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Abstract

Given a word w in the language of a one-dimensional shift space X, the

follower set of w, denoted FX(w), is the set of all right-infinite sequences which

follow w in some point of X. Extender sets are a generalization of follower

sets (introduced in [5]) and are defined similarly. To a given shift space X,

then, we may associate a follower set sequence {|FX(n)|} which records the

number of distinct follower sets in X corresponding to words of length n.

Similarly, we may define an extender set sequence {|EX(n)|}. The complexity

sequence {ΦX(n)} of a shift space X records the number of n-letter words in

the language of X for each n. This thesis explores the relationship between

the class of achievable follower and extender set sequences of one-dimensional

shift spaces and the class of their complexity sequences.

Some surprising similarities suggest a connection may exist, for instance,

both the complexity sequence and the extender set sequence are bounded if and

only if there exists some n such that the value of the nth term of the sequence

is at most n. This thesis, however, also demonstrates important differences

among complexity sequences and follower and extender set sequences of one-

dimensional shifts. In particular, we show that unlike complexity sequences,

follower and extender set sequences need not be monotone increasing. Finally,
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we use the classical β-shifts to demonstrate that, while many follower set

sequences may not be realized as complexity sequences, up to possible increase

by 1, any complexity sequence may be realized as a follower set sequence of

some shift space.
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Chapter 1

Introduction

The field of dynamical systems concerns itself with the study of the long-

term behavior of systems which change over time. A topological dynamical

system is a pair (X,T ), where X is a compact space and T is a homeomor-

phism of X. In symbolic dynamics, we let (X,T ) be a shift space. Given

a finite alphabet of symbols A, we say that (X,T ) is a one-dimensional

shift space on A if X ⊆ AZ and T is the shift map σ, so that for any point

x = ...x−2x−1.x0x1x2... in X, σ(x) = ...x−1x0.x1x2x3.... In order for (X, σ)

to be a dynamical system, (X, σ) must satisfy two properties: First, X must

be closed under σ, so that σ(X) = X and second, X must be closed in the

product topology. It is clear then that X is compact by Tychonoff’s Theorem,

and T is certainly a homeomorphism. The requirement that X be closed in

the product topology means that X must be closed under limits, where we

consider two points to be close if they agree on a very long word about the

origin. So, then, if X ⊆ {0, 1}Z is the set of all sequences containing exactly

one 1 symbol, then (X, σ) is not a shift space, because we can approach the
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point 0∞ of all zeros by shifting the 1 symbol further and further from the

origin, and since 0∞ is not in X, X is not closed in the product topology. In

contrast, if X ⊆ {0, 1}Z is the set of all sequences containing at most one 1

symbol, then (X, σ) is a shift space–no second 1 symbol may be introduced by

shifting or by taking limits.

Symbolic dynamics may be done in higher dimensions, with X ⊆ AZd for

some d ∈ N, but the results of this thesis are specific to one-dimensional shift

spaces. For simplicity, we will often refer to the shift space (X, σ) only by X.

A one-dimensional shift space X is sofic if there exists a finite directed

labeled graph G such that X is exactly the set of sequences of labels of bi-

infinite walks on G. In this case, we say that X is the edge shift presented

by G, and we may denote X by XG. A simple example of a sofic shift is the

even shift, presented by the graph in Figure 2.1, on page 16. In that graph,

we may only see the label 1 when leaving the left vertex, and any path from

the left vertex to itself must feature an even number of 0 labels. Thus, in the

even shift, any string of 0’s between two 1’s must have even length. It is a

simple exercise to check that this single restriction is enough to characterize

exactly the set of all labels of bi-infinite walks on the graph.

The set of all words appearing in some point of X is called the language

of X, denoted L(X). The complexity function of a shift X, ΦX(n), counts

the number of words of a given length n in L(X). Thus, the complexity

sequence {ΦX(n)}n∈N records the number of distinct n-letter words occur-

ring in X for each length n. This sequence is natural to study; in particular,

it may be used to calculate topological entropy of symbolic shifts. Our goal

for this thesis will be a comparison between complexity sequences and other
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types of sequences that we might associate to a one-dimensional shift space.

The Morse-Hedlund Theorem (see [8]) implies that if there exists n ∈ N with

ΦX(n) ≤ n, then every sequence in X must be periodic. This result is tight,

for Sturmian shifts have n+1 words of length n for every n, and yet contain no

periodic points (see [2]). Furthermore, it is clear that the complexity sequence

must be monotone increasing, as for each n-letter word w in X, there exists

at least one n+ 1-letter word appearing in X having w as a prefix. These two

properties of complexity sequences–that they must stay above n at the nth

term in order to be unbounded, and that they are monotone increasing–will

guide our discussion; the first of these properties will extend to the other se-

quences we will define in this thesis, but we will show that the second cannot.

Given a word w appearing in some point of the shift space X, we define the

follower set of w, denoted FX(w), to be the set of all right-infinite sequences

u ∈ AN such that the infinite word wu appears in some point of X. That is,

u may legally follow w. Alternatively, the follower set of w may be viewed as

the set of all finite words u such that wu appears in some point of X. These

two definitions are analogous–if u is a finite word which may follow w, then it

clearly occurs as a prefix of some right-infinite sequence which may follow w,

and if u is a right-infinite sequence which may follow w, then all of its finite

prefixes certainly may legally follow w. While this thesis will use the definition

involving right-infinite sequences, all results will apply to either definition.

It is a well-known equivalence that a shift space X is sofic if and only if

there are only a finite number of distinct follower sets of words in X. (See

[7] for a proof). For instance, in the even shift, the follower set of a word w

depends only on the parity of the number of 0’s following the last 1 in the
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word w. If w ends with a 1 followed by an even number of 0’s, then w may be

followed by any sequence beginning with an even number of 0’s followed by a

1, or by 0∞. If w ends with a 1 followed by an odd number of 0’s, then w may

be followed by any sequence beginning with an odd number of 0’s followed by

a 1, or by 0∞. Finally, if the symbol 1 does not occur in the word w, then w

may be followed by any legal right-infinite sequence. That the even shift has

only three follower sets reinforces our earlier assertion that the even shift is

sofic.

Similarly, we define the predecessor set of w, denoted PX(w), to be the

set of all left-infinite sequences s ∈ A−N such that the infinite word sw appears

in some point of X. That is, s may legally precede w. As before, a definition

replacing infinite sequences with finite words is analogous.

The extender set of w is a generalization of the follower set, first in-

troduced in [5]. The extender set of w, denoted EX(w), is defined to be the

set of all pairs (s, u), where s is a left-infinite sequence, u is a right-infinite

sequence, and swu is a point of X. Simply put, given a finite word w, we may

think of the extender set of w as the set of all possible ways to extend w into

a complete point of X. Once again, a definition replacing infinite sequences

with finite words is analogous. Unlike in the case of follower sets, the defini-

tion of extender sets may be generalized to shift spaces on higher dimensions.

Furthermore, as with follower sets, a shift X is sofic if and only if there are

only a finite number of distinct extender sets of words in X. (See [9] for a

proof).

We now define, for any n ∈ N, the set FX(n) as the set of all distinct

follower sets corresponding to words of length n in X. (Similarly, PX(n) is
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the set of all distinct predecessor sets corresponding to words of length n in

X and EX(n) is the set of all distinct extender sets corresponding to words

of length n in X). Then the sequence {|FX(n)|}n∈N records the number of

distinct follower sets of words of length n for every n. We call this the fol-

lower set sequence of the shift X. (The predecessor set sequence and

extender set sequence of X are defined similarly). Chapter 2 of this thesis

provides more details and examples of these definitions, along with other im-

portant definitions that we will need. Chapter 2 also includes more detailed

explanations of many of the examples provided in this introduction.

Chapter 3 of this thesis explores the relationship between the class of

achievable follower, predecessor, and extender set sequences and the class of

achievable complexity sequences of one-dimensional shift spaces. Fixing a

specific one-dimensional shift X, its complexity sequence may be completely

unrelated to its follower, predecessor, and extender set sequences. Consider the

full 2-shift X[2] = {0, 1}Z. It is easy to see that for any n, ΦX[2]
(n) = 2n. Yet

there are no restrictions on what words may be adjacent; any word on {0, 1}

may legally follow or precede any other word on {0, 1}, and so every word

in L(X) has the same follower, predecessor, and extender set as every other

word in L(X). Hence, {|FX(n)|} = {|PX(n)|} = {|EX(n)|} = {1, 1, 1, ...}.

However, a result of Ormes and Pavlov ([9]) suggests that the class of all

achievable complexity sequences and the class of all achievable extender set

sequences may be connected. Their result states that if there exists any n ∈ N

such that |EX(n)| ≤ n, then the shift X is sofic. This result strongly mir-

rors the Morse-Hedlund theorem: while the Morse-Hedlund theorem concerns

the complexity sequence, and the theorem of Ormes and Pavlov concerns the
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extender set sequence, each result states that if the sequence ever falls below

{n + 1}, then the sequence must be bounded. (Interestingly, Sturmian shifts

once again prove tightness, having n+ 1 extender sets of words of length n for

every n, and failing to be sofic). This suggests a connection between the com-

plexity sequence and extender set sequence. Section 3.1 of this thesis further

explores this connection, and whether this connection may exist with follower

or predecessor set sequences as well. While a similar result for follower set

sequences is not proved for general one-dimensional shift spaces, we establish

several results supporting the conjecture that {|FX(n)|} ≤ n for any n implies

soficity of X:

Theorem 1.0.1. [3] For any shift space X, if there exists n ∈ N such that

|FX(n)| ≤ log2(n+ 1), then X is sofic.

Theorem 1.0.2. [3] Let X be a shift space. If |FX(n)| ≤ n for any n ≤ 3,

then X is sofic.

The results in Section 3.1 are the outcome of joint work with Ormes and

Pavlov in [3]. In Section 3.2, we pivot from focusing on the connections among

complexity sequences and follower, predecessor, and extender set sequences,

and instead we examine the differences among them. In particular, we demon-

strate that while complexity sequences must be monotone increasing, this need

not be true of follower, predecessor, or extender set sequences. Furthermore,

we show that the follower, predecessor, and extender set sequences of sofic

shifts must be eventually periodic.

Theorem 1.0.3. [4] Let X be a one-dimensional sofic shift, p be one greater

than the total number of extender sets in X, and p0 be one greater than the total
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number of follower sets in X. Then the extender set sequence {|EX(n)|}n∈N
is eventually periodic, where the periodicity must begin before the p(1 + p!)th

term, and the least eventual period is at most p!. The follower set sequence

{|FX(n)|}n∈N is eventually periodic, where the periodicity must begin before the

p0(1 + p0!)
th term, and the least eventual period is at most p0!.

We also show that a wide class of eventually periodic sequences may be

achieved, both as follower set sequences and as extender set sequences.

Theorem 1.0.4. [4] Let ` ∈ N, and A = {A1, A2, A3, ..., Ak} be a nontrivial

partition of {0, 1, ..., ` − 1}. Let 0 = r1 < r2 < ... < rk be natural numbers.

Then there exists m ∈ N and an irreducible graph G such that the number of

follower sets in XG of words of length n where n ≥ `+ 2 and n (mod `) ∈ Aj
will be exactly m + rj for all 1 ≤ j ≤ k. Furthermore, m may be chosen such

that m < (6`+ 3)rk.

Theorem 1.0.5. [4] Let ` ∈ N, and A = {A1, A2, A3, ..., Ak} be a nontrivial

partition of {0, 1, ..., ` − 1}. Let 0 = r1 < r2 < ... < rk be natural numbers.

Then there exists m ∈ N and an irreducible graph G such that the number of

extender sets in XG of words of length n where n ≥ 14rk`−1 and n (mod `) ∈

Aj will be exactly m + rj for all 1 ≤ j ≤ k. Furthermore, m may be chosen

such that m ≤ 39`2r2k.

These results are from my own work in [4], and establish that many follower,

predecessor, and extender set sequences may not be realizable as complexity

sequences. In Section 3.3, we turn the question on its head, and address

the question of whether all complexity sequences may be realizable as fol-

lower, predecessor, or extender set sequences. We use the classical β-shifts
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to demonstrate that the set of all sequences which may be realized as a com-

plexity sequences is nearly a subset of the class of all sequences which may be

realized as a follower set sequence.

Theorem 1.0.6. Let {Φd(n)} be the complexity sequence of a right-infinite

sequence d such that for all i ∈ N, σi(d) � d. Then the sequence {Φd(n)} is

the predecessor set sequence of Xβ for some β > 1.

Theorem 1.0.7. Let {Φd(n)} be the complexity sequence of any right-infinite

sequence d. Then the sequence {Φd(n) + 1} is the predecessor set sequence of

Xβ for some β > 1.

The β-shifts also provide examples of other interesting occurrences, includ-

ing shifts with positive topological entropy for which the follower set sequence

is {n + 1}, contrasting with other common zero-entropy examples with the

same follower set sequence. β-shifts are also a rich class of examples of shifts

for which the follower and predecessor set sequences display drastically differ-

ent limiting behavior.

8



Chapter 2

Definitions and Examples

Let A denote a finite set, which we will refer to as our alphabet. Elements

of A will be called letters.

Definition 2.0.1. A shift space X (or sometimes referred to as a subshift

X) on an alphabet A is some subset of AZ which is shift-invariant and closed

in the product topology.

Example 2.0.2. Let X ⊂ {0, 1}Z such that X = {...x−2x−1.x0x1x2...|x0 = 0}.

Then X is not a shift space, because X is not shift-invariant. In particular,

σ(...111.01111...) = ...1110.1111... /∈ X.

Example 2.0.3. Let X ⊂ {0, 1}Z such that X is the set of all bi-infinite

sequences containing the symbol 1 exactly once. Then X is not a shift space.

Though X is shift-invariant, it is not closed in the product topology, because

the sequence:

x1 = ...000.1000000000000...

x2 = ...000.0001000000000...

9



x3 = ...000.0000001000000...

x4 = ...000.0000000001000...

...

approaches the limit x = ...000.0000000... = 0∞ /∈ X in the product topology.

Example 2.0.4. Let X ⊂ {0, 1}Z such that X is the set of all bi-infinite

sequences containing the symbol 1 at most once. Then X is a shift space,

as no second 1 symbol may be introduced by shifting or by taking limits, and

therefore X is shift-invariant and closed in the product topology.

Definition 2.0.5. A word w over A is a member of An for some n ∈ N,

which we call the length of w. Occasionally the length of w will be denoted by

|w|. We use ∅ to denote the empty word, the word of length zero.

Definition 2.0.6. Suppose we have an order on the alphabet A. Then for

two words of the same length (or two right-infinite sequences) x and y, we say

that x is lexicographically less than y if, for the first place that x and y

disagree, x takes a smaller value than y. We denote this by x ≺ y. In this

thesis, A will usually consist of non-negative integers, and the order on A will

be the usual one.

Definition 2.0.7. For any words v ∈ An and w ∈ Am, we define the con-

catenation vw to be the word in An+m whose first n letters are the letters

forming v and whose next m letters are the letters forming w.

Definition 2.0.8. For a word u ∈ An, if u can be written as the concatenation

of two words u = vw then we say that v is a prefix of u and that w is a suffix

of u. When there is no risk of confusion, we denote the n-letter prefix of a

word (or right-infinite sequence) u by (u)n.

10



Definition 2.0.9. The language of a shift space X, denoted by L(X), is the

set of all words which appear in points of X. For any finite n ∈ N, define

Ln(X) = L(X) ∩ An, the set of words in the language of X of length n. We

will sometimes informally refer to words in the language as being legal.

Definition 2.0.10. The complexity function of a shift space X, ΦX(n) =

|Ln(X)|, sends a length n to the number of words of that length in L(X). The

complexity sequence of a shift space X is {ΦX(n)}n∈N.

Example 2.0.11. The full 2-shift is X[2] = {0, 1}Z. Clearly, X[2] is a shift

space. For any length n, any combination of n-many 0’s and 1’s is legal. Thus

the complexity sequence of the full 2-shift is {ΦX[2]
(n)} = {2n}.

Example 2.0.12. Let X be the shift space consisting only of two points, x =

...0101.0101... = (01)∞ and its shift σ(x) = ...1010.1010... = (10)∞. The

reader may check that X is a shift space. For any length n, only 2 n-letter

words occur in X, one beginning with the symbol 1 and alternating between 0

and 1, and another beginning with the symbol 0 and alternating between 1 and

0. Thus, the complexity sequence of X is {ΦX(n)} = {2, 2, 2, ...}.

Definition 2.0.13. The topological entropy h(X) of a one-dimensional

shift space X is a measure of the exponential growth rate of the number of

words in X, and is given by

h(X) = lim
n→∞

1

n
log(ΦX(n)).

