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Abstract 

 

Over half of the world’s population lives in urban areas leading to night skies that 

are substantially degraded by artificial lights.  Yet, we know little about how light 

pollution affects the surrounding natural communities.  What we do know focuses on the 

impact of light pollution on individual species.  Therefore, I investigated the impact of 

light pollution on species interactions.  I determined whether light pollution is a 

mechanism of community change, evaluated whether there were changes in species 

interactions between predators and prey, and indirect and direct interactions between 

insect herbivores and their host plants by examining the entire life cycle of nocturnal 

Lepidoptera (moths).  Ultimately, I found that light pollution induces an ecological trap 

for moths. 

I evaluated the importance of light pollution in structuring moth communities by 

collecting moths from a wide variety of prairie fragments with different habitat sizes, 

vegetation, and light pollution levels to determine if there are any changes in abundance, 

richness, and composition of the lepidopteran community in response to these variables.  

I found that light pollution changes the abundance, richness, and composition of moth 

communities.  Notably, my research indicates that direct sources of light pollution, such 

as streetlights, may have different consequences on nocturnal lepidopteran communities 

than night skies degraded from indirect “skyglow”. 

To determine potential mechanisms underlying these patterns and whether or not 

light pollution acts as an ecological trap, I also completed two projects to test the fitness 
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costs of light pollution on moths at the larval stage.  I found that nocturnal generalist 

predators do not forage preferentially for larvae in streetlit or unlit areas along suburban 

prairie fragments.  However, light pollution induces direct consequences for larvae and 

indirect negative effects on larvae mediated through changes to host plant quality induced 

by light pollution.   

My research determined that more moths and species are attracted to sites with 

high levels of light pollution.  I also determined that there are negative consequences at 

the larval stage to living in illuminated areas that are mediated through species 

interactions.  Therefore, light pollution creates an ecological trap for moths. 
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CHAPTER ONE: IMPACT OF LIGHT POLLUTION ON COMMUNITIES OF 

NOCTURNAL LEPIDOPTERA 

 

Introduction 

More than half of the world’s population lives in urban or suburban areas 

(McIntyre et al. 2001) and this development has caused nearly 20% of the Earth’s night 

skies to be affected by anthropogenic light (Cinzano, Falchi, and Elvidge 2001; Kyba et 

al. 2011).  At night, these artificial lights function to extend human activities and promote 

safety (Painter 1996).  However, we rarely consider the consequences of artificial lights 

on species adjacent to urban areas.  Furthermore, most studies of light pollution focus on 

individual species and lack an ecological community perspective (Gaston, Visser, and 

Hölker 2015).  Recently there have been several calls in the literature for studies that 

investigate how the effects of light pollution vary among species and associated effects 

on populations, communities, ecosystems, and species interactions (Gaston, Visser, and 

Hölker 2015; Hölker, Wolter, et al. 2010; Hölker, Moss, et al. 2010; Lyytimäki 2013; 

Gaston et al. 2013; Macgregor et al. 2014).  What we do know about light pollution 

primarily comes from case studies on vertebrates, such as bats, birds, turtles and humans 

(Rydell, 1992, 2006; Rich & Longcore, 2006; Navara & Nelson, 2007; Santos et al., 

2010; Jung & Kalko, 2010; Kempenaers et al., 2010; Falchi et al., 2011; Bedrosian & 

Nelson, 2013; Davies et al., 2013; Gaston et al., 2013; Kamrowski et al., 2014; Da Silva 
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et al., 2015; Hale et al., 2015 and references therein; but see Davies et al., 2012, 2013; 

Bennie et al., 2015).  Additionally, studies focus primarily on the impacts of light 

pollution measured as a categorical variable (light or no light) when quantitative 

measures, like illuminance and luminance, of artificial light are available. 

Frequent exposure to long periods of uninterrupted light has varying impacts on 

species (Longcore and Rich 2004).  Some species, like spiny mice for example, require 

the dark to forage successfully (Rotics, Dayan, and Kronfeld-Schor 2011) while other 

species can extend their foraging due to artificial light, as is the case for some shorebirds 

(Santos et al. 2010).  Other species use naturally occurring light, like moonlight or 

starlight at night, to navigate; artificial lights can mimic that light and cause species to 

make maladaptive decisions based this on formerly reliable cue.  For example, hatchling 

sea turtles will navigate towards artificial lights near cities rather than towards moonlight 

reflected off the ocean leading to increased juvenile mortality (Tuxbury and Salmon 

2005).  This particular example of the effects of light pollution on an individual species is 

also known as an ecological trap.   

Ecological traps are formally defined as anthropogenic changes in the 

environment that cause organisms to make decisions based on formerly reliable cues that 

now negatively affect their fitness (Schlaepfer, Runge, and Sherman 2002).  When an 

ecological trap is created, the vast majority of individuals will actively choose low-

quality habitat because it exhibits cues typical of high-quality habitat that were formerly 

reliable.  Organisms may use low-quality habitat because of reduction of quality in high-

quality habitats where the original cue exists, low-quality habitats exhibiting increased 

cues of high-quality habitat, or a combination these factors.  Although these shifts in 
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habitat quality can occur in undisturbed landscapes as well, they are specifically 

considered ecological traps if the alterations in the environment are human induced.  

Under natural regimes, large scale environmental changes usually occur over 

evolutionary time, which allows time for populations to adapt (Schlaepfer, Runge, and 

Sherman 2002; Robertson and Hutto 2006; Kristan 2003; Battin 2004); however, the term 

‘ecological trap’ more appropriately attributes this new maladaptation directly to human 

impacts in an ecological time frame that can drastically reduce population sizes 

(Schlaepfer, Runge, and Sherman 2002; Battin 2004; Kristan 2003; Robertson and Hutto 

2006).  Artificial lights often mimic the moon, causing species to mistakenly use the 

artificial lights as a cue, thus creating an ecological trap.  If light pollution has significant 

effects on individual species, like inducing ecological traps, it follows that it may have 

important implications for community dynamics by altering entire community 

composition. 

It is already known that light pollution is causing evolutionary change in moths, 

but we do not know how it is impacting entire communities (Altermatt and Ebert, 2016).  

To our knowledge, only three studies have investigated how moth community abundance 

and species richness are affected by landscape-level anthropogenic disturbances like 

habitat fragmentation (Summerville and Crist 2004; Fuentes-Montemayor et al. 2012; 

Ricketts et al. 2001).  Notably, all of these studies occurred within forest fragments 

surrounded by agricultural fields, not urban development which introduces new and 

different pressures, like light pollution.  
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These studies however, did not detect the typical species-area pattern commonly 

found for other organisms in which species richness decreases with habitat size like 

butterflies (Robinson, Armstead, and Bowers 2012), bees (Hinners, Kearns, and 

Wessman 2012), and grasshoppers (Nufio, McClenahan, and Bowers 2010), tested in our 

same study location.  Instead, studies on moths found that moth communities respond 

more predictably to plant richness (Ricketts et al. 2001; Summerville and Crist 2004).  

Most herbivorous insects are specialists that feed exclusively on a single plant species or 

several closely related species (Price et al. 2011).  Increases in plant diversity within a 

habitat patch positively affect moth species richness (Summerville and Crist 2004; 

Fuentes-Montemayor et al. 2012), but vegetation diversity is not always dependent on 

patch size, particularly in urban and suburban landscapes (Lindenmayer and Fischer 

2006; Hinners, Kearns, and Wessman 2012; Jules and Shahani 2003).  It is therefore 

important to account for possible influences of vegetation on moth communities.  All of 

these patterns have yet to be confirmed in either a prairie ecosystem or an urban-suburban 

dominated matrix where moths are exposed to artificial light.  

It is well known that moths are attracted to artificial lights and light pollution is 

implicated as a reason for 27-31% declines in moth species richness the last 50 years 

(Fox 2013) but has yet to be empirically tested.  There is evidence that light pollution has 

negative impacts on moth individuals (Frank 1988).  For example, moths attracted to 

artificial lights are subject to more predation by insectivores like bats and birds (Rydell 

1992) and suffer from reduced vision capabilities after exposure to streetlights 

(Mizunami 1995).  There are also potential negative impacts yet to be tested, like fitness 

costs to light attraction; for example, moths circling lights may suffer from reduced 
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energy stores or may not be able to find suitable oviposition sites, resulting in smaller 

larvae developing under streetlights (Grenis and Murphy, in prep).  With all these 

negative impacts of artificial lighting, both documented and potential, artificial light 

could be an ecological trap that leads to changes in moth communities. 

Our study tests the hypothesis that light pollution can cause shifts in community 

composition of species reliant on nocturnal light cues.  Specifically, we test whether 

habitat fragmentation and light pollution affect communities of moths in shortgrass 

prairie patches.  We predict that sites with high levels of light pollution will lower both 

moth abundance and species richness and alter the community composition of moths.  

 

Materials and Methods 

Study System 

In this study, we surveyed moth communities at 23 prairie fragments along the 

Front Range of Colorado, USA.  We selected sites in four general areas in the Denver-

metro area across five counties (Appendix Table B1).  We chose sites bordered by at least 

75% residential/suburban development around the site circumference.  The native 

ecosystem in the sites is shortgrass steppe with infrequent patches of tallgrass and native 

trees along riparian and mesic areas.  Annual precipitation for this region is about 400mm 

and local elevation ranges between 1540 m and 1788 m.  In order to make sure that sites 

were not lumped by size and to have a representative sample of habitat sizes, each county 

contained at least five fragments with one small site (<5ha), three to five medium sites (5-

15ha), and one large site (>15ha).  Overall, site areas ranged between 2.42 ha and 73.66 

ha.  We determined site area using digital data from city and county records.  
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Because previous studies have shown that moth communities are dependent on 

vegetation present, we included a vegetation measure as a variable in our study.  We used 

ground cover measures instead of vegetation diversity because of the difficulty in 

identifying prairie grasses to species before and after flowering.  To account for 

vegetation in our survey, we measured the proportion of the ground covered by grasses, 

forbs, and bare ground every 0.3 meters across five point-intercept line transects at each 

site.   Transects spanned the longest North-South and East-West distances in each site 

(Appendix Figure B1).  We also measured ground cover at a three meter radius (18.85m 

circumference) surrounding each trap location to account for vegetation within trap 

attraction range (Baker and Sadovy 1978) (Appendix Figure B1).  To account for 

differences in site area and shape, we used proportion ground cover to standardize 

measurements for analyses. 

