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Abstract 

The application of propensity score techniques (matching, stratification, and 

weighting) with multiple treatment levels are similar to those used in binary groups. 

However, given that the application of propensity scores in multiple treatment groups is 

new, factors affecting the performance of matching, stratification, and weighting in 

multiple treatment groups are less explored. Therefore, this study was conducted to 

determine the performance of different propensity score techniques with multiple 

treatment groups under various circumstances. Specifically, the study focused on 

examining how the three propensity score corrective techniques perform in estimating 

treatment effects under (1) overt and (2) hidden types of selection bias. In this study, the 

performance of propensity score matching, stratification, and weighting techniques were 

tested under three different sample sizes and three levels of overt and hidden bias.  

A Monte Carlo simulation was used to generate data with specific sample sizes 

and levels of overt and hidden bias. A total of 54 data conditions with 1000 replications 

for each condition was generated to compute the average treatment effect (ATE). The 

difference between the pre-specified ATE and estimated ATE was calculated to evaluate 

the performance of propensity score techniques. Two 3x3x3x2 analyses of variance were 

conducted to assess the effect of propensity score technique, level of bias, sample size, 
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and type of treatment effect on the amount of bias in estimating the treatment effect under 

overt and hidden bias conditions.  

The results provided four key findings of information about the application of 

propensity score analysis in multiple treatment groups.  The first key finding is that the 

treatment effect estimate will be underestimated after imposing propensity score 

adjustments. Second, the treatment effect estimates are affected by the level of overt bias. 

Third, propensity score analysis does not account for hidden bias. The fourth finding is 

that the propensity score techniques performed differently in a small sample size 

condition. Overall, these four key findings provide cautionary notes to the users of 

propensity score analysis in multiple treatment groups. The study is concluded with the 

limitations of this study and the recommendations for future research.  

Keywords: Propensity score, multiple treatment 
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Chapter One: Background and Literature Review 

 

Introduction 

Chapter one provides the background for the study and a review of the relevant 

literature. I begin with a brief introduction to the study. The introduction presents the 

relationship between causality and propensity scores. Next, the rationale for this study is 

presented. In this chapter, I explicitly state my objectives and the research questions that I 

address through this study. I state the significance of this study and the limitations. Next, 

I define the terms that I use regularly in this study.  

I begin the literature review with a description of selection bias. Subsequently, 

multivariable approach and propensity score analysis techniques in controlling for 

selection biases are discussed. In this study, I focus on the application of propensity score 

analysis in controlling for selection biases. I explain the three common applications of 

propensity score techniques which are (1) propensity score matching, (2) stratification 

using propensity scores, and (3) propensity score weighting. Then, the application of 

propensity scores in multiple treatment groups is reviewed, followed by a review of the 

different directions of propensity score applications in multiple treatment groups. The 

application of propensity scores in multiple treatment assignments is presented. A 

summary of propensity scores in multiple treatment groups concludes this chapter.   
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Background 

Causal inference means making causal claims of an unknown population from a 

known sample (Morgan & Winship, 1999). Empirical evidence from a causal claim helps 

to generalize the effect as a result of cause to a larger population (Gelman, 2011). 

According to Lazarfeld (1959), three criteria must be met to establish causality. The three 

criteria are (1) cause precedes the effect (temporal precedence), (2) cause is related to the 

effect (statistical relationship between the variables) and, (3) ruling out potential 

explanations to causation (spurious relationship). When these three conditions are met, 

causality can be estimated as the difference between the outcomes of individuals who 

received treatment (treated) versus the potential outcome for the same individuals had 

they not received treatment (not treated).  In other words, treatment effect is the 

difference in the outcome for an individual/observation assigned to treated and non-

treated groups at the same time in the same context. The potential outcome that would 

have been observed under different exposure for the same individual is called a 

counterfactual (Guo & Fraser, 2015). According to Neyman-Rubin’s counterfactual 

framework, a person’s observed outcome is a combination of two outcomes. It can be 

mathematically stated as follows:  

𝑌𝑖 = 𝑊𝑖𝑌1𝑖 + (1 − 𝑊𝑖)𝑌0𝑖                                                  (1) 

In equation 1, 𝑊𝑖 = is treatment assignment which can be 1 or 0, 𝑌1 represents the 

outcome in the treatment group while 𝑌0  represents the outcome in the control group.   

When an individual is assigned to a group, only one of the outcomes is observed. 

This is referred to as a “fundamental problem of causal inference” (Guo & Fraser, 2015). 
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The idea is similar to the concept of missingness. The unobserved outcome for an 

individual is assumed to be a missing value and researchers try to estimate it with the 

observed information.  

In randomized experiments, individuals are randomly assigned to treatment 

conditions. Randomization provides an equal chance of being assigned to treated and 

non-treated groups. Randomization ensures that the treated and non-treated groups are 

probabilistically similar prior to any treatment. This makes the observations in the non-

treated group the counterfactuals for the treated and vice versa. But randomization is not 

always possible or ethical. Therefore, quasi-experiments are proposed and used as 

alternatives to randomized designs. Quasi-experiments as do not employ randomization 

in selecting the sample for each group. This makes the covariates for the treated and non-

treated groups probabilistically unequal. Due to the unequal distribution of the samples in 

treated and non-treated groups, exploring causation using quasi-experiments provides 

“less compelling support for counterfactual inferences” (Shadish, Cook & Campbell, 

2002, p.14).  This is because the estimation of treatment effect in non-randomized 

designs becomes biased and inefficient (Shadish et al., 2002).  

This draws attention to the need to have good counterfactuals between the treated 

and non-treated groups in quasi-experimental designs. In other words, researchers need to 

make adjustments to the comparison groups in quasi-experimental designs so that they 

are homogenous in terms of the distribution of the characteristics. If the groups are 

homogenous, then the members or observations within each group are assumed to be 

similar. The homogenous groups also assure us that the observations in the control group 
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are useful as counterfactuals to those in treatment and vice versa. To do that, researchers 

find observations in control groups that are similar in terms of the observed 

characteristics to observations in treatment. The process of finding observations is really 

finding counterfactuals for observations in the treatment group. Researchers use 

statistical approaches to obtain groups that are homogenous with compelling 

counterfactual quality.  

Statistical approaches such as ordinary regression, covariate adjustment analysis, 

structural equation modeling, selection models, and matching methods can be applied to 

adjust for differences between the groups in non-randomized designs (Shadish et al., 

2002; Stuart, 2010). The statistical adjustments to the comparison groups help to control 

for selection biases. Propensity score analysis is one of the recent developments under 

applied statistical methods addressing causal effects in non-random designs. It has been 

found that the use of propensity scores is able to reduce selection bias and increase 

precision in causal estimation (D’Agostino, 1998). A propensity score is the conditional 

probability of treatment given the observed covariates (Austin, 2011). Conditional on 

measured baseline covariates, allocation of individuals to treatment groups is considered 

to be a random process that mimics randomized designs (Austin, 2011; Sturmer, 2006). 

This is because observations in treated and non-treated groups with equal or similar 

propensity scores have a nearly similar background distribution of the covariates 

(D’Agostino, 1998). When the groups are comparable, the distributions of the observed 

baseline covariates are expected to be similar across the groups. Once propensity scores 

are estimated, they can be used in various ways. Typically, propensity scores are 
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implemented in matching, stratification, and weighting techniques (Olmos & 

Govindasamy, 2015).  

Researchers are as of 2015 actively discussing and investigating applications of 

the different propensity score techniques. The merits of implementing different 

propensity score techniques are the subject of an on-going debate among researchers (An, 

2010). Researchers are currently exploring the performance of different propensity score 

techniques to identify best practices in propensity score applications. Best practices are 

intended to provide guidance for practitioners in implementing propensity score analysis.  

Problem Statement 

Propensity score analysis is a multi-step procedure used to equate groups for 

comparisons whose purpose is to reduce bias associated with non-randomization (Lane, 

2011). Generally propensity score analysis is performed through matching, stratification, 

and weighting (Caliendo & Kopeinig, 2008). Propensity scores are estimated the same 

way for all three techniques, but the way techniques are implemented to address selection 

bias differs (D’Agostino, 1998). In matching, a propensity score is used to find matches 

between the treated and non-treated cases. Propensity scores are stratified to categorize 

treated and non-treated observations into strata with the same propensity score range. A 

propensity score can also be used as a weight to account for non-constant variability on 

the observed covariates between treated and non-treated groups. Given the differences in 

the implementation of propensity scores, researchers are unclear on the merits of 

selecting an appropriate propensity score technique (Luellen, 2007).   
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Researchers have compared the performance of the propensity score techniques 

under different data conditions for binary groups (Mitra & Reiter, 2012; Wilde & 

Hollister, 2007). The findings from the comparison studies have been informative for 

practitioners in selecting appropriate propensity score analysis techniques from the pool 

of propensity score techniques for binary groups.  

Until recently, propensity score analysis was studied for binary (treated versus 

non-treated) groups. Imbens (2000) and Lu, Greevey, Xu, and Beck (2011) have 

explained the application of propensity scores in multiple treatment groups. These 

researchers introduced the same propensity score techniques (matching, stratification, and 

weighting) used in binary groups to groups with multiple treatment levels. Since the 

application of propensity scores in multiple treatment groups is new, the performance of 

matching, stratification, and weighting in multiple treatment groups is less explored. 

Also, the literature on propensity score application in multiple treatment groups is 

limited. The limited literature on the application of propensity scores to multiple 

treatment groups motivates an exploration of the application and performance of 

propensity scores with multiple treatment groups. 

Purpose of the Study 

The purpose of the study was to compare the performance of matching, 

stratification, and weighting techniques using propensity score analysis in multiple 

treatment exposure groups with simulated data. The goal was to demonstrate how three 

propensity score corrective techniques for multiple treatment groups perform in 
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estimating treatment effects under different types of selection biases. Monte Carlo 

simulation was used to generate data. The performance of the three approaches 

(matching, stratification, and weighting) correcting (1) overt and (2) hidden selection bias 

conditions was assessed using the amount of bias introduced in the average treatment 

effect as the outcome measure. Again, the amount of bias in the average treatment effect 

estimate was used to determine the influence of sample size in propensity score 

corrective approaches accounting for overt and hidden biases. Therefore, the specific 

research questions of this study were as follows: 

 

1. Which of the three techniques (matching, weighting, and stratification) performs the 

best in the presence of overt selection bias? 

2. Which of the three techniques (matching, weighting, and stratification) performs the 

best in the presence of hidden selection bias? 

3. Does sample size (small, medium, and large) influence the performance of matching, 

stratification, and weighting techniques under overt and hidden selection biases? 

4. Do varying degrees of overt and hidden biases influence the performance of matching, 

stratification, and weighting techniques under different sample sizes? 

The ultimate goal of propensity score analysis is to obtain comparable groups 

which will lead to unbiased treatment effect estimates. Therefore, the degree of bias in 

treatment effect was computed to determine the best of three propensity score corrective 

approaches accounting for overt and hidden biases under small, medium, and large 
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sample sizes. First, the overt and hidden bias conditions are defined. Second, I describe 

the requirements and steps in setting overt and hidden bias conditions for the study. Next, 

I specify steps taken in generating three different sample sizes for the study. Monte Carlo 

simulation was then used to generate data with the conditions specified in step 2. Then, I 

discuss steps in performing all three propensity score corrective approaches (matching, 

stratification, and weighting). The average treatment effect estimate (ATE) were 

computed after correcting for biases. Then, the difference between the true and estimated 

average treatment effect (ATE) was computed. Finally, a four-way analysis of variance 

(ANOVA) was used to assess the performance of propensity score techniques, sample 

size, type of treatment effect, and the levels of overt and hidden bias on the difference 

between true and estimated ATE. The ANOVA was used to capture the performance of 

propensity score techniques under various conditions.  Also, the interaction between the 

propensity score technique and level of overt or hidden bias was used to compare the 

performance of all three corrective approaches under varying degrees of selection bias. In 

the same way, the interaction between propensity score techniques and sample size from 

ANOVA was assessed to understand the influence of sample size on the performance of 

propensity score techniques.  

 

Significance of the Study 

Propensity score analysis in multiple treatment groups is a fairly new approach 

and has received less attention than analysis with two groups. By examining the 

performance of propensity score analysis in multiple treatment groups, this study is 
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expected to be a contribution for practitioners applying propensity score analysis. 

Comparing propensity score techniques in multiple treatment groups distinguishes this 

work from previous studies that focused on comparing the techniques in binary groups. In 

addition, the investigation of propensity score analysis under overt and hidden bias in 

multiple treatment groups makes this study unique.  

Limitations 

In this simulation study, some conditions are pre-defined and held constant. In 

generating the data, all the variables were set to be continuous and normally distributed. 

Next, the correlation between the generated variables was set to be less than or close to 

.20) to represent negligible relationship between them. The settings of the R packages 

(TriMatch and twang) that were used for propensity score analysis is another limitation to 

this study. Table 1 summarizes the pre-defined settings in the application of propensity 

score techniques in multiple treatment groups. 
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Table 1 

Default Setting in the Application of Propensity Score Techniques 

Propensity score 

technique 

Package Setting 

Propensity score matching TriMatch  Maximumtreat: The package creates 

matches with replacement as a default 

 Caliper: Caliper size is 0.25 of standard 

deviation of the propensity score as a 

default 

Stratification using 

propensity score 

None  Five equally distributed strata will be 

used in applying stratification 

Propensity score weighting Twang  Twang by default estimates propensity 

scores using Generalized Boosted 

Model (GBM). 

 Number of trees for the classification 

purpose in GBM will be set at 3000 as 

the default.  

  

Definitions of Terms 

Monte Carlo simulation. Monte Carlo (MC) computer simulation is a process of 

repeatedly generating random samples and performing statistical analysis to estimate 

results (Raychuadhuri, 2008). MC methods are set up as an experiment, where data are 

generated to test specific theoretically derived hypotheses (Paxton, Curran, Bollen, Kirby, 

& Chen, 2001). 

Propensity score analysis. Propensity score analysis is a multi-step procedure 

used to equate groups of comparisons that reduces bias due to non-randomization (Lane, 
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2011). The steps can be illustrated as covariate selection and propensity score estimation, 

balance check, utilization of propensity score model (e.g., matching, stratification, or 

weighting), balance check after accounting for selection bias, and finally estimation of 

the treatment effect similar to random designs (Austin, 2008, D’Agostino, 1998; Luellen, 

Shadish & Clark, 2005). 

Overt bias. Overt bias is a type of selection bias. Selection bias introduces 

differences between the comparison groups. If the source of differences can be identified 

and measured, then it is called overt bias. Overt bias can be observed in the data prior to 

any treatment implementation (Rosenbaum, 2002). Since the source bias can be identified 

in the data, statistical adjustments can be performed to control the bias. 

Hidden bias. Hidden bias is an unknown source of bias that cannot be measured. 

Selection bias introduces differences between the treatment and comparison groups. If the 

source of differences cannot be identified and measured, then it is called hidden bias, and 

the reason for the groups to differ cannot be determined. Not explicitly knowing the 

source of bias makes it harder to control for it in the data. 

Multiple treatment variable. A multiple treatment variable is a nominal variable 

with more than two levels of treatment assignment. In this study, the multiple treatment 

variable consisted of three levels and they were (1) treatment 1, (2) treatment 2, and (3) 

control. Treatment 1 differed from treatment 2 by the number of observations. The 

number of observations in treatment group 1 was set higher than in treatment group 2 to 

mimic a real data context.   
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Literature Review 

Selection Bias  

Selection bias is one of the major methodological challenges in observational 

research (Starks, Diehr, & Curtis, 2009). Selection bias is the influence of non-

randomization in the enrollment of subjects into treatment and control groups. This 

becomes a problem in an observational study because samples in the treatment and 

control group will be different in their characteristics. When the characteristics of the 

sample that predispose selection into treatment are related to the outcome, it introduces 

confounding from selection bias. Confounding variables includes both measured and 

unmeasured factors related to both treatment and the outcome. The consequences of 

ignoring confounding in the analysis can result in inflated Type 1 error rates, where the 

effects of treatment are falsely attributed to the intervention (Starks et al., 2009). Thus, 

the treatment effect estimate will differ from its true value and be biased. Negative or null 

bias illustrates closeness to the true value whereas positive bias means the estimated 

parameter is greater than the true value (Rodriguez & Llorca, 2004). The direction of bias 

from the estimated parameter indicates presence or absence of bias in the estimation.  

Selection bias can be categorized as (1) overt and (2) hidden bias (Rosenbaum, 

2002). Overt bias means that the source of bias in the data can be identified and measured 

(Braitman & Rosenbaum, 2002). When the source of bias is unknown, then it is referred 

to as hidden bias (Braitman & Rosenbaum, 2002). The overt type of selection bias in an 

observational study can be addressed using statistical adjustments (Rosenbaum, 2002). 

Correcting for overt selection bias is only possible when the variables influencing 
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selection are measured in a study (Rodriguez & Llorca, 2004).  Literature suggests 

controlling the variables influencing selection using two approaches: (1) multivariable 

regression modelling, and (2) propensity score analysis (Starks et al., 2009). Following is 

a description of the two statistical techniques used for controlling selection bias.  

 Controlling selection bias using a multivariable approach. Regressing the 

outcome on confounding variables will control for the effects of confounding variables 

when estimating the contribution of the treatment. In regression, the coefficients of the 

treatment variables are estimated after holding other variables constant. The true impact 

of the treatment effect can be estimated after controlling for the effects of other variables. 

The choice of variables to include in the model will depend on the research question, 

sample size, and the availability of measures of the relevant variables. The objective is to 

include a set of variables that are theoretically or actually correlated with both the 

treatment and outcome to reduce the bias in the estimate of the treatment effect (Haro et 

al., 2006; Wunsch, Zwrible, & Angus, 2006).  

Including all potential confounders in the regression may decrease the bias of the 

treatment effect. But adding more variables can decrease statistical power in small 

samples because it increases the error (spread) around the regression estimate by reducing 

the number of degrees of freedom. The goal of model building is to carefully select the 

best sets of confounding variables that include the most important factors likely to 

account for differences between intervention and comparison groups and achieve a 

balance in the trade-off between bias and variance in order to obtain more precise 

estimates of the treatment effects. It is good practice to model the entire set of 
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confounding variables in the regression. But this practice has implications when the 

sample size is small. There is always a trade-off between reduced bias and increased 

variance around the regression estimate due to reduced degrees of freedom.  

Controlling selection bias using propensity score analysis approach. 

Propensity score modelling is another technique for controlling confounding effects in 

observational designs (Starks et al., 2009). The process of controlling for confounding 

effects is similar to multivariable regression modelling except propensity score analysis 

models the treatment assignment prior to predicting the outcome. Propensity score 

analysis fits a model to predict the treatment assignment. Then, the predicted assignment 

probabilities are used to make adjustments to the data and to then compute the outcome 

results. The propensity score is used to adjust the distribution of the variables in the 

groups before examining effects on the outcome. Literature suggests that propensity score 

analysis has an advantage in accounting for selection bias over regular multivariable 

regression models (Shah, Laupacis, Hux & Austin, 2005; Sturmer et al., 2006; Weitzen, 

Lapane, Toledano, Hume, & Mor, 2004). Propensity score analysis adjusts for the 

difference in the data for groups separately from outcome analysis.  

Unlike the multivariable approach, propensity score analysis can be used to create 

matched data, stratify the data, and to weight the observations in the data. These three 

different options for utilizing propensity scores is an advantage of the technique 

compared to the regular multivariable approach. Condensing information into a single 

score is more useful than including variables as covariates in a regression model, 

especially in small datasets. The rule of thumb for sample size in fitting a multiple 
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regression model is 50 + 8m, where m = number of independent variables in the model 

(Tabachnick & Fidell, 2013). The required sample size will increase along with the 

number of predictors to be included (Tabachnick & Fidell). Therefore, a regular 

multivariable approach will not be appropriate with large sets of covariates and a small 

number of observations. In addition, propensity score models can incorporate main 

effects of variables along with interaction and polynomial terms (non-parsimonious 

models) in estimating propensity scores. The propensity score models are intended to 

balance the group and not to make inferences about the comparison groups (D’Agostino, 

1998). Thus including interactions and polynomial terms in a propensity score model 

does not create a problem yet helps to increase precision in finding matches.   

 

Both traditional multivariable and propensity score analysis is only practical in 

the context of observed biases. Both techniques adjust for the biases from the observed, 

measured variables; they do not address adjustments for hidden biases in the data. A 

detailed description and application of the three different propensity score analyses is 

presented in subsequent sections.  

What is propensity score analysis? 

Propensity score analysis is a statistical technique that is proposed as the 

corrective approach in addressing selection bias in quasi-experiments or observational 

studies (Spreeuwenberg et al., 2010). It was first developed and introduced by 

Rosenbaum and Rubin from Rubin’s causal framework model (Rosenbaum & Rubin, 

1983). For more than two decades, propensity score techniques have been used to help in 

the evaluation of cause-effect analysis in observational studies (Rosenbaum & Rubin, 
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1983). In terms of statistics, a propensity score is defined as the conditional probability of 

being assigned to a group in a study given observed characteristics. The probability 

estimate is calculated based on the observed variable, which might be an intervention or 

treatment (Spreeuwenberg et al., 2010). The need for propensity scores can be related to 

sampling procedures. When randomized experiments are not feasible or ethical, the 

sampling or participant selection into groups becomes potentially dependent on other 

factors. The non-randomization costs come in potential biases in the samples which lead 

to biased estimates and misleading interpretations, especially in comparing the between-

group effect. A propensity score is a function of a collection of confounding factors 

contributing to the assignment to treatment. This single estimate, the propensity score, is 

used to balance confounding variables that differentiate the distribution of the sample into 

treatment and comparison groups in observational studies (Stone & Tang, 2013). 

Computation and the use of a propensity score has been found to be effective in reducing 

bias in observational studies, especially in the presence of a large set of confounding 

variables (Spreeuwenberg et al., 2010).  

A single score from a list of covariates is estimated with the intention of 

mimicking randomization where the treated and non-treated groups are probabilistically 

comparable (Harder, Stuart, & Anthony, 2010). When the groups under study (treated 

and non-treated) are comparable, the distributions of the sample characteristics are 

probabilistically equivalent across the groups. The similar distribution of the covariates 

across the groups ensures that there are no prior probabilistic differences between the 

groups.  
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Finding an appropriate match between treatment and control cases is essentially 

the key to the propensity score analysis, where use of propensity scores helps to minimize 

the differences between the groups and so to minimize biases prior to any statistical 

analysis. However, matching is not the only option in propensity score analysis as 

balancing can also be achieved by using the propensity scores as weights and also from a 

procedure balancing the differences between the groups prior to the outcome analysis. 

Balancing can also be achieved using stratification by propensity score. All three 

approaches using propensity score analysis help to adjust for the variability due to 

observed confounders across the groups. Each of the three propensity score utilization 

approaches is discussed in the following sections. 

 

Propensity score matching. Matching is an approach used in re-creating samples that 

are homogenous from the original data. The process of re-sampling using matching helps 

to eliminate any pre-analysis difference across the groups, thus making them comparable 

(Rosenbaum & Rubin, 1985). This assures all the potential threats to differential selection 

have been accounted for and any change in the outcome is a result of the treatment 

implementation. Matching methods have been used in sociology since the first half of the 

20th century (Althauser & Rubin, 1970; Chapin, 1947; Greenwood, 1945) but the 

theoretical framework for matching methods was developed beginning in the late 1960s 

and early 1970s. Cochran’s paper in 1968 was the beginning of an introduction of 

matching along with subclassification. Although Cochran and Rubin worked on the 

development of matching and stratification, they primarily focused on matching based on 
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a single covariate (Cochran & Rubin, 1973). However, Rubin extended this work by 

incorporating multiple variables in the matching process (Rubin, 1997).  

This work led to the use of propensity scores where the propensity score 

synthesizes a vector of covariates into a single score that is used to find matches. Matches 

are sets of individuals from treatment and control groups that have similar characteristics. 

Each individual from the treatment group is matched to an individual(s) with similar 

characteristics in the control group. It is challenging to find exact matches for the treated 

individuals in the presences of a variety of covariates. This is when propensity scores, 

single scalar values, become useful to find the best matches. Generally, each individual in 

a treatment group will be randomly matched to an individual(s) from the control group 

with the closest propensity score. The closest propensity score is determined by 

calculating the distance/ difference between the propensity score for the selected 

observations. Distance means the difference between the propensity scores between the 

matches. The shortest distance or difference indicates closeness between matches.  

There are at least nine different types of matching approaches available (Guo & 

Fraser, 2015). The matching techniques can be categorized into parametric and non-

parametric matching. Parametric matching approaches can be further categorized into 

greedy and optimal matching. The (1) near-neighbor, (2) Mahalanobis distance, (3) 

caliper matching, and (4) near neighbor with caliper are parametric types of greedy 

matching. Full and optimal matching belong to the optimal parametric approach. Non-

parametric matching includes kernel matching. Optimal matching has an advantage over 

greedy matching as it optimizes the differences between the overall matches to have the 
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smallest differences (Guo & Fraser, 2015).  The max-flow approach of network flow 

theory tries to optimize the selection of individuals by minimizing the distances between 

the matched pairs and the overall matches (Guo & Fraser, 2015). Full matching is a type 

of optimized matching analysis that allows an observation/individual to be matched to 

many cases (1 to many). Full matching uses all the observations in the data and there are 

no limits set on the number of matches with individuals from the reference group (Stuart 

& Green, 2008). Full matching has the advantage of retaining a sufficient number of 

observations/cases for outcome analysis (Holmes, 2014). In this study, only greedy 

matching techniques were explored.  

In a matching approach, not all the observations are matched. The observations 

that fail to be matched are excluded from the study. In some cases, the same observation 

is used more than once (Caliendo & Kopeinig, 2008). If the sample is small, losing cases 

might lead to power issues in detecting effects. Also, the exclusion of the unmatched 

sample might have an influence on the studied treatment effect (Caliendo & Kopeinig, 

2008).   

Stratification using propensity scores. Stratification is also called subclassification 

(Guo & Fraser, 2015). Stratification is a process of dividing propensity scores into strata 

(D’Agostino, 1998). Stratification categorizes individuals into relatively homogenous 

groups.  Rosenbaum and Rubin (1984) extended Cochran’s stratification idea of 

categorizing a continuous variable into five subgroups or quintiles. Instead of a 

continuous variable, Rosenbaum and Rubin categorized observations using propensity 

scores. Following is a description of propensity score analysis using a stratification 
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approach. First, estimated propensity scores for all the observations in the treatment and 

control groups are ordered from the smallest to the largest values. Next, the ordered 

propensity scores are grouped into quintiles. The estimated propensity score is a 

continuous variable. Strata are generated to slice the propensity score distribution into 

equally spaced intervals. Each stratum is defined by the range of propensity scores. 

Individuals within a specified propensity score range are grouped into a specific stratum. 

Depending on the sample size, each stratum will contain more than two individuals. The 

number of strata and the range used to create the strata will be the same across the 

treatment and control groups. Strata can be created either from quintiles, the median, or 

quartiles.  

The choice of number of strata influences the variance and bias in the treatment 

effect estimate (Myres & Louis, 2012). A larger number of strata produces lower 

variance and potentially higher bias (Myres & Louis, 2012). Rosenbaum and Rubin 

(1984) recommended using quintiles as this number of strata was shown to remove 90% 

of the bias from the data. Therefore, individuals/observations from treatment and control 

groups that are categorized into the same strata are assumed to have similar 

characteristics. Cases with a similar propensity score range will be classified into the 

same stratum. The cases that belong to same stratum are homogenous in their observed 

characteristics.  For two group comparisons, each stratum will contain cases from the 

treatment and control groups. The average of the mean outcome for treatment and control 

groups is estimated within each propensity score quintile. The, the difference between the 

averaged mean outcome for treatment and control groups is estimated for each quintile. 
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As a result, five difference estimates are computed from the five quintiles. The difference 

estimates across the five quintiles are summed to estimate the overall treatment effect.  

Propensity score weighting. Propensity score weighting is another approach to 

using propensity scores to account for selection bias. Propensity score weighting is 

similar to survey sampling that accounts for over- or under-represented samples (Lee, 

Lessler, & Stuart, 2010). Weights in sampling are generally used to make the distribution 

of some variables in the data approximate the distribution of those variables in the 

population (Tabachnick & Fidell, 2013). The distribution of the sample differs from the 

population because cases may be sampled with unequal probability. For example, over-

sampling males will result in a conclusion biased with respect to gender. A propensity 

score is estimated using the variables that cause different distributions in the treatment 

and control groups. The weights estimated using propensity scores (𝑒(𝑥)̂) will be used to 

weight the participants in the treatment and control groups. The weights to estimate the 

Average Treatment Effect (ATE) for participants in the treatment group are the inverse of 

the propensity score ((1/𝑒(𝑥)̂ ). The weights for participants in the control group are the 

inverse of one minus the propensity score [1/(1-𝑒(𝑥)̂) ]. The weights account for the 

difference in the distribution of the observed covariates between treatment and control 

groups. Then, the weighted observations are used to estimate the true treatment effect. 

Propensity score weighting has advantages over matching as it uses all the individuals in 

control and treatment groups for outcome analysis. The ability to retain all the individuals 

in estimating the treatment effect helps to maintain statistical power to detect a treatment 

effect (Stone & Tang, 2013).  
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The estimated weights can also be used in other univariate or multivariate 

statistical techniques that allow weights in the analysis. Propensity score weighting has 

the advantage of being a doubly robust technique. Doubly robust estimation combines 

inverse probability weighting by propensity score with regression modelling of the 

relationship between covariates and outcome for each treatment (Robins, Hernan, & 

Brumback, 2000). Doubly robust estimation correctly estimates as long as either the 

propensity score model or the outcome regression models are correctly specified; that is, 

in the absence of unmeasured confounders. This doubly robust estimation allows room 

for misspecification in the model (Robins et al., 2000). Even if the propensity score 

model is not well specified and not totally able to remove a confounding effect, the 

regression model will account for it thus making the treatment effect estimates unbiased. 

However, there are some limitations in the use of propensity score weighting. Freedman 

and Berk (2008) noted propensity scores as sensitive to a mis-specified propensity score 

model and will have an impact on treatment effect estimation. Propensity score weights 

from mis-specified models can exert a negative effect on the treatment effect estimate 

(Harder, Stuart, & Anthony, 2010). Besides, a mis-specified propensity score model 

could potentially yield extreme weights for the observations and lead to potentially biased 

estimates (Lee et al., 2010).  
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Propensity score analysis with multiple treatment groups 

Propensity score analysis can be extended to treatment variables that are 

continuous or have multiple categories (Guo & Fraser, 2015). The application of 

propensity score analysis in multiple treatment group treatment variables is an extension 

of the framework created by Rosenbaum and Rubin (1983). Increasing demand for 

studies with continuous values on treatment variables in the medical and social sciences 

fields fueled the need to expand propensity score application to multiple treatment 

groups. Literature relevant to the investigation of propensity score applications with more 

than two treatment groups or with a continuous treatment variable is limited. However, 

within the limited literature, researchers applied propensity scores in multiple groups in 

two directions.  The two directions are (1) use of a single scalar balancing score, and (2) 

generalized propensity score techniques. Following is a description of propensity score 

analysis directions in a multiple treatment group context.  

First direction: Single scalar balancing score.  

The use of an ordinal logistic regression model in estimating a propensity score is 

key to the application of a single scalar balancing score (Guo & Fraser, 2015). A single 

scalar score is applicable when the values of the treatment variable are ordered. Here, 

ordinal logistic regression uses cumulative probability to predict the likelihood of being 

in one category versus all lower or higher categories (Hosmer & Lemeshow, 2000). 

Following is an illustration of how a single scalar score for propensity score is computed 
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and used in propensity score analysis. First, ordinal logistic regression is used to compute 

a single scalar score using equation 2: 

                   Log (
Pr(𝑍𝑘≥𝑑)

Pr(𝑍𝑘<𝑑)
) = 𝜃𝑑 +  𝛽𝑘

′     for d = 2, 3                                                     (2) 

Where k = distribution of level of category for sample of participants given the 

observed covariates (𝛽𝑘
′  ).  The model compares the probability of a response or treatment 

category (𝑍𝑘) greater than or equal to a given category (d = 2, 3) to the probability of a 

response less than this category (d = 1). The model simultaneously estimates multiple 

logit equations to estimate the log of the odds. The number of equations estimated is the 

number of categories in the dependent variable minus one. Each of the equations 

estimates the odds being in a category over the lower categories. For each category, a set 

of coefficients for the observed covariates are observed. The vector of covariates together 

with the coefficients (𝛽𝑘
′  ) specific to the treatment variable are used to quantify the single 

scalar score called a propensity score.  

Next, the estimated propensity score is used to compute the distance between the 

participants. The following equation is used to compute the distance between the 

observations for multiple treatment conditions. The smallest difference between the 

observations is computed. Observations with the smallest difference are selected as the 

matched pairs.  

           △ (𝑋𝑘 , 𝑋𝑘′) = 
(𝛽̂′𝑋𝑘− 𝛽̂′𝑋𝑘

′ )+ 𝜖

(𝑍𝑘− 𝑍𝑘′  )
2                                                                       (3) 
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where 𝑋𝑘 , 𝑋𝑘′ are the pair of observations that will be compared.  𝛽̂′𝑋𝑘, 𝛽̂′𝑋𝑘
′  are the 

propensity scores for the pairs that are being compared. The membership of the pairs to 

be compared are represented by 𝑍𝑘, 𝑍𝑘′ . Finally, 𝜖 represents the random error term.  

Lu et al. (2011) illustrated the steps taken in performing optimal non-bipartite 

matching using single scalar propensity scores. Lu et al. also created the nbpMatching 

package in R to perform optimal non-bipartite matching analysis. The goal is to find 

matches for observations with the smallest difference in their observed propensity scores. 

The computed distances between the participants are transferred into a distance matrix. 

Then, pairs with the smallest distance are selected. The optimal non-bipartite matching 

algorithm is used to determine the minimal total distance between the matched pairs in 

addition to the distance within the paired matches. The optimal non-bipartite matching 

allows the smallest distance within and between the matches.  

