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 ABSTRACT 

Fluid–structure interaction (FSI) modeling is a method by which fluid and solid 

domains are coupled together to produce a single result that cannot be produced if each 

physical domain was evaluated individually. The work presented in this dissertation is a 

demonstration of the methods and implementation of FSI modeling into an industry-

appropriate design tool. Through utilizing computationally inexpensive equipment and 

commercially available software, the studies presented in this work demonstrate the 

ability for FSI modeling to become a tool used broadly in industry.  

To demonstrate this capability, the cases studied purposely include substantial 

complexity to demonstrate the stability techniques required for modeling the inherent 

instabilities of FSI models that contain three-dimensional geometries, nonlinear 

materials, thin-walled geometries, steep gradients, and transient behavior. The work also 

modeled scenarios that predict system failure and optimal design to extend service 

lifetime, thereby expanding upon current FSI literature. Four independent studies were 

performed, evaluating three separate modes of failure in FSI models, to demonstrate that 

FSI modeling is a viable design tool for widespread industry use.  
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The first study validates FSI modeling techniques by comparing the results of a 

thin-walled FSI geometry model under hydrostatic forces with existing experimental 

data.  

The second study explored a parametric study that evaluated the factors 

influencing an FSI model containing a highly complex thermal-fluid fatigue model. This 

model involved dynamically changing temperature loads resulting in significant thermal 

expansion that led to material yielding and dynamic fatigue life.  

The third study evaluated a thermal-fluid conjugate heat transfer problem. The 

model was tuned, validated, and optimized for lifetime, and the validation of the system 

was performed using experimental data.  

The final study modeled the highly complex fluid and solid phenomena involved 

in a peristaltic pump where the goal was to demonstrate that the lifetime performance of 

the tubing could be altered by changing the geometry, material properties, and operating 

temperature. The model in this final study combined all the methods and techniques from 

the three earlier studies and applied them to a thin-walled tube geometry with nonlinear 

and temperature-dependent material properties to create large solid deformation and fluid 

motion.  
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1 

 CHAPTER 1: INTRODUCTION 

Fluid–structure interaction (FSI) modeling is a computational modeling technique 

in which multiple physical phenomena are modeled together to produce a single result 

that cannot be produced if each physical phenomenon was modeled individually [1–4]. 

These phenomena can include conjugate heat transfer, fluid mechanics, and solid 

mechanics. In order for an engineer to capture the full environment that a system or 

component will experience, FSI modeling may be required. Examples of systems that 

require FSI modeling are the motion of heart valves, the stress in a turbine blade due to 

kinetic loading and thermal expansion, the dynamic interactions of a diaphragm pump, 

the large deformation of a peristaltic pump, the interactions inside a breathing lung, the 

vibrations inside heat exchangers, and thin structures used for heat shields [1,2,5–12]. 

These examples require the Computational Fluid Dynamics (CFD) and Finite Element 

Analysis (FEA) models be linked together so that the results of each model impart forces 

on the other. Traditionally, the phenomena of fluid dynamics, heat transfer, solid 

mechanics, electromechanics, electromagnetics, vibrations, and chemistry have been 

evaluated separately [4,9,13,14]. However, with more powerful computers, commercially 

available software, and new techniques to add computational stabilities, engineers can 

now apply computational techniques to increasingly complex systems by linking multiple 
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domains and analysis techniques together [1]. This increased complexity is evident both 

in the model size and in the ability to capture the full multiphysics environment.  

1.1. FSI Modeling Methods 

1.1.1. What is FSI Modeling? 

FSI modeling is a subcategory of multiphysics modeling that involves a fluid 

domain and a solid domain [1,2,4]. Multiphysics modeling is a computational modeling 

method in which multiple physical phenomena are modeled together, with the results of 

one phenomenon directly affecting the outcome of another. With multiphysics modeling, 

the same results cannot be achieved if the phenomena are modeled independent of one 

another. These separate phenomena can include fluid dynamics, heat transfer, solid 

mechanics, electromechanics, electromagnetics, vibrations, acoustics, and chemistry 

[4,9,13,14]. FSI modeling is a subcategory of multiphysics modeling that comprises 

linking fluid dynamics and solid mechanics together to generate results that cannot be 

attained by modeling the domains independent of each other [3]. FSI modeling allows for 

displacement, force, pressure, and temperature data to pass back and forth between the 

fluid and solid domains. This allows for the linking of conjugate heat transfer, fluid 

mechanics, and solid mechanics together in a single system. Several methods are 

available for linking CFD and FEA models together to create an FSI model, including 

monolithic coupling, weak coupling, and strong coupling. Regardless of the method, 

when CFD and FEA models are coupled together, two challenges are introduced, as 

discussed below.  
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The first challenge that arises when coupling CFD and FEA models together is 

coupling the two independent mesh domains together while still accounting for the 

differences in mesh formulation and motion. This challenge arises from the fundamental 

differences between the Lagrangian mesh (utilized in FEA models), which deforms as a 

function of mass motions, and the Eulerian mesh (utilized in CFD models), which is fixed 

at all points in space and time [1]. A more detailed discussion of the fundamental 

differences and methods for accounting for these differences is found in the section 

entitled “FSI Modeling Methods.” 

The second challenge is to transfer data between domains in a manner that 

mitigates instabilities, fluctuations, and non-physical phenomena at the domain 

interfaces. These instabilities arise from the mass effect, data transfer methods, and 

magnification of instabilities or shock waves at the interface. A more detailed discussion 

of these instabilities and mitigation methods is discussed in the “Data Transfer Methods,” 

“Mass Effect,” and “Computational Instabilities” sections. 

1.1.2. System of Equations 

The computational model containing the fluid domain utilizes the three-

dimensional Navier–Stokes equations in conjunction with the continuity, volume 

fraction, and energy equations, Equations 1 through 4 respectively, utilizing a pressure-

based solver for subsonic incompressible flow, along with the k-epsilon turbulence 

model. In the pressure-based solver, the momentum and continuity equations, Equations 

1 and 2 respectively, are used in combination to calculate the pressure field. Additionally, 

because the model contains two fluids with a discrete interface, the volume fraction 
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equation must be solved to conserve species, and the mass balance equation must be 

evaluated to conserve the overall mass of the system, Equations 2 and 3 respectively. The 

k-epsilon turbulence model utilizes Equations 5 and 6 to define k and epsilon 

respectively, and Equation 7 to define the turbulent viscosity.  

 

𝝏

𝝏𝒕
(𝝆�⃗⃗� ) + 𝛁 ∙ (𝝆�⃗⃗� �⃗⃗� ) = −𝛁𝒑 + 𝛁 ∙ (�̿�) + 𝝆�⃗⃗� + �⃗⃗�      (1) 

 

𝝏𝝆

𝝏𝒕
+ 𝛁 ∙ (𝝆�⃗⃗� ) = 𝑺𝒎          (2) 

 

∑ 𝜶𝒒
𝒏
𝒒=𝟏 = 𝟏          (3) 

 

𝝏

𝝏𝒕
(𝝆𝑬) + 𝛁 ∙ (�⃗⃗� (𝝆𝑬 + 𝒑)) = 𝛁 ∙ (𝒌𝒆𝒇𝒇 ∙ 𝛁𝐓 − ∑ 𝒉𝒋 𝒋

𝑱 𝒋 + �̅�𝒆𝒇𝒇 ∙ �⃗⃗� ) + 𝑺𝒉  (4) 

 

Where t is time, ρ is density, 𝑣  is the velocity vector, ∇ is the derivative in three-

dimensional space, p is pressure, 𝜏̿ is the stress tensor, 𝑔  is gravity, 𝐹  is external body 

forces, Sm is a mass source term, α is the fluid volume fraction, E is the total fluid energy, 

keff is the effective thermal conductivity of the fluid, T is the temperature, h is the 

enthalpy, J is the diffusion flux, and Sh is a volumetric energy source 

 

𝝏

𝝏𝒕
(𝝆𝒌) +

𝝏

𝝏𝒙𝒊
(𝝆𝒌𝒖𝒊) =

𝝏

𝝏𝒙𝒊
(

𝝏𝒌

𝝏𝒙𝒋
(𝝁 +

𝝁𝒕

𝝈𝒌
)) + 𝑮𝒌 + 𝑮𝒃 − 𝝆𝜺 − 𝒀𝑴 + 𝑺𝒌  (5) 
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𝝏

𝝏𝒕
(𝝆𝝐) +

𝝏

𝝏𝒙𝒊
(𝝆𝝐𝒖𝒊) =

𝝏

𝝏𝒙𝒊
(

𝝏𝝐

𝝏𝒙𝒋
(𝝁 +

𝝁𝒕

𝝈𝝐
)) + 𝑪𝟏𝜺

𝝐

𝒌
(𝑮𝒌 + 𝑪𝟑𝜺𝑮𝒃) − 𝑪𝟐𝜺𝝆

𝝐𝟐

𝒌
+ 𝑺𝝐 (6) 

𝝁𝒕 = 𝝆𝑪𝝁
𝒌𝟐

𝝐
          (7) 

 

Where k is turbulent kinetic energy, u is velocity, µ is viscosity, µt is the turbulent 

viscosity, G is generation of turbulent kinetic energy, Y represents fluctuation due to 

compressibility, S is a user-defined source term, ε is the rate of dissipation, and C1ε, C2ε, 

Cµ, σk, and σε are constants with all of the associated subscripts i, j, k, and t representing 

direction and time references. Each of these equations is defined for the fluid present in 

each control volume prescribed by the fluid mesh. If multiple fluid species or a volume of 

fluid model is evaluated, this set of equations will be evaluated for each fluid in the 

domain.  

The computational model utilized the three-dimensional strain displacement, 

nodal displacement, and stress equations, Equations 8 through 10 respectively, to solve 

for the deformation, stress, strain, and forces across each node in the solid domain.  

 

[𝑩] = [𝝏][𝑵]          (8) 

 

{𝜺} = [𝑩]{𝑫}           (9) 

 

{𝝈} = [𝑬]{𝝐}          (10) 
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Where B is the strain displacement, ∂ is the four-dimensional gradient (time and 

space), N is element shape function, ε is strain, D is nodal displacements, σ is stress, and 

E is modulus of elasticity.  