 Longcore and Rich (2006) recommend quantifying the amount of artificial light 

present in the environment as both illuminance and luminance. Assessing both 

measurements is common practice in other disciplines interested in artificial lighting, and 

the two measure different aspects of artificial night lighting.  Illuminance is defined as 

the luminous flux incident on an area with a standard SI unit of lux; in other words, 

illuminance measures the brightness of a point source of light.  We measured illuminance 

to the nearest 0.01 lux using an Extech EA33 Luxmeter (Extech Instruments Corporation, 

Nashua, NH, USA).  Luminance is the intensity of light per unit area of its source with a 

standard SI unit of candela (cd)/m
2
; luminance can be described as how bright objects 

appear or how much light is reflected off an object.  We measured luminance to the 0.01 

magnitudes per square arcsecond using a Sky Quality Meter (Unihedron, Grimsby, 
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Ontario, Canada) and converted later to the SI unit cd/m
2
.  To measure relative light 

levels across the entire site, we measured illuminance and luminance at 29 positions at 

each site with 24 positions along the edge and 5 in the center and averaged them together 

(Appendix Figure B1).  We took measurements after astronomical twilight on clear 

nights within three days before and after the new moon between the hours of 20:00 and 

02:00 to reduce the influence of natural light on our measures. 

 

Survey Methods 

 To characterize the moth communities at each site, we sampled moths on nights 

without rain or gusting winds and with less than one hour of natural moonlight between 

20:00 and 02:00 during 5 collection periods over the summers of 2011 and 2012.  

However, we did not sample all sites in all collections due to weather, permitting, and 

safety (Appendix Table B1).  We sampled sites haphazardly based on county location so 

that multiple sites could be visited in the same night.  To sample moth abundance and 

diversity, during each survey we used two Universal Black Light Traps (Bioquip 

Products, Rancho Dominguez, CA, USA) to collect moths.  To ensure that we sampled 

the moths in the entire community rather than just those attracted to lights and to 

minimize the degree to which the traps competed with nearby streetlights, we placed each 

trap at least 15m from the edge of the site.  During collection periods in July and August 

of 2011 and June of 2012, we visited traps every other hour and emptied them.  After 

collection, we froze and stored all the collections in the laboratory until we could count, 

pin, and identify macromoths to species with the assistance of local taxonomic experts 
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(D. Bettman & C. Harp).  We vouchered specimens in the Zoology collections at the 

Denver Museum of Nature and Science. 

 

Statistical Analyses 

 To evaluate differences in species richness and abundance, we used two multiple 

regressions with site area, proportion grass, illuminance, and luminance as independent 

variables.  We used a log transformation to get site area to conform to the assumption of 

normality and a square root transformation to get illuminance and luminance as close to 

normal distribution as possible.  We used the average of the abundance-based coverage 

estimator (ACE), the incidence-based coverage estimator (ICE), and the first order 

Jackknife to estimate the number of species that remained undiscovered (Colwell and 

Coddington 1994).  We estimated these values using EstimateS 9.1.0 with 50 randomized 

runs and sampling without replacement (Colwell 2013).  We also re-scaled species 

richness with sample-based rarefaction curves by individuals to adjust for differing 

densities of sampled individuals (Gotelli and Colwell 2001).  Using Ecosim 7.0 (Gotelli 

and Entsminger 2008), we constructed individual-based rarefaction curves (with 1000 

iterations) to calculate expected species richness when we sampled a similar number of 

individuals from each site. We scaled our estimate of species richness to the lowest 

number of individuals caught at a site (Mountain View, n=13).  We used JMP v 11 to 

perform the regressions (SAS Institute Inc., Cary, NC). 

 To evaluate whether community composition changed with varying site 

characteristics, we used redundancy analysis (RDA) to assess the moth composition in 

sites with varying size, proportion grass, illuminance, and luminance.  We used RDA to 
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constrain our moth communities by these measured environmental factors to determine 

how well they characterized moth communities.  We assessed the significance of the 

RDA using a permutation test with 999 randomized runs (Legendre and Legendre 2012).  

As the RDA explained a low percentage of the variability in species composition, we also 

used the first two unconstrained axes of the model (PC axes); the PC axes correspond 

with the patterns in species composition unexplained by the measured environmental 

variables.  We used R software (R Development Core Team 2016) to perform the RDA 

using the package vegan (Oksanen et al. 2011).   

 

Results   

We collected 3,107 individual macromoths and identified 185 unique species in 

the 82 collections from 23 sites.  However, as seen in our rarefaction curves (Figure 1) 

and our estimates of total moth diversity (Appendix Figure B1), there is likely more moth 

richness in our study system.  With this information in mind, we adjusted species richness 

in two ways.  First, we estimated the total number of species expected using three 

different estimators.  Second, we scaled species richness using individual-based 

rarefaction curves to estimate richness when 13 individuals are randomly sampled.  The 

multiple regression using estimated total species richness was the only significant model 

(F4,18 = 3.78, p = 0.02).  Our multiple regressions using abundance and individual-based 

adjusted richness were not significant (abundance: F4,18 =  2.33, p = 0.10; richness: F4,18 = 

1.82, p = 0.17); however, certain coefficients in the models were significant (Table 1).  In 

all three multiple regressions, there was no relationship between either site size or 

proportion grass on moth abundance and richness.  We did see greater moth abundance 
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and species richness with increasing illuminance (Table 1).  However, increased 

luminance negatively affected moth abundance and richness (Table 1). 

 

 

Figure 1. Individual-based rarefaction curves illustrating the relationship between species richness 

and the number of individual moths randomly sampled from each fragment in sites in (a) Boulder, 

(b) Westminster, (c) Lakewood, and (d) Centennial.  The figure is divided by area to visualize 

differences between sites located near each other. 

 

 

In our multivariate analyses, illuminance, luminance, and proportion grass were 

most effective in separating sites (RDA1 6% Figure 2a) with sites in highly populated 

areas having greater positive scores (e.g. Ute Trail, Loveland Trail, and Ravines).  These 

highly-populated sites had moth species that use as rabbitbrush (Chrysothamnus 

viscidiflorus) as a host plant as larvae, like Digrammia curvata and Schinia albafascia.  
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Sites with negative scores (e.g. Warembourg and Red Fox), occurred in less densely 

populated areas, and had a greater proportion of grass but were also generally darker. 

These conditions allowed for uncommon species, like Manduca quinquemaculata and 

Apantesis phalerata to occur (RDA1 6% Figure 2b). 

Table 1. Multiple regressions of area, proportion grass, illuminance, and luminance on macromoth 

abundance, individual based estimates of species richness, and estimates of total species richness.  All 

independent variables are independent of each other and are transformed to approach normality of 

residuals. Bolded coefficients are significant. 

 

While the entire RDA model was significant (adjusted R
2
 = 0.064, F = 1.58, p = 

0.002), the environmental variables we measured only accounted for 6% (RDA1) and 4%  

(RDA2) of the variation in community composition.  Therefore, we analyzed the 

unexplained variance (PC1 and PC2) to interpret the results further.  We found that year 

of collection explained the first residual axis (PC1 15% Figure 2c,d).  Sites visited in 

2011 had more positive site scores while those visited in 2012 had more negative scores 

(Figure 2c).  Additionally, year also explained the abundance of Euxoa auxiliaris, a 
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common pest species known as “miller moths”, as 2012 was an outbreak year for this 

species (Figure 2d). 

 

Figure 2. Figure 2 displays (a) RDA site scores (Scaling = 1) for the 23 sites samples throughout the 

summers of 2011 and 2012 (filled circles = 2011, open circles = 2012), (b) RDA species and 

environmental parameters scores (Scaling = 1), (c) site scores of the first and second axes of the 

residuals of the RDA model (PC1 and PC2), (d) species scores of the residuals of the RDA model 

(PC1 and PC2).  We displayed only the centroids (site scores means) of each site (filled circles = 2011, 

open circles = 2012); site codes are included in Appendix Table B1.  We scaled species scores by 

dividing by 20 and are represented by codes detailed in Appendix Table B2.  For simplicity, we show 

only the 15 species with the highest scores in each figure. 

 

 

Discussion 

Our results demonstrate that different measures of light pollution can have 

opposing effects on communities, which has not been suggested in the current literature.  

Increased illuminance, or the brightness of the source of light, led to an increase in moth 

abundance and total richness and individual-based estimate of species richness.  This 
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finding is unexpected as we initially predicted that more light pollution from streetlights 

would decrease abundance and richness. Sources of light pollution near sites and within 

flight range likely attract moth individuals and more species from nearby communities in 

the surrounding matrix, and thus increase abundance and richness in the light polluted 

sites.  Our prediction that luminance, or light reflected off an object, would have fewer 

moth individuals and species, however, is supported.  As objects in a site, including 

moths, become brighter from indirect sources of light (i.e. sky glow), abundance and 

richness of moths decreases.  Thus, our results demonstrate that light pollution from 

streetlights and other immediate light sources has different impacts on communities than 

wide ranging, pervasive light pollution across degraded night skies.  Many studies of 

light pollution only consider illuminance to be important (Santos et al. 2010; Rotics, 

Dayan, and Kronfeld-Schor 2011; Da Silva, Valcu, and Kempenaers 2015; Kamrowski et 

al. 2014), but our findings suggest that any artificial lighting that affects object visibility, 

or luminance, also contribute to responses to light pollution.  Therefore, it is important 

for future work to justify whether measures of illuminance, luminance, or both, are 

important to consider. 

We found increased moth abundance and richness in sites with more illuminance, 

which is evidence for an ecological trap.  Our results demonstrate that moths are attracted 

to sites with high levels of illuminance caused by nearby sources of light, like streetlights.  

Moths that occur in these brighter areas are subject to higher rates of predation from 

vertebrate predators like birds and bats (Rydell 1992; Frank 1988).  Moths are attracted to 

artificial light because they use natural light from the moon to orient during flight.  

Because artificial lights mimic the formerly reliable cue for orientation and attraction to 
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artificial lights increases predation rate on moths, there is evidence that light pollution 

induces an ecological trap for moths.  

Attraction to illuminated areas may also have consequences that go beyond 

increased predation to individual moths attracted to bright lights.  Surviving moths 

attracted to areas of high illuminance may continue their lifecycle by mating and 

ovipositing in these brighter areas.  In some habitats, streetlights actually increase the 

number of ground-dwelling predators (Davies, Bennie, and Gaston 2012) and therefore 

may increase predation on larvae; however, we found that predation rate under 

streetlights is not different in our system (Grenis, Tjossem, and Murphy 2015).  We are 

finding that there are other fitness consequences of attraction to streetlights including 

altering plant-herbivore interactions and competitive interactions among plants (Grenis 

and Murphy, in prep), as well as physiological impacts (Grenis, Slayter, and Murphy, in 

prep). 