Example 2.0.14. It is a simple calculation to see that the topological entropy

of the full 2-shift of Example 2.0.11 is log(2), while the topological entropy of

the shift space in Example 2.0.12 is zero.

11



Definition 2.0.15. For any shift space X on an alphabet A, and any word w

in the language of X, we define the follower set of w in X, FX(w), to be the

set of all right-infinite sequences u ∈ AN such that the infinite word wu occurs

in some point of X. (Note that FX(∅) is simply the set of all right-infinite

sequences appearing in any point of X.) Some texts define the follower set of

w to be the set of all finite words which may follow w; the two definitions are

analogous. Similarly, we define the predecessor set of w in X, PX(w), to

be the set of all left-infinite sequences s ∈ A−N such that sw occurs in some

point of X. As before, a definition replacing left-infinite sequences with finite

words is analogous.

Example 2.0.16. The golden mean shift Xϕ is the set of all bi-infinite

sequences on the alphabet A = {0, 1} such that the symbol 1 never appears

adjacent to another 1. Thus the follower set F (0) of the word 0 is equal to

F (∅), because any legal right-infinite sequence may follow a 0 without intro-

ducing the word 11. In contrast, the follower set F (1) of the word 1 is equal to

{.x0x1x2... |x0 = 0}∩F (∅), that is, any legal right-infinite sequence beginning

with the symbol 0, because the word 1 may not be followed by any sequence

beginning with a 1, as this would create the forbidden word 11.

Definition 2.0.17. For any word w ∈ L(X), w is follower-shortenable if

there exists v ∈ L(X) with strictly shorter length than w such that FX(w) =

FX(v).

Example 2.0.18. In the golden mean shift from example 2.0.16, only the

last letter of a word determines its follower set–words ending with a 0 may be

followed by any legal right-infinite sequence, while words ending with a 1 may
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only be followed by legal right-infinite sequences which begin with 0. Thus, any

word of length at least 2 is follower-shortenable. In particular, the word 01 is

follower-shortenable to 1, while 00 is follower-shortenable to 0, and so on.

Definition 2.0.19. For any shift space X over the alphabet A, and any word

w in the language of X, we define the extender set of w in X, EX(w), to

be the set of all pairs (s, u) where s is a left-infinite sequence of symbols in A,

u is a right-infinite sequence of symbols in A, and swu is a point of X. Once

again, a definition replacing infinite sequences with finite words is analogous.

Remark 2.0.20. For any word w ∈ L(X), define a projection function fw :

EX(w) → FX(w) by fw(s, u) = u. Such a function sends the extender set of

w onto the follower set of w. Any two words w, v with the same extender set

would have the property then that fw(EX(w)) = fv(EX(v)), that is, that w and

v have the same follower set. Similarly, any two words with the same extender

set must also have the same predecessor set.

Remark 2.0.21. We may informally think of the extender set of a word w

as the set of all possible ways to complete w into an entire bi-infinite point

of X. Using this perspective, the definition of extender set may be generalized

to multi-dimensional symbolic settings, unlike the definitions of follower and

predecessor sets.

Definition 2.0.22. For any positive integer n, define the set FX(n) =

{FX(w) | w ∈ Ln(X)}. Thus the cardinality |FX(n)| is the number of dis-

tinct follower sets of words of length n in X. Similarly, define PX(n) =

{PX(w) | w ∈ Ln(X)} and EX(n) = {EX(w) | w ∈ Ln(X)}, so that |PX(n)|
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and |EX(n)| are the numbers of distinct predecessor sets of words of length n

in X and extender sets of words of length n in X respectively.

Definition 2.0.23. Given a shift space X, let the follower set sequence

of X be {|FX(n)|}n∈N, the sequence that records, for each n, the number of

distinct follower sets in X corresponding to words in Ln(X). Similarly, define

the predecessor set sequence of X to be {|PX(n)|}n∈N and the extender

set sequence of X to be {|EX(n)|}n∈N.

Example 2.0.24. In the full 2-shift as defined in Example 2.0.11, any right-

infinite sequence on {0, 1} may legally follow any word in L(X[2]), and so

for any word w, F (w) = F (∅). Thus every word in L(X[2]) has the same

follower set, and so there is only one follower set in X[2]. Similarly, there is

only one predecessor and one extender set in X[2]. Therefore {|FX[2]
(n)|} =

{|PX[2]
(n)|} = {|EX[2]

(n)|} = {1, 1, 1, 1, ...}.

Example 2.0.25. In the golden mean shift from Example 2.0.16, the fol-

lower set of a word w is determined only by the last letter of w, so there are

only two follower sets in Xϕ. The follower set sequence of the golden mean

shift is {|FXϕ(n)|} = {2, 2, 2, 2, ...}. Similarly, the predecessor set of a word

w is determined only by the first letter of w, so there are only two prede-

cessor sets in Xϕ. The predecessor set sequence of the golden mean shift is

{|PXϕ(n)|} = {2, 2, 2, 2, ...}. Finally, the extender set of a word w is deter-

mined by the first and last letters of the word w. A word beginning and ending

with 0 will have a different extender set from a word beginning with 0 and end-

ing with 1, for instance, because those two words will have different follower

sets. Furthermore, a word beginning and ending with 0 will have a different
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extender set from a word beginning with 1 and ending with 0, because those

two words will have different predecessor sets, and so on. Thus there are four

distinct extender sets in Xϕ. However, not all four extender sets may be re-

alized for every length. For length 1, there are only two words, and thus only

two extender sets may be realized. For length 2, the extender set corresponding

to words which both begin and end with 1 may not be realized, because 11 is

not a legal word in Xϕ. The extender set sequence of the golden mean shift is

{|EXϕ(n)|} = {2, 3, 4, 4, 4, ...}.

Definition 2.0.26. A shift space X is a shift of finite type if it may be

described by a finite list of forbidden words. That is, there exists m ∈ N and a

subset F ⊆ Am such that X = {x ∈ AZ | x does not contain any word in F as

a subword}. If X can be described by a finite list of forbidden words F ⊆ A2,

then X is a nearest-neighbor shift of finite type. In this case, the only

restrictions concern which letters may and may not sit adjacent to one another.

Remark 2.0.27. Every shift space may be described by some collection F of

forbidden words, in fact, a space X ⊆ AZ is closed in the product topology if

and only if can be described by a countable (not necessarily finite) collection

F of forbidden words.

Example 2.0.28. The golden mean shift of Example 2.0.16 is a nearest-

neighbor shift of finite type, because Xϕ is defined by the list of forbidden

words F = {11} ⊆ {0, 1}2.

Definition 2.0.29. A shift space X is sofic if it is the image of a shift of

finite type under a continuous shift-commuting map.
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Equivalently, sofic shifts are those with only finitely many follower sets,

that is, a shift X is sofic iff {FX(w) | w ∈ L(X)} is finite ([7]). The same

equivalence exists for extender sets: X is sofic iff {EX(w) | w ∈ L(X)} is finite

([9]). This necessarily implies that for a sofic shift X, the follower set sequence

and extender set sequence of X are bounded. In fact, the converse is also true:

if the follower set or extender set sequence of a shift X is bounded, then X is

necessarily sofic. (See [9]). Another well-known equivalence is that a shift X

is sofic iff there exists a finite directed labeled graph G such that X is exactly

the set of sequences of labels of all bi-infinite walks on G ([7]). In such a case,

we say that X is the edge shift presented by G, and may denote X by XG.

Example 2.0.30. Let X be the set of all bi-infinite sequences on alphabet

{0, 1} such that whenever a run of 0’s appears between two 1’s, that run of 0’s

has even length. Then X is called the even shift. Then X is not a shift of

finite type, as describing X by a list of forbidden words requires an infinite list,

for example F = {101, 10001, 1000001, ...}. Yet X is sofic, as X is exactly the

set of sequences of labels of all bi-infinite walks on the graph G given in Figure

2.1.

1

0

0

Figure 2.1: The graph G presenting the even shift

Additionally, we may determine that X is sofic because X is the image of

the golden mean shift of example 2.0.16 under a continuous shift-commuting

map
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ψ : Xϕ → X, where ψ(...x−2x−1.x0x1x2...) = ...y−2y−1.y0y1y2... where

yn =


0 if xnxn+1 = 10 or 01

1 if xnxn+1 = 00.

Definition 2.0.31. A directed labeled graph G is irreducible if for every

ordered pair (I, J) of vertices in G, there exists a path in G from I to J . A

shift space X is irreducible if for any two words w and v in L(X), there

exists a word u such that wuv ∈ L(X). Note that a sofic shift is irreducible if

and only if it can be presented by a graph G which is irreducible.

Results about shifts presented by graphs which are not irreducible may

often be found by considering the reducible graph’s irreducible components;

for this reason, results in this thesis will largely focus on the irreducible case.

Definition 2.0.32. A directed labeled graph G is primitive if ∃N ∈ N such

that for every n ≥ N , for every ordered pair (I, J) of vertices in G, there exists

a path in G from I to J of length n. The least such N is the primitivity

distance for G.

Example 2.0.33. The reader may check that the graph given in Figure 2.1

is primitive with primitivity distance 2 (there is no path of length 1 from the

right vertex to itself). On the other hand, the graph given in Figure 2.2 is not

primitive, because all paths from vertex I to vertex K must have even length.

Remark 2.0.34. Any irreducible finite graph containing a self-loop is neces-

sarily primitive. Let G be an irreducible graph with a self-loop, and let K be

the vertex at which the self-loop is anchored. Let N ∈ N be such that for any
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I J K

1

1

0

2

Figure 2.2: A graph which is right-resolving, but not left-resolving, primitive,
or follower-separated

vertices I, J , there exists a path from I to J of length less than or equal to N .

(At most, we can take N to be the total number of edges in the graph). Then

for any pair of vertices I and J , and any length n > 2N , a path from I to J of

length n may be created by traveling from I to K, then following the self-loop

an appropriate number of times to inflate the length of the path, then traveling

from K to J .

Definition 2.0.35. A directed labeled graph G is right-resolving if for each

vertex I of G, all edges starting at I carry different labels. Similarly, G is

left-resolving if for each vertex I of G, all edges ending at I carry different

labels.

Example 2.0.36. The graph in Figure 2.2 is right-resolving, but fails to be

left-resolving as the two edges ending at the vertex J are both labeled 1.

Definition 2.0.37. A directed labeled graph G is follower-separated if dis-

tinct vertices in G correspond to distinct follower sets. That is, for all vertices

I, J in G, there exists a one-sided infinite sequence s of labels which may follow

one vertex but not the other.

Example 2.0.38. The graph in Figure 2.1 is follower-separated. Words end-

ing at the left vertex may be followed by sequences beginning with 1, while words

ending at the right vertex may not, and thus two two vertices correspond to dis-
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tinct follower sets. However, the graph in Figure 2.2 is not follower-separated;

the reader may check that the right-infinite sequences which may follow words

ending at vertex I are exactly the right-infinite sequences which may follow

words ending at K.

Definition 2.0.39. A directed labeled graph G is extender-separated if dis-

tinct pairs of vertices correspond to distinct extender sets. That is, for any

two distinct pairs of initial and terminal vertices {I → I ′} and {J → J ′} such

that there exist paths in G from I to I ′ and from J to J ′, there exists some

word w which is the label of a path in G beginning and ending with one pair of

vertices, and pair (s, u), s a left-infinite sequence, u a right-infinite sequence,

such that swu is a point of XG, but for every word v which is the label of some

path beginning and ending with the other pair of vertices, svu is not a point of

XG.

Informally, a graph G is extender-separated if two distinct pairs {I → I ′}

and {J → J ′} of initial and terminal vertices correspond to distinct extender

sets whenever they correspond to non-empty extender sets. In a graph which

is not irreducible, many pairs of initial and terminal vertices may correspond

to an empty extender set, because there is no path between the initial and

terminal vertex in those pairs. This does not prevent the graph from being

extender-separated.

Definition 2.0.40. Given a directed labeled graph G, a word w is right-

synchronizing if all paths in G labeled w terminate at the same vertex.

The word w is left-synchronizing if all paths in G labeled w begin at the

same vertex. The word w is bi-synchronizing if w is both left- and right-
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synchronizing. A bi-synchronizing letter is a bi-synchronizing word of

length 1.

If a word w is right-synchronizing, left-synchronizing, or bi-synchronizing

in G, then w has the property that whenever u and v are words in L(XG) such

that uw and wv are in L(XG), then uwv is in L(XG) as well.

Example 2.0.41. Consider the graph in Figure 2.1. In this graph, the word 1

is bi-synchronizing because the label 1 is applied to only one edge in the graph.

In contrast, the word 0 is neither left- nor right-synchronizing, because edges

labeled 0 begin at both vertices, and edges labeled 0 terminate at both vertices.

Conversely, consider the graph in Figure 2.2. Every word on this graph is

right-synchronizing, but the word 1 fails to be left-synchronizing because edges

labeled 1 begin at both I and K.

In fact, every one-dimensional sofic shift is presented by some graph G

which is right-resolving, follower-separated, and contains a right-synchronizing

word (see [7]).

Definition 2.0.42. If w is a word with the property that whenever u and v

are words in L(X) such that uw and wv are in L(X), then uwv is in L(X)

as well, then w is said to be intrinsically synchronizing. Unlike the terms

in Definition 2.0.40, the definition of intrinsically synchronizing makes no

reference to a labeled graph, and so even words in non-sofic shifts may be

intrinsically synchronizing.

Finally, for some parts of this thesis we will need to consider one-sided shift

spaces:
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Definition 2.0.43. A one-sided shift space is a subset X ⊆ AN, paired

with the shift map σ, which we now think of as removing the 0th digit, rather

than shifting it left of the origin, so σ(.x0x1x2x3...) = .x1x2x3...

It is fairly easy to move back and forth between one-sided and two-sided

shift spaces. A one-sided shift may be constructed from a two-sided shift

by simply ignoring any digits left of the origin. A two-sided shift may be

constructed from a one-sided shift in the following way:

Definition 2.0.44. Two-sided shifts may be constructed from one-sided shifts

using the natural extension: Given a one-sided shift X, create a two-sided

shift X̂ by asserting that a bi-infinite sequence x is in X̂ if and only if every

finite subword of x is in L(X).

Note that this construction implies L(X̂) ⊆ L(X). Strict equality may not

be possible, for instance, suppose there exists a word w and N ∈ N such that

the word w never appears after the N th digit of any sequence in X. Then

clearly w cannot be in L(X̂), as no finite word longer than N + |w| could end

with w in L(X), and so no bi-infinite sequence x containing w could have the

property that every finite subword of x is in L(X).
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Chapter 3

Follower and Extender Sets

3.1 Follower Sets and Complexity

We begin by exploring the connections between follower, predecessor, and

extender set sequences and complexity sequences of a one-dimensional shift

space X. An immediate relation is that for a fixed one-dimensional shift X,

for any n ∈ N, |EX(n)| ≤ ΦX(n), with equality only if each n-letter word has

a distinct extender set. ΦX(n) is also an upper bound for |FX(n)| and |PX(n)|.

However, the follower, predecessor, and extender set sequences may be sub-

stantially smaller than the complexity sequence if many words have the same

follower, predecessor, or extender set. For instance, recall examples 2.0.11 and

2.0.24, which show that the full 2-shift X[2] has a complexity sequence which

grows exponentially in n, yet a constant follower, predecessor, and extender

set sequence.

The following result of Ormes and Pavlov regarding extender sets closely

mirrors the Morse-Hedlund theorem for complexity, and suggests a relation-
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ship between the class of achievable complexity sequences and the class of

achievable extender set sequences of one-dimensional shift spaces:

Theorem 3.1.1. [9] For a shift space X, if there exists an n ∈ N such that

|EX(n)| ≤ n, then X is sofic.

This theorem tells us that extender set sequences, like complexity se-

quences, are bounded if and only if they fall as low as n for some n. It is

natural to wonder, then, whether follower set sequences follow the same rule,

or whether unbounded follower set sequences may grow to infinity slower than

linearly. Ormes and Pavlov have conjectured that follower set sequences must

behave like complexity and extender set sequences:

Conjecture 1. [Ormes-Pavlov] For a shift space X, if there exists an n ∈ N

such that |FX(n)| ≤ n, then X is sofic.