1.1.3. Mesh Coupling Methods 

When creating an FSI model, the first challenge is coupling the two independent 

mesh domains together while still accounting for the fundamental differences in the mesh 

formulation of each domain. FEA modeling utilizes a Lagrangian mesh where the finite 

element mesh is fixed to the mass and moves in space as a function of the mass motion 

[15]. In contrast, CFD modeling utilizes an Eulerian mesh where the finite element mesh 

is fixed in time and space with the mass passing through the mesh [16]. This means that 

the Lagrangian mesh is able to deform and move positions as a function of the fluid 

domain inputs; however, the solid domain displacement of the Lagrangian mesh cannot 

be directly applied to the fixed fluid domain. 

FSI modeling has three primary methods for transferring the critical information 

between the fluid and solid domains: (1) the Lattice Boltzmann method, (2) the fictitious 

domain, and (3) the Arbitrary Lagrangian–Eulerian method. Each method is described in 

more detail below. 

(1) The Lattice Boltzmann method utilizes a set of equations in which the fluid is 

represented as a discrete set of particles rather than the continuous flow represented by 

the Navier-Stokes equations [17–19]. Compared to the numerical solution of the 

Navier-Stokes equations, the Lattice Boltzmann method requires less computational time, 

but is limited in its ability to model both fluid flow and conjugate heat transfer in 
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conjunction with compressible flow [19]. Thus, this method may not be sufficient for 

modeling complex fluid dynamics problems.  

(2) The fictitious domain method does not model the exact interface between the 

fluid and solid regions, but keeps the fluid domain (Eulerian mesh) fixed at all times and 

only allows the solid domain (Lagrangian mesh) to deform [5,20,21]. At each time step 

the location of the solid domain is interpreted into the fluid domain by prescribing a zero 

velocity value at the elements most closely linked to the surface of the solid [20]. It is 

best to imagine these two models as completely independent of one another, but layered 

on top of each other to achieve the interaction, Figure 1.1. The fictitious domain method 

is useful because the Lagrangian mesh of the solid is free to deform, yet it does not 

require alteration or remeshing of the Eulerian mesh of the fluid [20,21]. One of the 

disadvantages of the fictitious domain method is the instabilities that arise as the interface 

between the two models moves over time [22,23]. One way to minimize this instability is 

to use the fictitious domain method with adaptive meshing of the fluid domain, which 

allows the fluid domain to more accurately define the edge of the solid domain [22,23]. 

Theoretically, the fictitious domain method can be used to model flexible thin flaps; 

however, the vast majority of research groups using this method apply it to model rigid 

bileaflet heart valves that do not experience measurable deflection [6,23–25]. Research 

groups using the fictitious domain method have claimed to produced transient FSI 

models, but have not done so with a single transient model that operates through the 

entire motion of the flap. Instead, these groups have evaluated a handful of fixed flap 

angles—15, 30, 45, and 60 degrees—under steady-state conditions [25–27].  
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(3) The Arbitrary Lagrangian–Eulerian method utilizes a Lagrangian mesh to 

represent the solid domain and an Eulerian mesh to represent the fluid domain, while 

allowing for a seamless interface over which data can be transferred, Figure 1.1 [2,28,29]. 

Both non-conformal and conformal mesh interfaces can be utilized with the Arbitrary 

Lagrangian–Eulerian method, Figure 1.2. The challenge with using the Arbitrary 

Lagrangian–Eulerian method is maintaining the mesh quality of the Eulerian mesh (fluid 

domain) as it deforms as a function of the Lagrangian mesh (solid domain). The mesh 

motion in the traditionally fixed Eulerian mesh is implementation through dynamic 

meshing. If large deformations are present, automated remeshing steps must be taken in 

the Eulerian mesh to maintain sufficient element quality. If the element quality is not 

maintained, instabilities can be generated causing unphysical pressure, temperature or 

displacement gradient, thus leading to computational failure [2,30,31]. One of the 

benefits of using the Arbitrary Lagrangian–Eulerian method is that the full toolbox of 

CFD and FEA methods is available. The downside to Arbitrary Lagrangian–Eulerian 

modeling is the possible introduction of instabilities at this mesh interface, the possibility 

of low element quality, and increased computational time due to dynamic remeshing and 

automated remeshing [1,2,30,31]. The Arbitrary Lagrangian–Eulerian model also allows 

for both monolithic and partitioned data transfer methods as discussed in the section titled 

“Data Transfer Methods” [1,2,30,31]. 
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Figure 1.1: Black lines represent the fluid mesh (Eulerian) and gray body represents 

the solid mesh (Lagrangian). Mesh motions with the fictitious domain method are 

shown from a to b, and mesh motions with the Arbitrary Lagrangian–Eulerian 

method is shown from c to d. 
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Figure 1.2: Conformal meshing interface (a) and non-conformal meshing interface 

(b). 

 

1.1.4. Data Transfer Methods 

Data transfer between the discrete domains requires defining the frequency and 

direction shared information is passed. The frequency by which information is passed is 

defined by the coupling type: monolithic coupling, strong coupling, and weak coupling 

[2,30]. While the type and direction of the information passed can be one-way or two-

way. 

Monolithic coupling involves solving both the fluid and solid system of equations 

simultaneously as a single system (matrix) of equations, Figure 1.3. Generally, 

monolithic data transfer utilizes custom computational codes and requires extremely large 

and powerful computers compared to other coupling methods [9]. Additionally, these 

(a)

(b)
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custom computational codes are limited to the specific multiphysics phenomena of each 

unique problem and require a significant amount of code customization for each problem 

[32,33]. Some specific areas where customization is often required include wave motion, 

vibrations, and heat transfer [1,34–36]. Because these custom codes do not allow use of 

the full CFD and FEA features available in commercial codes and require large 

computational resources, the monolithic coupling method is not utilized by most 

companies.  

In contrast, both strong and weak coupling—referred to as “partitioned 

approaches”—pass data between the fluid and solid models in an attempt to solve the two 

systems of equations separately, but with shared boundary conditions [30,37,38]. Both 

strong and weak coupling approaches are available in commercially available software 

like ANSYS Multiphysics, COMSOL Multiphysics®, STAR-CCM+, and MpCCI Co-

simulation [3,4,14,39]. The difference between strong and weak coupling methods is 

when and how often data is passed from one model to another with respect to each time 

step. In strong coupling, each domain is evaluated once and then the data is exchanged 

between the models, Figure 1.4. Then the same time step is reevaluated using the results 

from the other domain as updated boundary conditions. This process of exchanging data 

between the domains is repeated until a converged solution is reached in both domains, 

then the next time step is taken and the data exchange process repeats. In weak coupling, 

data is exchanged a maximum of one time between domains before the next time step is 

taken thus no check is performed to ensure a converged data transfer has been reached, 

Figure 1.5. In addition to not checking for a converged data transfer, the data may be 
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transferred less frequently, which leads to very weak coupling and eventually one-way 

coupling.  

Each coupling method has its advantages and disadvantages; thus, each model 

presents a unique challenge. Traditionally, weak coupling produces results in a faster 

timeframe because each domain is only evaluated once per time step, but the model tends 

to be more unstable and converges to less accurate answers if deformation is large or the 

deformation occurs rapidly [2,30]. The strong coupling method can resolve some of these 

issues, but takes more computational time than weak coupling and cannot fully eliminate 

all of the instabilities from the mass effect. A monolithic method allows the evaluation of 

very unstable models, but at the expense of significantly increased computational time 

relative to a partitioned approach [30].  

Each of these methods can have one-way or two-way data transfer between each 

model. The types of data that can be transferred include temperature, heat transfer, 

pressure, force, and displacement, among others. One-way coupling only passes data in 

one direction, meaning the model either passes data from the fluid to the solid or from the 

solid to the fluid. One-way coupling is a useful tool to reduce the computational time 

required to evaluate a model [2,4]. However, this coupling can only be utilized when the 

results of one model will have insignificant effects on the other model. An example of 

when one-way coupling can be used is a skyscraper under a wind load. The wind load 

creates a unique pressure profile on the building, causing it to deform; however, the small 

deformation has negligible effects on the pressure profile around the building, resulting in 

the same wind load on the building after the deformation is applied. Two-way coupling is 
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required when data is passed in both directions between the fluid and solid models [2,4]. 

This type of coupling is necessary for models with large deformations, like a heart valve 

or extreme thermal expansion problems, because the results of one model will 

significantly alter the boundary conditions and outcome of the other. If large 

displacements are present in addition to heat transfer between models, multiple different 

data transfer types can be used to transfer displacement, pressure or force, temperature, 

and heat transfer.  

 

Figure 1.3: Two-way monolithic time stepping for FSI modeling. 
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Figure 1.4: Two-way strong coupling algorithm used to transfer data back and forth 

between fluid and solid models. 
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Figure 1.5: Two-way weak coupling algorithm used to transfer data back and forth 

between fluid and solid models. 
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Figure 1.6: One-way data transfer for fluid to solid only (left) and solid to fluid only 

(right). 

 

1.1.5. Mass Effect 

In many cases, FSI models contain large amounts of deformation and/or thin-

walled solid components, which tends to result in instabilities at the fluid and solid 

interface. These instabilities are primarily caused by the mass effect, which occur when a 

stiff body is interfaced with an incompressible fluid and movement is present in the solid, 

resulting in fluid compression or expansion, Figure 1.7 [2,4,31,37]. As the solid model 
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moves, so does the interface and the attached fluid mesh, which results in a change in 

volume of the fluid domain. If the fluid is treated as incompressible, i.e. standard water or 

oil, and the fluid volume changes without a change in mass, an instantaneous change in 

pressure and density will occur, creating a shock. When the discontinuous change is 

translated back to the solid, it creates large artificial pressure gradients. This results in 

singularities at the interface that eventually lead to oscillations and computational 

divergence. This shock is a computational artifact, and by adding a small amount of 

compressibility to fluids like oil and water, some mass effects can be controlled and 

mitigated.  

  

Figure 1.7: The mass effect experienced at the interface between a stiff solid model 

and an incompressible fluid model. 

 

The susceptibility of an FSI model to the mass effect can be estimated through a 

stability equation, Equation 11 [2]. In this equation, ρs and ρf are the densities of the solid 

and fluid respectively, hs is the thickness of the solid, R is the radius of the fluid 

passageway, and L is the length of the fluid passageway. However, this equation has 

limitations because it does not take fluid flow behavior or material stiffness into account. 

It only assesses the stability of the geometry and thus does not address any 
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characterization for the fluid flow or solid deflection. By utilizing fluid with higher 

viscosity, solid with stiffer materials, low fluid flow rates, and stabilizing techniques, 

stability can be introduced to the model to reduce the magnitude of the shock and 

increase the damping of any shocks that do appear. If instabilities do persist, artificial 

damping, fine-tuned relaxation factors, and load ramping of data transfer can be applied 

to manipulate the coupled information between the interfaces to add stability.  