The negative consequences from increased numbers of moths in highly 

illuminated areas, paired with the decrease in moth abundances and richness from 

increased luminance, may play an important role in observed declines in worldwide moth 

abundance and richness (Fox 2013; Conrad et al. 2006).  In fact, light pollution is often 

considered to be a large contributing factor to these decreases but until now, has never 

been tested.  Our study demonstrates that light pollution is indeed a factor that may lead 

to these widespread declines by both negatively affecting moth abundance and richness 

directly and inducing an ecological trap. 

The results from our multivariate analysis suggest that there is some relationship 

between vegetation cover and illuminance (Figure 2a,b).  Human population abundance 
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in nearby municipalities may explain this environmental gradient.  Sites with more 

illuminance are located in areas with higher human populations and higher grass cover; in 

the last census, cities near highly illuminated sites, like Lakewood and Centennial, had 

147,214 and 106,114 inhabitants respectively (US Census 2010).  Conversely, sites in 

darker areas, like Gunbarrel and Louisville, have human populations with 9,263 and 

19,588 inhabitants respectively (US Census 2010).  In their review, Neil and Wu (2006) 

suggest that urbanization causes shifts in plant phenology that could affect entire 

communities and higher trophic levels.  Our results reflect that possibility as darker sites 

had higher proportions of grasses, possibly reflecting a more natural ecosystem and 

brighter sites had higher levels of other herbaceous plants; however, we did not did not 

explicitly measure vegetation richness or composition.   

Our study also demonstrates interesting patterns unique to locally occurring moth 

species as well.  We found that sites with more illuminance have moth species that use 

rabbitbrush as a host plant and are commonly distributed west of the Rocky Mountains.  

Interestingly, we found species with an eastern distribution in sites with more grass but 

less illuminance, even though few of these species actually consume grasses as a host 

plant.  In fact, the species that consume grasses and might be expected to occur more 

frequently in grassier sites (i.e. Noctua pronuba and Euxoa auxiliaris) occurred in sites 

with the highest luminance.  These two species are common and widely distributed across 

the Great Plains and West; they are also habitat and host-plant generalists (Powell and 

Opler 2009) suggesting that there are some species that will persist despite changes to 

their environment, including light pollution. 
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Our RDA axes only explained 10% of the variation in species composition based 

on the environmental variables we measured.  We thus examined the first two residual 

PC axes, and found a clear relationship between species composition and year (PC1 15% 

Figure 2c,d).  This suggests that our results should be viewed as highly contextual.  We 

offer some potential explanations for the variation in species composition between years.   

In Colorado, 2011 was a drier year for Colorado followed by a mild 2012 winter (US 

Drought Monitor 2016).  The drier summer in 2011 extended the flight season of E. 

auxiliaris and the mild winter in 2012 reduced juvenile mortality.  These two factors 

allowed more E. auxiliaris to persist in the environment resulting in a heavy ‘miller 

moth’ season with atypically large numbers of these moths in Colorado.  To further 

support this pattern, we found E. auxiliaris at every site sampled in 2012 while only 29% 

of sites contained this species in 2011.  Because moths are sensitive to fluctuations in 

annual weather conditions, it is not unsurprising that our two collection years had 

different moth community compositions. 

In summary, our study demonstrates that different measures of light pollution can 

have opposing effects on communities.  Increased luminance directly affects abundance 

and richness of moth communities negatively.  Increased illuminance increases moth 

abundance and richness but has important negative consequences for individuals attracted 

to lights.  Because light pollution has opposing effects on moth communities, there are 

two ways in which light pollution contributes to worldwide declines in moth 

communities.  Therefore, consideration of both illuminance and luminance are required 

when studying the impacts of light pollution on species and communities.  
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CHAPTER TWO: PREDATION OF LARVAL LEPIDOPTERA IN HABITAT 

FRAGMENTS VARIES SPATIALLY AND TEMPORALLY BUT IS NOT 

AFFECTED BY LIGHT POLLUTION 

 

Introduction 

Increased anthropogenic development of native landscapes leads to habitat loss 

and fragmentation, which may reduce biodiversity and change species interactions 

(Saunders, Hobbs, and Margules 1991; Fahrig 2003).  One of the most pronounced 

changes in these altered habitats is that of increased edge habitat and its effects on species 

(Saunders, Hobbs, and Margules 1991; Ries and Sisk 2004; Lindenmayer and Fischer 

2006).  Changes in the abiotic environment along edges, such as wind, light exposure, 

and temperature, translate to a wide range of biotic responses (Saunders, Hobbs, and 

Margules 1991), including changes in ecosystem services, species distributions, and 

trophic interactions.  For example, some smaller predators actively prefer habitat edges, 

while others require core habitat conditions to persist in the environment (Andren 1994; 

Didham et al. 1996).  Increases in predator presence can translate to higher predation 

rates for prey living along the edge (Gates and Gysel 1978; Quinn and Harrison 1988; 

Chalfoun, Thompson, and Ratnaswamy 2002; Ries and Fagan 2003; Batary and Baldi 

2004; Wimp et al. 2011).  However, the general trend of increased predation rate along 

edges is based primarily on avian studies and should be applied cautiously to other 
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systems until more studies on other species confirm its applicability to other systems 

(Wimp et al. in review).  

Contrary to the consistent result of high predation rates along habitat edges in 

avian studies, empirical studies on arthropod communities have shown positive, negative 

or no change in invertebrate predation.  For example, Bolger et al. (2000) found 

consistent distributions of species, including predators, between the edge and core, while 

Ries and Fagan (2003) found higher insect predation rates along habitat edges and Wimp 

et al. (2011) found declines in specialist predators along the edge but a positive response 

by generalist predators.  Yet even in the insect literature, a bias towards diurnal studies or 

no distinction between diurnal and nocturnal predation ignores potentially important daily 

variation in predation and core–edge dynamics that could explain the divergent responses 

previously measured.  

Abiotic conditions experienced by edge and core habitats in the day and night 

vary, and thus the types and abundances of predators in these habitats may also fluctuate 

temporally.  For example, during the day, edges differ in the amount of solar radiation, 

wind, moisture, and temperature that they experience compared to core habitat (Saunders, 

Hobbs, and Margules 1991; Lindenmayer and Fischer 2006).  Notably, previous research 

shows that temperature differences across patches may equalize during the night and 

provide less microhabitat variation nocturnally between edge and core (Daily and Ehrlich 

1996; Ricketts et al. 2001).  Variation in abiotic conditions that create microhabitats are 

important for small invertebrates as even the smallest changes may offer a refuge from 

environmental changes and predation (Bolger et al. 2000; Schoonhoven, van Loon, and 
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Dicke 2005; Gibb and Hochuli 2006); overnight, microhabitat differences between the 

core and edge may dissipate (Daily and Ehrlich 1996; Ricketts 2001).  In habitat patches 

surrounded by urban and suburban development, the types of predators present, predator 

abundance, and behavior, may also be influenced by the presence of artificial light at 

night.  

Artificial lighting can change predator communities and foraging habits.  Visual 

hunters, such as diurnal shorebirds, for example, are able to extend their foraging periods 

when areas are lit at night (Santos et al. 2010).  Some vertebrate predators, such as birds 

and bats, forage preferentially under street lights because their prey is attracted to 

artificial lights (Frank 1988; Rydell 2006) while other nocturnal species, like spiny mice, 

are photophobic and will avoid foraging in areas where they are also more readily seen 

by their own predators (Bird, Branch, and Miller 2004; Rotics, Dayan, and Kronfeld-

Schor 2011).  Invertebrate predators appear to prefer artificially lit areas.  In laboratory 

experiments, orb weaving spiders preferentially build webs in lighted environments 

(Heiling 1999) and in England, ground dwelling invertebrate predators are present in 

greater densities under street lights (Davies, Bennie, and Gaston 2012). For insects living 

along habitat edges, greater densities of invertebrate predators may translate to greater 

nocturnal predation pressure under streetlights not only due to predator preference for 

foraging along edges (Bolger et al. 2000; Ries and Fagan 2003; Davies, Bennie, and 

Gaston 2012), but also because of variation in illumination along the edge.  Whether 

street lighting affects predation rates of ground-dwelling prey, like larval Lepidoptera, 

however, has not yet been tested. 



 

20 

In this study, we examine whether predation rates on ground-dwelling 

invertebrate larvae by vertebrate and invertebrate predators vary spatially and temporally 

in urban habitat fragments.  We test the hypothesis that predation rate of larval 

Lepidoptera differs between edge and core habitats and also that predation along the 

habitat edge varies in response to light pollution from streetlights.  We also test whether 

predation rate varies temporally between day and night.  Because there are stark 

differences in abiotic conditions affecting predator distributions diurnally, we expect that 

predation rate in edge habitats will be higher than in core habitats during the day, but the 

difference in predation rate may disappear at night.  Additionally, we examine whether 

the presence of artificial lighting influences predation rate.  As light pollution has been 

shown to alter predator communities, we expect that predation rates should vary with the 

presence of artificial lighting, and that predation will be greatest under streetlights where 

predator density is likely to be highest. 

 

Methods and Materials 

Study Sites 

The Denver-Metro area has many Open Space programs devoted to preserving 

and restoring native ecosystems along the Eastern Foothills of the Colorado Rocky 

Mountains.  Open Spaces generally consist of patches of mixed grass prairie with a 

number of both native and exotic species of forbs and grasses; trees and other woody 

vegetation are limited to small riparian drainages (Nufio, McClenahan, and Bowers 

2010b; Hinners, Kearns, and Wessman 2012).  These patches are unique in that they are 
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‘‘islands’’ of natural prairie habitat in an otherwise residentially-developed landscape, 

but they are able to maintain a diverse community of insects including bees, butterflies, 

grasshoppers, and moths (Nufio, McClenahan, and Bowers 2010; Hinners, Kearns, and 

Wessman 2012; Robinson, Armstead, and Bowers 2012, Grenis and Murphy unpublished 

data).  For this study, we selected 8 prairie sites between 5 and 15 ha in size with 2–5 

street lights along the edge of the habitat patch.  Sites were located throughout the Front 

Range in the City and County of Broomfield, the City of Lakewood, the City of 

Louisville, and the South Suburban Parks and Recreation District (Appendix Table B3). 

