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Abstract

This thesis proposes and investigates two techniques in ultra-wideband (UWB)

radar based human motion analysis. The first one is accurate human body land-

mark detection using UWB radars. The detection is achieved by moving target

indication (MTI) and constant false alarm rate detection (CFAR). A new CFAR

detection technique is proposed, namely the out-of-band (OB) CFAR detection. In

the field experiment, two RF reflective markers are attached to the wrist and elbow

of one human arm for reflecting radar signals. It is demonstrated that detection

of two markers are feasible and successfully achieved. And our results suggests the

OB-CFAR performs better than conventional CFAR in landmark detection. The

second technique aims to study on the human motion classification through the ex-

ploitation of video and radar data, respectively. Motion history image (MHI) and

Hu moment method are applied to extract temporal features from video clips. Prin-

cipal component analysis (PCA) is used to obtain radar detection signitures. We

use k-means clusters to quantize the observation feature vectors. Hidden Markov

models (HMMs) are trained with the features extracted from both video and radar

data to discern the motion types. Experiment results indicate that the proposed ap-

proach can provide improved performance in distinguishing fall motions from other

motions such as sitting.
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Chapter 1

Introduction

1.1 Motivation

Healthcare for aging population has been one of the greatest concerns for mpdern

societies around the global. Aged persons, especially those who have heart diseases,

hypertension, diabetes and stroke, easily suffer from emergencies such as sudden

falls. Many techniques are developed to respond to these challenges, such as visual

imaging techiques. However the visional line-of-sight could be probably blocked

by indoor furnishings or other human obstacles. Ultra-wideband (UWB) eletro-

magnetic waves are able to penetrate through many types of materials and detect

human motions with a high resolution. Therefore, UWB radars show advantages in

human motion detecting. Previous work on video based motion detection makes it

possible to classify different motions through machine learning. One of the questions

in UWB radar based real-time human activities monitering is that, can UWB radar

based approaches generate comparable or better performance compared with vision

based approaches? This thesis investigates the potential benefits that UWB radars

can bring to human motion detection and classification.
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1.2 Literature Review

Human motion measuring and reasoning are stimulated by a wide spectrum

of applications, and is able to satisfy the social needs for intelligent systems in a

wide range of implantations in healthcare, biometrics, homeland security, sports

and robotics. In [1], sensors that applied for human movement, gait and posture

analysis are summarized. It discussed electro-optical technique and video analysis

but for these types of sensing methods the authors have concerned on the matters of

restricted applicable scenarios, i.e., only for controlled laboratory environment, and

apparently, privacy. Electrical sensors, such as gyroscope, accelerometer, flexible

angular sensor, and sensing systems such as electromagnetic tracking system have

been widely used to solve such problems caused by visual-based methods, however,

the main tasks of those systems are still signal processing, feature extraction and the

integral performance of these systems. In the last decade, the UWB radar and radio

technologies [2, 3] and their implementations in diverse critical fields were greatly

developed. A beneficial characteristic of the UWB radio frequency sensing that dis-

tinguishes it from other sensors is the capability in penetrating obstacles, such as

walls, furnitures or even human beings. Accordingly, through-wall sensing becomes a

significant area of investigation for UWB radar implementations [2,4–10]. Movement

detection [11, 12] and Human detection [5, 6, 9–11, 13] are other areas that with the

applications of UWB radars, when combining with the capability to see through the

wall, UWB radars provide estimable sensing modalities in security surveillance. The

biomedical applications of UWB radars is reviewed in [14], including arterial pulsa-

tion tracing, medical imaging, pregnancy monitoring and cardiac motion evaluation.

As a type of sensing pattern with high range resolution and penetration capability,

the UWB radar plays substantial roll in biomedical applications. In [12,15–21], the

UWB radar based vital physiological signal monitoring techniques are further eval-

uated and developed, including respiration motion and cardiac motion from single
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and multiple subjects. [21, 22] investigates the method for gait human motion gait

analysis and quantificaiton, which explains that, although the analysis on human

gait motion is now recognized as financially reimbursable and clinically useful in con-

ditions, its medical application is most likely to be hindered by the time inefficiency

and costs required to perform and to interprete it. The motion or gait data need

to be interpreted efficiently and effectively by a class of modeling, statistical and

artificial intelligence methods. The more plicated human motion analysis, which

aims at fetching necessary information from UWB radar echos, is further evoluted

recently based on technical developments in radar signal feature and human activ-

ity characteristics extraction and machine learning [7,16,18,23–26]. UWB synthetic

aperture radar (SAR) techniques provide another possible way to image and an-

alyze moving target, and were successfully presented in [2, 8, 9, 25, 27, 28]. There

are several other biomedical applications of UWB radars including transfer function

estimation of vocal tract filter [29], arterial stiffness measuring, [30], human arm

muscle characterization [31], etc.

Differentiate from the existing UWB radar based techniques introduced above, in

Chapter 2 we investigate the practicability of UWB radar based human body land-

mark detecting, which uses amplified radar echos from reflectable spherical markers

attached on human body as landmarks. This research work presented is aiming at

exploring the feasibility of sophisticated sensing method and signal process method-

ologies in accurate human motion detection. Specifically, a UWB radar is applied to

transmit and receive signals for detecting, radio frequency(RF) reflective makers are

attached as human body landmarks. As the reflectivity properties of human body,

clothing, markers and clutters are quite different [32], distinction of the markers

from background is feasible, detection and location of the markers can be success-

fully realized. The radar echos are then processed using moving target indication

(MTI) and Doppler filter bank. Then targets are detected and separated using the
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constant false alarm rate (CFAR) detection techniques. To further separate the

radar echos from the targets, other objects such as clothes, we propose an advanced

CFAR detector, namely the out-of-band CFAR (OB-CFAR), which utilizes the sig-

nal energy in the frequency band that divided by Doppler filter banks to determine

the CFAR threshold.