Remark 3.1.2. To prove this conjecture for follower set sequences would be

equivalent to proving it for predecessor set sequences as well. If X is a shift

space, define −X to be the shift space made from “flipping” points of X. That

is, if ...x−2x−1.x0x1x2... ∈ X, then ...x2x1.x0x−1x−2... ∈ −X. Then −X is

a shift space and {|FX(n)|} = {|P−X(n)|} and {|PX(n)|} = {|F−X(n)|}. For

this reason, we will ignore predecessor set sequences and focus on follower set

sequences for the majority of this thesis.

In this section we will present results toward the conjecture of Ormes and

Pavlov. We begin with some simple facts about follower sets, which will re-

peatedly be useful. The proofs are simple and left to the reader.
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Lemma 3.1.3. For any shift space X, any w ∈ Ln(X), and any m ∈ N,

FX(w) =
⋃
v FX(vw), where the union is taken over those v ∈ Lm(X) for

which vw ∈ Lm+n(X).

Lemma 3.1.4. For any shift space X, and w ∈ Ln(X) and any m < n, there

exists a v ∈ Lm(X) for which F (v) ⊇ F (w).

Lemma 3.1.5. Let X be a shift space. If for two words w, u ∈ L(X), FX(w) =

FX(u), then for any v ∈ L(X), FX(wv) = FX(uv).

The following will be our main tool for proving soficity of a shift space via

the sets FX(n).

Theorem 3.1.6. For any shift space X, if there exists n ∈ N such that

FX(n) ⊆
⋃

`≤n−1

FX(`), then X is sofic.

Proof. If there exists n ∈ N such that FX(n) ⊆
⋃

`≤n−1

FX(`), then for any

word w ∈ Ln(X), the follower set FX(w) is also the follower set of a strictly

shorter word, so w is follower-shortenable to a word of length strictly less than

n. Now, let v ∈ L(X) of length greater than n, say v = v1v2...vnvn+1...vk

where k > n. Then v1v2...vn ∈ Ln(X), and so is follower-shortenable to

some word v′ ∈ L(X) of length less than n. But FX(v1v2...vn) = FX(v′) im-

plies FX(v1v2...vnvn+1...vk) = FX(v′vn+1...vk) by Lemma 3.1.5, so v is follower-

shortenable to a word v′vn+1...vk. If v′vn+1...vk has length at least n, we may

apply the above process again and shorten repeatedly, getting shorter and

shorter words with the same follower set until we find one with length less

than n. So v is follower-shortenable to a word of length less than n. But this

means that
⋃

`≤n−1

FX(`) contains all follower sets in X, so X has only finitely

many follower sets, and thus, X is sofic.

24



We can now show that |FX(n)| = 1 for any n always implies soficity of X.

Theorem 3.1.7. For any shift space X, if there exists n for which |FX(n)| = 1,

then X is a full shift.

Proof. We prove the contrapositive. Without loss of generality, assume that

the alphabet A of X consists entirely of letters which actually appear in points

of X, and assume that X is not the full shift on A. Then there exists a word

w = w1w2 . . . wk ∈ Ak which is not in the language of X; suppose that the

length k of w is minimal. It must be the case that k is at least 2, since we

assumed that all letters of A are in L(X). Then since we assumed k to be

minimal, w2 . . . wk ∈ L(X), so we can choose some one-sided infinite sequence

s appearing in X which begins with w2 . . . wk. Similarly, w1 is in L(X), so

for any n ∈ N, we may choose an n-letter word v ending with w1. Then vs

contains w /∈ L(X), so s /∈ FX(v). However, since s appears in X, there exists

some n-letter word u which can be followed by s in X, and so s ∈ FX(u).

Hence FX(u) 6= FX(v), so |FX(n)| ≥ 2, and since n was arbitrary, this is true

for all n.

We can now prove a version of Conjecture 1 for unions of the sets FX(n),

rather than the sets themselves.

Theorem 3.1.8. For any shift space X, if there exists n ∈ N so that

∣∣∣∣∣⋃
`≤n

FX(`)

∣∣∣∣∣
≤ n, then X is sofic.

Proof. We prove the contrapositive, and so assume that X is nonsofic. By

Theorem 3.1.7, |FX(1)| ≥ 2. Then, by Theorem 3.1.6, for every n > 1, we have

FX(n) \ ⋃`<n FX(`) 6= ∅, and so
∣∣⋃

`≤n FX(`)
∣∣ > ∣∣⋃`≤n−1 FX(`)

∣∣. Therefore,

by induction, for each n,
∣∣⋃

`≤n FX(`)
∣∣ ≥ n+ 1.
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We may now prove Theorem 1.0.1, which establishes a logarithmic lower

bound for the growth rate of |FX(n)| for nonsofic shifts.

Proof of Theorem 1.0.1. Suppose that for some n, FX(n) = {F1, F2, ..., Fk}

where k ≤ log2(n+ 1). By Lemma 3.1.3, for each length ` < n, every follower

set of a word in L`(X) is a union of follower sets of words of length n. Therefore,

every element of
⋃
`≤n FX(`) is a non-empty union of elements of FX(n). There

are at most 2k−1 ≤ 2log2(n+1)−1 = n such unions, so
∣∣⋃

`≤n FX(`)
∣∣ ≤ n, which

implies that X is sofic by Theorem 3.1.8.

Our next result shows that under the additional assumption that some

non-empty word w has the same follower set as the empty word, Conjecture 1

is true.

Lemma 3.1.9. For any shift space X, if there exists a non-empty word w ∈

L(X) such that FX(w) = FX(∅) and n ∈ N such that |FX(n)| ≤ n, then X is

sofic.

Proof. The follower set of the empty word is the set of all right-infinite se-

quences appearing in any point of X. If there exists a word w such that any

legal right-infinite sequence may appear after w, then by Lemma 3.1.4, there

is a letter with this property as well. So we may assume that FX(a) = FX(∅)

where a is a single letter.

The fact that FX(∅) = FX(a) implies by Lemma 3.1.5 that for every

w ∈ L(X), FX(w) = FX(aw) = FX(aaw) = . . .. Therefore, every follower set

of a word of length n is also a follower set of a word of any length greater

than n. In other words, FX(1) ⊆ FX(2) ⊆ FX(3) ⊆ . . .. Then, for every n,
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FX(n) =
⋃
`≤n FX(`), and so if |FX(n)| ≤ n for some n, clearly

∣∣⋃
`≤n FX(`)

∣∣ ≤
n, implying that X is sofic by Theorem 3.1.8.

Theorem 3.1.10. For any shift space X, if there exists n ≥ 2 for which

|FX(n)| ≤ 2, then X is sofic.

Proof. The case where |FX(n)| = 1 is treated by Theorem 3.1.7, so we choose

any n ≥ 2 and suppose that there are exactly 2 follower sets in X of words

of length n, say F1 and F2. We consider the sets in FX(1). By Lemma 3.1.3,

every element of FX(1) is either F1, F2, or F1∪F2. If |FX(1)| = 1, X is sofic by

Theorem 3.1.7, so assume that |FX(1)| ≥ 2, that is, at least two of the above

sets must appear in FX(1). Note that F (∅) =
⋃
w∈LX(n) F (w) = F1 ∪ F2, so

by Lemma 3.1.9, if F1 ∪ F2 is an element of FX(1), then X is sofic. The only

remaining case is that FX(1) = {F1, F2} = FX(n), and then X is sofic by

Theorem 3.1.6.

We are now prepared to prove Conjecture 1 for n ≤ 3, as in Theorem 1.0.2.

Our proof is much more complicated than the cases where n = 1, 2.

Proof of Theorem 1.0.2. Clearly, for n < 3, Theorems 3.1.7 and 3.1.10 imply

this result. We can then restrict to the case where n = 3. If |FX(3)| <

3, then X is again sofic by either Theorem 3.1.7 or Theorem 3.1.10. We

therefore suppose that |FX(3)| = 3, say FX(3) = {F1, F2, F3}. We also note

that F (∅) = F1 ∪ F2 ∪ F3, and if any of FX(1), FX(2), or FX(3) contains

F1 ∪ F2 ∪ F3 as an element, then X is sofic by Lemma 3.1.9. Therefore, in

everything that follows, we assume that F1 ∪F2 ∪F3 is not contained in FX(i)

for i ≤ 3.
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We first show that if any Fi is contained entirely within another, then X

is sofic. Suppose for a contradiction that some Fi is contained in another,

and so without loss of generality, we say that F2 ⊆ F1. By Lemma 3.1.3, all

elements of FX(2) are nonempty unions of F1, F2, and F3. However, F1∪F3 =

F1∪F2∪F3, and so F1∪F3 = F1∪F2∪F3 are not in FX(2) as assumed above.

Also, F1 ∪F2 = F1. Therefore, the only possible elements of FX(2) are F1, F2,

F3, and F2 ∪ F3. If fewer than three of these four sets are part of FX(2), then

X is sofic by Theorem 3.1.10. Thus we may assume at least three of the four

sets appear. If F1, F2, and F3 are all in FX(2), then FX(3) ⊆ FX(2), implying

that X is sofic by Theorem 3.1.6. Therefore, F2 ∪ F3 ∈ FX(2). We note that

by Lemma 3.1.4, some element of FX(2) must contain F1. If F3 contained F1,

then F3 = F1∪F2∪F3 is in FX(3), which we assumed not to be the case above.

Similarly, F2 ∪ F3 cannot contain F1. Therefore, F1 is the only set of F1, F2,

F3, and F2∪F3 to contain F1, and so F1 ∈ FX(2). Therefore FX(2) consists of

F1, F2 ∪ F3, and exactly one of F2 and F3. We note that if F2 ∪ F3 is equal to

any of F1, F2, or F3, then either |FX(2)| = 2 or FX(3) ⊆ FX(2), in either case

implying soficity by either Theorem 3.1.10 or Theorem 3.1.6. So from now on

we assume F2 ∪ F3 is not equal to F1, F2, or F3.

Now, let us consider FX(1). By Lemma 3.1.3, FX(1) can only consist of

unions of sets in FX(2). The set FX(1) cannot contain F1 ∪F3 = F1 ∪F2 ∪F3,

and since F1 ∪ F2 = F1 we see that FX(1) ⊆ FX(2). There exists some word

ab ∈ L2(X) such that FX(ab) = F2∪F3. Clearly FX(a) is an element of FX(1)

and therefore FX(a) = FX(xy) for some xy ∈ L2(X). But then by Lemma

3.1.5, FX(xyb) = FX(ab) = F2 ∪F3, a contradiction since we above noted that

F2 ∪ F3 does not equal any of F1, F2, or F3. We have then shown that if any
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of the follower sets F1, F2, and F3 are contained in one another, X is sofic,

and so for the rest of the proof assume that no such containments exist. Note

that this also implies that if any of F1 ∪ F2, F1 ∪ F3, or F2 ∪ F3 contain each

other, then the containing set is F1 ∪ F2 ∪ F3, which we have assumed is not

in FX(1), FX(2), or FX(3).

We break the remainder of the proof into cases by how many of the sets

F1, F2, and F3 are elements of FX(2). If all three of the sets are elements of

FX(2), then X is sofic by Theorem 3.1.6. We then have three remaining cases.

Case 1: none of F1, F2, F3 are in FX(2). By Lemma 3.1.3, FX(2) consists

of nonempty unions of F1, F2, and F3, and we have assumed that F1 ∪F2 ∪F3

is not in FX(2). If |FX(2)| ≤ 2, then X is sofic by Theorem 3.1.10. The only

possibility is then that FX(2) = {F1 ∪ F2, F1 ∪ F3, F2 ∪ F3}. Then by Lemma

3.1.4, FX(1) must contain supersets of each of these sets, and it cannot contain

F1 ∪F2 ∪F3. This forces FX(1) to also be {F1 ∪F2, F1 ∪F3, F2 ∪F3}, meaning

that FX(2) = FX(1), and so X is sofic by Theorem 3.1.6.

Case 2: exactly one of F1, F2, F3 is in FX(2). Without loss of generality,

suppose that F1 ∈ FX(2) and F2, F3 /∈ FX(2). At least two other sets must

be elements of FX(2) or else X is sofic by Theorem 3.1.10, and they must be

unions of F1, F2, and F3 by Lemma 3.1.3. Therefore, FX(2) contains at least

two of the sets F1 ∪F2, F1 ∪F3, and F2 ∪F3. By Lemma 3.1.4, some superset

of any such union must also be present in FX(1). In this case the superset

must be the set itself since we’ve assumed that F1 ∪ F2 ∪ F3 /∈ FX(1). If F1
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is also in FX(1), FX(2) ⊆ FX(1), and X would be sofic by Theorem 3.1.6, so

F1 /∈ FX(1).

Now, let abc be some word such that FX(abc) = F2. What, then, is the

follower set of ab? If it is any set in FX(1), then there would exist d so

that FX(ab) = FX(d), and then FX(abc) would equal FX(dc) by Lemma 3.1.5,

meaning that F2 ∈ FX(2), a contradiction. So the only choice for FX(ab) is F1.

Since at least two of F1∪F2, F1∪F3, and F2∪F3 are in FX(2), FX(2) contains

a set of the form F1∪Fi. Say that FX(xy) = F1∪Fi. Then, FX(xy) ⊇ FX(ab),

meaning that FX(xyc) ⊇ FX(abc) = F2. Since none of the Fi contain each

other, this means that FX(xyc) = F2. But then since F1∪Fi also is a member

of FX(1), there exists z so that FX(z) = F1 ∪ Fi, and then by Lemma 3.1.5,

FX(zc) = F2, a contradiction since F2 /∈ FX(2). Hence, X is sofic in this case

as well.

Case 3: exactly two of F1, F2, F3 are in FX(2). Without loss of generality,

suppose that F1, F2 ∈ FX(2) and F3 /∈ FX(2). By Lemma 3.1.4, FX(2) must

contain some superset of F3 which is not F1 ∪ F2 ∪ F3, so it is of the form

F3∪Fi for i = 1 or 2. As in Case 2, any of the sets F1∪F2, F1∪F3, or F2∪F3

which is an element of FX(2) must be in FX(1) as well. This means that if

F1 and F2 are both in FX(1), then FX(2) ⊆ FX(1) and X would be sofic by

Theorem 3.1.6, so we restrict to the case where at least one of these sets is not

in FX(1).

Now, let abc be some word such that FX(abc) = F3. As in Case 2, the

follower set of ab must be some set which occurs in FX(2) but not FX(1), which

must be either F1 or F2 (depending on which is not part of FX(1)). Without
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loss of generality, we say that FX(ab) = F2. We now show that neither F1∪F2

nor F2 ∪ F3 is in FX(2). Suppose for a contradiction that there is a word

xy ∈ L(X) for which FX(xy) = F2 ∪ Fi, i = 1 or 3. Then, since F (xy) ⊇

F (ab) = F2, F (xyc) ⊇ F (abc) = F3. Again, since no Fi contains another, this

implies that F (xyc) = F3. Finally, we note that F (y) ⊇ F (xy) = F2 ∪ Fi, so

F (y) = F2 ∪ Fi. Therefore, by Lemma 3.1.5, F (yc) = F (xyc) = F3, but this

is a contradiction since F3 /∈ FX(2). We now know that neither F1 ∪ F2 nor

F2 ∪ F3 is in FX(2). By Lemma 3.1.3, all sets in FX(2) are nonempty unions

of F1, F2, and F3, and if |FX(2)| < 3, then X is sofic by Theorem 3.1.10. The

only remaining case is then that FX(2) = {F1, F2, F1 ∪ F3}.

We now consider the sets in FX(1). Recall that F2 /∈ FX(1) and that

F1 ∪ F3 ∈ FX(1) since F1 ∪ F3 ∈ FX(2). If |FX(1)| = 1, then X is sofic

by Theorem 3.1.7, so we can assume that FX(1) contains at least one other

set, which must be a nonempty union of the elements of FX(2) by Lemma

3.1.3. The only possibilities are F1 and F1 ∪ F3, since we assumed earlier that

F1 ∪ F2 ∪ F3 /∈ FX(2). Therefore, every set in FX(1) is a superset of F1.

Our final step will involve considering what happens when a word with

follower set F1 is extended on the right by a letter. Suppose for a contradiction

that there exists a word w ∈ L(X) with FX(w) = F1 and a letter i for which

FX(wi) = F2. Then, for any letter j, since FX(j) ∈ FX(1), FX(j) ⊇ FX(w) =

F1. Therefore, FX(ji) ⊇ FX(wi) = F2. However, the only superset of F2 in

FX(2) is F2 itself, and so for every j ∈ A, FX(ji) = F2. Finally, note that, by

Lemma 3.1.3, FX(i) =
⋃
j FX(ji) = F2, a contradiction since F2 /∈ FX(1).