 

𝝆𝒔𝒉𝒔𝝅
𝟐𝑹

𝝆𝒇𝟐𝑳𝟐 > 𝟏         (11) 

 

1.2. Why FSI Modeling is Difficult  

All FSI models introduce challenges that can result in an inaccurate solution and 

computational divergence. In particular, repeatedly using the output of a computational 

model as the input to another computational model can result in compounding errors 

from repeatedly using the same slightly incorrect values. Consequently, the more times 

data is passed, the larger the compounding error. FSI models also experience 

convergence issues caused by the mass effect, residual convergence between each 

domain, possible ramping of data between each interface, methods by which data is 

passed between interfaces, frequency by which data is passed between interfaces, and 

magnification of any instabilities at the interface. Furthermore, FSI modeling also 

experiences the same instabilities and convergence challenges as individual CFD and 

FEA models.  
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1.2.1. FSI Modeling History 

Publications containing application-based multiphysics models began to emerge 

in 1999 and continued until 2003 [5,25,29,40–42]. During this time, the results from 

multiphysics models and FSI models were thought to accurately represent the desired 

physics system. However, around 2003, the understanding of mass effect due to mesh 

motion in an Eulerian mesh sparked a split between multiphysics and FSI modeling, 

causing deep questioning about the accuracy of previously conducted FSI models. 

Multiphysics modeling does not suffer from the same instabilities as FSI modeling 

because an Eulerian mesh is not used; thus, multiphysics modeling did not suffer a 

setback and continued to develop into a robust design tool. Meanwhile, between 2003 

and 2008 FSI modeling experienced a period where publications shifted from 

application-based to investigation aimed to better understanding of the mass effect 

[22,23,34,38,43,44]. Beginning in 2008, sufficient understanding of the mass effect in 

FSI modeling existed such that with monolithic coupling could be performed in a stable 

manner [32,33]. However, due to the previously discussed disadvantages of monolithic 

coupling, it was still not a suitable tool for industry application. It was not until around 

2012 that stability techniques were able to control the mass effect enough to allow a 

return to application-based modeling [2,45–47]. Despite this, a validation gap still 

remains between the computational results from FSI models and quantitative 

experimental data. A more detailed discussion about FSI validation follows in the section 

titled “Validated FSI Models.” 
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1.2.2. Thin-Walled Bodies 

Thin-walled FSI models experience all the same challenges as thick-walled FSI 

models, but have several uniquely challenging issues due to the geometric setup of thin-

walled problems that can magnify existing instabilities. Generally, thin-walled FSI 

problems experience larger deflection relative to the wall thickness caused by small 

forces and oftentimes utilize non-metal materials that do not exhibit the behaviors of 

linear material properties. In the solid domain, these small forces can cause large 

deflection and any instabilities, even if small, can quickly escalate to computational 

divergence. If large deflections are present in the solid, the Lagrangian mesh of the fluid 

domain will require remeshing to maintain sufficient element quality. If the element 

quality is not maintained at any point, small instabilities can escalate to computational 

divergence [15].  

1.2.3. Computational Instabilities and Benchmarking 

As with all computational models, validation is paramount to ensure the model 

accurately represents the physical system. Because FSI modeling couples two 

computational models together with an interface that can allow damping and relaxation 

factors, validation may be more important in FSI models than in single domain 

computational models. Additionally, because computational data is passed from one 

model to another, even a small error can compound into a larger error as time progresses. 

Furthermore, the gathering of quantitative experimental data for the validation of an FSI 

model can be challenging because of the oscillations and unsteady nature of the system. 

To account for the lack of qualitative data, the FSI industry has adopted the term 
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“benchmarking,” which means a qualitative agreement of trends and not a quantitative 

comparison to experimental data. Several publications are available that benchmark FSI 

modeling, but these publications lack the quantitative experimental data to directly 

indicate validation of a computational model to physical results [44,32,33]. These theory-

based benchmarks are sufficient for demonstrating competency in modeling techniques; 

however, they lack relevance in design applications because simplified geometries, linear 

material properties, constant temperature, and two-dimensional assumptions cannot 

always be applied. Therefore, extreme care should be taken to validate and document 

each step of an FSI model.  

1.2.4. Validated FSI Models 

As of the date of this dissertation, a fully encompassing dataset is not available in 

literature that directly compares quantitative experimental data to computational results. 

In the last five years, some validation work has been performed, but limitations exist due 

to modeling assumptions and voids in the results. In a study completed by Tian et al., six 

FSI validations were performed; however, the applicability of these validations are 

limited because they do not contain sufficient experimental data for a quantitative 

validation [48]. Of the six validated cases, only one contained experimental data, but that 

data only contained results from a single time point, making a true transient validation 

difficult to assess. Three of the cases contain only a fluid or solid model, not both. 

Finally, two of the cases contain FSI modeling and compared results to previously 

published articles used for benchmarking FSI models, but these benchmarking models do 

not contain results measured from an actual system and contain unphysical flow 
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conditions and fluid properties [33,37,38,44]. As a whole, these cases show qualitative 

validation is possible, but lack the quantitative data that would enable acceptance of the 

techniques to generate optimized designs.  

1.2.5. Material Properties 

In addition to the instability sources discussed in the “Data Transfer Methods” 

and “Mass Effect” sections, accurate solid material properties are vital to an accurate and 

stable FSI model. A significant area of interest in FSI modeling focuses on nonlinear 

material properties and when large deflections are present, i.e. when deflection is greater 

than the thickness of the material. Furthermore, these nonlinear material properties can 

have directional-dependent material properties with highly elastic characteristics, 

resulting in deformation at relatively low forces, i.e. heart and artery tissue [49]. If the 

measured material properties, orientation of the material properties or applied force is 

inaccurate, the resulting deflection of the deformable material can be inaccurate and 

unstable. 

1.2.6. Solid Contact in FSI Models 

Accurately modeling the surface contact within the solid domain of an FSI model 

is critical if flow passages are being constricted with eventual stoppage of the fluid flow. 

If friction in present at the contact regions, heat generation can result, leading to 

temperature gradient in both the fluid and solid domains. If a fluid channel is severely 

restricted and contact between solid surfaces occurs, resulting in flow stoppage, extra 

care must be taken to ensure the fluid mesh quality is maintained and does not reach a 

point of singularity. Implementing the proper dynamic mesh setting and contact 
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definitions can ensure an appropriate mesh is maintained. If heat generation is present at 

the contacting surfaces due to friction, the thermal energy must be maintained across the 

fluid and solid interface by accounting for any material properties that might fluctuate as 

a function of temperature.  

1.3. Advancements in Computational Modeling  

1.3.1. CFD Modeling 

CFD modeling was originally born out of the need for fluid dynamicists to 

understand experimental results [16]. The techniques and understanding gained from 

these early models laid the foundation for today’s CFD industry. Currently, CFD 

modeling is used in a wide range of industries—aerospace, pharmaceutical 

manufacturing, medical devices, mining, petroleum, automotive, and manufacturing, 

among others—and for countless applications [2,4,50–52]. The CFD toolbox is currently 

able to capture most fluid dynamics phenomena, including high-speed compressible flow, 

phase change, cavitation, evaporation, chemistry, conjugate heat transfer, and multi-phase 

flow with and without discrete interfaces [3,4,39]. Furthermore, these complex fluid 

systems are capable of being linked to probabilistic and optimization software, allowing 

for automated design space exploration and optimization. CFD optimizations are readily 

performed in industries such as aerospace and space systems design to evaluate optimal 

aerodynamic performance, turbine mixing and output efficiencies, and heat management 

in spacecraft, satellites, and heat exchangers [50–56]. However, all of these design 

explorations are limited to steady-state or beginning of life applications as opposed to 

observing the full life span of the system right up to failure [7,8]. To date, few CFD 
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studies have explored the design space at the end of life or under non-optimal conditions 

where fouling, fatigue, and wear may affect the efficiency of the design. A major 

contributor to not exploring this design space is the difficulty of acquiring accurate end-

of-life boundary conditions and geometric configurations. This data can be gathered 

either through detailed measurements of the real system near end of life or by evaluating 

a transient model that incorporates fouling, fatigue, wear, and other aging factors to 

dynamically account for changes over the life of the system. These transient analyses 

require significantly more computation time compared to steady-state models, leading 

many to avoid these types of analyses.  

1.3.2. CFD Limitations  

The fundamentals of CFD modeling utilize the techniques of a control volume 

and a Lagrangian mesh—conservation of momentum, mass, and energy—where the mass 

passed through a mesh fixed in space. Previous work has demonstrated that well-

characterized motion of a Lagrangian mesh can be modeled in cases such as rotating 

turbine blades or piston cylinder motion [1,4,9,15,16,57,58]. Due to this limitation, 

traditional CFD modeling alone cannot model cases such as heart valves, diaphragm 

pumps, peristaltic pumps or the expansion of a lung because the Lagrangian mesh would 

need to change dynamically as a function of the forces imparted between the fluid and 

solid domains [2,6,10–12,24,26,29,42].  

1.3.3. FSI Modeling 

FSI modeling came about from the need to understand how a fluid domain reacts 

as a function of the solid domain and how a solid domain reacts as a function of the fluid 



 

25 

domain. Key cases demonstrating the interdependent results include models of heart 

valves, diaphragm pumps, the flapping of a flag, and the expansion of a lung where large 

deformations are present [1,2,26,44,33,59,60]. These inaugural FSI studies were 

evaluated between 1999 and 2003 by initially utilizing stiff materials, such as metals, and 

later transitioning into more flexible materials, such as rubbers, plastics, and fabrics 

[26,27,59]. These original models were also evaluated at fixed steady-state time points 

instead of transiently, i.e. at a valve opening of 0, 30, 60, and 90 degrees rather than at all 

angles, with the valve opening as a function of time [11,27]. These original studies 

contained little solid material deformation, which resulted in quasi-stable models. 

Although FSI modeling at this time was capable of modeling small deflections, the major 

area of interest in the FSI community was in more flexible materials experiencing large 

deflections, resulting in ever-increasing computational instabilities [20]. These 

instabilities originate from the data transfer methods and mass effects due to changes in 

control volumes [2,31,37,38]. Due to these instabilities and the lack of stability 

techniques, the FSI modeling industry experienced a stagnant period from 2003-2008. 