 

Experimental Design 

For our study, we used wax worm (Galleria mellonella Linnaeus) larvae as prey 

because they have minimal defenses and are readily consumed by generalist invertebrate 

predators (K. Grenis and B. Tjossem, personal observation).  We obtained larvae for each 

experimental trial from pet stores in the Denver Metro area as wax worm larvae are 

commonly fed to insectivorous pets.  We pinned each wax worm larva to a square of 

Styrofoam (10 cm x 10 cm x 1.5 cm) with a 00 size insect pin through one of the last two 

abdominal segments (methods adapted from Frank and Shrewsbury 2004).  Prior to 

deploying larvae in the field, we conducted a pilot experiment in the laboratory to ensure 

that pinned larvae would remain alive for at least 24 h and also not be able to escape, thus 

ensuring that disappearances in the field would be due solely to predation.  We found that 

none of the 30 wax worms pinned in the lab died or escaped after 24 h, which is the 

maximum amount of time a larva would spend in the field.  Therefore, we reasonably 
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assume that any wax worm disappearances in the field were caused by some predation 

event rather than by escape. 

 

Field Experiment 

For each trial during our field experiment, we placed 15 individually-pinned wax 

worms at each site in one of three habitat treatments: 5 in the core of the patch (at least 

30m from edge), 5 along the edge under streetlights, and 5 along the edge at least 10m 

from a streetlight.  There was some variation in the number of larvae deployed among 

sites because not all sites had 5 streetlights (see Appendix Table B3).  We placed 

individual larvae in the experimental treatments across the entire field site; for example, 

larvae in the unlit edge treatment were dispersed along multiple parts of the unlit edge 

and were not grouped together.  The wax worm larvae placed along the patch edge were 

at least 1 m from the edge (usually a street or sidewalk) but no more than 4 m into the 

patch.  Our method measures the maximum predation rate within each habitat treatment 

(non-experimental larvae may conceal themselves or modify their behaviors to avoid 

predation) and thus allows us to compare predation rates among treatments, but is not a 

measure of natural predation rate on unpinned larvae.  

To investigate diurnal predation, we deployed wax worm larvae at dawn (~06:00; 

we adjusted the times for deployment and recovery throughout the season as day length 

lengthened and then shortened) using the Styrofoam square described above and nailing 

the square to the ground with a large 15 cm nail.  We pinned only one wax worm larva to 

each Styrofoam square.  We labeled the Styrofoam squares with a ‘‘please do not 
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disturb’’ tag with information about the experiment to avoid manipulation from curious 

visitors.  To facilitate recovery of wax worm larvae in the core where visible landmarks 

were scarce, we placed a surveyor’s flag at least 3 m away from the Styrofoam square in 

a haphazardly chosen cardinal direction (N, S, E, or W) to ensure that predators would 

not associate the marker with food. After pinning each larva to its own Styrofoam square, 

we used calipers to measure body length (to the nearest 0.01 mm).  We returned to each 

site at dusk (~19:00), and recorded the status of the wax worm (predated or not predated).  

Wax worm larvae were considered predated if they were completely missing, half gone, 

or showed evidence of predation such as necrotic tissue around an open wound.  During 

our dusk and dawn collections, we also took note of any predators that we found feeding 

on the wax worm.  Additionally, during the early July observation period, we spent 5 h 

(09:00–14:00) in three field sites observing predation events to learn predator identities.  

To examine nocturnal and streetlight predation, we replaced any wax worm larvae that 

had died during the day (either by predation or desiccation) at dusk (~19:00) and 

recorded the status of the wax worm (predated or not predated) the following morning at 

dawn (~06:00).  

We repeated this entire experimental design twice per month (e.g. early June and 

late June) in June, July and August, 2013.  Thus, we had a total of six collection periods, 

which allowed us to account for the appearance and emergence of various predators 

during the summer, and our sampling periods were temporally separated to prevent 

learning by predators.  All eight sites were used in each trial except the nights of the 
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second and sixth sampling periods because of inclement weather (Late June, n = 7 sites; 

Late August, n = 6 sites). 

 

Statistical Analyses  

We used multiple logistic regressions to test our hypotheses.  First, we examined 

whether predation rates varied between the day and night using a logistic regression with 

predation (binomial response: 1 for predated, 0 for alive) as the dependent variable and 

larval body length as the continuous independent variable.  Our categorical independent 

variables were site, sampling period (early June, late June etc.), time of day (day or 

night), and the interaction effect of sampling x period time of day.  Our model showed no 

evidence of overdispersion, so we continued to use site as a fixed effect, even though it 

was not a variable of particular interest for our primary research questions (Warton and 

Hui 2011).  

For our analyses of how unlit core and unlit edge habitats differ in predation rate 

over time, we excluded larvae from the streetlight treatment in order to compare unlit 

core with unlit edge.  We analyzed whether a larva was predated (binomial response: 1 or 

0) using a logistic regression with larval body length as a continuous covariate and site, 

sampling period, patch location (core or edge), and the interaction effect of sampling 

period x patch location as categorical fixed effects.  

For our analyses of how street-lit and unlit edge habitats differ in predation rate, 

we excluded larvae from the unlit core treatment.  Again, we analyzed whether a larva 

was predated (binomial response: 1 or 0) using a logistic regression with larval body 
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length as a continuous covariate and site, sampling period, patch location (lit or unlit 

edge), and the interaction effect of sampling period x patch location as categorical fixed 

effects.  In all of our tests, we dropped the interaction effect from the final model if it was 

not significant.  We used JMP v 10.0.0 for all analyses (SAS Institute Inc., Cary, NC).   

 

Results 

Over the course of the summer, we deployed 1,366 wax worm larvae and 56 % of 

those larvae were predated.  The most common observed predators were ants, during both 

diurnal and nocturnal time periods; of 761 observed predation events, 309 (40 %) were 

due to ants.  Other predators that we observed included wolf spiders and wasps; wasps 

systematically divided and removed larvae in pieces from the Styrofoam platform.  

Scavengers, like earwigs, were found feeding on or near larvae after death.  Birds are 

major predators of lepidopteran larvae in many systems, but we never observed them 

eating larvae during our experiments.  Of our 141 trials, only 2% (n = 4) had all of the 

larvae eaten in a single treatment at a site suggesting that it was not common for a single 

predator to follow the patch edge and consume all of the larvae. 

 

Predation rate between day and night 

 When all habitat types are analyzed together, we found that there were no 

differences in predation rate during the day and night but there was an interaction 

between sampling period and time of day because predation rate was higher at night than 

during the day, but only during the first sampling period (Table 2; Figure 3).  
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Additionally, predation rate varied by field site, driven primarily by high levels of 

predation in two field sites (Coyote Run and Jackass Hill) and low levels of overall 

predation at another field site (The Field 1), but showed no discernable spatial patterns to 

explain the differences in predation rate (i.e. the high predation sites were not close to 

each other; Appendix Figure B2).  Finally, larval body length had no effect on whether 

larvae were predated in any of our analyses (Table 2). 

 

Table 2. Logistic regression results from five tests.  Bolded values are significant.  If an interaction 

was not significant, it was dropped from the model and not reported.   
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Figure 3. Proportion of individual larvae (mean ±1 SE) predated during the day (white bars) and the 

night (black bars) over the course of the summer of 2013.  Asterisks denote significant differences in 

proportion of larvae predated between the day and night during a particular sampling period (P < 

0.05 with a Bonferroni correction). 

 

Predation rate in habitat core vs. habitat edge 

During the day, larval predation rate was 20% greater along the patch edge 

compared to the core (Table 2; Figure 4).  Predation of larvae increased over the course 

of the summer in both edge and core habitats (Table 2; Figure 4).  Again, field site was a 

significant factor with similar patterns as those detailed above (Appendix Figure B3).  

During the night, larval predation did not differ between the habitat core and edge but did 

increase throughout the summer (Table 2; Figure 4); however, there was an interaction 

between habitat patch location and sampling period (Table 2).  We attribute this 
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interaction to particularly low predation in the habitat core from inclement weather in late 

June.  Predation rate differed among field sites at night (Appendix Figure B4).    

Figure 4. Proportion of individual larvae (mean ±1 SE) predated along the habitat edge (black bars) 

and in the habitat core (gray bars) during the day and night over the course of the summer of 2013. 

Asterisks denote significant differences in proportion of larvae predated between edge and core 

habitat types during a particular sampling period (P < 0.05 with a Bonferroni correction). 
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Predation rate along unlit edge vs. streetlit edge 

 We found no differences in larval predation between unlit and streetlit edges 

during the day but found that, in general, diurnal predation rate increased during the 

course of the summer in both types of edge habitat (Table 2; Figure 5).  Similar to our 

results during the day, at night we also found no influence of nocturnal streetlighting on 

larval predation and there was an increase in predation over the summer (Table 2; Figure 

5).  Predation rate again differed among field sites during the day (Appendix Figure B5) 

and night (Appendix Figure B6).  
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Figure 5. Proportion of individual larvae (mean ±1 SE) predated along the habitat edge in unlit areas 

(black bars) and under streetlights (white bars) during the day and night over the course of the 

summer of 2013. 
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Discussion 

 Our results show that predation is significantly greater along habitat edges than in 

the habitat core, but only during the day.  Notably, we found that nocturnal predation 

rates along the habitat edge are not affected by the presence of streetlights, which 

indicates that light pollution does not affect the strength of top–down pressures on 

lepidopteran larvae in fragments of mixed grass prairie surrounded by urban 

development.  Furthermore, although predation rates increased throughout the summer in 

both habitat types, the greatest difference between edge and core habitats in predation 

risk for larvae occurred in early June.  Thus, the generally accepted idea that edges are 

dangerous places for prey may instead be a pattern that is restricted to certain times of 

day and season.  