Similarly, let’s assume for a contradiction that there exists a word w ∈

L(X) with FX(w) = F1 and a letter i for which FX(wi) = F3. Then, choose
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a letter j with FX(j) = F1 ∪ F3. Then, since FX(j) ⊇ FX(w) = F1, FX(ji) ⊇

FX(wi) = F3. However, the only superset of F3 in FX(2) is F1 ∪ F3, so

FX(ji) = F1 ∪ F3. Then, since FX(j) = FX(ji) = F1 ∪ F3, by Lemma 3.1.5,

FX(jii) = FX(ji) = F1 ∪ F3, a contradiction since F1 ∪ F3 /∈ FX(3).

This means that for every word w ∈ L(X) with FX(w) = F1 and any letter

a for which wa ∈ L(X), F (wa) = F1. But then, since the follower set of

every letter contains F1, the follower set of every legal 2-letter word contains

F1, a contradiction since FX(2) contains F2, and we assumed that none of the

Fi contains another. Every case has either led to a contradiction or to the

conclusion that X is sofic, and so we’ve proved that X is sofic.

Our final result for this section is a version of Conjecture 1 for a class of

coded subshifts, which we define below.

Definition 3.1.11. Given a set W of finite words, the coded subshift with

code words W is the shift space generated by taking the closure of the set of

all biinfinite sequences made from concatenating infinitely many words in W.

Theorem 3.1.12. Given a sofic shift X, choose a subset V ⊆ L(X) with the

property that for any finite word v ∈ L(X), there exists some w ∈ V such that

v is a suffix of w. Create a coded subshift Y with code words W = {wc | w ∈

V} where c is a letter not appearing in the alphabet of X. Then Y satisfies

Conjecture 1 (That is, if |FY (n)| ≤ n for any n ∈ N, then Y is sofic).

Proof. We begin with two preliminary observations. First, X ⊆ Y , since any

point of X is a limit of finite words in L(X), all of which are suffixes of code
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words, which are themselves in L(Y ). We also note that any word in L(Y )

without a c must be a subword of a code word, and therefore in L(X).

Second, for any word ucv ∈ L(Y ), where c does not occur in u or v,

FY (ucv) = FY (cv). Clearly FY (ucv) ⊆ FY (cv). Let s ∈ FY (cv). Because uc

is the suffix of a code word and vs is the begins with a code word in Y , ucvs

occurs in Y , so s ∈ FY (ucv), and therefore FY (ucv) ⊇ FY (cv).

We begin our proof by claiming that there are only finitely many follower

sets in Y of words not containing the letter c. There are only finitely many

follower sets in X, so it is sufficient to show that for any w, v ∈ L(X), FX(w) =

FX(v) implies FY (w) = FY (v). To that end, let FX(w) = FX(v) and consider

any s ∈ FY (w). If s does not contain the letter c, then ws is a limit of longer

and longer words inW , and since all such words are in L(X), ws occurs in X,

i.e. s ∈ FX(w). Since FX(w) = FX(v), s ∈ FX(v), i.e. vs also occurs in X.

Since Y ⊇ X, vs occurs in Y as well, and so s ∈ FY (v).

On the other hand, if s contains the letter c and s ∈ FY (w), then s = s′cs′′

for some s′ not containing c (s′ may be the empty word). By the same logic

as above, ws′ ∈ L(X), therefore vs′ ∈ L(X), and so vs′ occurs as a suffix of

some word in W . But then, vs′c is a suffix of some code word, and so vs′cs′′

occurs in Y .

We have shown that in both cases, s ∈ FY (w) implies s ∈ FY (v), and so

FY (w) ⊆ FY (v). By the same argument, FY (v) ⊆ FY (w), giving FY (w) =

FY (v). Therefore there are only finitely many follower sets in Y of words not

containing c.

Now, we assume that n is such that |FY (n)| ≤ n. Partition Ln(Y ) into

n+ 1 sets based on the last appearance of the letter c in the word–the first set
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S0 consists of words with no c, the second set S1 consists of words ending with

c, the third S2 consists of words ending with c followed by another letter that is

not c, and so on, up to the final set Sn which consists of words beginning with

a c followed by n− 1 other symbols which are not c. Since X ⊆ Y , there exist

words in L(Y ) of every length without any c symbols, implying that S0 6= ∅.

Therefore, there must exist k > 0 so that all follower sets (in Y ) of words in

Sk are also follower sets (in Y ) of some word in Si for some i < k; else each

of the n + 1 sets Si would contribute a follower set not in any previous one,

contradicting |FY (n)| ≤ n.

Let w be a word in L(Y ) of length at least k. Our goal is to show that

FY (w) is either equal to one of the finitely many follower sets of words without

a c or to the follower set of a word of length less than k. Clearly, if w does not

contain a c, we are done, so suppose w contains the letter c. As noted earlier,

FY (w) is unchanged if all letters before the last occurrence of c are removed

from w. If this removal results in a word of length less than k, then again we

are done. So let us proceed under the assumption that w begins with c, has

length k or greater and contains no other c symbols.

Let p denote the k-letter prefix of w. Since p begins with c, p can be

arbitrarily extended backwards in any legal way to yield an n-letter word p′

which has the same follower set as p. Note that p′ ∈ Sk, and so there exists

i < k and p′′ ∈ Si so that FY (p) = FY (p′) = FY (p′′). There are two cases. If

i 6= 0, then we may again remove the letters of p′′ before the final c symbol to

yield a word p′′′ of length i < k for which FY (p) = FY (p′′′). Then, we replace

the prefix p of w by p′′′ to yield a new word w′ with strictly smaller length,

which still begins with a c and contains no other c symbols, and for which

34



FY (w) = FY (w′) by Lemma 3.1.5. We then repeat the above steps. If at each

step, i 6= 0, then eventually w will be shortened to a word of length less than k

with the same follower set in Y , of which there are clearly only finitely many.

The only other case is that at some point, the prefix of length k has the

same follower set in Y as a word in S0. Then, that prefix can be replaced by

the word in S0, yielding a word with no c symbols with the same follower set

in Y as w. Again, we note that there are only finitely many follower sets in Y

of words not containing c. We have then shown that FY (w) (for arbitrary w

of length at least k) has follower set in Y from a finite collection (namely all

follower sets in Y of words with no c and all follower sets in Y of words with

length at most k − 1), which implies that Y is sofic.

Remark 3.1.13. Though the hypotheses of Theorem 3.1.12 may seem strong,

the class of subshifts which satisfy them is large, including all so-called S-gap

shifts [7] and the reverse context-free shift of [11] (with X = {a, b}Z and c = c).

Example 3.1.14. S-gap shifts are sofic if and only if the set S is the union

of a finite set and an arithmetic progression. Using X = 0∞ and c = 1, every

S-gap shift can be constructed as in Thm. 3.1.12, and so every S-gap shift

satisfies Conjecture 1.
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3.2 Decreases in Follower and Extender Set

Sequences

While Section 3.1 focused on possible connections between complexity se-

quences and follower set sequences, the primary goal of this section is to

demonstrate an important difference between the two–while complexity se-

quences must be monotone increasing, we will construct a class of examples

which show that follower, predecessor, and extender set sequences may de-

crease. However, in the interest of classifying what sequences may appear as

follower, predecessor, and extender set sequences, we will first show that for

a sofic shift X, the follower and extender set sequences must be eventually

periodic. (Of course this is also true of the predecessor set sequence, though

as suggested by Remark 3.1.2, we neglect the argument). We begin with a

lemma which is reminiscent of the pumping lemma for regular languages ([6]).

Lemma 3.2.1. Let X be a sofic shift, define p to be one greater than the total

number of extender sets in X, and define p0 to be one greater than the total

number of follower sets in X. Then all words w in L(X) of length n ≥ p may

be written as w = xyz, where |y| ≥ 1 and the word xyiz has the same extender

set as the word w for all i ∈ N. Furthermore, all words w in L(X) of length

n ≥ p0 may be written as w = xyz, where |y| ≥ 1 and the word xyiz has the

same follower set as the word w for all i ∈ N.

Proof. Since X is sofic, X has only finitely many extender sets. Let p be one

greater than the number of extender sets in X. Since X is presented by a

finite labeled graph G, and there are only |V (G)|2 possible pairs of vertices in
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G, and each extender set must correspond to a non-empty set of pairs, we have

that p ≤ 2(|V (G)|2). Let w be a word in L(X) of length n ≥ p. Consider the

prefixes of w. Since w is of length at least p, there exist two prefixes of w (one

necessarily a strict subword of the other) with the same extender set, say x

and xy, where |y| ≥ 1. Then for any pair (s, u) of infinite sequences, sxu is a

point of X if and only if sxyu is a point of X also. Call the remaining portion

of w by z so that w = xyz. (We may have |z| = 0).

Now, let (s, u) be in the extender set of w, that is, that swu is a point

of X. But swu = sxyzu, so (s, yzu) is in the extender set of x. By above,

then, (s, yzu) is in the extender set of xy also, that is, that sxyyzu is a point

of X. Hence, (s, u) is in the extender set of xyyz. So EX(xyz) ⊆ EX(xyyz).

On the other hand, if (s, u) is in the extender set of xyyz, then sxyyzu is

a point of X, and so (s, yzu) is in the extender set of xy, and therefore the

extender set of x. Thus sxyzu is a point of X, and so (s, u) is in the extender

set of xyz = w. Therefore EX(xyz) = EX(xyyz). Applying this argument

repeatedly gives that EX(xyz) = EX(xyiz) for any i ∈ N.

Letting p0 be one greater than the total number of follower sets in X, an

identical argument gives the corresponding result for follower sets.

With this lemma, we may prove Theorem 1.0.3, which states that the

follower and extender set sequences of sofic shift spaces are eventually periodic:

Proof of Theorem 1.0.3. Let X be a one-dimensional sofic shift. We prove

that the sequences {FX(n)} and {EX(n)} (that is, the sequences which record

not the number of follower sets of each length, but instead the identities of

those sets) are eventually periodic, which will trivially imply our desired result,
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eventual periodicity of the follower set sequence {|FX(n)|} and the extender

set sequence {|EX(n)|}.

Let w be a word of length p in L(X), where p is defined as in Lemma

3.2.1. Then by Lemma 3.2.1, w = xywz where |yw| ≥ 1 and xyiwz has the

same extender set as w for all i ∈ N. Let k = lcm{|yw| | w ∈ Lp(X)}.

Since the longest such a word yw could be is p, we have k ≤ p!. Clearly

for any word w ∈ Lp(X), there is an i ∈ N such that xyiwz ∈ Lp+k(X).

Therefore, every extender set in EX(p) is also an extender set in EX(p + k),

so EX(p) ⊆ EX(p+ k).

Now, let w be a word of length n > p in L(X). Then w has some word

w′ = w1...wp ∈ Lp(X) as a prefix. Applying Lemma 3.2.1 to w′ as above, we

get a word w′′ of length p+ k with the same extender set as w′. If (s, u) is in

the extender set of w = w′wp+1...wn, then sw′wp+1...wnu is a point of X, and

so (s, wp+1...wnu) is in the extender set of w′. Since w′ and w′′ have the same

extender set, sw′′wp+1...wnu is a point of X, and (s, u) is in the extender set

of w′′wp+1...wn. Similarly, if (s, u) is in the extender set of w′′wp+1...wn, then

(s, u) is in the extender set of w as well. Therefore w′′wp+1...wn is a word in X

of length n+ k with the same extender set as w. Hence, every extender set in

EX(n) is an extender set in EX(n+ k). So EX(n) ⊆ EX(n+ k) for any n ≥ p.

But sofic shifts only have finitely many extender sets, so eventually, the

sequence {|EX(n + jk)|}j∈N must stop growing. Thus, we have EX(n) =

EX(n+ k) for all sufficiently large n, and the sequence {EX(n)} is eventually

periodic with period k, where k ≤ p!. Certainly, this implies that the extender

set sequence is eventually periodic with period k as well.
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Suppose n ≥ p and EX(n) = EX(n + k). Then we claim that EX(n +

k) = EX(n + 2k): By above, we have EX(n + k) ⊆ EX(n + 2k). Suppose

w is a word of length n + 2k, say w = w1w2...wn+kwn+k+1...wn+2k. Then,

because EX(n) = EX(n+k), there exists a word z of length n such that z and

w1w2...wn+k have the same extender set. Let (s, u) be in the extender set of

w. Then sw1w2...wn+kwn+k+1...wn+2ku is a point of X, so (s, wn+k+1...wn+2ku)

is in the extender set of w1w2...wn+k, and thus in the extender set of z. So

szwn+k+1wn+k+2...wn+2ku is a point of X. Hence (s, u) is in the extender set

of zwn+k+1wn+k+2...wn+2k, a word of length n+ k. Similarly, if (s, u) is in the

extender set of zwn+k+1wn+k+2...wn+2k, then (s, u) is in the extender set of w,

giving EX(w) = EX(zwn+k+1wn+k+2...wn+2k). Therefore we have EX(n+2k) ⊆

EX(n+ k) and we may conclude that EX(n+ k) = EX(n+ 2k).

Now, {|EX(n)|} < p for any given n ∈ N. Moreover, we have proven that

the sequence {EX(n + jk)}j∈N is nondecreasing and nested by inclusion, and

once two terms of the sequence are equal, it will stabilize for all larger j. The

sequence {EX(n+ jk)}j∈N must grow fewer than p times, so the periodicity of

the sequence {EX(n)} (and thus of {|EX(n)|}) must begin before the p+ pkth

term, and p+ pk ≤ p+ p(p!) = p(1 + p!).

Again, a similar argument using the follower set portion of Lemma 3.2.1

establishes the corresponding result for follower sets.

Next we demonstrate the existence of sofic shifts with follower set sequences

which are not eventually constant. The first example of a shift space whose

follower and extender set sequence are not monotone increasing is due to Mar-

tin Delacourt (page 8 of [9]). The following construction is loosely based on

his example.
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Given ` ∈ N and S ⊂ {0, 1, ..., ` − 1}, construct an irreducible graph G`,S
in the following way: First, place edges labeled p, q and b as below, followed

by a loop of `-many edges labeled a. We will refer to the initial vertex of the

edge p as “Start.”

Start

p

q

b

a

a
a

a

Figure 3.1: Step 1 for constructing G`,S

Choose a fixed i∗ ∈ S. Then for every i ∈ S, i 6= i∗, place two consecutive

edges ci and di, such that the initial vertex of ci is the (i−2 (mod `))th vertex

of the loop of edges labeled a (where we make the convention that the terminal

vertex of the edge b is the 0th vertex of the loop, the next vertex the 1st vertex

of the loop, and so on) and the terminal vertex of di is “Start.” For i∗, we still

add the edge ci∗ , but follow it instead by another edge labeled b and another

loop of `-many edges labeled a:
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ci∗ b a
a

a

a

Figure 3.2: Step 2 for constructing G`,S

Again, ∀ i ∈ S, at the (i − 2 (mod `))th vertex of the new loop, add an

edge ci, and if i 6= i∗, follow with an edge ei returning to Start. After ci∗ , add

a third loop of `-many edges labeled a:

a
a

a

a

ci∗

Figure 3.3: Step 3 for constructing G`,S

Finally, for each i ∈ S, (including i∗), add an edge ci from the (i − 2

(mod `))th vertex of the third loop returning to Start. The resulting graph is

G`,S. Due to choice of i∗, there are |S|-many possible graphs G`,S; the results

of this paper will hold for any of them.

We first make some basic observations about the graphs G`,S. It is easy

to check that for any `, S, the graph G`,S will be irreducible, right-resolving

and left-resolving, follower-separated and extender-separated. We furthermore

observe that the graph is primitive:

Lemma 3.2.2. For any ` ∈ N, S ⊂ {0, 1, ..., `−1}, the graph G`,S is primitive,

and the primitivity distance of G`,S is at most 3`+ 3.
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p

b
a

a
a

a

a

Start

c3 b

a

a

a
a

a

c3

c3

a
a

a

a
a

c0d0

c0

e0

c0

Back to
Start

Back to
Start

Back to
Start

Back to
Start

Figure 3.4: G5,{0,3} with i∗ = 3 (where we use the convention that edges
terminating at “Back to Start” return to the initial vertex of the edge p.)