This approach gained less attention in the field as it requires a complex algorithm 

to create a matched sample. An accepted algorithm in solving non-bipartite matching is 

by searching augmenting paths (Papadimitriou & Steiglitz, 1982). Lu et al. (2011) 

proposed and implemented Derig’s shortest augmentation path algorithm to solve the 

non-bipartite matching problem. However, to date there is no literature available 

presenting the application of single scalar propensity score technique in an applied 

context. 

Stratification using single scalar propensity scores. Zanutto, Lu, and Hornik 

(2005) extended the stratification approach to a multiple treatment group context. The 
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authors evaluated the impact of the National Anti-Drug Media Campaign on the level of 

alcohol and drug usage. Their study illustrated steps in performing stratification in the 

context of multiple propensity scores. First, the propensity score was estimated using an 

ordinal logit model. Then, the extreme propensity scores in each therapy group were 

excluded by trimming the data. The trimmed propensity scores for each therapy were 

stratified into five quintiles. The balance on covariates in each therapy group within each 

stratum was examined. The quintiles of propensity scores and treatment levels were used 

as factors in a two-way ANOVA which were tested on each continuous covariate to 

examine the group differences. Logistic regressions were used to assess the balance in 

binary covariates. Once the covariates are balanced, the outcome for each therapy group 

is averaged and added together for an overall treatment effect.   

Second direction: Generalized propensity scores 

The generalized propensity score is the second direction of propensity score 

application in multi-treatment groups. Imbens (2000) proposed a generalized propensity 

score technique which estimates multiple propensity scores through multinomial logit 

models.  This approach is computationally more straightforward than single scalar 

balancing scores. First, a generalized propensity score is estimated using a multinomial 

logit model. The number of generated propensity scores is dependent on the number of 

treatment categories. For example, each participant in the data will have three propensity 

scores if there are three levels of treatment. Multinomial logistic regression in propensity 

score analysis is used to predict the probabilities of the different possible outcomes of a 
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categorically distributed treatment variable given a set of independent variables (Hosmer 

& Lemeshow, 2000).  

The multinomial logistic regression model simultaneously estimates binary logits 

for all possible comparisons among the outcome categories (Hosmer & Lemeshow, 

2000). With three treatment outcomes, multinomial logistic regression is equivalent to 

performing three binary logistic regressions comparing treatment groups 1 to 2, 1 to 3, 

and 2 to 3. For example, the probability of being in group 1 versus group 2 can be 

expressed as the following.  

                  Ln [
Pr(1 |𝑥)

Pr( 2 |𝑥) 
=  𝛽0,   𝐴|𝐵 +  𝛽1,   𝐴|𝐵]                                                                 (4) 

For a 1 versus 2 paired comparisons, the binary logit model means the probability of 

being in group 1 over 2 is a function of a linear combination of variables.  

The use of generalized propensity scores 

Literature shows that generalized propensity scores can be utilized in matching, 

weighting, and covariate adjustments. Following is an example illustrating steps in 

applying multiple propensity scores in the context of covariate adjustment, weighting, 

and matching.    

Generalized propensity scores as covariates in a regression model. 

Spreeuwenberg et al. (2010) studied the impact of five therapies on the severity of 

psychiatric symptomology. Their study presented a step by step guide in using multiple 

propensity scores as covariates in a regression model in the context of mental health.  
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They suggested the following steps in the application of multiple propensity scores in 

covariate regression adjustments. First, Spreeuwenberg et al. recommend estimating the 

treatment effect using statistical analysis before any corrections. Next, group differences 

on the observed variables are examined using analysis of covariance (ANCOVA) for 

continuous and logistic regressions for categorical variables.  Variables for a propensity 

score model are selected and used to compute the propensity score estimates. A 

multinomial logistic regression model is developed with the entire set of selected 

variables related to treatment assignment (outcome) used as the independent variables 

and treatment group membership as the dependent variable. Using a particular therapy as 

the reference category, four propensity scores are estimated. Next, the overlap of the 

propensity score distribution is examined. Overlap is examined to ensure that each 

subject in the study has a certain probability of having been assigned to one of the rest of 

the therapy groups.  

 Next, balance in the observed covariates is checked after correcting for the biases. 

The same therapy that was used as the reference category earlier is used as the reference 

category in creating dummy variables for the therapy group. Finally, a continuous 

outcome is regressed on multiple propensity scores (ps), dummy coded treatment groups 

(d), and the product of dummy therapy and propensity scores (dxps) using multiple 

regression. The coefficient estimates for the dummy variables present the difference 

between the therapy and reference therapy group that is referred to as treatment effect. 

Spreeuwenberg et al. (2010) suggested this approach as relatively straightforward 

compared to other propensity score techniques such as matching and stratification. This is 
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because finding matches from five treatment groups is complex and difficult, therefore 

Spreeuwenberg et al. (2010) proposed using a generalized propensity score as a covariate 

in a regression model as a practical approach in the presence of multiple treatment 

groups.   

Weighting using generalized propensity scores. Multiple propensity scores 

from multiple treatment groups can be also applied in a weighting approach.  McCaffrey 

et al. (2013) illustrated steps in performing weighting using multiple propensity scores. 

Following are the steps proposed by McCaffrey et al. in generating and applying 

propensity scores as weights for the group with multiple treatment exposures. They 

studied the impact of three different treatments on the level of alcohol and drug usage. 

First, binary generalized boosted models (GBM) (the GBM is described below) are fitted 

for each of the three treatment groups. Balance in the observed covariates is assessed 

using absolute standardized bias. Also, Kolmogorov-Smirnov statistics were used to 

assess the balance on the observed covariates.  

Propensity scores that are estimated respective to the treatment group are used as 

the weights in estimating the treatment effect. For example, treatment groups 1 and 2 are 

compared. Here, the propensity scores for group 1 and 2 will only be used to weight the 

observations from treatments 1 and 2. The difference between the weighted group 1 and 2 

outcome is one of the three average treatment effects that can be computed from the 

study. The toolkit for the non-equivalent group (twang) package in R is used to compute 

the propensity score weights (McCaffrey et al., 2013). Then, a survey package is used to 

compute the treatment effect (Lumley, 2014). However, the twang package only uses 
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generalized boosted models (GBM) to estimate the propensity scores. According to 

McCaffrey, Ridgeway and Moral (2004), GBM is a data-mining technique that has 

proved considerable success in predicting treatment assignment using a large number of 

covariates. GBM relies on regression trees using an iterative algorithm to estimate the 

function that describes the relationship between a set of covariates and the treatment 

variable (Li, 2012). Through the iterative process, the function estimating treatment 

assignment includes interactions and polynomial terms to produce a better function 

estimating the treatment variable. In twang, the number of regression trees is specified to 

indicate the number of iterations and the best function predicting treatment assignment is 

determined using the balance criteria. The function that achieves the best balance in the 

covariates across the comparison groups is determined as the best propensity score 

model. In twang, the mean difference and Kolmogorov-Smirnov test are used to assess 

the balance between groups.  The potential implication of using GBM is predicting 

treatment assignment is that the propensity score estimate is subject to change according 

to the GBM specifications. Changes in the GBM models in terms of iterations and 

balance assessments such as Kolmogorov-Smironov approach could change the 

propensity score estimations. Also, estimation using GBM models does not specify the 

prediction model used in estimating the probability and makes it difficult to replicate the 

predictive model. For example, the polynomial and interaction terms used for predicting 

propensity score cannot be identified when using GBM.    

Matching using generalized propensity scores. Soberay (2015) applied 

propensity score matching using multiple propensity score estimates. This study was an 
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application of multi-group propensity score analysis to study the outcomes related to 

treatments for problem gambling. The TriMatch package in R was used to find triplet 

matched pairs for three treatment groups (Bryer, 2013). The package includes matching 

with and without replacement and with and without calipers. In the TriMatch package, 

the minimum distances between the matched observations are evaluated and not the 

overall distance with all the matched triplets. This package uses a greedy matching 

approach as opposed to optimal matching approach in finding matches. Following are the 

steps illustrated by Bryer (2013) in applying propensity score matching in multiple 

treatment groups.  

First, multinomial logistic regression is performed to estimate multiple propensity 

scores. Then, the group with the smallest sample size is selected and set as a reference 

group (e.g., group 1). The first observation from the reference group is selected. An 

observation from group 2 with the smallest distance from a selected observation from the 

reference group is selected. Subsequently, the observation from group 3 with the smallest 

distance compared to selected observations from group 2 is identified. The distance of the 

selected observation from group 3 is compared to the selected observation from the 

reference group. 

This process is repeated for each observation in the treatment group until matched 

triplets are created. Then, repeated measures ANOVA is used to examine differences in 

the treatment effect between the groups. A matched t-test is proposed as a post-hoc 

analysis to specifically estimate the mean difference across treatments (average treatment 

effect). The limitation of TriMatch algorithm is that it only works for studies with three 



32 
 

levels of treatment. This limits the application of this package when the number of 

treatment groups is greater than three.  

Summary of propensity score analysis in multiple treatment group 

The reviewed literature on multiple group propensity score analysis introduces 

steps in applying propensity scores in multiple treatment group groups. Generally, the 

application of propensity scores in multiple groups is similar to propensity score 

application in binary conditions.  The selection of variables, modelling the selection 

model, balance checking, and propensity score adjustment techniques (matching, 

stratification, and weighting) are similar between binary and multiple treatment groups. 

The difference is that the steps in propensity score analysis are repeated for all potential 

pairwise comparisons in the multiple treatment groups. It is crucial to clearly define the 

pairwise comparisons since this affects the selection of reference groups in computing 

propensity score estimates. Overall, propensity score analysis in multiple groups is just an 

extension of the binary application of propensity scores except that it becomes complex 

in the presence of multiple treatment groups.   
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Chapter Two: Method 

 

Introduction 

 

Chapter Two includes a detailed description of the study’s methodology. In this 

chapter, I have listed the steps that I used to answer my research questions. First, I 

describe Monte Carlo simulation under research design. Next, I explain three phases of 

my analysis procedures which were (1) data generation, (2) propensity score analysis, and 

(3) outcome analysis. The data generation phase includes generation of variables. 

Subsequently, the generated variables were manipulated and combined into a dataset.  

Scenarios were created to illustrate the conditions in the data. Data with specific 

conditions were tested using three different propensity techniques. Finally, the 

performance of each propensity score technique was evaluated under outcome analysis.  

 

Design 

This study involved a Monte Carlo (MC) simulation. Monte Carlo simulation is 

an empirical method for generating data for the purpose of evaluating the performance of 

statistics. MC methods are used in an experiment where data are generated to test specific 

theoretically derived hypotheses (Paxton, Curran, Bollen, Kirby, & Chen, 2001). In MC 
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simulation, a statistical distribution is identified and used as the source for each of the 

input parameters. Then, random samples from each distribution are drawn which 

represent the values of the input variables. Monte Carlo simulation allows researchers to 

assess the finite sampling performance of estimators by creating controlled conditions 

from which sampling distributions of parameter estimates are produced. Knowledge of 

the sampling distribution is the key to the evaluation of the behavior of a statistic (Paxton 

et al., 2001). For example, a researcher can determine the bias of a statistic from the 

sampling distribution, as well as its efficiency and other desirable properties. Sampling 

distributions are theoretical and unobserved. However, the MC method is used to create 

simulated data reflecting the sampling distribution. In this study, the variables for a 

synthetic dataset were generated with known population parameters. Then, I drew 

repeated samples of size N from the population. Subsequently, statistical analysis was 

performed on the generated datasets to address the research questions.    

 

Analysis procedure 

The analysis procedure of this study consisted of three main phases. The three 

phases were (1) data generation, (2) propensity score analysis, and (3) outcome analysis. 

There were multiple steps within the three phases. Following is the detailed description of 

the steps within the three phases.  

 

Phase 1: Data generation  

Phase 1 included (1) variable generation, (2) treatment variable computation, (3) 

outcome variable computation, (4) specification of average treatment effect, and (5) 
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creating scenarios for data conditions. Following is a detailed description of all five steps 

within the data generation phase.  

 

Variables generation. In the first phase, data for the study were artificially 

generated using Monte Carlo computer simulation. A total of six variables was used in 

data generation. The six variables (x1-x6) were treated as independent, continuous, and 

normally distributed variables.  

Variable selection is a crucial issue faced by researchers estimating propensity 

scores (Brookhart et al., 2006). Rubin and Thomas (1996) suggested including all 

variables thought to be related to the outcome despite being related to exposure or not. 

Later Rubin (1997) suggested including variables that are strongly related to exposure but 

not necessarily related to the outcome. In order to account for both opinions, this study 

included variables that were treatment assignment specific, outcome specific, and both 

treatment and outcome specific in estimating propensity scores. For this study, the role of 

the independent variables in the treatment and outcome variable was predetermined using 

Austin, Grootendorst, and Anderson’s (2007) variable association matrix.  

The matrix of variable associations was used as a guiding framework to specify 

variables that was used to estimate the treatment and outcome variables. Following is the 

matrix illustrating the variables and their relationship to treatment and outcome. The 3 x 

3 matrix is the degree of relationship between independent variables to treatment and 

outcome variables. The row in the matrix represents the strength of relationship of 

independent variables to the treatment variable. The column in the matrix represents the 
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strength of the relationship of the independent variable to the outcome variable. Table 2 

below illustrates the variable association matrix.   

 

Table 2 

Variables and their Relation to Treatment and Outcome 

 

 Treatment 

Outcome Strongly associated 

with treatment 

Moderately 

associated with 

treatment 

Not associated 

with treatment 

Strongly associate 

with outcome 
x1 x2 x3 

Moderately 

associated with 

outcome 

x4 x5 x6 

Not associated 

with outcome 
x7 x8 x9 

 

The association matrix helped to set up the models to explain the role and strength 

of the independent variables estimating treatment and outcome variables. Based on this 

framework, six variables were generated. Two variables (x1-x2) were specified for 

predicting the treatment variable. Another two variables (x5-x6) were assigned to 

specifically compute the outcome variable. Variables x3 and x4 were used in estimating 

both treatment and outcome variable. Table 3 summarizes the role and strength of all six 

variables in predicting the treatment and outcome variables. The association between 

independent, treatment, and outcome variables were used to decide coefficients for 
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regression models estimating treatment and outcome variables. In the next step, the 

coefficients for the variables in treatment assignment and outcome regression models 

were specified.  

 

Table 3 

Variables and their Relation to Treatment and Outcome in this Study 

 

Variables Treatment Outcome 

x1 Strong association No association 

x2 Moderate association No association 

x3 Moderate association Moderate association 

x4 Moderate association Moderate association 

x5 No association Strong association 

x6 No association Moderate association 

 

Computing the treatment variable. A nominal treatment variable with three 

groups of treatment exposure was created. Four independent variables (x1, x2, x3, and 

x4) were used to generate the treatment variable. As mentioned earlier, the variables were 

set to have different strength in the assignment of treatment levels. The strength of the 

variables was determined using correlation coefficients. Here, the value of the coefficient 

was estimated from Hinkle, Wiersma, and Jurs’ (2003) table of correlation coefficients 

(Table 4). Following is the step taken in generating a nominal treatment variable with 

three groups. 
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Table 4 

Size of the Correlation Coefficient and the Interpretation 

 

The treatment variable was generated from a multinomial distribution with 

varying treatment group probabilities. The probabilities of three treatment groups were 

computed in the following steps.  

Step 1: A selection equation was defined. The selection equation was used to 

model the relationship between the independent variables and treatment assignments 

(groups). The relationship (coefficient) of each independent variable to each treatment 

group was modelled. Then, the exponential value of the estimate was computed for each 

treatment group. In the exponential equations, coefficients for all independent variables 

were set to differ across the three groups. The coefficient values were set to be different 

to generate unequal observations across groups. As a result, the proportion of 

observations in control, treatment 1, and treatment 2 were set to be different. The control 

group (C1) was designed to have the highest number of observations and followed by 

treatment 1 (T1) and treatment 2 (T2) (equation 5-7). Following is the equation 

estimating treatment assignment for all three groups. 

Size of Correlation Interpretation 

.90 to 1.00 (-.90 to –1.00) Very high positive (negative) correlation 

.70 to .90 (-.70 to -.90) High positive (negative) correlation 

.50 to .70 (-.50 to -.70) Moderate positive (negative) correlation 

.30 to .50 (-.30 to -.50) Low positive (negative) correlation 

.00 to .30 (.00 to -.30) Little if any correlation 
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C1 = exp[-0.20(𝑥1) + (−0.70(𝑥2)) + (−1.7(𝑥3)) + (−2.0(𝑥4)) + 𝜀 ]  (5) 

T1 = exp[-0.30(𝑥1) + (−0.65(𝑥2)) + (−1.6(𝑥3)) + (−2.1(𝑥4)) + 𝜀 ]  (6) 

T2 = exp[-0.35(𝑥1) + (−0.50(𝑥2)) + (−1.5(𝑥3)) + (−2.2(𝑥4)) + 𝜀 ]  (7) 

 

The probability of the treatment assignment for each group was computed in step 

2. Estimated probability (ProbL1) was the likelihood of an observation/participant being 

in a specific treatment group over other two groups (equation 8-10).  

ProbL1 = C1/(C1 + T1 + T2)        (8) 

ProbL2 = T1/(C1 + T1 + T2)        (9) 

ProbL3 = T2/(C1 + T1 + T2)        (10) 

 

In step 3, the computed probabilities (ProbL1, ProbL2, and ProbL3) were 

included in the multinomial distribution function to generate the treatment variable. As a 

result, the generated treatment variable consisted of three levels. The three levels were (1) 

control, (2) treatment 1, and (3) treatment 2.   

Computing the outcome variable. Independent variables x3 to x6 were used to 

compute a continuous outcome variable. Appropriate coefficient estimates reflecting the 

relationship between independent and outcome variables was specified using a 

correlation coefficient table (Table 4).  The coefficient values for the independent 

variables were randomly selected from the given correlation range. The previously 

generated nominal treatment variable was spilt into two dummy variables (t1, t2). 

Dummy coded variables that indicated the group membership were used along with other 

independent variables to estimate the outcome. Following is the regression equation 

illustrating the coefficients used to estimate the outcome variable.  
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𝑌 = [ 0.3(𝑥3) +  0.4(𝑥4) + 0.95(𝑥5) + 0.6(𝑥6) + 5(𝑡1) + 15(𝑡2) +  𝜀]  (11) 

These generated variables were combined and stored in a dataset for further analysis.  

Specifying average treatment effect (ATE). Average treatment effect is the 

mean (µ) difference between two groups. In three groups, the control group was set as the 

reference category. With control group as the reference category, two ATEs were 

estimated.  In this study, the mean of the treatment effect for treatment 1, 2, and control 

was set to 10, 20, and 5. The first ATE (ATE 1) estimate was the mean difference 

between treatment 1 and control. Here, ATE 1 was 5 (10-5). The observations in 

treatment group 1 have outcome variable with 5 points higher than the outcome 

observations in control group Next, the ATE (ATE 2) for treatment group 2 versus 

control was 15 (20-5). Here, the observations in treatment group 2 were set to have value 

of the outcomes 15 points higher than the outcome observations in the control group. In 

both treatment groups, the values for the outcomes were set to be higher than in control 

group. This is to indicate the large effect of the implementation of the treatments in the 

outcome. Both the ATE values were set at 5 and 10 based on pilot testing. Therefore, the 

values were set higher to observe the changes after propensity score adjustments. Table 5 

presents the formulae for estimating ATE and their true mean estimates defined prior to 

data generation and analysis. 
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Table 5 

True Treatment Effect Estimate and Estimation Formula   

Effect Formula for ATE True ATE 

Treatment  1 vs 

Control  (ATE 1) 
𝜇𝑡1 - 𝜇𝑐𝑡 5 

Treatment 2vs 

Control (ATE 2) 
𝜇𝑡2 - 𝜇𝑐𝑡 15 

 

Creating data. Data were simulated with the following structured conditions.  

Following are the two scenarios created to compare the performance of three propensity 

score techniques. The two scenarios imposed overt and hidden biases on the data. For 

each scenario, the correlation between the treatment, outcome, and error terms in both 

treatment and outcome variables were manipulated. First, the overt bias scenario 

(scenario 1) is explained and is followed by the hidden biases scenario (scenario 2). For 

better understanding, I present a causal model which is used to illustrate the association 

between the variables (Figure 1). The model is used to explain the conditions for overt 

and hidden biases. Following is the model and scenarios for the study.  

 

General model for the scenario 

The model consists of a treatment variable, outcome variable, independent 

variables, and error terms associated with both treatment and outcome variables. The 

treatment variable for each group was measured using the following regression equation 

𝑇   =  [𝛽1(𝑥1) + 𝛽2(𝑥2) + 𝛽3(𝑥3) + 𝛽47(𝑥4) + 𝑣]     (12) 
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Four independent variables which were x1, x2, x3, and x4 were regressed on the 

treatment variable. The error term (𝑣) refers to the amount of unexplained variance in 

estimating the treatment effect after accounting for four independent variables.  

Next, the outcome variable was measured using regression equation 8. Here, the 

treatment variable was dummy coded and used in computing the outcome variable. The 

residual term (𝑢) means the unexplained variance in the outcome after accounting for six 

predictors.  

𝑌  = [𝛽1(𝑥3) +  𝛽2(𝑥4) + 𝛽3(𝑥5) + 𝛽47(𝑥6) +  𝛽5(𝑡1) +  𝛽6(𝑡2) + 𝑢]                     (13) 

 

Both the regression equations were combined into a single model as illustrated in 

Figure 1. The purpose was similar to path analysis, where it simultaneously examines a 

set of relationships between one or more variables (Ullman, 1996). In this study, path 

analysis was conducted to examine the causal relationship between the treatment and 

outcome variables after controlling for all the independent variables. Figure 1 illustrates 

the relationship between the treatment and outcome variables. In Figure 1, the treatment 

variable is presented as a single nominal variable with three levels.  
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Figure 1 

Basic Model Illustrating the Relationship between the Treatment and Outcome Variables 

 

Scenario 1: Overt bias. Overt bias is bias that can be seen in the data at hand; for 

instance, bias that can be seen prior to treatment (Rosenbaum, 2002). Overt bias can be 

observed and measured.  Overt bias is a type of bias that is usually controlled using 

statistical adjustments such as matching and stratification. In this scenario, the general 

model was modified to create scenario 1. Model 1 for this scenario consisted of a 

treatment (three levels), independent variables (x1-x6), outcome variable, and two error 

terms. Treatment was predicted by variable x1, x2, x3, and x4. The error term (v) for 

treatment and outcome (u) was generated. With these variables, this scenario assumed the 

following conditions.  First, the explanatory variables (x1-x6) were set to be uncorrelated. 

X3 X4 

Treatment (g) Outcome (y) 

X1 X2 

u v 

X5 X6 
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The association between independent variables was set to range from 0.1 to 0.2 to 

indicate independence among variables (Hinkle et al., 2003).  

Second, the correlations between independent variables (x1-x6) and treatment 

error (v) were set to zero. This ensures that the treatment variable is correctly measured 

and no variables are omitted in computing the treatment variable. Next, the correlation 

between treatment error (v) and outcome error (u) was be set to be uncorrelated. The 

error term for treatment and outcome variables reflects unexplained variability in the 

variables after accounting for the independent variables. When the two errors are 

independent, it assures no hidden biases in estimating treatment variables. Fourthly, the 

means of the treatment assignment variables (x1-x4) were set to be different across 

treatment and control groups. This was to establish imbalances in the covariate 

distribution across treatment and control groups.  

Finally, variables (x1 and x2) were set to be correlated with the outcome error (u). 

The specified correlation indicates the omitted variable that should be modelled along 

with other variables in predicting the outcome. The error term for the outcome (u) is the 

residual variance that is left to be explained after accounting for treatment and x3-x6 

variables. Since x1and x2 contributes to treatment assignment, failing to account for these 

variables in predicting the outcome will impose large residuals and biased estimates. 

Therefore, the correlation between the two independent variables (x1, x2) and error term 

for outcome (u) imposes overt bias in the dataset. All five steps used in generating the 

data for the overt bias condition are described in the R scripts attached under Appendix 

A. Figure 2 illustrates the relationship between the variables for scenario 1. The 
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correlation imposing overt bias is highlighted in the dotted line in Figure 2. Table 6 

presents the summary of the conditions imposed for scenario 1.  

 

Figure 2. 

Model for Scenario 1 (Overt Bias) Illustrating the Relationship Between the Treatment 

and Outcome Variables 

 

 

 

 

 

 

 

 

X3 X4 

Treatment (g) Outcome (y) 

X1 X2 

u v 

X5 X6 
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Table 6 

Summary of the Conditions Set for Scenario 1 

No Condition Explanation 

1 All six independent (x1-x6) variables was 

set to be significantly uncorrelated. 

This is to control for potential 

variability that will be introduced 

by correlations in the data. 

2 Treatment assignment variables (x1-x4) 

were independent of the treatment 

variables error term (v).  

 

Error term assures that treatment 

variable is accurately specified by 

the four variables. 

3 Both treatment (v) and outcome error (u) 

terms were set to be uncorrelated. 

This ensured that no unmeasured 

variables in treatment assignment 

were omitted in estimating the 

outcome. 

4 Means of (x1-x4) variables were set to be 

different across the treatments and 

control group. 

The purpose was to install 

imbalances in the covariate 

distribution across treatments and 

control groups.  

5 Variables that predict outcomes (x3-x6) 

except for x1 and x2 were set 

independent of the outcome variable’s 

error (u) term. 

Independent variables that were 

related to treatment assignment 

were omitted when estimating the 

outcome. Variables were omitted 

to impose overt bias in the dataset. 

 

For scenario 1, the following correlation matrix between the variables was 

specified. The correlation among the independent variables was set in the range of .10 to 

.20. The range was proposed as it reflects little or no relationship between the variables 

when generating data for the overt bias scenario. Next, the correlation between the 
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treatment assignment variables (x1, x2) with the error term of outcome (v) model was set 

to uncorrelated. The same matrix was used, except that the correlation estimates between 

the two treatment assignment variables (x1 and x2) with outcome error term (u) was set 

at .30, .50 and .70 to represent low, moderate, and high correlation. Three correlation 

matrices were used to generate data with different levels of overt bias. Within the three 

levels of overt bias, 200, 500 and 1000 observations were generated. This was to study 

the influence of sample size in overt bias. In total, nine datasets (3 correlation levels x 3 

sample sizes) with overt bias were generated.  Table 7 is an example of a correlation 

matrix for the small sample size (n=200) with a low level of overt bias (r=0.3).  The 

correlation imposing a low level of correlation is indicated in bold-face in the correlation 

matrix (Table 7).  

 

Table 7 

Correlation Matrix for the Small Level of Overt Bias 

  x1 x2 x3 x4 x5 x6 u V 

x1 1 0.15 0.12 0.1 0 0 0.30 0 

x2 0.15 1 0.10 0.12 0 0 0.30 0 

x3 0.12 0.10 1 0.13 0.09 0.08 0 0 

x4 0.10 0.12 0.13 1 0.13 0.11 0 0 

x5 0 0 0.09 0.13 1 0.15 0 0 

x6 0 0 0.08 0.11 0.15 1 0 0 

U 0.30 0.30 0 0 0 0 1 0 

V 0 0 0 0 0 0 0 1 

 

Scenario 2: Hidden bias. Source bias in a selection process that cannot be 

modelled or observed directly is called hidden bias (Rosenbaum, 2002). Since the bias is 

unmeasurable, it cannot be corrected for in propensity score analysis. This becomes a 
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drawback in the application of propensity scores in correcting for biases. Hidden bias was 

modelled under scenario two. Similar to scenario one, the outcome variable was predicted 

by four independent variables (x1-x4) and a treatment variable (t). The following 

conditions were set in creating the second scenario.  First, the relationship between the 

explanatory variables was specified. Here, the correlations between the explanatory 

variables (x1-x6) were set to a low correlation, 0.10 to 0.20. The relationship between the 

variables was controlled to reduce potential variability in the generated data.  

Second, the correlations between independent variables (x1-x6) with treatment (v) 

and outcome (u) error terms were set to zero. This ensured that both treatment and 

outcome variables were correctly measured without omitting any independent variables. 

Next, the means of the treatment assignment variables (x1-x4) was set to be different 

across treatment and control groups. This was to establish imbalances in the covariate 

distribution across treatment and control groups. Finally, the treatment (v) and outcome 

(u) errors were set to be correlated. The unexplained variability in the treatment and 

outcome variables after accounting for the independent variables refers to error terms. 

When the error terms were set to be correlated, it imposed hidden bias in the data. This is 

because the correlation between errors means that there are unmeasured or unidentified 

potential factors influencing treatment assignment that will result in biased estimates. The 

association between treatment (v) and outcome (u) error terms was set at .30, .50 and .70 

to represent low, moderate, and high correlations. The correlation imposing hidden bias is 

highlighted in the dotted line in Figure 3. The summary of the conditions defined for 
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scenario 2 (Table 8) and the respective correlation matrix (Table 9) to generate data for 

scenario 2 are described after Figure 3.   

 

 

Figure 3. 

Model for Scenario 2 (Hidden Bias) Illustrating the Relationship between Treatment and 

Outcome Variables 

 

 

 

 

 

 

X3 X4 

Treatment (g) Outcome (y) 

X1 X2 

u v 

X5 X6 
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Table 8 

Summary of the Conditions Set for Scenario 2 

No Condition Explanation 

1 All six independent variables (x1-x6) 

were set significantly uncorrelated. 

This was to control for potential 

variability that will be introduced 

by correlations in the data. 

2 Treatment assignment variables (x1-x4) 

were independent of the treatment 

variables error term (v).  

Error term assured that treatment 

variable was accurately specified 

by the four variables. 

3 Variables that predict outcomes (x3-x6) 

was set to be independent of the outcome 

variable’s error term (u). 

This was to specify that there were 

no variables related to treatment 

assignment omitted in estimating 

the outcome. 

4 Means of (x1-x4) variables were set to be 

different across the treatments and 

control group. 

The purpose was to install 

imbalances in the covariate 

distribution across treatments and 

control groups.  

5 Both treatment (v) and outcome (u) error 

terms were set to be correlated. 

This ensured that there were 

unmeasured variables in treatment 

assignment omitted in estimating 

the outcome. 

 

For scenario 2, the following correlation matrix between the variables was 

specified. The correlations between the independent variables were in the range between 

0.10 and 0.20. The range was proposed to show little or no relationship between the 

variables when generating data for the hidden bias scenario. Next, the correlation 

between the treatment assignment variables (x1-x4) with the error term of the outcome 

(u) model was set to be zero. The correlation between error terms for treatment (u) and 
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outcome (v) was set at .30, .60 and .90 to represent small, moderate, and high correlation. 

Three correlation matrices were used to generate data with different levels of hidden bias. 

Within the three levels of hidden bias, 200, 500, and 1000 observations were generated. 

This was to study the influence of sample size in hidden bias. In total, nine datasets (3 

correlations x 3 sample sizes) with hidden bias were generated. Table 9 is an example of 

the correlation matrix for a low level of hidden bias. The correlation imposing low hidden 

bias is indicated in bold-face in the correlation matrix (Table 9).  

 

Table 9 

Correlation Matrix for the Small Level of Hidden Bias 

  x1 x2 x3 x4 x5 x6 u V 

x1 1 0.15 0.12 0.1 0 0 0 0 

x2 0.15 1 0.1 0.12 0 0 0 0 

x3 0.12 0.1 1 0.13 0.09 0.08 0 0 

x4 0.10 0.12 0.13 1 0.13 0.11 0 0 

x5 0 0 0.09 0.13 1 0.15 0 0 

x6 0 0 0.08 0.11 0.15 1 0 0 

U 0 0 0 0 0 0 1 0.3 

V 0 0 0 0 0 0 0.3 1 

 

Phase 2: Propensity score analysis 

Three propensity score techniques were used to account for bias in the data. 

Propensity score matching and weighting were performed using the TriMatch, and twang 

packages in R. To date, there is no available package in R for performing stratification. 

Therefore, I wrote a function in R for stratification analysis. Following is a description of 

each propensity score technique.  
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Matching. Propensity score matching was performed using TriMatch (Bryer, 

2013). Here, I describe the steps in TriMatch to obtain matched observations. First, the 

propensity score was estimated using three separate logistic regressions. In this study, 

three logistic regressions were conducted to estimate the likelihood of being in group 1 

versus 2, group 1 versus 3, and group 1 versus 2.  With three logistic regressions, each 

subject in the study had three propensity scores which were saved to the case record. The 

difference between the participant’s propensity score in the first group and the 

participant’s propensity score in groups 2 and 3 was computed. The difference was saved 

as the distance. The first observation from group 1 was selected. An observation from 

group 2 with the smallest distance from selected observation 1 was selected. 

Subsequently, an observation from group 3 with the smallest distance compared to 

selected observations from group 2 was identified. The distance of the selected 

observation from group 3 was compared to the selected observation from group 1. 

Observations with a distance less than a .25 caliper size were retained. The observations 

that met the minimal distance requirement were saved as matched triplets to the database.  

 

Stratification. Stratification is a process of dividing propensity scores into strata 

(Guo & Fraser, 2015). Individuals/observations with similar characteristics are grouped 

together into strata. There is to date no package in R that is able to run stratification for 

treatment with more than two levels.  Therefore, a function for the R software was 

created as part of the data analysis. Zanutto, Lu, and Hornik’s (2005) recommended steps 

in performing stratification in multiple treatment group was based on a single scalar 

approach. However, this study focused on the generalized propensity score approach. In 
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this study, the application of a stratification technique for two groups was extended to 

three groups. Following are the steps taken in conducting stratification in three groups. 

First, the observations that were assigned to treatment 1 and control groups were 

extracted and assembled into a group (group 1). Then, a propensity score was estimated 

for the participants in group 1 through logistic regression. The predicted probabilities 

indicating treatment group membership from logistic regression for group 1 were saved 

as the propensity scores. The propensity score for treatment 1 and control groups was 

stratified into five quintiles. As a result, the observations in treatment 1 and control were 

categorized into five strata.  The observations from treatment 1 and control that were 

assigned to the same stratum share the same propensity score value. The same procedure 

was repeated for observations assigned to treatment 2. For treatment 2, only the cases that 

were assigned to treatment 2 and control were used for stratification (group 2). At the 

end, two sets of data were created from the original dataset. In both group 1 and 2, the 

treatment and control observations were categorized into strata. The stratification 

approach helped to organize the data into strata prior to outcome analysis.  