We predicted that changes in predation rate associated with edge and core habitats 

would have consequences for their prey by increasing predation rate along the edge and 

these negative effects would vary temporally between day and night.  We found that 

predation rates are higher along the edge as compared to the core, but only during the 

day, which may help explain why certain species are more sensitive to habitat 

fragmentation (Lindenmayer and Fischer 2006) and have varying responses to edges 

(Ries and Sisk 2004).  Diurnal insects like butterflies, grasshoppers, and bees generally 

lose individuals and species richness as habitat sizes shrink and edge effects become 

more prominent (Hinners, Kearns, and Wessman 2012; Robinson, Armstead, and Bowers 

2012; Nufio, McClenahan, and Thurston 2009).  However, organisms that are primarily 

nocturnal, like moths, do not respond negatively to habitat fragmentation and instead 
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their species richness and abundance shows no discernable pattern with regard to habitat 

fragmentation (Ricketts et al. 2001; Schmidt and Roland 2006; Fuentes-Montemayor et 

al. 2012).  We found diel fluctuations in edge and core predation rates, with predation 

greater in edge habitats than core habitats only during the day.  Given that foraging and 

feeding are dangerous activities and expose herbivorous larvae to greater predation risk 

(Bernays 1997), lepidopteran species with larvae active during the day may be more 

negatively affected by predation in edge habitats than larvae active at night. Most studies 

of how Lepidoptera species respond to edges have focused on the adult stages (Fuentes-

Montemayor et al. 2012; Ricketts 2001; Summerville and Crist 2004; Schmidt and 

Roland 2006; Robinson, Armstead, and Bowers 2012), but our research demonstrates that 

predation risk for the larval stage is also greatly affected by edges and may vary 

seasonally.  Thus, how edges affect different ontogenetic stages needs further 

investigation as it may help to explain why butterflies and moths have such divergent 

responses to habitat fragmentation.  

We found that light pollution from adjacent streetlights did not alter predation 

rates, which is surprising as light pollution has greatly altered the night time environment 

(Cinzano, Falchi, and Elvidge 2001; Kyba et al. 2011) and has been shown to be an 

important effect in other studies (Bird, Branch, and Miller 2004; Tuxbury and Salmon 

2005; Kriska et al. 2009; Santos et al. 2010).  On moonless, cloudless nights, patch edges 

near streetlights can receive light levels up to four times brighter than found during a full 

moon (Rich and Longcore 2006).  Although we expected this change in nocturnal 

lighting regime to increase predation, our data show that the story might not be as simple.  
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Research on predators demonstrates that some species are attracted to nocturnal artificial 

lighting while others respond negatively by avoiding lights or decreasing foraging time in 

lit areas (Heiling 1999; Bird, Branch, and Miller 2004; Santos et al. 2010; Davies, 

Bennie, and Gaston 2012).  If predator foraging behavior has an additive effect on larval 

predation, we may find no net effect of street lights on predation risk for larvae despite 

significant positive and negative effects on different predator species’ behavior and 

abundance.  To further understand the impacts of light pollution on herbivores, we need 

more studies on the behavioral responses of predators to light pollution.  Although light 

pollution likely has important impacts on the functional and numeric responses of 

predators, our results suggest that artificial lighting may not alter overall predation rates 

on herbivorous larvae if the positive and negative effects of predation risk are evenly 

balanced. 

We also found that predation increases throughout the summer, which may be due 

to accumulation in invertebrate predator individuals and species that emerge throughout 

the summer.  Additionally, we may have observed a higher predation rate on our 

experimental larvae later in the summer if alternate prey decreased in abundance later in 

the growing season, but we did not measure alternate prey resources.  Anecdotally, we 

noticed changes in vegetation structure throughout the summer that may make prey more 

visible.  In early summer, vegetation in the prairie habitat fragments was lush, thick, and 

dense, and this vegetation complexity may provide hiding places for prey and obstacles 

for invertebrate predators.  As the season became progressively drier, vegetation thinned 

and wilted, reducing the vegetation complexity, which may have made it easier for 
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predators to find prey, but we did not specifically test this.  Because predation rate in our 

study changed so drastically between the early and late summer, our results emphasize 

the importance of experimental repetition as patterns may vary not only year to year, but 

within a season as well. 

Our data show that predation may be a cause of variation between nocturnal and 

diurnal invertebrate responses to habitat fragmentation.  Because larvae are subject to 

greater rates of predation while feeding (Bernays 1997), larvae active during the day may 

be subject to more predation along habitat edges.  We suggest that species with diurnal 

larvae in fragmented landscapes will suffer the effects of habitat fragmentation more than 

nocturnal species.  Additionally, prairie species emerging later in the summer are also 

subject to greater predation.  Our study suggests that late-season invertebrate larvae that 

are diurnal and live along the edge of a habitat patch will suffer the greatest amounts of 

predation and therefore will suffer the most from increased habitat fragmentation and 

subsequent increases in edge habitat, but this prediction needs to be tested in other natural 

and managed ecosystems accounting for prey evasion of predators. 
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CHAPTER THREE: LIGHT POLLUTION AFFECTS INVASIVE AND NATIVE 

PLANT TRAITS IMPORTANT TO HERBIVOROUS INSECTS 

 

Introduction 

More than half of the world’s population lives in urban or suburban areas 

(McIntyre et al. 2001) and the associated development has caused nearly 20% of the 

Earth’s night skies to be affected by anthropogenic light (Cinzano, Falchi, and Elvidge 

2001; Kyba et al. 2011).  Humans light the night to increase nighttime activity, promote 

safety, and deter criminal behavior (Painter 1996), but frequent exposure to long periods 

of uninterrupted light has negative impacts not only on humans, but also on adjacent 

natural communities (Longcore and Rich 2004).  Some species, for example, require the 

dark to forage successfully (Rotics, Dayan, and Kronfeld-Schor 2011) while others use 

naturally-occurring light, like the moon, as a cue for key behaviors like finding 

appropriate habitat or orientation during flight (Tuxbury and Salmon 2005; Kriska et al. 

2009; Frank 1988).  Although light pollution is relatively well-studied for some 

vertebrates, such as bats, birds, turtles and humans (Rydell 1992, 2006; Rich and 

Longcore 2006; Navara and Nelson 2007; Santos et al. 2010; Jung and Kalko 2010; 

Kempenaers et al. 2010; Falchi et al. 2011; Bedrosian and Nelson 2013; Davies et al. 

2013; Gaston et al. 2013; Kamrowski et al. 2014; Da Silva et al. 2015; Hale et al. 2015 

and references therein), the impacts of artificial lighting have been explored for few 
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invertebrate systems (Rich and Longcore 2006; but see Davies et al. 2012, 2013; Bennie 

et al. 2015) and not at all for plant communities that are surrounded by urban areas (Neil 

and Wu 2006).  Furthermore, most studies of light pollution focus on individual species 

and lack a community perspective (Gaston, Visser, and Hölker 2015).  Recently there 

have been several calls in the literature for studies that investigate how the effects of light 

pollution vary among species, especially plants and non-vertebrate animals for which we 

know relatively little, and associated effects on populations, communities, ecosystems, 

species interactions and ecosystem services (Gaston, Visser, and Hölker 2015; Hölker et 

al. 2010; Lyytimäki 2013; Gaston et al. 2013; Macgregor et al. 2014).  If light pollution 

has significant effects on individual species, it follows that it may have important 

implications for community dynamics by altering species interactions, such as between 

native and invasive species.   

Plants exposed to light pollution at night may perform differently than 

conspecifics under ambient conditions because day length and photoperiod are important 

signals for plants.  Under natural conditions, many plants are cued by day-length to 

germinate, grow, reproduce, and senesce (Raven, Evert, and Eichhorn 1986) and for 

some sensitive species, any disturbance in lighting regime may prevent individuals from 

progressing into different life stages (Neil and Wu 2006; Raven, Evert, and Eichhorn 

1986).  For instance, one study done in urban systems found that trees planted near street 

lights delay or stop leaf abscission compared to individuals not near artificial lights 

(Matzke 1936) and another study found that a leguminous plant produced fewer flower 

heads when exposed to artificial lights (Bennie et al. 2015).  Yet most of the literature on 
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how continuous photoperiods affect plants only considers agricultural and horticultural 

systems (Harvey 1922; Neil and Wu 2006; Briggs 2006) and rarely focus on native 

species.  It is unknown if light pollution from streetlights changes plant traits in natural 

communities that may alter competitive interactions or that are important to herbivores.  

Notably, whether consumers are directly or indirectly affected by artificial night lighting 

has never been tested. 

Light pollution may act as a disturbance that changes competitive dynamics 

among invasive and native species.  There are dozens of hypotheses that attempt to 

explain the success of invasive species (Catford, Jansson, and Nilsson 2009); common 

mechanisms proposed are trait differences between invasive and exotic species 

(Rejmánek and Richardson 1996), enemy release (Keane and Crawley 2002), and 

disturbances related to global change, such as habitat fragmentation and climate change 

(Dukes and Mooney 1999).  Of these, only global change considers the role humans may 

play in promoting invasion of exotic species.  For example, exotic species may become 

invasive due to human-induced changes to the environment, such as  habitat disturbances, 

changes to nitrogen and carbon cycles, climate change, and habitat fragmentation (Dukes 

and Mooney 1999).  To date, no study investigates whether light pollution could be a 

contributing anthropogenic disturbance that promotes invasive plant colonization and 

growth.  

In this study, using a series of laboratory and field experiments, we test the 

hypothesis that light pollution affects plant traits important to fitness and impacts higher 

trophic levels indirectly through plant-mediated changes.  In particular, we predict that 
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exposure to consistent low levels of light at night may affect plant traits, such as 

germination rates, biomass and nutrient content, and we explore whether these effects 

differ between invasive and native grass species. We also examine whether herbivore 

growth and survival are indirectly affected by the development of their host plant under 

artificial night light or whether these traits are directly affected by exposure of the 

herbivore to artificial light during development.  

 

Materials and Methods 

Study System 

The Denver-Metro area has many Open Space programs devoted to preserving 

and restoring native ecosystems along the Eastern Foothills of the Colorado Rocky 

Mountains.  Open Spaces generally consist of patches of mixed grass prairie with a 

number of both native and invasive species of forbs and grasses; trees and other woody 

vegetation are limited to small riparian drainages (Hinners, Kearns, and Wessman 2012; 

Nufio, McClenahan, and Bowers 2010).  These patches are “islands” of natural prairie 

habitat in an otherwise residentially-developed landscape, but they maintain a diverse 

community of insects including bees, butterflies, grasshoppers, and moths (Nufio, 

McClenahan 2010; Hinners, Kearns, and Wessman 2012; Robinson, Armstead, and 

Bowers 2012).  For the field component of our study, we selected eight prairie sites 

between 5 and 15 ha in size with 2-5 streetlights along the edge of the habitat patch 

(Appendix Table B3).   
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Plant Performance - Greenhouse 

 To investigate the effects of light pollution on common prairie grasses, we 

initiated a greenhouse experiment in the early summer of 2013 to test effects of nocturnal 

artificial lighting on germination, aboveground and belowground biomass, and nutrient 

content (C:N ratio) of six common prairie grasses.  We selected six species commonly 

found in prairie fragments throughout the Denver-metro area.  We planted four grass 

species native to shortgrass prairies: alkali sacaton (Sporobolus airoides Torr.), buffalo 

grass (Buchloe dactyloides Nutt.), blue grama (Bouteloua gracilis [H.B.K.] Lag.), and 

western wheatgrass (Agropyron smithii Rydb.).  We also planted two common invasive 

species introduced for livestock grazing and erosion prevention: cheatgrass (Bromus 

tectorum L.) and smooth brome (Bromus inermis Leyss.) (EDDMapS 2015).   