Within the last 10 years, additional research created a greater understanding of the 

mechanisms driving the numerical instabilities, enabling the development of methods and 

techniques to mitigate these issues relating to data transfer and the mass effect 

[2,30,31,37,38,32]. Currently, commercially available software codes—ANSYS 

Multiphysics, COMSOL Multiphysics®, STAR-CCM+, and MpCCI Co-simulation—are 

available that allow for multiphysics modeling in addition to coupling multiphysics 

modeling with optimization and probabilistic techniques [3,4,14,39]. Despite the 
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availability of viable commercially available software codes, a literature review found 

that while there is sufficient work pertaining to the numerical methods for coupling fluid 

and solid systems, there is minimal work demonstrating the successful implementation of 

a fully encompassing two-way FSI model with validated results [4]. Several well-

established models have claimed to optimize FSI modeling, but have done so using one-

way data transfer using steady-state conditions [7,8,58]. A more detailed discussion 

relating to the limitation of one-way and two-way coupling is provided in the section 

titled “Data Transfer Methods.” Other studies have demonstrated optimal designs, but 

have done so with a parametric study involving less than a dozen designs [61]. Although 

commercial codes are available and used by companies, as previously mentioned, 

minimal work has been produced demonstrating the successful implementation of a fully 

encompassing two-way FSI model with validation [7,8]. Of these few successful 

documented models, none contains a direct comparison between modeling results and 

experimental data [25,42,60]. Several publications are available that contain a theoretical 

dataset with matching FSI results, but these datasets are theoretical only and contain fluid 

flow assumptions that are physically unreasonable and could not be reproduced 

experimentally [30,38,44,32,33,48]. Thus, these datasets and modeling results still leave 

a gap between direct comparisons of computational results to experimental data. 

FSI modeling has shown increasing success in the ability to evaluate previously 

difficult geometries, such as models containing contact, heat valves, and parachutes [45–

47,62–72]. Each of these scenarios remains difficult to simulate due to the thin-walled 

geometries, highly elastic material properties, and highly turbulent fluid flows. A 
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significant portion of the FSI work published between 2010 and 2015 comes from Yuri 

Bazilevs and Kenji Taskizawa; their work includes heat valves, cerebral aneurysms, 

parachutes, wind turbines, and new modeling techniques for implementing contact in FSI 

models [46,47,62,64–66,68–73]. Models for cerebral aneurysms and heart valves have 

improved, but many of the simulations do not contain contact. For further discussion of 

these limitations, refer to the section “Solid Contact in FSI Models” for an outline of the 

difficulties of modeling contact and FSI models [46,47,62–64,73]. Therefore, these 

models do not carry the process through to completion and leave a gap for improvement. 

The models that do contain contact are evaluated using a monolithic approach that is 

computationally intensive and not sustainable for industry application [45,62]. A more 

detailed discussion about the monolithic approach is covered in the section titled “Data 

Transfer Methods.”  

Similarly, the stable modeling of parachutes has also been performed, but requires 

assumptions that simplify the fluid flow field and movement of the fabric. To attain 

computational stability, parachutes are treated as a porous membrane with air passing 

through it, whereas the true process has air passing through specifically designed 

openings in the parachute, not through the fabric itself [67–70,72]. Additionally, only the 

fully deployed stable motion of the parachute is being modeled and not the opening and 

deployment [67–70,72]. The modeling of large scale three-dimensional wind turbines 

with large deflections has been demonstrated on a 60 meter diameter blade [65,66]. 

However, this is not a thin-walled structure and the large deformation is not significant 

when compared to the large blade diameter and resulting computational mesh element 
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size [65,66]. In 2014, additional methods for tracking contact in FSI models were 

developed to allow easier application of contact relative to the methods used in the 

Arbitrary Lagrangian mesh, but these improvements have yet to be implemented in 

commercially available codes or generate published results on an application basis 

[45,71].  

1.3.4. Modeling System Life 

A validated computational model of any type—CFD, FEA, FSI, and 

multiphysics—can be used to understand the operation of a system and further used as a 

tool to improve the performance of the system. The performance of systems can be 

determined by efficiency, aerodynamic performance, power output, heat management, 

strength, weight, fatigue life, and time before system failure. The failure point is highly 

dependent on the application and desired performance of the system. Previous 

optimization work has been conducted using CFD and FEA modeling to determine and 

improve these failure points. Modeling system life using FSI modeling has been 

performed, but only using weak-coupled methods on a steady-state basis [7,8]. To the 

author’s knowledge no lifetime modeling has been performed on a transient model using 

a strong-coupling method.  

1.4. Dissertation Overview 

1.4.1. Motivation 

Commercial software packages are currently available that allow engineers to 

produce FSI models using strong- and weak-coupling techniques. Many publications are 
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available that utilize these packages on an application basis to evaluate the design of 

existing systems. However, to the author’s knowledge, a complete quantitative validation 

of these commercially available software packages does not exist. This work sets out to 

provide a complete quantitative validation and then test the performance accuracy of the 

models by evaluating design alternatives both computationally and experimentally. 

FSI modeling is a tool that could be useful to engineers in countless industries. 

However, to date, FSI modeling has not demonstrated the ability to meet industry 

standards for evaluation time, cost, ease of use, and reliability. Before FSI modeling can 

be used in industry applications, it must demonstrate it can produce accurate results 

through means of a quantitatively validated study (Study 1 - Chapter 2). Three areas of 

particular interest for FSI modeling include cyclic thermal cycles, thermal management 

of a closed system, and the operational performance of a peristaltic pump as it ages, each 

of which was investigated for this dissertation. The application of cyclic thermal cycles is 

applicable for representing the cycles of turbine blades, burners, engines, ovens, and 

furnaces (Study 2 - Chapter 3). The use of thermal management of a closed system is 

appropriate for modeling spacecraft, electronics, medical organ and therapeutic protein 

transport, and food transportation and storage (Study 3 - Chapter 4). The ability to know 

the operational performance of a peristaltic pump as it ages is needed in industries such 

as pharmaceutical manufacturing, medical devices, and mining (Study 4 - Chapter 5). 

Previous work has been conducted in several of these areas using monolithic 

coupling methods that utilized custom scripting and supercomputers. For FSI modeling to 

become an appropriate design tool for industry application, it must have the ability to be 
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performed using commercially available software packages and be evaluated on 

computationally inexpensive equipment. Accordingly, the FSI models evaluated in this 

dissertation utilized only these such tools.  

1.4.2. Research Question 

The objective of this research is to apply FSI modeling on computational 

inexpensive equipment using commercially available software in such a way to 

demonstrate its effective use as an industry design tool. To do this, the cases under study 

needed to be sufficiently complex to exploit the inherent instabilities of FSI 

methodology, i.e. three dimensional, nonlinear materials, thin walls, steep gradients in 

both time and space, and transient behavior. Accordingly, this work purposely pushes the 

boundaries of the current capabilities of FSI modeling with case studies designed to 

incorporate these instabilities and therefore demonstrate that FSI modeling is capable of 

solving models involving complex instabilities. The work also sought scenarios that 

predicted system failure and optimal design to extend service lifetime. Thereby, 

extending the literature in the FSI area on these previously overlooked application and 

providing implementation strategies for successful simulations. Four independent studies 

were performed, evaluating three separate modes of failure in FSI models, Table 1.1.  

Study 1:  The first study provides a validation for FSI modeling techniques by 

comparing the results of a thin-walled FSI geometry under hydrostatic forces with 

experimental data. To the author’s knowledge, this study provides the first robust dataset 

allowing for direct comparison of a fundamental yet all-encompassing three-dimensional 



 

31 

experiment and computational model with nonlinear material properties and large 

material deflection.  

Study 2:  The second study conducts a parametric study that evaluates the factors 

influencing an FSI model containing a highly complex thermal-fluid fatigue model. This 

model involves dynamically changing temperature loads resulting in significant thermal 

expansion that led to material yielding and dynamic fatigue life. This model laid the 

foundation for the processes used in the subsequent studies for performing fatigue 

analysis within FSI models.  

Study 3:  The third study looks at a multiphysics conjugate heat transfer problem. 

The model was tuned, validated, and optimized for lifetime. The validation of the 

thermal-fluid system was performed using readily available experimental data. The study 

demonstrates the use of phase change behavior and pushes the limits of possible transient 

evaluations from the order of second and minutes to days.  

Study 4:  The final study evaluates the highly complex fluid and solid phenomena 

involved in a peristaltic pump FSI model where the desire is to determine the factors that 

influence the lifetime and failure methods for the tubing in the pump. The model in this 

combines all the methods and techniques from the three earlier studies and applied them 

to a thin-walled tube geometry with nonlinear and temperature-dependent material 

properties to create large solid deformation and fluid motion.  

All studies utilized ANSYS Multiphysics for the setup and evaluated the CFD, 

FEA, and FSI models on inexpensive desktop workstations—HP xw8600 workstations 

with Intel Xeon CPU’s operating at 2.66 GHz and valued at about $5000. Matlab was 
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used to manage the optimization and design of experiment for the computational models. 

This research shows that FSI modeling and lifetime design can be implemented using 

commercially available software evaluated on relatively inexpensive computational 

resources. This demonstrates that all sizes of design groups and companies can use FSI 

modeling in a cost effective manner. 

 

Table 1.1: List of studies with details about key coupling features, available 

experimental data, and methods of validation.  

   

 

Problem Physics Industry Goal Novel Contributions Objective

Study 1

Hydrostatic forces 

deform hyperelastic 

dam

Provide the methods and 

qualitative validation of an 

FSI model

Provide a qualitative

validation of an FSI model

Qualitative validation of 

computational FSI and 

experimental results 

Study 2
Thermal expansion 

due to thermal cycles

Extend the lifetime of our 

industry collaborator's 

currently designed part

Couple a transient FSI model 

with fatigue life analysis

Demonstrate FSI modeling can 

be used to perform fatigue life 

analysis

Study 3

Thermal management 

using phase change 

materials 

Extend the lifetime of our 

industry collaborator's 

currently designed part

Estimate the lifetime of a 

thermal-fluid system

Demonstrate FSI modeling can 

be used to preform thermal-

fluid lifetime analysis

Study 4

Fluid and thermal 

flow as a function of 

solid pumping motion

Identify parameters that 

improved the lifetime of 

peristaltic pump tubing

Model an industry-applicable 

model using industry-

appropriate methods

Demonstrate lifetime 

prediction in 3-D, thin-walled, 

two-way FSI model
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 CHAPTER 2: VALIDATION OF A THIN-WALLED FLUID–STRUCTURE 

INTERACTION MODEL WITH EXPERIMENTAL RESULTS 

2.1. Abstract 

Fluid–structure interaction modeling has become more available due to the 

increased computational power of modern computers and stability of algorithms 

employed. However, limited literature currently exists for validation of a thin-walled 

geometry simulation to experimental data. This work measures, computes, and captures 

the deflection of a three-dimensional hyperelastic flap as it resists the hydrostatic pressure 

of a fluid column. Deflection results from experimental and computational analysis were 

directly compared. The computational model was tuned to a single operating condition 

through an automated optimization that adjusts the solid material properties to minimize 

the squared difference between the computational model and the experimental results. To 

illustrate the completeness of the tuned material properties gained from the optimization, 

a secondary computational model and experiments were evaluated with a secondary fluid. 