Proof. Any irreducible graph with a self-loop is primitive as in Remark 2.0.34,

so due to the self-loop labeled q, G`,S is primitive. So long as a path passes

the vertex at which q is anchored, that path may be inflated to any greater

length by following the self-loop q repeatedly. Given any two vertices I and J

in G`,S, we may clearly get from I to J , while being certain to also pass the

vertex anchoring q, by traveling through each loop of edges labeled a at most

once (and following at most `−1 of the edges in each loop), and using no more

than six letters total for the connecting paths between the loops. Thus, the

longest path required to travel from one vertex to another in G`,S, requiring

that such a path pass through the vertex which anchors q, is of length at most

3(`− 1) + 6 = 3`+ 3. For instance, if S = {1}, the shortest possible path from

the initial vertex of p to itself is labeled by the word pba`−1c1ba
`−1c1a

`−1c1,

which clearly travels through the vertex anchoring q. This is a sort of “worst-
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case” scenario, where, because |S| = 1, the shortest path requires traveling

through all three loops of the graph, and with i∗ = 1, the exit of each loop is

as far away from the entry point as possible.

Any graph G`,S created by the above construction will present a shift with

a follower set sequence and extender set sequence having eventual period `

with a difference in lim sup and lim inf of 1:

Theorem 3.2.3. Let ` ∈ N and S ⊂ {0, 1, ..., `− 1}. Then the shift XG`,S has

3`+3|S|+4 follower sets for words of length n where n ≥ `+2 and n (mod `) ∈

S, and only 3`+ 3|S|+ 3 follower sets for words of length n′ where n′ ≥ `+ 2

and n′ (mod `) /∈ S. Furthermore, the shift XG`,S has (3`+ 2|S|+ 1)2 + |S|+ 3

extender sets for words of length n where n ≥ 3` + 3 and n (mod `) ∈ S,

and only (3` + 2|S| + 1)2 + |S| + 2 extender sets for words of length n′ where

n′ ≥ 3`+ 3 and n′ (mod `) /∈ S.

Proof. Let n ≥ ` + 2. Let G = G`,S as defined above. We will find the num-

ber of follower sets and extender sets of words of length n in XG (though for

one part of the extender set case, we will need to require n ≥ 3` + 3). Each

follower set FX(w) is uniquely determined by the set of terminal vertices of

paths labeled w in G, and each extender set EX(w) is determined by the set

of pairs {I → T} of initial and terminal vertices of paths labeled w in G.

Since in G the words p, q, ci∗b, di, ei, and ci∗a are right-synchronizing, the

longest path required to get from a right-synchronizing word to any vertex of G

is `+ 2. Because n ≥ `+ 2, and the graph G is irreducible and right-resolving,

every singleton represents the follower set of some word w of length n. There

are 3`+ 2|S|+ 1 such follower sets, all distinct as G is follower-separated.
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It is easy to see that the right-synchronizing words listed above are in fact

bi-synchronizing. Since the graph G is both left- and right-resolving, if a legal

word w contains any bi-synchronizing word, then only one pair {I → T} can

be the initial and terminal vertices of paths labeled w. If n ≥ 3`+3, by Lemma

3.2.2 every single pair {I → T} corresponds to the extender set of some word

w of length n. There are (3`+ 2|S|+ 1)2 such extender sets, all distinct as G

is extender-separated.

Note that for the graph G, recording the labels of two edges beyond any

loop of edges labeled a, whether before or after the loop, results in a bi-

synchronizing word. Since any word which would be capable of having a

follower set not corresponding to a singleton (or of having an extender set

not corresponding to a single pair of initial and terminal vertices) must be

one which avoids all bi-synchronizing words, and n ≥ ` + 2 > 2, any word of

length n with such a follower or extender set must include a string of a’s, and

no more than 1 letter on either side of such a string. So only words of the

forms an, kan−1, an−1k′, and kan−2k′ (where k and k′ are labels appearing in

G not equal to a) can terminate (or begin) at more than one vertex.

The word an has 1 follower set, corresponding to all 3` vertices involved in

loops of edges labeled a. This follower set is distinct from those corresponding

to singletons, for which we have previously accounted. Similarly, the exten-

der set of the word an is distinct from those for which we have previously

accounted.

The label a is only followed in G by the labels a and ci for all i ∈ S. For

each ci, the word an−1ci has a unique follower set corresponding to three ter-

minal vertices, one for each loop in which the an−1 may occur. Thus there
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are |S|-many follower sets of this form, all distinct from previous follower sets.

Similarly, there are |S|-many extender sets of this form, all distinct from pre-

vious extender sets as well.

The label a is only preceded in G by the labels a, b, and ci∗ . Since ci∗a is bi-

synchronizing, the follower set for the word ci∗a
n−1 corresponds to a singleton

and has already been counted. The word ban−1 has a follower set corresponding

to two terminal vertices, one in each loop of edges labeled a which is preceded

by b. Hence there is 1 additional distinct follower set of this form, and again

this behavior is mirrored by the extender sets–there is 1 additional distinct

extender set for the word ban−1.

Finally, based on our above observations, if a word of the form kan−2k′ is

to have a follower set corresponding to a greater number of vertices than one,

that word must be of the form ban−2ci. By construction, a path with this label

only exists in G if n (mod `) ∈ S. If such a path exists, it contributes a single

new follower set corresponding to two terminal vertices, each one edge past a

loop of edges labeled a that is preceded by the label b. This follower set cannot

repeat one that we already found: if i 6= i∗, then the follower set of ban−2ci is

exactly the set of all legal sequences beginning with di or ei, clearly not equal

to the follower set of any other word of length `. If i = i∗, the follower set

of ban−2ci contains sequences beginning with each of the letters a and b, but

no other letter, again setting it apart from any other follower set previously

discussed. Similarly, the word ban−2ci contributes a single new extender set

for any length n for which a path with this label exists.

Therefore, in XG, if n ≥ ` + 2 and n (mod `) ∈ S, there are 3` + 2|S| +

1 + 1 + |S| + 1 + 1 = 3` + 3|S| + 4 follower sets of words of length n, while
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if n′ ≥ ` + 2 and n′ (mod `) /∈ S, there are only 3` + 3|S| + 3 follower sets

of words of length n′. Moreover, if n ≥ 3` + 3 and n (mod `) ∈ S, there are

(3` + 2|S| + 1)2 + 1 + |S| + 1 + 1 = (3` + 2|S| + 1)2 + |S| + 3 extender sets

of words of length n, while if n′ ≥ 3` + 3 and n′ (mod `) /∈ S, there are only

(3`+ 2|S|+ 1)2 + |S|+ 2 extender sets of words of length n′.

Example 3.2.4. For the shift presented by the graph in Figure 3.4, for n ≥ 7,

the follower set sequence oscillates between |FX(n)| = 3(5) + 3(2) + 4 = 25 if

n ≡ 0 or 3 (mod 5), and |FX(n)| = 24 if n ≡ 1, 2, or 4 (mod 5). Moreover,

for n ≥ 18, the extender set sequence oscillates between |EX(n)| = (3(5) +

2(2) + 1)2 + (2) + 3 = 405 if n ≡ 0 or 3 (mod 5), and |EX(n)| = 404 if ` ≡ 1,

2, or 4 (mod 5).

We have now demonstrated the existence of sofic shifts whose follower set

sequences and extender set sequences eventually oscillate between two different

(but adjacent) values. We may furthermore combine these graphs, forming

new graphs presenting shifts whose follower set sequences and extender set

sequences oscillate by more than 1:

Theorem 3.2.5. Let G1 and G2 be two finite, irreducible, right-resolving, left-

resolving, primitive, extender-separated labeled graphs with disjoint label sets,

each containing a self-loop labeled by a bi-synchronizing letter q1 and q2 re-

spectively. Let I1 be the anchoring vertex of q1 in G1 and I2 be the anchoring

vertex of q2 in G2. Let x, y be letters not in the label set of G1 or G2. Construct

a new graph G by taking the disjoint union of G1 and G2 and adding an edge

labeled x beginning at I1 and terminating at I2 and an edge labeled y begin-
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ning at I2 and terminating at I1. Then G is finite, irreducible, right-resolving,

left-resolving, primitive, extender-separated, contains a self-loop labeled with a

bi-synchronizing letter, and for any n ∈ N,

|FXG(n)| = |FXG1 (n)|+ |FXG2 (n)|.

Moreover, for any n greater than twice the maximum of the primitivity dis-

tances of G1 and G2,

|EXG(n)| = |EXG1 (n)|+ |EXG2 (n)|+ 2|V (G1)| · |V (G2)|.

G1 G2

x

y

q1 q2

Figure 3.5: The graph G constructed as in Theorem 3.2.5

Proof. The reader may check that G is finite, irreducible, right-resolving, left-

resolving, primitive, extender-separated and contains a self-loop labeled with

a bi-synchronizing letter. We first check that this construction does not cause

any collapsing of follower or extender sets. That is, if two words w and v

had distinct follower or extender sets in XG1 t XG2 , then they have distinct

follower or extender sets in XG. We present the argument for follower sets; the

argument for extender sets is similar.
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If for two words w and v in Ln(XG1) t Ln(XG2), we have F (w) 6= F (v),

then there exists a sequence s in XG1 or XG2 which may follow one word but

not the other. Without loss of generality, say that s may follow w but not v.

Such a sequence may still follow w in G by following the same path labeled

s which followed w in G1 or G2 to begin with. The sequence s still may not

follow v, as no path existed in the parent graph G1 or G2 labeled s following v,

and any new paths introduced by our construction may not be labeled s, as

s did not contain the letters x or y. Hence |FXG1 (n)| + |FXG2 (n)| ≤ |FXG(`)|,

and similarly, |EXG1 (n)|+ |EXG2 (n)| ≤ |EXG(n)|.

Now we establish that no extra follower sets are introduced by this con-

struction. If two words w and v had the same follower set in XG1 tXG2 , then

they certainly exist in the same parent graph, G1 or G2; without loss of gener-

ality, say G1. Let s be some sequence following w in G. If the path in G labeled

s is contained within G1, then s is part of the follower set of w in XG1 and

thus, is part of the follower set of v in XG1 . So s may follow v in G. On the

other hand, if s is presented by a path traveling through both graphs, then s

contains the letter x. Let z denote the maximal finite prefix of s without the

letter x. A path labeled z follows w in G1, and since z must terminate at I1

in order to be followed by x, a path labeled zq1 follows w in G1 as well. Then

a path labeled zq1 must also follow v in G1, and since q1 is left-synchronizing,

there must exist a path labeled z following v in G1 terminating at I1. Such a

path may certainly, then, be followed by x, and indeed, the remaining portion

of s, so s is in the follower set of v. Thus in XG, the follower sets of w and v

remain the same.
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Moreover, if a word v is not in either Ln(XG1) or Ln(XG2), then v includes

either the letter x or y. Since x and y are right-synchronizing, a path labeled

v may terminate only at a single vertex. Due to the fact that G1 and G2 are

each irreducible, right-resolving, and contain a right-synchronizing letter, there

exists a word w in either Ln(G1) or Ln(G2) which terminates at the same unique

vertex as paths labeled v. Since the right-synchronizing letter terminates at

the same vertex as x or y, depending on the graph, we may construct w to

be of the desired length n in the following way: Let v = v1v2...vn and let vi

be the last occurrence of x or y in v. Then set wi+1wi+2...wn = vi+1vi+2...vn.

Create w1...wi by replacing vi by q1 or q2 (choosing the one which terminates

at the same place as vi) and then following any path backward in that same

parent graph (G1 or G2) to fill in i − 1 labels before wi. Then w is a right-

synchronizing word contained entirely in either G1 or G2 of length n terminating

at the same single vertex as v, and so w and v have the same follower set in XG.

Therefore the construction introduced no extra follower sets, and |FXG(n)| =

|FXG1 (n)|+ |FXG2 (n)|.

This construction also causes no splitting of extender sets: If w and v have

the same extender set in XG1 t XG2 , then they certainly exist in the same

parent graph, G1 or G2; without loss of generality, say G1. Let (s, u) be in

the extender set of w. If s and u are both contained within G1, then (s, u)

is certainly in the extender set of v as well. Otherwise, let z be the maximal

suffix of s with no appearance of the letter y and z′ be the maximal prefix

of u with no appearance of x. (Note that in this case one of z and z′ may

be infinite, but not both.) Then zwz′ is contained in G1 and since w and v

have the same extender set in G1, a path labeled zvz′ exists in G1 as well. If
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z = s but z′ is finite, then as above, z′ may be followed by q1 in G1, which

is left-synchronizing, so there must exist a path labeled z′ following sv in G1
terminating at I1. Such a path may certainly, then, be followed by x, and the

remaining portion of u, and so (s, u) is in the extender set of v. Similarly, if z is

finite but z′ = u, then z may be preceded by q1, which is right-synchronizing,

so there must exist a path labeled z preceding vu in G1 beginning at I1. Such a

path may then be preceded by y, and the preceding portion of s, and so (s, u)

is in the extender set of v. If both z and z′ are finite, then the path q1zvz
′q1

exists in G1, and so a path labeled zvz′ exists in G1 beginning and ending at

I1 which then may be extended to an infinite path labeled svu, so (s, u) is in

the extender set of v. Thus E(w) = E(v).

Finally, if a word v is not in either Ln(XG1) or Ln(XG2), then v includes

either the letter x or y. Since x and y are bi-synchronizing and G is both

left- and right-resolving, paths labeled v have exactly one pair {I → T} of

initial and terminal vertices. If I and T are in the same parent graph Gi, we

observe that if n is longer than twice the primitivity distance for Gi, we can

construct a path w from I to Ii, and a path u from Ii to T , such that the

path labeled wqiu has length n. Because qi is bi-synchronizing, paths labeled

wqiu have only one pair of initial and terminal vertices; the exact same initial

and terminal vertices as v, so E(v) = E(wqiu). On the other hand, if I and T

are in different parent graphs, then E(v) is certainly not equal to the extender

set of any word in Ln(XG1) t Ln(XG2), so the construction did introduce new

extender sets of words of length n, but only at most 2|V (G1)| · |V (G2)| many of

them. Furthermore, if n is longer than the primitivity distance of G, then all

2|V (G1)| · |V (G2)| such extender sets will be realized, and since G is extender-
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separated, they will all be distinct. The primitivity distance for G is at most

one greater than the sum of the primitivity distances of G1 and G2, so if n is

greater than twice the maximum of the primitivity distances of G1 and G2, we

have |EXG(n)| = |EXG1 (n)|+ |EXG2 (n)|+ 2|V (G1)| · |V (G2)|.

It is evident that the process outlined in Theorem 3.2.5 may be repeated an

arbitrary number of times, and since the constant introduced (0 in the follower

set case, 2|V (G1)| · |V (G2)| in the extender set case) does not depend on n, we

may use this process to increase the oscillations in the follower and extender set

sequences of the resulting shift. We formalize this idea in Theorems 1.0.4 and

1.0.5, which state that there exist sofic shifts with follower set sequences and

extender set sequences of every eventual period and with any natural number

as the difference in lim sup and lim inf of the sequence.

Proof of 1.0.4. Let G`,S denote the graph constructed from ` and S ⊂ {0, 1, ...,

`− 1} as in Theorem 3.2.3. First construct G`,A2∪A3∪...∪Ak . By Theorem 3.2.3,

this graph will give one more follower set to words of length n ≥ ` + 2 and

n (mod `) ∈ A2 ∪ A3 ∪ ... ∪ Ak than to words of length n ≥ ` + 2 and n

(mod `) ∈ A1.

Now, as G`,A2∪A3∪...∪Ak is finite, irreducible, right-resolving, left-resolving,

primitive, extender-separated, and contains a self-loop labeled with the bi-

synchronizing letter q, we may use the process defined in Theorem 3.2.5 to join

together r2 many copies of G`,A2∪A3∪...∪Ak only by giving each copy a disjoint

set of labels. Call the resulting graph G2. For each n, the number of follower

sets of words of length n in G2 is the sum of the number of follower sets of

words of length n in each of the r2 copies of G`,A2∪A3∪...∪Ak . Therefore, the
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graph G2 gives r2 more follower sets to words of length n ≥ ` + 2 with n

(mod `) ∈ A2 ∪ A3 ∪ ... ∪ Ak than to words of length n ≥ ` + 2 with n

(mod `) ∈ A1.

Using the same process, we may now join onto G2 another (r3 − r2) many

copies of the graph G`,A3∪A4∪...∪Ak , and call the resulting graph G3. Now, words

of length n ≥ `+2 where n (mod `) ∈ A3∪A4∪...∪Ak will have (r3−r2)+r2 =

r3 more follower sets than words of length n ≥ ` + 2 where n (mod `) ∈ A1,

while words of length n ≥ `+2 where n (mod `) ∈ A2 will have only r2 greater

follower sets than words of length n ≥ `+ 2 where n (mod `) ∈ A1.