For each of the six plant species, we placed 10 seeds in each of 60 515cm
3
 cone-

tainers (for a total of 360 cone-tainers) filled with garden soil (Miracle Grow Garden 

Soil; The Scotts Company, LLC.).  We evenly distributed the six species into flats, each 

with 24 cone-tainers, and randomly distributed species within each flat.  We then placed 

half of the flats (180 cone-tainers) into a partitioned greenhouse lit overhead by high-

pressure sodium lamps timed to go on at 21:00 and turn off at 06:00, mirroring average 

length of summer streetlight illumination.  Modern streetlights are the same type of high-

pressure sodium lamp that we used in our greenhouse and these lights provide light in the 

400 to 700 nm spectrum (Longcore and Rich 2004; Cinzano, Falchi, and Elvidge 2001; 

Frank 1988).  We also measured the illuminance of the greenhouse grow lights at 5.5 lux 

that is less than the amount of illumination of a lit parking lot (Longcore and Rich 2004). 
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We placed the other half of the flats in a room set to the same temperature and humidity 

settings but only received natural light as a control group.   

We watered all plants with approximately 70mL of water every other day.  We 

rotated flats within each light treatment every week to minimize effects from greenhouse 

location.  Every three weeks, we fertilized plants with 10mL of a 2L dilution of 1%NPK 

solution to ensure that plants were not nutrient limited.  Additionally, every three weeks, 

we haphazardly rotated individual cone-tainers among flats to decrease within flat and 

neighbor shading effects.  

We monitored germination rate of seeds after one month.  We define germination 

rate as the proportion of ten seeds per cone-tainer that produced seedlings. Based on their 

germination rates, to equalize potential competition among seedlings we reduced the 

number of seedlings per cone-tainer and transplanted any excess seedlings into new cone-

tainers.  We placed five individuals of smooth brome and blue grama, four of cheatgrass, 

and three of western wheatgrass into each cone-tainer; alkali sacaton and buffalo grass 

had low germination and did not need to be thinned.  We began harvests after each 

species had sufficient biomass in each cone-tainer for all plant measurements (smooth 

brome at week 10, blue grama at week 11, cheatgrass and western wheatgrass at week 25; 

these start dates for harvest varied due to each species’ germination time).  Every three 

weeks, we randomly selected five cone-tainers from each species and light treatment to 

harvest, resulting in six harvests (harvests occurred over a total of 18 weeks).  Alkali 

sacaton and buffalo grass had low germination and growth throughout the experiment so 

we harvested them only at the end of the experiment (week 43).   
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After each harvest, we quantified leaf toughness, aboveground dry biomass, 

belowground dry biomass, and C:N ratio by pooling all individuals within a cone-tainer.  

We measured plant toughness of the first green blade of grass per culm using the cup-

string method detailed in Hendricks et al. (2011); this method tests toughness using the 

amount of sand required to pull a safety pin through a blade of grass.  We measured 

toughness of each individual plant in each cone-tainer.  After we measured leaf 

toughness, we placed above- and belowground tissues of a given cone-tainer in a drying 

oven at 60C for three days to measure dry tissue biomass.  To measure treatment effects 

on C:N ratio, we ground the aboveground biomass in a mixer mill (Retsch MM400) and 

sent processed samples to the Cornell Stable Isotope Laboratory for nutrient analysis.  

 

Plant Performance - Field 

 To determine whether streetlights affect plant traits in the field, we focused on 

smooth brome as it was the only species found reliably at all eight field sites.  Within 

each of the eight field sites (Appendix Table B3), we haphazardly selected five streetlit 

locations and five unilluminated edge locations for plant collection; the unilluminated 

edge locations were paired with streetlit locations so that the two treatments were 

interspersed within each site and not clumped.  We confirmed that each edge site was 

illuminated and unilluminated at night in a previous experiment (Grenis, Tjossem, and 

Murphy 2015).   At each location (streetlit or unilluminated), we collected five culms of 

grass from within a ~5m radius of the streetlight or five culms of grass from the 

unilluminated edge for a total of 400 culms collected (8 sites x 2 treatments [lit vs. 
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unilluminated] x 5 locations/treatment x 5 culms/location).  In the laboratory, we washed 

the plants, pooled them by location and then measured leaf toughness, aboveground dry 

biomass and C:N ratio (see above for methods).   

 

Herbivore Performance 

In late June of 2014, we collected early instar Apamea sordens Guenée larvae 

from our field sites (Appendix Table B3) using sweep nets under streetlights and along 

unilluminated edges.  The A. sordens are climbing cutworms and feed on both smooth 

brome seed heads and leaves.  We identified the larvae using COI (cytochrome oxidase I) 

sequences isolated using LepF1 and LepR1 primers; we sent samples to Eurofins 

Scientific for sequencing and matched sequences to A. sordens using BLAST and BOLD.  

This species has a high rate of barcode consistency across wide geographic areas (Zahiri 

et al. 2014).   

We brought the larvae back to the laboratory and kept them in individual 0.5L 

deli containers for immediate use in our greenhouse experiment.  We designed a 

complete factorial experiment to test both the direct and plant-mediated indirect effects of 

streetlights on larval fitness.  To test the indirect effects of streetlights on larval fitness 

mediated by host plant effects, we reared larvae on smooth brome that corresponded to 

the plants where we had collected the larvae from the field: plants collected from under 

streetlights in the field or plants collected from along the unilluminated edge.  We 

continued to feed them the host plant on which we found them because we were not 

interested in looking at host-switching effects in this experiment.  We fed each larva its 
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corresponding host plant ad libitum once per week by replacing the old plant material in 

each deli container with freshly collected plant material. To test the direct effects of 

artificial lighting on larval fitness, we placed half of the larvae feeding on each type of 

host plant (streetlit or unilluminated) into the greenhouse under high-pressure sodium 

lamps that illuminated them from 21:00 until 06:00, mirroring average streetlight 

duration during the summer, and we placed the other half of the larvae from each host 

plant treatment into control (ambient) conditions with normal day-night cycles (4 

plant/lighting treatments ~ 20 larvae/treatment = 82 larvae total).  During feedings, we 

monitored survival and removed any frass.  Additionally, we measured body mass of ten 

randomly selected larvae from each treatment at the beginning of the experiment and 

every following week for 10 weeks to measure accumulated body mass.  At the end of 

the summer, we measured final body mass of all larvae. 

 

Statistical Analyses 

To determine if plant species responded differently to artificial lights, we used a 

two-way ANOVA with treatment, species, and treatment x species interaction as the 

independent variables; germination, aboveground biomass, aboveground-belowground 

biomass ratio, C:N ratio, and toughness were our dependent variables. We divided the 

cone-tainer mean of aboveground biomass and toughness by the number of seedlings in a 

cone-tainer as there was varying numbers of individuals in each cone-tainer due to low 

germination or seedling death.  When appropriate, we used a log transformation to get 
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dependent variables aboveground-belowground biomass ratio, toughness, and C:N ratio 

to conform to the assumption of normality.   

To determine whether plant traits are differentially affected by streetlights over 

time, for the species we harvested every three weeks, we used four ANOVAs  to test the 

effect of artificial lights on the dependent variables: aboveground biomass, aboveground-

belowground biomass ratio, toughness, and C:N ratio.  When appropriate, we used a log 

or root transformation to get dependent variables to conform to the assumption of 

normality.  Our independent variables were treatment, harvest, and treatment x harvest 

interaction.  

To determine whether streetlights affect smooth brome plants in the field, we used 

a two-way ANOVA with patch location (streetlight edge or unilluminated edge), field 

site, and the patch location x field site interaction as independent variables.  We kept field 

site as a fixed effect because of our small number of field sites (Warton and Hui 2011).  

We used aboveground biomass, toughness, and C:N ratio as the dependent variables.   

We analyzed data from the larval performance study using Kaplan-Meier survival 

curves for each of the four plant/lighting treatment combinations.  We also used two-way 

repeated measures ANOVAs with light treatment, host plant, and the light treatment x 

host plant interaction as the independent variables with growth rate and mass of the 40 

weekly-monitored larvae as continuous dependent variables.  These data violated the 

assumption of sphericity (growth rate: χ² = 93.11, df = 35, p < 0.0001, mass: χ² = 178.6, 

df = 44, p < 0.0001) so we used a repeated measures MANOVA with a Greenhouse-

Geisser degrees of freedom correction for these analyses (growth rate: ε = 0.50, mass: ε = 



 

45 

0.27).  To determine at which time points treatments differed, we used two-way 

ANOVAs at each time point with a Bonferroni correction.  Additionally, to evaluate 

performance of larvae at the end of the experiment, we used a two-way ANOVA with 

light treatment, host plant, and the light treatment x host plant interaction as independent 

variables and final body mass as the continuous dependent variable.  We used JMP v 11 

for all analyses (SAS Institute Inc., Cary, NC). 

 

Results 

Plant Performance - Greenhouse 

Streetlights affected germination based on species (treatment x species: F5,348 = 

3.27, p = 0.007; Appendix Figure B7).  Streetlights did not affect germination rates of 

any of the species compared to the control treatment except buffalo grass, for which 

streetlights improved germination (Tukey’s HSD test, p < 0.05).  We also found 

significant differences in germination rate among plant species (species: F5,348 = 160, p < 

0.0001).   

