5.1.4 Experience . 43

5.2 Extent of agile adoption . 47

5.3 Non-agile development . 47

5.3.1 Benefits of non-agile development 47

5.3.2 Challenges of non-agile development 49

5.4 Agile Development . 51

5.4.1 Agile Development Methodologies 51

5.4.2 Past non-agile projects experience 52

5.4.3 Maturity of agile projects . 52

5.4.4 Willingness to switch methodologies 53

5.4.5 Training . 54

5.5 Agile implementation at the team level 55

5.5.1 Project Independence . 55

5.5.2 Team Members . 56

5.5.3 Practices . 57

5.6 Agile implementation at the program level 61

5.6.1 Program Demos . 62

5.6.2 Program Release . 63

5.6.3 Program core team meeting 64

5.6.4 Content authority . 64

5.7 Perception of agile development . 65

5.8 Benefits of agile development . 68

5.9 Challenges of agile development . 69

5.10 Comparison of the two waves of responses 71

5.11 Comparison of rigor based on experience 80

5.12 Comparison of rigor based on team size 83

5.13 Comparison of perception by experience 86

5.14 Grouping responses based on the respondents (program/project) level 89

5.15 Grouping responses based on agile training 91

5.16 Grouping based on non-agile experience 95

6 Conclusions and Future Work 99

6.1 Conclusion . 99

6.2 Future Work . 101

vi

List of Figures

3.1 Product Creation Framework from [1] 27

3.2 PCF milestones from [1] . 28

3.3 Structural hierarchy for agile implementation in large organizations
from [2] . 29

5.1 Work area . 41

5.2 Respondent locations . 42

5.3 Count of respondents in different roles 43

5.4 Experience of respondents . 43

5.5 Experience of respondents . 44

5.6 Correlation of work area and experience 45

5.7 Correlation of roles and experience 46

5.8 Usage of agile . 47

5.9 Benefits of non-agile methods . 49

5.10 Challenges of non-agile methods . 50

5.11 Use of agile methods . 51

5.12 Maturity of agile projects . 53

5.13 Willingness to switch methodologies 53

5.14 Count of respondents for agile trainings 55

5.15 Project dependence . 56

5.16 Team Size . 57

vii

5.17 Team agile ceremonies . 58

5.18 Team agile ceremonies . 59

5.19 Team engineering practices . 60

5.20 Team engineering practices . 60

5.21 Program practices . 62

5.22 Program practices . 62

5.23 Program demos . 63

5.24 Program Release . 63

5.25 Program Core Team Meeting . 64

5.26 Defining and prioritizing the backlog 65

5.27 Agile development perception . 67

5.28 Agile development perception . 67

5.29 Benefits of agile methods . 69

5.30 Challenges of agile methods . 71

5.31 Comparison of the experience of respondents in the two waves 76

5.32 Comparison of team ceremonies in the two waves 77

5.33 Comparison of team practices in the two waves 77

5.34 Comparison of program practices in the two waves 78

5.35 Comparison of the challenges in the two waves 79

5.36 Comparison of the perception of agile in the two waves 79

5.37 Comparison of the how well agile works in the two waves 80

5.38 Comparison of the rigor based on experience 81

5.39 Comparison of the rigor facetted by role 82

5.40 Comparison of the rigor facetted by non-agile work experience 83

5.41 Comparison of rigor vs team size . 84

5.42 Comparison of the rigor facetted by role 85

5.43 Comparison of the rigor facetted by non-agile work experience 86

viii

5.44 Comparison of the perception of agile development by experience . . 88

5.45 Comparison of perception of agile at different levels 89

5.46 Comparison of how well agile works at different levels 90

5.47 Comparison of benefits and challenges by respondents level 91

5.48 Comparison of the perception based on training 92

5.49 Comparison of how well agile works based on training 93

5.50 Comparison of the benefits and challenges based on training 94

5.51 Comparison of the trainings and experience 95

5.52 Comparison of the perception based on past experience 96

5.53 Comparison of the perception based on experience 97

5.54 Comparison of benefits and challenges based on experience 98

ix

Chapter 1

Introduction

The issues of improving productivity in software development, reducing waste

and delivering faster, cheaper and more efficient solutions are constantly being dealt

with in numerous ways. In this process of constant improvement, the invention of

agile software development was a tremendous breakthrough. However, this process

is often applied only to smaller teams. Large companies with massive teams find

it hard to transform to agile development. Thus, there has been a need to scale

agile techniques for larger teams and organizations. Today there are several forms

in which these methods are being implemented in larger organizations.

However there are very few studies performed to analyze how the scaled imple-

mentation of agile techniques impacts the productivity of the organization, what are

the benefits and challenges of these software development processes and the percep-

tion of these methods in large organizations. Also there is a need to analyze how

agile development is perceived by the people using it.

The analysis of the full impact of implementing agile development methods in

a larger organization can be of immense value to the entire software development

1

industry. Hence this study seeks to systematically survey an organization, Pearson

Education, perform an empirical study and present the findings of the study to draw

conclusions. We report the benefits and limitations of agile development as well as

suggest potential improvements to maximize the efficiency and productivity. We

can gain great insights through interaction with the organization employees about

practices followed at different levels, their perceptions of the development processes

and the impact on productivity in general.

We conduct a survey across Pearson Education’s Higher Education Division sent

out to employees in development, testing, management and related roles. We inter-

act with employees directly involved in the production of software. Our questions

aim to understand respondent demographics, agile methodology usage, rigor of agile

practices and respondents perceptions of why agile development works well or poorly

for them. From these responses, we hope to gain insight on how agile methods are

scaled at Pearson Education.

Historically, Pearson was a publishing company. Keeping up with the changing

technology, it entered the E-Learning industry segment and today it is one of the

world’s leading E-learning companies. They produce software solutions for the ed-

ucation sector. The company has a global presence with development centers all

across the world. Pearson has largely adapted their processes to agile development

methodology. They implement agile methods at scale using the Product Creation

Framework [1] which is based on Scaled Agile Framework(SAFe) model [3].

Even though the organization had a positive experience from the implementation

of agile development, the full impact of transforming to an agile enterprise, the

benefits and shortcomings of this adoption and the perception of their employees

towards it are yet to be evaluated systematically. Thus, the impact analysis of

2

implementing agile techniques at scale in a large software development organization

provides valuable findings in a world with little research in this area.

1.1 Problem Statement

In this thesis we seek to analyze the penetration of agile methods across Pearson

Education and how agile practices are implemented at the program and project level.

We want to understand the perception of the organization towards the implemen-

tation of agile methods and analyze the impact of various factors on the rigor of

practicing agile techniques.

1.2 Method of Approach

To address our research objective we conduct a survey asking questions about

demographic information, practices followed, and the perception of these practices.

This data is analyzed using inferential and exploratory analysis methods. We identify

trends in the data to understand the impact of the methodology and provide business

insights. We analyze:

• demographic information to understand the background of the respondents

• data about the agile methods and techniques to understand the penetration of

agile methods and which agile methods are practiced more than others.

• impact of various factors like experience, non-agile work experience, training

and team size on the perception of agile development and the rigor with which

the practices are followed

3

1.3 Research Contributions

Through our analysis we find that the organization overall has a positive experi-

ence with agile methods. Among the few projects which use a non-agile approach,

most would like to transform to agile methods. We perform analysis to see if these

results can be generalised across the organization and do not overrepresent employees

who feel strongly about agile development. Results of this analysis indicate that the

survey data is generalizable to the organization. Results show that about 90% of the

organization is using agile methods. Scrum and Kanban are the only two methods

practiced and Scrum is by far more popular than Kanban. Team sizes vary however

the average team size is 11. Teams are heavily dependent on other teams in the

same program and better dependency management can improve productivity. The

rigor of practices does vary, with larger teams practicing more rigorously. However

experience does not impact the rigor, as experienced people also strongly believe in

agile methods due to its positive impact on productivity. There is organization-wide

positive perception about agile development with project level implementation be-

ing more positive than program level. Training has a positive impact on perception

and makes agile development work better. Hence there is an increased need for

training on agile techniques across the organization. Exposure to other methodolo-

gies of development (non-agile) have significant impact on the rigor and perception.

Respondents who have worked only in agile development have a more positive ex-

perience and rigorous approach with agile practices. Experience has no significant

impact on the perception of agile development methodology.

4

1.4 Thesis Outline

The ‘Literature Review’ chapter summarises the state of current research in the

field of software development and more importantly focuses on agile software devel-

opment research. The ‘Background’ chapter explains different software development

methodologies, fundamental concepts of agile development, artifacts maintained, pro-

cesses and the terminology used in agile development across the industry and specific

Pearson nomenclature. In the ‘Findings and Results’ chapter we present the find-

ings of our exploratory and inferential analysis of the data and finally present the

conclusions and discuss future work in the ‘Conclusions’ chapter.

5

Chapter 2

Literature Review

Agile software development methodologies [4] have become popular in main-

stream software developers since the late 1990s. There are several methods like

Scrum [5], Crystal [6], Extreme Programming [7] and others used to implement agile

development. Our research aims to systematically review the usage and perception

of agile practices at scale. For effective research we need to understand the current

research in agile development and associated issues. Therefore we perform a survey

of the published work in this area.

[8], [9], [10], [11] and [12] present a comparison of analysis of traditional and mod-

ern methodologies. These in general show that there are different methods suitable

for different development environments. However modern development methodolo-

gies are more dynamic in nature. Hence they are well suited to cater to the scenarios

of constantly changing/evolving requirements. Gaurav and Prateek [13] analyse the

impact of agile development methodology on software development based on quality.

This paper analyzes values and principles of ten agile practices becoming popular

in software development. Agile processes can also have some challenges thus, not

6

necessarily proving to be beneficial. [14] presents the benefits and challenges of agile

development processes. The study [15] performs analysis on agile software develop-

ment methods from the view of supply chain management, concluding the overall

positive impact of agile software development. [16] analyzes metrics collection meth-

ods for measuring productivity, estimation and quality for an agile development

organization using Extreme Programming (XP) method of agile development. In

[17] William investigates some of the XP [7] practices with an IBM project group.

It is found that the product developed using these methods has improved quality

in comparison to other methods. Teams using XP development witnessed surges in

productivity, positive team spirit and satisfied customers. Melnik and Maurer [18]

analyze the development of a web based system. There were nine members on the

team using Extreme Programming techniques. They also observed significant gains

in productivity. Our work is closely related to the work by Melnik and Maurer who

analyze the perception of students towards agile development. They collected data

over three years. The students were positive towards using Extreme Programming.