In this thesis, Chapter 3 discusses the UWB radar based human motion classi-

fication. Falls are the leading cause of injurious hospitalization for elderly. They

have attracted significant interests to develop new techniques for prompt fall detec-

tion which saves lives and leads to effective treatments and cost reduction [33] [34].

Different sensing modalities have been proposed for this pursose, including inter-

tial measurement unit-based wearable devices, video camera, and radar [35] [36] .

Wearable devices have shortcomings that they are intrusive, easily broken and must

be worn or carried. Video provides a non-invasive modality for motion classification

and fall detection. In the field of human motion research, video based classification

is widely used with the advantage of direct perceiving and simplicity. Recognition

of human motion within a video is considered a key problem of computer vision.

Vision based approaches generally use videos or images to analyze motion features

of a human body, and distinguish features of fall activities from those of non-falls

to achieve the function of fall detection.

Motion capture systems provide accurate three-dimensional (3-D) information

of different human motions such as walking, running and crawling [37]. Kinect son-

sor is one such type of sensors with an attractive price [38]. However, there are

limitations of vision-based approaches in the real life applications, in additionnal to

privacy concerns, line-of-sight can be easily obstructed by walls and furniture. The

Kinect sensor is sensitive to external infrared sources which can significantly influ-

ence the captured depth of the video images. Furthermore, the visual image data are

sensitive to cluttered backgrounds. On the other hand, radar carries great potential
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to be one of the leading technologies due to its advantages of non-obstructive illumi-

nation, insensitivity to lighting conditions, privacy preservation and safety [35] [39].

In particular, for UWB radars that are considered in this thesis, the range-direction

occupancy of a target can be observed. This provides useful features about the spa-

tial distribution of a target for human motion classification and fall detection [40].

In addition, radar can obtain indirect but meaningful characteristics representing

the moving trajectories [41].

In Chapter 3, the above two different sensing modalities for fall detection are

examined and compared. A Kinect sensor is utilized to record human motions using

RGB images, whereas a UWB radar is employed in the same experimental config-

uration to collect radar echo signals from human motions. The video and radar

data are then used to examine and compare for their motion classification and fall

detection performance.

1.3 Thesis Organization

This thesis comprises 5 chapters which are organized as follows. Chapter 2 intro-

duces the basic concept and characteristics of UWB radar and discusses the UWB

radar based human body landmark detection including radar model establishing,

moving target identification. An OB-CFAR method is introduced to detect the

landmarks. In Chapter 3, the motion history image (MHI) method is used to de-

scribe motion patterns, and the Hu Moments are exploited to extract image features.

In addition, Principal Component Analysis (PCA) is used to reduce the dimension

of radar data, and the k-means method is applied to perform vector quantization

on both vision and radar features. Finally the Hidden Markov Models (HMMs) are

employed to build two motion models. Chapter 3 also presents the experimental

results with discussion. At last, concluding remarks are presented in Chapter 4.
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Chapter 2

UWB Radar Based Human

Body Landmark Detection

2.1 Introduction to UWB Radars

Ultra-wideband (UWB) is a prefered signaling choice for high accuracy localiza-

tion in short to medium distances due to its high range and time resolution [42]. It

is also well-suited for short range and low data rate communications.

In general, a UWB signal is defined to be a signal with a fractional bandwidth

of larger than 20% and/or an absolute bandwidth of at least 500 MHz. The most

important feature of UWB signals is that they have a much wider frequency band

than conventional signals. Therefore, certain regulations are imposed on systems

transmitting UWB signals in different countries [42]. The common definitions for

the bandwidths of UWB signals are as follows: The difference between the upper

frequency of 10 dB emission point and the lower frequency of 10 dB emission point

represents the absolute bandwidth. Based on this criteria, a signal can be classified

into narrowband, wideband, or ultra-wideband. A signal with bandwidth greater

than 500 MHz or greater than 20% of the carrier frequency is characterized as ultra-
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wideband signals. Due to such large bandwidth, UWB signals have a very fine

range and time resolution [43], thus being ideal for precision ranging and tracking

applications. UWB signals have very low power over the frequency band and thus

donot create interference level of existing communication services. Also due to their

large bandwidth, UWB signals are very difficult to jam. A UWB radar system gen-

erates and transmits short pulses and the electromagnetic wave travels through the

propagation channel to the target. In this section, technical details of the Pulson

410 Monostatic Radar Module (P410 MRM) are presented. P410 MRM is a mono-

static UWB radar platform and can perform band-pass filtering, motion filtering,

and constant false alarm rate (CFAR) target detection on the raw scan data. The

processed data is provided to the MRM reconfiguration and evaluation tool (RET)

for display and logging. The user has the option of applying different types of filters

on the radar data. A UWB Radar system configuration is shown in Figure 2.1.

Figure 2.1: P410 MRM UWB sensing configuration.
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There are some advantages of the P410 MRM such as very good performance

in high multipath and high clutter environments, coherent signal processing (which

extends the operating range at very low signal power levels), and the availability

of seven separate channels. Moreover, the P410 MRM provides raw scans for post

processing and two user-configurable antenna ports for dual antenna operation.

Figure 2.2: Time Domain P410 UWB radar device.

In our experiments, P410 MRMs are employed. The P410 MRM is a monostatic

radar platform with frequency centering at 4.3 GHz providing over 2 GHz of radio

frequency(RF) bandwidth . Each radar sensor (P410 MRM) has a transmitter and

an UWB receiver, the main function of which are emitting and receiving signals.