Streetlights improved aboveground biomass growth only for cheatgrass, an 

invasive species (treatment x species: F5,291 = 6.25, p < 0.0001; Figure 6a).  However, 

when comparing the aboveground/belowground ratio, streetlights affected two native 

species, blue grama and buffalo grass, along with cheatgrass (treatment x species: F5,268 = 

3.80, p = 0.002; Figure 6b); these three species invested more energy into aboveground 

biomass than belowground biomass when exposed to street lighting at night.  Streetlight 

decreased plant toughness for all species (treatment: F1,272 = 20.72, p < 0.0001; Figure 6c) 

and toughness differed among plant species (species: F5,272 = 74.75, p < 0.0001; Figure 
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6c).  Lastly, streetlights increased the C:N ratio for all species except blue grama 

(treatment x species: F5,314 = 4.06, p = 0.0014; Figure 6d); these five species had more 

carbon and less nitrogen per gram when exposed to streetlighting at night. 

 

 

Figure 6. Effects of streetlight exposure on (A) aboveground dry biomass by seedling, (B) 

aboveground/belowground biomass ratio, (C) plant toughness by seedling, and (D) C:N ratio of grass 

species grown in the greenhouse experiment.  White bars indicate the streetlight treatment and gray 

bars are the control treatment.  Bars show the mean of each measure ± 1 SE of root transformed 

data in A and C and log transformed data in B and D.  Asterisks indicate significant differences 

between treatments (p < 0.05).  Native species: AS = alkali sacaton, BFG = buffalo grass, BG = blue 

grama, WW = western wheatgrass. Invasive species: CG = cheatgrass, SB = smooth brome. 

 

To test whether streetlights affected these plant traits as plants aged, we tested the 

four species with multiple harvests for time effects.  Only the invasive species cheatgrass 

grew larger in the streetlight treatment (treatment: F1,49 = 2.96, p < 0.0001; Appendix 
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Figure B8) but did not change over time.  Blue grama and smooth brome both increased 

aboveground biomass over time (blue grama harvest: F5,48 = 5.56, p = 0.0004; smooth 

brome harvest: F5,48 = 9.94, p < 0.0001; Appendix Figure B8) but showed no difference 

in growth between the light treatments (Appendix Figure B8).  There was no difference 

in either harvest or treatment for aboveground biomass in western wheatgrass (Appendix 

Figure B). 

The native species blue grama and invasive species cheatgrass showed a larger 

above/belowground biomass ratio in the streetlight treatment (blue grama treatment: F1,49 

= 6.56, p = 0.015; cheatgrass treatment: F1,53 = 18.36, p < 0.0001; Appendix Figure B9) 

but did not change over time.  Only the invasive species smooth brome showed an 

increase over time in above/belowground biomass ratio (harvest: F5,48 = 6.44, p = 0.0001; 

Appendix Figure B9) but showed no difference in growth between the light treatments 

(Appendix Figure B9).  There was no difference in either harvest or treatment for 

biomass in western wheatgrass (Appendix Figure B9).   

Streetlights decreased leaf toughness and the effect of streetlights on toughness 

did not change over time for invasive smooth brome (treatment: F3,32 = 6.53, p = 0.016; 

Appendix Figure B10).  Toughness differed over time for blue grama (harvest: F4,40 = 

10.80, p < 0.0001) and decreased with streetlights (treatment: F1,40 = 8.53, p = 0.006) but 

the two variables did not interact.  Toughness differed over time for western wheatgrass 

(harvest: F5,46 = 2.87, p = 0.025), and was nearly less tough in the streetlight treatment 

(treatment: F1,46 = 3.77, p = 0.058; Appendix Figure B10).  Toughness did not change 

over time or by treatment in cheatgrass.   
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We also discovered that some plant species exposed to artificial lighting at night 

contained less nitrogen, and thus had a higher C:N ratio, than plants grown in the control 

treatment and that the C:N ratio changed over time (cheatgrass treatment: F1,48 = 46.80, p 

< 0.0001, harvest: F5,48 = 3.59, p = 0.008; Appendix Figure B11).  Others only responded 

to the light treatment (smooth brome treatment: F1,48 = 13.51, p = 0.0006; western 

wheatgrass treatment: F1,46 = 5.70, p = 0.021; Appendix Figure B11).  However, there 

was an interaction between treatment and harvest for blue grama (F5,46 = 4.62, p = 0.002; 

Appendix Figure B11); plants grown under streetlights only had more carbon and less 

nitrogen later in development (after the third harvest).   

 

Plant Performance – Field 

For the smooth brome plants we collected from the field, there were no 

differences in aboveground biomass and C:N ratio for plants collected from under 

streetlights or the unilluminated edge (aboveground: F1,21 = 0.7, p = 0.4; C:N ratio: F1,20 = 

0.9, p = 0.3; Figure 7a, b).  However, plants in the field did differ in toughness; plants 

growing under streetlights were tougher than those growing along unilluminated edges 

(F1,21 = 4.89, p = 0.04; Figure 7c).  Site was not significant in any of these analyses.  
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Figure 7. Effects of streetlight exposure on (A) above-ground dry biomass, (B) C:N ratio, and (C) 

plant toughness of smooth brome collected in the field.  White bars indicate plants collected under 

streetlights and gray bars represent plants collected from unilluminated edges.  Bars show the mean 

of each measure ± 1 SE.  Asterisks indicate significant differences between treatments (p < 0.05). 

 
 

Herbivore Performance 

All larvae in the four treatments of our full factorial experiment started out at 

similar sizes based on body length (F3,144 = 0.96, p = 0.4).  Larval survival did not differ 

among the four treatments for either host plant or light treatment (Log-Rank χ² = 1.88, df 

= 3, p = 0.6).  

For larval body mass, we found a marginally significant three-way interaction 

between light treatment (streetlights vs. unilluminated in greenhouse), host plant 
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treatment (plants collected under streetlights vs. unilluminated in field) and time 

(F2.43,58.29 = 2.74, p = 0.06).  After week 2, the larvae in the unilluminated conditions 

gained more mass than larvae in the streetlight treatment and continued to have greater 

body mass for the duration of the experiment (time x treatment: F2.43,58.29 = 15.37, p < 

0.0001; Figure 8).  At week 8 in the experiment, larvae feeding on unilluminated host 

plants had gained more mass than larvae feeding on streetlight host plants, but only in the 

unilluminated treatment (Figure 8).  

 

 

Figure 8. Effects of both streetlight exposure and host plant location on larval mass accumulation.  

The lines show the mean mass at each time point ± 1 SE in each of the four combinations of light 

treatment (unilluminated or streetlight) and host plant treatment (unilluminated or streetlight).  The 

gray asterisks show time points that were significantly different between unilluminated and 

streetlight conditions and the black asterisk indicates the time point when larval mass differed 

significantly by host plant treatment (unilluminated and streetlight) in the unilluminated condition. 
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However, the final mass of all larvae did not show any host plant effects; larvae 

growing under streetlights were smaller than their conspecifics growing under 

unilluminated conditions regardless of whether they were reared on host plants collected 

from streetlight or unilluminated habitats (F1,67 = 47.62, p < 0.0001; Figure 9). 

 

 

Figure 9. Mean larval mass (± 1 SE) after 10 weeks reared in unilluminated or illuminated conditions 

and on host plants collected under unilluminated or illuminated conditions.  The gray bars indicate 

larvae reared in unilluminated conditions and the white bars represent larvae reared in the 

streetlight treatment.  Asterisks indicate significant differences between light environment 

treatments. 
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Discussion 

Our study demonstrates that light pollution may be a disturbance that favors the 

growth of invasive plant species and also affects plant traits that are important to 

herbivores.  Our greenhouse study showed a significant difference in how plant species 

respond to streetlights.  The native species alkali sacaton and western wheatgrass altered 

few traits in response to streetlight conditions whereas two other native species (blue 

grama and buffalo grass) and both invasive species (cheatgrass and smooth brome) 

exhibited many differences between the streetlight and control treatments.  We found that 

cheatgrass, which is listed as highly invasive in the US (Skinner et al. 2008), grew 

significantly larger under streetlights than in unilluminated conditions and grew larger 

than native plants either under streetlights or not.  However, none of the native species 

nor the other invasive species that we tested (smooth brome) responded as positively to 

streetlights as cheatgrass, potentially due to differences in life history; cheatgrass is an 

annual plant whereas smooth brome is a perennial.  Yet, if some invasive species, such as 

cheatgrass, grow larger under light polluted conditions, they may use resources more 

quickly to out-compete native species.  Thus, streetlights may directly affect invasion 

dynamics in urban environments and light pollution may be an important disturbance that 

favors the growth of invasive plant species.   

Plants grown under streetlight conditions in the greenhouse were significantly less 

tough and had higher C:N ratios than their conspecifics grown under ambient conditions.  

The precise mechanism by which streetlights affect plant physiology has not been tested 
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and remains unclear.  Previous research has shown that plants exposed to longer 

photoperiods have different photosynthetic capabilities and changes in cellular processes 

important to photosynthesis (Briggs 2006; Raven, Evert, and Eichhorn 1986); alterations 

to photosynthetic pathways may reduce the amount of energy available for secondary 

metabolism (plant defense traits) or nutrient uptake.  Regardless of the mechanism, 

changes to plant traits like toughness and C:N ratio are important as they affect host plant 

quality for invertebrate herbivores (Schoonhoven, van Loon, and Dicke 2005; Price et al. 

2011).  Plant toughness is a physical defense that can decrease the amount of plant 

material herbivorous insects are capable of consuming by wearing down insect mandibles 

(Schoonhoven, van Loon, and Dicke 2005; Massey and Hartley 2009).  If an herbivorous 

insect spends more time tearing through plant material to feed, it will not consume the 

plant as quickly and is exposed to predators longer, thereby increasing plant fitness and 

decreasing herbivore fitness (Bernays 1997).  Conversely, plants that are less tough are 

easier to feed upon, allowing insects to consume more plant material in shorter amounts 

of time.  Our greenhouse results show that plants grown under streetlights may be easier 

to consume by herbivores because they are less tough, but the higher C:N ratio suggests 

that they need to consume more plant material to obtain the same amount of nitrogen as 

contained in plants not under streetlights.  Although plants grown under streetlight 

conditions may be easier to consume, they may not be a better host plant due to the lower 

levels of nitrogen, suggesting that streetlights create a trade-off for invertebrate 

herbivores between consumption ability and nutrition.  This trade-off may lessen the 

indirect effect of streetlights on herbivore fitness mediated through host plants. 
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We found that smooth brome plants grown in the field under streetlights 

responded differently to streetlights than the seedlings in our greenhouse study and this 

result may be due to plant age or environmental conditions in the field.  Smooth brome 

grown under streetlights in the greenhouse were less tough than those grown in ambient 

conditions; yet, in the field, plants growing under streetlights were tougher than 

conspecifics growing along unilluminated edges and seven times tougher than those in 

the greenhouse.  Given that plants in our greenhouse study were seedlings and plants in 

the field could be several years old, plants may also have different responses to 

streetlights as they age.   Differences in how plants responded in the field vs. greenhouse 

could also be due to variation in soil conditions in the field between streetlight and 

unilluminated treatments that were unrelated to the lights themselves.  For instance, when 

installing streetlights, the soil is compacted by the construction equipment whereas soils 

along the unilluminated edge may also have been compacted to some degree, but not as 

much.  Additionally, because we found no difference in C:N ratio in the field between lit 

and unlit plants, there is no trade-off between plant toughness and C:N ratio in the field 

plants.  Thus, individuals of this invasive plant species growing under streetlights in the 

field are more resistant to insect herbivores because they are both tougher and have lower 

nitrogen content, which would likely affect invasion dynamics.  Future studies should test 

additional plant species in the field to determine whether other plant species respond 

similarly to streetlights as smooth brome and whether differences in herbivore 

consumption ability have fitness effects on the plants themselves. 
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 Our larval performance study demonstrates that streetlights affect larval 

performance both directly and indirectly via induced changes in host plant quality.  We 

found that larvae reared under streetlights weighed 43% less than larvae reared under 

unilluminated conditions; light pollution thus has a direct negative effect on larval fitness.  