However, even though students indicate productivity increase and improved quality

using this method of agile development, they could not compare it against other

development methods and this could skew the results in favor of the method. In

[19] Carver discusses using students as subjects in empirical studies. They conclude

that case studies done with students as subjects are not sufficient experimenting

methods in the industry. Hence from industry perspective there is little evidence

on the applicability and positive impact of agile practices. Sharp and Robinson in

[20] present a study of the overall human interaction and cultural impact of Extreme

Programming practices in a small company. Others papers [21] address individual

practice of pair-programming and [22] test-driven development.

7

In [23] Tsun Chow and Dac-Buu Cao report on the critical success factors for agile

development. This research uses data from a survey to explore the critical success

factors of agile development using quantitative methods. Data was collected from

109 projects from various organizations using agile development. Statistical analysis

was performed and conclusions were that there are very few critical success factors.

Of 48 total factors considered only 10 factors are statistically significant. Multiple

regression analysis proves that only correct delivery strategy, rigorous practising of

agile techniques and high-caliber team are critical to project success. Three other

factors that can be critical are good project management, an agile-friendly team

environment and intense involvement of customer. This research provides a short

list of factors management can focus on to adopt agile development methods in their

development projects. We have used a similar data collection approach. However

this research aims to provide us with the condensed list of the critical factors to be

considered in order to implement agile development successfully, while we intend to

analyze which practices are followed at the team and program level, how widely agile

techniques are used and what the perception of the people using it towards it is.

The paper [24] is an analysis of the impact of the adoption of Scrum on customer

satisfaction. Data is collected performing a survey in 19 development projects with

156 software developers. The findings show that there is no evidence of achieving

customer satisfaction and increasing the possibility of success in software projects by

this adoption. Each dependent variable is compared to provide a thorough analy-

sis. The statistical Mann-Whitney hypothesis test popularly called a U-test reports

no significant differences between the groups. This research provides conceptual

knowledge and an understanding of certain myths promoted by agile development

advocates. It also uses an empirical method for evaluation, performing exploratory

8

as well as inferential analysis methods to confirm the impact of Scrum on Customer

Satisfaction. As we are evaluating the impact of agile techniques in an organization

using empirical methods, this research is similar to our work and provides a direc-

tion to proceed. However this research is addressing only the impact of Scrum on

customer satisfaction, while we intend to analyze which practices are followed at the

team and program level in Scrum and other agile methods, how they impact the

productivity in the organization and how these methods are perceived by the people

using them.

[25] reports on studies done in the agile development area. They select 36 of 1996

research studies based on good rigour, relevance and credibility. 33 of these studies

are primary studies and the remaining are secondary studies. This paper can be used

as a map of findings according to topic, which can be used to find further relevant

studies and compare the development scenarios. The major finding is that there

needs to be more good quality research in agile development for concrete conclusive

recommendation of agile method adoption.

In [26] Moniruzzaman and Hossain find the major improvements by agile software

development in meeting the changing business environments. A comparative study of

agile development methodology and traditional development methodology is done.

This paper confirms that the iterative incremental model of agile methodology is

more effective than the traditional approach. This provides background knowledge

about the potential benefits and improvements of agile methodology implementation.

Some small organizations use models to guide management and deployment to

improve the software process improvement (SPI). However there are issues associated

with existing models. Hence in [27], the researchers propose a new process, with ap-

propriate strategies based on the organization size to incorporate improvements with

9

techniques of Scrum. They also apply the process in two small companies. Initial

results suggest that they are suitable for small organizations. This paper suggests

a lightweight model using the Scrum methods by introducing some modifications in

the base process specialized for the company size.

In [28] the researchers track the changing perception of agile development at

Microsoft using a survey. They intend to provide conclusive opinion about if agile

development is the “silver bullet” in software development. The data is collected from

five surveys from 2006 to 2012 with a total of 1969 respondents. The results show

that even though there is immense market pressure, agile development adoption at

Microsoft is very slow. There has not been a strong growth trend in any practice. The

results show that both agile and non-agile development users agree on the benefits

and challenges of agile development techniques. Non-agile users are more strongly

agree with the problem areas than benefits. Scaling agile practices is the biggest

challenge limiting its adoption. This study in an organization over a six year period

aggregates data to find growth trends in agile adoption and practices to confirm if it

is actually a silver bullet in software development.

In [29] Laanti reports that scaling agile methods is the challenge faced by orga-

nizations even though they wish to adopt agile development methods. Deploying

agile development methods at the team level is insufficient as they have dependen-

cies with other teams and synchronization is even more difficult to achieve if these

teams sharing dependencies deploy and operate on different schedules. They propose

a framework for scaling agile techniques to the program level. There is no measured

evidence as the programs have not yet completed, however qualitative data shows

the superiority of this new framework. Anecdotal evidence from employees operating

at the program level is positive. Over 60 programs of varying sizes are implement-

10

ing this model. This paper presents one approach for deploying agile techniques in

scaled software development environments. This work is similar to ours in the sense

of implementation of agile methods at the program level; however while we attempt

to analyze the impact of the established practices to implement agile development at

scale this paper presents an altogether new set of practices to scale agile development

up to the program level.

In [30] Pichler, Rumetshofer and Wahler present the challenges faced while work-

ing on a software development project for a period of three years. They focus on the

requirements engineering process. The project uses agile development techniques for

requirements elicitation for development while the client uses traditional software

development processes. Recommendations of this study are demonstrating objec-

tives and applicability of agile development techniques to the client and highlighting

the difference between prototypes and final product to the client. Thus, this paper

presents ways of working in asynchronous environments using the recommendations

provided by the researchers to deal with the challenge of co-ordinating between agile

development teams and traditional customers.

In [31] Moe, Dingsøyr and Dyba provide a better understanding of the nature

of self-managing agile teams and the challenges that arise with such self organiz-

ing teams. Researchers did field work for nine months in a software development

company. This company adopted Scrum by focusing on the cultural impact and

analyzed how teamwork is perceived by the team members. The conclusion is that

self-managing teams needs a change of mindset from management along with devel-

opment. Even though this takes time it increases the trust in the team. The scope

of their research is to analyze the self organizing nature of teams while we explore

all the other aspects of agile methodologies to a limited extent.

11

In [32] Bagel and Nagappan present the penetration, usage and success of agile

methodologies in a large software development organization Microsoft. They conduct

a web based survey to collect the data and find that one-third of the respondents use

agile techniques. Overall there is a positive perception of agile development. Top

benefits reported are better communication, flexibility and quicker releases. The

Scrum method of agile development is most popular at Microsoft. Developers face

challenges in scaling agile techniques to larger projects, co-ordinating between agile

and non-agile teams and having too many meetings. Respondents mean work experi-

ence is 9.2 years in software development. Of 14 different agile practices, 60 percent of

respondents use over 12. This Microsoft research study analyzes the implementation

of agile development in a large scale organization is similar to our study. However

the scope of their investigation is limited to project level implementation while we

explore the implementation at the program level as well some analysis about the

implementation of non-agile methods.

Several organizations wish to adopt agile development for the advantages poten-

tial quicker return on investment, customer satisfaction and improved quality. To

provide a systematic way to adopt these methods Sidky, Arthur and Bohner [33]

present the Agile Adoption Framework which is an innovative approach to imple-

menting agile methods. The framework has two components: an agile development

measurement index and a four-stage process to guide adoption of agile methodology

in an organization. There are five defined agile development levels used to iden-

tify the extent of agile techniques that can be implemented based on the project

in consideration. The four-stage process determines if the organization can adopt

agile development and with which set of agile practices. To evaluate this framework,

various members of the agile development community are presented with this frame-

12

work and their responses are mostly positive. This research presents a model for

the adoption of agile development and helps understand how the transition between

traditional to agile methods can be done. As we study the responses from the groups

using agile development as well non-agile development groups it is helpful to under-

stand ways of this transition. However this is different from our subject of research

that examines the current state of implementation to provide business insights to

management.

In [34] Kovitz reports on skills for different styles of requirements engineering.

There are 4 main focuses: advanced prioritization, requirements engineer guiding

the customer to find the problems early before major design decisions, importance

of negotiation for features that are not realistically accommodable in the given con-

ditions and creating a requirements document to determine components and sub-

components needed to be build to calculate development time and resources for the

project. This paper focuses on the success of development by emphasizing certain

factors during requirements gathering while we study all the techniques applied at

the project and program levels in order to ensure success in delivery.

In [35] Qumer and Henderson-Sellers develop an analytical framework ‘4-DAT’

and apply it to six agile methods. For comparison they also apply it to two tradi-

tional development methods. Results show that it can be determined whether agile

methods are applicable for that project based on the degree of agility found. The

agile methods used are Scrum, Feature Driven development, Extreme Programming,

Dynamic development, Adaptive development and Crystal Programming. These

methods are evaluated from four perspectives at the process level and practice level.

While this research study provides us with a model for evaluating which methods

can be best applied to the process and which degree of agility can be found in this

13

method, our work focuses on a systematic evaluation of the method already applied in

an agile enterprise. Qumer and Henderson’s work does provide a good foundational

understanding of the construction of a formal model.

In a summary of a panel to discuss the scaling agile techniques, [36] identifies the

top challenges in scaling agile methods: reconciling agile methods with traditional

practices, generating guidelines for non-sweet spot agile projects, augmenting agile

practices for large projects, resolving issues with integration in agile projects, scaling

agile techniques across several applications in an enterprise, handling non-collocated

agile development projects and integration testing for bigger systems. The suggested

ways to resolve these issues are shorter sprints, improving communications in large

projects, architectural planning before starting the sprints, intense collaboration with

onsite customers, packaging components and conservative expectations for change

from large projects. This paper provides insight regarding some issues and potential

solution guidelines in the process of scaling agile methods. While these generally

discuss the problems foreseen and experienced in scaling, we look at the issues of a

specific organization which is implementing agile techniques at scale.

It is a general observation by researchers that quality, productivity and staffing

needs determine the major costs in software development. In [37], Erdogmus pro-

poses a cost effectiveness indicator combining the cost drivers using an economic

criterion. If the cost effectiveness indicator increases for a project, a lower unit value

is required to break even and project profitability increases. The break even point

is an aggregate economic indicator for software development as the multi-criteria

comparisons on productivity, quality, productivity and staffing metrics are combined

in single criterion of cost effectiveness. Availability of base measures, ability to ac-

curately capture them and dependency on the output measures limits this indicators

14

applicability and portability. This research derives an indicator for cost effectiveness

for software development as costs are a significant parameter to be considered in op-

timising the process. We get significant understanding about the cost effectiveness

calculation parameters for software development from this study as implementing

agile development heavily focuses on reducing the project cost by decreasing time to

market, increasing efficiency and quality of product.