Different code channels are used by radar sensors to prevent interference. In ad-

dition, the UWB radar has an scanning phase in a duration of 100ns, it refers to

determine signals reflected from moving objects. The UWB pulses are sent from

the radar sensors in trains by the transmitter antenna and the echos are collected
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by the receiver. P410 MRM UWB sensors provide raw signal, researchers obtain

the information of moving targets they need from raw signal using motion filters.

However, in some cases, the conventional motion filtered data may not be sufficient

or convincing to locate the targets precisely since there can be much useless infor-

mation, according to the high resolution of UWB signals which are derived from the

reflections from other objects or reflectable surfaces in the environment. Therefore,

we invent a motion filtering method, as explained in the next section.

2.2 Radar Signal Modeling

Detection of human behavior with radar relies on motion detection. Human

cause changes in frequency, phase and time of arrival [44]. The radio frequency

(RF) band of the UWB radar is 3.1 GHz to 5.3 GHz. The kth pulse transmitted

radar signal is denoted as sk(t) and its duration is tr. The sampled signal vector is

denoted as sk = [sk,1...sk,l...sk,L]T , where sk,l = sk(lts + (k − 1)tpr), Lts = tr, ts is

the sampling interval, and (.)T denotes vetor or matrix transpose. Concatenating

vectors sk, k = 1, 2...,K, to form a L ×K received signal matrix S = [s1...sk...sK ].

A motion filter is firstly applied to obtain the target change detection among the

data. The filtered radar signal is expressed as:

rk = [sk,2 − sk,1, ..., sk,L − sk,L−1]T . (2.1)

In such case, we rebuild the filtered radar signal matrix as R = [r1, r2, ..., rK ]. Figure

3.13 shows the filtered result for falling, and Figure 3.14 for sitting.

In this thesis, the transmission waveform of a single pulse of the UWB radar is given

by

9



y(t) =


x(t) 0 ≤ t < TP

0 otherwise

where x(t) denotes the UWB radar pulse waveform and TP is the duration of the

pulse. The UWB radar pulse waveform is shown in Figure 2.3. Thus if K pulses

are transmitted to form a pulse train, the pulse train can be described as,

ytr(t) =

K∑
k=1

y(t− (k − 1)TPRI) k = 1, 2, ...,K, (2.2)

where TPRI is the pulse repetition interval (PRI).
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Figure 2.3: The UWB radar pulse waveform.

Assuming the received radar signals corresponding to the kth transmitted pulse

as rk(t) with a duration as Tr. Sample the signals in time domain, we denote the

received signal vector as rk = [rk,1 · · · rk,l · · · rk,L]T , where rk,l = rk(lTs) with LTs =

Tr, Ts is the sampling period, and T represents matrix transpose. Concatenating
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vectors rk, k = 1, · · · ,K, a L × K matrix is given by R = [r1 · · · rk · · · rK ] to

represent the received signals. We also denote R = [γ1 · · · γl · · · γL]T , where in

this expression γTl is the lth row of R.

The column vectors in the data matrix R, rk, indicates the radar echoic vector in

the fast time domain (l-domain) mapping the kth pulse. The row vectors in the data

matrix R, γTl , represents the radar echoic vector in slow time domain (k-domian)

corresponding to the index l. This matrix is aiming at catching the moving targets

and identifying the specific range between radar and targets, based on this matrix,

all our consequential signal processing is carried out. Figure 2.4 shows an example

of the raw data matrix R. As we can see, although the UWB radar has a very fine

range resolution, it is impossible to separate the targets from the clutter, noise and

interference without further processing.

Figure 2.4: An example of the received data matrix R.
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2.3 Moving Target Identification

MTI processing is applied in slow time domain performing as a filter to suppress

clutter components in the radar echos, which is aiming at reducing and eliminating

the static radar clutters, since only the varying adjacent pulses transimit useful

information from moving targets. Traditionally, we simply use two pulse canceller to

reject clutters. However there are many other pulse cancellers have been developed

as motion filters. It is necessary to compare their performances and decide which

canceller is more proper in our case. Figure 2.5 displays the diagrams and the

working machanisms of two and three pulse cancellers. The diagram of a four pulse

canceller is given by Figure 2.6. Figure 2.7 shows a comparison in frequency responds

among two, three and four pulse cancellers.

Delay

T=1/PRF

Input Output

Delay

T=1/PRF

Input Output

Delay

T=1/PRF

K
=
2

Routput=Ri-Ri-1

Routput=Ri-2Ri-1+Ri-2

Figure 2.5: Diagram of two pulse canceller and three pulse canceler
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Delay

T=1/PRF

Input Output

Delay

T=1/PRF

Delay

T=1/PRF

K=3

K=3

Routput=Ri-3Ri-1+3Ri-2-Ri-3

Figure 2.6: Diagram of four pulse canceler.

As we can see in Figure 2.7, the four pulse canceller shows an excellent mani-

festation in eliminating low frequency subjects as a bandpass filter. Previous stud-

ies [45] also show that the four pulse canceller performs better in effective num-

ber reduction of independent samples from static radar clutters. A four pulse

canceller which is regarded as a motion filter is applied on the data matrix R

to remove the static clutters and extract moving target features from the radar

echos. The discrete impulse response of the canceller can be formulated by h(k) =

δ(k) − 3δ(k − 1) + 3δ(k − 2) − δ(k − 3), where δ(·) is the Kronecker delta func-

tion. Applying the pulse canceller to row vectors γl, the resulting signal is given by

θl = γl ⊗ h(k), where ⊗ represents convolution operation.