Body mass is an accepted proxy for lifetime fitness in many Lepidoptera (Schoonhoven, 

van Loon, and Dicke 2005; Price et al. 2011).  Because the direct effect of light pollution 

on larval mass was so strong, this could have serious impacts for larvae developing under 

streetlights.  First, larvae with low body mass translate into adults with fewer resources 

for finding mates and producing offspring (Loewy et al. 2013).  Second, larvae with less 

mass may need to spend more development time as larvae before pupating 

(Schoonhoven, van Loon, and Dicke 2005; Price et al. 2011); however, our study is 

limited because we did not measure growth rate between instars, only between weeks 

which limits the evidence for slow growth/high mortality hypothesis.  The larval stage 

has the highest amount of mortality and exposes larvae to predators for a longer period of 

time (Varley and Gradwell 1960; Clancy and Price 1987).  It is worth noting that 

although light pollution does not directly increase predation rate on larvae in our system 

(Grenis, Tjossem, and Murphy 2015), streetlights may indirectly increase mortality from 

predators by increasing larval development time and thus increasing their exposure time 

to predators. Therefore, light pollution can have detrimental fitness impacts on both 

larvae developing under streetlights and for those adults that lay eggs near streetlights. 

We also found that streetlights can affect larval performance indirectly, via effects 

on host plant.  Larvae reared under unilluminated conditions and fed host plants that we 
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collected from under streetlights had lower body mass than larvae consuming plants from 

unilluminated conditions.  Our results show that streetlights indirectly decreased larval 

fitness via changes in host plant quality as plants collected from under streetlights in the 

field were tougher than those not under streetlights.  Additionally, these plant changes 

appear to vary in importance during different points in larval development.  Notably, we 

only found host-plant mediated differences in fitness in the unilluminated treatment, 

perhaps because the direct, negative effect of streetlights was so large, but larvae in the 

field would not encounter similar conditions as streetlight plants exist only under 

streetlights.  Overall, our results show that streetlights can have both direct and indirect 

negative effects on herbivore fitness. 

In summary, we found that light pollution alters plant traits important in at least 

two types of species interactions: competition and herbivory.  Streetlights facilitate 

growth of an invasive species in our system, potentially affecting competitive interactions 

between native and exotic plants.  Additionally, streetlights have both direct and indirect 

impacts on herbivores; larvae are smaller when reared under streetlights (direct), and 

streetlights change plant traits that lead to less larval growth (indirect).  Our results 

provide evidence that the impacts of ecological light pollution in the environment have 

the potential to alter community dynamics through species interactions.  While our study 

presents an important first step, these interactions should be investigated in the field as 

well to determine to what extent light pollution can alter natural communities and species 

interactions. 
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APPENDIX A: AN ALTERNATE METHOD FOR COLLECTING NOCTURNAL 

INSECTS IN TREE-LESS HABITATS 

 

Black light collecting sheet set ups are considered a standard technique for 

collecting nocturnal insects and are used by researchers and amateur collectors alike.  

Many guides suggest using a 15 watt ultraviolet light with a sheet for insects to rest upon 

(Powell and Opler 2009; Covell 2005).  In forested habitats, sheets can be easily be hung 

by tying a rope between two trees, draping the sheet over the rope, and securing it with 

clothespins.  However, this technique for hanging a sheet is not feasible when collecting 

in habitats without tall, sturdy vegetation upon which to tie a sheet using the rope and 

clothespin method.  Commercial pop-up sheets are available for collecting in flat areas, 

but they are expensive and can deplete limited funds unnecessarily.  I have devised a new 

method for constructing a low-cost frame on which to hang a twin sheet; the frame can be 

constructed with materials from any local hardware store for less than $30.   

The frame consists of a total of 9.1 m of 1.9 cm (¾ inch) polyvinyl chloride 

(PVC) pipe (measurement also given in English units in parentheses as this is how PVC 

pipe is labeled for commercial sale in the United States).  The PVC pipe needs to be cut 

into twelve pieces and trimmed to the measurements given in Appendix Table A1.  I have 

determined that a chop saw is the easiest method for cutting the PVC pipe, but a hand 

saw or PVC pipe cutter will work as well.  Additional materials that are necessary are: 

one straight PVC pipe connector, two 90-degree PVC pipe connectors, six ‘T’ shape PVC 

pipe connectors, and a fitted sheet for a twin bed.  Tent stakes may also be purchased to 

anchor the frame to the ground if collection takes place in a windy environment.   
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To assemble the frame, connect the A and B PVC pipe pieces to form the façade 

of the frame (Appendix Figure A1).  The C and D PVC pipe pieces form the rear support 

for the façade and attach to the top of the frame at a ~25° angle to the plane of the façade 

(Appendix Figure A2).  After assembling the frame, a fitted twin sheet can be slipped 

over the frame and the tent stakes can be used to anchor pieces B4, D1, and D2 to the 

ground.  The black light battery can also be used to weigh the frame down by resting it on 

piece B4.  When ready to begin collecting, simply drape the black light over the top of 

the frame (Appendix Figure A3).   

There are several advantages to this frame over the commercial versions that are 

available.  First, it is made entirely of pieces that can be found in any local hardware 

store.  Second, the entire cost of the frame is less than $30 and thus is an affordable 

option for collectors of more limited means (e.g. graduate students and amateur 

collectors).  Finally, the frame, as I have designed it, is light and weighs about four 

pounds.  Thus, when disassembled, the entire frame can be carried in a large mesh 

laundry sack and is easy to transport over rough terrain and long distances.   

 

  



 

67 

Appendix Table A1.  Lengths of PVC pipe necessary to make a frame that will be sized to fit a fitted 

twin sheet.   
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Appendix Figure A1.  Frame Assembly from front view. 
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Appendix Figure A2.  Frame Assembly from side view. 
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APPENDIX B: SUPPLEMENTARY TABLES AND FIGURES 

Appendix Table B1.  Site name and abbreviation for Figure 2, county, collection dates, species 

caught, individual-based estimation of species richness, and estimate of total moth diversity for all 

sites used in our 2011-2012 moth collections. 
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Appendix Table B2. Abbreviations used for species in Figure 2, family, and species name of the 15 

species with the highest species scores. 
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Appendix Table B3: Field site name, area, location, and number of streetlights along the edge of the 

site. 
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Appendix Figure B1.  Layout of ground cover survey and point measurements of light intensity.  The 

long dark arrows are the N-S and E-W transects.  Open circles represent the transect around each 

trap location.  We used a point-intercept line method to quantify ground cover at each site.  Dark 

circles indicate the focal spot for light readings along the N, E, S, W, and center locations.  Double 

circles show the position of additional light readings (10m from focal location along the edge and 15m 

into the patch). 
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Appendix Figure B2: Mean proportion of predated larvae (±1 SE) by field site during the day and 

night.   
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Appendix Figure B3: Mean proportion of predated larvae (±1 SE) by field site in the core and edge 

habitat during the day.   
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Appendix Figure B4: Mean proportion of predated larvae (±1 SE) by field site in the core and edge 

habitat during the night.   
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Appendix Figure B5: Mean proportion of predated larvae (±1 SE) by field site in the unilluminated 

edge and streetlight edge habitat during the day.   
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Appendix Figure B6: Mean proportion of predated larvae (±1 SE) by field site in the unilluminated 

edge and streetlight edge habitat during the night.   
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Appendix Figure B7. Mean (± 1 SE) germination rate per cone-tainer in the unilluminated (gray 

bars) and streetlight (white bars) treatments after one month.  Native species: AS = alkali sacaton, 

BG = blue grama, BFG = buffalograss, WW = western wheatgrass. Invasive species: CG = 

cheatgrass, SB = smooth brome. 
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Appendix Figure B8. Mean (± 1 SE) aboveground biomass in the unilluminated (gray bars) and 

streetlight (white bars) treatments over the course of six harvests spanning 18 weeks.  Native species: 

BG = blue grama, WW = western wheatgrass. Invasive species: CG = cheatgrass, SB = smooth 

brome. 
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Appendix Figure B9. Mean (± 1 SE) aboveground/belowground biomass ratio in the unilluminated 

(gray bars) and streetlight (white bars) treatments over the course of six harvests spanning 18 weeks.  

Native species: BG = blue grama, WW = western wheatgrass. Invasive species: CG = cheatgrass, SB 

= smooth brome. 
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Appendix Figure B10. Mean (± 1 SE) leaf toughness per cone-tainer in the unilluminated (gray bars) 

and streetlight (white bars) treatments over the course of six harvests spanning 18 weeks.  We started 

toughness measures on Harvest 3 for smooth brome and Harvest 2 for blue grama when there was 

sufficient biomass.  Native species: BG = blue grama, WW = western wheatgrass. Invasive species: 

CG = cheatgrass, SB = smooth brome. 
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Appendix Figure B11. Mean (± 1 SE) C:N ratio per cone-tainer in the unilluminated (gray bars) and 

streetlight (white bars) treatments over the course of six harvests spanning 18 weeks.   Native species: 

BG = blue grama, WW = western wheatgrass. Invasive species: CG = cheatgrass, SB = smooth 

brome. 
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