The results of the primary and secondary models in conjunction with the experimental 

results indicated a thin-walled fluid–structure geometry can be modeled to accurately 

predict the defection behavior nonlinear.  
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2.2. Introduction 

The field of fluid–structure interaction (FSI) modeling is the study of how the 

fluid domain and solid domain interact to create a coupled system with results that cannot 

be achieved by Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA) 

modeling independently. Today, commercially available codes exist that can model these 

coupled systems without custom scripting [3,4,14,39].  

In many cases, FSI models contain a large amount of deformation and/or thin-

walled solid components, which tends to result in computational instabilities at the fluid 

and solid interface. These instabilities are primarily caused by the mass effect that results 

from the expansion of an incompressible fluid and the presence of a solid mass at the 

interface [31]. Thin-walled geometries magnify this instability because the amount of 

compression and expansion per unit volume is more significant compared to thick-walled 

geometries. Although commercial codes are available today for FSI modeling, to the 

author’s knowledge, a quantitative validation of an FSI model with experimental data has 

yet to be conducted.  

2.3. Problem Description 

The problem evaluated for this study is a trapezoid-shaped polyethylene-based 

rubber elastic flap acting as a flexible dam. Figure 2.1 shows the schematic of the test 

fixture with the inlet, outlet, and elastic flap labeled. As fluid builds up behind the flap, a 

hydrostatic pressure sufficient to deflect the flap is generated, and the flap deflects as a 

function of the fluid height. The deflection at three points along the height of the flap was 

measured as a function of fluid height. The flap is a trapezoid shape with a height of 9.5 
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cm, base width of 7 cm, and top width of 4.5 cm, resulting in a side wedge angle of 75 

degrees, as depicted in Figure 2.2. This trapezoid shape allows a true three-dimensional 

model to be evaluated while still leaving a perpendicular surface to enable easy and 

undistorted imaging of the deflection through the course of the experiment. The flap is 

made of generic polyethylene-based rubber 1/16 inch thick that has been pre-fatigued to 

ensure material hardening and fatigue did not factor into the results. Initially, generic 

polyethylene was used as a base material in the computational model until the 

optimization evaluated the exact material properties [4]. Oil was utilized for the material 

properties optimization of the polyethylene. For the secondary test, the tuned material 

properties for the flap were utilized while water provided the hydrostatic pressure.  

 

 

Figure 2.1: Schematic of polyethylene-based hyperelastic flap acting as a dam that 

resists the hydrostatic forces produced by the fluid column. 

 

Fluid Mass Flow Inlet
• Flow rate 0.0182 kg/s
• Turbulent intensity 10%
• Hydraulic diameter 20 mm
• Pressure 101,325 Pa

Fluid Pressure Outlet
• Turbulent intensity 10%
• Hydraulic diameter 20 mm
• Pressure 101,325 Pa

Fluid Wall
• No slip 
• Smooth surface
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Figure 2.2: Image of test fixture with the 1/16 inch trapezoid flap with dimensions. 

 

2.4. Methods 

To set up an FSI model and evaluate it in the most efficient manner possible, 

several preliminary tests were conducted to evaluate the fluid domain and solid domain 

separately. This separate testing was done to ensure each independent model ran without 

failure and the resulting outputs were within a physically acceptable range. Only after the 

models were successfully implemented independently were they coupled using ANSYS 

System Coupling. For simplicity, this FSI model assumed that no fluid passes around the 

flap as it deflects as a function of fluid height; this will eliminate the need for modeling 

contact and the narrow fluid channel that forms as the flap moves away from the wall and 

fluid passes around the flap.  

 

70 mm 

45 mm 

95 mm 
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2.4.1. Experimental Methods 

A custom-built test fixture was created from polylactic acid (PLA) and an acrylic 

glass sheet. The test fixture was designed so that the acrylic glass sheet was vertical, 

allowing for clear edge definition while imaging the test fixture throughout the duration 

of the experiment. The test fixture was designed to allow flap removal and replacement 

regardless of material thicknesses and types, Figure 2.2. The chamber was three-

dimensionally printed using PLA so the exact dimensions were known for inputs into the 

computational model. Another reason PLA was selected is for its ability to withstand 

both water- and oil-based fluids.  

Polyethylene-based rubber elastic flaps were cut from rubber gasket sheets and 

pre-fatigued to ensure that material hardening and fatigue did not affect the results. The 

pre-fatigue process consisted of flexing each flap between angles of ±180 degrees 100 

times. A Phantom v7 camera with a 105 mm 1:2.8 Nikon lens was used to capture black 

and white images of the deflecting flap as a function of time. Images were captured at a 

rate of 90 frames per second, exposure time of 45 microseconds, and resolution of 

800x600 pixels. The experiment was quantified by placing a grid with known spacing on 

the acrylic glass, so the fluid level and flap displacement could be measured. The 

deflection at three points along the height of the flap—30, 50, and 70 mm above the 

base—was measured as a function of fluid height at intervals of 2.5 mm starting at a 

height of 20 mm. No measurable deflection was present at fluid levels lower than 20 mm. 

The results were then averaged to determine the mean displacements and standard 

deviations. 
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Figure 2.3: Deflected flap with three displacement points for measuring 

computational (left) and experimental (right) results. 

 

2.4.2. CFD Numerical Methods 

The fluid domain was evaluated using CFD modeling with the robust and 

commercially available software ANSYS Fluent 15, which is capable of solving complex 

fluid flow and heat transfer problems in three-dimensional geometries as a function of 

time. The pre-processor used for generating the geometry and mesh was ANSYS Design 

Modeler, which will be discussed in detail in the section titled “Interface between Fluid 

and Solid Domain.”  

The computational model containing the fluid domain utilized the three-

dimensional Navier–Stokes equations in conjunction with the continuity and volume 

fraction equations outlined in Chapter 1, Equations 1-3 respectively, utilizing a pressure-

based solver due to the subsonic incompressible flow, along with the k-epsilon turbulence 

model. In the pressure-based solver, the momentum and continuity equations, Chapter 1 

Fluid 
height

Dam 
displacement
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Equations 1 and 2 respectively, were used in combination to calculate the pressure field. 

Additionally, because the model contains two fluids with a distinct interface, the volume 

fraction equation must be solved to conserve species, and the mass balance equation must 

be evaluated to conserve the overall mass of the system, Chapter 1, Equations 3 and 2 

respectively. The k-epsilon turbulence model utilizes Chapter 1, Equations 5 and 6 to 

define k and epsilon respectively, and Chapter 1, Equation 7 to define the turbulent 

viscosity. A turbulence model was used because turbulence and recirculation was present 

in the liquid region as the fluid height increased, while the bulk of the fluid model 

operated under laminar conditions.  

Each of these equations is defined for water and air at each control volume 

prescribed by the fluid mesh, resulting in two sets of equations being evaluated over the 

entire domain. The size of the three-dimensional mesh is approximately 520,000 

tetrahedron elements, but this number varies as the flap deforms and dynamic meshing 

occurs, Figure 2.4. The material properties for compressible water and canola oil used in 

the computational model are defined in Table 2.1. The model was evaluated using 

standard relaxation for pressure, density, body forces, momentum, turbulence kinetic 

energy, turbulent dissipation rate, and turbulent viscosity of 0.3, 1.0, 1.0, 0.7, 0.8, 0.8, 

and 1.0 respectively, until all scaled convergence values were below 1.0E-3. Defining 

water and oil as compressible liquids provided needed stability to the computational 

model by reducing the mass effect experienced at the FSI interface. Oil is less dense than 

water, so at the same fluid height, the resulting hydrostatic pressure acting on the flap is 
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less, thus the deflections are smaller and a greater fluid volume is present for the mass 

effect to be dampened over.  

 

Figure 2.4: Image of the initial mesh before deformation occurs (left) and 0.85 

seconds (right). A finer mesh was desired at the fluid inlet and outlet and along the 

walls of the flap, while a courser mesh was desired through the bulk of the fluid. 

 

Table 2.1: Fluid properties for the water and oil used in the computational models 

[4,74]. 

 

Viscosity (kg/m-s) 1.00E-03

Reference Pressure (Pa) 101325

Reference Density (kg/m3) 998.2

Reference Bulk Modulul (Pa) 2.20E+09

Density Exponent 7.15

Viscosity (kg/m-s) 7.16E-02

Reference Pressure (Pa) 101325

Reference Density (kg/m3) 915

Reference Bulk Modulul (Pa) 2.20E+09

Density Exponent 7.15

Water

Canola oil
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The fluid domain was initially evaluated independently of the solid domain and 

without dynamic meshing. This uncoupled CFD model allowed for greater understanding 

of the mesh cell size sensitivity, convergence criteria as a function of flow rate, and 

required convergence time as a function of time step size and number of iterations. The 

information gathered from evaluating just the CFD model without dynamic meshing 

provided valuable insight into what time step size and flow rate allowed the optimal 

balance between a reliably stable fluid solution and overall computational time required 

to evaluate the model.  

The computational time required to evaluate the model is a function of the total 

number of time steps required (time step size) and time required to evaluate each time 

step (computational time per time step). While increasing the time step size does reduce 

the number of time steps required, increasing the time step size also increases the 

computational time per time step. Therefore, a balance between increasing the time step 

size while only marginally increasing the computational time per time step is paramount 

to evaluating the computational model in as little time as possible. This understanding of 

the time step is important because once the fluid and solid domains are coupled, the same 

time step must be used to evaluate each domain. Although the computational time 

required to evaluate the CFD models independently may not be significant, when the 

CFD and FEA models are coupled together, the computational time increases 

exponentially, thus making small increases in computational efficiencies important.  

Finally, a mesh density investigation of the CFD domain was performed when the 

fluid domain was uncoupled in order to explore the proper mesh density and assess which 
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portions of the model required a finer mesh and which regions could tolerate a courser 

mesh. Because a large fluid domain was present, it was not desirable to have a uniformly 

fine mesh over the entire domain. Figure 2.4 shows the desired mesh at time zero before 

deflection occurs. The mesh density investigation indicated the size and regions where 

course and fine mesh required implementation, Figure 2.4.  