Continue on this way, adjoining next (r4 − r3) copies of G`,A4∪A5∪...∪Ak to

make G4, and so forth, terminating after constructing Gk. The graph will

clearly be irreducible, and in Gk, for each 1 ≤ j ≤ k, words of length n ≥ `+ 2

where n (mod `) ∈ Aj will have rj more follower sets than words of length

n ≥ `+ 2 where n (mod `) ∈ A1. That is, if m is defined to be the number of

follower sets of words of length n ≥ ` + 2 where n (mod `) ∈ A1, then words

of length n ≥ `+ 2 where n (mod `) ∈ Aj will have m+ rj many follower sets

in XGk .

Using the formula established in Theorem 3.2.3, we see that for each G`,S,

words of lengths n ≥ `+2 whose residue classes are not in S have 3`+3|S|+3

many follower sets. Since A1 ⊆ Sc for every graph used in the construction of
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Gk, words of length n ≥ ` + 2 where n (mod `) ∈ A1 must have the following

number of follower sets:

m = r2(3`+ 3|A2 ∪ A3 ∪ ... ∪ Ak|+ 3)

+ (r3 − r2)(3`+ 3|A3 ∪ A4 ∪ ... ∪ Ak|+ 3) + ...

+ (rk − rk−1)(3`+ 3|Ak|+ 3)

= r2(3`+ 3
k∑
j=2

|Aj|+ 3) + (r3 − r2)(3`+ 3
k∑
j=3

|Aj|+ 3) + ...

+ (rk − rk−1)(3`+ 3
k∑
j=k

|Aj|+ 3)

=
k∑
i=2

(ri − ri−1)(3`+ 3
k∑
j=i

|Aj|+ 3).

Furthermore, since for all i ≥ 2, we have
k∑
j=i

|Aj| < `, we get that

m <
k∑
i=2

(ri − ri−1)(6`+ 3)

= (6`+ 3)
k∑
i=2

(ri − ri−1)

= (6`+ 3)rk.

This theorem shows that we may construct a sofic shift whose follower

set sequence follows any desired oscillation scheme, increasing or decreasing

by specified amounts at specified lengths n, and repeating with any desired
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eventual period. A similar result, Theorem 1.0.5, holds for extender set se-

quences, though the bounds for m = lim inf{|EX(n)|} and for the start of the

periodicity of the sequence are different:

Proof of Theorem 1.0.5. We follow the same construction as in the proof of

Theorem 1.0.4, combining rk-many graphs using Theorem 3.2.5 to construct

the graph Gk. Then, in Gk, for each 1 ≤ j ≤ k, sufficiently long words of length

n where n (mod `) ∈ Aj will have rj more extender sets than sufficiently long

words of length n where n (mod `) ∈ A1. That is, if m is defined to be

the number of extender sets of sufficiently long words of length n where n

(mod `) ∈ A1, then words of sufficient length n where n (mod `) ∈ Aj will

have m+ rj many extender sets in XGk for all 1 ≤ j ≤ k.

To discover what length is sufficient for periodicity of the extender set

sequence to begin, we observe that for every graph G used in the construction

of Gk, the primitivity distance of G is less than or equal to 3`+ 3 as in Lemma

3.2.2. Note that, since ` ≥ 1, we have 3`+3 ≤ 7`−1. (In fact, in any interesting

case, ` ≥ 2, so 3`+ 3 ≤ 5`− 1, but ` = 1 certainly may be chosen as a trivial

case, where S = {0} necessarily). By Theorem 3.2.5, the eventual periodicity

of the extender set sequence of the combination of two graphs begins before

the 2z + 1st term, where z is the maximum of the primitivity distances of

the two graphs. So, when adding two graphs together in this construction,

we get that the eventual periodicity begins before (3` + 3) + (3` + 3) + 1 ≤

(7`− 1) + (7`− 1) + 1 = 14`− 1. (We observe that the primitivity distance of

the resulting graph will also be less than 14`− 1). Since ` is the same for each

graph involved in the construction, it does not matter which type of graph we

are adding at each step, whether a copy of G`,A2∪...∪Ak ,G`,A3∪...∪Ak , up to G`,Ak .
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Though we have performed the same construction as in Theorem 1.0.4, we

add our graphs in a more efficient order to minimize the effect of the constant

2|V (G1)| · |V (G2)|. First consider the case where rk is a power of 2. Then we

may choose to construct Gk in such a way that at each step, we add two graphs

each made up of the same number of components. (2 graphs each consisting of

2 components to make 4, 2 graphs each consisting of 4 components to make 8,

and so on). Then if ai is an upper bound for the start of primitivity at the ith

step, an upper bound for the primitivity at the i+ 1st step is 2(ai) + 1. Then

letting a1 = 7`−1, the value of the sequence ai = 2(ai−1)+1 at i = log2(rk)+1

will give an upper bound for the start of primitivity for Gk, since we must add

together two peices of equal components log2(rk) times to construct Gk.

We claim that for all i, ai = 2i−1(7`)− 1. This is trivially true for the base

case, i = 1. By induction, suppose ai−1 = 2i−2(7`)− 1. Then

ai = 2(ai−1) + 1

= 2(2i−2(7`)− 1) + 1

= 2i−1(7`)− 2 + 1

= 2i−1(7`)− 1.

Thus, when rk is a power of 2, the primitivity of the extender set sequence of

Gk begins before alog2(rk)+1 = 2log2(rk)(7`)− 1 = 7`rk − 1.

Now, the upper bound for the beginning of the periodicity of the extender

set sequence certainly increases as rk increases–increasing rk means adding

more graphs to construct Gk–and so, since rk ≤ 2dlog2(rk)e for all rk ∈ N, and
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2dlog2(rk)e is a power of 2, for any rk, the primitivity of Gk must begin at the

latest when n = 7(2dlog2(rk)e)`− 1 ≤ 7(2log2(rk)+1)`− 1 = 14(rk)`− 1.

Finally, it remains to show that in this construction, m ≤ 39`2r2k. We first

show that G2 (that is, r2 combined copies of Gn,A2∪...∪Ak) has at most 6`r2

vertices and will have m ≤ 39`2r22. The bound on the number of vertices is

clear–for any graph G`,S constructed by the method defined at the beginning

of this section, G`,S has 3` + 2|S| + 1 vertices, and since |S| ≤ ` and ` ≥ 1,

we have 3`+ 2|S|+ 1 ≤ 6`. With each graph having at most 6` vertices, it is

trivial that G2 has at most 6`r2 vertices. As discussed in Theorem 3.2.3, the

number of extender sets for n ≥ 3`+3 and n (mod `) /∈ S (that is, m for G`,S)

is (3`+ 2|S|+ 1)2 + |S|+ 2 ≤ 36`2 + `+ 2 ≤ 39`2. This proves the base case,

when r2 = 1. Suppose for an induction that after joining together i copies of

G`,A2∪...∪Ak to make a graph G, we get m ≤ 39i2`2, and we then adjoin a single

copy of G`,A2∪...∪Ak to G. Then, by Theorem 3.2.5, words of sufficient length n

in the new graph where n (mod `) ∈ A1 will have a number of extender sets

equal to the number of extender sets for words of such length in G (bounded

above by 39i2`2) plus the number of extender sets for words of such length in

G`,A2∪...∪Ak (bounded above by 39`2) plus twice the product of the number of

vertices in G and G`,A2∪...∪Ak (bounded above by 2(6i`)(6`) < 2i(39`2)).

Thus, for the resulting graph containing i+1 copies of G`,A2∪...∪Ak , we have:

m < 39i2`2 + 39`2 + 2i(39`2) = 39`2(i2 + 1 + 2i) = 39`2(i+ 1)2,

giving the result for G2 when i = r2.
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We next consider adding (r3 − r2) many copies of G`,A3∪...∪Ak to G2 to

make G3. By the same argument as above, the graph consisting of (r3 − r2)

many copies of G`,A3∪...∪Ak will have at most 6`(r3 − r2) vertices and m ≤

39`2(r3 − r2)
2. Again using Theorem 3.2.5 to combine the two graphs, the

resulting graph G3 will have at most 6`r2 +6`(r3−r2) = 6`r3 vertices, and will

have

m ≤ 39`2r22 + 39`2(r3 − r2)2 + 2(6`r2)(6`(r3 − r2))

< 39`2r22 + 39`2(r3 − r2)2 + 39`2(2(r2)(r3 − r2))

= 39`2(r22 + (r3 − r2)2 + 2((r2)(r3 − r2))

= 39`2(r2 + (r3 − r2))2

= 39`2r23.

Continuing inductively, we can see that for Gk, we will have m ≤ 39`2r2k.

While we may achieve any desired oscillation scheme, we cannot achieve

any eventually periodic sequence we like–m must be sufficiently large. For

instance, {1, 5, 1, 5, ...} is not achievable as the follower set sequence of any

shift space. An oscillation of 4 with period 2 is achievable, but by Theorem

3.1.7, we know that if 1 occurs anywhere in the follower set sequence of X,

then X is a full shift, which has follower set sequence {1, 1, 1, 1, ...}.

Theorem 3.2.6. Let X be an irreducible sofic shift with lim inf{|FX(n)|} = m

and lim sup{|FX(n)|} = m + r with least eventual period `. Then we have

that m > log2(r) and m > 1
2

log2(log2(`)). If lim inf{|EX(n)|} = m′ and
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lim sup{|EX(n)|} = m′ + r′ with least eventual period `′, then m′ >
√

log2(r
′)

and m′ >
√

1
2

log2(log2(`
′)).

Proof. Let G be an irreducible right-resolving presentation of X which contains

a right-synchronizing word. Let |V (G)| be denoted by V . Since a follower set

of a word w in a sofic shift is determined by the non-empty set of terminal

vertices of paths labeled w in a presentation G, X has less than |P(V (G))| = 2V

follower sets, and so m + r < 2V . Because G is irreducible, right-resolving,

and contains a right-synchronizing word, for large enough n, each singleton

will correspond to the follower set of some word for any length greater than

n. Because m occurs infinitely often in the follower set sequence, m must be

greater than or equal to the number of singletons in G, that is, m ≥ V . Thus,

we have:

2m ≥ 2V > m+ r > r

m > log2(r).

Moreover, as there are less than 2V follower sets, the least eventual period `

of the follower set sequence is less than or equal to (2V )!, as in Theorem 1.0.3.

Thus (2V )! ≥ `. So we have:

(2m)(2
m) > (2m)! ≥ (2V )! ≥ `

(2m)(2
m) > `

log2((2
m)(2

m)) > log2(`)

2m log2(2
m) > log2(`)
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2m(m) > log2(`)

log2(2
m) + log2(m) > log2(log2(`))

m+ log2(m) > log2(log2(`)).

Since m > log2(m), we have:

2m > log2(log2(`))

m >
1

2
log2(log2(`)).

Now, an extender set of a word w in a sofic shift is determined by the non-

empty set of pairs of initial and terminal vertices of paths labeled w in G, so

X has less than 2V
2

extender sets, that is, m′ + r′ < 2V
2
. Since two words

with the same extender set have the same follower set, m′ ≥ m ≥ V . Thus we

have:

2m
′2 ≥ 2V

2

> m′ + r′ > r′

m′
2
> log2(r

′)

m′ >
√

log2(r
′).

Finally, as there are less than 2V
2

extender sets, by Theorem 1.0.3, (2v
2
)! ≥ `′,

giving:

(2m
′2

)(2
m′2 ) > (2m

′2
)! ≥ (2V

2

)! ≥ `′

(2m
′2

)(2
m′2 ) > `′

(2m
′2

)(m′
2
) > log2(`

′)
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m′
2

+ log2(m
′2) > log2(log2(`

′)).

Since m′2 > log2(m
′2), we have:

2m′
2
> log2(log2(`

′))

m′ >

√
1

2
log2(log2(`

′)).

Remark 3.2.7. For the examples discussed here, we take r or r′ = rk.

Finally, we demonstrate the existence of a non-sofic shift whose follower

set sequence and extender set sequence are not monotone increasing. The

construction uses Sturmian shifts, and so we give a brief definition:

Definition 3.2.8. Given 0 < α < 1, let Tα : [0, 1) → [0, 1) by Tα(x) =

x + α (mod 1). Then Tα is the circle rotation by α, and ([0, 1), Tα) is a

dynamical system. If α is irrational, the orbit of any point x, O(x) = {x+nα

(mod 1) | n ∈ Z}, is dense in [0, 1). For each point x ∈ [0, 1) we define a

symbolic coding φ(x) of x, such that φ(x) = ...x−2x−1.x0x1x2... where xn = 1

if T nα (x) ∈ [0, α) and xn = 0 if T nα (x) ∈ [α, 1). Let Y = {φ(x) | x ∈ [0, 1)}.

Then Y is a dynamical system when paired with the shift map σ. For rational

α, Y contains only periodic points, so we will assume from now on that α is

irrational. For irrational α, Y is a Sturmian Shift. Sturmian shifts are

non-sofic and contain no periodic points, and furthermore, ΦY (n) = n+ 1 for

all n (See [2]).

Given that Sturmian shifts are non-sofic, Theorem 3.1.1 shows that |EY (n)| ≥

n+ 1. Thus we can deduce from the fact that ΦY (n) = n+ 1 that |EY (n)| =
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n+ 1. The following Lemma proves the result for both extender and follower

sets:

Lemma 3.2.9. If Y is a Sturmian shift, then for any n ∈ N, |FY (n)| =

|EY (n)| = n+ 1.

Proof. For a fixed length n, Sturmian shifts have exactly n+1 words in Ln(Y ),

so it is sufficient to show that any two words of length n in Y have distinct

follower and extender sets. Sturmian shifts are symbolic codings of irrational

circle rotations, say by α /∈ Q. We may take α < 1
2

by simply switching the

labels 0 and 1 whenever α > 1
2
. Furthermore, the cylinder sets of words of

length n correspond to a partition of the circle into n + 1 subintervals, so for

two words of length n in Y , each corresponds to a subinterval of the circle, and

the two subintervals are disjoint. Let w and v be two distinct words in Ln(Y )

corresponding to disjoint intervals Iw and Iv, [0, α) be the interval coded with

1, and Tα be the rotation by α. We claim that there exists an N ∈ N such

that T−Nα [0, α) intersects one of Iw and Iv but not the other: Since α < 1
2
, and

since {nα | n ∈ N} is dense in the circle, if one of Iw and Iv has length at least

1
2
, there exists N ∈ N such that T−Nα [0, α) is contained entirely inside that

large interval, and thus completely disjoint from the other. Otherwise, take

Icw, which clearly has length at least 1
2
, and find an N ∈ N such that T−Nα [0, α)

is contained inside Icw and intersects Iv ⊆ Icw, again possible due to denseness

of {nα | n ∈ N}. Hence we have proved our claim, that ∃ N ∈ N such that

T−Nα [0, α) intersects one of Iw and Iv but not the other, and therefore, that

the symbol 1 may follow one of the words w and v exactly N units later, but

not the other. Therefore w and v have distinct follower sets, and thus, distinct

extender sets, completing the proof.
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We use Lemma 3.2.9 and the sofic shifts constructed earlier in this sec-

tion to build a non-sofic shift with follower and extender set sequences which

occasionally decrease:

Theorem 3.2.10. There exists an irreducible non-sofic shift X such that

{|FX(n)|} and {|EX(n)|} are not monotone increasing.

Proof. Take a sofic shift X = XG`,S for any `, S as defined earlier in this section.

Take the direct product of X and a Sturmian shift Y . Two words in X × Y

have the same extender set if and only if the projection of those words to both

their first and second coordinates have the same extender set in X and Y ,

respectively. That is, if two words w and v have different extender sets in X,

then any two words whose projections to their first coordinate are w and v

will have different extender sets in X × Y , and similarly for words w′ and v′

with different extender sets in Y . Therefore |EX×Y (n)| = |EX(n)| · |EY (n)|.

By similar logic, |FX×Y (n)| = |FX(n)| · |FY (n)|.

Thus, if we let m = lim inf
n∈N

{|EX(n)|}, then for any n ≥ 3` + 3 with n

(mod `) /∈ S, we have |EX×Y (n)| = m · (n + 1), and if n (mod `) ∈ S, then

|EX×Y (n)| = (m + 1)(n + 1). As m is fixed and n approaches infinity, it is

clear that {|EX×Y (n)|} is unbounded, and thus the shift X × Y is nonsofic.

Furthermore, as the direct product of a mixing shift (X is primitive by Lemma

3.2.2, and therefore mixing) with an irreducible shift, X × Y is irreducible.
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Choose n large enough that n > m− 1, and such that n (mod `) ∈ S and

n+ 1 (mod `) /∈ S. Then

|EX×Y (n)| = (m+ 1)(n+ 1)

= mn+m+ n+ 1

> mn+m+ (m− 1) + 1

= mn+ 2m

= m(n+ 2)

= |EX×Y (n+ 1)|.