In [38] Qumer and Henderson-Sellers propose a new framework to support the

adoption, evaluation and improvement of agile development methods in practice. To

face the challenges typically found in quickly adopting agile methods, the researchers

provide a number of approaches to assist in this transition. The Agile Software So-

lution Framework gives a context for exploring agile methods. It contains an agile

toolkit for quantifying part of the agile process by linking the business aspect of

software development to ensure that the agile process and business value are well

aligned. They describe how to apply these theories in practice using the agile adop-

tion and improvement model in two companies and performing case studies. While

our research focuses on the evaluation of the current state of agile implementation

in this organization and differs significantly from their work, it provides us with an

understanding of frameworks for systematically transitioning to agile development.

The challenges of migrating to agile development have been investigated in the

paper [39] and the challenges that management faces are presented in [40].

15

Chapter 3

Background

3.1 Software Development methodologies

There are various different traditional and modern software development method-

ologies. Waterfall development, prototyping, spiral development,iterative and incre-

mental development, rapid application development, agile development are the most

popular software development methodologies [41]. Waterfall development and agile

development are the only two development models seen at Pearson Education.

The waterfall model [42] is one of the most widely used model in the software

development industry. In this model, the project is divided in phases including re-

quirements gathering, design, implementation, testing and deployment. There is

some overlap and iteration between phases with emphasis on planning, time schedul-

ing, budgets and implementation of an entire system [41]. There is elaborate written

documentation, formal reviews and a user acceptance process. The issues faced with

this development model are that product is delivered a couple years after the re-

quirements gathering and is outdated for the current market requirements. Thus,

16

business software is late, over budget and not able to fulfill the dynamically changing

requirements.

Agile development is a software development methodology essentially comprised

of iterations. The customer and developers agree on a list of tasks for each iteration.

Thus, changing requirements can be accommodated. Solutions are developed incre-

mentally by the development teams in close collaboration with the customer over

sprints. There are frequent releases. Continuous feedback successively refines and

finally delivers a complete software system. Agile software development is a lighter

and more people-centric approach in comparison with traditional approaches.

3.2 Agile Manifesto and types of Agile methods

3.2.1 Agile Manifesto:

A manifesto was designed in March 2001 by 17 experts in software development

processes and associated issues of software development to deal with the issues of

traditional development. The Agile Manifesto principles are mentioned below [43]:

• Customer satisfaction through continuous delivery

• Welcome changing requirements in development for customers competitive ad-

vantage

• Deliver working software frequently

• Collaboration between development and business throughout the project

• Motivated individuals in an inclusive, supportive environment

17

• Effective communication within a development team - face-to-face conversa-

tions

• Working software used as the measure of progress

• Sustainable development - The product owners and developers should be able

to maintain a constant pace throughout the project

• Attention to technical excellence and good design throughout the project

• Simplicity - the art of maximizing the amount of work not done

• Self-organizing teams

• The team reflects improvising the process further at regular intervals

Agile Manifesto principles are summarized in [43] as:

Individuals and interactions over processes and tools

Working software over comprehensive documentations

Customer collaboration over contract negotiations

Responding to change over following a plan

3.2.2 Agile methods:

Agile development is simple and delivers software in quicker time frames by de-

livering software in short cycles, getting feedback and responding to that feedback

[44]. According to [44] an agile method has the following properties:

Incremental: Frequent release of software

Cooperative: Collaboration between developers and customer

Straightforward: Easy to learn and simple

18

Adaptive: Able to accommodate changing and new requirements at various devel-

opment stages

Industry research shows that agile development has a positive impact on vari-

ous software development aspects like project visibility, productivity and software

quality. [45]. Agile software development methods have minimal documentation and

use prototyping and iterative development. According to [46], agile methods can

accommodate changing requirements and support continuously delivery with close

interaction between customer and development. In [47], Miller proposes the char-

acteristics of “modularity, iterations, parsimony in development process, adaptive,

incremental, convergent, people oriented and collaborative” in the agile development

process.

Some agile methods are Scrum, Extreme Programming, Kanban and the Rational

Unified Process. As Scrum and Kanban methods are used by our respondents, we

discuss these methods in the following sections:

3.2.3 Scrum:

The main purpose of Scrum is providing a way to accomplish dynamic require-

ments gathering, iterative cycles for implementation and thorough testing in smaller

chunks. The development process allows responding to the changing requirements.

Thus, the development process can deliver a market-relevant product.

SCRUM Phases:

The Scrum development method has phases of planning and design, development

and closure [48].

19

Pregame Phase: The pregame phase is mainly divided into planning and archi-

tecture high-level design. The planning phase includes the overall product definition

and a product backlog list of the main overall current requirements is created. Pri-

oritization and estimation of effort for the implementation of the product backlog is

done. There is estimation of the delivery date and functionality of the release. The

formation of the team, tools to be used, various other resources and funding from

management are done in this phase.

Product architecture/high-level design is done based on the product backlog.

The product backlog is reviewed and modifications are made to refine the system

architecture. This phase also identifies the possible issues during implementation

and redesigns or redefines backlog based on that.

Development Phase: In this phase there are development releases. The devel-

opment work in Scrum is done in cycles. It is iterative. There are fixed length sprints

usually of two weeks; however, these can be anywhere between one to four weeks.

Each sprint includes review of the previous sprint, prioritization and estimation, im-

plementation, testing and delivery. The development team, customer and product

management participate in the review. During the review the focus is on finding what

went well and what did not in the last sprint. Estimations and actual time spent

on tasks are compared to determine the accuracy of estimation and productivity of

team. During this development phase, management tracks the development time

along with the progress in functionality and the quality of work. Multiple sprints

occur before the final product delivery.

Closure: The closure phase occurs after all the requirements are implemented

and there are no new product increments thereafter. The product is ready for release

and involves integration, system testing and documentation and final deployment.

20

The Scrum Teams Roles and Responsibilities

According to [48], Scrum teams have the capability to complete their product

backlog. These teams work on the product in every sprint and incrementally deliver

the product. Scrum is designed for flexibility, creativity and productivity [48]. The

Scrum team is made up of the product owner, Scrum master and the development

team.

The product owner [49] increases the product value by collaborating with the

development teams. The product manager manages the user stories in the product

backlog and also their priority. The product owner ensures that the development

team clearly understands the product backlog [50]. The product owner is a single

person; any changes in the product backlog have to done by running them by the

product owner. The product owner has the final decision-making authority.

The development team [49], [50] consists of developers and testers. This team

delivers releasable increments of software components at the end of each sprint.

The development team is self-organized and does the actual implementation of the

product backlog items. The development team also does the estimations for the user

stories, creates the sprint backlog and reviews the product backlog list.

The Scrum master’s [50] primary responsibility is to remove obstacles on a daily

basis for the agile team. He/she is also responsible for checking that the project

adheres to the practices of Scrum. The Scrum master acts as a nexus between the

product owner, the development team and management. The Scrum master facili-

tates the smooth functioning of the entire team and sprints by better management

of product backlog and barrier removal.

21

Scrum Terminology

The following table presents a list of common Scrum terms [51]:

Activity Description

Daily Scrum Short daily meeting held to check the status of every

team member’s tasks and remove barriers

Done In a sprint review a task is reported as ‘Done’ if everyone

agrees mutually that the task is completed according to

the guidelines and standards that the team adheres to.

Increment A shippable product with partial functionality to be de-

livered to the product owner stakeholders at the end of

the sprint.

Sprint Sprint is an iteration in the agile development method-

ology. The duration of the sprint is about two weeks. It

produces an increment of the product.

Product Backlog List of requirements with assigned priority and allocated

time for completion. These are requirements expressed

as user stories that can be usually implemented over a

sprint.

Sprint Backlog A list of tasks to be completed in a sprint. Each task

has an estimated time.

Sprint Planning

Meeting

This meeting is held before the sprint for planning and

estimations of the next sprint. The product owner

presents the priority of the product backlog and the

team does the estimation for the items in the backlog.

22

Sprint Retro-

spective Meeting

The Scrum master facilitates this meeting which is held

at the end of the sprint to make decisions about what

should be removed and changed to increase the produc-

tivity in the next sprint.

Sprint Review

Meeting

This meeting is held between the development team,

the product owner and stakeholders at the end of each

sprint. There are discussions about the completed sprint

and the next sprint.

Stakeholder A stakeholder is anyone affected by the project.

Velocity At the end of each iteration, the team adds up effort es-

timates associated with user stories that were completed

during that iteration. This total is called velocity.

Burndown

Chart

This is a graphical representation of work remaining on

the vertical axis versus time along the horizontal.

Table 3.1: Scrum terminology.

3.2.4 Kanban

Kanban is a framework used to implement agile development methods.

Kanban Principles

As explained in [52], Kanban is very simple. The key Kanban principles are:

• Visualize the workflow

23

• Keep improving flow or Kaizen

• Limit work in process

A Kanban team[52] essentially functions by focusing on the task which is actively

in progress. After this work item is completed, the next work item with the highest

priority is ‘plucked’ from the product backlog. The product owner can re-prioritize

work in the backlog as any changes apart from the current work item do not impact

the team. As long as the highest priority work items are on top of the backlog, the

development team delivers maximum value to the business. There are no fixed-length

iterations; these are not required because the next work items are plucked from the

backlog once the in-progress work items are completed.

Kanban teams uses Kanban boards and cards to represent the work and workflow.

There is a whiteboard with sticky notes. This can be done virtually using software

as well. This helps in visualizing the work and helps the team watch how the work

item is moving across the board. This is called observing the work-flow. A limit

of how many work items can be in progress at any moment is set. When there

are barriers preventing work item completion, they are displayed on the board and

team members collaboratively resolve these issues and finish the work item. There

can be a regular deployment cadence or continuous delivery. The cycle of planning,

estimating, development, testing and release is done through every work item when

the work item is the highest priority item. Items ready to be delivered are released

as per the deployment cadence.

24

Key Features of Kanban:

• Flexibility in planning: The team plucks the work item with the highest priority

from the product backlog after completing the current work items. Thus,

the product owner can change the backlog without affecting the team hence

enabling accommodation of changes in requirements.

• Minimizing cycle time: Cycle time is the time taken for a work item to flow

across the board, i.e. from the time it is started on until the time it ships. As

there are limited work items in progress and the entire teams ensures the work

items are moving smoothly through the process, the cycle time is minimized.

A control chart used in Kanban shows the cycle time for each each work item

and rolling average for the team.

• Efficiency through focus: As there are limited work items in progress, the team

can focus better on these work items. Multitasking often hampers efficiency

due to reduced focus. If there are many work items in progress at a given time,

there is more context switching. This hinders their path to completion.

• Moving towards continuous delivery: The quality of code can be maintained

by building code incrementally and validating it throughout the project life

cycle. These tested code fragments can be released continuously to customers

(weekly/ daily/ hourly etc). Kanban supports continuous delivery as it focuses

on just-in-time delivery of value to customers and optimizing the flow of work.