2.4.3. FEA Numerical Methods 

The solid domain was evaluated using FEA with the commercially available 

software ANSYS Mechanical 15. The pre-processor used for generating the geometry 

and mesh was ANSYS Design Modeler, which will be discussed in detail in the section 

titled “Interface between Fluid and Solid Domains.”  

The computational model utilized the three-dimensional strain displacement, 

nodal displacement, and stress equations, Chapter 1, Equations 8-10 respectively, to solve 

for the deformation, stress, strain, and forces across each node in the model. The solid 

mesh contains approximately 4,400 HEX20 elements, with a thickness of six elements in 

the bending direction.  

The solid domain was initially evaluated uncoupled from the fluid domain with a 

point load applied to the top of the flap. This point load was a function of time and 

increased linearly from 0 to 0.1 N over 2 seconds, Figure 2.5. This uncoupled model was 

used to understand the stability and limitations of the hyperelastic material, determine 

proper time step size, and perform a mesh density study. Similar to the CFD domain, the 

relationship between time step and iterations per time step was explored to determine the 

most efficient time step combination for evaluating the computational model. A mesh 



 

43 

density study was performed to determine the minimum number of elements required in 

the bending direction of the flap to produce accurate results.  

The gap that forms between the edge of the flap and the test fixture was ignored in 

order to avoid modeling the contact and small fluid channel that formed around the flap 

as it deflected. This assumption differs from the actual experimental operations where 

fluid passes around the flap, but avoids modeling the complexity of contact and fluid 

channel constrictions due to contact separation. For a detailed discussion of the causes of 

these complexities due to contact, see the section in Chapter 1 titled “Solid Contact in FSI 

Models.”  

 

Figure 2.5: Ramping point load as a function of time applied at the upper edge of 

the hyperelastic flap. 

 

Fixed Base
• Fixed in translation
• Fixed in rotation

Ramping Force
• Applied at top edge
• Only in X-direction
• Ramped linearly 

from 0 to 0.1 N 
over 2 seconds
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2.4.4. Interface between Fluid and Solid Domains  

The pre-processor used for generating the geometries and mesh for both the fluid 

and solid domains was ANSYS Design Modeler. This commercially available software 

package has features that allow the fluid and solid domains to be created together and 

then separated for meshing and analysis. This enables faces to be linked for a more 

seamless data transfer and interface compliance in the FSI coupling algorithms. ANSYS 

Design Modeler also contains the capability to generate a conformal mesh.  

ANSYS System Coupling was used to transfer data between the fluid and solid 

domains in a weak-coupled manner at each time step with data transfer once per time 

step. A relaxation factor of 1.0 was used for transferring data between each domain, i.e. 

no ramping function or damping was introduced and the full loads were applied at each 

data transfer. The fluid domain provided pressure loads to the solid domain and the solid 

domain provided nodal displacements to the fluid domain at each 0.005 second time step. 

A side view of the fluid domain tetrahedron element mesh at time zero and 0.85 seconds 

is depicted in Figure 2.4.  

Due to the thin-walled nature of the flap, the stability number (Chapter 1, 

Equation 11) of this model was 0.1, resulting in a potentially unstable FSI model. To 

mitigate solution divergence due to the geometric configuration, the model was evaluated 

using the weak-coupled manner with the liquid allowed to exhibit minor compressibility 

behavior.  

Upon completion of modeling the CFD and FEA models separately, the models 

were coupled together; however, the ramping point load was kept active in the FEA 
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model, fluid flow was disabled in the CFD model, and dynamic meshing was enabled in 

the CFD model. These changes were made for two reasons: First, the ramping force in 

the FEA model would immediately cause deflection of the fluid domain, thus testing the 

dynamic meshing parameters of the CFD domain; and second, the fluid flow was a 

potential source of instabilities and added unnecessary complexity. If failure did occur 

while using this setup, the user would immediately know whether the failure originated 

from the dynamic meshing or from the system coupling setup.  

The methods by which dynamic meshing is performed in Fluent are completely 

different when they are evaluated with two-dimensional versus three-dimensional 

models. When a two-dimensional model is used, the dynamic meshing is performed on a 

surface mesh alone, whereas in a three-dimensional model the dynamic meshing is 

performed on surface mesh and volume mesh [57]. Many software suppliers and 

publications provide tutorials outlining two-dimensional dynamic meshing techniques for 

surface meshing, but few tutorials are provided for three-dimensional volume meshing. 

The challenges associated with dynamic meshing arise from the difficulty in maintaining 

mesh quality on both surface and volume meshes. When using three-dimensional 

dynamic meshing in Fluent, a structured mesh cannot be used, i.e. tetrahedron elements 

must be used as opposed to hexahedron or wedge-shaped elements. For this reason, a 

tetrahedron mesh was used in Fluent, Figure 2.4. It is well-documented that maintaining 

element quality in a CFD and FEA mesh is critical and if the element quality does 

become poor, instabilities can occur [15,57]. In CFD and FEA modeling, these element 

quality issues can lead to rounding errors, negative volumes, and mass loss, causing the 
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model to produce inaccurate answers, errors, and computational divergence. All 

computational anomalies generated in the CFD or FEA models are magnified at the 

interface. Therefore, it is critical to avoid poor element quality when evaluating an FSI 

model. To sustain a quality mesh throughout the large amount of deflection seen in the 

hyperelastic flap model, two dynamic meshing features were utilized: dynamic 

smoothing and remeshing of faces and volumes. When performing these dynamic 

meshing operations it is important to maintain the course and fine mesh in the proper 

location. If a fine mesh is generated uniformly across the entire volume, unnecessary 

increases in computational time will result. Additionally, it is desirable to only remesh 

the regions of the mesh where poor element quality is present. Dynamic meshing 

operations are a function of the total number of remeshed cells, so reducing the area or 

volume over which the remeshing is performed can save computational time. Table 2.2 

outlines the dynamic meshing parameters and locations where meshing was achieved.  

 

Table 2.2: Parameters used for initial meshing, dynamic remeshing, and dynamic 

smoothing. 

 

Location
Minimum cell 

size (mm)

Maximum cell 

size (mm)

Maximum 

skewness

Dynamic smoothing - 

diffusion parameter

Inlet 1.0 1.0 0.7 0.5

Outlet 1.0 1.0 0.7 0.5

Oil side of dam 0.5 1.0 0.7 0.5

Air side of dam 1.0 1.5 0.7 0.5

Bulk fluid 0.5 3.0 0.7 0.5
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2.4.5. Solid Material Properties 

The material properties of polyethylene-based rubber vary widely based on the 

chemical makeup of the rubber, resulting in a wide range of material elasticity and 

nonlinear behavior [75,76]. Table 2.3 shows published material properties data for 

polyethylene-based materials. To achieve matching results between the computational 

model and the experiment, the elasticity of this material needed to be precisely defined. 

To determine the elasticity, an investigation was performed to first determine the best 

elasticity model to define the hyperelastic behavior of the flap, and second, an 

optimization was performed to tune the values used to characterize the elasticity model. 

Due to the uncertainty inherent with material properties behavior, a two-term Neo-

Hookean stress–strain curve was used, allowing the optimization to determine whether a 

linear or nonlinear material best defined the experimental results.  

 

Table 2.3: Published material properties data for polyethylene-based materials [77]. 

 

Polycarbonate and Polyethylene 

Terephthalate Blend
Youngs modulous - MatWeb 2.655 1.16 4.15

High Density Polyethylene Youngs modulous - MatWeb 0.805 0.510 1.100

Low Density Polyethylene Youngs modulous - MatWeb 0.352 0.221 0.483

Very Low Density Polyethylene Flexural Modulus - MatWeb 0.080 0.045 0.115

Chlorosulfonated Polyethylene 

Rubber
Modulus at 100% - MatWeb 0.012 0.0047 0.0189

Sanitary Gasket/O-Ring Modulus at 100% - MatWeb 0.007

Name Data Source
Mean 

(GPa)

Min 

(GPa)

Max 

(GPa)
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2.4.6. Optimization of Material Properties 

Multiple different optimization techniques are available as design tools for 

engineers to minimize an objective function with associated constraints. When coupling 

computational modeling with optimization, many optimization techniques cannot be used 

because the performance parameter—defined by the objective function—cannot be 

directly calculated, i.e. the computational model must be evaluated in order to determine 

the performance parameter. For this reason, a search-based optimization algorithm was 

used, which requires a starting point where the search will begin. A gradient-based search 

pattern was then performed using an iterative method until a minimum value was found 

within the user-defined tolerance. This optimization utilized the active-set algorithm 

because it allows for nonlinear gradients, which is expected as the design variables are 

perturbed [78]. This method does have limitations because it is a line search method that 

can result in finding local minimums rather than the global minimum. For this reason, the 

optimization was performed several times from different starting points to ensure the 

correct global minimum was found. To the author’s knowledge, to date the tuning of 

material properties using optimization techniques has never been conducted on an FSI 

model. 

The performance parameter used to drive the optimization of the flap properties 

was calculated by the squared difference between the experimental values and the 

computational values, Equation 12. Where η is the total error, dexp is the deflection of the 

experimental point plus and minus the vertical error bars, and dcomp is the deflection of 

the computational point. The fluid height was measured at 2.5 mm intervals and the 
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associated deflection was measured at three locations along the flap at each interval. This 

resulted in between 12 and 15 data points to compare the computational model and 

experimental results.  

 

𝜼 = ∑(𝒅𝒆𝒙𝒑 − 𝒅𝒄𝒐𝒎𝒑)
𝟐
        (12)  

 

The optimization algorithm was employed by Matlab, which was also used to 

interface the ANSYS software package containing Design Modeler, Fluent, Mechanical, 

and System Coupling for the FSI analysis. This was accomplished using custom scripting 

found in Appendix A and execution through the DOS command prompt. Figure 2.6 

shows a flow diagram for the optimization routine with the FSI model receiving the 

material properties parameters before evaluating the model and providing the flap 

deflection data back to the optimization routine. The objective function was evaluated to 

minimize the squared difference between the computational and experimental deflection.  
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Figure 2.6: Diagram of the optimization controlled by Matlab that managed the FSI 

software linked by ANSYS System Coupling and custom scripts. 