The static clutters are basically dispelled by the pulse canceller, and the radar

echos resulted from moving targets are preserved for next processing step. Figure
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Figure 2.7: Frequency responds of the pulse cancellers

2.8 provides an example of the motion filtering performance.

The above convolution on each γl transform the data matrix R into a new data

matrix Θ = [θ1 · · · θl · · ·θL]T .

2.4 Out-of-Band CFAR Detection

2.4.1 N-point Doppler Filter Bank:

The UWB radar has a large range of operating band, in order to further dispose

the clutters as well as noise, we divide the Doppler frequency band into narrow sub-

bands. Ideally there should be no overlap in sub-band frequency characteristics. In

this case Doppler filter bank is utilized. The noise bandwidth of the Doppler filters

14



Figure 2.8: The resulting data matrix Θ after motion filtering.

is much smaller compared to that of the radar’s total bandwidth, it helps us improve

the signal noise ratio(SNR). This Doppler filter bank can be generated by FIR filter.

The ideal FIR digital filter should have the characteristics as

Hk(f) =


1,

∣∣f − k
NFpr

∣∣ ≤ 1
NFpr,

0, 1
N < f − k

NFpr <
1
2Fpr,

(2.3)

where N is the number of filters in this FIR filter bank; k denotes the kth filter.

Suppose that k = 0, which means the 0th filter in a N-point filter bank , in this

case,

H0(f) =


1, |f | ≤ 1

N fr,

0, 1
N < f < 1

2fr,

(2.4)
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According to the Fourier Transform, the impulse response for this filter is,

h0(n) =

∫ 1
N
fr

− 1
N
fr

ej2πf(n−
N−1

2
)df (2.5)

Figure 2.9 shows the plot of 0th Doppler filter in the bank.

We utilize a N-point Doppler filter bank, which is formed byN bandpass filters on

different frequency bands for processing the received signals in the slow time domain.

The outputs from the filter bank will be N L×K matrices Ωn, n = 1, · · · , N with

Ωn containing received radar signals in the nth frequency band. The frequency

response Hn(f) for the nth Doppler filter is given by

Hn(f) =
sin(πN(f/FPRI + n/N))

sin(π(f/FPRI + n/N))
,

where, FPRI is the pulse repetition frequency. We denote the outputs from the nth

Doppler filter as Ωn = [ωn,1 ωn,2 · · · ωn,L]T with ωn,l = F−1[F(θl)Hn(f)], where

F denotes discrete Fourier transform.

2.4.2 OB-CFAR Detection

The OB-CFAR detector is designed in the following methodology. For each

given fast time index l, which is the row index in the radar matrix, the Doppler

frequency band with the maximum signal energy nmax
l can be determined as nmax

l =

max
n
‖ωn,l‖2, where ‖ · ‖2 is the `2 norm. Concatenating the vectors ωnmax

l ,l, l =

1, · · · , L, we define the in-band signal matrix as ΨIB ,
[
ωnmax

1 ,1 ωnmax
2 ,2 · · · ωnmax

L ,L

]T
,

the lth row of the matrix represents the signal from the Doppler frequency bank

where the maximum signal energy appears in each row l. The out-of-band sig-

nal matrix is defined as ΨOB , Ψ−ΨIB. The cell averaging CFAR detection is

ameliorated to use the out-of-band signals in ΨOB to better describe the noise

and better distinguish the targets from other objects. The resulting out-of-band
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Figure 2.9: An example of 0th channel in Doppler filter bank.

CFAR (OB-CFAR) detecting methodology can be formulated as following. We de-

note the (l, k)th element ΨOB as ψOB
l,k . For the (l, k)th element, as denoted as

“cell”, in the matrix Ψ, the CFAR threshold χl,k, is given by χl,k = ηϑl,k. Where

ϑl,k = 1
Ntr

∑
l∈Ltrl

|ψOB
l,k |2 is the noise power estimation, and Ltrl is the index of the

training cells, and the Ntr denotes the size of the Ltrl and describes the length of

training cells. In general, Ltrl consists of the indices of the leading and lagging

training cells for cell (l, k) in the range domain. The threshold factor η is defined

by

η = Ntr(P
−1/Ntr

fa − 1),

where Pfa is the desired false alarm rate which is man-made. In our experiments,

Pfa is set at value 10−2.
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2.5 OB-CFAR Detection Results

Applying our OB-CFAR detector on Ψ in the fast time(range) domain for de-

tecting multiple targets after motion filtering, the targets are better distinguished

from the background. Figure 2.10 shows the detection results when the OB-CFAR

detector is used for detection, and Figure 2.11 shows the results that a conventional

CFAR detector is applied. Those figures indicate that the OB-CFAR achieves better

performance in detecting and separating the two reflectors.

Figure 2.10: OB-CFAR detection results of two markers on a moving arm.

2.6 Human Body Landmark Detection Results

We designed two experiments to evaluate and validate our designs and proposed

approach, there are two spherical markers that are made with metallic foils, are

considered as our moving targets, In Experiment I, those two markers are attached

to a ruler, and in Experiment II, they are attached respectively to the elbow and

18



Figure 2.11: Conventional CFAR detection results of two markers on a moving arm.

wrist of a human’s arm. The UWB radar used in these experiments transmits

waveforms from 3.1 GHz to 5.3 GHz, centering at 4.3 GHz. The UWB radar is

fixed on a suspended beam with its antennas facing the ground, which makes the

boresight direction of the antenna perpendicular to the ground. In Experiment I, a

person holding the ruler stands right beneath the radar moves the ruler back and

forth repetively to the radar. In order to better observe the changes in range, we

intended to keep the moving ruler and the antenna aperture in a two-dimensional

(2D) plane, in which case the two markers remain in the x−y plane. In Experiment

II, the two reflective markers are attached to the elbow and wrist of a moving arm.