25

3.2.5 Scrum vs Kanban

Kanban and Scrum are both different frameworks for implementing agile devel-

opment methods. Even though they are similar, they are different approaches. Some

teams at Pearson Education combine the idea of Kanban and Scrum into ‘Scrum-

ban’. For instance fixed length sprints from Scrum are combined with the focus

limiting the work in progress from Kanban to effectively customize it to the teams

requirements.

3.3 Scaling agile methods

As we see in our review, agile methods are designed for smaller teams. Thus, large

scale implementations of agile methods need some modifications. There are frame-

works used in large agile development projects for scaling agile practices. Pearson

Education uses the Product Creation Framework which is based on the Scaled Agile

Framework (SAFe) [3] for implementing agile practices at the program and portfolio

level.

3.3.1 Product Creation Framework:

The Product Creation Framework (PCF) is based on agile development principles.

PCF principles help the teams focus on delivering the highest value to the customer.

PCF blends the agile development practices with Pearson Education’s core principles.

26

Figure 3.1: Product Creation Framework from [1]

3.3.2 Product Creation Framework values

Pearson Education’s Product Creation Framework document [1] lists the following

values:

Focused on the Customer : Deliver features and functionality early and

throughout the process that provide value to the customer.

Continuous improvement : Implement small, incremental changes and

streamlined work flows to improve quality and efficiency of products

and services.

Optimize for the whole (design thinking) : Organize self-sufficient

teams that are complete, multi-disciplined, and co-located who can

complete delivery end to end.

Transparency and visibility : Define a visible process to the stakehold-

ers.

Build quality in and eliminate waste : Ensure quality is considered

27

early and throughout the process and identify opportunities that cause

waste.

3.3.3 PCF Milestones:

Milestones in PCF [1] are depicted by black circles in the figure below

Figure 3.2: PCF milestones from [1]

Pearson Education’s Product Creation Framework document [1] lists the following

milestones:

Release Planning

Milestone 1 - Defining the delivery goals

Milestone 2 - Designing the optimum solution

Quarterly Planning

Milestone 3 - Detail planning of the delivery

Milestone 4 - Releasable complete features

Milestone 5 - Certifiable release components

28

Milestone 6 - Releasable components are ready for the customer

Milestone 7 - Customer ready solution delivered to the customer

3.3.4 The structural hierarchy in scaling agile methods:

In order to scale agile methods to large teams there is a structure of teams,

programs and portfolios[3]. There is division of tasks at each level. At the portfolio

level there are investment themes, at the programs level there are features and epics,

and at the team level there are user stories. Following are brief descriptions of the

terminology used in PCF for implementing agile methods at scale:

Figure 3.3: Structural hierarchy for agile implementation in large organizations from
[2]

Teams: The teams[3] are comprised of developers, testers, scrum masters and

product owners. Teams consist of approximately five to nine people. The team

backlog consists of user stories.

Programs: Multiple teams form a program [3]. Programs have approximately

five to fifteen teams. Programs could be integrating components from different teams

to form an entire product or they could be developing major functionality to be used

across different products. Features and epics are defined at this level.

29

Portfolio: A portfolio [3] is composed of multiple programs and strategic deci-

sions are made by the people working at this level. Investment themes are defined

at this level. These are then decomposed into features and further into epics at the

program level.

User Stories: User stories [3] are the smallest units of work. They deliver a

particular value to the customer. User stories are a few sentences written in simple

language by the product owner. Later the team collectively writes more detailed

requirements.

Epics: Epics [53] are significantly larger units of work. These are development

components which are further decomposed into user stories. User stories can be

completed in biweekly sprints. Epics are usually delivered over a set of sprints. As a

team learns more about an epic through development and customer feedback, user

stories are added to the teams backlog. An epic burndown chart helps visualize epics.

This keeps stakeholders informed about how the team is progressing and facilitates

open conversation about the evolution of the product and completion.

Features and Capabilities[53]: The themes are decomposed into features and

capabilities which are deliverable functionalities. These features are delivered in the

quarterly releases and they provide specific features of the products and services.

They are further decomposed into epics.

Investment Themes [53]: These are strategic decisions defined at the portfolio

level. Products are developed based on the budget, market requirements and several

other factors by the stakeholders. These are the semi-annual decisions determining

the work flow for the organization. Investment themes could be a functional goal

like remodelling a product or non-functional goal such as migrating from Windows

30

to Linux based servers. The figure below [2] depicts the structural hierarchy of scaled

agile development organizations.

31

Chapter 4

Research Approach

We gather data through an anonymous survey about the demographic , methods,

practices, perception, benefits and challenges of the development methodology used.

We compile and analyze this data to completely understand implementation of agile

development at Pearson Education and also discuss potential improvements in the

process.

4.1 Survey Population

The survey was sent out to 2065 employees of Pearson Education working in

the Higher Education division. The employees are chosen from the entire division

after carefully considering the roles and functions in which agile implementation is

relevant. The survey was sent to functions like development engineering, testing,

management etc. where the agile techniques can be applied. Among the 2065 em-

32

ployees that this survey was sent out to, about 205 responded to the survey. The

respondents are from diverse roles.

The goal of this survey is to understand development methodologies used by

software engineering teams at Pearson Education, the state of agile development im-

plementation and the extent and diversity of agile development practices at Pearson.

The respondents are asked questions regarding demographics, technical practices in

the project and their perception of the methods. This survey is anonymous and

voluntary and takes approximately 10 minutes to complete. Most of the answer are

multiple choice with options for free form responses.

4.2 Survey Questionnaire

The questionnaire has several questions divided into four sections. The first

section is the demographic section. In this section the respondents are asked about

their

• Work area

• Role

• Work location

• Experience

• Pearson experience

• Development methodology used by the respondents team

33

The second section of the questionnaire is different depending on the response to the

last question about development methodology. We ask respondents using non-agile

methods regarding:

• Methodology followed by the team/program

• Has the project always been using non-agile development methodology

• Have they used agile methods in past, if yes why using non-agile development

methodology now

• Advantages

• Disadvantages

• Would they like to switch to agile development

We ask respondents using agile methods regarding:

• Which agile methodology is used by their project/program

• How long project has been using agile development methodology

• Did they work in non-agile development in the past

• Training in agile techniques

• Level at which they work (project / program)

We ask respondents questions based on the level at which they work. For the program

level respondents we ask regarding:

• Type of program

34

• Size of Program

• Do all their teams use agile methodology

• How rigorously the program practices were followed

• If they have program demos

• If they have regular program release

• If they have program core team meetings and if yes how often

• Who had the program content authority

For the respondents working at the project level we ask regarding:

• Size

• Locations

• Collocation

• Agile ceremonies used and how rigorously

• Engineering practices used and how rigorously

• Modifications for scaling if any the teams are independent

The following questions regarding the perception of agile development are asked

to all respondents using agile development regardless of their level:

• Perception of agile development based on multiple factors (architecture, col-

laboration etc.)

35

• How well is agile development working for them at different levels (team level,

individual level, group level etc.)

• Benefits of agile development (listed as well as an option for free form responses)

• Challenges of agile development (listed as well as an option for free form re-

sponses)

• Main benefit

• Main challenge

• If they would like to switch to non-agile methods

• Overall suggestions for improvements if any

4.3 Pretesting

In order to pretest the survey we conduct a pilot survey. This survey was sent

out to about 8 respondents from various backgrounds.

• 2 Professors working in the software engineering area of computer science

• 1 Professor working on data analysis and visualization

• 1 Agile coach

• 1 Software developer

• 1 Program manager

• 3 Students from computer science with previous work experience

36

The pretest results are utilized to improve the questionnaire by testing the ques-

tions on the basis of relevance to the objective of research, understandability of

questions, applicability parameters and if the responses can be used for evaluation

in order to derive conclusions from the data.

4.4 Data Analysis methods

Our data analysis primarily involved two major steps:

Data Preparation - Cleaning and organizing/formatting the data. Data prepa-

ration, transferring the data into readable formats, checking the data for accuracy by

observing the values for the various responses and plotting scatter plots and check-

ing for unreasonable outliers, cleaning the data using automated scripts written in

R. For various fields like the Role, the respondents gave a wide variety of responses

apart from the options given. Thus, closely examining these responses and fitting

them into predefined categories as far as possible and creating new categories where

required.

After the data is cleaned, data sets are created for non-agile methodology respon-

dents, agile methodology respondents, team level agile respondents, program level

agile respondents, team practices, perception etc.

Descriptive Statistics : We use descriptive statistics to describe the features

of the data. We create graphical displays of various response categories to present

the findings using the R programming language and spreadsheets. Thus, provide

summaries about the sample and the measures. Together with graphical analysis,

we provide the visualisation of quantitative analysis of data describing the findings

from the data.

37

Inferential Statistics : We use Fisher’s Exact test, Kolmogorov Smirnov test

and linear regression in order to perform inferential statistics on the data sets divided

into groups based on various parameters like experience, team size, employee level

etc.

The results of the exploratory and inferential analysis are used to draw conclusions

from the data which are described in the next chapter.

38

Chapter 5

Findings and Results

In this section, we report on the findings from the survey. We report on the

respondent’s demographics, the extent of agile adoption and the perceptions of agile

software development techniques.

5.1 Demographics

The survey was sent to a population of 2065 employees. We received 205 re-

sponses. This section presents demographic information about the respondent pop-

ulation.

5.1.1 Work area

The respondents work in different work areas. These areas include:

• Development engineering - This area includes development, unit testing, build

and integration. It functions as the crux of the organization for product devel-

opment.

39

• Project management office - This team functions as the nexus between business

and engineering. It drives the effective flow of work through the organization.

• Product management - Product management makes strategic decisions about

what products should be built based on its knowledge of the market require-

ments and works with marketing to let them know what to communicate.

• Quality engineering - SQE looks for mistakes or defects in the products being

developed to avoid bugs and issues after deployment.

• UX and Design - The user experience and design team ensures that the product

has an intuitive, simple and appealing design that works well on several devices.

• Other - We categorized research, technical operations management, assessment

and learning design in this category.

Overall 86 respondents work in development engineering, 46 work in the project

management office, 23 respondents work in product management and 34 in quality.

There are 7 respondents working in user experience and design and 8 working in

various other work areas.

40

Figure 5.1: Work area

5.1.2 Location

The respondents work in different locations across the world. A vast majority

(141) of the respondents work in the North America - United States while there are

60 respondents from Asia, 3 from Europe and 1 from Australia.