 

Weighting. Propensity score weighting is another bias corrective technique under 

the general area of propensity score analysis. A propensity score is estimated and used as 

a weight to obtain a balanced sample (Imbens, 2000). The twang package in R was used 

to perform propensity score weighting. Following are the proposed steps in estimating 

propensity score weights for three treatment groups (McCaffrey et al., 2013). First, a 

treatment group was selected as the reference group. In this study, there were three levels 

of treatment (C, T1, and T2); control group (C) was set as the reference category. Next, 
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data that only contained individuals from the reference group (C) and individuals in 

group (T1) were extracted. The subset dataset contained individuals from group (C) and 

(T1). The propensity score 𝑝1(𝑋𝑖) was computed using a Generalized Boosted Model 

(GBM) for the individuals as the probability of being in treatment exposure (T1) versus 

(C). Then, the estimated propensity scores were transformed into odds ratios (OR) using 

equation 11: 

𝑂𝑅 =  
𝑝̃1(𝑋𝑖)

(1−𝑝̃1(𝑋𝑖))
                                                                                                           (14) 

The odds ratio for the last category (T2) was set to 1. Then, the computed odds ratio was 

transformed back to a probability (propensity score) so that they are on the same scale 

using Equation 12: 

 𝑝̂𝑡 (𝑋𝑖) =  
𝑂𝑅𝑖𝑡

∑ 𝑂𝑅𝑖𝑗
𝑀
𝑗=1

                                                                                                       (15) 

where 𝑂𝑅𝑖𝑡 is odds ratio for ith individual in t group and  ∑ 𝑂𝑅𝑖𝑗
𝑀
𝑗=1  is the total odds ratio 

from all three groups. The computed probability was used as the weight in estimating the 

outcome. The Toolkit for non-equivalent group (twang) package in R is available for 

performing propensity score weighting for multiple treatment groups. However, the 

package only uses a Generalized Boosted Regression Model to estimate propensity 

scores. This has been identified as one of the limitations of this study.  

Phase 3: Outcome analysis 

Average Treatment Effect (ATE) was computed for each dataset after applying 

propensity score techniques. ATE is the mean outcome difference between two 

comparison groups. In this study, two ATE’s were computed from two pairwise 
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comparisons. Two pairwise comparisons are treatment 1 versus control, and treatment 2 

versus control. The mean outcome differences within the pairwise comparisons were 

estimated as the average treatment effects. Following are the steps in estimating ATE 

after matching, stratification, and weighting approaches. 

Matching. Repeated measures ANOVA was performed on the matched data. 

Then, post-hoc analysis was performed across two pairwise comparisons to estimate the 

mean differences. The two pairwise comparisons were (1) treatment 1 vs control, and (2) 

treatment 2 vs control. For each pairwise comparison, the difference between the true and 

estimated average treatment effect (ATE) was computed using Equation 16 

Bias = Computed treatment effect – True treatment effect                                (16) 

True average treatment effect is one of parameters that was pre-determined when 

generating data in phase 1. The amount of bias from the true ATE for all two 

comparisons was computed and compared across propensity score techniques. 

Stratification. In stratification, the difference between the mean outcomes of the 

treatment and control group was estimated for each stratum. Then, the difference between 

the mean outcomes of treatment and control was averaged across all five quintiles. For 

example in group 1, the difference between the mean outcome of treatment 1 and mean 

outcome of control group was estimated within each quintiles 1-5. The differences across 

the quintiles were averaged to represent the treatment effect of the group. The treatment 

effect of the groups was the ATE. Two ATE’s were computed and they were 

comparisons between the averaged outcome of treatment 1 versus control, and treatment 
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2 versus control. Then, the difference between the true and estimated ATEs was 

computed using Equation 13. The amount of bias from the true ATE for both the 

comparisons was computed to compare across propensity score techniques.  

Weighting. A weighted regression on treatment was performed to assess the 

effect on the outcome. The control group was set as the reference category in creating 

two dummy variables. The outcome was regressed on two dummy coded treatment 

variables to estimate the treatment effect. The estimated coefficient for dummy treatment 

variable 1 (𝛽1)  represents the ATE for treatment 1 relative to control. The coefficient 

from the second dummy treatment variable (𝛽2) represents the ATE for treatment 2 

relative to control. These computed ATE’s were compared to the true ATEs using 

equation 13 to estimate the bias. The computed bias estimations were saved to make 

comparisons across propensity score techniques.  

Summary of the Analysis 

Within each scenario, 27 (3 levels of bias x 3 sample sizes x 3 propensity score 

techniques) datasets were generated. Therefore, for overt and hidden bias scenarios, a 

total of 54 data conditions were generated to assess the ATE.  Next, each of the 54 data 

conditions was replicated 1000 times. The difference between the true and estimated 

ATE for the 1000 replications within each condition was calculated and stored. For each 

of the 27 conditions under overt bias, the difference between true and estimated treatment 

effect for each replication was indexed into Excel files. These 27 files were reformatted 

by including the information regarding conditions in addition to the difference between 
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true and estimated treatment effect values. The 27 data files with a total of 27000 (27 x 

1000) observations was merged into a single file for further analysis.  

Analysis of variance (ANOVA) was used to evaluate the performance of the three 

propensity score techniques under different data conditions. Two 3x3x3x2 analyses of 

variance were conducted to evaluate the effects of propensity score technique 

(technique), level of bias (level), sample size (sample size), and type of treatment effect 

(effect) on the amount of bias in estimating the treatment effect under overt and hidden 

bias conditions. The main and interaction effects of the four factors on the amount of bias 

in estimating the treatment effect were examined. All the analyses were performed using 

R statistical software. The Statistical Package for the Social Sciences (SPSS) package 

was used to generate plots. Figure 4 is a visual representation of the analysis procedure.  
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Figure 4  

Visual Representation of the Analysis Procedure 
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Chapter Three: Results 

 

Introduction 

The ultimate goal of this study was to determine the propensity score technique 

that performs the best under different conditions. The success of a propensity score 

technique addressing selection biases is determined through the estimated treatment 

effects. Treatment effect (effect size) is the difference between the means of treatment 

and control group outcomes. In this study, two effect sizes were computed and they were 

(1) difference between treatment 1 and control, and (2) difference between treatment 2 

and control. The estimated effect sizes were compared to the pre-defined true effect sizes. 

In this simulation, the true treatment effect between treatment 1 and control was set to be 

5 and the difference between treatment 2 and control was set at 15. The differences 

between the computed effect size 1 and 5, and effect size 2 and 15 were computed as the 

amount of bias. If the amount of bias is zero, then the true and estimated effect sizes are 

the same. Thus, there is no bias in estimating the treatment effect. If the amount of bias is 

lower than zero (negative estimate) then the estimated treatment effect size is lower than 

the true effect size. A lower value indicates an underestimation of the treatment effect. 

The treatment effect is considered overestimated if the difference between the estimated 

and true treatment effect size (amount of bias) is greater than zero.  
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The chapter begins with an overview of the results and proceeds to a detailed 

description of the findings. This chapter is organized into two sections and they are 

results related to (1) descriptive and (2) inferential analyses. The descriptive analysis 

section includes an overall summary of the amount of bias found under the overt and the 

hidden bias condition. In the inferential analysis section, a detailed description of 4-way 

analyses of variance (ANOVA) is presented. The description of the 4-way ANOVAs, 

assumption checking, and the findings answering the research questions are presented for 

both overt and hidden bias under the inferential section.  

There was a large number of observations in both the overt and hidden bias 

conditions. The large number of observations (n=27,000) increased the power of 

detecting the smallest effect in the data. Therefore, effect size was computed to determine 

the significant contribution of each factor. Cohen’s rule of thumb specific for partial eta 

squared were used. Cohen’s rule of thumb for small, medium, and large partial eta-square 

was set at .10, .25, and .40 (Cohen, 1992). Partial eta-squared (effect size) of at least .10 

was needed for the factor to be considered significant instead of relying on the p-value 

(Hutchinson & Olmos, 1998). The partial eta-squared was used to assess the main and 

interaction effects from overt and hidden bias conditions. The evidence for the research 

questions is presented in the narrative and in tables. The findings were followed up with 

overall conclusions for both overt and hidden bias. The chapter concludes with the 

similarities and differences between the overt and hidden bias findings.   
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Section 1: Descriptive Analysis 

The difference between the true and estimated treatment effect size (amount of 

bias) was computed for each replication. The mean of the amount of bias for 1000 

replications for overt and hidden biases conditions was estimated. In Table 1, the mean 

amount of bias is presented for each level within technique, level of bias, sample size, 

and type of treatment effect size factors for overt and hidden bias. Overall, the treatment 

effect size estimates after propensity score adjustments were found to be lower than the 

true treatment effect size estimates. The amount of bias in estimating the treatment effect 

was found to be lower in the presence of hidden bias compared to overt bias conditions. 

The negative direction in the amount of bias for all four factors indicates that the 

treatment effect was underestimated after the selection bias adjustment (Table 10). Two 

4-way ANOVAs were conducted to further investigate the difference in the amount of 

bias within the levels of each factor and the interactions between the factors for overt and 

hidden bias conditions.    
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Table 10 

Summary of the Amount of Bias by Technique, Level of Overt Bias, Sample Size and 

Treatment Effect  

 
Overt bias Hidden bias 

Factor with levels N Mean SD N Mean SD 

Technique 

      Propensity score matching  18000 -1.06 0.33 18000 -0.52 0.30 

Propensity score stratification  18000 -1.19 0.84 18000 -0.72 0.84 

Propensity score weighting  18000 -0.75 0.23 18000 -0.40 0.19 

 
      

Level of  bias 
      

Small (r =.3) 18000 -0.82 0.55 18000 -0.54 0.54 

Medium (r =.5) 18000 -1.00 0.55 18000 -0.55 0.54 

Large (r = .7) 18000 -1.18 0.55 18000 -0.55 0.54 

 
      

Sample size 
      

Small (n = 200) 18000 -1.14 0.89 18000 -0.71 0.87 

Medium (n = 500) 18000 -0.93 0.31 18000 -0.47 0.25 

Large (n = 1000) 18000 -0.93 0.23 18000 -0.46 0.14 

 
      

Type of treatment effect 
      

Treatment effect 1 18000 -0.95 0.33 18000 -0.48 0.26 

Treatment effect  2 18000 -1.05 0.73 18000 -0.61 0.71 

 

Section 2: Inferential Analysis 

The inferential analysis section includes results from four-way ANOVAs for the 

overt and for the hidden bias conditions. First, the findings under the overt bias condition 

are discussed. Next, the results under the hidden bias condition are presented.  

Overt bias. Following is a description of the four-way ANOVA, assumptions, 

results, and the summary of the findings for the overt bias condition.   

Description of the four-way ANOVA. A 3x3x3x2 analysis of variance was 

conducted to evaluate the effects of propensity score technique (technique), level of overt 
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bias (level), sample size (sample size), and type of treatment effect (effect) on the amount 

of bias in estimating the treatment effect. A between-subjects factorial design was 

employed. The technique factor had three levels and they were (1) propensity score 

matching, (2) stratification using propensity scores, and (3) propensity score weighting. 

The three levels which comprised level of overt bias were (1) small, (2) medium, and (3) 

large. The sample size factor comprised three levels and they were (1) small, (2) medium, 

and (3) large. Lastly, the type of treatment effect consisted of (1) mean difference 

between treatment 1 and control (treatment effect 1), and (2) mean difference between 

treatment 2 and control (treatment effect 2).   

Assumption checking. While the independence assumption was met, a 

statistically significant violation of homogeneity of variance was found for technique, 

level of overt bias, sample size, and type of treatment effect. Normality was violated with 

skewness for the stratification technique and small and medium levels of overt bias. 

However, analysis of variance is robust with respect to violations of homogeneity of 

variance and normality with a sufficient number of cases and a balanced design. In this 

study, there were a large and equal number of cases in each cell.  

Findings from the four-way ANOVA. The main effects, two, three, and four-way 

interactions from ANOVA were used to examine if there was any difference due to 

propensity score technique, sample size, and level of overt bias in the amount of bias 

found in estimating the treatment effect. Following is the summary of the four-way 

ANOVA. Results from the ANOVA were divided and organized by the level of 

interactions between the factors. The omnibus results from the main and interaction 
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effects are reported with suggestions for follow up analysis (Table 11). Table 11 presents 

the interaction and main effects of the four factors along with the empirical findings and 

is followed by interpretation of the findings.   

Table 11 

Results from 4-way ANOVA with its Interpretations under Overt Bias Condition 

4-way and 3-way Interactions  for Overt Bias Condition 

Effect Results Interpretation and action 

Technique x Sample 

Size x Overt bias x 

Type 

F(8, 53946) = 0.05, p>.99, 

η2 =.0 
 The four-way interaction 

had no impact on 

estimating the  treatment 

effect 

Technique x Sample 

Size x Overt bias  

F(8, 53946) = 1.00, p =.43, 

η2 =.0 

 

 

 All three way-interactions 

between the independent 

variables had no 

substantial effect on the 

treatment effect estimation. 

Technique x Overt 

bias x Type 

F(4, 53946) = 0.11, p =.98, 

η2 =.0 

Technique x Sample 

Size x Type 

F(4, 53946) = 938.65, p < 

.001, η2 =.07 

Sample Size x Overt 

bias x Type 

F(4, 53946) = 0.05, p >.99, 

η2 =.0 

 

2-way Interactions for Overt Bias Condition 

Technique x Sample 

Size  

F(4, 53946) = 1710.16, p < 

.001, η2 =.11 
 The difference between 

propensity score 

technique in estimating 

the treatment effect was 

affected by the sample 

size.  

 The interaction was 

further investigated 

using simple effects 

and pairwise 

comparisons. 

Technique x Overt 

bias  

F(4, 53946) = 45.67, p < 

.001, η2 =.0 

 

 These two-way 

interactions between Technique x Type F(2, 53946) = 1061.20, p < 

.001, η2 =.04 
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Sample x Overt bias F(4, 53946) = 2.11, p = .08, 

η2 =.0 

the independent 

variables had negligible 

impact on the treatment 

effect estimation. 
Overt bias x Type F(2, 53946) = 1.98, p = 0.14, 

η2 =.0 

Sample x Type F(2, 53946) = 1013.48, p < 

.001, η2 =.04 

 

Main Effects for Hidden Bias Condition 

Technique F(2, 53946) = 4671.06, p < 

.001, η2 =.15 
 Technique had a small 

effect on the treatment 

effect estimation. 

 No follow up of the main 

effect was conducted due 

to the presence of 

technique by sample size 

interaction. 

 The interaction implies 

that the difference 

between the techniques 

differs by sample size. 

Sample Size F(2, 53946) = 1352.58, p < 

.001, η2 =.05 
 Sample size had no 

substantial effect on the 

treatment effect 

estimation 

Overt bias F(2, 53946) = 2984.62, p < 

.001, η2 =.10 
 Level of overt bias had a 

small effect on the 

treatment effect 

estimation. 

 Pairwise comparisons 

between levels of overt 

bias were explored. 

Type F(1, 53946) = 779.22, p < 

.001, η2 =.01 
 There was no difference 

in the amount of bias 

estimated in treatment 

effect 1 and treatment 

effect 2 
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Key Points from ANOVA Results for the Overt Bias Condition 

The four-way and three-way interactions had effect sizes substantially less 

than .10 and were considered negligible (Table 11). In addition, the two-way interactions 

between the variables also had negligible effects on the amount of bias in estimating 

treatment effect except for the technique by sample size interaction (η2 = .11). Only the 

main effect of overt bias, (η2 = .10) was found to have a substantial effect on the 

difference between the estimated and true treatment effect. Figure 1 is a visual 

representation of the results and follow up analysis. Following Figure 1 is the description 

of the follow up analysis for main and interaction effects from the four-way ANOVA. 

First, a pairwise comparison between the levels of overt bias is discussed as the follow up 

analysis for the significant main effect of overt bias. Subsequently, the results of a simple 

effects analysis and pairwise comparison were reported as the follow up to assess the 

significant interaction between propensity score technique and sample size.  
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Figure 5 

 

Visual Representation of the Results and Follow Up Analysis for Overt Bias Condition 
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Follow Up Analysis for the Main Effect  

 

Pairwise comparisons between levels of overt bias. The level of overt bias 

factor had a small effect (η2 = .10) on the amount of bias in estimating the treatment 

effect (Table 11). A Tukey post-hoc analysis with family-wise error correction was 

conducted at α = .05. The pairwise results show that there was a difference in the amount 

of bias estimated in the presence of overt bias. The amount of bias between large versus 

small overt bias was twice as large compared to medium versus small levels of overt bias 

(Table 12). Similarly, the amount of bias between large versus medium was half as large 

compared to large versus small levels of overt bias. The condition with a small level of 

overt bias had treatment effect estimates that were closer to the true values (Table 12). 

 

Table 12 

 

Mean, Standard Deviation, Difference and Confidence Interval Values for Levels of 

Overt Bias Factor 

 

  Mean SD   

Small -0.82 0.55 

 Medium -1.00 0.55 

 Large -1.18 0.55 

     95% CI 

Difference LB UB 

Medium vs Small -0.18 -0.19 -0.17 

Large vs Small -0.36 -0.37 -0.35 

Large vs Medium -0.18 -0.19 -0.17 
Note: LB = Lower bound, UB = Upper bound 
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Follow Up Analysis for the Interaction Effect  

 

Interaction effect between technique and sample size. The two way 

interactions between the variables had negligible effects on the amount of bias in 

estimating treatment effect except for the technique by sample size interaction (η2 = .11), 

(Table 11). The interaction suggests the performance of propensity score techniques 

differ by sample size. Figure 2 presents the interaction between technique and sample. 

The figure supports the existence of differences in the treatment effect estimation 

between propensity scores technique by sample size. The average amount of bias in 

estimating the treatment effect was different between the three techniques under the small 

sample size condition (Table 13). On the other hand, the three propensity score analysis 

techniques performed similarly in the medium and large sample size conditions. Simple 

effects analyses and pairwise comparisons were performed to explore the technique by 

sample interaction. The simple effects analysis was performed to assess the effect of 

propensity score techniques within each level of sample size (small, medium, and large).  

Table 13 

 

Means and Standard Deviation of Amount of Bias by Propensity Score Techniques and 

Sample Size 

  Sample size  

 
Small (n =200) Medium (n = 500) Large (n =1000) 

Technique  Mean SD Mean SD Mean SD 

Matching -1.07 0.43 -1.05 0.3 -1.05 0.25 

Stratification -1.65 1.29 -0.98 0.34 -0.95 0.19 

Weighting -0.70 0.28 -0.76 0.2 -0.79 0.18 
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Figure 6 

Interaction between Propensity Score Technique and Sample Size in Overt Bias  

 

Simple Effects Analysis on Technique by Sample Interaction 

 

The propensity score technique was found to have an impact for the small sample 

size condition, η2 =.17. The propensity score technique had a negligible effect for the 

medium and large sample size conditions. On the other hand, results showed that the 

three propensity score techniques performed differently under the small sample size level 

(Table 14). The difference between three propensity score techniques for the small 

sample size condition was explored using pairwise comparisons. The pairwise 
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comparisons were performed to address the role of sample size between propensity score 

techniques.  

Table 14 

 

Summary of Simple Effect Analysis on Technique by Sample Size Interaction 

 

Source SS df F p-value Effect size 

(η2) 

Small sample  2736.9 2 5380.52 < .001 .17 

Medium sample 278.5 2 547.53 < .001 .02 

Large sample 214.4 2 421.46 < .001 .02 

Within 13732.0 53991    

 

 

Pairwise Comparisons as a Follow Up to the Simple Effects Analysis 

 

In the small sample size condition, there was a difference in the amount of bias 

between stratification using propensity scores and propensity score weighting techniques 

(η2 =.16). On the other hand, there were no substantial differences between propensity 

score matching and propensity score weighting and between propensity score matching 

and stratification using propensity scores in estimating the treatment effect (Table 15). 

The amount of bias in estimating the treatment effect was lower for stratification using 

propensity scores (M = -1.65, SD = 1.29) compared to propensity score weighting (M =-

.70, SD = .28) (Table 13).  Result shows that stratification using propensity scores 

underestimated the treatment effect the most compared to matching and weighting 

approaches under the small sample size condition.   
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Table 15 

 

Summary of Pairwise Comparison Analysis of Propensity Score Technique in Small 

Sample 

 

Source SS Df F p-value Effect 

size(η2) 

Matching-Stratification 1013.27 1 3983.95 < .001 .07 

Matching-Weighting 401.56 1 1578.83 < .001 .03 

Stratification-

Weighting 

2690.58 1 10578.76 < .001 .16 

Within 13731.98 53991    

 

 

Summary for overt bias  

 

For overt bias, all three propensity score analysis techniques underestimated the 

treatment effect. The treatment effect estimates after correcting for selection biases were 

lower than the true treatment effect. The three propensity score techniques were found to 

perform differently in the small sample size condition. The stratification technique was 

found to underestimate the treatment effect the most compared to the matching and 

weighting approach. The treatment effect estimate was closer to the true treatment effect 

when using the propensity score weighting adjustment approach. Results showed that the 

level of overt bias does influence the amount of bias in treatment estimation. The 

treatment effect estimates were closer to the true effect in the presences of small overt 

bias. Propensity score techniques were found to be insensitive to the presence of small, 

medium, and large levels of overt bias in the data.  
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Section 2: Inferential Analysis 

Hidden bias. Following is the description of the four-way ANOVA, assumptions, 

results, and the summary of the findings for hidden bias condition. In this section, the 

impact of the four factors on the amount of bias in estimating treatment effect was 

examined on the data for the hidden bias condition.  

Description of the four-way ANOVA. A 3x3x3x2 analysis of variance was 

conducted to evaluate the effects of propensity score technique (technique), level of 

hidden bias (level), sample size (sample size), and type of treatment effect (type) on the 

amount of bias in estimating the treatment effect. A between-subjects factorial design 

was employed. The technique factor had three levels and they were (1) propensity score 

matching, (2) stratification using propensity scores, and (3) propensity score weighting. 

The three levels which comprised level of hidden bias were (1) small, (2) medium, and 

(3) large. The sample size factor comprised three levels and they were (1) small, (2) 

medium, and (3) large. Lastly, the type of treatment effect consisted of (1) mean 

difference between treatment 1 and control (treatment effect 1), and (2) mean difference 

between treatment 2 and control (treatment effect 2).   

Assumption checking. While the independence assumption was met, a 

statistically significant violation of homogeneity of variance was found for technique, 

level of overt bias, sample size, and type of treatment effect. Normality was violated with 

skewness of stratification technique and small and medium levels of hidden bias.  

Findings from the four-way ANOVA. The main effects, two, three, and four-way 

interactions from ANOVA were used to examine if there was any influence of propensity 
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score technique, sample sizes, and level of hidden bias in the amount of bias in estimating 

the treatment effect. Following is the summary of the four-way ANOVA. Results from 

the ANOVA were divided and organized by the level of interaction between the factors. 

The omnibus results from the main and interaction effects are reported with suggestions 

for follow up analysis (Table 16).   

Table 16 

Results from 4-way ANOVA with its Interpretations under Hidden Bias Condition 

4-way and 3-way Interactions  for Hidden Bias Condition 

Effect Results Interpretation and action 

Technique x Sample 

x Overt bias x Type 

F(8, 53946) = 0, p >.99, η2 

=.0 
 The four-way interaction 

had no impact on 

estimating treatment 

effect 

Technique x Sample 

x Hidden bias  

F(8, 53946) = 0.20, p >.99, 

η2 =.0 
 All three way-

interactions between the 

independent variables 

had negligible effect on 

the treatment effect 

estimation. 

Technique x Hidden 

bias x Type 

F(4, 53946) = 0, p >.99, η2 

=.0 

Technique x Sample 

x Type 

F(4, 53946) = 960.93, p < 

.001, η2 =.07 

Sample x Hidden 

bias x Type 

F(4, 53946) = 0, p >.99, η2 

=.0 

 

2-way Interactions for Hidden Bias Condition 

Technique x Sample  F(4, 53946) = 1591.62, p < 

.001, η2 =.11 
 The difference between 

propensity score 

techniques in estimating 

treatment effect was 

affected by the sample 

size.  

 The interaction was 

further investigated using 

simple effect and 

pairwise comparisons. 
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Technique x Overt 

bias  

F(4, 53946) = 45.67, p < 

.001, η2 =.0 
 These two-way 

interactions between the 

independent variables 

had no substantial impact 

on the amount of bias in 

treatment estimation. 

Technique x Type F(2, 53946) = 1061.20, p < 

.001, η2 =.04 

Sample x Overt bias F(4, 53946) = 2.11, p = .08, 

η2 =.0 

Overt bias x Type F(2, 53946) = 1.98, p = 0.14, 

η2 =.0 

Sample x Type F(2, 53946) = 1013.48, p < 

.001, η2 =.04 

 

   Main Effects for Hidden Bias Condition 

Technique F(2, 53946) = 2231.96, p < 

.001, η2 =.08 
 Techniques had negligible 

impact on the amount of 

bias in estimating 

treatment effect 

Sample F(2, 53946) = 1731.64, p < 

.001, η2 =.06 
 Sample had no substantial 

effect on the amount of 

bias in treatment 

estimation 

Hidden bias F(2, 53946) = 0.20, p = .82, 

η2 =.0 
 Level of overt bias had no 

substantial effect on the 

treatment estimation. 

Type F(1, 53946) = 1104.97, p < 

.001, η2 =.02 
 There was no considerable 

difference in the amount of 

bias estimated in treatment 

effect 1 and treatment 

effect 2 

 

Key Points from ANOVA on Hidden Bias Condition 

All the four-way and three-way interactions between the independent variables 

(technique, sample size, level of hidden bias, type of effect size) had negligible effect on 

the treatment effect estimate. All two-way interactions between the independent variables 

reported no effect except for the interaction between technique and sample size, η2 =.11 

(Table 16). The interaction suggests the performance of propensity score technique under 
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hidden bias is subject to sample size condition. In addition, the main effects of the four 

factors were negligible.  Figure 3 illustrates the summary of the findings with the follow 

up analysis. Following Figure 3 is the results from follow up analysis for the small 

interaction effect between technique and sample size. A simple effect and pairwise 

comparison were reported as the follow up to assess the significant interaction between 

propensity score technique and sample size.  
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Figure 7 

 

Visual Representation of the Results and Follow Up Analysis for Hidden Bias Condition 
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Follow Up Analysis for the Interaction Effect 

Interaction between technique and sample size. The two-way interaction 

between the variables had negligible effects on the amount of bias in estimating the 

treatment effect except for the technique by sample size interaction (η2 = .11) (Table 16). 

The interaction suggests the performance of propensity score techniques differed by 

sample size. Figure 4 presents the interaction between technique and sample. The figure 

supports the presence of differences between propensity scores technique by sample size. 

Simple effects analyses and pairwise comparisons were performed to explore the 

technique by sample interaction. The simple effects analysis was performed to assess the 

effect of propensity score techniques within each level of sample size (small, medium, 

and large). Next, pairwise comparisons were performed to assess the difference between 

the propensity scores in the small sample size condition. 

 

Table 17 

 

Means and Standard Deviation of Amount of Bias by Propensity Score Techniques and 

Sample Size in Hidden Bias 

  Sample size  

 
Small (n =200) Medium (n = 500) Large (n =1000) 

Technique  Mean SD Mean SD Mean SD 

Matching -.53 .42 -.51 .26 -.51 .18 

Stratification -1.19 1.29 -.49 .31 -.47 .11 

Weighting -.70 .28 -.40 .16 -.40 .11 
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Figure 8 

Interaction between Propensity Score Technique and Sample Size in Hidden Bias 

 

Simple Effect Analysis on Technique by Sample Interaction 

The propensity score technique was found to have an impact under the small 

sample size condition, η2 =.14 (Table 18). On the other hand, the propensity score 

technique had a negligible effect for the medium and large sample size conditions. 

Results showed that the three propensity score techniques performed differently under the 

small sample size condition (Table 18). The difference between the three propensity 

score techniques for the small sample size condition was explored using pairwise 
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comparisons. The pairwise comparisons were performed to address the influence of 

sample size between propensity score techniques.  

 

Table 18 

 

Summary of Simple Effect Analysis on Technique by Sample Size Interaction 

 

Source SS df F p-value Effect size 

(η2) 

Small sample 2142.10 2 4463.61 <.001 .14 

Medium sample 41.40 2 86.37 <.001 .003 

Large sample 38.30 2 79.86 <.001 .004 

Within 12954.90 53991    

 

 

Pairwise Comparisons as a Follow Up to the Simple Effects Analysis 

 

There was a difference in the amount of bias in estimating the treatment effect 

between stratification using propensity scores and propensity score weighting techniques 

(η2 =.13) (Table 19). On the other hand, there were no differences between propensity 

score matching and propensity score weighting and between propensity score matching 

and stratification using propensity scores in estimating the treatment effect under the 

small sample size condition (Table 19). The amount of bias in estimating the treatment 

effect was lower for stratification using propensity scores (M = -1.19, SD = 1.29) 

compared to propensity score weighting (M =-.70, SD = .28) (Table 17). The 

stratification approach found to have most underestimated treatment effect compared to 

matching and weighting under the small sample size condition.   
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Table 19 

 

Summary of Pairwise Comparison Analysis of Propensity Score Technique on Small 

Sample 

 

Source SS df F p-value Effect size 

(η2) 

Matching-Stratification 5415.56 1 5415.56 <.001 .09 

Matching-Weighting 210.97 1 210.97 <.001 .004 

Stratification-

Weighting 

7764.31 1 7764.31 <.001 .13 

Within 12954.92 53991    

 

Summary of Hidden Bias Findings 

 

In the context of hidden bias, all three propensity score analysis techniques 

underestimated the treatment effect. The treatment effect estimates after correcting for 

selection biases were lower than the true treatment effect. The three propensity score 

techniques were found to perform differently in the small sample size condition. In the 

small sample size condition, the stratification technique was found to underestimate the 

treatment effect more than the matching and weighting approaches. The treatment effect 

estimate was closer to the true treatment effect when using the propensity score 

weighting adjustment approach. In addition, the presence of hidden bias found to have no 

impact on the performance propensity score techniques. The three propensity score 

techniques worked similarly despite the various levels of hidden bias.  

Overall Summary from both Overt and Hidden Bias Findings 

The findings for overt and hidden biases were similar. Results showed that 

propensity score techniques performed differently in the small sample size condition 

under both overt and hidden biases. There were no differences in the performance of 

three propensity score techniques for medium and large sample sizes for either overt or 
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hidden biases. The level of overt bias was found to have a substantial effect on the 

estimation of the treatment effect. On the other hand, the level of hidden bias had no 

impact on estimating the treatment effect. The propensity score technique worked the 

best, especially at the small level of overt bias conditions. Findings suggest no difference 

between the three propensity score analysis techniques in multiple groups. However, 

practitioners need to be cautious about the use of stratification on propensity scores in 

small samples. The stratification on propensity score technique under the small sample 

size condition had the tendency to more severely underestimate the treatment effect. As a 

result, the treatment effect estimate is reported to be lower than the true effect. In the 

small sample size condition, a propensity score weighting adjustment provided a 

treatment effect that was closer to the true treatment effect. Results also inform the use of 

propensity scores in adjusting observable selection bias compared to hidden bias.  
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Chapter Four: Discussion 

Introduction 

This chapter includes a summary of the primary findings with regard to the 

research questions. The findings were synthesized to provide recommendations for the 

users of propensity score analysis techniques in multiple treatment groups. Further, the 

limitations of this study are presented with suggestions for further research.  

Propensity score analysis techniques have received a great deal of attention from 

researchers working with quasi-experimental or observational data. As a result, 

propensity score analyses are widely used in numerous disciplines such as medicine 

(Austin, 2011, D’Agostino, 1998), economics (Hirano & Imben, 2008), and statistics 

(Rosenbaum, 2002; Stuart, 2010). The increasing use of propensity score techniques in 

the field is due in part to their credibility in reducing the impact of treatment-selection 

bias in the estimation of treatment effect using quasi-experimental or observational data. 

While propensity score analysis techniques serve as a tool for controlling selection bias, 

there remain concerns about their application.  

Austin (2008), in a systematic review, raised concerns about the application of 

propensity score analysis techniques among researchers. Researchers were found to have 
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misused or misunderstood the application of propensity score analysis (Stuart, 2008). As 

a consequence of poor application of propensity score analysis, researchers such as 

Caliendo and Koeping (2008) and D’Agostino (1998) started creating guidelines 

suggesting best practices for the use of propensity score analysis. Many of the guidelines 

are specific to a discipline such as educational research (Randolph, Fable, Manuel, & 

Balloun, 2014), community psychology (Lanza, Moore & Butera, 2013), and biostatistics 

(Austin, 2008; D’Agostino, 1998). These guidelines explain the practical concerns 

associated with every step in implementing a propensity score analysis. However, 

drawbacks of these guidelines are that they are designed for a specific type of propensity 

score analysis. For instance, the Randolph et al. (2014) paper focused on explaining the 

steps in the application of propensity score matching. But there are no clear guidelines 

available for the selection of a propensity score technique. Similarly, there is lack of 

guidance for selecting a propensity score technique with multiple treatment groups. 

Given that propensity score analysis in multiple treatment groups is new, this paper 

proposes some initial guidelines in the selection of a suitable propensity score technique.  

Therefore, this study was conducted to determine the performance of different 

propensity score techniques with multiple treatment groups under various circumstances. 

The aim was to determine practical recommendations in deciding on a propensity score 

technique. Therefore, the performance of propensity score matching, stratification, and 

weighting techniques in multiple treatment groups were tested under different sample 

size conditions and levels of overt and hidden bias. The purpose was to gather 

information to help select an appropriate propensity score technique. In the next section 
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the primary findings with regard to the factors influencing the performance of the 

propensity score techniques are discussed.  