FSI Model
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Fluent Mechanical

System Coupling

Resulting Deflection as a 
Function of Fluid Height

Optimization Initialize Optimization 

Variable 1 Variable 2
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Direction
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Compressibility Parameter

Determine Initial 
Shear Modulus 
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Determine Initial 
Shear Modulus 
from Variable 1

Evaluate
Performance 

Parameter

No

Yes

Minimum 
Reached
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The optimization of the Neo-Hookean material properties utilized two variables to 

determine the best material property fit with the experimental data. Variable 1 

represented the initial shear modulus and variable 2 represented the incompressibility 

parameter. Due to the orders of magnitude difference between the initial shear modulus 

and incompressibility parameter, normalized values were used to represent the initial 

shear modules and incompressibility parameter within the optimization routine. Once the 

optimization search direction was determined using the normalized values, the actual 

values used in the FSI model were than calculated from the normalized values. Both the 

normalized and standard values for the optimization setup are provided in Table 2.4. The 

flexible nature of the material resulted in an increasingly unstable model as the material 

became more flexible, thereby resulting in unconverged solutions and termination of the 

optimization search. To account for these instabilities and resulting failures in the search 

pattern, the optimization was evaluated five times from different starting points to ensure 

the global minimum was reached in a stable design space.  

 

Table 2.4: Optimization search setup for optimization and equivalent values for the 

FSI model.  

 

Optimization Inputs Resulting FSI Input Resulting FSI Input

Minimum Step 0.01 - -

Maximum Step 0.10 - -

Performance Tolerance 0.01 1E-08 m2 1.00E-08

Lower Bound Variable 1 8.5 1.98 MPa 1.12E+07

Upper Bound Variable 1 15.0 11.2 MPa 1.98E+07

Lower Bound Variable 2 5.0 1.70E-05 1.70E-05

Upper Bound Variable 2 15.0 5.10E-05 5.10E-05
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2.4.7. Final Multiphysics Model 

Only after the fluid domain, solid domain, and forced coupling model were 

evaluated was the final multiphysics of the model applied. This process of evaluating 

each model independently built a greater understanding of the instabilities contributed by 

each portion of the model. In the process of combining the fluid and solid domains with 

the fluid flow, large amounts of instabilities due to the mass effect were introduced, as 

outlined in Chapter 1. To counteract instability due to the mass effect, the fluid was 

treated as compressible to both reduce the magnitude of the mass effect and dampen the 

shock from the mass effect across the bulk fluid volume. Oil was used to tune the flap 

properties because the density and viscosity does not promote as much rapid deflection, 

thus resulting in a more stable computational model. The model’s performance accuracy 

was then tested with water as a more challenging simulation. Furthermore, altering the 

time step did not directly increase computational stability. It is hypothesized this is 

because smaller computational times reduce the rate or magnitude in which forces are 

applied from one time step to the next, thus increases the relative magnitude of the 

artificially produced instabilities. Figure 2.7 demonstrates this hypothesis by showing that 

the hydrostatic force acting on the flap is constantly trending up, while the fluctuations in 

the force values at smaller time steps cause oscillations. If time steps are small enough, 

these fluctuations become significant and can cause oscillations in the hydrostatic force, 

resulting in model failure. If appropriate time steps are selected, these oscillations are not 

observed, thus leading to added stability at larger time steps. The boundary conditions for 
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both the fluid and solid domain coupled into the final multiphysics model were evaluated 

using a time step of 0.005 seconds until the fluid reached a height of 30.0 mm, Table 2.5.  

 

Figure 2.7: Forces as a function of time with time steps at 0.00125 and 0.005 

seconds. If time steps are too small then oscillations are present, but if time steps are 

selected appropriately the oscillations are not observed. 
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Table 2.5: Boundary conditions settings for final multiphysics model for both the 

fluid and solid domains.  

 

2.5. Results and Discussion 

2.5.1. CFD Domain Results 

In the computational model containing the CFD model alone, fluid passed in the 

model at a flow rate of 0.018 with a time step of 0.05 seconds. It was observed that a 

maximum time step size of 0.05 seconds could be used, but required significantly more 

computational time per time step compared to the 0.005 second time step. Therefore, it 

was more time efficient to evaluate the model using 0.005 seconds per time step. The 

results of the mesh investigation indicated elements along the inlet, outlet, and flap 

should have an edge length of 0.5 mm with elements no larger than 3 mm edge length in 

the bulk of the fluid. This provided enough resolution at the volume of fluid interface to 

determine the fluid depth as a function of deflection and a sufficient number of elements 

to allow proper flow characterization. The fluid domain initially started with 520,000 

Boundary Condition 

Name
Domain Type Settings

Fluid inlet Fluid Mass flow inlet

Flow rate = 0.0182 kg/s

Turbulent intensity = 10%

Hydraulic diameter = 20 mm

Pressure = 101,325 Pa

Fluid outlet Fluid Pressure outlet

Turbulent intensity = 10%

Hydraulic diameter = 20 mm

Pressure = 101,325 Pa

Fluid solid interface Fluid Wall

No slip

Smooth surface

Coupled with dynamic meshing to allow for motion

Solid base Solid Fixed support
Fixed in all degrees of translation

Fixed in all degrees of rotation

Solid-fluid-interface Solid
Fluid structure 

interaction

Free in all degrees of freedom

Displacement values were passed to fluid domain
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tetrahedron elements, but this number changed as a function of dynamic meshing. Figure 

2.8 shows the results of the CFD model at a fluid level of 40 mm.  

 

Figure 2.8: Volume of fluid contour plot for oil and air for the uncoupled CFD 

model with the fluid level at 40 mm. 

 

2.5.2. FEA Results  

In the computational model containing the FEA model alone with a point load 

ramping force, the most effective time step was 0.01 seconds. It was observed that a 

maximum time step size of 0.025 seconds could be used, but required significantly more 

computational time per time step compared to a 0.01 second time step. Therefore, it was 

more efficient to evaluate the computational model using 0.01 seconds per time step. The 

results of the mesh density study indicated four HEX20 elements in the bending direction 

of the flap produced sufficient results, Figure 2.9. However, the mesh density study only 
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used a point load as compared to the distributed hydrostatic force, thus six elements were 

used in the bending direction, Figure 2.10. Figure 2.11 shows the deflection of the 

hyperelastic flap as a function of the ramping force without CFD-coupled results.  

 

Figure 2.9: Results from mesh density study indicated four HEX20 elements in the 

bending direction produced accurate deflection results, but six elements were used. 

 

Figure 2.10: Image of the desired mesh after a mesh density study was performed.  
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Figure 2.11: Deflection contour plot of the hyperelastic flap by a ramping point load 

for the uncoupled FEA model. 

 

2.5.3. Forced Coupled Model 

In the computational model containing the forced coupled CFD and FEA models, 

the dynamic meshing parameters were tuned to provide the most efficient meshing 

conditions while still maintaining element quality. It was observed that a time step of 

0.005 seconds produced the most efficient results while still maintaining computational 

convergence. Larger time steps ran the risk of generating negative volumes in the fluid 

domain and too small of time steps produced oscillating forces at the interface. Figure 

2.12 shows the fluid domain and solid domain at 0.52 seconds into the application of the 

point load.  
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Figure 2.12: Volume of fluid contour plot for the forced coupled fluid domain (left) 

and x-directional deflection of the solid domain (right) at 0.52 seconds. 

 

2.5.4. Experimental Results  

Experimental tests were performed to measure the deflection of the flap as a 

function of oil fluid height. The results when using oil are shown in Figure 2.13. The 

mean deflection at an oil height of 30 mm was 15.1 mm and standard deviation of 1.2 

mm. Vertical error bars are shown at plus or minus one standard deviation using a normal 

distribution for the variability in the experimental measurements. The horizontal error 

bars are shown at plus or minus 0.25 mm determined by the uncertainty of the fluid 

height measurements.  
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Figure 2.13: Experimental results for deflection of three points at five fluid levels 

using oil with vertical error bars at ±1 standard deviations and horizontal error 

bars at ±0.25 mm. 

 

Using the same flaps and methods, the experiment was repeated six times using 

water rather than oil. Figure 2.14 shows the results for three points at four fluid heights 

using water. The mean deflection at a water fluid height of 27.5 mm was 12.9 mm and 

maximum standard deviation of 0.9 mm. Vertical error bars are shown at plus or minus 

one standard deviation using a normal distribution for the variability in the experimental 

measurements. The horizontal error bars are shown at plus or minus 0.25 mm determined 

by the uncertainty of the fluid height measurements. 
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Figure 2.14: Experimental results for deflection of three points at four fluid levels 

using water with vertical error bars at ±1 standard deviations and horizontal error 

bars at ±0.25 mm. 

 

2.5.5. Material Properties Optimization Results  

The results for the material properties investigation determined that a nonlinear 

material properties classification provided the best results. A Neo-Hookean hyperelastic 

material properties definition was used to characterize the nonlinear material behavior. 

The results from the optimization of the Neo-Hookean parameters determined the initial 

shear modulus and incompressibility parameters to be 13.271 MPa and 3.4381E-5 

respectively. This Neo-Hookean behavior aligns well with the linear characterization of 

the very low density polyethylene, Figure 2.15. The optimization evaluated 116 different 
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conditions in order to converge to the optimal solution. The percentage error between the 

sums of the computationally measured distances over the sum of the experimentally 

measured distances is 1.3%. The numerical results with the optimal material properties 

and experimental results using oil are shown in Figure 2.16. The computational results 

fall within the error bars of the experimental results except at a fluid height of 30.0 mm 

when the computational results are outside the experimental error bars. This is due to the 

assumption that no fluid passes around the flap in the computational model, although this 

is not the case during the experiment. The reason this difference does not show up at 

lower fluid heights is the rate of fluid passing around the flap increases exponentially at 

higher deflections, thus the assumption becomes more important at 30 mm. Figure 2.17 

shows the experiment at an oil level of 30 mm with the optimized computational results 

at 30 mm overlaid on top. Figure 2.18 shows the comparison between the deflection of 

the mean published material properties and the tuned material properties. Although only a 

small change in material properties was present, the deflection error in the matching 

between the computational model containing the mean value and the experimental results 

was 14.4%.  

Table 2.6: Optimization starting points, optimal solution, and search information 

for the material properties optimization. 