• Across United States there are respondents from Centennial CO, Boston MA,

Hoboken NJ, Glenview IL, Chandler AZ, San Francisco CA, Field US, Tempe

AZ, Piscataway NJ, New York NY and Phoenix AZ

• Across Asia respondents are from Colombo SriLanka, Bengaluru India, Hyder-

abad India and Chennai India

• From Europe respondents are from London UK

41

• From Australia respondents are from Hobart

• There are also 8 respondents who work remotely

Figure 5.2: Respondent locations

5.1.3 Role

There are 13 different roles among the respondent population:

Developer, tester, data architect, software architect, scrum master, product owner,

agile coach, manager, functional manager, manager of manager, business analyst,

technical writer and others.

42

Figure 5.3: Count of respondents in different roles

5.1.4 Experience

The average experience of the respondents in the software industry is 12.8 years

with a standard deviation of 7.6, with a minimum of 0.5 years and a maximum of 35

years. The distribution of experience can be seen in Figure 5.4 and 5.5.

Figure 5.4: Experience of respondents

43

Figure 5.5: Experience of respondents

The plot in Figure 5.6 shows the correlation between experience and work area.

The box plot shows the median experience for respondents working in different work

areas, the higher and lower quartiles and the outliers.

44

Figure 5.6: Correlation of work area and experience

The plot in Figure 5.7 shows the correlation between experience and roles. The

box plot also shows the median experience for respondents in a specific role, the

higher and lower quartiles and the outliers.

45

Figure 5.7: Correlation of roles and experience

Discussion: A vast majority of the respondents are developers working in the

development and engineering area. The survey respondents are mostly from Centen-

nial Colorado. Boston, Massachusetts and Colombo Sri Lanka are the other highly

represented locations. The average experience of the respondents is 12.8 years. Thus

we can see that there is wide diversity in the survey respondents based on their work

areas, roles, location and experience. Based on the experience it can be said that

the respondent population is fairly mature.

46

5.2 Extent of agile adoption

We analyze the extent of adoption of agile development by asking respondents if

they use agile development methodologies or non-agile development methodologies

on their projects. The graph in figure 5.8 shows the extent of adoption of agile

methods.

Discussion: 89% of the respondent population uses agile development while

11 % of the respondents use non-agile development methodologies on their current

projects at Pearson Education.

Figure 5.8: Usage of agile

5.3 Non-agile development

5.3.1 Benefits of non-agile development

We ask respondents about the benefits of using non-agile development method-

ologies. The survey allows the respondents to choose from the following benefits:

47

• Better adherence to requirements

• Better communication with management

• Cost effectiveness

• Documentation useful for on-boarding new team members

• Easily scalable to large teams

• Each stage has an expected results so easy to coordinate due to model rigidity

• Higher quality testing

• Increased productivity

• Increased quality of deliverables

• Stable architecture

• Scheduled process - one stage at one time during development

• Simple, easy to use software development model

• Structured design

• Reduction in defects

From the graphs in Figure 5.9 it can be seen that higher quality testing, scheduled

process - one stage at one time during development and structured design emerged

as the top three benefits of following the non-agile methodology.

48

Figure 5.9: Benefits of non-agile methods

5.3.2 Challenges of non-agile development

We ask respondents about the challenges of following non-agile methodology. The

survey allows the respondents to choose from the following challenges:

• Changing requirements cannot be accommodated in the same version of the

software

• Estimation of time and budget for each stage is very difficult

• Design issues found during testing expensive and difficult to correct

• High risk in the entire life cycle of the development

• Low utilization of resources

• No option of changing (partitioning) the project into multiple stages

• No prototype before the end of the life cycle

• Requirements emerge after the requirements gathering phase

49

• Problems detected at a stage are not solved completely in the same stage

• Testing occurs in the last stage of the development

• Rigid process

• Time to market too long

From the graph in Figure 5.10 it can be seen that estimation of time and budget

for each stage, requirements emerging after the requirements gathering phase are the

top challenges and accommodating changing requirements in the same version of the

software.

Figure 5.10: Challenges of non-agile methods

Discussion: The main benefit of non-agile development methods is the scheduled

process, structured design and the quality of testing. Accommodating changing

requirements and estimation are the top challenges. It is also observed that the

total count of benefits (50) reported is lower than the total count of challenges (58)

reported. This suggests that the users of non-agile development face more challenges

than benefits in this methodology.

50

5.4 Agile Development

5.4.1 Agile Development Methodologies

The agile methods Scrum and Kanban are practiced among the survey respon-

dents. From 5.11 it can be seen that 79 % of agile practitioners use the Scrum method

while about 14 % use the Kanban method. Some respondents use a combination of

Scrum and Kanban. At the program level some respondents have some teams use

Scrum while others use Kanban. One respondent mentioned using scrum at the team

level and waterfall at the program level.

Figure 5.11: Use of agile methods

51

Discussion:A vast majority of the organization uses the Scrum method while

the rest use Kanban or a combination of Scrum and Kanban. At the program level

there are a few programs in which some teams use the Scrum method while others

use the Kanban method.

5.4.2 Past non-agile projects experience

To understand if the respondents have any background to compare agile devel-

opment against other methods we ask respondents working on agile programs and

projects if they have worked with non-agile development methodologies in the past.

We find that over 160 of the 184 respondents who work on agile methods have past

non-agile development experience. This indicates good exposure to other develop-

ment methodologies.

Past non-agile development experience 160

Only agile development experience 24

Total 184

Table 5.1: Agile methodology users with non-agile development experience

5.4.3 Maturity of agile projects

For analyzing the maturity of agile development projects, we record the time for

which the projects our respondents work on have been using agile techniques. On an

average projects have been using agile techniques for 2.49 years with a standard de-

viation of 1.84 years. The plot in Figure 5.12 shows the distribution for the maturity

of projects using agile development techniques.

52

Figure 5.12: Maturity of agile projects

5.4.4 Willingness to switch methodologies

We ask respondents working on agile development methodology if they would like

to switch to a non-agile methodology and those working on non-agile projects if they

would like to switch to agile development methodology. The graph in Figure 5.13

shows the plot of the responses. We found that 11% of agile development users would

like to switch to non-agile methods while 78% of non-agile development respondents

would like to switch to agile methods.

Figure 5.13: Willingness to switch methodologies

53

Discussion: It can be seen that most of the respondents have past non-agile work

experience. The average maturity of agile projects is 2.49 years. Most of the agile

development users would like to continue with agile development techniques; however,

most of the non-agile methodology users would like to switch to agile development.

5.4.5 Training

To understand the training needs of the respondent population we evaluate the

trainings done by our respondents in agile techniques. It is seen that 160 of 181

respondents working on agile projects have done some training in agile techniques.

About 9% of the respondents have no training in agile techniques.

The respondents mentioned various different trainings out of which most relevant

are:

Continuous Delivery, Kanban DevOps, Agile Testing, Agile Product Management,

Scrum Practices, SAFe Training , Scaled Agile Framework Program Consultant

Certification(SPC), Scaled Agilist Certification(SA), Certified Scrum Master(CSM),

Certified Scrum Product Owner(CSPO) and Agile Certified Practitioner(ACP)

54

Figure 5.14: Count of respondents for agile trainings

Discussion: Most of the respondents have some training in agile methods how-

ever there are a few respondents with no training in agile methods. Scrum practices

training is done by a majority of the respondents.

5.5 Agile implementation at the team level

5.5.1 Project Independence

Dependency management is usually a major challenge for large scale companies.

Thus, we evaluate if the projects at Pearson Education face the same challenge. The

respondents are asked if the project team is able to independently complete the user

stories with its own resources and if not, how many other projects it is interdependent

on. The responses suggest that 115 of the respondent’s projects have dependencies.

These projects are not able to complete their product backlog independently. There

are 27 respondents who mention that their projects have no dependencies on other

55

projects. For those who say there are dependencies we also ask them about how

many projects their project depends on; however, the respondents mention that the

number changes with every iteration. The mean dependency count is 2.5. The pie

chart in Figure 5.15 depicts the responses about project dependencies.

Figure 5.15: Project dependence

5.5.2 Team Members

We ask respondents working in agile development teams about their team size.

Implementing agile techniques requires close coordination and increased communi-

cation among team members. Thus, team size is an important factor in determining

the success of implementing agile techniques successfully. The recommended team

size is between five and nine [3]. In our data we observe that the mean team size at

Pearson Education is 11.6 with a standard deviation of 7.74.

56

Figure 5.16: Team Size

5.5.3 Practices

At the project and program level the following practices are followed:

Team Ceremonies:

• Burndown charts

• Daily stand up

• Customer interaction

• Definition of done

• Fixed-length sprints

• Product backlog

• Quarterly planning

• Retrospective

• Release planning

• Sprint planning

57

• User stories

• Velocity

The graph in Figure 5.17 shows that except for maintaining burndown charts, all

the other practices are followed rigorously by over 70 % of the respondents. Burn-

down charts are used by about 50 % of the respondents.

The details of the responses can be seen in the graph below.

Figure 5.17: Team agile ceremonies

58

Figure 5.18: Team agile ceremonies

Engineering practices

Below are the engineering practices followed at the team level:

• Continuous integration of code (EPcontintegration)

• Collective code ownership (EPOwnership)

• Pair programming (EPPP)

• Small regular releases (EPSmallRelease)

• Team coding standards - code reviews (EPCodingStd)

• Test-driven development - writing unit tests before coding(EPTDD)

The graphs in Figure 5.19 and 5.20 show that all practices except pair program-

ming, test driven development and small releases are practiced rigorously by over 70

% of the respondent population. The details of the responses can be seen in Figure

5.19 and 5.20 graphs.

59

Figure 5.19: Team engineering practices

Figure 5.20: Team engineering practices

Discussion: Most of the projects are dependent on other projects. The average

team size is 11.6. Among the several team ceremonies at the project level, burndown

charts are least rigorously used and among the engineering practices pair program-

ming and test driven development are practiced with the least amount of rigor. As

the Extreme Programming method of agile development is not used at Pearson Edu-

cation, the low rigor on pair programming is acceptable; however, it can be seen that

there is less focus on testing than would be ideally expected. However, the overall

rigor of the agile team practices is high.

60

5.6 Agile implementation at the program level

Below are the agile practices followed at the program level in order to scale agile

techniques:

• Program retrospectives

• Programs pulling the backlog from portfolio investment items

• Scrum of scrums

• Integration testing before release

• Quarterly release retrospective evaluates how well the investment item value

proposition was met

• Program dependency tracking

• Roadmap planning

From the graphs in Figure 5.21 and 5.22 it can be seen that program dependency

tracking, roadmap planning and integration testing before release are rigorously fol-

lowed by over 20 out of 23 respondents working at the program level.