Therefore the extender set sequence of X × Y is not monotone increasing. A

similar argument shows that the follower set sequence of X×Y is not monotone

increasing as well.

Example 3.2.11. Let X = XG5,{0,3} as in Figure 3.4. Then

m = lim inf
n∈N

{|EX(n)|} = (3`+ 2|S|+ 1)2 + |S|+ 2 = 404, so for n = 405 (since

405 > 3` + 3, 405 > m − 1, 405 (mod 5) ∈ {0, 3}, and 406 (mod 5) /∈ {0}),

|EX×Y (n)| > |EX×Y (n + 1)|. In particular, |EX×Y (405)| = (405)(406) =

164, 430 while |EX×Y (406)| = (404)(407) = 164, 428.

Remark 3.2.12. The reader may observe that once n is sufficiently large for

the follower or extender set sequence of X × Y to decrease, these decreases

will happen for exactly the same lengths n as the decreases in the follower or

extender set sequence of X = XG`,S . Thus there are infinitely many lengths for

which the follower or extender set sequence of X × Y decreases.
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3.3 Follower Sets, Extender Sets, and β-shifts

We have now established that not all follower, predecessor, and extender set

sequences may be achieved as complexity sequences, for follower, predecessor,

and extender set sequences may fail to be monotone increasing. We now ask

the opposite question: may all complexity sequences be achieved as follower,

predecessor, or extender set sequences? We use the classical β-shifts to answer

this question. In the process, we will also show that β-shifts provide a valuable

class of examples on a related topic: the realizable differences in limiting

behavior among follower, predecessor, and extender set sequences of non-sofic

shifts. It is easy to show that the follower and predecessor set sequences of a

sofic shift (while certainly both bounded) may approach different limits.

Example 3.3.1. Consider XG, where G is the graph shown in Figure 3.6.

1 2

3 4

5 5
6

Figure 3.6: G such that XG has a different number of predecessor and follower
sets

Observe that every word in L(XG) is right-synchronizing. Hence, for any word

w in L(XG), all paths labeled w end at the same single vertex in G. The follower

set corresponding to the uppermost vertex is F (6) and consists of all legal

right-infinite sequences beginning with 1 or 2. The follower set of the leftmost
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vertex is F (1) and consists of all legal right-infinite sequences beginning with

3 or 5. The follower set corresponding to the rightmost vertex is F (2) and

consists of all legal right-infinite sequences beginning with 4 or 5. Finally,

the follower set corresponding to the bottom vertex is F (3) = F (4) = F (5),

and consists of all legal right-infinite sequences beginning with 6. Thus, these

four follower sets are distinct, and G is follower-separated. Moreover, the

follower set of any word w depends only on the last letter of w, and so there

are only four follower sets in XG, one corresponding to each vertex of the

graph, and all four correspond to words of every possible length n. Hence,

the follower set sequence of XG is {|FXG(n)|} = {4, 4, 4, 4, ...}. On the other

hand, there are five predecessor sets in XG–the predecessor sets corresponding

to each vertex, as well as the predecessor set of the word 5, which corresponds

to 2 vertices in G. Since the predecessor set of 5 contains sequences ending with

both 1 and 2, it is clearly not equal to any of the other four predecessor sets.

Thus there are 5 total predecessor sets in XG, and again all five correspond to

words of every possible length n. Hence, the predecessor set sequence of XG is

{|PXG(n)|} = {5, 5, 5, 5, ...}.

Remark 3.3.2. While the graph G in Figure 3.6 does not satisfy the hypotheses

of Theorem 3.2.5, (in particular, G is not left-resolving and does not contain a

self-loop), the same construction applied to k copies of G will nonetheless yield

a graph presenting a shift whose total number of predecessor sets is k greater

than its total number of follower sets, where I1, I2, and so on, may be chosen

to be any of the vertices of the graph G. We omit the details of the proof as it

is similar to the proof of Theorem 3.2.5.
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For the non-sofic case, since the follower, predecessor, and extender set

sequences are unbounded, we may see far more dramatic differences in limiting

behavior of those sequences.

We begin our exploration of the follower, predecessor, and extender set

sequences of β-shifts with a brief definition of the β-shift. The β-shift is

traditionally defined as a one-sided shift space (so the shift map σ now removes

the first letter, rather than shifting it left of the origin, that is, σ(.x0x1x2...) =

.x1x2x3...), but we will end the section with a discussion about using the

natural extension to translate our results to the two-sided setting.

Definition 3.3.3. Given β > 1, let dβ : [0, 1) → {bβc + 1}N be the map

which sends each point x ∈ [0, 1) to its expansion in base β. That is, if

x =
∞∑
n=1

xn
βn

, then dβ(x) = .x1x2x3.... (In the case where x has more than

one β expansion, we take the lexicographically largest expansion.) The closure

of the image, dβ([0, 1)), is a one-sided symbolic dynamical system called the

β-shift, denoted Xβ. (Introduced in [12]). Then if Tβ : [0, 1)→ [0, 1) is given

by Tβ(x) = βx (mod 1), then the β-shift Xβ is a symbolic coding of Tβ: for

any i ∈ N, x ∈ [0, 1), σi(dβ(x)) = k if and only if T iβ(x) ∈ [ k
β
, k+1

β
). Therefore

the β-shift must have alphabet {0, 1, ..., bβc}.

An equivalent characterization of the β-shift is given by a right-infinite

sequence d∗β(1) = lim
x↗1

dβ(x). For any sequence x on the alphabet {0, ..., bβc},

x ∈ Xβ if and only if every shift of x is lexicographically less than or equal to

d∗β(1) (see [10]). Then clearly, the sequence d∗β(1) has the property that every

shift of d∗β(1) is lexicographically less than or equal to d∗β(1). The sequence

dβ(1) only terminates with an infinite string of 0’s in the case that Xβ is a shift
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of finite type, however, the sequence d∗β(1) never terminates with an infinite

string of 0’s. (Moreover, d∗β(1) 6= dβ(1) if and only if Xβ is a shift of finite type

([1])).

Example 3.3.4. The golden mean shift Xϕ of Example 2.0.16, considered as

a one-sided shift, is the β-shift corresponding to β = ϕ = 1+
√
5

2
. Since the

golden mean shift is a shift of finite type, we should have that dϕ(1) terminates

in an infinite string of 0’s, and d∗ϕ(1) 6= dϕ(1). Indeed, dϕ(1) = .11000000...,

and d∗ϕ(1) = .1010101010... The reader may check that the requirement that

every shift of a right infinite sequence be lexicographically less than or equal to

d∗ϕ(1) is equivalent to the requirement that the right-infinite sequence never see

the word 11.

In fact, any right-infinite sequence d satisfying the two properties we have

discussed must be equal to d∗β(1) for some β:

Lemma 3.3.5. Let d be a one-sided right-infinite sequence on the alphabet A =

{0, 1, ..., k} (with k occurring in d) such that every shift of d is lexicographically

less than or equal to d and d does not end with an infinite string of zeros. Then

there exists k < β ≤ k + 1 such that d = d∗β(1).

Proof. Suppose d = .d0d1d2... be a sequence on the alphabet A = {0, 1, ..., k}

with the symbol k occuring in d. Let 1 =
∞∑
i=0

di
βi+1

. Because not all di are

equal to zero, the equation has some solution β by the Intermediate Value

Theorem. Because d does not end in an infinite string of 0’s, it cannot be

the case that d is an expansion which is equal to dβ(1) 6= d∗β(1) as in the case

where Xβ is a shift of finite type. Furthermore, the requirement that every

shift of d is lexicographically less than or equal to d necessitates that d0 = k,
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for if d0 < k but di = k for some i 6= 0, then σi(d) � d, a contradiction. Then,

multiplying both sides of the equation by β, we get

β =
∞∑
i=0

di
βi

= d0 +
∞∑
i=1

di
βi

= k +
∞∑
i=1

di
βi
> k

with the final inequality being strict because not all of {di}∞i=1 may be equal

to 0. On the other hand,

β =
∞∑
i=0

di
βi
≤

∞∑
i=0

k

βi
= k

∞∑
i=0

( 1

β

)i
= k
( 1

1− 1
β

)
= k
( β

β − 1

)

as β > 1. But then

β ≤ k
( β

β − 1

)
β(β − 1) ≤ kβ

β − 1 ≤ k

β ≤ k + 1.

Moreover, Xβ is sofic if and only if d∗β(1) is eventually periodic (see [1]).

We use these facts to characterize the follower set sequences of all one-sided

β-shifts:

Lemma 3.3.6. If w, v ∈ L(Xβ) and w does not terminate with any prefix of

the sequence d∗β(1), then wv ∈ L(Xβ). Thus, FXβ(w) = Xβ = F (∅).

Proof. If v ∈ L(Xβ), then v0∞ ∈ Xβ trivially. Then we claim wv0∞ ∈ Xβ as

well. Given σi(wv0∞), if i ≥ |w|, σi(wv0∞) � d∗β(1) as v0∞ is legal. If i < |w|,
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then the first |w| − i letters of σi(wv0∞) are not a prefix of d∗β(1), but since

they are contained in the legal word w, must be lexicographically less than the

first |w| − i letters of d∗β(1), and thus, σi(wv0∞) � d∗β(1). Thus, wv0∞ ∈ Xβ

and wv ∈ L(Xβ).

We now prove the useful fact that β-shifts satisfy Conjecture 1.

Theorem 3.3.7. For any β-shift, |FXβ(n)| ≤ n for any n if and only if Xβ is

sofic.

Proof. Since β > 1, we have bβc ≥ 1. Since d∗β(1) is a sequence on {0, 1, ...bβc}

satisfying the conditions of Lemma 3.3.5, d∗β(1) must begin with bβc by an

identical argument as presented in the proof of Lemma 3.3.5. bβc is lexi-

cographically larger than 0, and so by Lemma 3.3.6, F (0) = F (∅) for any

β-shift. Then every β-shift Xβ features a word w with F (w) = F (∅), and thus

by Lemma 3.1.9, |FXβ(n)| ≤ n for some n if and only if Xβ is sofic.

Theorem 3.3.8. For any β-shift Xβ, and for any n ∈ N, we have |FXβ(n)| ≤

n+ 1.

Proof. Fix n ∈ N and partition the words w ∈ Ln(Xβ) into n + 1 classes

{S0, S1, ...Sn}, where the index represents the length of the maximal prefix of

d∗β(1) appearing as a suffix of the word w. So the class S0 will contain words

which do not contain any prefix of d∗β(1) as a suffix, while the words in the

class S1 are words ending with the first letter of d∗β(1), but containing no larger

prefix of d∗β(1) as a suffix, and so on, up to Sn, which consists of the single

word formed by the first n letters of d∗β(1). We claim that for two words w

and v ∈ Ln(Xβ) such that w and v are in the same class, F (w) = F (v). This

will imply the result.
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By Lemma 3.3.6, any word w ∈ S0 will have F (w) = F (∅), and so the

claim is certainly true for S0. Sn contains only one word, so the claim holds

trivially for Sn as well. So let 0 < k < n and consider two words v, w ∈ Sk.

Then the last k letters of v and w are identical, and equal to the first k letters

of d∗β(1), and so w and v may only differ on their first n− k letters. Let s be

some right-infinite sequence in F (w), so ws is a point of Xβ. Then every shift

of ws is lexicographically less than or equal to d∗β(1). Then, certainly, every

shift of vs beyond the first n−k shifts is lexicographically less than or equal to

d∗β(1), because after the first n− k letters, vs and ws are equal. Furthermore,

for 0 ≤ i < n − k, σi(vs) does not begin with a prefix of d∗β(1) by definition

of the class Sk, and so σi(v) is already strictly lexicographically less than the

first n − i letters of d∗β(1) because v is a legal word. Then, any sequence s

may follow σi(v) and σi(vs) will be less lexicographically than d∗β(1). So in

fact, the first n − k letters place no restrictions whatsoever on the sequences

which may follow v, and indeed, s ∈ F (v). So F (w) ⊆ F (v) and similarly,

F (v) ⊆ F (w), so F (v) = F (w). Hence, for any β-shift Xβ, |FXβ(n)| ≤ n + 1

for all n ∈ N.

Corollary 1. For any non-sofic β-shift Xβ, {|FXβ(n)|}n∈N = {n+ 1}n∈N.

Proof. By Thm. 3.3.8, |FXβ(n)| ≤ n + 1 for all n ∈ N. If Xβ is non-sofic, by

Theorem 3.3.7, |FXβ(n)| ≥ n + 1 for all n ∈ N. Thus, for all n ∈ N we have

|FXβ(n)| = n + 1, that is, the follower set sequence {|FXβ(n)|}n∈N of Xβ is

equal to {n+ 1}n∈N.

Remark 3.3.9. We remind the reader that the shift Xβ contains an intrinsi-

cally synchronizing word if and only if there exists some word w ∈ L(Xβ) such

70



that w is not a subword of the sequence d∗β(1) (see [1]), and so this provides

examples of non-sofic shifts which contain an intrinsically synchronizing word

and still have the property that |FX(n)| = n + 1 for all n ∈ N. Non-sofic

β-shifts are furthermore remarkable because, unlike Sturmian shifts and other

examples in which |FX(n)| = n + 1 for all n, non-sofic β-shifts have positive

topological entropy. (β > 1 and the topological entropy of a β-shift is log(β)).

Though this is sufficient to characterize the follower set sequences of non-

sofic beta-shifts, we could also prove that non-sofic beta-shifts have n + 1

follower sets of words of length n for every n using the following lemma, which

will be useful later:

Lemma 3.3.10. Let Xβ be a β-shift. Let w ∈ Ln(Xβ) such that w contains

multiple different prefixes of d∗β(1) as suffixes (all necessarily nested subwords).

Say the longest prefix of d∗β(1) contained as a suffix of w has length j. Then

σj(d∗β(1)) � σk(d∗β(1)) for every k such that w has a prefix of d∗β(1) of length k

as a suffix, and therefore the follower set of w consists of all sequences which

are lexicographically less than or equal to σj(d∗β(1)).

Proof. Suppose k < j and w contains a prefix of d∗β(1) of length j and a

prefix of d∗β(1) of length k as suffixes. We will denote the prefix of length j

by (d∗β(1))j, and similarly for k. Note that the first k and the last k letters of

(d∗β(1))j must be equal to (d∗β(1))k. So d∗β(1) might appear as in Figure 3.7.

(It is also possible that no letters exist in the middle portion between the two

occurrences of (d∗β(1))k, or even that they overlap; the proof still holds in such

cases).
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d∗β(1) : (d∗β(1))k (d∗β(1))k . . .

(d∗β(1))j

Figure 3.7: d∗β(1) in the case of Lemma 3.3.10

If σj(d∗β(1)) � σk(d∗β(1)), then it is easy to see that σj−k(d∗β(1)) � d∗β(1),

a contradiction, as every shift of d∗β(1) must be lexicographically less than or

equal to d∗β(1). Therefore σj(d∗β(1)) � σk(d∗β(1)), establishing the result. Since

the right-infinite sequences which may legally follow w consist of the sequences

s st. every shift of ws is lexicographically less than or equal to d∗β(1), we have

F (w) = {s | s � σk(d∗β(1))∀ k s.t. w has a k-letter prefix of d∗β(1) as a suffix}.

Since σj(d∗β(1)) is the smallest such shift, the follower set of w consists exactly

of those sequences lexicographically less than or equal to σj(d∗β(1)).

Corollary 2. Let Xβ be a β-shift, n ∈ N, and the classes S0, S1, ..., Sn be as

defined above. Then the common follower set of words in class Sj is equal to

the follower set of words in class Sk if and only if σj(d∗β(1)) = σk(d∗β(1)).

Proof. Lemma 3.3.10 shows that we may distinguish between follower sets of

words by only looking at σj(d∗β(1)), where j is the length of the longest prefix

of d∗β(1) appearing as a suffix of the word. The corollary follows immediately

from that observation.