The Primary Findings of this Study 

A number of critical discoveries were made about the performance of propensity 

score techniques in multiple treatment groups. First, the treatment effects after the 

propensity score adjustment were underestimated for both overt and hidden bias 

conditions. Next, the simulation outlined the influence of the levels of overt and hidden 

bias in the performance of propensity score techniques. Finally, the propensity scores 

were found to behave differently under various sample sizes for both overt and hidden 

bias. In the following section, each of the critical discoveries is discussed in depth.  

Under-estimation of treatment effect under overt and hidden bias. 

Overt bias. Results showed that the treatment effect after the propensity score 

adjustments was lower for both the overt and hidden bias conditions. The estimated 

treatment effect after the propensity score adjustments were made was lower than the true 

estimates of the effect.   Propensity score analysis is used to balance non-equivalent 

groups prior to any treatment estimation (Luellen, Shadish, & Clark, 2005). Covariates 

that cause imbalance between the groups are modeled to compute the propensity score 

estimate. The distributions of the covariates are forced to be similar across the groups 

under the conditional propensity score estimate. As a result, the observable variability 

within the groups is reduced to make the groups comparable. When the groups are 

comparable, potential explanations for the treatment effect due to differences in the 
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covariate distribution can be ruled out. Consequently, the observed effect can be 

attributed solely to the treatment. In addition, the adjustments to the within group 

variability might have removed the random or sampling variability within the groups. 

Forcing the distributions to be similar could have caused loss of sampling variability. The 

potential reduction of the sampling and systematic selection bias variability would have 

yielded a smaller treatment effect estimate. These could be potential explanations for 

observing an underestimated treatment effect after propensity score adjustments.  

However, this is just my hypothesis and it needs to be explored. The presumed claims of 

propensity score analysis removing the random or sampling variability requires further 

investigation.  

 Hidden bias. The estimated treatment effect after propensity score adjustments 

was also lower than the true effect in the presence of hidden bias. Knowing that 

propensity score techniques can only account for observable selection bias in the data, the 

lower treatment effect estimate was indeed an interesting discovery. Even under hidden 

bias, propensity score techniques appeared to have adjusted the variability between the 

groups. But, the amount of bias in the treatment effect was smaller under the hidden bias 

compared to the overt bias condition. The treatment effect estimate under hidden bias was 

found to be closer to the true value compared to the treatment effect estimate under overt 

bias. Like in overt bias, propensity score adjustment seems to have adjusted the random 

or sampling variability within the groups. But, it is suspected that no adjustments were 

made between the groups on the observed covariates. This is because, the treatments and 

control groups probably had balanced covariate distributions prior to propensity score 
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adjustments. Therefore, enforcing propensity score technique under the balanced 

observed distribution would not make a difference in the distribution of the covariates 

and in the treatment effect estimation. This is presumably the explanation for observing 

smaller treatment effect bias in the hidden than in the overt bias condition. Once again, 

this is my hypothesis and it requires further investigation.   

The underestimated treatment effect is an important finding from this study. It 

informs users about the implications of using propensity score techniques in addressing 

selection bias. The treatment effect after the propensity score adjustment is expected to be 

lower than the true effect. Although underestimation of the treatment effect is probably 

better than overestimating the effect, it still introduces downward bias in estimating the 

treatment effect. The underestimation bias could introduce Type 2 error concerns where a 

substantial treatment effect is present but fails to be observed due to the propensity score 

analysis adjustments. This leads to the possibility of ignoring the presence of a true 

treatment effect. Furthermore, there is no indication of how much lower the treatment 

effect estimate may be after the application of a propensity score analysis technique. It 

would be beneficial to know how much lower the treatment estimates are in order to 

adjust the final effect. For example, suppose that the treatment estimate after propensity 

score analysis is 0.5 lower than the true estimate. Then, we can use the value to correct 

for the underestimated treatment effect. But, there is no method available in detecting the 

range of downward bias to correct for the underestimation of the treatment effect.   
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Propensity score techniques under different levels of overt and hidden bias. 

Overt bias. The level of overt bias had an impact on the estimate of the treatment 

effect. The treatment effect estimates were closer to the true value in the presence of a 

small level of overt bias. When propensity score techniques were used with a small level 

of overt bias, the technique adjusts for the bias and results in a treatment effect closer to 

the true value. Results showed an inverse positive relationship between the level of overt 

bias and the amount of bias in estimating the treatment effect. As the level of bias 

increased by .2 units, the treatment effect value increased by .18 units. As the level of 

bias increased from small (.3) to medium (.5), the difference between the estimated and 

true treatment effect increased  from -.82 to -1.00. The same association between the 

level of overt bias and the treatment effect estimate was observed in the comparison 

between medium and high levels of overt bias. Given a high level of overt bias, the 

treatment effect tends to be lower than the true estimate. Therefore, adjusting for smaller 

overt bias will have treatment effects that are closer to the true estimate. Although the 

adjustment works well with a small level of overt bias, there is no one best approach 

between matching, stratification, and weighting in correcting for overt bias in the data. 

This suggests that users can use any of three techniques in data with a small level of overt 

bias and no difference in the treatment effect estimate is likely.    

Knowing that the treatment effect is sensitive to the level of overt bias, steps 

should be taken to model the presence of overt bias prior to implementing a propensity 

score analysis. But, the question is how to assess the level of bias in a dataset. Usually, 

the presence of selection bias is determined through balance assessment. A common 
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balance assessment includes assessment of the standardized mean difference, independent 

groups t-test, and a correlation test (Guo & Fraser, 205). In some cases, the Kolmogorov-

Smirnov test is used to test balance by comparing the distribution of the variables 

between groups (Ali et al., 2014). However, the statistical tests and standardized mean 

differences between the groups indicates the difference between them on each variable 

but not the level of bias. A possible way to assess bias is to assess the relationship 

between the residuals from the outcome to the potential covariates used in estimating 

propensity scores. Using a regression model, the covariates could be regressed on the 

residuals from outcomes to determine the magnitude of the relationship. The magnitude 

of the relationship could be an indicator of the level of overt bias. However, the 

application of a regression model is a suggestion and requires further exploration.    

Hidden bias. Contrary to findings for the presence of overt bias, hidden bias was 

found to have no impact on the estimate of the treatment effect. Under different levels of 

hidden bias, the adjustment using propensity score techniques did not affect the estimate 

of the treatment effect, meaning that the level of hidden bias does not affect the 

performance of propensity score techniques. The advantage of this finding is 

confirmation of the role of propensity score techniques in adjusting for observable 

differences and not otherwise. Propensity score analysis adjusts the difference between 

the groups using the observed variables or characteristics (Luellen, Shadish, & Clark, 

2005). In hidden bias, the source of the bias is unknown and is harder to adjust for. In 

addition, the result is also beneficial in selecting an appropriate propensity score 

technique. If the propensity score technique is subjected to a level of hidden bias, then the 
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level of hidden bias will become a criterion in selecting propensity score technique. But 

in reality, it is harder to determine the sources and level of hidden bias in data. Learning 

that hidden bias has no impact on the performance of propensity score techniques was 

indeed encouraging. This is because it helps to narrow the options relating to the 

selection of propensity score techniques. Once again, the findings helped to clarify the 

role of propensity score techniques in the context of selection bias.  

There were no differences between the three propensity score techniques under 

the hidden bias condition. This suggests no differences in the use of matching, weighting, 

and stratification approaches under the presence of hidden bias. Therefore, even if there 

is hidden bias, the use of matching, weighting, or stratification does not matter in 

treatment effect estimation.  This finding is helpful in selecting a propensity score 

analysis technique because it helps to rule out potential considerations in deciding on the 

propensity score analysis technique. The presence of hidden bias is not a factor to be 

considered in selecting a propensity score analysis technique.  

Propensity score technique in different sample sizes. The three propensity 

score techniques were found to work differently under the small sample size condition. In 

the medium or large sample size conditions, the three techniques performed similarly. 

This is another key finding which will help in selecting an appropriate propensity score 

technique. Users need to pay attention to the type of propensity score analysis technique 

when the sample size is small (less or equal to 200). The weighting approach was found 

to work better in the small sample size condition compared to the matching and 

stratification approaches. In weighting, all the observations in the control and treatment 
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groups are used for the outcomes analysis (Guo & Fraser, 2015). The ability to retain the 

entire sample has the advantage of maintaining statistical power (Stone & Tang, 2013). In 

addition to that, the outcome analysis using the propensity score weights makes the 

treatment effect estimate doubly robust. A doubly robust treatment effect is a result of an 

outcome analysis combining regression analysis on the outcome with propensity scores 

as the weights (Funk, Westreich, Wiesen, Sturmer, Brookhart, & Davidian, 2011). The 

combination of the two approaches corrects the treatment effects twice and makes it 

doubly robust. On the other hand, stratification was found to have the lowest treatment 

effect estimate in the small sample size condition. In stratification, the difference between 

the outcome of treatment 2 and control groups (treatment effect 2 estimate) was lower 

compared to the difference between the outcome of treatment 1 and control (treatment 

effect 1 estimate).     

When investigated further, the number of observations in treatment group 2 was 

lower than the number of observations in treatment group 1. In this study, the ratios for 

observations in treatment 1 versus control and treatment 2 versus control were 1:1 and 

1:2. The number of observations in treatment 2 was smaller than the number of 

observations in treatment 1. In this study, every observation in treatment 2 had two 

potential control cases. The unequal number of observations within the treatment and 

control groups appeared to be problematic for stratification. In stratification, the 

propensity scores for each treatment and control group are divided into five strata. Then, 

the mean of the outcomes between the treatment and control groups are compared. The 

stratum with no treatment or control cases is discarded from the analysis. Thus means 
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that some observations are excluded from the analysis. As a result, a truncated sample is 

used to make the comparisons and to estimate the treatment effect. This could be the 

potential explanation of observing downward bias in the treatment effect estimates after 

the stratification adjustment. Thus suggests a relatively equal number of observations is 

needed in treatment and control groups for the stratification approach. This is 

contradictory to the requirement for the matching approach.  

In matching, a larger number of observations in control groups is preferable as it 

provides better matching options for the treatment cases (Austin, 2008d). In some 

instances, matching also recommends the use of 1 to N control observations for each 

treatment case (Bryer, 2013). Caliendo and Koeping (2008) suggest the use of more than 

one control case helps to reduce the variances and provides a better counterfactual for the 

treatment cases. This highlights the importance of the number of observations within 

each group in selecting a propensity score technique. In conclusion, researchers need to 

pay close attention to the sample size and the ratio of observations within the treatment 

and control groups prior to selection of a propensity score technique.    

General Conclusion  

Findings from this study provide four key pieces of information about the 

application of propensity score analysis in multiple treatment groups. The first key 

finding is that the effect of the treatment is underestimated after imposing propensity 

score adjustments. This is in accord with the literature on the treatment effect estimation 

after propensity score adjustments. In the presence of selection bias, the effect of a 
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treatment is presumed to be biased. When propensity score adjustment is used to control 

for selection bias, the technique tends to reduce the effect of the treatment (Pasta, 2000). 

As a result, the effect of the treatment is undervalued. This confirms that propensity score 

adjustments will underestimate the treatment effect estimate as found in this study.  

Second, the treatment effect estimates are affected by the level of overt bias. This 

finding underscored the need to address selection bias in the data prior to outcome 

analysis (Haro et al., 2006). Furthermore, the finding provided insights that propensity 

score techniques successfully reduced overt bias in the data. It certainly informs the role 

of the propensity score in controlling for overt selection bias (Rosenbaum & Rubin, 

1983). But, there has been no investigation of the association between different levels of 

overt bias and treatment effect estimate. Moreover, there is no theory or praxis to support 

the importance of different levels of overt bias when estimating the treatment effect. This 

makes it difficult to decide if the influence of different levels of overt bias in estimating 

treatment effect is an occurrence in real data or an artificial phenomenon resulting from a 

simulation condition.  

Third, propensity score analysis does not account for hidden bias. This finding 

supports the existing literature on the application of propensity score techniques. 

Propensity score analysis cannot account for hidden bias. Propensity score analysis by 

definition balances unequal group using the known and observed potential covariates 

(Pan & Bai, 2015). The definition clearly shows that propensity score analysis cannot 

handle unknown or unmeasured covariates in the data (Rosenbaum & Rubin, 1983). 

Failure in accounting for hidden bias reminds us of the limitation of propensity score 
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analysis in correcting for selection bias. Certainly, the result suggests greater attention in 

collecting all relevant information about treatment assignment is needed to avoid hidden 

bias problems (Haro et al., 2006).  

The fourth finding is that the propensity score techniques performed differently in 

a small sample size condition. Stratification is not a suggested technique with small 

sample sizes. The finding is consistent with previous literature in which the use of 

stratification in small samples is defined as a disadvantage in correcting for selection bias 

(Stone & Tang, 2013). Besides, stratification requires balanced observations between 

treatment and control groups. Due to the small sample, the stratum may not have enough 

cases of treatment or control observations to compute the treatment effect (Stone & Tang, 

2013). This result clarifies that the stratification technique is not preferable under small 

sample sizes. On the other hand, the literature suggested the use of propensity score 

matching and weighting techniques under the small sample size. Given the correct 

propensity score model, both matching and weighting yield correct treatment effect 

estimates under a small sample size condition (Pirracchio, Rigon & Chevret, 2012). 

Given that the findings were consistent with the literature, these four key findings provide 

cautionary notes to the users of propensity score analysis in multiple treatment groups.  

 

Limitations 

The application of default functions in conducting propensity score analysis is 

considered as a limitation to this study. In R, both Trimatch and twang packages are rich 
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in options for conducting matching and weighting. For example, there are at least two 

types of matching options available in the TriMatch package. In twang, users can 

determine ways of assessing the covariate balance between the groups in estimating a 

precise propensity score. But, for the purpose of this study, only the default functions of 

matching and weighting were tested. This limits the ability to examine the performance 

of different matching and weighting function options under various bias and sample size 

conditions.  

Another limitation of the study relates to the application of propensity score 

analysis. In this study, a correctly specified model was used in estimating the propensity 

scores. However, this is not typical in reality. Although the best practices for covariate 

selection are based on theoretical grounds, it is still dependent on the availability of the 

covariates. In this study, it was presumed that all the covariates were present and known 

to have impacted the selection bias. The continuous and normally distributed variables to 

operationalize propensity scores are also considered as a constraint to this study. In 

reality, the covariates to model propensity scores may be dichotomous, skewed, or have 

missing observations. The ideal conditions of the variables used in this study restrict the 

generalizability of the findings. Lastly, the Monte Carlo simulation allows the researcher 

to manipulate and control for the design and data to investigate the performance of 

statistical methods (Guo & Fraser, 2015). Despite the advantages, simulation limits the 

generalizability of its findings. In this study, the performance of propensity score 

techniques was tested on 54 data conditions. This is not an exhaustive list of options of 



96 
 

all the possible data conditions. Therefore, the results of the study are generalizable to 

studies with a similar scope.  

Recommendations for Future Research 

Only recently have propensity score analysis techniques been applied with 

multiple treatment groups. As a new and emerging technique, further investigation is 

needed to understand the strengths and weaknesses of the technique. This study was an 

attempt to determine the best practices of propensity score analysis in multiple treatment 

groups. The results and limitations of this study identified various areas that require 

further exploration.    

 

In this study, no one propensity score technique was identified as superior to 

another. This conclusion was derived using ideal data and propensity score model 

conditions. When the propensity scores are correctly defined, there is no difference 

between the use of matching, weighting, and stratification techniques. However, it is not 

always possible to know all the covariates that are causing selection bias. In such cases, 

the propensity score model might not be well defined and not accurate in adjusting for 

bias. Therefore, the impact of insufficient propensity score models in treatment effect 

estimation needs to be explored. Research is needed to determine the sensitivity of 

matching, weighting, and stratification techniques with poorly defined propensity score 

models. The results of such research will further inform us regarding the advantages and 

disadvantages of the different propensity score analysis techniques in more than two 

groups.  
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More research on the characteristics of the covariates influencing treatment 

assignment will be beneficial in assessing the performance of different propensity score 

techniques. In the current study, the information regarding the treatment assignment 

covariates was not fully maximized. All the covariates that were in the current study were 

normally distributed with complete observations. This would be an ideal condition in 

estimating the propensity score value. There were no differences observed between 

matching, stratification, and weighting under the ideal covariate conditions. But, more 

research is required to test the consistency of the finding across different covariate 

settings.  So, the performance of propensity score techniques should be explored on 

different covariate conditions such as skewed distributions or with different proportions 

of missing values. The findings from such research would enhance the understanding of 

different propensity score techniques in multiple treatment groups.    

Next, further research is required in exploring ways of assessing and conducting 

sensitivity analysis for hidden bias in multiple treatment groups. Rosenbaum (2002) 

introduced sensitivity analysis in the two group analysis. But there is no clear direction 

available for conducting sensitivity analysis in multiple treatment groups. Determining 

ways of testing for hidden bias in multiple treatment groups would be a substantial 

contribution to the literature. Also, there is a gap in the literature regarding assessing the 

performance of different algorithms in computing propensity scores. In two-group 

studies, complex algorithms such as the Generalized Boosted Models, and neural network 

techniques found to yield better propensity score estimates compared to the more 

commonly used logistic regression (Posner, 2008). However, the application of the 
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different propensity score estimation techniques have not been explored for studies with 

multiple treatment groups.  

In this study, two treatments and a control group were used to test the 

performance of different propensity score techniques. In both treatment and stratification, 

the same control groups were used for estimating treatment effect 1 and treatment effect 

2. The use of the same control twice would have introduced dependency in the treatment 

effect estimates. In matching, repeated measures ANOVA was used as a way of 

acknowledging the correlated outcomes. On the other hand, there were no corrections for 

the dependent outcomes introduced in the stratification or weighting approaches. Since 

stratification for the multiple treatment groups is introduced and presented for the first 

time in this context, it requires further investigation.  In weighting, the treatment effects 

were computed through a regular weighted regression analysis. There were no corrections 

applied in the regression analysis. The debate between the use of independent and 

dependent outcome analysis in two groups is ongoing and no consensus is available on 

the best approach for estimating the treatment effect (Austin, 2008; Stuart, 2010).  

Therefore, more research is required to determine the consequences of treatment effect 

estimates before and after correcting for dependency in multiple treatment groups. 
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Appendix A 

Correlation Matrix for Small, Medium and Large Overt and Hidden Bias 

 

    Correlation Matrix for Small Overt Bias 

  x1 x2 x3 x4 x5 x6 U v 

x1 1 0.15 0.12 0.10 0 0 0.30 0 

x2 0.15 1 0.10 0.12 0 0 0.30 0 

x3 0.12 0.1 1 0.13 0.09 0.08 0 0 

x4 0.10 0.12 0.13 1 0.13 0.11 0 0 

x5 0 0 0.09 0.13 1 0.15 0 0 

x6 0 0 0.08 0.11 0.15 1 0 0 

U 0.30 0.30 0 0 0 0 1 0 

V 0 0 0 0 0 0 0 1 

                  

Correlation Matrix for Medium Overt Bias 

 

  x1 x2 x3 x4 x5 x6 U v 

x1 1 0.15 0.12 0.10 0 0 0.50 0 

x2 0.15 1 0.10 0.12 0 0 0.50 0 

x3 0.12 0.10 1 0.13 0.09 0.08 0 0 

x4 0.10 0.12 0.13 1 0.13 0.11 0 0 

x5 0 0 0.09 0.13 1 0.15 0 0 

x6 0 0 0.08 0.11 0.15 1 0 0 

U 0.50 0.50 0 0 0 0 1 0 

V 0 0 0 0 0 0 0 1 

          

Correlation Matrix for Large Overt Bias 

 

  x1 x2 x3 x4 x5 x6 U v 

x1 1 0.15 0.12 0.10 0 0 0.70 0 

x2 0.15 1 0.10 0.12 0 0 0.70 0 

x3 0.12 0.10 1 0.13 0.09 0.08 0 0 

x4 0.10 0.12 0.13 1 0.13 0.11 0 0 

x5 0 0 0.09 0.13 1 0.15 0 0 

x6 0 0 0.08 0.11 0.15 1 0 0 

U 0.70 0.70 0 0 0 0 1 0 

V 0 0 0 0 0 0 0 1 
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   Correlation Matrix for Small Hidden Bias 

  x1 x2 x3 x4 x5 x6 u v 

x1 1 0.15 0.12 0.10 0 0 0 0 

x2 0.15 1 0.10 0.12 0 0 0 0 

x3 0.12 0.10 1 0.13 0.09 0.08 0 0 

x4 0.10 0.12 0.13 1 0.13 0.11 0 0 

x5 0 0 0.09 0.13 1 0.15 0 0 

x6 0 0 0.08 0.11 0.15 1 0 0 

U 0 0 0 0 0 0 1 0.30 

V 0 0 0 0 0 0 0.30 1 

          

Correlation Matrix for Medium Hidden Bias 

 

  x1 x2 x3 x4 x5 x6 u v 

x1 1 0.15 0.12 0.10 0 0 0 0 

x2 0.15 1 0.10 0.12 0 0 0 0 

x3 0.12 0.10 1 0.13 0.09 0.08 0 0 

x4 0.10 0.12 0.13 1 0.13 0.11 0 0 

x5 0 0 0.09 0.13 1 0.15 0 0 

x6 0 0 0.08 0.11 0.15 1 0 0 

U 0 0 0 0 0 0 1 0.50 

V 0 0 0 0 0 0 0.50 1 

          

Correlation Matrix for Large Hidden Bias 

 

  x1 x2 x3 x4 x5 x6 u v 

x1 1 0.15 0.12 0.10 0 0 0 0 

x2 0.15 1 0.10 0.12 0 0 0 0 

x3 0.12 0.10 1 0.13 0.09 0.08 0 0 

x4 0.10 0.12 0.13 1 0.13 0.11 0 0 

x5 0 0 0.09 0.13 1 0.15 0 0 

x6 0 0 0.08 0.11 0.15 1 0 0 

U 0 0 0 0 0 0 1 0.70 

V 0 0 0 0 0 0 0.70 1 
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Appendix B 

R scripts used to simulate data, conduct propensity score analysis and outcome analysis 

for matching, stratification and weighting  

 

Matching 

 

Condition 1 

#---- Condition 1 (a: Overt bias: Small correlation between X7 & X8 & u = .3, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, .30, 0, 

                    .15, 1, .10, .12, 0, 0, .30, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .30, .30, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 
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  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

## Setting the weight of the variables in estimating probabilities 

 c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

 t1 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

 t2 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

 L1 <-c1/((c1+t1+t2)) 

 L2 <-t1/((c1+t1+t2)) 

 L3 <-t2/((c1+t1+t2)) 

   

### Estimating different probabilities of being in treatment(s) and control groups 

### The three probabilities will be used in a multinomial distribution to generate the groups 

data$t<-rMultinom(p=cbind(L1, L2, L3)) 

### To save the number of cases in each group 

mytable <- table(data$t)  

nt1 <-mytable[1]   

nt2 <-mytable[2] 

nct <-mytable[3] 

   

## Estimate the ratio of cases in treatment(s) versus control groups 

### Ratio of cases in treatment 1 versus control 

ratio1 <-(nt1/nct) 

### Ratio of cases in treatment 2 versus control 

ratio2 <-(nt2/nct) 

   

## Create dummy variable from categorical variable 

data$d1 <- as.numeric(data$t == 1) 

data$d2 <- as.numeric(data$t == 2) 
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## create outcome (y) variable 

data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

## Recoding numeric variable into string (need to rename for Trimatch & twang) 

data$gs[data$t ==1] <- "Treat1" 

data$gs[data$t ==2] <- "Treat2" 

data$gs[data$t ==3] <- "Control" 

   

 

#---Manipulating the variables 

   

## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

### For x1, the mean difference between treatment 1 and O is set to be 0.8  

### For x1, the mean difference between treatment 2 and o is set to be 0.7 

 

### Setting the difference 

nx1 <-ifelse(data$t==1, 0.8,  

           ifelse(data$t==2, 0.7, 0)) 

## saving the adjusted variable into dataset 

data$newx1 <-(data$x1 + nx1) 

   

### For x2, the mean difference between treatment 1 and O is set to be 0.7  

### For x2, the mean difference between treatment 2 and o is set to be 0.8 

### Setting the difference 

nx2 <-ifelse(data$t==1, 0.7, 

           ifelse(data$t==2, 0.8, 0)) 

### saving the adjusted variable into dataset 

data$newx2 <-(data$x2 + nx2) 

   

### For x3, the mean difference between treatment 1 and O is set to be 0.6  

### For x3, the mean difference between treatment 2 and o is set to be 0.5 

### Setting the difference 

nx3 <-ifelse(data$t==1, 0.6, 

           ifelse(data$t==2, 0.5, 0)) 

### saving the adjusted variable into dataset 

data$newx3 <-(data$x3 + nx3) 
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### For x4, the mean difference between treatment 1 and O is set to be 0.5  

### For x4, the mean difference between treatment 2 and o is set to be 0.6 

### Setting the difference 

nx4 <-ifelse(data$t==1, 0.5, 

           ifelse(data$t==2, 0.6, 0)) 

 

### saving the adjusted variable into dataset 

data$newx4<-(data$x4 + nx4) 

   

##-------Phase 2: Descriptive statistics 

#---To examine the descriptive statistics of the variables 

## saving the dataset in csv format 

write.csv(data, "data1.csv") 

## Estimating the mean of outcome (y) in each group  

mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

mean 

## Estimating the mean difference 

### diff1 (Treatment 1 vs Control) 

diff1<- (mean$x[1] - mean$x[3]) 

### diff1 (Treatment 2 vs Control) 

diff2 <-(mean$x[2] - mean$x[3]) 

 

##-------Phase 3: Propensity score analysis using matching 

#---Running propensity score matching using TriMatch  

### (Caliper size = Default (.25), 1:1 match) 

library("TriMatch") 

## Estimate propensity score and find matching triplets 

form <- ~ newx1 + newx2 + newx3 + newx4 

tpsa <- trips(data, data$gs, formu = form) 

tmatch <-trimatch(tpsa, status = FALSE) 

   

## Estimating the outcome 

tmatch.out <- merge(tmatch, data$y) 

outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

tmatch.out$id <- 1:nrow(tmatch.out) 

out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

names(out) <- c("ID", "gment", "Outcome") 

matched.size <-length(tmatch.out$Control) 

 (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

 (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 



111 
 

   

## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate, t2$estimate) 

## (True mean difference is the mean difference from the original data) 

diffT1 <-t1$estimate-diff1 

diffT2 <-t2$estimate-diff2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

# Creating and labelling the final dataset 

cond      <-1 

technique <-1 

overtbias <-1 

sample    <-1 

 

Cond1 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond1 <- rename(Cond1, c(X1="difft1", X2 = "difft2")) 

## saving the final data set for further analysis 

write.csv(Cond1, "Cond1_trimatch.csv")     

Condition 2 

#---- Condition 2 (a: Overt bias: Small correlation between X7 & X8 & u = .3, b: small sample, 

n=500) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 
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## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, .30, 0, 

                    .15, 1, .10, .12, 0, 0, .30, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .30, .30, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

## Setting the weight of the variables in estimating probabilities 

 c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

 t1 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

 t2 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

 L1 <-c1/((c1+t1+t2)) 

 L2 <-t1/((c1+t1+t2)) 

 L3 <-t2/((c1+t1+t2)) 

   

### Estimating different probabilities of being in treatment(s) and control groups 

### The three probabilities will be used in a multinomial distribution to generate the groups 

data$t<-rMultinom(p=cbind(L1, L2, L3)) 
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### To save the number of cases in each group 

mytable <- table(data$t)  

nt1 <-mytable[1]   

nt2 <-mytable[2] 

nct <-mytable[3] 

   

## Estimate the ratio of cases in treatment(s) versus control groups 

### Ratio of cases in treatment 1 versus control 

ratio1 <-(nt1/nct) 

### Ratio of cases in treatment 2 versus control 

ratio2 <-(nt2/nct) 

   

## Create dummy variable from categorical variable 

data$d1 <- as.numeric(data$t == 1) 

data$d2 <- as.numeric(data$t == 2) 

   

## create outcome (y) variable 

data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

## Recoding numeric variable into string (need to rename for Trimatch & twang) 

data$gs[data$t ==1] <- "Treat1" 

data$gs[data$t ==2] <- "Treat2" 

data$gs[data$t ==3] <- "Control" 

   

#---Manipulating the variables 

   

## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

### For x1, the mean difference between treatment 1 and O is set to be 0.8  

### For x1, the mean difference between treatment 2 and o is set to be 0.7 

 

   

### Setting the difference 

nx1 <-ifelse(data$t==1, 0.8,  

           ifelse(data$t==2, 0.7, 0)) 

## saving the adjusted variable into dataset 

data$newx1 <-(data$x1 + nx1) 

   

### For x2, the mean difference between treatment 1 and O is set to be 0.7  
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### For x2, the mean difference between treatment 2 and o is set to be 0.8 

### Setting the difference 

nx2 <-ifelse(data$t==1, 0.7, 

           ifelse(data$t==2, 0.8, 0)) 

### saving the adjusted variable into dataset 

data$newx2 <-(data$x2 + nx2) 

   

### For x3, the mean difference between treatment 1 and O is set to be 0.6  

### For x3, the mean difference between treatment 2 and o is set to be 0.5 

### Setting the difference 

nx3 <-ifelse(data$t==1, 0.6, 

           ifelse(data$t==2, 0.5, 0)) 

### saving the adjusted variable into dataset 

data$newx3 <-(data$x3 + nx3) 

   

### For x4, the mean difference between treatment 1 and O is set to be 0.5  

### For x4, the mean difference between treatment 2 and o is set to be 0.6 

### Setting the difference 

nx4 <-ifelse(data$t==1, 0.5, 

           ifelse(data$t==2, 0.6, 0)) 

### saving the adjusted variable into dataset 

data$newx4<-(data$x4 + nx4) 

   

##-------Phase 2: Descriptive statistics 

#---To examine the descriptive statistics of the variables 

## saving the dataset in csv format 

write.csv(data, "data2.csv") 

## Estimating the mean of outcome (y) in each group  

mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

mean 

 

## Estimating the mean difference 

### diff1 (Treatment 1 vs Control) 

diff1<- (mean$x[1] - mean$x[3]) 

### diff1 (Treatment 2 vs Control) 

diff2 <-(mean$x[2] - mean$x[3]) 

 

 

##-------Phase 3: Propensity score analysis using matching 

#---Running propensity score matching using TriMatch  
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### (Caliper size = Default (.25), 1:1 match) 

library("TriMatch") 

## Estimate propensity score and find matching triplets 

form <- ~ newx1 + newx2 + newx3 + newx4 

tpsa <- trips(data, data$gs, formu = form) 

tmatch <-trimatch(tpsa, status = FALSE) 

   

## Estimating the outcome 

tmatch.out <- merge(tmatch, data$y) 

outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

tmatch.out$id <- 1:nrow(tmatch.out) 

out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

names(out) <- c("ID", "gment", "Outcome") 

matched.size <-length(tmatch.out$Control) 

 (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

 (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate, t2$estimate) 

## (True mean difference is the mean difference from the original data) 

   

diffT1 <-t1$estimate-diff1 

diffT2 <-t2$estimate-diff2 

   

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-2 

technique <-1 

overtbias <-1 

sample    <-2 

 

Cond2 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond2 <- rename(Cond1, c(X1="difft1", X2 = "difft2")) 

 

## saving the final data set for further analysis 

write.csv(Cond2, "Cond2_trimatch.csv")     
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Condition 3 

#---- Condition 3 (a: Overt bias: Small correlation between X7 & X8 & u = .3, b: large sample, 

=1000) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, .30, 0, 

                    .15, 1, .10, .12, 0, 0, .30, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .30, .30, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

#--Create the probability for being in Control, treatment 1 & treatment 2 

## Setting the weight of the variables in estimating probabilities 

 c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

 t1 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

 t2 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

 L1 <-c1/((c1+t1+t2)) 

 L2 <-t1/((c1+t1+t2)) 

 L3 <-t2/((c1+t1+t2)) 

   

### Estimating different probabilities of being in treatment(s) and control groups 

### The three probabilities will be used in a multinomial distribution to generate the groups 

data$t<-rMultinom(p=cbind(L1, L2, L3)) 

### To save the number of cases in each group 

mytable <- table(data$t)  

nt1 <-mytable[1]   

nt2 <-mytable[2] 

nct <-mytable[3] 

   

## Estimate the ratio of cases in treatment(s) versus control groups 

### Ratio of cases in treatment 1 versus control 

ratio1 <-(nt1/nct) 

### Ratio of cases in treatment 2 versus control 

ratio2 <-(nt2/nct) 

   

## Create dummy variable from categorical variable 

data$d1 <- as.numeric(data$t == 1) 

data$d2 <- as.numeric(data$t == 2) 

   

## create outcome (y) variable 

data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

## Recoding numeric variable into string (need to rename for Trimatch & twang) 
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data$gs[data$t ==1] <- "Treat1" 

data$gs[data$t ==2] <- "Treat2" 

data$gs[data$t ==3] <- "Control" 

   

#---Manipulating the variables 

   

## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

### For x1, the mean difference between treatment 1 and O is set to be 0.8  

### For x1, the mean difference between treatment 2 and o is set to be 0.7 

 

   

### Setting the difference 

nx1 <-ifelse(data$t==1, 0.8,  

           ifelse(data$t==2, 0.7, 0)) 

## saving the adjusted variable into dataset 

data$newx1 <-(data$x1 + nx1) 

   

### For x2, the mean difference between treatment 1 and O is set to be 0.7  

### For x2, the mean difference between treatment 2 and o is set to be 0.8 

### Setting the difference 

nx2 <-ifelse(data$t==1, 0.7, 

           ifelse(data$t==2, 0.8, 0)) 

### saving the adjusted variable into dataset 

data$newx2 <-(data$x2 + nx2) 

   

### For x3, the mean difference between treatment 1 and O is set to be 0.6  

### For x3, the mean difference between treatment 2 and o is set to be 0.5 

### Setting the difference 

nx3 <-ifelse(data$t==1, 0.6, 

           ifelse(data$t==2, 0.5, 0)) 