61

Figure 5.21: Program practices

Figure 5.22: Program practices

5.6.1 Program Demos

It is observed that 20 of 23 programs perform regular demonstrations for the

stakeholders.

62

Figure 5.23: Program demos

5.6.2 Program Release

The programs release on the BackToSchool(annual), continuous or quarterly

schedule. We asked the respondents about which release cadence they follow. The

pie chart in Figure 5.24 depicts their responses.

Figure 5.24: Program Release

63

5.6.3 Program core team meeting

The program core team meetings are held to synchronize the efforts of the entire

program team. We ask respondents working at the program level how often their

teams meet and their responses are displayed in the pie chart in Figure 5.25. It

suggests that 70 % of the respondents have weekly program core team meetings.

Figure 5.25: Program Core Team Meeting

5.6.4 Content authority

To understand how the investment theme is decomposed at multiple stages to ul-

timately form user stories, we ask respondents at the program level in agile develop-

ment to provide a hierarchy and we got the decomposition structure of Investment

Theme - Feature - Epic - User Story. Users stories are maintained at the team

level; features and epics are maintained at the program level. The content authority

refers to the way these features and epics are prioritised in the program backlog. It

is handled differently in different programs. Content authority is shared between the

64

program manager, engineering team, program core team and product owner. The

pie chart in Figure 5.26 shows the content authority at the program level.

Figure 5.26: Defining and prioritizing the backlog

Discussion: All the program practices except evaluation of programs are prac-

tised rigorously. 85% of programs have regular demos. Among all the release meth-

ods, continuous release is practiced by most of the programs and the program core

teams have meetings on a weekly basis. The program content authority is evenly

distributed between the product owner, engineering, management and core team.

5.7 Perception of agile development

To understand the perception of our respondents towards agile techniques we ask

them how much they agree with the statements below.

• Architecture: The product architecture is mature and stable. New functionality

can be added easily without significant redesign. Hence when changes are

65

introduced, the team is confident the next release of the product will meet the

demands without significant architectural rework.

• Teams Self Organizing: The teams are self organizing. Teams make decisions

about work agreement and frequently discuss, criticize and experiment with

work flow. Team is organized without undue influence from others.

• Frequent Integration: As the team is aware that it is risky to take too much

change all at once, risk is managed by frequently integrating and releasing small

set of features.

• Trust Respect: The work environment makes everybody feel trusted and re-

spected. Team members have disagreements and constructively engage with

one another to resolve differences.

• Collaborative: Teams are collaborative and there is collective ownership of the

product throughout the life cycle. When problems surface, they are solved as

a team.

• High Energy Work Environment: Agile development provides for a high energy

work environment.

From the graph below in Figure 5.27 it can be seen that the respondents agree

with the statements on collaboration, self organizing teams, trust respect and high

energy work environment more than the statements on frequent integration and ar-

chitecture. However overall there is positive perception of agile development based

on these parameters. The observations show that the perception on how agile tech-

niques impact the cultural aspects of the team is very positive; however, impact on

the technical aspects of a stable architecture and release is less positive.

66

Figure 5.27: Agile development perception

We ask respondents if agile techniques are working well for them at different

levels (personal, team, group-program and while interacting with the management).

Our data as seen in Figure 5.28 suggests that agile development works well at the

personal and team level; however it does not work as well in larger groups and when

interacting with management.

Figure 5.28: Agile development perception

67

Discussion: The organization overall has a positive perception of agile devel-

opment. The perception about how agile techniques work for the team culture is

more positive than how it works for the technical aspects of architectural stability

and frequent integration. Agile techniques seem to work very well at the individual

and team level but not as well at the upper levels.

5.8 Benefits of agile development

We list the commonly identified benefits of agile development. Below are the

listed benefits:

• Better customer focus

• Better morale

• Cost effectiveness

• Correctness of code

• Flexibility of design

• Improved communication and coordination

• Increased quality

• Improved focus - better prioritization

• Increased productivity

• More reasonable process

• Reduction in defects

68

• Satisfaction of team

• Quick releases

• Quicker response to changes

• Testing first

The graph in Figure 5.29 displays the benefits as experienced by the respondents

of our survey working in agile development teams and programs. Based on the

responses received, improved communication and coordination and improved focus -

better prioritization are the top 2 benefits of following agile methods.

Figure 5.29: Benefits of agile methods

5.9 Challenges of agile development

Below is the list of common non-agile development challenges provided to our

respondents:

69

• Coordination with other teams

• Excessive meetings

• Reduced focus on the architecture and design

• Demanding culture

• Low management buy-in

• Unfamiliar with practices

• Difficult to increase team size

• Short sighted development

• Requirements revision management

• Dev/Test integration

• Hard to manage time

• Lack of schedule

The graph in Figure 5.30 displays the challenges as perceived by the respondents

working in agile teams and programs. Coordination with other teams and excessive

meetings emerged to be the top challenges of following agile methodology.

70

Figure 5.30: Challenges of agile methods

Discussion: The main benefits of agile development are improved communica-

tion, quicker response to change and better prioritisation while co-ordination with

other teams is the biggest challenge. Quality testing is conventionally considered to

be a major benefit of agile development, however at Pearson Education it is listed

as a benefit by the least number of respondents signifying that there could be im-

provement by increasing the rigor in testing practices. It is also observed that the

total count of benefits (1039) is significantly higher than the total count of challenges

(442) reported thus, confirming that the users of agile development see more benefits

than the challenges with this methodology.

5.10 Comparison of the two waves of responses

The survey was open for two weeks. An email was sent to announce the survey.

After a week there was a reminder sent. Thus, the responses could be grouped in two

waves. The respondents in the first wave are immediate respondents while the second

71

wave has the responses received after the reminder email was sent. The first wave

has 100 respondents while the second wave has 104 responses. It is possible that the

respondents who responded immediately (in the first wave) feel strongly about agile

development. It is important to understand if the results from the survey sample are

generalizable to the entire population or have an undue bias. Hence we compare the

responses in these two waves.

From our exploratory and inferential analysis, we observe that there are no sig-

nificant differences between the two waves based on the parameters of team/program

practices, benefits, challenges and the perception of agile development. Thus, we can

conclude that these results are generalizable to the population of the organization.

Inferential Analysis For the inferential analysis we use Fisher’s Exact Test.

This test is useful for categorical data that result from classifying objects in two

different ways; it is used to examine if there are significant differences in the data.

The p-value from the test is computed as if the margins of the table are fixed. This

leads under a null hypothesis of independence to a hyper geometric distribution of

the numbers in the cells of the table. If the p-value is above 0.05 it means that we

can accept the null hypothesis that there are no significant differences in the two

populations being compared. If p-value is below 0.05 we reject the null hypothesis of

independence and conclude that there are significant differences in the populations

being compared.

Our criteria of classification is immediate respondents - wave1 and hesitant re-

spondents - wave2. The Fisher’s Exact Test was applied to the programming prac-

tices, engineering practices, team ceremonies and perception of agile development.

Following are the pvalues for every practice:

72

Program practices

• Retrospective - 0.6373

• Backlog - 0.795

• Scrum of Scrums - 1

• Integration Testing -1

• Evaluation - 0.4202

• Dependency Tracking - 0.04792

• Roadmap - 0.1873

The p-value for the program dependency tracking is the only one below 0.05.

Thus, wave 1 is not significantly different from wave 2.

Team engineering practices

• EPcontIntegration - 0.2671

• EPOwnership - 0.1617

• EPPP - 0.6246

• EPSmallRelease - 0.5486

• EPCodingStd - 0.7723

• EPTDD - 0.9734

The p-values signify that wave 1 is not significantly different from wave 2.

Team ceremonies

73

• Backlog Grooming - 0.3965

• Burndown Charts - 0.7543

• Daily Standup - 0.3942

• Customer Interaction - 0.2434

• Definition Of Done - 0.001074

• Sprint Length - 0.798

• Product Backlog - 0.05449

• Quarterly Planning - 0.8228

• Retrospective - 0.8916

• Release Planning - 0.7039

• Sprint Planning - 0.1872

• User Stories - 0.2458

• Velocity- 0.1796

The p-value for the Definition of Done practice is the only one below 0.05. Thus,

wave 1 is not significantly different from the wave 2.

Agile Working Well

• Working For Me - 0.9981

• Working For My Team - 0.725

• Working For My Group - 0.5673

74

• Working With Management - 0.9199

The p-value signifies that the wave 1 and wave 2 data about how well agile works

for people is not significantly different. We accept the null hypothesis that both the

samples are drawn from the same continuous distribution.

Perception of agile

• Architecture - 0.5463

• Teams Self Organizing - 0.9141

• Frequent Integration - 0.772

• Trust Respect - 0.1269

• Collaborative - 0.6828

• High Energy Work Environment - 0.5652

The p-value signify that the wave 1 data is not significantly differ from the wave

2 data except for the definition of done practice. Thus, generally speaking the we

can accept the null hypothesis of Fisher’s Exact test.

Experience

We perform the two-sample Kolmogorov-Smirnov test on the experience data

from the two waves to see if there are significant differences and the p-value is

0.005437. Thus, there is a significant difference in the experience of respondents in

the two waves

Benefits and Challenges

We perform the two-sample Fisher’s Exact Test on the benefits and challenges

data from the two waves to see if there are significant differences. P-values are as

75

below:

Description P-Value

Benefits 1

Challenges 0.119

Table 5.2: Fisher’s Exact test results for benefits and challenges of the two waves

Based on the p-values we can accept the null hypothesis that both the samples are

drawn from the same continuous distribution. There are no significant differences.

Graphical Analysis: The experience of the respondents in the two waves dif-

fers significantly based on distribution in the histograms in Figure 5.31. The first

wave has an average experience of 11.37 years while in the second wave the average

experience is 14.20 years.

Figure 5.31: Comparison of the experience of respondents in the two waves

76

The graph in Figure 5.32 compares the team ceremonies in the two waves and as

we can see that in the visual presentation the differences do not look stark.

Figure 5.32: Comparison of team ceremonies in the two waves

The graph in figure 5.33 compares the team practices in the two waves and as

we can see that in the bar plot presented side by side that there are no significant

differences.

Figure 5.33: Comparison of team practices in the two waves

77

The graph in Figure 5.34 compares the program practices in the two waves and

as we can see in the bar plot presented side by side there is a significant difference

in the rigor of dependency tracking however the other practices have a similar rigor.

Figure 5.34: Comparison of program practices in the two waves

There is almost an equal count of responses in wave 1 and wave 2. Side by side

comparison of the benefits in wave 1 and wave 2 is shown in the graph in Figure 5.35.