It is easy to characterize the follower sets of a non-sofic β-shift from this

corollary: since d∗β(1) is not eventually periodic, j 6= k implies σj(d∗β(1)) 6=

σk(d∗β(1)), and therefore the follower sets in each class S0, S1, ...Sn must all be
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distinct. Thus, for each n, |FXβ(n)| = n + 1 (confirming a result we already

established in Corollary 1). On the other hand, this corollary will also aid in

characterizing the follower set sequences of sofic β-shifts:

Theorem 3.3.11. For any sofic β-shift, let p = min{j ∈ N | ∃ k < j, σk(d∗β(1))

= σj(d∗β(1))}. Then for any n ∈ N, we have: |FXβ(n)| =


n+ 1 n < p

p n ≥ p

Proof. If Xβ is sofic, the sequence d∗β(1) is eventually periodic. Let p =

min{j ∈ N | ∃ k < j, σk(d∗β(1)) = σj(d∗β(1))}. Then for every length n < p,

the shifts σi(d∗β(1)), 0 ≤ i ≤ n, are all distinct, and so |FXβ(n)| = n + 1 by

Cor. 2. However, at length p, the word in Sp will have the same follower set as

words in length k for some k < j by Cor. 2, and so there will only be p (rather

than p + 1) follower sets of words of length p. But if σp(d∗β(1)) = σk(d∗β(1)),

then σp+`(d∗β(1)) = σk+`(d∗β(1)) for all ` ∈ N, and so after length p, no lengths

will contribute any new follower sets. Indeed, |FXβ(n)| = p for all n ≥ p.

We next explore the predecessor set sequences of β-shifts. Because for now

we are working with one-sided shifts, rather than considering the predecessor

set of w to be the set of all left-infinite sequences which may precede w, we

will instead consider the predecessor set of w to be the set of all finite words

which may precede w. For now we have no choice but to use this definition;

when we later apply these results to two-sided β-shifts, the reader may recall

that the results will hold no matter which definition of predecessor set is used,

as asserted in Definition 2.0.15.

Theorem 3.3.12. For any β-shift Xβ, the predecessor set sequence {|PXβ(n)|}

of Xβ is equal to the complexity sequence {Φd∗β(1)
(n)} of d∗β(1).
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Proof. First, partition all finite words into classes S0, S1, ... as before, indexed

by the maximal prefix of d∗β(1) appearing as a suffix of the word. So S0 is the

set of words containing no prefix of d∗β(1) as a suffix, S1 is the set of words

terminating with the first letter of d∗β(1) but containing no larger prefix as

a suffix, and so on. Note that, as we are considering all finite words, not

just finite words of a fixed length, there will be infinitely many classes, each

containing words of many different lengths.

Let k, n ∈ N and w ∈ Ln(Xβ). Then all of the words in Sk are in the

predecessor set of w if and only if w � (σk(d∗β(1)))n (we are implicitly using

Lemma 3.3.10 to rule out the possibility that a prefix of d∗β(1) of length less

than k could introduce some illegal word). For the rest of this proof, when

a word w satisfies the condition w � (σk(d∗β(1)))n, we will simply say that w

satisfies condition k. Since k may range from 0 to infinity, while n is fixed,

every n-letter word in d∗β(1) will appear as the upper bound in condition k

for some k. Moreover, these predecessor sets are nested–if Sk is part of the

predecessor set of a word w, then it is also part of the predecessor set of

every lexicographically smaller word of the same length. So, given a word

w, the predecessor set of w depends only on how many of Φd∗β(1)
(n) different

conditions on w are met. But since these conditions are nested, there are only

Φd∗β(1)
(n)+1 (nested) subsets of these conditions which may be simultaneously

met. Moreover, w must satisfy at least one of them, because for any legal word

w ∈ Ln(Xβ), w � (d∗β(1))n, so w satisfies condition 0. If this is the only one of

the conditions satisfied, then the predecessor set of w only consists of words in

S0 and Si for any i such that (σi(d∗β(1)))n = (d∗β(1))n (that is, that condition i

and condition 0 are the same condition). If w satisfies this condition and only
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one other, the predecessor set of w contains S0 and any such Si as before, along

with any Sk such that (σk(d∗β(1)))n is equal to the lexicographically greatest

n-letter word in d∗β(1) besides (d∗β(1))n, and so on. In other words, words

in Sk are part of the predecessor set of w when w satisfies condition k, but

there are only Φd∗β(1)
(n)-many subsets of N which are realizable as the set of

all k for which w satisfies condition k. Thus, for all n, there are Φd∗β(1)
(n)

predecessor sets of length n in Xβ. So the predecessor set sequence of any

β-shift is {Φd∗β(1)
(n)}n∈N.

This is enough to see that the predecessor and follower set sequences of

β-shifts may exhibit vastly different limiting behavior:

Example 3.3.13. Let d be any right-infinite sequence on {0, 1} which contains

every word in L(X[2]) as a subword, that is, that O(d) = {σi(d) | i ∈ N} is

dense in {0, 1}N. Let d̃ = .2d, so the first digit of d̃ is 2 and σ(d̃) = d. Then d̃

satisfies the hypothesis of Lemma 3.3.5 and so there exists some 2 < β ≤ 3 such

that d̃ = d∗β(1). Since d̃ is certainly not eventually periodic, Xβ is non-sofic,

and so the follower set sequence of Xβ is {|FXβ(n)|} = {n+1} by Corollary 1.

On the other hand, by Theorem 3.3.12, the predecessor set sequence of Xβ is

{|PXβ(n)|} = {Φd̃(n)} = {2n+1}. This shows that the predecessor set sequence

may grow exponentially in n even when the follower set sequence grows only

linearly in n.

We may also use Theorem 3.3.12 to address our primary question: what

complexity sequences may be realized as follower, predecessor, or extender set

sequences of shift spaces? This is mostly answered by Theorems 1.0.6 and

1.0.7.
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Proof of Theorem 1.0.6. If d is such that for all i ∈ N, σi(d) � d, and d

does not end in an infinite string of 0’s, then by Lemma 3.3.5 there exists

β such that d = d∗β(1), and by Theorem 3.3.12, {|PXβ(n)|} = {Φd(n)}. If

d is such that for all i ∈ N, σi(d) � d, but d does end in an infinite string

of 0’s, define a new sequence d̂ such that each digit of d̂ is one greater than

the corresponding digit of d. Then d̂ has the same complexity sequence as

d, and also satisfies the property that for all i ∈ N, σi(d̂) � d̂, and so by

Lemma 3.3.5 there exists β such that d̂ = d∗β(1), and by Theorem 3.3.12,

{|PXβ(n)|} = {Φd̂(n)} = {Φd(n)}.

Even if the sequence d does not satisfy the property that for all i ∈ N,

σi(d) � d, we may achieve a predecessor set sequence very close to the com-

plexity sequence of d:

Proof of Theorem 1.0.7. Suppose d does not satisfy the property that for all

i ∈ N, σi(d) � d. (We may assume that we have already added 1 to each

digit, if necessary, so that d does not end in a string of 0’s). Then create a new

sequence d̃ so that σ(d̃) = d, but the first letter of d̃ is lexicographically greater

than any symbol in d. Then d̃ satisfies the hypotheses of Lemma 3.3.5 and

so there exists β such that d̃ = d∗β(1), and by Theorem 3.3.12, {|PXβ(n)|} =

{Φd̃(n)}. For each length n, d̃ will have one more n-letter word than the

number occuring in d. Specifically, the first n letters of d̃ cannot occur in d

because the first symbol of d̃ is not in the alphabet of d. Moreover, any word

occuring in d̃ which does not see the first letter of d̃ is necessarily a subword

of d, as σ(d̃) = d. Therefore, for any n ∈ N, {Φd̃(n)} = {Φd(n) + 1}.
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Continuing, we explore the extender set sequences of non-sofic β-shifts.

Recall that predecessor sets in one-sided shifts must be considered as sets of

finite words, rather than left-infinite sequences. Now that we must discuss

both predecessor and follower sets in the same proof, for Lemma 3.3.14 we will

also consider follower sets to be sets of finite words, rather than right-infinite

sequences, to avoid confusion. Thus, extender sets will be viewed as sets of

pairs of finite words.

Lemma 3.3.14. Let Xβ be non-sofic. Then for any distinct words w, v ∈

Ln(Xβ) with w ∈ Ln(d∗β(1))–that is, w is a word actually appearing in the

sequence d∗β(1)–w and v have distinct extender sets.

Proof. If both words w and v appear in d∗β(1), w and v will have different

predecessor sets–there will exist some n-letter word in d∗β(1) which one of the

words is lexicographically less than or equal to but the other is not, namely,

whichever of w and v is lexicographically lesser. Thus in this case, w and v

have different extender sets. On the other hand, suppose w ∈ Ln(d∗β(1)) and

v /∈ Ln(d∗β(1)). If v and w have different follower or predecessor sets, they triv-

ially have different extender sets, so suppose P (w) = P (v) and F (w) = F (v).

(This implies that w and v end with the same maximal prefix of d∗β(1), and,

by the above argument, that v ≺ w. Note that obviously any digits on which

v and w differ must occur before their shared suffix). Let u be the shortest

finite word such that uw is a prefix of d∗β(1).

Choose a word z ∈ F (w) which is lexicographically strictly larger than

(σ|uw|(d∗β(1)))|z|. Such a z must exist: If there does not exist a legal word

z ∈ F (w) which is lexicographically strictly larger than (σ|uw|(d∗β(1)))|z|, then
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either w is the first n letters of d∗β(1), in which case the requirement that

v and w end in the same maximal prefix of d∗β(1) forces v = w, or else

(σ|uw|(d∗β(1)))|z| is the lexicographically largest legal |z|-letter word in Xβ,

meaning that (σ|uw|(d∗β(1)))|z| = (d∗β(1))|z|. But since this must be true for

every possible value of |z|, we have that σ|uw|(d∗β(1)) = d∗β(1), and so Xβ is

sofic.

After choosing such a z, it is clear that (u, z) is not in the extender set of w.

However, (u, z) is in the extender set of v: v is an intrinsically synchronizing

word, and since P (w) = P (v) and F (w) = F (v), uv and vz are legal, so uvz

is legal.

Note that, in the sofic case, if only one of w and v is in Ln(d∗β(1)), w and

v may still have the same extender set:

Example 3.3.15. As we saw in Example 3.3.4, the one-sided golden mean

shift is the β-shift for β = ϕ = 1+
√
5

2
, and in such a case, we have d∗ϕ(1) =

.1010101010..., a periodic sequence (so the golden mean shift is sofic). We

also saw in Example 2.0.25 that because the golden mean shift is a nearest-

neighbor shift of finite type, the extender set of a word in the golden mean shift

is determined only by the first and last letters of that word. Thus the word

000 has the same extender set as the word 010, despite 010 appearing in d∗ϕ(1),

showing that the result of Lemma 3.3.14 does not hold in the sofic case.

We now use Lemma 3.3.14 to characterize the extender set sequences of

non-sofic β-shifts.

Theorem 3.3.16. Let Xβ be a non-sofic β-shift. For n ∈ N, let the classes

Sk, 0 ≤ k ≤ n, be as defined in the proof of Theorem 3.3.8. Let η(w, k) :
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Ln(Xβ)× {0, 1, ...n} → {0, 1} be defined by

η(w, k) =


1 if ∃ v ∈ Sk, v 6= w s.t. PXβ(v) = PXβ(w)

0 otherwise.

Then for any n ∈ N, |EXβ(n)| = Φd∗β(1)
(n) +

∑
w∈Ln(d∗β(1))

( n∑
k=0

η(w, k)
)

.

Proof. Let Xβ be a non-sofic β-shift and n ∈ N. By Lemma 3.3.14, for any

word w in Ln(d∗β(1)), and any word v ∈ Ln(Xβ), v 6= w implies EXβ(w) 6=

EXβ(v). Thus Xβ has Φd∗β(1)
(n) distinct extender sets corresponding to words

in Ln(d∗β(1)), and moreover, any words not in Ln(d∗β(1)) will have extender

sets distinct from those of words in Ln(d∗β(1)) (but not necessarily from each

other). Also, for any β-shift Xβ (sofic or not), if w and v both fail to be in

Ln(d∗β(1)), then w and v are both intrinsically synchronizing, and so P (w) =

P (v) and F (w) = F (v) is sufficient to prove E(w) = E(v). Thus, the number

of additional extender sets in Xβ corresponding to words not in Ln(d∗β(1)) is the

number of pairings of predecessor and follower sets achievable by those words.

By Thm.3.3.12, each predecessor set is represented by some w ∈ Ln(d∗β(1)). By

Thm.3.3.8, the follower set of a word is determined by the class Sk, 0 ≤ k ≤ n,

in which it lives. Hence the total number of possible pairings of predecessor

and follower sets achievable by words not in Ln(d∗β(1)) may be expressed by∑
w∈Ln(d∗β(1))

( n∑
k=0

η(w, k)
)

.

Remark 3.3.17. The formula given in Theorem 3.3.16 is an upper bound on

the extender set sequence for sofic β-shifts. The only difference between the

two is that in the sofic case, some of the extender sets of words in Ln(d∗β(1))
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may be the same as extender sets of words not in Ln(d∗β(1)), so the formula

may have overcounted.

Though the formula in Theorem 3.3.16 is exact, the following bounds on

the extender set sequence of a non-sofic β-shift are simpler to express:

Corollary 3. For any non-sofic β-shift Xβ, n ∈ N, Φd∗β(1)
(n) ≤ |EXβ(n)| ≤

(n+ 1)Φd∗β(1)
(n).

Proof. Clearly for any n ∈ N, |EXβ(n)| ≥ |PXβ(n)| = Φd∗β(1)
(n), proving the

first inequality. For the second inequality, we use the equation from Theorem

3.3.16:

|EXβ(n)| = Φd∗β(1)
(n) +

∑
w∈Ln(d∗β(1))

( n∑
k=0

η(w, k)
)

Recall that the class Sn contains only one word, (d∗β(1))n. Therefore, for any

w ∈ Ln(d∗β(1)), η(w, n) = 0. Hence,

|EXβ(n)| = Φd∗β(1)
(n) +

∑
w∈Ln(d∗β(1))

( n−1∑
k=0

η(w, k)
)

≤ Φd∗β(1)
(n) +

∑
w∈Ln(d∗β(1))

n

= Φd∗β(1)
(n) + (Φd∗β(1)

(n)) · n

= (n+ 1)Φd∗β(1)
(n).

Remark 3.3.18. Corollary 3 shows that for a non-sofic β-shift Xβ, |EXβ(n)| ≤

|FXβ(n)| · |PXβ(n)| for any n ∈ N.
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Finally, we discuss the application of our results to two-sided β-shifts. The

following theorem asserts that for β-shifts, the natural extension will have

exactly the same language as the one-sided β-shift Xβ.

Theorem 3.3.19. For any β > 1, let Xβ be the one-sided β-shift and X̂β be the

two-sided β-shift formed by the natural extension of Xβ. Then L(Xβ) = L(X̂β).

Proof. By definition of the natural extension, L(X̂β) ⊆ L(Xβ). Let w ∈

L(Xβ). Then there exists a one-sided sequence z such that z ∈ Xβ and w is

a subword of z. But then for any k, 0kz ∈ Xβ as well. (If every shift of z is

lexicographically less than or equal to d∗β(1), then surely the same is true of

0kz). By taking limits of such sequences, we see that the sequence 0∞z is an

element of X̂β, and so w ∈ L(X̂β), completing the proof.

Remark 3.3.20. The reader may check that Thm. 3.3.19 allows us to gen-

eralize any of the results of this section about one-sided β-shifts to two-sided

β-shifts as well.

We finish the section with two Corollaries which affirm our assertion from

Remark 3.1.2 that we may usually ignore predecessor set sequences in favor of

follower set sequences.

Corollary 4. Let {Φd(n)} be the complexity sequence of a right-infinite se-

quence d such that σi(d) � d for all i ∈ N. Then the sequence {Φd(n)} is the

follower set sequence of Xβ for some β > 1.

Proof. Let d be a right-infinite sequence with complexity {Φd(n)} such that

σi(d) � d for all i ∈ N. By Theorem 1.0.6, there exists a β such that {Φd(n)} is

the predecessor set sequence of Xβ. Then take X̂β to be the natural extension
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of Xβ. Using Theorem 3.3.19 it can be shown that the predecessor set sequence

of X̂β is also {Φd(n)}. Define a new two-sided shift space −X̂β as in Remark

3.1.2. Then the follower set sequence of −X̂β is

{|F−X̂β(n)|} = {|PX̂β(n)|} = {|PXβ(n)|} = {Φd(n)}.

Corollary 5. Let {Φd(n)} be the complexity sequence of any right-infinite

sequence d. Then the sequence {Φd(n) + 1} is the follower set sequence of Xβ

for some β > 1.

Proof. Let d be a right-infinite sequence with complexity {Φd(n)}. By Theo-

rem 1.0.7, there exists a β such that {Φd(n)+1} is the predecessor set sequence

of Xβ. Following the same argument as in Corollary 4, we may construct −X̂β

such that

{|F−X̂β(n)|} = {|PXβ(n)|} = {Φd(n) + 1}.
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