### saving the adjusted variable into dataset 

data$newx3 <-(data$x3 + nx3) 

   

### For x4, the mean difference between treatment 1 and O is set to be 0.5  

### For x4, the mean difference between treatment 2 and o is set to be 0.6 

### Setting the difference 

nx4 <-ifelse(data$t==1, 0.5, 

           ifelse(data$t==2, 0.6, 0)) 

### saving the adjusted variable into dataset 
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data$newx4<-(data$x4 + nx4) 

   

##-------Phase 2: Descriptive statistics 

#---To examine the descriptive statistics of the variables 

## saving the dataset in csv format 

write.csv(data, "data3.csv") 

## Estimating the mean of outcome (y) in each group  

mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

mean 

 

## Estimating the mean difference 

### diff1 (Treatment 1 vs Control) 

diff1<- (mean$x[1] - mean$x[3]) 

### diff1 (Treatment 2 vs Control) 

diff2 <-(mean$x[2] - mean$x[3]) 

 

##-------Phase 3: Propensity score analysis using matching 

#---Running propensity score matching using TriMatch  

### (Caliper size = Default (.25), 1:1 match) 

library("TriMatch") 

## Estimate propensity score and find matching triplets 

form <- ~ newx1 + newx2 + newx3 + newx4 

tpsa <- trips(data, data$gs, formu = form) 

tmatch <-trimatch(tpsa, status = FALSE) 

   

## Estimating the outcome 

tmatch.out <- merge(tmatch, data$y) 

outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

tmatch.out$id <- 1:nrow(tmatch.out) 

out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

names(out) <- c("ID", "gment", "Outcome") 

matched.size <-length(tmatch.out$Control) 

 (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

 (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate, t2$estimate) 

## (True mean difference is the mean difference from the original data) 

   

diffT1 <-t1$estimate-diff1 
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diffT2 <-t2$estimate-diff2 

   

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-3 

technique <-1 

overtbias <-1 

sample    <-3 

 

Cond3 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond3 <- rename(Cond3, c(X1="difft1", X2 = "difft2")) 

 

## saving the final data set for further analysis 

write.csv(Cond3, "Cond3_trimatch.csv")     

 

Condition 4 

#---- Condition 4 (a: Overt bias: Medium correlation between X7 & X8 & u = .5, b: small 

sample, n=200) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 
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## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, .50, 0, 

                    .15, 1, .10, .12, 0, 0, .50, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .50, .50, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

## Setting the weight of the variables in estimating probabilities 

 c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

 t1 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

 t2 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

 L1 <-c1/((c1+t1+t2)) 

 L2 <-t1/((c1+t1+t2)) 

 L3 <-t2/((c1+t1+t2)) 

   

### Estimating different probabilities of being in treatment(s) and control groups 

### The three probabilities will be used in a multinomial distribution to generate the groups 

data$t<-rMultinom(p=cbind(L1, L2, L3)) 
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### To save the number of cases in each group 

mytable <- table(data$t)  

nt1 <-mytable[1]   

nt2 <-mytable[2] 

nct <-mytable[3] 

   

## Estimate the ratio of cases in treatment(s) versus control groups 

### Ratio of cases in treatment 1 versus control 

ratio1 <-(nt1/nct) 

### Ratio of cases in treatment 2 versus control 

ratio2 <-(nt2/nct) 

   

## Create dummy variable from categorical variable 

data$d1 <- as.numeric(data$t == 1) 

data$d2 <- as.numeric(data$t == 2) 

   

## create outcome (y) variable 

data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

## Recoding numeric variable into string (need to rename for Trimatch & twang) 

data$gs[data$t ==1] <- "Treat1" 

data$gs[data$t ==2] <- "Treat2" 

data$gs[data$t ==3] <- "Control" 

   

#---Manipulating the variables 

   

## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

### For x1, the mean difference between treatment 1 and O is set to be 0.8  

### For x1, the mean difference between treatment 2 and o is set to be 0.7 

 

   

### Setting the difference 

nx1 <-ifelse(data$t==1, 0.8,  

           ifelse(data$t==2, 0.7, 0)) 

## saving the adjusted variable into dataset 

data$newx1 <-(data$x1 + nx1) 

   

### For x2, the mean difference between treatment 1 and O is set to be 0.7  
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### For x2, the mean difference between treatment 2 and o is set to be 0.8 

### Setting the difference 

nx2 <-ifelse(data$t==1, 0.7, 

           ifelse(data$t==2, 0.8, 0)) 

### saving the adjusted variable into dataset 

data$newx2 <-(data$x2 + nx2) 

   

### For x3, the mean difference between treatment 1 and O is set to be 0.6  

### For x3, the mean difference between treatment 2 and o is set to be 0.5 

### Setting the difference 

nx3 <-ifelse(data$t==1, 0.6, 

           ifelse(data$t==2, 0.5, 0)) 

### saving the adjusted variable into dataset 

data$newx3 <-(data$x3 + nx3) 

   

### For x4, the mean difference between treatment 1 and O is set to be 0.5  

### For x4, the mean difference between treatment 2 and o is set to be 0.6 

### Setting the difference 

nx4 <-ifelse(data$t==1, 0.5, 

           ifelse(data$t==2, 0.6, 0)) 

### saving the adjusted variable into dataset 

data$newx4<-(data$x4 + nx4) 

   

##-------Phase 2: Descriptive statistics 

#---To examine the descriptive statistics of the variables 

## saving the dataset in csv format 

write.csv(data, "data1.csv") 

## Estimating the mean of outcome (y) in each group  

mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

mean 

 

## Estimating the mean difference 

### diff1 (Treatment 1 vs Control) 

diff1<- (mean$x[1] - mean$x[3]) 

### diff1 (Treatment 2 vs Control) 

diff2 <-(mean$x[2] - mean$x[3]) 

 

##-------Phase 3: Propensity score analysis using matching 

#---Running propensity score matching using TriMatch  

### (Caliper size = Default (.25), 1:1 match) 
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library("TriMatch") 

## Estimate propensity score and find matching triplets 

form <- ~ newx1 + newx2 + newx3 + newx4 

tpsa <- trips(data, data$gs, formu = form) 

tmatch <-trimatch(tpsa, status = FALSE) 

   

## Estimating the outcome 

tmatch.out <- merge(tmatch, data$y) 

outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

tmatch.out$id <- 1:nrow(tmatch.out) 

out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

names(out) <- c("ID", "gment", "Outcome") 

matched.size <-length(tmatch.out$Control) 

 (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

 (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate, t2$estimate) 

## (True mean difference is the mean difference from the original data) 

   

diffT1 <-t1$estimate-diff1 

diffT2 <-t2$estimate-diff2 

   

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-1 

technique <-1 

overtbias <-1 

sample    <-1 

 

Cond1 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond1 <- rename(Cond1, c(X1="difft1", X2 = "difft2")) 

 

## saving the final data set for further analysis 

write.csv(Cond1, "Cond1_trimatch.csv")     
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Condition 5 

#---- Condition 5 (a: Overt bias: Medium correlation between X7 & X8 & u = .5, b: medium 

sample, n=500) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, .50, 0, 

                    .15, 1, .10, .12, 0, 0, .50, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .50, .50, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

## Setting the weight of the variables in estimating probabilities 

 c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

 t1 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

 t2 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

 L1 <-c1/((c1+t1+t2)) 

 L2 <-t1/((c1+t1+t2)) 

 L3 <-t2/((c1+t1+t2)) 

   

### Estimating different probabilities of being in treatment(s) and control groups 

### The three probabilities will be used in a multinomial distribution to generate the groups 

data$t<-rMultinom(p=cbind(L1, L2, L3)) 

### To save the number of cases in each group 

mytable <- table(data$t)  

nt1 <-mytable[1]   

nt2 <-mytable[2] 

nct <-mytable[3] 

   

## Estimate the ratio of cases in treatment(s) versus control groups 

### Ratio of cases in treatment 1 versus control 

ratio1 <-(nt1/nct) 

### Ratio of cases in treatment 2 versus control 

ratio2 <-(nt2/nct) 

   

## Create dummy variable from categorical variable 

data$d1 <- as.numeric(data$t == 1) 

data$d2 <- as.numeric(data$t == 2) 

   

## create outcome (y) variable 

data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

## Recoding numeric variable into string (need to rename for Trimatch & twang) 
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data$gs[data$t ==1] <- "Treat1" 

data$gs[data$t ==2] <- "Treat2" 

data$gs[data$t ==3] <- "Control" 

   

#---Manipulating the variables 

   

## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

### For x1, the mean difference between treatment 1 and O is set to be 0.8  

### For x1, the mean difference between treatment 2 and o is set to be 0.7 

 

   

### Setting the difference 

nx1 <-ifelse(data$t==1, 0.8,  

           ifelse(data$t==2, 0.7, 0)) 

## saving the adjusted variable into dataset 

data$newx1 <-(data$x1 + nx1) 

   

### For x2, the mean difference between treatment 1 and O is set to be 0.7  

### For x2, the mean difference between treatment 2 and o is set to be 0.8 

### Setting the difference 

nx2 <-ifelse(data$t==1, 0.7, 

           ifelse(data$t==2, 0.8, 0)) 

### saving the adjusted variable into dataset 

data$newx2 <-(data$x2 + nx2) 

   

### For x3, the mean difference between treatment 1 and O is set to be 0.6  

### For x3, the mean difference between treatment 2 and o is set to be 0.5 

### Setting the difference 

nx3 <-ifelse(data$t==1, 0.6, 

           ifelse(data$t==2, 0.5, 0)) 

### saving the adjusted variable into dataset 

data$newx3 <-(data$x3 + nx3) 

   

### For x4, the mean difference between treatment 1 and O is set to be 0.5  

### For x4, the mean difference between treatment 2 and o is set to be 0.6 

### Setting the difference 

nx4 <-ifelse(data$t==1, 0.5, 

           ifelse(data$t==2, 0.6, 0)) 

### saving the adjusted variable into dataset 



128 
 

data$newx4<-(data$x4 + nx4) 

   

##-------Phase 2: Descriptive statistics 

#---To examine the descriptive statistics of the variables 

## saving the dataset in csv format 

write.csv(data, "data5.csv") 

## Estimating the mean of outcome (y) in each group  

mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

mean 

 

## Estimating the mean difference 

### diff1 (Treatment 1 vs Control) 

diff1<- (mean$x[1] - mean$x[3]) 

### diff1 (Treatment 2 vs Control) 

diff2 <-(mean$x[2] - mean$x[3]) 

 

 

##-------Phase 3: Propensity score analysis using matching 

#---Running propensity score matching using TriMatch  

### (Caliper size = Default (.25), 1:1 match) 

library("TriMatch") 

## Estimate propensity score and find matching triplets 

form <- ~ newx1 + newx2 + newx3 + newx4 

tpsa <- trips(data, data$gs, formu = form) 

tmatch <-trimatch(tpsa, status = FALSE) 

   

## Estimating the outcome 

tmatch.out <- merge(tmatch, data$y) 

outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

tmatch.out$id <- 1:nrow(tmatch.out) 

out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

names(out) <- c("ID", "gment", "Outcome") 

matched.size <-length(tmatch.out$Control) 

 (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

 (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate, t2$estimate) 

## (True mean difference is the mean difference from the original data) 
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diffT1 <-t1$estimate-diff1 

diffT2 <-t2$estimate-diff2 

   

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-5 

technique <-1 

overtbias <-2 

sample    <-2 

 

Cond5 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond5 <- rename(Cond5, c(X1="difft1", X2 = "difft2")) 

 

## saving the final data set for further analysis 

write.csv(Cond5, "Cond5_trimatch.csv")     

 

Condition 6 

#---- Condition 6 (a: Overt bias: Medium correlation between X7 & X8 & u = .3, b: large sample, 

=1000) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 
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## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, .70, 0, 

                    .15, 1, .10, .12, 0, 0, .70, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .70, .70, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

#--Create the probability for being in Control, treatment 1 & treatment 2 

## Setting the weight of the variables in estimating probabilities 

 c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

 t1 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

 t2 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

 L1 <-c1/((c1+t1+t2)) 

 L2 <-t1/((c1+t1+t2)) 

 L3 <-t2/((c1+t1+t2)) 

   

### Estimating different probabilities of being in treatment(s) and control groups 

### The three probabilities will be used in a multinomial distribution to generate the groups 

data$t<-rMultinom(p=cbind(L1, L2, L3)) 
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### To save the number of cases in each group 

mytable <- table(data$t)  

nt1 <-mytable[1]   

nt2 <-mytable[2] 

nct <-mytable[3] 

   

## Estimate the ratio of cases in treatment(s) versus control groups 

### Ratio of cases in treatment 1 versus control 

ratio1 <-(nt1/nct) 

### Ratio of cases in treatment 2 versus control 

ratio2 <-(nt2/nct) 

   

## Create dummy variable from categorical variable 

data$d1 <- as.numeric(data$t == 1) 

data$d2 <- as.numeric(data$t == 2) 

   

## create outcome (y) variable 

data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

## Recoding numeric variable into string (need to rename for Trimatch & twang) 

data$gs[data$t ==1] <- "Treat1" 

data$gs[data$t ==2] <- "Treat2" 

data$gs[data$t ==3] <- "Control" 

   

#---Manipulating the variables 

   

## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

### For x1, the mean difference between treatment 1 and O is set to be 0.8  

### For x1, the mean difference between treatment 2 and o is set to be 0.7 

 

   

### Setting the difference 

nx1 <-ifelse(data$t==1, 0.8,  

           ifelse(data$t==2, 0.7, 0)) 

## saving the adjusted variable into dataset 

data$newx1 <-(data$x1 + nx1) 

   

### For x2, the mean difference between treatment 1 and O is set to be 0.7  
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### For x2, the mean difference between treatment 2 and o is set to be 0.8 

### Setting the difference 

nx2 <-ifelse(data$t==1, 0.7, 

           ifelse(data$t==2, 0.8, 0)) 

### saving the adjusted variable into dataset 

data$newx2 <-(data$x2 + nx2) 

   

### For x3, the mean difference between treatment 1 and O is set to be 0.6  

### For x3, the mean difference between treatment 2 and o is set to be 0.5 

### Setting the difference 

nx3 <-ifelse(data$t==1, 0.6, 

           ifelse(data$t==2, 0.5, 0)) 

### saving the adjusted variable into dataset 

data$newx3 <-(data$x3 + nx3) 

   

### For x4, the mean difference between treatment 1 and O is set to be 0.5  

### For x4, the mean difference between treatment 2 and o is set to be 0.6 

### Setting the difference 

nx4 <-ifelse(data$t==1, 0.5, 

           ifelse(data$t==2, 0.6, 0)) 

### saving the adjusted variable into dataset 

data$newx4<-(data$x4 + nx4) 

   

##-------Phase 2: Descriptive statistics 

#---To examine the descriptive statistics of the variables 

## saving the dataset in csv format 

write.csv(data, "data6.csv") 

## Estimating the mean of outcome (y) in each group  

mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

mean 

 

## Estimating the mean difference 

### diff1 (Treatment 1 vs Control) 

diff1<- (mean$x[1] - mean$x[3]) 

### diff1 (Treatment 2 vs Control) 

diff2 <-(mean$x[2] - mean$x[3]) 

 

##-------Phase 3: Propensity score analysis using matching 

#---Running propensity score matching using TriMatch  

### (Caliper size = Default (.25), 1:1 match) 
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library("TriMatch") 

## Estimate propensity score and find matching triplets 

form <- ~ newx1 + newx2 + newx3 + newx4 

tpsa <- trips(data, data$gs, formu = form) 

tmatch <-trimatch(tpsa, status = FALSE) 

   

## Estimating the outcome 

tmatch.out <- merge(tmatch, data$y) 

outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

tmatch.out$id <- 1:nrow(tmatch.out) 

out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

names(out) <- c("ID", "gment", "Outcome") 

matched.size <-length(tmatch.out$Control) 

 (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

 (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate, t2$estimate) 

## (True mean difference is the mean difference from the original data) 

   

diffT1 <-t1$estimate-diff1 

diffT2 <-t2$estimate-diff2 

   

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-6 

technique <-1 

overtbias <-2 

sample    <-3 

 

Cond6 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond6 <- rename(Cond6, c(X1="difft1", X2 = "difft2")) 

 

## saving the final data set for further analysis 

write.csv(Cond6, "Cond6_trimatch.csv")     
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Condition 7 

#---- Condition 7 (a: Overt bias: Large correlation between X7 & X8 & u = .7, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, .70, 0, 

                    .15, 1, .10, .12, 0, 0, .70, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .70, .70, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

## Setting the weight of the variables in estimating probabilities 

 c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

 t1 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

 t2 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

 L1 <-c1/((c1+t1+t2)) 

 L2 <-t1/((c1+t1+t2)) 

 L3 <-t2/((c1+t1+t2)) 

   

### Estimating different probabilities of being in treatment(s) and control groups 

### The three probabilities will be used in a multinomial distribution to generate the groups 

data$t<-rMultinom(p=cbind(L1, L2, L3)) 

### To save the number of cases in each group 

mytable <- table(data$t)  

nt1 <-mytable[1]   

nt2 <-mytable[2] 

nct <-mytable[3] 

   

## Estimate the ratio of cases in treatment(s) versus control groups 

### Ratio of cases in treatment 1 versus control 

ratio1 <-(nt1/nct) 

### Ratio of cases in treatment 2 versus control 

ratio2 <-(nt2/nct) 

   

## Create dummy variable from categorical variable 

data$d1 <- as.numeric(data$t == 1) 

data$d2 <- as.numeric(data$t == 2) 

   

## create outcome (y) variable 

data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

## Recoding numeric variable into string (need to rename for Trimatch & twang) 
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data$gs[data$t ==1] <- "Treat1" 

data$gs[data$t ==2] <- "Treat2" 

data$gs[data$t ==3] <- "Control" 

   

#---Manipulating the variables 

   

## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

### For x1, the mean difference between treatment 1 and O is set to be 0.8  

### For x1, the mean difference between treatment 2 and o is set to be 0.7 

 

   

### Setting the difference 

nx1 <-ifelse(data$t==1, 0.8,  

           ifelse(data$t==2, 0.7, 0)) 

## saving the adjusted variable into dataset 

data$newx1 <-(data$x1 + nx1) 

   

### For x2, the mean difference between treatment 1 and O is set to be 0.7  

### For x2, the mean difference between treatment 2 and o is set to be 0.8 

### Setting the difference 

nx2 <-ifelse(data$t==1, 0.7, 

           ifelse(data$t==2, 0.8, 0)) 

### saving the adjusted variable into dataset 

data$newx2 <-(data$x2 + nx2) 

   

### For x3, the mean difference between treatment 1 and O is set to be 0.6  

### For x3, the mean difference between treatment 2 and o is set to be 0.5 

### Setting the difference 

nx3 <-ifelse(data$t==1, 0.6, 

           ifelse(data$t==2, 0.5, 0)) 

### saving the adjusted variable into dataset 

data$newx3 <-(data$x3 + nx3) 

   

### For x4, the mean difference between treatment 1 and O is set to be 0.5  

### For x4, the mean difference between treatment 2 and o is set to be 0.6 

### Setting the difference 

nx4 <-ifelse(data$t==1, 0.5, 

           ifelse(data$t==2, 0.6, 0)) 

### saving the adjusted variable into dataset 
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data$newx4<-(data$x4 + nx4) 

   

##-------Phase 2: Descriptive statistics 

#---To examine the descriptive statistics of the variables 

## saving the dataset in csv format 

write.csv(data, "data7.csv") 

## Estimating the mean of outcome (y) in each group  

mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

mean 

 

## Estimating the mean difference 

### diff1 (Treatment 1 vs Control) 

diff1<- (mean$x[1] - mean$x[3]) 

### diff1 (Treatment 2 vs Control) 

diff2 <-(mean$x[2] - mean$x[3]) 

 

##-------Phase 3: Propensity score analysis using matching 

#---Running propensity score matching using TriMatch  

### (Caliper size = Default (.25), 1:1 match) 

library("TriMatch") 

## Estimate propensity score and find matching triplets 

form <- ~ newx1 + newx2 + newx3 + newx4 

tpsa <- trips(data, data$gs, formu = form) 

tmatch <-trimatch(tpsa, status = FALSE) 

   

## Estimating the outcome 

tmatch.out <- merge(tmatch, data$y) 

outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

tmatch.out$id <- 1:nrow(tmatch.out) 

out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

names(out) <- c("ID", "gment", "Outcome") 

matched.size <-length(tmatch.out$Control) 

 (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

 (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate, t2$estimate) 

## (True mean difference is the mean difference from the original data) 

   

diffT1 <-t1$estimate-diff1 
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diffT2 <-t2$estimate-diff2 

   

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-7 

technique <-1 

overtbias <-3 

sample    <-1 

 

Cond7 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond7 <- rename(Cond7, c(X1="difft1", X2 = "difft2")) 

 

## saving the final data set for further analysis 

write.csv(Cond7, "Cond7_trimatch.csv")     

  



139 
 

Condition 8 

#---- Condition 8 (a: Overt bias: Large correlation between X7 & X8 & u = .7, b: medium 

sample, n=500) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, .70, 0, 

                    .15, 1, .10, .12, 0, 0, .70, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .70, .70, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

## Setting the weight of the variables in estimating probabilities 

 c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

 t1 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

 t2 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

 L1 <-c1/((c1+t1+t2)) 

 L2 <-t1/((c1+t1+t2)) 

 L3 <-t2/((c1+t1+t2)) 

   

### Estimating different probabilities of being in treatment(s) and control groups 

### The three probabilities will be used in a multinomial distribution to generate the groups 

data$t<-rMultinom(p=cbind(L1, L2, L3)) 

### To save the number of cases in each group 

mytable <- table(data$t)  

nt1 <-mytable[1]   

nt2 <-mytable[2] 

nct <-mytable[3] 

   

## Estimate the ratio of cases in treatment(s) versus control groups 

### Ratio of cases in treatment 1 versus control 

ratio1 <-(nt1/nct) 

### Ratio of cases in treatment 2 versus control 

ratio2 <-(nt2/nct) 

   

## Create dummy variable from categorical variable 

data$d1 <- as.numeric(data$t == 1) 

data$d2 <- as.numeric(data$t == 2) 

   

## create outcome (y) variable 

data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

## Recoding numeric variable into string (need to rename for Trimatch & twang) 
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data$gs[data$t ==1] <- "Treat1" 

data$gs[data$t ==2] <- "Treat2" 

data$gs[data$t ==3] <- "Control" 

   

#---Manipulating the variables 

   

## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

### For x1, the mean difference between treatment 1 and O is set to be 0.8  

### For x1, the mean difference between treatment 2 and o is set to be 0.7 

 

   

### Setting the difference 

nx1 <-ifelse(data$t==1, 0.8,  

           ifelse(data$t==2, 0.7, 0)) 

## saving the adjusted variable into dataset 

data$newx1 <-(data$x1 + nx1) 

   

### For x2, the mean difference between treatment 1 and O is set to be 0.7  

### For x2, the mean difference between treatment 2 and o is set to be 0.8 

### Setting the difference 

nx2 <-ifelse(data$t==1, 0.7, 

           ifelse(data$t==2, 0.8, 0)) 

### saving the adjusted variable into dataset 

data$newx2 <-(data$x2 + nx2) 

   

### For x3, the mean difference between treatment 1 and O is set to be 0.6  

### For x3, the mean difference between treatment 2 and o is set to be 0.5 

### Setting the difference 

nx3 <-ifelse(data$t==1, 0.6, 

           ifelse(data$t==2, 0.5, 0)) 

### saving the adjusted variable into dataset 

data$newx3 <-(data$x3 + nx3) 

   

### For x4, the mean difference between treatment 1 and O is set to be 0.5  

### For x4, the mean difference between treatment 2 and o is set to be 0.6 

### Setting the difference 

nx4 <-ifelse(data$t==1, 0.5, 

           ifelse(data$t==2, 0.6, 0)) 

### saving the adjusted variable into dataset 
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data$newx4<-(data$x4 + nx4) 

   

##-------Phase 2: Descriptive statistics 

#---To examine the descriptive statistics of the variables 

## saving the dataset in csv format 

write.csv(data, "data8.csv") 

## Estimating the mean of outcome (y) in each group  

mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

mean 

 

## Estimating the mean difference 

### diff1 (Treatment 1 vs Control) 

diff1<- (mean$x[1] - mean$x[3]) 

### diff1 (Treatment 2 vs Control) 

diff2 <-(mean$x[2] - mean$x[3]) 

 

 

##-------Phase 3: Propensity score analysis using matching 

#---Running propensity score matching using TriMatch  

### (Caliper size = Default (.25), 1:1 match) 

library("TriMatch") 

## Estimate propensity score and find matching triplets 

form <- ~ newx1 + newx2 + newx3 + newx4 

tpsa <- trips(data, data$gs, formu = form) 

tmatch <-trimatch(tpsa, status = FALSE) 

   

## Estimating the outcome 

tmatch.out <- merge(tmatch, data$y) 

outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

tmatch.out$id <- 1:nrow(tmatch.out) 

out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

names(out) <- c("ID", "gment", "Outcome") 

matched.size <-length(tmatch.out$Control) 

 (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

 (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate, t2$estimate) 

## (True mean difference is the mean difference from the original data) 
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diffT1 <-t1$estimate-diff1 

diffT2 <-t2$estimate-diff2 

   

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-8 

technique <-1 

overtbias <-3 

sample    <-2 

 

Cond8 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond8 <- rename(Cond8, c(X1="difft1", X2 = "difft2")) 

 

## saving the final data set for further analysis 

write.csv(Cond8, "Cond8_trimatch.csv")     

 

Condition 9 

#---- Condition 9 (a: Overt bias: Large correlation between X7 & X8 & u = .7, b: large sample, 

=1000) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 
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## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, .70, 0, 

                    .15, 1, .10, .12, 0, 0, .70, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .70, .70, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

#--Create the probability for being in Control, treatment 1 & treatment 2 

## Setting the weight of the variables in estimating probabilities 

 c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

 t1 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

 t2 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

 L1 <-c1/((c1+t1+t2)) 

 L2 <-t1/((c1+t1+t2)) 

 L3 <-t2/((c1+t1+t2)) 

   

### Estimating different probabilities of being in treatment(s) and control groups 

### The three probabilities will be used in a multinomial distribution to generate the groups 

data$t<-rMultinom(p=cbind(L1, L2, L3)) 
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### To save the number of cases in each group 

mytable <- table(data$t)  

nt1 <-mytable[1]   

nt2 <-mytable[2] 

nct <-mytable[3] 

   

## Estimate the ratio of cases in treatment(s) versus control groups 

### Ratio of cases in treatment 1 versus control 

ratio1 <-(nt1/nct) 

### Ratio of cases in treatment 2 versus control 

ratio2 <-(nt2/nct) 

   

## Create dummy variable from categorical variable 

data$d1 <- as.numeric(data$t == 1) 

data$d2 <- as.numeric(data$t == 2) 

   

## create outcome (y) variable 

data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

## Recoding numeric variable into string (need to rename for Trimatch & twang) 

data$gs[data$t ==1] <- "Treat1" 

data$gs[data$t ==2] <- "Treat2" 

data$gs[data$t ==3] <- "Control" 

   

#---Manipulating the variables 

   

## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

### For x1, the mean difference between treatment 1 and O is set to be 0.8  

### For x1, the mean difference between treatment 2 and o is set to be 0.7 

 

   

### Setting the difference 

nx1 <-ifelse(data$t==1, 0.8,  

           ifelse(data$t==2, 0.7, 0)) 

## saving the adjusted variable into dataset 

data$newx1 <-(data$x1 + nx1) 

   

### For x2, the mean difference between treatment 1 and O is set to be 0.7  
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### For x2, the mean difference between treatment 2 and o is set to be 0.8 

### Setting the difference 

nx2 <-ifelse(data$t==1, 0.7, 

           ifelse(data$t==2, 0.8, 0)) 

### saving the adjusted variable into dataset 

data$newx2 <-(data$x2 + nx2) 

   

### For x3, the mean difference between treatment 1 and O is set to be 0.6  

### For x3, the mean difference between treatment 2 and o is set to be 0.5 

### Setting the difference 

nx3 <-ifelse(data$t==1, 0.6, 

           ifelse(data$t==2, 0.5, 0)) 

### saving the adjusted variable into dataset 

data$newx3 <-(data$x3 + nx3) 

   

### For x4, the mean difference between treatment 1 and O is set to be 0.5  

### For x4, the mean difference between treatment 2 and o is set to be 0.6 

### Setting the difference 

nx4 <-ifelse(data$t==1, 0.5, 

           ifelse(data$t==2, 0.6, 0)) 

### saving the adjusted variable into dataset 

data$newx4<-(data$x4 + nx4) 

   

##-------Phase 2: Descriptive statistics 

#---To examine the descriptive statistics of the variables 

## saving the dataset in csv format 

write.csv(data, "data9.csv") 

## Estimating the mean of outcome (y) in each group  

mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

mean 

 

## Estimating the mean difference 

### diff1 (Treatment 1 vs Control) 

diff1<- (mean$x[1] - mean$x[3]) 

### diff1 (Treatment 2 vs Control) 

diff2 <-(mean$x[2] - mean$x[3]) 

 

 

##-------Phase 3: Propensity score analysis using matching 

#---Running propensity score matching using TriMatch  
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### (Caliper size = Default (.25), 1:1 match) 

library("TriMatch") 

## Estimate propensity score and find matching triplets 

form <- ~ newx1 + newx2 + newx3 + newx4 

tpsa <- trips(data, data$gs, formu = form) 

tmatch <-trimatch(tpsa, status = FALSE) 

   

## Estimating the outcome 

tmatch.out <- merge(tmatch, data$y) 

outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

tmatch.out$id <- 1:nrow(tmatch.out) 

out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

names(out) <- c("ID", "gment", "Outcome") 

matched.size <-length(tmatch.out$Control) 

 (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

 (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate, t2$estimate) 

## (True mean difference is the mean difference from the original data) 

   

diffT1 <-t1$estimate-diff1 

diffT2 <-t2$estimate-diff2 

   

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-9 

technique <-1 

overtbias <-3 

sample    <-3 

 

Cond9 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond9 <- rename(Cond9, c(X1="difft1", X2 = "difft2")) 

 

## saving the final data set for further analysis 

write.csv(Cond9, "Cond9_trimatch.csv")     
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Condition 10 

#---- Condition 10 (a: Hidden bias: Small correlation between u & v = .3, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment erorr term (u) and outcome error term (v) was set to establish 

hidden bias. 

reps <-1000 

sum.est <-matrix (NA, nrow = reps, ncol = 63) 

bal.est <-matrix (NA, nrow = reps, ncol = 26) 

par.est <-matrix (NA, nrow = reps, ncol = 14) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.3,  

                    0, 0, 0, 0, 0, 0, 0.3, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 



149 
 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in Control, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment   

  2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data1.csv") 

   

  ##-------Phase 3: Propensity score analysis using matching 

  #---Running propensity score matching using TriMatch  

  ### (Caliper size = Default (.25), 1:1 match) 

  library("TriMatch") 

  ## Estimate propensity score and find matching triplets 

  form <- ~ newx1 + newx2 + newx3 + newx4 

  tpsa <- trips(data, data$gs, formu = form) 

  tmatch <-trimatch(tpsa, status = FALSE) 

   

  ## Estimating the outcome 

  tmatch.out <- merge(tmatch, data$y) 

  outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

  tmatch.out$id <- 1:nrow(tmatch.out) 

  out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

  names(out) <- c("ID", "gment", "Outcome") 

  matched.size <-length(tmatch.out$Control) 

  (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

  (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

  ## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate,  

        t2$estimate) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1$estimate-diff1 
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  diffT2 <-t2$estimate-diff2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-10 

technique <-1 

hiddenbias <-1 

sample    <-1 

 

Cond10 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond10 <- rename(Cond10, c(X1="difft1", X2 = "difft2)) 

 

## saving the final data set for further analysis 

write.csv(Cond10, "Cond10_trimatch.csv")     
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Condition 11 

#---- Condition 11 (a: Hidden bias: Small correlation between u & v = .3, b: medium sample, 

n=500) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment erorr term (u) and outcome error term (v) was set to establish 

hidden bias. 

reps <-1000 

sum.est <-matrix (NA, nrow = reps, ncol = 63) 

bal.est <-matrix (NA, nrow = reps, ncol = 26) 

par.est <-matrix (NA, nrow = reps, ncol = 14) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.3,  

                    0, 0, 0, 0, 0, 0, 0.3, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 
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  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in Control, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment   

  2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data1.csv") 

   

  ##-------Phase 3: Propensity score analysis using matching 

  #---Running propensity score matching using TriMatch  

  ### (Caliper size = Default (.25), 1:1 match) 

  library("TriMatch") 

  ## Estimate propensity score and find matching triplets 

  form <- ~ newx1 + newx2 + newx3 + newx4 

  tpsa <- trips(data, data$gs, formu = form) 

  tmatch <-trimatch(tpsa, status = FALSE) 

   

  ## Estimating the outcome 

  tmatch.out <- merge(tmatch, data$y) 

  outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

  tmatch.out$id <- 1:nrow(tmatch.out) 

  out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

  names(out) <- c("ID", "gment", "Outcome") 

  matched.size <-length(tmatch.out$Control) 

  (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

  (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

  ## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate,  

        t2$estimate) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1$estimate-diff1 
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  diffT2 <-t2$estimate-diff2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-11 

technique <-1 

hiddenbias <-1 

sample    <-2 

 

 

Cond11 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond11 <- rename(Cond10, c(X1="difft1", X2 = "difft2)) 

 

## saving the final data set for further analysis 

write.csv(Cond11, "Cond11_trimatch.csv")     
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Condition 12 

#---- Condition 12 (a: Hidden bias: Small correlation between u & v = .3, b: large sample, 

n=1000) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment erorr term (u) and outcome error term (v) was set to establish 

hidden bias. 

reps <-1000 

sum.est <-matrix (NA, nrow = reps, ncol = 63) 

bal.est <-matrix (NA, nrow = reps, ncol = 26) 

par.est <-matrix (NA, nrow = reps, ncol = 14) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.3,  