The respondents in the wave 2 have generally reported more challenges that those

in wave 1. The respondents in the second wave are more experienced than the first

wave. This may indicate that higher experience leads to decreased tolerance towards

the challenges of agile development as they tend to spend more time in meetings and

co-ordinating due to the roles they work in than on the actual task reducing their

productivity. Consistent with our previous observation the total count of benefits is

higher on both the waves than the total count of challenges. Thus, confirming the

positive opinion of agile development across the two waves of responses.

78

Figure 5.35: Comparison of the challenges in the two waves

The graph in Figure 5.36 compares the perception of agile in the two waves and

differences do not look stark in the visual presentation.

Figure 5.36: Comparison of the perception of agile in the two waves

The graph in Figure 5.37 compares how well agile is working in the two waves

there are no significant differences.

79

Figure 5.37: Comparison of the how well agile works in the two waves

Discussion: We see that the comparisons of rigor, perception, benefits and

challenges do not show significant differences between the two waves even though

there is significant difference in the experience of the respondents in the two waves.

Thus, we can generalize these results and do not think that the results are skewed

by opinions of respondents who feel strongly about agile development methodology.

5.11 Comparison of rigor based on experience

In order to compare the rigor of the practices based on experience we add up the

scores for all practices for every respondent and called it the ‘Rigor Score’ for that

respondent. We then plot this against the experience of that respondent. The plot

in Figure 5.38 shows the distribution of rigor score vs experience

80

Figure 5.38: Comparison of the rigor based on experience

We then facet the plot by roles in Figure 5.39 to see if there is more rigorous

practice based on the role of the individual.

81

Figure 5.39: Comparison of the rigor facetted by role

We then facet the plot by past non-agile development experience(in figure 5.40)

and find that respondents with only agile development experience practise agile de-

velopment more rigorously.

82

Figure 5.40: Comparison of the rigor facetted by non-agile work experience

Discussion: There is no significant impact of experience on the rigor of the agile

development practices. Among all the roles, managers adhere to agile development

the most. Respondents with only agile development experience practice agile de-

velopment more rigorously than the respondents with past non-agile development

experience.

5.12 Comparison of rigor based on team size

In order to analyze the impact of the team size on the rigor of agile practices we

plot the rigor score of the respondent against their team size. The plot in Figure

5.41 shows the distribution of rigor score vs team size.

83

Figure 5.41: Comparison of rigor vs team size

It can be observed that the rigor scores are high for larger teams. The ideal team

size is considered to be between five to nine [3]. However as seen in the plot this

organization is able to practice agile techniques rigorously with larger teams as well.

We then facet the plot by roles in Figure 5.42 and find that among all the roles,

managers practise agile development techniques with the highest rigor.

84

Figure 5.42: Comparison of the rigor facetted by role

We then facet the plot by past non-agile development experience in Figure 5.43

and find that respondents with only agile development experience practise agile de-

velopment more rigorously.

85

Figure 5.43: Comparison of the rigor facetted by non-agile work experience

Discussion: Larger teams tend to practise agile techniques more rigorously.

It can be seen that respondents with only agile development experience practise

agile development more rigorously than those with non-agile development experience.

Among all the roles, managers practise agile development with maximum rigor.

5.13 Comparison of perception by experience

We divide the respondents in 4 experience groups.

• Group 1 - Experience less than 5 years

• Group 2 - Experience between 5 and 10 years

• Group 3 - Experience between 10 and 15 years

86

• Group 4 - Experience over 15 years.

The graph below shows no significant trends in the perception of agile development

based on experience. This indicates that experience does not influence the perception

of agile development.

We perform further analysis on the data as shown in the graph in Figure 5.44 and

also perform inferential analysis using linear regression to see if there is a statistically

significant impact on each of the perceptions (architecture, teams self-organizing,

frequent integration, trust respect, collaborative, high energy work environment)

based on the experience. The results of the linear regression t-values are converted

to approximate p-values. The null hypothesis for the linear regression is that the

experience has a zero co-efficient/no linear effect on the perception and this can be

confirmed from the p-values below:

• Architecture - P-value - 0.67

• Collaborative - P-value - 0.05

• TeamsSelfOrganizing - P-value - 0.701

• FrequentIntegration - P-value - 0.318

• TrustRespect - P-value - 0.77

• HighEnergyWorkEnvironment - P-value - 0.22

87

Figure 5.44: Comparison of the perception of agile development by experience

Discussion: Except for the perception of collaboration (which has a slightly

negative impact of experience on being highly favourable) there is no significant

impact of experience on the perception of agile development.

88

5.14 Grouping responses based on the respondents

(program/project) level

The respondents of the survey using agile methods work at the program or project

level. We divide the agile users into two groups based on which level they work at.

We have 23 respondents working at the program level while 143 work at the project

level. We analyze their responses on the perception of agile development and benefits

and challenges of agile development. From the bar graphs in figure 5.44 we can see

that the ratio of respondents who agree with the positive effects of agile development

is higher in the project level respondents than the program level respondents.

Figure 5.45: Comparison of perception of agile at different levels

89

From the bar graphs in Figure 5.45 and 5.46 we can see that the program level re-

spondents agree with the positive impact of agile development more than the project

level respondents.

Figure 5.46: Comparison of how well agile works at different levels

The graph in Figure 5.47 shows the side by side comparison of benefits and chal-

lenges as perceived by project level and program level respondents. As the number

of respondents in these two groups differed significantly we converted the counts to

percentages and created the graphs below. There is no significant impact of level on

the listed benefits and challenges of agile development.

90

Figure 5.47: Comparison of benefits and challenges by respondents level

Discussion: From the analysis based on the level at which respondents work,

we can confirm that the respondents at the project level perceive agile slightly more

positively that those working at the program level. This could be mostly because

of the issues associated with scaling agile. Agile can be easily implemented at the

project level; however, scaling it is the real challenge. However since there are no

significant differences, this is an indicator of success in the implementation of agile

techniques at the program level.

5.15 Grouping responses based on agile training

For the comparison of perception of agile development based on training we divide

the agile users in two groups: respondents with some training in agile techniques

and those who have no training in agile techniques. Out of 181 responses we have 16

91

respondents with no training while 165 have some sort of training in agile methods.

We analyze their responses about the perception of agile development, benefits and

challenges. From the bar graphs in Figure 5.48 for trained and untrained respondents

we can see that respondents in the trained group respond more positively than the

untrained group.

Figure 5.48: Comparison of the perception based on training

From the bar graphs in Figure 5.49 for how well agile works for the trained and

untrained respondents we can see that respondents agreeing with the positive impact

92

of agile development is considerably higher in all categories in the trained group vs

the untrained group.

Figure 5.49: Comparison of how well agile works based on training

The graph in Figure 5.50 shows a side by side comparison of benefits as perceived

by trained and untrained respondents. As the number of respondents in these two

groups differed significantly we converted the counts to percentages and created the

graphs below. It can be clearly seen that the respondents with some sort of training

have more benefits to list that the ones without any training. This certainly asserts

the importance of training in agile methods to improve the success in implementation.

This graph also shows a side by side comparison of the challenges as perceived by

trained and untrained respondents. As the number of respondents in these two

groups differed significantly we convert the counts to percentages and create the

93

graphs below. It can be clearly seen that the respondents without any training have

more challenges than the respondents with some training in agile development.

Figure 5.50: Comparison of the benefits and challenges based on training

Comparison of Experience and Training We ask the respondents about the

trainings they have done in agile techniques and based on the their responses we

create a data set with the count of trainings and plot those against the respondent

experience. The graph below shows the distribution of the number of trainings com-

pleted against experience. It can be seen in Figure 5.51 that the number of trainings

done increases with the experience, however it does not increase significantly.

94

Figure 5.51: Comparison of the trainings and experience

Discussion: From the analysis it can be clearly seen that training has a positive

impact on the respondents perception of agile development and the rigor of prac-

tising agile practices. Thus, conducting more trainings will positively impact the

productivity and respondents comfort level with agile development in the organiza-

tion potentially leading to increased productivity.

5.16 Grouping based on non-agile experience

We divide the respondent population in two groups based whether they have past

non-agile work experience. We analyze the data to see if there are any differences in

the perception of agile techniques, perceived benefits and challenges. The graph in

95

Figure 5.52 shows that respondents with only agile development experience have a

more positive perception of agile development.

Figure 5.52: Comparison of the perception based on past experience

The graph in Figure 5.53 shows that respondents with only agile development

experience have more positive experience about how agile development is working

for them.

96

Figure 5.53: Comparison of the perception based on experience

The graph in Figure 5.54 shows the side by side comparison of the benefits and

challenges as perceived by both groups of respondents. As the number of respondents

in these two groups differs significantly, we convert the counts to percentages and

created the graphs below. It can be clearly seen that the respondents with only agile

experience list significantly more benefits that others. No significant differences can

be seen in the challenges between the two groups.

97

Figure 5.54: Comparison of benefits and challenges based on experience

Discussion: From the graphical analysis above we can see that the respondents

in the group with only agile experience have a more positive perception of agile

development and practise agile techniques with higher rigor.

98

Chapter 6

Conclusions and Future Work

6.1 Conclusion

The conclusions of our research are:

• There is an overall positive perception of agile across the respondent popula-

tion. The agile implementation at the team and program level is extremely

effective.

• Most of the respondents using agile development are willing to continue with

the agile development methodology while majority of the respondents using

non-agile development methods are willing to switch to agile development

methods.

• Agile development works well at the individual level and team level. It is less

effective at the group level and interactions with management are challenging.

99

• The total count of listed benefits is over 50 percent higher than the total count

of challenges with agile development confirming the respondents positive expe-

rience towards agile development.

• Experience does not have an impact on the rigor or the perception of agile

development practices.

• Respondents who have worked only on agile development perceive it more

positively and tend to practice more rigorously than the respondents who have

some past non-agile development experience.

• It is observed that the team size has an impact on the rigor of practising agile

techniques. Larger teams implement agile techniques with higher rigor.

• When respondents are grouped based on their level, it is observed that agile

development at the project level is slightly more successful than at the program

level.

• An analysis of the impact of training on the perception of agile development

and the rigor of practising agile techniques shows that the respondents with

training in agile methods are more rigorous and perceive agile techniques more

positively.

Recommendations based on the findings are:

• Training has a significant impact on the perception and rigor of agile devel-

opment and thus, there needs to be an increased focus on trainings in agile

methods

100

• The top challenge of co-ordination between teams stresses the need for reducing

dependencies between teams. This can be done by improving communication

between teams during the program and team during backlog creation

• Test driven development is practiced with low rigor and testing is not seen as a

benefit of agile development practices. Hence there needs to be more disciplined

adherence of test driven development for higher quality of development

• There needs to be more focus on the technical aspects of architectural stabil-

ity and frequent integration to further strengthen the implementation of agile

methodology

• The program level implementation of agile development can be made more

rigorous with introduction of increased practices across the program level and

more disciplined adherence.