The subject stands still beneath the radar and waves his arm up and down remaining

his arm and the apertures in the same plane as well. The experimental scenarios

for both experiments are shown in Figure 2.12.
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Figure 2.12: Scenarios for Experiment I with a moving ruler (left), and Experiment
II with a moving arm (right).

Figure 2.13: OB-CFAR detection results of two reflective markers
on a ruler in Experiment I
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Figure 2.14: OB-CFAR detection results of two reflective markers
on a moving arm in Experiment II.
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Chapter 3

UWB Radar Based Motion

Classification

Motion detection and classification is a typical way to recognize human motion

by utilizing various sensor readings. Most existing studies extract human motion

features from micro-Doppler signitures of radar signals. The radar signals are used

to characterize human motion features [46] in the time-frequency domain. In this

thesis, we investigate a UWB based classification technique to distinguish different

types of human motions, and compare its performance with an image based ap-

proach. Figure 3.1 provides the process diagram of image and radar based human

motion classification.

3.1 UWB Radar Based Signal Characteristics with Hu-

man Motions

3.1.1 Single-person Motions

The experiments of single person fall detection are mainly aimed at distinguish-

ing fall from sit and other possible motions. The subjects perform different motions
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Figure 3.1: Diagram of human motion classification process.
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in front of the radar sensor, and the radar returns are collected and shown in Figure

3.2 and 3.3.

Figure 3.2: The radar signal corresponding to a single-person falling

Figure 3.2 is the radar signal corresponding to fall motion. It has a approximate

range extension of 3 meters. In Figure 3.3, which corresponds to a single person

sit motion, the range extension is only around 1 meters. This difference in range

changes gives a distinguishing characteristic of fall and sit motions.

3.1.2 Multi-Person Motions

In many cases, multiple persons can appear in the suvaillance scene. Experiments

are conducted to investigate whether the UWB radar can distinguish motions from

two persons. One of the subjects sits down and gets up repeatively while the other

walks around the first person. Figure 3.4 is the layout of this experiment. Figure 3.6

shows the collected radar signal reflected from the two subjects performing sitting

and walking, respectively.
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Figure 3.3: The radar signal corresponding to a single-person sitting.

Radar

Boresight

2.5m

Figure 3.4: The experiment layout of multi-person motions.
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Figure 3.5: The experiment scenario of multi-person motions.

Figure 3.6: The radar signal corresponding to the scenario where two subjects per-
forms walking and sitting, respectively.
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Figure 3.6 successfully shows the signal characteristics corresponding to walking

and sitting. In order to investigate the difference between walking and falling,

another experiment was designed as, one subject falls down while the other passing

by. Figure 3.7 is the layout of this experiment. Figure 3.8 clearly shows that there

Boresight

2.5m

Figure 3.7: Experiment layout for one person parallelly falls with another one walks
by.

is a falling trajectory parallel to the walking trail around range of 2.5 to 4m and

slow time of 3-4s.

3.1.3 Multi-Radar Human Motion

We utilize two radar sensors to observe experiments from different angles to pro-

vide omni-directional radar signal retures. We design and conduct two experiments

to show the benefits of multi-radar observation and detection in the first experiment,

the subject stands and sits repeatively. Two radars are placed on different location

with their boresights being orthogonal to each other. Figure 3.9 shows the layout

of multi-radar experiments.

Figure 3.10 show that different radar provides different radar images with dif-

ferent range extension for the same motion. In the second experiment, We adjust
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Figure 3.8: One person parallelly falls with another one walks by.

2.5m

2.5m

Radar 1

Radar 2

Boresight 1
Boresight 2

Figure 3.9: Multi-radar experiments layout.
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(a) The first experiment, radar 1 signal im-
age.

(b) The first experiment, radar 2 signal im-
age.

Figure 3.10: The first experiment radar images.

the direction angle of motion and make the motion direction as 45 degrees with

respect to both of the radar boresights. Figure 3.11 demonstrate the results. The

(a) The second experiment, radar 1 signal
image.

(b) The second experiment, radar 2 signal
image.

Figure 3.11: The second experiment radar images.

results of the second experiment show the possiblity that two radars provide similar

information for the human motion.
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3.2 Image Based Human Motion Feature Extraction

3.2.1 Motion History Image

The motion history image (MHI) is a static image template helps in understand-

ing the motion location and path as it progresses. In MHI, the temporal motion

information is collapsed into a single image template where intensity is a function of

recency of motion. Thus, the MHI pixel intensity is a function of the motion history

at that location, where brighter values correspond to a more recent motion. Using

MHI, moving parts of a video sequence can be engraved with a single image, from

where one can predict the motion flow as well as the moving parts of the video ac-

tion. The MHI expresses the motion flow or sequence by using the intensity of every

pixel in a temporal manner. Motion history image has been applied as an effective

tools to describe motion shapes and spatial distributions using motion sequences

that imply the recency of human actions [47]. In order to describe the motion in

the image sequence, one can form an MHI of the target energy, and represent where

the motion or a spatial pattern occurs. The advantages of MHI representations lie

in that video images can be recoded in a single MHI frame. In this way, a small

number of MHIs can span the time scale of human motions.

(a) τ=5 (b) τ=10 (c) τ=20

Figure 3.12: Dependence on τ to develop MHI images.
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MHI Hτ (x, y, t) is given by:

Hτ (x, y, t) =


τ, if D(x, y, t) = 1,

max(0, Hτ (x, y, t− 1)− δ), otherwise,

(3.1)

where x and y describe the position, t is time, D(x, y, t) is an update function

indicating that an object is present in the current video image. In addition, τ is the

duration that decides the temporal extent of the movement, and δ is the decay.