                    0, 0, 0, 0, 0, 0, 0.3, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 
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  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in Control, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment   

  2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data1.csv") 

   

  ##-------Phase 3: Propensity score analysis using matching 

  #---Running propensity score matching using TriMatch  

  ### (Caliper size = Default (.25), 1:1 match) 

  library("TriMatch") 

  ## Estimate propensity score and find matching triplets 

  form <- ~ newx1 + newx2 + newx3 + newx4 

  tpsa <- trips(data, data$gs, formu = form) 

  tmatch <-trimatch(tpsa, status = FALSE) 

   

  ## Estimating the outcome 

  tmatch.out <- merge(tmatch, data$y) 

  outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

  tmatch.out$id <- 1:nrow(tmatch.out) 

  out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

  names(out) <- c("ID", "gment", "Outcome") 

  matched.size <-length(tmatch.out$Control) 

  (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

  (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

  ## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate,  

        t2$estimate) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1$estimate-diff1 
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  diffT2 <-t2$estimate-diff2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-12 

technique <-1 

hiddenbias <-1 

sample    <-3 

 

 

Cond12 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond12 <- rename(Cond12, c(X1="difft1", X2 = "difft2)) 

 

## saving the final data set for further analysis 

write.csv(Cond12, "Cond12_trimatch.csv")     
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Condition 13 

#---- Condition 13 (a: Hidden bias: Medium correlation between u & v = .5, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment erorr term (u) and outcome error term (v) was set to establish 

hidden bias. 

reps <-1000 

sum.est <-matrix (NA, nrow = reps, ncol = 63) 

bal.est <-matrix (NA, nrow = reps, ncol = 26) 

par.est <-matrix (NA, nrow = reps, ncol = 14) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.5,  

                    0, 0, 0, 0, 0, 0, 0.5, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 
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  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in Control, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 



165 
 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment   

  2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data1.csv") 

   

  ##-------Phase 3: Propensity score analysis using matching 

  #---Running propensity score matching using TriMatch  

  ### (Caliper size = Default (.25), 1:1 match) 

  library("TriMatch") 

  ## Estimate propensity score and find matching triplets 

  form <- ~ newx1 + newx2 + newx3 + newx4 

  tpsa <- trips(data, data$gs, formu = form) 

  tmatch <-trimatch(tpsa, status = FALSE) 

   

  ## Estimating the outcome 

  tmatch.out <- merge(tmatch, data$y) 

  outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

  tmatch.out$id <- 1:nrow(tmatch.out) 

  out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

  names(out) <- c("ID", "gment", "Outcome") 

  matched.size <-length(tmatch.out$Control) 

  (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

  (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

  ## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate,  

        t2$estimate) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1$estimate-diff1 
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  diffT2 <-t2$estimate-diff2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-13 

technique <-1 

hiddenbias <-2 

sample    <-1 

 

Cond13 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond13 <- rename(Cond13, c(X1="difft1", X2 = "difft2)) 

 

## saving the final data set for further analysis 

write.csv(Cond13, "Cond13_trimatch.csv")     

 

  



168 
 

Condition 14 

#---- Condition 14(a: Hidden bias: Small correlation between u & v = .3, b: medium sample, 

n=500) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment error term (u) and outcome error term (v) was set to establish 

hidden bias. 

reps <-1000 

sum.est <-matrix (NA, nrow = reps, ncol = 63) 

bal.est <-matrix (NA, nrow = reps, ncol = 26) 

par.est <-matrix (NA, nrow = reps, ncol = 14) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.3,  

                    0, 0, 0, 0, 0, 0, 0.3, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 
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  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in Control, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment   

  2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data1.csv") 

   

  ##-------Phase 3: Propensity score analysis using matching 

  #---Running propensity score matching using TriMatch  

  ### (Caliper size = Default (.25), 1:1 match) 

  library("TriMatch") 

  ## Estimate propensity score and find matching triplets 

  form <- ~ newx1 + newx2 + newx3 + newx4 

  tpsa <- trips(data, data$gs, formu = form) 

  tmatch <-trimatch(tpsa, status = FALSE) 

   

  ## Estimating the outcome 

  tmatch.out <- merge(tmatch, data$y) 

  outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

  tmatch.out$id <- 1:nrow(tmatch.out) 

  out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

  names(out) <- c("ID", "gment", "Outcome") 

  matched.size <-length(tmatch.out$Control) 

  (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

  (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

  ## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate,  

        t2$estimate) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1$estimate-diff1 
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  diffT2 <-t2$estimate-diff2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-14 

technique <-1 

hiddenbias <-2 

sample    <-2 

 

 

Cond14 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond14 <- rename(Cond14, c(X1="difft1", X2 = "difft2)) 

 

## saving the final data set for further analysis 

write.csv(Cond14, "Cond14_trimatch.csv")     
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Condition 15 

#---- Condition 15 (a: Hidden bias: Medium correlation between u & v = .5, b: large sample, 

n=1000) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment erorr term (u) and outcome error term (v) was set to establish 

hidden bias. 

reps <-1000 

sum.est <-matrix (NA, nrow = reps, ncol = 63) 

bal.est <-matrix (NA, nrow = reps, ncol = 26) 

par.est <-matrix (NA, nrow = reps, ncol = 14) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.5,  

                    0, 0, 0, 0, 0, 0, 0.5, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 
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  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in Control, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment   

  2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data15.csv") 

   

  ##-------Phase 3: Propensity score analysis using matching 

  #---Running propensity score matching using TriMatch  

  ### (Caliper size = Default (.25), 1:1 match) 

  library("TriMatch") 

  ## Estimate propensity score and find matching triplets 

  form <- ~ newx1 + newx2 + newx3 + newx4 

  tpsa <- trips(data, data$gs, formu = form) 

  tmatch <-trimatch(tpsa, status = FALSE) 

   

  ## Estimating the outcome 

  tmatch.out <- merge(tmatch, data$y) 

  outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

  tmatch.out$id <- 1:nrow(tmatch.out) 

  out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

  names(out) <- c("ID", "gment", "Outcome") 

  matched.size <-length(tmatch.out$Control) 

  (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

  (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

  ## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate,  

        t2$estimate) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1$estimate-diff1 
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  diffT2 <-t2$estimate-diff2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-15 

technique <-1 

hiddenbias <-2 

sample    <-3 

 

 

Cond15 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond15 <- rename(Cond15, c(X1="difft1", X2 = "difft2)) 

 

## saving the final data set for further analysis 

write.csv(Cond15, "Cond15_trimatch.csv")     
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Condition 16 

#---- Condition 16 (a: Hidden bias: Large correlation between u & v = .7, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment erorr term (u) and outcome error term (v) was set to establish 

hidden bias. 

reps <-1000 

sum.est <-matrix (NA, nrow = reps, ncol = 63) 

bal.est <-matrix (NA, nrow = reps, ncol = 26) 

par.est <-matrix (NA, nrow = reps, ncol = 14) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.7,  

                    0, 0, 0, 0, 0, 0, 0.7, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 
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  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in Control, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment   

  2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data16.csv") 

   

  ##-------Phase 3: Propensity score analysis using matching 

  #---Running propensity score matching using TriMatch  

  ### (Caliper size = Default (.25), 1:1 match) 

  library("TriMatch") 

  ## Estimate propensity score and find matching triplets 

  form <- ~ newx1 + newx2 + newx3 + newx4 

  tpsa <- trips(data, data$gs, formu = form) 

  tmatch <-trimatch(tpsa, status = FALSE) 

   

  ## Estimating the outcome 

  tmatch.out <- merge(tmatch, data$y) 

  outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

  tmatch.out$id <- 1:nrow(tmatch.out) 

  out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

  names(out) <- c("ID", "gment", "Outcome") 

  matched.size <-length(tmatch.out$Control) 

  (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

  (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

  ## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate,  

        t2$estimate) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1$estimate-diff1 
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  diffT2 <-t2$estimate-diff2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-16 

technique <-1 

hiddenbias <-3 

sample    <-1 

 

Cond16 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond16 <- rename(Cond16, c(X1="difft1", X2 = "difft2)) 

 

## saving the final data set for further analysis 

write.csv(Cond16, "Cond16_trimatch.csv")     
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Condition 17 

#---- Condition 17 (a: Hidden bias: Large correlation between u & v = .7, b: medium sample, 

n=500) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment erorr term (u) and outcome error term (v) was set to establish 

hidden bias. 

reps <-1000 

sum.est <-matrix (NA, nrow = reps, ncol = 63) 

bal.est <-matrix (NA, nrow = reps, ncol = 26) 

par.est <-matrix (NA, nrow = reps, ncol = 14) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.7,  

                    0, 0, 0, 0, 0, 0, 0.7, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 
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  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in Control, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment   

  2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data17.csv") 

   

  ##-------Phase 3: Propensity score analysis using matching 

  #---Running propensity score matching using TriMatch  

  ### (Caliper size = Default (.25), 1:1 match) 

  library("TriMatch") 

  ## Estimate propensity score and find matching triplets 

  form <- ~ newx1 + newx2 + newx3 + newx4 

  tpsa <- trips(data, data$gs, formu = form) 

  tmatch <-trimatch(tpsa, status = FALSE) 

   

  ## Estimating the outcome 

  tmatch.out <- merge(tmatch, data$y) 

  outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

  tmatch.out$id <- 1:nrow(tmatch.out) 

  out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

  names(out) <- c("ID", "gment", "Outcome") 

  matched.size <-length(tmatch.out$Control) 

  (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

  (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

  ## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate,  

        t2$estimate) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1$estimate-diff1 
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  diffT2 <-t2$estimate-diff2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-7 

technique <-1 

hiddenbias <-3 

sample    <-2 

 

 

Cond17 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond17 <- rename(Cond17, c(X1="difft1", X2 = "difft2)) 

 

## saving the final data set for further analysis 

write.csv(Cond17, "Cond17_trimatch.csv")     
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Condition 18 

#---- Condition 18 (a: Hidden bias: Large correlation between u & v = .7, b: large sample, 

n=1000) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Trimatch2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment erorr term (u) and outcome error term (v) was set to establish 

hidden bias. 

reps <-1000 

sum.est <-matrix (NA, nrow = reps, ncol = 63) 

bal.est <-matrix (NA, nrow = reps, ncol = 26) 

par.est <-matrix (NA, nrow = reps, ncol = 14) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.7,  

                    0, 0, 0, 0, 0, 0, 0.7, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 
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  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in Control, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment   

  2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data18.csv") 

   

  ##-------Phase 3: Propensity score analysis using matching 

  #---Running propensity score matching using TriMatch  

  ### (Caliper size = Default (.25), 1:1 match) 

  library("TriMatch") 

  ## Estimate propensity score and find matching triplets 

  form <- ~ newx1 + newx2 + newx3 + newx4 

  tpsa <- trips(data, data$gs, formu = form) 

  tmatch <-trimatch(tpsa, status = FALSE) 

   

  ## Estimating the outcome 

  tmatch.out <- merge(tmatch, data$y) 

  outcomes <- grep(".out$", names(tmatch.out), perl = TRUE) 

  tmatch.out$id <- 1:nrow(tmatch.out) 

  out <- melt(tmatch.out[, c(outcomes, which(names(tmatch.out) == "id"))], id.vars = "id") 

  names(out) <- c("ID", "gment", "Outcome") 

  matched.size <-length(tmatch.out$Control) 

  (t1 <- t.test(x = tmatch.out$Treat1.out, y = tmatch.out$Control.out, paired = TRUE)) 

  (t2 <- t.test(x = tmatch.out$Treat2.out, y = tmatch.out$Control.out, paired = TRUE)) 

   

  ## Estimating the difference between true (diff1,diff2) and estimated mean difference 

(t1$estimate,  

        t2$estimate) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1$estimate-diff1 
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  diffT2 <-t2$estimate-diff2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-18 

technique <-1 

hiddenbias <-3 

sample    <-3 

 

 

Cond18 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond18 <- rename(Cond18, c(X1="difft1", X2 = "difft2)) 

 

## saving the final data set for further analysis 

write.csv(Cond18, "Cond18_trimatch.csv")     
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Stratification 

 

Condition 19 

#---- Condition 19 (a: Overt bias: Small correlation between X7 & X8 & u = .3, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .30, 0, 

                    .15, 1, .10, .12, 0, 0, .30, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .30, .30, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 
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  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  
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  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data19.csv") 

   

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

## Step 2: Estimate the propensity score using logistic regression 
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ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

summary(ps) 

psvalue <- predict(ps, type = "response") 

Model1<- cbind(Model1, psvalue) 

boxplot(Model1$psvalue~Model1$d1) 

## Visualizing the density plot 

## create value labels  

p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

## psvalue for treatment 1 vs 0 

sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

title(main="psvalues Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model1<- Model1[order(psvalue),]  

quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Estimate number of cases in each stratum 

table(Model1$pscat, Model1$d1) 

 

### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

## Estimate ATE (treatment 1 vs 0) 

 

ATE1 <-function (Model1){ 

  n <-tapply(Model1$d1, Model1$pscat, length)  

  m <-length(Model1$d1) 

  mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

  var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

  final<-data.frame(n, m, mean, var) 

  final<-final[complete.cases(final),] 

  names(final)[names(final)=="X0"]="mean_control" 

  names(final)[names(final)=="X1"]="mean_treatment" 

  names(final)[names(final)=="X0.1"]="variance_control" 

  names(final)[names(final)=="X1.1"]="variance_treatment" 

  tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

  return (setNames((list(tau)),("ATE"))) 

} 

 

## Average Treatment Effect 1 (ATE1)  
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### Extract and saving the ATE1 

t1 <-ATE1(Model1)$ATE 

t1 

 

## Estimating the difference between true (diff1) and estimated mean difference (t1) 

## (True mean difference is the mean difference from the original data) 

 

diffT1 <-t1-diff1 

diffT1 

 

##--- Stratification: ATE2 (Treatment2 vs 0) 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Model 2 (Treat2 vs Control) 

## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

Model2 <- data[-exc1, ] 

## recording the variable into dummy 

Model2$d2<-ifelse(Model2$t==2, 1,0) 

## Checking to see if the dummy variable was created correctly 

freq2a <-table(Model2$d2)  

freq2a 

 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Estimate ATE (treatment 2 vs 0)   

 

## Step 2: Estimate the propensity score using logistic regression 

ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

summary(ps2) 

psvalue2 <- predict(ps2, type = "response") 

Model2 <- cbind(Model2, psvalue2) 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model2<- Model2[order(psvalue2),]  

quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Checking to see the number of cases in each stratum  

table(Model2$pscat2, Model2$d2) 

## Visualizing the density plot 

## create value labels  

p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

## psvalue2 for treatment 2 vs 0 
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sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

title(main="psvalue2 Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

## Estimating treatment effect (Treatment 2 vs 0)   

   

ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

t2 <-ATE2(Model2)$ATE 

t2 

 

 

## Average Treatment Effect 2 (ATE2) before trimming  

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

diffT2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-19 

technique <-2 

overtbias <-1 



200 
 

sample    <-1 

 

Cond19 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond19 <- rename(Cond19, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond19, "Cond19_stratification.csv")     
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Condition 20 

#---- Condition 20 (a: Overt bias: Small correlation between X7 & X8 & u = .3, b: medium 

sample, n=500) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .30, 0, 

                    .15, 1, .10, .12, 0, 0, .30, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .30, .30, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  
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  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data20.csv") 

   

 

 

 

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  
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  freq1a 

   

## Step 2: Estimate the propensity score using logistic regression 

ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

summary(ps) 

psvalue <- predict(ps, type = "response") 

Model1<- cbind(Model1, psvalue) 

boxplot(Model1$psvalue~Model1$d1) 

## Visualizing the density plot 

## create value labels  

p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

## psvalue for treatment 1 vs 0 

sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

title(main="psvalues Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model1<- Model1[order(psvalue),]  

quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Estimate number of cases in each stratum 

table(Model1$pscat, Model1$d1) 

 

### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

## Estimate ATE (treatment 1 vs 0) 

 

ATE1 <-function (Model1){ 

  n <-tapply(Model1$d1, Model1$pscat, length)  

  m <-length(Model1$d1) 

  mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

  var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

  final<-data.frame(n, m, mean, var) 

  final<-final[complete.cases(final),] 

  names(final)[names(final)=="X0"]="mean_control" 

  names(final)[names(final)=="X1"]="mean_treatment" 

  names(final)[names(final)=="X0.1"]="variance_control" 

  names(final)[names(final)=="X1.1"]="variance_treatment" 

  tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

  return (setNames((list(tau)),("ATE"))) 
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} 

 

## Average Treatment Effect 1 (ATE1)  

### Extract and saving the ATE1 

t1 <-ATE1(Model1)$ATE 

t1 

 

## Estimating the difference between true (diff1) and estimated mean difference (t1) 

## (True mean difference is the mean difference from the original data) 

 

diffT1 <-t1-diff1 

diffT1 

 

##--- Stratification: ATE2 (Treatment2 vs 0) 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Model 2 (Treat2 vs Control) 

## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

Model2 <- data[-exc1, ] 

## recording the variable into dummy 

Model2$d2<-ifelse(Model2$t==2, 1,0) 

## Checking to see if the dummy variable was created correctly 

freq2a <-table(Model2$d2)  

freq2a 

 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Estimate ATE (treatment 2 vs 0)   

 

## Step 2: Estimate the propensity score using logistic regression 

ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

summary(ps2) 

psvalue2 <- predict(ps2, type = "response") 

Model2 <- cbind(Model2, psvalue2) 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model2<- Model2[order(psvalue2),]  

quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Checking to see the number of cases in each stratum  

table(Model2$pscat2, Model2$d2) 

## Visualizing the density plot 
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## create value labels  

p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

## psvalue2 for treatment 2 vs 0 

sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

title(main="psvalue2 Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

## Estimating treatment effect (Treatment 2 vs 0)   

   

ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

t2 <-ATE2(Model2)$ATE 

t2 

 

 

## Average Treatment Effect 2 (ATE2) before trimming  

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

diffT2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 
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cond      <-20 

technique <-2 

overtbias <-1 

sample    <-2 

 

Cond20 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond20 <- rename(Cond20, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond20, "Cond20_stratification.csv")     
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Condition 21 

#---- Condition 21 (a: Overt bias: Small correlation between X7 & X8 & u = .3, b: large sample, 

n=10 

00) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .30, 0, 

                    .15, 1, .10, .12, 0, 0, .30, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .30, .30, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 
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  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

#---Manipulating the variables 

## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data21.csv") 

   

 

 

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

## Step 2: Estimate the propensity score using logistic regression 
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ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

summary(ps) 

psvalue <- predict(ps, type = "response") 

Model1<- cbind(Model1, psvalue) 

boxplot(Model1$psvalue~Model1$d1) 

## Visualizing the density plot 

## create value labels  

p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

## psvalue for treatment 1 vs 0 

sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

title(main="psvalues Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model1<- Model1[order(psvalue),]  

quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Estimate number of cases in each stratum 

table(Model1$pscat, Model1$d1) 

 

### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

## Estimate ATE (treatment 1 vs 0) 

 

ATE1 <-function (Model1){ 

  n <-tapply(Model1$d1, Model1$pscat, length)  

  m <-length(Model1$d1) 

  mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

  var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

  final<-data.frame(n, m, mean, var) 

  final<-final[complete.cases(final),] 

  names(final)[names(final)=="X0"]="mean_control" 

  names(final)[names(final)=="X1"]="mean_treatment" 

  names(final)[names(final)=="X0.1"]="variance_control" 

  names(final)[names(final)=="X1.1"]="variance_treatment" 

  tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

  return (setNames((list(tau)),("ATE"))) 

} 

 

## Average Treatment Effect 1 (ATE1)  
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### Extract and saving the ATE1 

t1 <-ATE1(Model1)$ATE 

t1 

 

## Estimating the difference between true (diff1) and estimated mean difference (t1) 

## (True mean difference is the mean difference from the original data) 

 

diffT1 <-t1-diff1 

diffT1 

 

##--- Stratification: ATE2 (Treatment2 vs 0) 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Model 2 (Treat2 vs Control) 

## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

Model2 <- data[-exc1, ] 

## recording the variable into dummy 

Model2$d2<-ifelse(Model2$t==2, 1,0) 

## Checking to see if the dummy variable was created correctly 

freq2a <-table(Model2$d2)  

freq2a 

 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Estimate ATE (treatment 2 vs 0)   

 

## Step 2: Estimate the propensity score using logistic regression 

ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

summary(ps2) 

psvalue2 <- predict(ps2, type = "response") 

Model2 <- cbind(Model2, psvalue2) 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model2<- Model2[order(psvalue2),]  

quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Checking to see the number of cases in each stratum  

table(Model2$pscat2, Model2$d2) 

## Visualizing the density plot 

## create value labels  

p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

## psvalue2 for treatment 2 vs 0 
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sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

title(main="psvalue2 Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

## Estimating treatment effect (Treatment 2 vs 0)   

   

ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

t2 <-ATE2(Model2)$ATE 

t2 

 

 

## Average Treatment Effect 2 (ATE2) before trimming  

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

diffT2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-21 

technique <-2 

overtbias <-1 
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sample    <-3 

 

Cond21 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond21 <- rename(Cond21, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond21, "Cond21_stratification.csv")     

  



217 
 

Condition 22 

#---- Condition 22 (a: Overt bias: Medium correlation between X7 & X8 & u = .5, b: small 

sample, n=200) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .50, 0, 

                    .15, 1, .10, .12, 0, 0, .50, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .50, .50, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 
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  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data22.csv") 

   

 

 

 

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

## Step 2: Estimate the propensity score using logistic regression 
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ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

summary(ps) 

psvalue <- predict(ps, type = "response") 

Model1<- cbind(Model1, psvalue) 

boxplot(Model1$psvalue~Model1$d1) 

## Visualizing the density plot 

## create value labels  

p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

## psvalue for treatment 1 vs 0 

sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

title(main="psvalues Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model1<- Model1[order(psvalue),]  

quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Estimate number of cases in each stratum 

table(Model1$pscat, Model1$d1) 

 

### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

## Estimate ATE (treatment 1 vs 0) 

 

ATE1 <-function (Model1){ 

  n <-tapply(Model1$d1, Model1$pscat, length)  

  m <-length(Model1$d1) 

  mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

  var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

  final<-data.frame(n, m, mean, var) 

  final<-final[complete.cases(final),] 

  names(final)[names(final)=="X0"]="mean_control" 

  names(final)[names(final)=="X1"]="mean_treatment" 

  names(final)[names(final)=="X0.1"]="variance_control" 

  names(final)[names(final)=="X1.1"]="variance_treatment" 

  tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

  return (setNames((list(tau)),("ATE"))) 

} 

 

## Average Treatment Effect 1 (ATE1)  
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### Extract and saving the ATE1 

t1 <-ATE1(Model1)$ATE 

t1 

 

## Estimating the difference between true (diff1) and estimated mean difference (t1) 

## (True mean difference is the mean difference from the original data) 

 

diffT1 <-t1-diff1 

diffT1 

 

##--- Stratification: ATE2 (Treatment2 vs 0) 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Model 2 (Treat2 vs Control) 

## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

Model2 <- data[-exc1, ] 

## recording the variable into dummy 

Model2$d2<-ifelse(Model2$t==2, 1,0) 

## Checking to see if the dummy variable was created correctly 

freq2a <-table(Model2$d2)  

freq2a 

 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Estimate ATE (treatment 2 vs 0)   

 

## Step 2: Estimate the propensity score using logistic regression 

ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

summary(ps2) 

psvalue2 <- predict(ps2, type = "response") 

Model2 <- cbind(Model2, psvalue2) 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model2<- Model2[order(psvalue2),]  

quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Checking to see the number of cases in each stratum  

table(Model2$pscat2, Model2$d2) 

## Visualizing the density plot 

## create value labels  

p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

## psvalue2 for treatment 2 vs 0 
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sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

title(main="psvalue2 Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

## Estimating treatment effect (Treatment 2 vs 0)   

   

ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

t2 <-ATE2(Model2)$ATE 

t2 

## Average Treatment Effect 2 (ATE2) before trimming  

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

diffT2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-22 

technique <-2 

overtbias <-2 

sample    <-1 
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Cond22<-data.frame(cond, technique, overtbias, sample, par.est) 

Cond22 <- rename(Cond22, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond22, "Cond22_stratification.csv")     
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Condition 23 

#---- Condition 23 (a: Overt bias: Medium correlation between X7 & X8 & u = .5, b: medium 

sample, n=500) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .50, 0, 

                    .15, 1, .10, .12, 0, 0, .50, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .50, .50, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  
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  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data23.csv") 

   

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

## Step 2: Estimate the propensity score using logistic regression 
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ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

summary(ps) 

psvalue <- predict(ps, type = "response") 

Model1<- cbind(Model1, psvalue) 

boxplot(Model1$psvalue~Model1$d1) 

## Visualizing the density plot 

## create value labels  

p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

## psvalue for treatment 1 vs 0 

sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

title(main="psvalues Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model1<- Model1[order(psvalue),]  

quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Estimate number of cases in each stratum 

table(Model1$pscat, Model1$d1) 

 

### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

## Estimate ATE (treatment 1 vs 0) 

 

ATE1 <-function (Model1){ 

  n <-tapply(Model1$d1, Model1$pscat, length)  

  m <-length(Model1$d1) 

  mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

  var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

  final<-data.frame(n, m, mean, var) 

  final<-final[complete.cases(final),] 

  names(final)[names(final)=="X0"]="mean_control" 

  names(final)[names(final)=="X1"]="mean_treatment" 

  names(final)[names(final)=="X0.1"]="variance_control" 

  names(final)[names(final)=="X1.1"]="variance_treatment" 

  tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

  return (setNames((list(tau)),("ATE"))) 

} 

 

## Average Treatment Effect 1 (ATE1)  
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### Extract and saving the ATE1 

t1 <-ATE1(Model1)$ATE 

t1 

 

## Estimating the difference between true (diff1) and estimated mean difference (t1) 

## (True mean difference is the mean difference from the original data) 

 

diffT1 <-t1-diff1 

diffT1 

 

##--- Stratification: ATE2 (Treatment2 vs 0) 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Model 2 (Treat2 vs Control) 

## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

Model2 <- data[-exc1, ] 

## recording the variable into dummy 

Model2$d2<-ifelse(Model2$t==2, 1,0) 

## Checking to see if the dummy variable was created correctly 

freq2a <-table(Model2$d2)  

freq2a 

 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Estimate ATE (treatment 2 vs 0)   

 

## Step 2: Estimate the propensity score using logistic regression 

ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

summary(ps2) 

psvalue2 <- predict(ps2, type = "response") 

Model2 <- cbind(Model2, psvalue2) 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model2<- Model2[order(psvalue2),]  

quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Checking to see the number of cases in each stratum  

table(Model2$pscat2, Model2$d2) 

## Visualizing the density plot 

## create value labels  

p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

## psvalue2 for treatment 2 vs 0 
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sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

title(main="psvalue2 Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

## Estimating treatment effect (Treatment 2 vs 0)   

   

ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

t2 <-ATE2(Model2)$ATE 

t2 

 

 

## Average Treatment Effect 2 (ATE2) before trimming  

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

diffT2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-23 

technique <-2 

overtbias <-2 
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sample    <-2 

 

Cond23 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond23<- rename(Cond23, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond23, "Cond23_stratification.csv")     
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Condition 24 

#---- Condition 24 (a: Overt bias: Medium correlation between X7 & X8 & u = .5, b: large 

sample, n=10 

00) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .50, 0, 

                    .15, 1, .10, .12, 0, 0, .50, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .50, .50, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 



234 
 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

#---Manipulating the variables 

## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data21.csv") 

   

 

 

 

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 
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## Step 2: Estimate the propensity score using logistic regression 

ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

summary(ps) 

psvalue <- predict(ps, type = "response") 

Model1<- cbind(Model1, psvalue) 

boxplot(Model1$psvalue~Model1$d1) 

## Visualizing the density plot 

## create value labels  

p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

## psvalue for treatment 1 vs 0 

sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

title(main="psvalues Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model1<- Model1[order(psvalue),]  

quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Estimate number of cases in each stratum 

table(Model1$pscat, Model1$d1) 

 

### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

## Estimate ATE (treatment 1 vs 0) 

 

ATE1 <-function (Model1){ 

  n <-tapply(Model1$d1, Model1$pscat, length)  

  m <-length(Model1$d1) 

  mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

  var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

  final<-data.frame(n, m, mean, var) 

  final<-final[complete.cases(final),] 

  names(final)[names(final)=="X0"]="mean_control" 

  names(final)[names(final)=="X1"]="mean_treatment" 

  names(final)[names(final)=="X0.1"]="variance_control" 

  names(final)[names(final)=="X1.1"]="variance_treatment" 

  tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

  return (setNames((list(tau)),("ATE"))) 

} 
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## Average Treatment Effect 1 (ATE1)  

### Extract and saving the ATE1 

t1 <-ATE1(Model1)$ATE 

t1 

 

## Estimating the difference between true (diff1) and estimated mean difference (t1) 

## (True mean difference is the mean difference from the original data) 

 

diffT1 <-t1-diff1 

diffT1 

 

##--- Stratification: ATE2 (Treatment2 vs 0) 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Model 2 (Treat2 vs Control) 

## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

Model2 <- data[-exc1, ] 

## recording the variable into dummy 

Model2$d2<-ifelse(Model2$t==2, 1,0) 

## Checking to see if the dummy variable was created correctly 

freq2a <-table(Model2$d2)  

freq2a 

 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Estimate ATE (treatment 2 vs 0)   

 

## Step 2: Estimate the propensity score using logistic regression 

ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

summary(ps2) 

psvalue2 <- predict(ps2, type = "response") 

Model2 <- cbind(Model2, psvalue2) 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model2<- Model2[order(psvalue2),]  

quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Checking to see the number of cases in each stratum  

table(Model2$pscat2, Model2$d2) 

## Visualizing the density plot 

## create value labels  
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p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

## psvalue2 for treatment 2 vs 0 

sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

title(main="psvalue2 Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

## Estimating treatment effect (Treatment 2 vs 0)   

   

ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

t2 <-ATE2(Model2)$ATE 

t2 

 

 

## Average Treatment Effect 2 (ATE2) before trimming  

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

diffT2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-24 
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technique <-2 

overtbias <-2 

sample    <-3 

 

Cond24 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond24 <- rename(Cond24, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond24, "Cond24_stratification.csv")     
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Condition 25 

#---- Condition 19 (a: Overt bias: Large correlation between X7 & X8 & u = .7, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .70, 0, 

                    .15, 1, .10, .12, 0, 0, .70, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .70, .70, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  



244 
 

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data25.csv") 

   

 

 

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 
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## Step 2: Estimate the propensity score using logistic regression 

ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

summary(ps) 

psvalue <- predict(ps, type = "response") 

Model1<- cbind(Model1, psvalue) 

boxplot(Model1$psvalue~Model1$d1) 

## Visualizing the density plot 

## create value labels  

p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

## psvalue for treatment 1 vs 0 

sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

title(main="psvalues Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model1<- Model1[order(psvalue),]  

quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Estimate number of cases in each stratum 

table(Model1$pscat, Model1$d1) 

 

### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

## Estimate ATE (treatment 1 vs 0) 

 

ATE1 <-function (Model1){ 

  n <-tapply(Model1$d1, Model1$pscat, length)  

  m <-length(Model1$d1) 

  mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

  var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

  final<-data.frame(n, m, mean, var) 

  final<-final[complete.cases(final),] 

  names(final)[names(final)=="X0"]="mean_control" 

  names(final)[names(final)=="X1"]="mean_treatment" 

  names(final)[names(final)=="X0.1"]="variance_control" 

  names(final)[names(final)=="X1.1"]="variance_treatment" 

  tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

  return (setNames((list(tau)),("ATE"))) 

} 
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## Average Treatment Effect 1 (ATE1)  

### Extract and saving the ATE1 

t1 <-ATE1(Model1)$ATE 

t1 

 

## Estimating the difference between true (diff1) and estimated mean difference (t1) 

## (True mean difference is the mean difference from the original data) 

 

diffT1 <-t1-diff1 

diffT1 

 

##--- Stratification: ATE2 (Treatment2 vs 0) 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Model 2 (Treat2 vs Control) 

## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

Model2 <- data[-exc1, ] 

## recording the variable into dummy 

Model2$d2<-ifelse(Model2$t==2, 1,0) 

## Checking to see if the dummy variable was created correctly 

freq2a <-table(Model2$d2)  

freq2a 

 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Estimate ATE (treatment 2 vs 0)   

 

## Step 2: Estimate the propensity score using logistic regression 

ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

summary(ps2) 

psvalue2 <- predict(ps2, type = "response") 

Model2 <- cbind(Model2, psvalue2) 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model2<- Model2[order(psvalue2),]  

quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Checking to see the number of cases in each stratum  

table(Model2$pscat2, Model2$d2) 

## Visualizing the density plot 

## create value labels  
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p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

## psvalue2 for treatment 2 vs 0 

sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

title(main="psvalue2 Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

## Estimating treatment effect (Treatment 2 vs 0)   

   

ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

t2 <-ATE2(Model2)$ATE 

t2 

 

 

## Average Treatment Effect 2 (ATE2) before trimming  

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

diffT2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-25 
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technique <-2 

overtbias <-3 

sample    <-1 

 

Cond25<-data.frame(cond, technique, overtbias, sample, par.est) 

Cond25 <- rename(Cond25, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond25, "Cond25_stratification.csv")     
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Condition 26 

#---- Condition 26 (a: Overt bias: Large correlation between X7 & X8 & u = .7, b: medium 

sample, n=500) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .70, 0, 

                    .15, 1, .10, .12, 0, 0, .70, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .70, .70, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  
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  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data26.csv") 

   

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

## Step 2: Estimate the propensity score using logistic regression 
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ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

summary(ps) 

psvalue <- predict(ps, type = "response") 

Model1<- cbind(Model1, psvalue) 

boxplot(Model1$psvalue~Model1$d1) 