6.2 Future Work

This survey is performed in the Higher Education division of Pearson Education.

• In the current survey there is insufficient data for analyzing the impact of

location on the implementation of agile practices in the organization. As only

a few locations have been represented heavily the results are skewed towards

their specific implementation methods. In the future we would like to analyze

the impact of the location.

• We would like to analyze the impact of changes done based on the insights de-

livered from this analysis for the program level practices. Also analyze different

practices (if any) followed at the program level across different divisions.

101

• We analyze the project and program level practices in this survey, we would

like to analyze the portfolio level practices. Thus, analysing the state of agile

implementation at the higher level.

• Lastly we would like to perform a similar survey in other large scale software

development organizations that implement agile methods at scale and do a

comparative analysis of the factors leading to the success or failure of the

implementation.

102

Bibliography

[1] Pearson Education. Product creation framework. https://neo.pearson.com/

groups/product-creation-framework. Accessed:05/10/2016.

[2] Satish Thatte. Agile management blog. https:

//blogs.versionone.com/agile_management/2013/10/14/

scalable-agile-estimation-and-normalization-of-story-points-introduction-and-overview-of-the-blog-series-part-1-of-5/.

Accessed: 04/01/2016.

[3] Dean Leffingwell. Scaled Agile Framework, 2009 (accessed February 3, 2015).

[4] Barry Boehm. Get ready for agile methods, with care. Computer, 35(1):64–69,

2002.

[5] Ken Schwaber and Mike Beedle. Scrum: Agile software development, 2002.

[6] Alistair Cockburn. Crystal clear: a human-powered methodology for small teams.

Pearson Education, 2004.

[7] Kent Beck. Extreme programming explained: embrace change. addison-wesley

professional, 2000.

[8] Girish Kumar and Pradeep Kumar Bhatia. Comparative analysis of software

engineering models from traditional to modern methodologies. In Advanced

Computing & Communication Technologies (ACCT), 2014 Fourth International

Conference on, pages 189–196. IEEE, 2014.

[9] ABM Moniruzzaman and Dr Syed Akhter Hossain. Comparative study on agile

software development methodologies. arXiv preprint arXiv:1307.3356, 2013.

103

[10] Yu Beng Leau, Wooi Khong Loo, Wai Yip Tham, and Soo Fun Tan. Software de-

velopment life cycle agile vs traditional approaches. In International Conference

on Information and Network Technology, volume 37, pages 162–167, 2012.

[11] Preeti Rai and Saru Dhir. Impact of different methodologies in software devel-

opment process.

[12] S Balaji and M Sundararajan Murugaiyan. Waterfall vs. v-model vs. agile: A

comparative study on sdlc. International Journal of Information Technology

and Business Management, 2(1):26–30, 2012.

[13] Gaurav Kumar and Pradeep Kumar Bhatia. Impact of agile methodology on

software development process. International Journal of Computer Technology

and Electronics Engineering (IJCTEE), 2(4), 2012.

[14] Harleen K Flora and Swati V Chande. A systematic study on agile software

development methodologies and practices. International Journal of Computer

Science and Information Technologies, 5(3):3626–3637, 2014.

[15] Ying Wang, Dayong Sang, and Wujie Xie. Analysis on agile software develop-

ment methods from the view of informationalization supply chain management.

In Intelligent Information Technology Application Workshops, 2009. IITAW’09.

Third International Symposium on, pages 219–222. IEEE, 2009.

[16] Pekka Abrahamsson and Juha Koskela. Extreme programming: A survey of

empirical data from a controlled case study. In Empirical Software Engineering,

2004. ISESE’04. Proceedings. 2004 International Symposium on, pages 73–82.

IEEE, 2004.

[17] Laurie Williams, William Krebs, Lucas Layman, A Antón, and Pekka Abra-

hamsson. Toward a framework for evaluating extreme programming. Empirical

Assessment in Software Eng.(EASE), pages 11–20, 2004.

[18] Grigori Melnik and Frank Maurer. A cross-program investigation of students’

perceptions of agile methods. In Software Engineering, 2005. ICSE 2005. Pro-

ceedings. 27th International Conference on, pages 481–488. IEEE, 2005.

104

[19] Jeffrey Carver, Letizia Jaccheri, Sandro Morasca, and Forrest Shull. Issues in

using students in empirical studies in software engineering education. In Soft-

ware Metrics Symposium, 2003. Proceedings. Ninth International, pages 239–

249. IEEE, 2003.

[20] Helen Sharp and Hugh Robinson. An ethnographic study of xp practice. Em-

pirical Software Engineering, 9(4):353–375, 2004.

[21] Erik Arisholm, Hans Gallis, Tore Dybă, and Dag IK Sjoberg. Evaluating pair

programming with respect to system complexity and programmer expertise.

Software Engineering, IEEE Transactions on, 33(2):65–86, 2007.

[22] E Michael Maximilien and Laurie Williams. Assessing test-driven development

at ibm. In Software Engineering, 2003. Proceedings. 25th International Confer-

ence on, pages 564–569. IEEE, 2003.

[23] Tsun Chow and Dac-Buu Cao. A survey study of critical success factors in agile

software projects. Journal of Systems and Software, 81(6):961–971, 2008.

[24] Bruno Cartaxo, Allan Araujo, Antonio Sa Barreto, and Sérgio Soares. The

impact of scrum on customer satisfaction: An empirical study. In Software

Engineering (SBES), 2013 27th Brazilian Symposium on, pages 129–136. IEEE,

2013.

[25] Tore Dyb̊a and Torgeir Dingsøyr. Empirical studies of agile software develop-

ment: A systematic review. Information and software technology, 50(9):833–859,

2008.

[26] ABM Moniruzzaman and Dr Syed Akhter Hossain. Comparative study on agile

software development methodologies. arXiv preprint arXiv:1307.3356, 2013.

[27] Francisco J Pino, Oscar Pedreira, Félix Garćıa, Miguel Rodŕıguez Luaces, and

Mario Piattini. Using scrum to guide the execution of software process improve-

ment in small organizations. Journal of Systems and Software, 83(10):1662–

1677, 2010.

[28] Bernadette Murphy, Christian Bird, Thomas Zimmermann, Laurie Williams,

Nachiappan Nagappan, and Andrew Begel. Have agile techniques been the

105

silver bullet for software development at microsoft? In Empirical Software

Engineering and Measurement, 2013 ACM/IEEE International Symposium on,

pages 75–84. IEEE, 2013.

[29] M. Laanti. Implementing program model with agile principles in a large soft-

ware development organization. In Computer Software and Applications, 2008.

COMPSAC ’08. 32nd Annual IEEE International, pages 1383–1391, July 2008.

[30] Mario Pichler, Hildegard Rumetshofer, and Wilhelm Wahler. Agile requirements

engineering for a social insurance for occupational risks organization: A case

study. In Requirements Engineering, 14th IEEE International Conference, pages

251–256. IEEE, 2006.

[31] Nils Brede Moe, Torgeir Dingsøyr, and Tore Dyb̊a. A teamwork model for

understanding an agile team: A case study of a scrum project. Information and

Software Technology, 52(5):480–491, 2010.

[32] A. Begel and N. Nagappan. Usage and perceptions of agile software develop-

ment in an industrial context: An exploratory study. In Empirical Software

Engineering and Measurement, 2007. ESEM 2007. First International Sympo-

sium on, pages 255–264, Sept 2007.

[33] Ahmed Sidky, James Arthur, and Shawn Bohner. A disciplined approach to

adopting agile practices: the agile adoption framework. Innovations in systems

and software engineering, 3(3):203–216, 2007.

[34] Ben Kovitz. Hidden skills that support phased and agile requirements engineer-

ing. Requirements Engineering, 8(2):135–141, 2003.

[35] Asif Qumer and Brian Henderson-Sellers. An evaluation of the degree of agility

in six agile methods and its applicability for method engineering. Information

and software technology, 50(4):280–295, 2008.

[36] Donald J Reifer, Frank Maurer, and Hakan Erdogmus. Scaling agile methods.

Software, IEEE, 20(4):12–14, 2003.

[37] Hakan Erdogmus. Cost-effectiveness indicator for software development. 2007.

106

[38] A Qumer and B Henderson-Sellers. A framework to support the evaluation,

adoption and improvement of agile methods in practice. Quality control and

applied statistics, 54(4):391–393, 2009.

[39] Sridhar Nerur, RadhaKanta Mahapatra, and George Mangalaraj. Challenges of

migrating to agile methodologies. Communications of the ACM, 48(5):72–78,

2005.

[40] Barry Boehm and Richard Turner. Management challenges to implementing ag-

ile processes in traditional development organizations. Software, ieee, 22(5):30–

39, 2005.

[41] Wikipedia. Software development process — wikipedia, the free encyclopedia,

2016. [Online; accessed 26-March-2016].

[42] Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model in large-scale

development. In Product-focused software process improvement, pages 386–400.

Springer, 2009.

[43] AgileManifesto. Agilemanifesto, 2001.

[44] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. Agile

software development methods: Review and analysis, 2002.

[45] John Erickson, Kalle Lyytinen, and Keng Siau. Agile modeling, agile soft-

ware development, and extreme programming: the state of research. Journal of

database Management, 16(4):88, 2005.

[46] Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements engineering

and agile software development. In null, page 308. IEEE, 2003.

[47] Granville G Miller. The characteristics of agile software processes. In tools, page

0385. IEEE, 2001.

[48] Ken Schwaber, Jeff Sutherland, and Mike Beedle. The definitive guide to

scrum: The rules of the game. Recuperado de: http://www. scrumguides.

org/docs/scrumguide/v1/scrum-guide-us. pdf, 2013.

107

[49] Dan Radigan. Agile development scrum - atlassian. https://www.atlassian.

com/agile/scrum.

[50] Christian Beck. Scrum roles. http://www.agile42.com/en/

agile-info-center/scrum-roles/. Accessed: 04/01/2016.

[51] Victor Szalvay. Scrum terminology. https://www.scrumalliance.org/

community/articles/2007/march/glossary-of-scrum-terms. Accessed:

04/01/2016.

[52] Kanban development - atlassian. https://www.atlassian.com/agile/kanban.

Accessed: 04/01/2016.

[53] Dan Radigan. Scrum delivery vehicles. https://www.atlassian.com/agile/

delivery-vehicles. Accessed: 04/01/2016.

108

	Implementing Agile Development at Scale: An Industry Case Study
	Recommended Citation

	Implementing Agile Development at Scale: An Industry Case Study
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Second Advisor
	Third Advisor
	Keywords
	Subject Categories
	Publication Statement

	tmp.1487090167.pdf.yCeut