Figure 3.12 give examples of falling MHI images with three different values of τ ,

i.e., τ = 5, τ = 10 and τ = 20.

3.2.2 Hu Moments

Moments have been extensively applied to characterize the image patterns [48].

In order to extract features of the segmented MHIs, eight statistic descriptors from

the Hu moments, which are invariant to scale, translation and rotation, are cal-

culated for every MHI frame Hτ (x, y, k), where k is the index of the MHI frame.

A two-dimensional (2-D) (i + j)th order moment of the image function f(x, y) is

defined as:

mij =

∫ ∞
−∞

∫ ∞
−∞

xiyjf(x, y)dxdy, i, j = 0, 1, 2... (3.2)

If the image function is a sectional function, the moments of all orders exist and the

moment sequence mij is determined by f(x, y); and accordingly, f(x, y) is deter-

mined by the moment sequence mij . It is noted that the moments in (2) may vary

when f(x, y) changes by translating, rotating or scaling. Therefore, the following

central moments are used to obtain features that are invariant to image translation,
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rotation and scaling:

µij =

∫ ∞
−∞

∫ ∞
−∞

(x− x)i(y − y)jf(x, y)dxdy, i, j = 0, 1, 2, ... (3.3)

where x = m10/m00, y = m01/m00. There totally 8 invariant moments up to 3

orders with i, j=0,...,3 that we consider as the features of those video clips, which

are,

h1 = β20 + β02,

h2 = (β20 − β02)2,

h3 = (β30 − 3β12)
2 + (3β21 − β03)2,

h4 = (β30 + β12)
2 + (β21 + β03)

2,

h5 = (β30 − 3β12)(β30 + β12)[(β30 + β12)
2 − 3(β21 + β03)

2]

+(3β21 − β03)(β21 + β03)[3(β30 + β12)
2 − (β21 + β03)

2],

h6 = (β20 − β02)[(β30 + β12)
2 − (β21 + β03)

2] + 4β11(β30 + β12)(β21 + β03),

h7 = (3β21 − β02)(β30 + β12)[(β30 + β12)
2 − 3(β21 + β03)

2]

+(3β12 − β30)(β21 + β03)[3(β30 + β12)
2 − (β21 + β03)

2],

h8 = β11(β30 + β12)
2 − (β03 + β21)

2

−(β20 − β02)(β30 + β12)(β21 + β03)

(3.4)

where βij =
µij
µγ00

and γ = i+j
2 + 1.
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3.3 UWB Radar Based Human Motion Feature Extrac-

tion

The filtered radar signal is expressed as:

rk = [sk,2 − sk,1, ..., sk,L − sk,L−1]T . (3.5)

In such case, we rebuild the filtered radar signal matrix as R = [r1, r2, ..., rK ]. Figure

3.13 shows the filtered result for falling, and Figure 3.14 for sitting.

It is still difficult to clearly classify falling versus sitting from the filtered results

as those depicted in Figure 3.13 and 3.14. In order to enhance the contrast between

these motions, a threshold is set to discard the values below it. The radar image is

then converted to a 2-D logical matrix

Rk,l =


0, Rk,l ≤ Thk,

1, otherwise,

(3.6)

for k=1,...,K; l=1,...,L-1.

where Thk =

√
1

L− 1

∑L−1
l=1 R

2
k,l is the quadratic mean of each row, and Rk,l is the

element of matrix R. This process eliminates the influence of low reflective body

scatterers which may contaminate the received signals, and forms a new radar signal

matrix R with K rows and L− 1 columns.

Signal processing is carried out based on this filtered matrix aiming at detect-

ing moving targets and identifying the specific range between the targets and the

radar. To reduce the dimension of the radar data matrix while preserving the mo-

tion characteristics, the principal component analysis (PCA) is used for dimension

reduction. PCA performs an orthogonal transformation to convert radar signal R
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to a new coordinate system that consists of linearly uncorrelated variables. The new

variables referred to as the principal components. By choosing the first n princi-

pal components, we can reduce data dimension from (L − 1) × K to n × K while

preserving most of the information in R, and (.)H denotes conjugate transpose.

R(n×K) = A(n×n)Λ(n×K)B(K×K) (3.7)

where A(n×n) is an n× n matrix containing eigenvectors of covariance matrix RRH

of radar data, Λ(n×K) is a rectangular diagonal matrix, B(K×K) is the eigenvectors

of RHR.

In fact, we extract n eigenvalues with total cumulative over 85% under the following

criteria, ∑i
k=1 λk∑K
k=1 λk

≥ 85%, i = 1, 2, ...,K (3.8)

where, λk is the kth eigenvalue of covariance matrix RRH . In this application, we

select the value of n to be 60 to satisfy the above criterion.

3.4 Time Series Data Analysis

The feature vectors from video and radar data corresponding to all the motion

classes are partitioned into c clusters S = S1, S2, ..., Sc by the k-means clustering

algorithm. Figure 3.15 shows the output radar based scatter plot of falling motions

whereas Figure 3.16 gives the result for sitting motions. These figures indicate

that the features for these two types of motions are much better distinguished as

compared with the radar imaging depicted in Figure 3.13 and 3.14.

HMMs are known for their application in temporal pattern recognition which use

observable variables to learn the way of objectives. An HMM describes stochastic

sequences as Markov chains where the states are related to a probability function.
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Figure 3.13: Radar detection image of falling.