## Visualizing the density plot 

## create value labels  

p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

## psvalue for treatment 1 vs 0 

sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

title(main="psvalues Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model1<- Model1[order(psvalue),]  

quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Estimate number of cases in each stratum 

table(Model1$pscat, Model1$d1) 

 

### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

## Estimate ATE (treatment 1 vs 0) 

 

ATE1 <-function (Model1){ 

  n <-tapply(Model1$d1, Model1$pscat, length)  

  m <-length(Model1$d1) 

  mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

  var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

  final<-data.frame(n, m, mean, var) 

  final<-final[complete.cases(final),] 

  names(final)[names(final)=="X0"]="mean_control" 

  names(final)[names(final)=="X1"]="mean_treatment" 

  names(final)[names(final)=="X0.1"]="variance_control" 

  names(final)[names(final)=="X1.1"]="variance_treatment" 

  tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

  return (setNames((list(tau)),("ATE"))) 

} 

 

## Average Treatment Effect 1 (ATE1)  
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### Extract and saving the ATE1 

t1 <-ATE1(Model1)$ATE 

t1 

 

## Estimating the difference between true (diff1) and estimated mean difference (t1) 

## (True mean difference is the mean difference from the original data) 

 

diffT1 <-t1-diff1 

diffT1 

 

##--- Stratification: ATE2 (Treatment2 vs 0) 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Model 2 (Treat2 vs Control) 

## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

Model2 <- data[-exc1, ] 

## recording the variable into dummy 

Model2$d2<-ifelse(Model2$t==2, 1,0) 

## Checking to see if the dummy variable was created correctly 

freq2a <-table(Model2$d2)  

freq2a 

 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Estimate ATE (treatment 2 vs 0)   

 

## Step 2: Estimate the propensity score using logistic regression 

ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

summary(ps2) 

psvalue2 <- predict(ps2, type = "response") 

Model2 <- cbind(Model2, psvalue2) 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model2<- Model2[order(psvalue2),]  

quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Checking to see the number of cases in each stratum  

table(Model2$pscat2, Model2$d2) 

## Visualizing the density plot 

## create value labels  

p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

## psvalue2 for treatment 2 vs 0 
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sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

title(main="psvalue2 Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

## Estimating treatment effect (Treatment 2 vs 0)   

   

ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

t2 <-ATE2(Model2)$ATE 

t2 

 

 

## Average Treatment Effect 2 (ATE2) before trimming  

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

diffT2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-26 

technique <-2 

overtbias <-3 
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sample    <-2 

 

Cond26 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond26 <- rename(Cond26, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond26, "Cond26_stratification.csv")     
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Condition 27 

#---- Condition 27 (a: Overt bias: Large correlation between X7 & X8 & u = .7, b: large sample, 

n=10 

00) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .70, 0, 

                    .15, 1, .10, .12, 0, 0, .70, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .70, .70, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 
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  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

#---Manipulating the variables 

## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data27.csv") 

   

 

 

 

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 
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## Step 2: Estimate the propensity score using logistic regression 

ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

summary(ps) 

psvalue <- predict(ps, type = "response") 

Model1<- cbind(Model1, psvalue) 

boxplot(Model1$psvalue~Model1$d1) 

## Visualizing the density plot 

## create value labels  

p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

## psvalue for treatment 1 vs 0 

sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

title(main="psvalues Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model1<- Model1[order(psvalue),]  

quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Estimate number of cases in each stratum 

table(Model1$pscat, Model1$d1) 

 

### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

## Estimate ATE (treatment 1 vs 0) 

 

ATE1 <-function (Model1){ 

  n <-tapply(Model1$d1, Model1$pscat, length)  

  m <-length(Model1$d1) 

  mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

  var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

  final<-data.frame(n, m, mean, var) 

  final<-final[complete.cases(final),] 

  names(final)[names(final)=="X0"]="mean_control" 

  names(final)[names(final)=="X1"]="mean_treatment" 

  names(final)[names(final)=="X0.1"]="variance_control" 

  names(final)[names(final)=="X1.1"]="variance_treatment" 

  tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

  return (setNames((list(tau)),("ATE"))) 

} 
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## Average Treatment Effect 1 (ATE1)  

### Extract and saving the ATE1 

t1 <-ATE1(Model1)$ATE 

t1 

 

## Estimating the difference between true (diff1) and estimated mean difference (t1) 

## (True mean difference is the mean difference from the original data) 

 

diffT1 <-t1-diff1 

diffT1 

 

##--- Stratification: ATE2 (Treatment2 vs 0) 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Model 2 (Treat2 vs Control) 

## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

Model2 <- data[-exc1, ] 

## recording the variable into dummy 

Model2$d2<-ifelse(Model2$t==2, 1,0) 

## Checking to see if the dummy variable was created correctly 

freq2a <-table(Model2$d2)  

freq2a 

 

### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

## Estimate ATE (treatment 2 vs 0)   

 

## Step 2: Estimate the propensity score using logistic regression 

ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

summary(ps2) 

psvalue2 <- predict(ps2, type = "response") 

Model2 <- cbind(Model2, psvalue2) 

## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

Model2<- Model2[order(psvalue2),]  

quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

## Checking to see the number of cases in each stratum  

table(Model2$pscat2, Model2$d2) 

## Visualizing the density plot 

## create value labels  
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p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

## psvalue2 for treatment 2 vs 0 

sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

title(main="psvalue2 Distribution by group") 

# Add a legend (the color numbers start from 2 and go up) 

legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

## Estimating treatment effect (Treatment 2 vs 0)   

   

ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

t2 <-ATE2(Model2)$ATE 

t2 

 

 

## Average Treatment Effect 2 (ATE2) before trimming  

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

diffT2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-27 
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technique <-2 

overtbias <-3 

sample    <-3 

 

Cond27 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond27 <- rename(Cond27, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond27, "Cond27_stratification.csv")     
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Condition 28 

#---- Condition 28 (a: Hidden bias: Small correlation between u & v = .3, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.3,  

                    0, 0, 0, 0, 0, 0, 0.3, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data28.csv") 

   

 

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## Checking to see if the cases were removed correctly 

  freq1 <-table(Model1$t)  

  freq1 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

  summary(ps) 

  psvalue <- predict(ps, type = "response") 

  Model1<- cbind(Model1, psvalue) 

  boxplot(Model1$psvalue~Model1$d1) 

  ## Visualizing the density plot 

  ## create value labels  

  p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

  ## psvalue for treatment 1 vs 0 
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  sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

  title(main="psvalues Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

   

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model1<- Model1[order(psvalue),]  

  quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Estimate number of cases in each stratum 

  table(Model1$pscat, Model1$d1) 

   

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate ATE (treatment 1 vs 0) 

   

 

 

  ATE1 <-function (Model1){ 

    n <-tapply(Model1$d1, Model1$pscat, length)  

    m <-length(Model1$d1) 

    mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

    var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  ## Average Treatment Effect 1 (ATE1)  

  ### Extract and saving the ATE1 

  t1 <-ATE1(Model1)$ATE 

  t1 

   

  ## Estimating the difference between true (diff1) and estimated mean difference (t1) 

  ## (True mean difference is the mean difference from the original data) 
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  diffT1 <-t1-diff1 

  diffT1 

   

  ##--- Stratification: ATE2 (Treatment2 vs 0) 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Model 2 (Treat2 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

  exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

  Model2 <- data[-exc1, ] 

  ## Checking to see if the cases were removed correctly  

  freq2 <-table(Model2$t)  

  freq2 

   

  ## recording the variable into dummy 

  Model2$d2<-ifelse(Model2$t==2, 1,0) 

  ## Checking to see if the dummy variable was created correctly 

  freq2a <-table(Model2$d2)  

  freq2a 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Estimate ATE (treatment 2 vs 0)   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

  summary(ps2) 

  psvalue2 <- predict(ps2, type = "response") 

  Model2 <- cbind(Model2, psvalue2) 

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model2<- Model2[order(psvalue2),]  

  quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Checking to see the number of cases in each stratum  

  table(Model2$pscat2, Model2$d2) 

  ## Visualizing the density plot 

  ## create value labels  

  p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

  ## psvalue2 for treatment 2 vs 0 

  sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

  title(main="psvalue2 Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 
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  ## Estimating treatment effect (Treatment 2 vs 0)   

   

  ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  t2 <-ATE2(Model2)$ATE 

  t2 

   

  ## Average Treatment Effect 2 (ATE2) before trimming  

  ### Extract and saving the ATE1 

  diffT2 <-t2-diff2 

  diffT2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-28 

technique <-2 

hiddenbias <-1 

sample    <-1 

 

Cond28 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond28 <- rename(Cond28, c(X1="difft1", X2 = "difft2) 

## saving the final data set for further analysis 

write.csv(Cond28, "Cond28_stratification.csv")     
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Condition 29 

#---- Condition 29 (a: Hidden bias: Small correlation between u & v = .3, b: medium sample, 

n=500) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.3,  

                    0, 0, 0, 0, 0, 0, 0.3, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data29.csv") 

   

 

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## Checking to see if the cases were removed correctly 

  freq1 <-table(Model1$t)  

  freq1 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

  summary(ps) 

  psvalue <- predict(ps, type = "response") 

  Model1<- cbind(Model1, psvalue) 

  boxplot(Model1$psvalue~Model1$d1) 

  ## Visualizing the density plot 

  ## create value labels  

  p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

  ## psvalue for treatment 1 vs 0 
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  sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

  title(main="psvalues Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

   

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model1<- Model1[order(psvalue),]  

  quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Estimate number of cases in each stratum 

  table(Model1$pscat, Model1$d1) 

   

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate ATE (treatment 1 vs 0) 

   

 

 

  ATE1 <-function (Model1){ 

    n <-tapply(Model1$d1, Model1$pscat, length)  

    m <-length(Model1$d1) 

    mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

    var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  ## Average Treatment Effect 1 (ATE1)  

  ### Extract and saving the ATE1 

  t1 <-ATE1(Model1)$ATE 

  t1 

   

  ## Estimating the difference between true (diff1) and estimated mean difference (t1) 

  ## (True mean difference is the mean difference from the original data) 
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  diffT1 <-t1-diff1 

  diffT1 

   

  ##--- Stratification: ATE2 (Treatment2 vs 0) 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Model 2 (Treat2 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

  exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

  Model2 <- data[-exc1, ] 

  ## Checking to see if the cases were removed correctly  

  freq2 <-table(Model2$t)  

  freq2 

   

  ## recording the variable into dummy 

  Model2$d2<-ifelse(Model2$t==2, 1,0) 

  ## Checking to see if the dummy variable was created correctly 

  freq2a <-table(Model2$d2)  

  freq2a 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Estimate ATE (treatment 2 vs 0)   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

  summary(ps2) 

  psvalue2 <- predict(ps2, type = "response") 

  Model2 <- cbind(Model2, psvalue2) 

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model2<- Model2[order(psvalue2),]  

  quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Checking to see the number of cases in each stratum  

  table(Model2$pscat2, Model2$d2) 

  ## Visualizing the density plot 

  ## create value labels  

  p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

  ## psvalue2 for treatment 2 vs 0 

  sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

  title(main="psvalue2 Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 
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  ## Estimating treatment effect (Treatment 2 vs 0)   

   

  ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  t2 <-ATE2(Model2)$ATE 

  t2 

   

  ## Average Treatment Effect 2 (ATE2) before trimming  

  ### Extract and saving the ATE1 

  diffT2 <-t2-diff2 

  diffT2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-29 

technique <-2 

hiddenbias <-1 

sample    <-2 

 

Cond29 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond29 <- rename(Cond29, c(X1="difft1", X2 = "difft2) 

## saving the final data set for further analysis 

write.csv(Cond29, "Cond29_stratification.csv")     
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Condition 30 

#---- Condition 30 (a: Hidden bias: Small correlation between u & v = .3, b: large sample, 

n=1000) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.3,  

                    0, 0, 0, 0, 0, 0, 0.3, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 
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  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data30.csv") 

   

 

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## Checking to see if the cases were removed correctly 

  freq1 <-table(Model1$t)  

  freq1 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

  summary(ps) 

  psvalue <- predict(ps, type = "response") 

  Model1<- cbind(Model1, psvalue) 

  boxplot(Model1$psvalue~Model1$d1) 

  ## Visualizing the density plot 

  ## create value labels  

  p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  
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  ## psvalue for treatment 1 vs 0 

  sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

  title(main="psvalues Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

   

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model1<- Model1[order(psvalue),]  

  quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Estimate number of cases in each stratum 

  table(Model1$pscat, Model1$d1) 

   

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate ATE (treatment 1 vs 0) 

   

  ATE1 <-function (Model1){ 

    n <-tapply(Model1$d1, Model1$pscat, length)  

    m <-length(Model1$d1) 

    mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

    var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  ## Average Treatment Effect 1 (ATE1)  

  ### Extract and saving the ATE1 

  t1 <-ATE1(Model1)$ATE 

  t1 

   

  ## Estimating the difference between true (diff1) and estimated mean difference (t1) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1-diff1 
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  diffT1 

   

  ##--- Stratification: ATE2 (Treatment2 vs 0) 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Model 2 (Treat2 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

  exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

  Model2 <- data[-exc1, ] 

  ## Checking to see if the cases were removed correctly  

  freq2 <-table(Model2$t)  

  freq2 

   

  ## recording the variable into dummy 

  Model2$d2<-ifelse(Model2$t==2, 1,0) 

  ## Checking to see if the dummy variable was created correctly 

  freq2a <-table(Model2$d2)  

  freq2a 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Estimate ATE (treatment 2 vs 0)   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

  summary(ps2) 

  psvalue2 <- predict(ps2, type = "response") 

  Model2 <- cbind(Model2, psvalue2) 

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model2<- Model2[order(psvalue2),]  

  quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Checking to see the number of cases in each stratum  

  table(Model2$pscat2, Model2$d2) 

  ## Visualizing the density plot 

  ## create value labels  

  p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

  ## psvalue2 for treatment 2 vs 0 

  sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

  title(main="psvalue2 Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

  ## Estimating treatment effect (Treatment 2 vs 0)   
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  ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  t2 <-ATE2(Model2)$ATE 

  t2 

   

  ## Average Treatment Effect 2 (ATE2) before trimming  

  ### Extract and saving the ATE1 

  diffT2 <-t2-diff2 

  diffT2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-30 

technique <-2 

hiddenbias <-1 

sample    <-3 

 

Cond30 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond30 <- rename(Cond30, c(X1="difft1", X2 = "difft2) 

## saving the final data set for further analysis 

write.csv(Cond30, "Cond30_stratification.csv")     
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Condition 31 

#---- Condition 31 (a: Hidden bias: Medium correlation between u & v = .5, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.3,  

                    0, 0, 0, 0, 0, 0, 0.3, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data31.csv") 

   

 

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## Checking to see if the cases were removed correctly 

  freq1 <-table(Model1$t)  

  freq1 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

  summary(ps) 

  psvalue <- predict(ps, type = "response") 

  Model1<- cbind(Model1, psvalue) 

  boxplot(Model1$psvalue~Model1$d1) 

  ## Visualizing the density plot 
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  ## create value labels  

  p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

  ## psvalue for treatment 1 vs 0 

  sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

  title(main="psvalues Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

   

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model1<- Model1[order(psvalue),]  

  quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Estimate number of cases in each stratum 

  table(Model1$pscat, Model1$d1) 

   

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate ATE (treatment 1 vs 0) 

   

 

 

  ATE1 <-function (Model1){ 

    n <-tapply(Model1$d1, Model1$pscat, length)  

    m <-length(Model1$d1) 

    mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

    var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  ## Average Treatment Effect 1 (ATE1)  

  ### Extract and saving the ATE1 

  t1 <-ATE1(Model1)$ATE 

  t1 
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  ## Estimating the difference between true (diff1) and estimated mean difference (t1) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1-diff1 

  diffT1 

   

  ##--- Stratification: ATE2 (Treatment2 vs 0) 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Model 2 (Treat2 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

  exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

  Model2 <- data[-exc1, ] 

  ## Checking to see if the cases were removed correctly  

  freq2 <-table(Model2$t)  

  freq2 

   

  ## recording the variable into dummy 

  Model2$d2<-ifelse(Model2$t==2, 1,0) 

  ## Checking to see if the dummy variable was created correctly 

  freq2a <-table(Model2$d2)  

  freq2a 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Estimate ATE (treatment 2 vs 0)   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

  summary(ps2) 

  psvalue2 <- predict(ps2, type = "response") 

  Model2 <- cbind(Model2, psvalue2) 

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model2<- Model2[order(psvalue2),]  

  quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Checking to see the number of cases in each stratum  

  table(Model2$pscat2, Model2$d2) 

  ## Visualizing the density plot 

  ## create value labels  

  p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

  ## psvalue2 for treatment 2 vs 0 

  sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

  title(main="psvalue2 Distribution by group") 
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  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

  ## Estimating treatment effect (Treatment 2 vs 0)   

   

  ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  t2 <-ATE2(Model2)$ATE 

  t2 

   

  ## Average Treatment Effect 2 (ATE2) before trimming  

  ### Extract and saving the ATE1 

  diffT2 <-t2-diff2 

  diffT2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-31 

technique <-2 

hiddenbias <-2 

sample    <-1 

 

Cond31 <-data.frame(cond, technique, hiddenbias, sample, par.est) 
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Cond31 <- rename(Cond31, c(X1="difft1", X2 = "difft2) 

## saving the final data set for further analysis 

write.csv(Cond31, "Cond31_stratification.csv")     
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Condition 32 

#---- Condition 32 (a: Hidden bias: Medium correlation between u & v = .3, b: medium sample, 

n=500) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.5,  

                    0, 0, 0, 0, 0, 0, 0.5, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data32.csv") 

   

 

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## Checking to see if the cases were removed correctly 

  freq1 <-table(Model1$t)  

  freq1 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

  summary(ps) 

  psvalue <- predict(ps, type = "response") 

  Model1<- cbind(Model1, psvalue) 

  boxplot(Model1$psvalue~Model1$d1) 

  ## Visualizing the density plot 

  ## create value labels  

  p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

  ## psvalue for treatment 1 vs 0 
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  sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

  title(main="psvalues Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

   

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model1<- Model1[order(psvalue),]  

  quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Estimate number of cases in each stratum 

  table(Model1$pscat, Model1$d1) 

   

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate ATE (treatment 1 vs 0) 

   

 

 

  ATE1 <-function (Model1){ 

    n <-tapply(Model1$d1, Model1$pscat, length)  

    m <-length(Model1$d1) 

    mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

    var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  ## Average Treatment Effect 1 (ATE1)  

  ### Extract and saving the ATE1 

  t1 <-ATE1(Model1)$ATE 

  t1 

   

  ## Estimating the difference between true (diff1) and estimated mean difference (t1) 

  ## (True mean difference is the mean difference from the original data) 
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  diffT1 <-t1-diff1 

  diffT1 

   

  ##--- Stratification: ATE2 (Treatment2 vs 0) 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Model 2 (Treat2 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

  exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

  Model2 <- data[-exc1, ] 

  ## Checking to see if the cases were removed correctly  

  freq2 <-table(Model2$t)  

  freq2 

   

  ## recording the variable into dummy 

  Model2$d2<-ifelse(Model2$t==2, 1,0) 

  ## Checking to see if the dummy variable was created correctly 

  freq2a <-table(Model2$d2)  

  freq2a 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Estimate ATE (treatment 2 vs 0)   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

  summary(ps2) 

  psvalue2 <- predict(ps2, type = "response") 

  Model2 <- cbind(Model2, psvalue2) 

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model2<- Model2[order(psvalue2),]  

  quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Checking to see the number of cases in each stratum  

  table(Model2$pscat2, Model2$d2) 

  ## Visualizing the density plot 

  ## create value labels  

  p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

  ## psvalue2 for treatment 2 vs 0 

  sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

  title(main="psvalue2 Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 
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  ## Estimating treatment effect (Treatment 2 vs 0)   

   

  ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  t2 <-ATE2(Model2)$ATE 

  t2 

   

  ## Average Treatment Effect 2 (ATE2) before trimming  

  ### Extract and saving the ATE1 

  diffT2 <-t2-diff2 

  diffT2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-32 

technique <-2 

hiddenbias <-2 

sample    <-2 

 

Cond32 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond32 <- rename(Cond32, c(X1="difft1", X2 = "difft2) 

## saving the final data set for further analysis 

write.csv(Cond32, "Cond32_stratification.csv")     
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Condition 33 

#---- Condition 33 (a: Hidden bias: Medium correlation between u & v = .5, b: large sample, 

n=1000) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.5,  

                    0, 0, 0, 0, 0, 0, 0.5, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data33.csv") 

   

 

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## Checking to see if the cases were removed correctly 

  freq1 <-table(Model1$t)  

  freq1 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

  summary(ps) 

  psvalue <- predict(ps, type = "response") 

  Model1<- cbind(Model1, psvalue) 

  boxplot(Model1$psvalue~Model1$d1) 

  ## Visualizing the density plot 

  ## create value labels  

  p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

  ## psvalue for treatment 1 vs 0 
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  sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

  title(main="psvalues Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

   

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model1<- Model1[order(psvalue),]  

  quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Estimate number of cases in each stratum 

  table(Model1$pscat, Model1$d1) 

   

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate ATE (treatment 1 vs 0) 

   

 

 

 

 

  ATE1 <-function (Model1){ 

    n <-tapply(Model1$d1, Model1$pscat, length)  

    m <-length(Model1$d1) 

    mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

    var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  ## Average Treatment Effect 1 (ATE1)  

  ### Extract and saving the ATE1 

  t1 <-ATE1(Model1)$ATE 

  t1 

   

  ## Estimating the difference between true (diff1) and estimated mean difference (t1) 
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  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1-diff1 

  diffT1 

   

  ##--- Stratification: ATE2 (Treatment2 vs 0) 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Model 2 (Treat2 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

  exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

  Model2 <- data[-exc1, ] 

  ## Checking to see if the cases were removed correctly  

  freq2 <-table(Model2$t)  

  freq2 

   

  ## recording the variable into dummy 

  Model2$d2<-ifelse(Model2$t==2, 1,0) 

  ## Checking to see if the dummy variable was created correctly 

  freq2a <-table(Model2$d2)  

  freq2a 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Estimate ATE (treatment 2 vs 0)   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

  summary(ps2) 

  psvalue2 <- predict(ps2, type = "response") 

  Model2 <- cbind(Model2, psvalue2) 

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model2<- Model2[order(psvalue2),]  

  quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Checking to see the number of cases in each stratum  

  table(Model2$pscat2, Model2$d2) 

  ## Visualizing the density plot 

  ## create value labels  

  p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

  ## psvalue2 for treatment 2 vs 0 

  sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

  title(main="psvalue2 Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 
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  legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

  ## Estimating treatment effect (Treatment 2 vs 0)   

   

  ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  t2 <-ATE2(Model2)$ATE 

  t2 

   

  ## Average Treatment Effect 2 (ATE2) before trimming  

  ### Extract and saving the ATE1 

  diffT2 <-t2-diff2 

  diffT2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-33 

technique <-2 

hiddenbias <-2 

sample    <-3 

 

Cond33 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond33 <- rename(Cond33, c(X1="difft1", X2 = "difft2) 
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## saving the final data set for further analysis 

write.csv(Cond33, "Cond33_stratification.csv")     
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Condition 34 

#---- Condition 34 (a: Hidden bias: Large correlation between u & v = .7, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.7,  

                    0, 0, 0, 0, 0, 0, 0.7, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data34.csv") 

   

 

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## Checking to see if the cases were removed correctly 

  freq1 <-table(Model1$t)  

  freq1 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

  summary(ps) 

  psvalue <- predict(ps, type = "response") 

  Model1<- cbind(Model1, psvalue) 

  boxplot(Model1$psvalue~Model1$d1) 

  ## Visualizing the density plot 
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  ## create value labels  

  p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

  ## psvalue for treatment 1 vs 0 

  sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

  title(main="psvalues Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

   

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model1<- Model1[order(psvalue),]  

  quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Estimate number of cases in each stratum 

  table(Model1$pscat, Model1$d1) 

   

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate ATE (treatment 1 vs 0) 

   

 

 

  ATE1 <-function (Model1){ 

    n <-tapply(Model1$d1, Model1$pscat, length)  

    m <-length(Model1$d1) 

    mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

    var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  ## Average Treatment Effect 1 (ATE1)  

  ### Extract and saving the ATE1 

  t1 <-ATE1(Model1)$ATE 

  t1 
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  ## Estimating the difference between true (diff1) and estimated mean difference (t1) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1-diff1 

  diffT1 

   

  ##--- Stratification: ATE2 (Treatment2 vs 0) 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Model 2 (Treat2 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

  exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

  Model2 <- data[-exc1, ] 

  ## Checking to see if the cases were removed correctly  

  freq2 <-table(Model2$t)  

  freq2 

   

  ## recording the variable into dummy 

  Model2$d2<-ifelse(Model2$t==2, 1,0) 

  ## Checking to see if the dummy variable was created correctly 

  freq2a <-table(Model2$d2)  

  freq2a 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Estimate ATE (treatment 2 vs 0)   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

  summary(ps2) 

  psvalue2 <- predict(ps2, type = "response") 

  Model2 <- cbind(Model2, psvalue2) 

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model2<- Model2[order(psvalue2),]  

  quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Checking to see the number of cases in each stratum  

  table(Model2$pscat2, Model2$d2) 

  ## Visualizing the density plot 

  ## create value labels  

  p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

  ## psvalue2 for treatment 2 vs 0 

  sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

  title(main="psvalue2 Distribution by group") 
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  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

  ## Estimating treatment effect (Treatment 2 vs 0)   

   

  ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  t2 <-ATE2(Model2)$ATE 

  t2 

   

  ## Average Treatment Effect 2 (ATE2) before trimming  

  ### Extract and saving the ATE1 

  diffT2 <-t2-diff2 

  diffT2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-34 

technique <-2 

hiddenbias <-3 

sample    <-1 

 

Cond34 <-data.frame(cond, technique, hiddenbias, sample, par.est) 
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Cond34 <- rename(Cond34, c(X1="difft1", X2 = "difft2) 

## saving the final data set for further analysis 

write.csv(Cond34, "Cond34_stratification.csv")     
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Condition 35 

#---- Condition 35 (a: Hidden bias: Large correlation between u & v = .7, b: medium sample, 

n=500) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.7,  

                    0, 0, 0, 0, 0, 0, 0.7, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   



319 
 

  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data35.csv") 

   

 

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## Checking to see if the cases were removed correctly 

  freq1 <-table(Model1$t)  

  freq1 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

  summary(ps) 

  psvalue <- predict(ps, type = "response") 

  Model1<- cbind(Model1, psvalue) 

  boxplot(Model1$psvalue~Model1$d1) 

  ## Visualizing the density plot 

  ## create value labels  

  p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

  ## psvalue for treatment 1 vs 0 
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  sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

  title(main="psvalues Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

   

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model1<- Model1[order(psvalue),]  

  quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Estimate number of cases in each stratum 

  table(Model1$pscat, Model1$d1) 

   

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate ATE (treatment 1 vs 0) 

   

 

 

  ATE1 <-function (Model1){ 

    n <-tapply(Model1$d1, Model1$pscat, length)  

    m <-length(Model1$d1) 

    mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

    var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  ## Average Treatment Effect 1 (ATE1)  

  ### Extract and saving the ATE1 

  t1 <-ATE1(Model1)$ATE 

  t1 

   

  ## Estimating the difference between true (diff1) and estimated mean difference (t1) 

  ## (True mean difference is the mean difference from the original data) 

   



322 
 

  diffT1 <-t1-diff1 

  diffT1 

   

  ##--- Stratification: ATE2 (Treatment2 vs 0) 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Model 2 (Treat2 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

  exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

  Model2 <- data[-exc1, ] 

  ## Checking to see if the cases were removed correctly  

  freq2 <-table(Model2$t)  

  freq2 

   

  ## recording the variable into dummy 

  Model2$d2<-ifelse(Model2$t==2, 1,0) 

  ## Checking to see if the dummy variable was created correctly 

  freq2a <-table(Model2$d2)  

  freq2a 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Estimate ATE (treatment 2 vs 0)   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

  summary(ps2) 

  psvalue2 <- predict(ps2, type = "response") 

  Model2 <- cbind(Model2, psvalue2) 

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model2<- Model2[order(psvalue2),]  

  quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Checking to see the number of cases in each stratum  

  table(Model2$pscat2, Model2$d2) 

  ## Visualizing the density plot 

  ## create value labels  

  p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

  ## psvalue2 for treatment 2 vs 0 

  sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

  title(main="psvalue2 Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 
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  ## Estimating treatment effect (Treatment 2 vs 0)   

   

  ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  t2 <-ATE2(Model2)$ATE 

  t2 

   

  ## Average Treatment Effect 2 (ATE2) before trimming  

  ### Extract and saving the ATE1 

  diffT2 <-t2-diff2 

  diffT2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-35 

technique <-2 

hiddenbias <-3 

sample    <-2 

 

Cond35 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond35 <- rename(Cond35, c(X1="difft1", X2 = "difft2) 

## saving the final data set for further analysis 

write.csv(Cond35, "Cond35_stratification.csv")     
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Condition 36 

#---- Condition 36 (a: Hidden bias: Large correlation between u & v = .7, b: large sample, 

n=1000) 

 

## Setting the working directory and required packages 

setwd("C:/Users/student/Desktop/Stratification2_simulation") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.7,  

                    0, 0, 0, 0, 0, 0, 0.7, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data36.csv") 

   

 

  ##-------Phase 3: Propensity score analysis using stratification 

  #---Running propensity score matching using stratification  

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate logistic regression for each model  

  ### Model 1 (Treat1 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 1 and control) 

  exc2 <- which(with(data, (data$t==2))) # exclude cases assigned under treatment 2 

  Model1 <- data[-exc2, ] 

  ## Checking to see if the cases were removed correctly 

  freq1 <-table(Model1$t)  

  freq1 

  ## recording the variable into dummy 

  Model1$d1<-ifelse(Model1$t==1, 1,0) 

  ## Checking to see if the dummy was created correctly 

  freq1a <-table(Model1$d1)  

  freq1a 

   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps<- glm(d1 ~ newx1 + newx2 + newx3 + newx4, data =Model1, family = binomial()) 

  summary(ps) 

  psvalue <- predict(ps, type = "response") 

  Model1<- cbind(Model1, psvalue) 

  boxplot(Model1$psvalue~Model1$d1) 

  ## Visualizing the density plot 

  ## create value labels  

  p1<- factor(Model1$d1, levels= c(0,1), labels = c("Ct", "t1"))  

  ## psvalue for treatment 1 vs 0 
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  sm.density.compare(Model1$psvalue, p1, xlab="psvalue") 

  title(main="psvalues Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p1), fill=2+(0:nlevels(p1))) 

   

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model1<- Model1[order(psvalue),]  

  quintiles <- quantile(Model1$psvalue, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model1$pscat <- cut(Model1$psvalue, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Estimate number of cases in each stratum 

  table(Model1$pscat, Model1$d1) 

   

  ### a. Average Treatment Effect without trimming (Treatment 1 vs 0) 

  ## Estimate ATE (treatment 1 vs 0) 

   

 

  ATE1 <-function (Model1){ 

    n <-tapply(Model1$d1, Model1$pscat, length)  

    m <-length(Model1$d1) 

    mean <- tapply(Model1$y, list(Model1$pscat, Model1$d1),mean, na.rm=TRUE) 

    var <- tapply(Model1$y, list(Model1$pscat, Model1$d1),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  ## Average Treatment Effect 1 (ATE1)  

  ### Extract and saving the ATE1 

  t1 <-ATE1(Model1)$ATE 

  t1 

   

  ## Estimating the difference between true (diff1) and estimated mean difference (t1) 

  ## (True mean difference is the mean difference from the original data) 

   

  diffT1 <-t1-diff1 
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  diffT1 

   

  ##--- Stratification: ATE2 (Treatment2 vs 0) 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Model 2 (Treat2 vs Control) 

  ## Step 1: Subsetting the data (retaining cases from treatment 2 and control) 

  exc1 <- which(with(data, (data$t==1))) #exclude cases assigned to treatment 1 

  Model2 <- data[-exc1, ] 

  ## Checking to see if the cases were removed correctly  

  freq2 <-table(Model2$t)  

  freq2 

   

  ## recording the variable into dummy 

  Model2$d2<-ifelse(Model2$t==2, 1,0) 

  ## Checking to see if the dummy variable was created correctly 

  freq2a <-table(Model2$d2)  

  freq2a 

  ### a. Average Treatment Effect without trimming (Treatment 2 vs 0) 

  ## Estimate ATE (treatment 2 vs 0)   

  ## Step 2: Estimate the propensity score using logistic regression 

  ps2<- glm(d2 ~ newx1 + newx2 + newx3 + newx4, data =Model2, family = binomial()) 

  summary(ps2) 

  psvalue2 <- predict(ps2, type = "response") 

  Model2 <- cbind(Model2, psvalue2) 

  ## Create equally spaced quintiles. Started by sorting the PS values in ascending order 

  Model2<- Model2[order(psvalue2),]  

  quintiles <- quantile(Model2$psvalue2, prob = seq(from = 0,to = 1, by = 0.2), na.rm = T) 

  Model2$pscat2 <- cut(Model2$psvalue2, breaks = quintiles, labels = 1:5, include.lowest = T) 

  ## Checking to see the number of cases in each stratum  

  table(Model2$pscat2, Model2$d2) 

  ## Visualizing the density plot 

  ## create value labels  

  p2<- factor(Model2$d2, levels= c(0,1), labels = c("Ct", "t2"))  

  ## psvalue2 for treatment 2 vs 0 

  sm.density.compare(Model2$psvalue2, p2, xlab="psvalue2") 

  title(main="psvalue2 Distribution by group") 

  # Add a legend (the color numbers start from 2 and go up) 

  legend("topright", levels(p2), fill=2+(0:nlevels(p2))) 

   

  ## Estimating treatment effect (Treatment 2 vs 0)   
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  ATE2 <-function (Model2){ 

    n <-tapply(Model2$d2, Model2$pscat, length)  

    m <-length(Model2$d2) 

    mean <- tapply(Model2$y, list(Model2$pscat, Model2$d2),mean, na.rm=TRUE) 

    var <- tapply(Model2$y, list(Model2$pscat, Model2$d2),var, na.rm=TRUE) 

    final<-data.frame(n, m, mean, var) 

    final<-final[complete.cases(final),] 

    names(final)[names(final)=="X0"]="mean_control" 

    names(final)[names(final)=="X1"]="mean_treatment" 

    names(final)[names(final)=="X0.1"]="variance_control" 

    names(final)[names(final)=="X1.1"]="variance_treatment" 

    tau<-sum((final$n/final$m)*(final$mean_treatment-final$mean_control)) 

    return (setNames((list(tau)),("ATE"))) 

  } 

   

  t2 <-ATE2(Model2)$ATE 

  t2 

   

  ## Average Treatment Effect 2 (ATE2) before trimming  

  ### Extract and saving the ATE1 

  diffT2 <-t2-diff2 

  diffT2 

   

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

  } 

 

# Creating and labelling the final dataset 

cond      <-36 

technique <-2 

hiddenbias <-3 

sample    <-3 

 

Cond36 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond36 <- rename(Cond36, c(X1="difft1", X2 = "difft2) 

## saving the final data set for further analysis 

write.csv(Cond36, "Cond36_stratification.csv")     
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Weighting  

 

Condition 37 

#---- Condition 37 (a: Overt bias: Small correlation between X7 & X8 & u = .3, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .30, 0, 

                    .15, 1, .10, .12, 0, 0, .30, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .30, .30, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 
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  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  
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  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  ## saving the dataset in csv format 

  write.csv(data, "data37.csv") 

     

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

##-------Phase 3: Propensity score analysis using weighting 

#---Running propensity score matching using twang  

### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

 

library("twang")     # to perform propensity score weighting 

library("survey")    # to perform weighted regression 

   

## Running propensity score weighting using twang 

### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

## calls the data for analysis 

twangdata37 <-read.csv("data37.csv") 

   

## Estimate weights using propensity scores 

mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata37, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 
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## Estimating treatment effect 

## Assigning weights into the dataset 

twangdata37$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata37) 

   

model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

summary(model) 

   

## Extracting the coefficients from the model 

t1 <-model$coefficients [2] 

t2 <-model$coefficients [3] 

 

#--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

## (True mean difference is the mean difference from the original data) 

 

## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

### Extract and saving the ATE1 

diffT1 <-t1-diff1 

 

## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-37 

technique <-3 

overtbias <-1 

sample    <-1 

 

Cond37 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond37 <- rename(Cond37, c(X1="difft1", X2 = "difft2")) 

## saving the final data set for further analysis 

write.csv(Cond37, "Cond37_twang.csv")     
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Condition 38 

#---- Condition 38 (a: Overt bias: Small correlation between X7 & X8 & u = .3, b: medium 

sample, n=500) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .30, 0, 

                    .15, 1, .10, .12, 0, 0, .30, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .30, .30, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  ## saving the dataset in csv format 

  write.csv(data, "data38.csv") 

     

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

##-------Phase 3: Propensity score analysis using weighting 

#---Running propensity score matching using twang  

### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

 

library("twang")     # to perform propensity score weighting 

library("survey")    # to perform weighted regression 

   

## Running propensity score weighting using twang 

### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

## calls the data for analysis 

twangdata38 <-read.csv("data38.csv") 

   

## Estimate weights using propensity scores 

mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata38, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 
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## Estimating treatment effect 

## Assigning weights into the dataset 

twangdata38$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata38) 

   

model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

summary(model) 

   

## Extracting the coefficients from the model 

t1 <-model$coefficients [2] 

t2 <-model$coefficients [3] 

 

#--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

## (True mean difference is the mean difference from the original data) 

 

## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

### Extract and saving the ATE1 

diffT1 <-t1-diff1 

 

## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-38 

technique <-3 

overtbias <-1 

sample    <-2 

 

Cond38 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond38 <- rename(Cond38, c(X1="difft1", X2 = "difft2")) 

## saving the final data set for further analysis 

write.csv(Cond38, "Cond38_twang.csv")     
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Condition 39 

#---- Condition 39 (a: Overt bias: Small correlation between X7 & X8 & u = .3, b: large sample, 

n=1000) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .30, 0, 

                    .15, 1, .10, .12, 0, 0, .30, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .30, .30, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  ## saving the dataset in csv format 

  write.csv(data, "data39.csv") 

     

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

##-------Phase 3: Propensity score analysis using weighting 

#---Running propensity score matching using twang  

### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

 

library("twang")     # to perform propensity score weighting 

library("survey")    # to perform weighted regression 

   

## Running propensity score weighting using twang 

### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

## calls the data for analysis 

twangdata39 <-read.csv("data39.csv") 

   

## Estimate weights using propensity scores 

mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata39, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 
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 ## Estimating treatment effect 

## Assigning weights into the dataset 

twangdata39$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata39) 

   

model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

summary(model) 

   

## Extracting the coefficients from the model 

t1 <-model$coefficients [2] 

t2 <-model$coefficients [3] 

 

#--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

## (True mean difference is the mean difference from the original data) 

 

## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

### Extract and saving the ATE1 

diffT1 <-t1-diff1 

 

 

## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-39 

technique <-3 

overtbias <-1 

sample    <-3 

 

Cond39 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond39 <- rename(Cond39, c(X1="difft1", X2 = "difft2")) 

## saving the final data set for further analysis 

write.csv(Cond39, "Cond39_twang.csv")     
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Condition 40 

#---- Condition 40 (a: Overt bias: Medium correlation between X7 & X8 & u = .5, b: small 

sample, n=200) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .50, 0, 

                    .15, 1, .10, .12, 0, 0, .50, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .50, .50, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  ## saving the dataset in csv format 

  write.csv(data, "data40.csv") 

     

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

##-------Phase 3: Propensity score analysis using weighting 

#---Running propensity score matching using twang  

### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

 

library("twang")     # to perform propensity score weighting 

library("survey")    # to perform weighted regression 

   

## Running propensity score weighting using twang 

### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

## calls the data for analysis 

Twangdata40 <-read.csv("data40.csv") 

   

## Estimate weights using propensity scores 

mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata40, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 
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 ## Estimating treatment effect 

## Assigning weights into the dataset 

Twangdata40$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata40) 

   

model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

summary(model) 

   

## Extracting the coefficients from the model 

t1 <-model$coefficients [2] 

t2 <-model$coefficients [3] 

 

#--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

## (True mean difference is the mean difference from the original data) 

 

## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

### Extract and saving the ATE1 

diffT1 <-t1-diff1 

 

 

## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-40 

technique <-3 

overtbias <-2 

sample    <-1 

 

Cond40 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond40 <- rename(Cond37, c(X1="difft1", X2 = "difft2")) 

## saving the final data set for further analysis 

write.csv(Cond40, "Cond40_twang.csv")     



351 
 

Condition 41 

#---- Condition 41 (a: Overt bias: Medium correlation between X7 & X8 & u = .5, b: medium 

sample, n=500) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .50, 0, 

                    .15, 1, .10, .12, 0, 0, .50, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .50, .50, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  
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  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  ## saving the dataset in csv format 

  write.csv(data, "data41.csv") 

     

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

##-------Phase 3: Propensity score analysis using weighting 

#---Running propensity score matching using twang  

### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

 

library("twang")     # to perform propensity score weighting 

library("survey")    # to perform weighted regression 

   

## Running propensity score weighting using twang 

### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

## calls the data for analysis 

Twangdata41 <-read.csv("data41.csv") 

   

## Estimate weights using propensity scores 

mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata41, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 
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## Estimating treatment effect 

## Assigning weights into the dataset 

Twangdata41$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata41) 

   

model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

summary(model) 

   

## Extracting the coefficients from the model 

t1 <-model$coefficients [2] 

t2 <-model$coefficients [3] 

 

#--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

## (True mean difference is the mean difference from the original data) 

 

## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

### Extract and saving the ATE1 

diffT1 <-t1-diff1 

 

 

## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-41 

technique <-3 

overtbias <-2 

sample    <-2 

 

Cond41 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond41 <- rename(Cond41, c(X1="difft1", X2 = "difft2")) 

## saving the final data set for further analysis 

write.csv(Cond41, "Cond41_twang.csv")     
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Condition 42 

#---- Condition 42 (a: Overt bias: Medium correlation between X7 & X8 & u = .5, b: large 

sample, n=1000) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .50, 0, 

                    .15, 1, .10, .12, 0, 0, .50, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .50, .50, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  ## saving the dataset in csv format 

  write.csv(data, "data42.csv") 

     

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

##-------Phase 3: Propensity score analysis using weighting 

#---Running propensity score matching using twang  

### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

 

library("twang")     # to perform propensity score weighting 

library("survey")    # to perform weighted regression 

   

## Running propensity score weighting using twang 

### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

## calls the data for analysis 

Twangdata42 <-read.csv("data42.csv") 

   

## Estimate weights using propensity scores 

mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata42, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 
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 ## Estimating treatment effect 

## Assigning weights into the dataset 

Twangdata42$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata42) 

   

model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

summary(model) 

   

## Extracting the coefficients from the model 

t1 <-model$coefficients [2] 

t2 <-model$coefficients [3] 

 

#--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

## (True mean difference is the mean difference from the original data) 

 

## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

### Extract and saving the ATE1 

diffT1 <-t1-diff1 

 

 

## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-42 

technique <-3 

overtbias <-2 

sample    <-3 

 

Cond42 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond42 <- rename(Cond42, c(X1="difft1", X2 = "difft2")) 

## saving the final data set for further analysis 

write.csv(Cond42, "Cond42_twang.csv")     
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Condition 43 

#---- Condition 43 (a: Overt bias: Large correlation between X7 & X8 & u = .7, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .70, 0, 

                    .15, 1, .10, .12, 0, 0, .70, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .70, .70, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  ## saving the dataset in csv format 

  write.csv(data, "data43.csv") 

     

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

##-------Phase 3: Propensity score analysis using weighting 

#---Running propensity score matching using twang  

### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

 

library("twang")     # to perform propensity score weighting 

library("survey")    # to perform weighted regression 

   

## Running propensity score weighting using twang 

### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

## calls the data for analysis 

Twangdata43 <-read.csv("data43.csv") 

   

## Estimate weights using propensity scores 

mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata43, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 

   

## Estimating treatment effect 
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## Assigning weights into the dataset 

Twangdata43$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata43) 

   

model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

summary(model) 

   

## Extracting the coefficients from the model 

t1 <-model$coefficients [2] 

t2 <-model$coefficients [3] 

 

#--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

## (True mean difference is the mean difference from the original data) 

 

## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

### Extract and saving the ATE1 

diffT1 <-t1-diff1 

 

 

## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-43 

technique <-3 

overtbias <-3 

sample    <-1 

 

Cond43 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond43 <- rename(Cond43, c(X1="difft1", X2 = "difft2")) 

## saving the final data set for further analysis 

write.csv(Cond43, "Cond43_twang.csv")     
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Condition 44 

#---- Condition 44 (a: Overt bias: Large correlation between X7 & X8 & u = .7, b: medium 

sample, n=500) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .70, 0, 

                    .15, 1, .10, .12, 0, 0, .70, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .70, .70, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  ## saving the dataset in csv format 

  write.csv(data, "data44.csv") 

     

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

##-------Phase 3: Propensity score analysis using weighting 

#---Running propensity score matching using twang  

### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

 

library("twang")     # to perform propensity score weighting 

library("survey")    # to perform weighted regression 

   

## Running propensity score weighting using twang 

### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

## calls the data for analysis 

Twangdata44 <-read.csv("data44.csv") 

   

## Estimate weights using propensity scores 

mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata44, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 
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## Estimating treatment effect 

## Assigning weights into the dataset 

Twangdata44$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata44) 

   

model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

summary(model) 

   

## Extracting the coefficients from the model 

t1 <-model$coefficients [2] 

t2 <-model$coefficients [3] 

 

#--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

## (True mean difference is the mean difference from the original data) 

 

## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

### Extract and saving the ATE1 

diffT1 <-t1-diff1 

 

 

## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-44 

technique <-3 

overtbias <-3 

sample    <-2 

 

Cond44 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond44 <- rename(Cond44, c(X1="difft1", X2 = "difft2")) 

## saving the final data set for further analysis 

write.csv(Cond44, "Cond44_twang.csv")     
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Condition 45 

#---- Condition 45 (a: Overt bias: Large correlation between X7 & X8 & u = .7, b: large sample, 

n=1000) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinnomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and erorr term (u) was set to establish 

overt bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 2) 

for (i in 1:reps) { 

   

sigma <- matrix(c(1, .15, .12, .10, 0, 0, .70, 0, 

                    .15, 1, .10, .12, 0, 0, .70, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    .70, .70, 0, 0, 0, 0, 1, 0,  

                    0, 0, 0, 0, 0, 0, 0, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  ## saving the dataset in csv format 

  write.csv(data, "data45.csv") 

     

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

##-------Phase 3: Propensity score analysis using weighting 

#---Running propensity score matching using twang  

### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

 

library("twang")     # to perform propensity score weighting 

library("survey")    # to perform weighted regression 

   

## Running propensity score weighting using twang 

### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

## calls the data for analysis 

Twangdata45 <-read.csv("data45.csv") 

   

## Estimate weights using propensity scores 

mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata45, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 

   

## Estimating treatment effect 
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## Assigning weights into the dataset 

Twangdata45$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata45) 

   

model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

summary(model) 

   

## Extracting the coefficients from the model 

t1 <-model$coefficients [2] 

t2 <-model$coefficients [3] 

 

#--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

## (True mean difference is the mean difference from the original data) 

 

## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

### Extract and saving the ATE1 

diffT1 <-t1-diff1 

 

 

## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

### Extract and saving the ATE2 

diffT2 <-t2-diff2 

 

### saving the parameters in a single dataset   

par.est [i, 1] <-diffT1 

par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-45 

technique <-3 

overtbias <-3 

sample    <-3 

 

Cond45 <-data.frame(cond, technique, overtbias, sample, par.est) 

Cond45 <- rename(Cond42, c(X1="difft1", X2 = "difft2")) 

## saving the final data set for further analysis 

write.csv(Cond45, "Cond45_twang.csv")     
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Condition 46 

#---- Condition 46 (a: Hidden bias: Small correlation between u & v = .3, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 4) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.3,  

                    0, 0, 0, 0, 0, 0, 0.3, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data46.csv") 

 

   

 

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using weighting 

  #---Running propensity score matching using twang  

  ### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

   

  library("twang")     # to perform propensity score weighting 

  library("survey")    # to perform weighted regression 

   

  ## Running propensity score weighting using twang 

  ### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

  ## calls the data for analysis 

  twangdata46 <-read.csv("data46.csv") 
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  ## Estimate weights using propensity scores 

  mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata46, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 

   

  ## Estimating treatment effect 

  ## Assigning weights into the dataset 

  twangdata46$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

  design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata46) 

   

  model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

  summary(model) 

   

  ## Extracting the coefficients from the model 

  t1 <-model$coefficients [2] 

  t2 <-model$coefficients [3] 

   

  #--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

  ## (True mean difference is the mean difference from the original data) 

   

 

  ## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

  ### Extract and saving the ATE1 

  diffT1 <-t1-diff1 

   

  ## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

  ### Extract and saving the ATE2 

  diffT2 <-t2-diff2 

   

  #---Saving information 

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-46 

technique <-3 

hiddenbias <-1 
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sample    <-1 

 

Cond46 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond46 <- rename(Cond46, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond46, "Cond46_twang.csv")     
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Condition 47 

#---- Condition 47 (a: Hidden bias: Small correlation between u & v = .3, b: medium sample, 

n=500) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 4) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.3,  

                    0, 0, 0, 0, 0, 0, 0.3, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data47.csv") 

 

   

 

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using weighting 

  #---Running propensity score matching using twang  

  ### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

   

  library("twang")     # to perform propensity score weighting 

  library("survey")    # to perform weighted regression 

   

  ## Running propensity score weighting using twang 

  ### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

  ## calls the data for analysis 

  twangdata47 <-read.csv("data47.csv") 
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  ## Estimate weights using propensity scores 

  mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata47, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 

   

  ## Estimating treatment effect 

  ## Assigning weights into the dataset 

  twangdata47$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

  design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata47) 

   

  model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

  summary(model) 

   

  ## Extracting the coefficients from the model 

  t1 <-model$coefficients [2] 

  t2 <-model$coefficients [3] 

   

  #--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

  ## (True mean difference is the mean difference from the original data) 

   

  

 ## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

  ### Extract and saving the ATE1 

  diffT1 <-t1-diff1 

   

  ## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

  ### Extract and saving the ATE2 

  diffT2 <-t2-diff2 

   

  #---Saving information 

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-47 

technique <-3 

hiddenbias <-1 
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sample    <-2 

 

Cond47 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond47 <- rename(Cond47, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond47, "Cond47_twang.csv")     
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Condition 48 

#---- Condition 48 (a: Hidden bias: Small correlation between u & v = .3, b: large sample, 

n=1000) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 4) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.3,  

                    0, 0, 0, 0, 0, 0, 0.3, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data48.csv") 

 

   

 

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using weighting 

  #---Running propensity score matching using twang  

  ### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

   

  library("twang")     # to perform propensity score weighting 

  library("survey")    # to perform weighted regression 

   

  ## Running propensity score weighting using twang 

  ### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

  ## calls the data for analysis 

  twangdata48 <-read.csv("data48.csv") 

   

  ## Estimate weights using propensity scores 
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  mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata48, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 

   

  ## Estimating treatment effect 

  ## Assigning weights into the dataset 

  twangdata48$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

  design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata48) 

   

  model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

  summary(model) 

   

  ## Extracting the coefficients from the model 

  t1 <-model$coefficients [2] 

  t2 <-model$coefficients [3] 

   

  #--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

  ## (True mean difference is the mean difference from the original data) 

   

   

## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

  ### Extract and saving the ATE1 

  diffT1 <-t1-diff1 

   

  ## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

  ### Extract and saving the ATE2 

  diffT2 <-t2-diff2 

   

  #---Saving information 

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-48 

technique <-3 

hiddenbias <-1 

sample    <-3 
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Cond48<-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond48<- rename(Cond48, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond48, "Cond48_twang.csv")     
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Condition 49 

#---- Condition 49 (a: Hidden bias: Medium correlation between u & v = .5, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 4) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.5,  

                    0, 0, 0, 0, 0, 0, 0.5, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data49.csv") 

 

   

 

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using weighting 

  #---Running propensity score matching using twang  

  ### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

   

  library("twang")     # to perform propensity score weighting 

  library("survey")    # to perform weighted regression 

   

  ## Running propensity score weighting using twang 

  ### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

  ## calls the data for analysis 

  twangdata49 <-read.csv("data49.csv") 

   

  ## Estimate weights using propensity scores 
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  mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata49, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 

   

  ## Estimating treatment effect 

  ## Assigning weights into the dataset 

  twangdata49$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

  design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata49) 

   

  model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

  summary(model) 

   

  ## Extracting the coefficients from the model 

  t1 <-model$coefficients [2] 

  t2 <-model$coefficients [3] 

   

  #--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

  ## (True mean difference is the mean difference from the original data) 

   

 

  ## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

  ### Extract and saving the ATE1 

  diffT1 <-t1-diff1 

   

  ## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

  ### Extract and saving the ATE2 

  diffT2 <-t2-diff2 

   

  #---Saving information 

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-49 

technique <-3 

hiddenbias <-2 

sample    <-1 
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Cond49 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond49 <- rename(Cond49, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond49, "Cond49_twang.csv")     
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Condition 50 

#---- Condition 50 (a: Hidden bias: Medium correlation between u & v = .5, b: medium sample, 

n=500) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 4) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.5,  

                    0, 0, 0, 0, 0, 0, 0.5, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 
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  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data50.csv") 

 

   

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using weighting 

  #---Running propensity score matching using twang  

  ### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

   

  library("twang")     # to perform propensity score weighting 

  library("survey")    # to perform weighted regression 

   

  ## Running propensity score weighting using twang 

  ### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

  ## calls the data for analysis 

  Twangdata50 <-read.csv("data50.csv") 

   

  ## Estimate weights using propensity scores 

  mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata50, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 
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  ## Estimating treatment effect 

  ## Assigning weights into the dataset 

  Twangdata50$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

  design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata50) 

   

  model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

  summary(model) 

   

  ## Extracting the coefficients from the model 

  t1 <-model$coefficients [2] 

  t2 <-model$coefficients [3] 

   

  #--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

  ## (True mean difference is the mean difference from the original data) 

   

  ## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

  ### Extract and saving the ATE1 

  diffT1 <-t1-diff1 

   

  ## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

  ### Extract and saving the ATE2 

  diffT2 <-t2-diff2 

   

  #---Saving information 

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-50 

technique <-3 

hiddenbias <-2 

sample    <-2 

 

Cond50 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond50 <- rename(Cond50, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond50, "Cond50_twang.csv")   
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Condition 51 

#---- Condition 51 (a: Hidden bias: Medium correlation between u & v = .5, b: large sample, 

n=1000) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 4) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.5,  

                    0, 0, 0, 0, 0, 0, 0.5, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 
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  ## Specify the number of rows 

  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 
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  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 

   

  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 
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  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data51.csv") 

 

   

 

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using weighting 

  #---Running propensity score matching using twang  

  ### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

   

  library("twang")     # to perform propensity score weighting 

  library("survey")    # to perform weighted regression 

   

  ## Running propensity score weighting using twang 

  ### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

  ## calls the data for analysis 

  Twangdata51 <-read.csv("data51.csv") 
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  ## Estimate weights using propensity scores 

  mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata51, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 

   

  ## Estimating treatment effect 

  ## Assigning weights into the dataset 

  Twangdata51$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

  design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata51) 

   

  model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

  summary(model) 

   

  ## Extracting the coefficients from the model 

  t1 <-model$coefficients [2] 

  t2 <-model$coefficients [3] 

   

  #--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

  ## (True mean difference is the mean difference from the original data) 

   

 

  ## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

  ### Extract and saving the ATE1 

  diffT1 <-t1-diff1 

   

  ## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

  ### Extract and saving the ATE2 

  diffT2 <-t2-diff2 

   

  #---Saving information 

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-51 

technique <-3 

hiddenbias <-2 
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sample    <-3 

 

Cond51<-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond51<- rename(Cond51, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond51, "Cond51_twang.csv")     
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Condition 52 

#---- Condition 52 (a: Hidden bias: Large correlation between u & v = .7, b: small sample, 

n=200) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 4) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.7,  

                    0, 0, 0, 0, 0, 0, 0.7, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=200, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

 #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data52.csv") 

 

 

   

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using weighting 

  #---Running propensity score matching using twang  

  ### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

   

  library("twang")     # to perform propensity score weighting 

  library("survey")    # to perform weighted regression 

   

  ## Running propensity score weighting using twang 

  ### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

  ## calls the data for analysis 

  Twangdata52 <-read.csv("data52.csv") 

   

  ## Estimate weights using propensity scores 



415 
 

  mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata52, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 

   

  ## Estimating treatment effect 

  ## Assigning weights into the dataset 

  Twangdata52$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

  design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata52) 

   

  model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

  summary(model) 

   

  ## Extracting the coefficients from the model 

  t1 <-model$coefficients [2] 

  t2 <-model$coefficients [3] 

   

  #--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

  ## (True mean difference is the mean difference from the original data) 

   

 

  ## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

  ### Extract and saving the ATE1 

  diffT1 <-t1-diff1 

   

  ## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

  ### Extract and saving the ATE2 

  diffT2 <-t2-diff2 

   

  #---Saving information 

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-52 

technique <-3 

hiddenbias <-3 

sample    <-1 
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Cond52 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond52 <- rename(Cond52, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond52, "Cond52_twang.csv")     
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Condition 53 

#---- Condition 53(a: Hidden bias: Large correlation between u & v = .7, b: medium sample, 

n=500) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 4) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.7,  

                    0, 0, 0, 0, 0, 0, 0.7, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=500, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 

   

  ### Setting the difference 
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  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data53.csv") 

 

   

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using weighting 

  #---Running propensity score matching using twang  

  ### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

   

  library("twang")     # to perform propensity score weighting 

  library("survey")    # to perform weighted regression 

   

  ## Running propensity score weighting using twang 

  ### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

  ## calls the data for analysis 

  Twangdata53 <-read.csv("data53.csv") 

   

  ## Estimate weights using propensity scores 

  mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata53, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 
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  ## Estimating treatment effect 

  ## Assigning weights into the dataset 

  Twangdata53$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

  design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata53) 

   

  model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

  summary(model) 

   

  ## Extracting the coefficients from the model 

  t1 <-model$coefficients [2] 

  t2 <-model$coefficients [3] 

   

  #--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

  ## (True mean difference is the mean difference from the original data) 

   

  ## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

  ### Extract and saving the ATE1 

  diffT1 <-t1-diff1 

   

  ## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

  ### Extract and saving the ATE2 

  diffT2 <-t2-diff2 

   

  #---Saving information 

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-53 

technique <-3 

hiddenbias <-3 

sample    <-2 

 

Cond53 <-data.frame(cond, technique, hiddenbias, sample, par.est) 

Cond53 <- rename(Cond53, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond53, "Cond53_twang.csv")     
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Condition 54 

#---- Condition 54 (a: Hidden bias: Large correlation between u & v = .7, b: large sample, 

n=1000) 

 

## Setting the working directory and required packages 

setwd("~/Desktop/R") 

 

## Required packages  

library("foreign")   # to write and save files in different format 

library ("reshape")  # to rename variables 

library("MASS")      # to create random numbers 

library("mvtnorm")   # to create correlated random numbers 

library("psych")     # to describe and estimate regression 

library("miscF")     # to create random groups from multinomial distribution 

library("sm")        # to create density plots 

 

set.seed(5) 

##-------Phase 1: Generating variable 

#--Generate correlated variables 

## Correlation matrix is specified to set the correlation between the variables. Also, the 

correlation between treatment assignment variables and error term (u) was set to establish 

hidden bias. 

reps <-1000 

par.est <-matrix (NA, nrow = reps, ncol = 4) 

for (i in 1:reps) { 

   

  sigma <- matrix(c(1, .15, .12, .10, 0, 0, 0, 0, 

                    .15, 1, .10, .12, 0, 0, 0, 0,  

                    .12, .10, 1, .13, .09, .08, 0, 0,  

                    .10, .12, .13, 1, .13, .11, 0, 0,  

                    0, 0, .09, .13, 1, .15, 0, 0,  

                    0, 0, .08, .11, .15, 1, 0, 0,  

                    0, 0, 0, 0, 0, 0, 1, 0.7,  

                    0, 0, 0, 0, 0, 0, 0.7, 1), ncol = 8) 

  mu <- c(5, 7, 9, 11, 4, 6, 0, 0) 

   

  x <- rmvnorm(n=1000, mean=mu, sigma=sigma, method="chol") 

  ## Naming the columns in the dataset 

  colnames(x) <- c("x1","x2","x3","x4","x5", "x6", "u", "v") 

  ## Specify the number of rows 
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  rownames(x) <- c(1:200) 

  ## saving the variables into a dataset 

  data<-data.frame(x) 

   

 

  #--Create the probability for being in Control, treatment 1 & treatment 2 

   

  ## Setting the weight of the variables in estimating probabilities 

  c1 <-exp((-0.2*(data$x1)) + (-0.7*(data$x2)) + (-1.7*(data$x3)) + (-2*(data$x4)) + data$v) 

  c2 <-exp((-0.3*(data$x1)) + (-0.65*(data$x2)) + (-1.6*(data$x3)) + (-2.1*(data$x4)) + data$v) 

  c3 <-exp((-0.35*(data$x1)) + (-0.5*(data$x2)) + (-1.5*(data$x3)) + (-2.2*(data$x4)) + data$v) 

   

  ### With the estimates, the probability of being in COntrol, treatment 1 and treatment 2 is 

estimated 

  L1 <-c1/((c1+c2+c3)) 

  L2 <-c2/((c1+c2+c3)) 

  L3 <-c3/((c1+c2+c3)) 

   

  ### Estimating different probabilities of being in treatment(s) and control groups 

  ### The three probabilities will be used to in a multinomial distribution to generate the groups 

  data$t<-rMultinom(p=cbind(L1, L2, L3)) 

  ### To save the number of cases in each group 

  mytable <- table(data$t)  

  nt1 <-mytable[1]   

  nt2 <-mytable[2] 

  nct <-mytable[3] 

   

  ## Estimate the ratio of cases in treatment(s) versus control groups 

  ### Ratio of cases in treatment 1 versus control 

  ratio1 <-(nt1/nct) 

  ### Ratio of cases in treatment 2 versus control 

  ratio2 <-(nt2/nct) 

   

  ## Create dummy variable from categorical variable 

  data$d1 <- as.numeric(data$t == 1) 

  data$d2 <- as.numeric(data$t == 2) 

   

  ## create outcome (y) variable 

  data$y <-((0.3*(data$x3)) + (0.4*(data$x4)) + (0.95*(data$x5)) + (0.60*(data$x6)) + 

(5*(data$d1)) + (15*(data$d2)) + data$u) 
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  ## Recoding numeric variable into string (need to rename for Trimatch & twang) 

  data$gs[data$t ==1] <- "Treat1" 

  data$gs[data$t ==2] <- "Treat2" 

  data$gs[data$t ==3] <- "Control" 

   

  #---Manipulating the variables 

   

  ## Setting the treatment assignment variables to be different between treatment 1 vs 0 and 

treatment 2 vs 0. The means between the variables were set to be different.  

   

  ### For x1, the mean difference between treatment 1 and O is set to be 0.8  

  ### For x1, the mean difference between treatment 2 and o is set to be 0.7 

   

  ### Setting the difference 

  nx1 <-ifelse(data$t==1, 0.8,  

               ifelse(data$t==2, 0.7, 0)) 

  ## saving the adjusted variable into dataset 

  data$newx1 <-(data$x1 + nx1) 

   

  ### For x2, the mean difference between treatment 1 and O is set to be 0.7  

  ### For x2, the mean difference between treatment 2 and o is set to be 0.8 

   

  ### Setting the difference 

  nx2 <-ifelse(data$t==1, 0.7, 

               ifelse(data$t==2, 0.8, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx2 <-(data$x2 + nx2) 

   

  ### For x3, the mean difference between treatment 1 and O is set to be 0.6  

  ### For x3, the mean difference between treatment 2 and o is set to be 0.5 

   

  ### Setting the difference 

  nx3 <-ifelse(data$t==1, 0.6, 

               ifelse(data$t==2, 0.5, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx3 <-(data$x3 + nx3) 

   

  ### For x4, the mean difference between treatment 1 and O is set to be 0.5  

  ### For x4, the mean difference between treatment 2 and o is set to be 0.6 
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  ### Setting the difference 

  nx4 <-ifelse(data$t==1, 0.5, 

               ifelse(data$t==2, 0.6, 0)) 

  ### saving the adjusted variable into dataset 

  data$newx4<-(data$x4 + nx4) 

   

  ##-------Phase 2: Descriptive statistics 

  #---To examine the descriptive statistics of the variables 

   

  ## saving the dataset in csv format 

  write.csv(data, "data54.csv") 

 

   

  ## Estimating the mean of outcome (y) in each group  

  mean <-aggregate(data$y, by=list(data$t),FUN=mean, na.rm=TRUE) 

  mean 

  ## Estimating the mean difference 

  ### diff1 (Treatment 1 vs Control) 

  diff1<- (mean$x[1] - mean$x[3]) 

  ### diff1 (Treatment 2 vs Control) 

  diff2 <-(mean$x[2] - mean$x[3]) 

  diff1 

  diff2 

   

  ##-------Phase 3: Propensity score analysis using weighting 

  #---Running propensity score matching using twang  

  ### (number of trees =3000, stop.methods = "es. mean", "ks.mean") 

   

  library("twang")     # to perform propensity score weighting 

  library("survey")    # to perform weighted regression 

   

  ## Running propensity score weighting using twang 

  ### (number of trees = 3000, stop. methods = "es.mean", "ks.mean") 

   

  ## calls the data for analysis 

  Twangdata54 <-read.csv("data54.csv") 

   

  ## Estimate weights using propensity scores 
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  mnps.data <-mnps (gs ~ newx1 + newx2 + newx3 + newx4, data = twangdata54, estimand 

="ATE", verbose = FALSE, stop.method = c("es.mean", "ks.mean"), n.trees = 3000) 

   

  ## Estimating treatment effect 

  ## Assigning weights into the dataset 

  Twangdata54$w<-get.weights(mnps.data, stop.method = "es.mean") 

   

  design.mnps <-svydesign(ids =~1, weights = ~w, data = twangdata54) 

   

  model <-svyglm(y ~ as.factor(gs) + newx3 + newx4 + x5 + x6, design=design.mnps) 

  summary(model) 

   

  ## Extracting the coefficients from the model 

  t1 <-model$coefficients [2] 

  t2 <-model$coefficients [3] 

   

  #--- Estimating the difference between true (t1, t2) and estimated mean difference (diff1, diff2) 

  ## (True mean difference is the mean difference from the original data) 

   

 

  ## Average Treatment Effect 1 (ATE1): Treatment 1 vs Control 

  ### Extract and saving the ATE1 

  diffT1 <-t1-diff1 

  ## Average Treatment Effect 2 (ATE2): Treatment 2 vs Control 

  ### Extract and saving the ATE2 

  diffT2 <-t2-diff2 

   

  #---Saving information 

  ### saving the parameters in a single dataset   

  par.est [i, 1] <-diffT1 

  par.est [i, 2] <-diffT2 

} 

 

# Creating and labelling the final dataset 

cond      <-54 

technique <-3 

hiddenbias <-3 

sample    <-3 

 

Cond54<-data.frame(cond, technique, hiddenbias, sample, par.est) 
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Cond54<- rename(Cond54, c(X1="difft1", X2 = "difft2)) 

## saving the final data set for further analysis 

write.csv(Cond54, "Cond54_twang.csv")     
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