Figure 3.14: Radar detection image of sitting.
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Figure 3.15: Scatter plot of falling using PCA.
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Figure 3.16: Scatter plot of sitting using PCA.
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Consider an N -state HMM described as

λ = {X, Y, π} , (3.9)

where X is the probability of transfering to another state q at next time t+ 1 given

the current state p at current time t, Y is the probability of being observing symbol

at state q. In the proposed approach, two HMM models are desinated respectively as

falling and sitting models. Testing sequence ϑ is classified in model λî, î=1 (falling),

2 (sitting).

î = arg max P (ϑ|λî). (3.10)

where P (ϑ|λî) is the likelihood probability, and implies that the HMM-based clas-

sification based on the maximum probability.

3.5 Human Motion Classification Results

Experiments are performed for data collection in order to verify the effective-

ness of the proposed approches. A Kinect sensor is used to record the RGB video

images, wheras a UWB radar is used to collect radar reflections. Video and radar

data collections are performed simultaneously and synchronously. In the series of

experiments, the subjects fall towards the Kinect camera and the radar. There are 7

subjects for fallings and 6 subjects for sitings. Specifically, 49 falling and 47 sitting

are used as training data. These data are utilized to build the two types of motion

models.

3.5.1 Classification without cross validation

In order to understand the accuracy of the built models, we prepared other 27

of 60 falling and 33 sitting motions to be tested in each of the trained HMMs.
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Training Testing

96 60

falling sitting falling sitting

49 47 27 33

Table 3.1: Selection of training and testing data

Activities falling sitting

falling 26 1

sitting 9 25

Table 3.2: Confusion matrix of video based approach

Activities falling sitting

falling 27 0

sitting 4 29

Table 3.3: Confusion matrix of radar based approach

The motion activities are listed in Table 3.1. Table 3.2 shows the result for

video-based classification. 26 in 27 falling motions are correctly classified and 9

sitting motions are mis-classified. Video-based recogintion rate is 96.30% for falling

detection and 75.76% for sitting detection. Table 3 shows the results obtained from

the radar data that all the falling motions are classified correctly, and 29 in 33 sit-

ting motions are successfully recognized. The radar-based recognition rate is 100%

for falling and 87.88% for sitting. The results imply that the radar based approach

give us a more precise recognition especially for sitting motions.
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3.5.2 10-fold Cross Validation

In order to demonstrate the confidence of the classification models, cross val-

idation has also been implemented for training and testing. All data have been

randomly grouped into ten folds, we run 10 separate learning experiments in total

to evaluate the recognition accuracy rates. For each experiments, we use 9 folds for

training and the remaining one for testing.

Table 3.4: 10-fold cross validation based video approach classification results

Group 1

Fall Sit Fall Recognition Rate Sit Recognition Rate

Fall 9 1
90.00% 85.71%

Sit 1 6

Group 2

Fall Sit

87.50%Fall 6 1

Sit 1 7

Group 3

Fall Sit

100.00% 88.89%Fall 6 0

Sit 1 8

Group 4

Fall Sit

100.00% 87.50%Fall 7 0

Sit 1 7

Group 5

Fall Sit

100.00% 81.82%Fall 5 0

Sit 2 9

Group 6

Fall Sit

85.71% 75.00%Fall 6 1

Sit 2 6

Group 7

Fall Sit

80.00% 70.00%
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Fall 4 1

Sit 3 7

Group 8

Fall Sit

100.00% 87.5%Fall 8 0

Sit 1 7

Group 9

Fall Sit

83.33% 80.00%Fall 10 2

Sit 1 4

Group 10

Fall Sit

81.81% 100.00%Fall 9 2

Sit 0 6

Average Accuracy 90.66% 84.39%

Table 3.4 provides the confusion matrix and recognition rates for all 10 cross-

validation experiments in video based approach. The classification accuracy is es-

timated as the average which are 90.66% and 84.39%, respectively. The average

rates show that, compare with results in Table 3.2, the fall motion recognition ac-

curacy drops from 96.30% to 90.66%, and the sit motion recognition rate increases

to 84.39%.

Table 3.5: 10-fold cross validation based radar approach classification results

Group 1

Fall Sit Fall Recognition Rate Sit Recognition Rate

Fall 10 0
100.00% 85.71%

Sit 1 6

Group 2

Fall Sit

85.71% 100.00%Fall 6 1

Sit 0 8
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Group 3

Fall Sit

100.00% 88.89%Fall 6 0

Sit 1 8

Group 4

Fall Sit

100.00% 75.00%Fall 7 0

Sit 2 6

Group 5

Fall Sit

100.00% 90.91%Fall 5 0

Sit 1 10

Group 6

Fall Sit

85.71% 87.50%Fall 6 1

Sit 1 7

Group 7

Fall Sit

100.00% 80.00%Fall 5 0

Sit 2 8

Group 8

Fall Sit

100.00% 100.00%Fall 8 0

Sit 0 8

Group 9

Fall Sit

83.33% 80.00%Fall 10 2

Sit 1 4

Group 10

Fall Sit

100.00% 100.00%Fall 11 0

Sit 0 6

Average Accuracy 95.48% 88.80%
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Comparing with Table 3.3, which shows that the recognition rate for falling is

as high as 100%, the average accuracy given by Table 3.5 shows a more convincing

result at 95.48%. Meanwhile, the accuracy for classifying sit motion has improved

from 87.88% to 88.80%.

42



Chapter 4

Conclusion

The goal of this thesis project is to use UWB radar to realize human body land-

mark detection and human motion classification. The research work presented in

this thesis proposes a UWB radar based landmark and multi-target detection ap-

proach for accurate human motion measuring. An out-of-band (OB) CFAR method

is proposed to detect the human body landmarks. Comparing with the conventional

CFAR method, our OB-CFAR shows better performance in detecting the reflectors.

This thesis also investigated the classification and recognition of human motions

using camera and UWB radar based sensing modalities, respectively. We utilized

the MHI and Hu moment methods to extract features of RGB images. For radar

data, we applied motion filtering and PCA to reduce the data dimension and extract

the features. The k-means clustering algorithm is utilized for vector quantization.

Two HMMs for falling and sitting motions are trained for vision based and radar

based data, respectively. From the classification results, we observed that the radar

based method achieves higher classification performance with recognition rate of

95.48% in falling and 88.80% in sitting. This comparison successfully implies the

advantages of UWB radar based human motion classification. Then we implement

the 10 fold cross-validation method on training and testing. The results show more
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confident and accurate classification rates which also indicate that the methodologies

we applie on feature extracting and classification are feasible.
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[32] Sevgi Zübeyde Gürbüz. Radar Detection and Identification of Human Signa-

tures using Moving Platforms. 2009.

[33] Liang Liu, Mihail Popescu, KC Ho, Marjorie Skubic, and Marilyn Rantz.

Doppler Radar Sensor Positioning in a Fall Detection System. In Proceed-

ings of Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC), pages 256–259, San Diego, CA, 2012.

[34] Meng Wu, Xiaoxiao Dai, Yimin D Zhang, Bradley Davidson, Moeness G Amin,

and Jun Zhang. Fall Detection Based on Sequential Modeling of Radar Signal

Time-frequency Features. In Proceedings of IEEE International Conference on

Healthcare Informatics (ICHI), pages 169–174, 2013.

50



[35] Moeness G Amin, Yimin D Zhang, Fauzia Ahmad, and KC Dominic Ho. Radar

Signal Processing for Elderly Fall Detection: The future for in-home monitor-

ing. IEEE Signal Processing Magazine, 33(2):71–80, 2016.

[36] T. R. Bennett, J. Wu, N. Kehtarnavaz, and R. Jafari. Inertial Measurement

Unit-Based Wearable Computers for Assisted Living Applications: A signal

processing perspective. IEEE Signal Processing Magazine, 33(2):28–35, March

2016.

[37] Xiangcun Wang, Min Li, Houwei Ji, and Zhenbang Gong. A Novel Modeling

Approach to Fall Detection and Experimental Validation using Motion Capture

System. In Proceedings of IEEE International Conference on Robotics and

Biomimetics (ROBIO), pages 234–239, 2013.

[38] Yun Li, KC Ho, and Mihail Popescu. Efficient Source Separation Algorithms

for Acoustic Fall Detection using a Microsoft Kinect. IEEE Transactions on

Biomedical Engineering, 61(3):745–755, 2014.

[39] Sanaz Kianoush, Stefano Savazzi, Federico Vicentini, Vittorio Rampa, and Mat-

teo Giussani. Leveraging RF signals for human sensing: fall detection and lo-

calization in human-machine shared workspaces. In Proceedings of IEEE 13th

International Conference on Industrial Informatics (INDIN), pages 1456–1462,

2015.

[40] Anthony Martone, Kenneth Ranney, and Roberto Innocenti. Automatic

through the Wall Detection of Moving Targets using Low-frequency Ultra-

wideband Radar. In Proceedings of IEEE Radar Conference, pages 39–43, 2010.

51



[41] Jun Hao, Xiaoxiao Dai, Amy Stroder, Jun Jason Zhang, Bradley Davidson, Mo-

hammad Mahoor, and Neil McClure. Prediction of a Bed-exit motion: Multi-

modal Sensing Approach and Incorporation of Biomechanical Knowledge. In

Proceedings of 48th Asilomar Conference on Signals, Systems and Computers,

pages 1747–1751, 2014.

[42] Zafer Sahinoglu, Sinan Gezici, and Guvenc Ismail. Ultra-wideband Positioning

Systems: Theoretical Limits, Ranging Algorithms, and Protocols. Cambridge

University Press, 2008.

[43] Camillo Gentile and Alfred Kik. A Comprehensive Evaluation of Indoor Rang-

ing using Ultra-wideband Technology. EURASIP Journal on Wireless Com-

munications and Networking, 2007(1):12–12, 2007.

[44] AG Yarovoy, LP Ligthart, J Matuzas, and B Levitas. UWB radar for human

being detection. IEEE Aerospace and Electronic Systems Magazine, 21(3):10–

14, 2006.

[45] Hamish Meikle. Modern Radar Systems. Artech House, 2008.

[46] Fok Ring Chi Tivive, Abdesselam Bouzerdoum, and Moeness G Amin. Auto-

matic Human Motion Classification from Doppler Spectrograms. In Cognitive

Information Processing (CIP), 2nd International Workshop on, pages 237–242.

IEEE, 2010.

52



[47] Md Atiqur Rahman Ahad, JK Tan, H Kim, and S Ishikawa. Human Activity

Analysis: Concentrating on Motion History Image and Its Variants. In ICCAS-

SICE, pages 5401–5406. IEEE, 2009.

[48] Zhihu Huang and Jinsong Leng. Analysis of Hu’s Moment Invariants on Images

Scaling and Rotation. In 2nd International Conference on Computer Engineer-

ing and Technology, pages 476–480, 2010.

53


	Ultra-Wideband Radar Based Human Motion Analysis
	Recommended Citation

	Ultra-Wideband Radar Based Human Motion Analysis
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Second Advisor
	Third Advisor
	Keywords
	Subject Categories
	Publication Statement

	tmp.1487347567.pdf.Br0st