 

Initial Shear 

Modulus (Pa)

Incompressibility 

Parameter

Initial Shear 

Modulus (Pa)

Incompressibility 

Parameter
Iterations

Models 

Evaluated
Error (m2)

Start point 1 1.29E+07 2.51E-05 1.46E+07 3.38E-05 3 13 2.40E-05

Start point 2 1.14E+07 5.70E-05 1.35E+07 3.32E-05 5 28 1.53E-05

Start point 3 1.98E+07 5.10E-05 1.32E+07 3.40E-05 6 34 1.10E-05

Start point 4 1.55E+07 4.43E-05 1.33E+07 2.81E-05 5 17 1.34E-05

Start point 5 1.32E+07 3.40E-05 1.32E+07 3.40E-05 0 24 1.10E-05

Initial Conditions Optimized Results
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Figure 2.15: Stress–strain behavior for very low density and optimized 

polyethylene-based hyperelastic flap [79]. 

 

Figure 2.16: Computational results for deflection of three points as a function of oil 

height and experimental results for deflection of three points at five fluid levels.  
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Figure 2.17: Image of experimental deflection and overlaid optimized computational 

deflection for oil at a fluid height (red) of 30 mm. 

 

Figure 2.18: Computational results for the tuned material properties and the mean 

published values with experimental results. 
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2.5.6. Demonstration of Model Robustness with Water 

Using the optimized material properties evaluated from oil, the computational 

model was reevaluated using water to create the hydrostatic forces. Figure 2.19 shows the 

computational and experimental results under these conditions. The computational results 

fall within the error bars of the experiment except at 27.5 mm, indicating the material 

properties calculated during the oil experiment match the physical system. At a fluid 

height of 27.5 mm the computational results fall near the edge of the experimental error 

bars. Again, this is due to the assumption that no fluid passes around the flap in the 

computational model, although this is not the case during the experiment. The reason this 

difference does not show up at lower fluid heights is the rate of fluid passing around the 

flap increases exponentially at higher deflections. The percentage error between the sums 

of the computationally measured distances over the sum of the experimentally measured 

distances is 1.8%. This error is only slightly larger than the error when oil was used. 

Figure 2.20 shows an image of the experiment at a water level of 27.5 mm with the 

computational results at 27.5 mm overlaid on top.  
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Figure 2.19: Computational and experimental data for the deformed flap caused by 

water. 

 

Figure 2.20: Image of experimental and overlaid computational deflection for water 

(red) at a height of 27.5 mm. 
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2.6. Conclusion 

This study presented the setup and evaluation of a thin-walled FSI model with 

accompanying experimental data for quantitative validation. The geometry of this system 

allowed for a true three-dimensional interaction between the fluid and solid domains as 

the hyperelastic flap deflected as a function of the increasing hydrostatic pressure behind 

the flap. The hyperelastic material properties of the flap combined with its relatively thin 

geometry show that fluid–structure interaction modeling can be performed and validated 

for flexible thin-walled geometries. By tuning the hyperelastic flap material properties via 

an optimization, it was demonstrated that an FSI model can be created in a robust manner 

to accurately predict the results of related models. The results from these experiments and 

computational models show that with the proper implementation of instability mitigation 

techniques, a thin-walled FSI computational model can be evaluated, calibrated, 

validated, and used to accurately predict the results of related models. Step one of this 

study tuned the material properties to achieve accurate results when oil was used and a 

validation of the tuned model was performed by evaluating it with water to create the 

hydrostatic force. This demonstrated a quantitative validation of a FSI model with 

experimental results. 

2.7. Lessons Learned 

The methods described in this chapter lay the foundation for how future FSI 

models should be constructed, evaluated, and validated. Producing an accurate FSI model 

requires far more than the full multiphysics and final computational models alone. 
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Exploring and understanding the CFD and FEA models independently of each 

other was paramount to understanding possible sources for instabilities, evaluating the 

models in the most efficient time possible, and validating the mesh, boundary conditions, 

and material properties. For this reason each model should be evaluated independently 

before evaluating the coupled model.  

Traditionally, sources for errors in CFD modeling originate from boundary 

conditions and mesh quality, while errors in FEA modeling originate from mesh quality 

and material properties. In FSI modeling the major sources for errors and discrepancies 

between experimental and computational results are material properties and mesh quality. 

FSI models with stability numbers less than 1.0 can be accurately modeled by 

taking steps to add stability, including using compressible fluids, selecting appropriate 

time steps and data transferring methods, maintaining sufficient element quality, and 

avoiding material contact and separation in the FEA model. 

The computational time required to evaluate an FSI model can be greatly reduced 

by selecting an appropriate time step, only remeshing regions with low quality elements, 

and maintaining a non-uniform mesh size with course and fine regions.  

Dynamic meshing in a three-dimensional Fluent model requires an unstructured 

mesh and two dynamic meshing methods. Dynamic smoothing accounts for small 

displacements while dynamic remeshing allows for regions to be remeshed in order to 

maintain element quality. It is also important to know the proper location where this 

remeshing needs to occur and the preferable element size at these locations to produce an 

accurate answer in the shortest time possible. 
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 CHAPTER 3: LIFETIME DESIGN FOR COUPLED FLUID–STRUCTURE 

INTERACTION MODEL UNDER THERMAL-CYCLIC LOADING 

3.1. Abstract 

Fluid–structure interaction modeling has become more available due to the 

increased computational power of modern computers and stability of algorithms 

employed. However, the a review of current literature found only limited instances of the 

use of fluid–structure interaction modeling to compute lifetime or design for performance 

at the end of life. This work utilizes a cyclic thermal load over a 1.0 s* time span to 

generate thermal expansion, material yielding, and temperature-dependent material 

properties to generate stress and strain fields in order to predict fatigue life. The transient 

computational modeling of this system was accomplished using computational fluid 

dynamics and finite element models linked with one-way coupling. A parametric study 

investigated material properties, geometric changes, and temperature profiles to 

determine the significance of various parameters on the life of the system. The parametric 

study demonstrated that the computational model is capable of capturing the effects of 

altered material properties, thermal boundary conditions, and geometry. The results of the 

parametric study indicated the coefficient of thermal expansion is the single most 

significant factor in lifetime performance by a considerable margin; therefore, it was 

unnecessary to perform an optimization because it would be dominated solely by the 
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coefficient of thermal expansion. This computational model and accompanying 

parametric study, in conjunction with evidence from the experimentally tested parts, 

demonstrated that a fluid–structure interaction model is capable of accurately predicting 

fatigue life and is robust enough to capture the effect of altered material properties, 

temperature profiles, and geometric variation.  

3.2. Introduction 

Thermal expansion is a common phenomenon where the atomic spacing in solid 

materials changes as a result of temperature fluctuation. The thermal expansion of a metal 

object does not always reduce the life of a part and may be desired to impart or elicit a 

desired function, e.g. biomedical switches and thermostats [80]. If a metal part is 

unconstrained and uniformly heated, the part does not experience stress as it thermally 

expands. However, if the part is constrained and/or temperature gradients are present, 

stress is produced in the part, potentially leading to material yielding and failure of the 

part. Fatigue due to thermal expansion is a significant problem in turbine blades, 

furnaces, heat exchangers, and large objects such as roads, bridges, airplanes, engines, 

and rigid tubing for fluid transport.  

The idea of designing for lifetime is a well-established principle in Finite Element 

Analysis (FEA) modeling, but its application has not been used as extensively in 

Computational Fluid Dynamics (CFD) modeling. In CFD modeling, design optimization 

is well established, but instead of using optimization to design for system lifetime, it 

traditionally focuses on creating the optimal solution in terms of mixing efficiencies, 

optimal heat transfer, reduced drag forces, and increased coefficient of lift. Fluid systems 
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are typically designed and built to operate at optimal conditions, but erosion, corrosion, 

oxidation, and fouling cause suboptimal conditions. Rarely are these conditions modeled 

and the overall performance optimized from beginning to end of life. Fluid–structure 

interaction (FSI) modeling results have not yet been coupled with lifetime performance 

optimization due to thermal fatigue failure even though commercially available codes are 

capable of such coupling [4]. FSI optimizations that have been performed have used one-

way modeling with steady-state conditions [7,8,58]. This study demonstrates novel 

research by performing a one-way, transient evaluation over a 1.0 s* cycle.  

3.3. Problem Normalization  

The setup and results for this study were normalized as requested by our industry 

collaborator. Table 3.1 outlines the methods used to normalize the setup and results, 

where 𝑇  represents the localized temperature, 𝑇0 is the minimum temperature, 𝑇∞ is the 

maximum temperature, 𝑡 is the localized time, 𝑡∞ is the final time, 𝑙𝑖𝑓𝑒 is the localized 

life, and 𝑙𝑖𝑓𝑒𝑏𝑎𝑠𝑒 is the life of the base condition.  

 

Table 3.1: Normalization units and equations for presented data.  

Quantity Modeling Units Normalization Method 
Units 

Present 

Temperature Kelvin 𝜃 =
T − 𝑇0

𝑇0 − 𝑇∞
 ϴ 

Time Second 𝑠∗ =
𝑡

𝑡∞
 s* 

Life Cycles days =
𝑙𝑖𝑓𝑒

𝑙𝑖𝑓𝑒𝑏𝑎𝑠𝑒
 days 
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3.4. Problem Description 

A burner containing a flame and cooled support structure was modeled and 

experimentally tested by our industry collaborator, Johns Manville, and at the University 

of Denver. The two-dimensional axisymmetric CFD model containing chemical kinetics, 

discrete flame structure, and internal cooling was evaluated by Johns Manville on a 

supercomputer taking over 30 days to evaluate a single 1.0 s* cycle. The resulting 

thermal load was then applied to a fatigue analysis to determine the lifetime of the burner. 

A parametric study was then performed to identify the affects various parameters had on 

the lifetime of the burner. The physical system is depicted in the top half of Figure 3.1. 

 

Figure 3.1: Diagram of the fluid and solid domains with boundary names. 
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3.5. Methods 

An FSI model was evaluated over a 1.0 s* thermal cycle using CFD to apply the 

thermal conditions to an FEA model where thermal expansion and the stress–strain fields 

were calculated. From the results a fatigue life analysis was performed to determine the 

number of cycles until system failure. Finally, a parametric study involving material 

properties, geometric changes, and applied temperature profiles was conducted to 

compare the number of cycles before failure. It was desired to use a two-dimensional 

axisymmetric modeling domain, but ANSYS System Coupling does not allow for 

axisymmetric models to be coupled. For this reason, both models were evaluated as a 

quarter of the entire domain by utilizing two symmetry planes. The modeling domain is 

illustrated in the lower portion of Figure 3.1. This FSI model involves one-way data 

transfer using weak coupling from the fluid model to the solid model. Figure 3.2 shows 

the flow of data and the boundary dividing the one-way FSI model with results feeding 

into the strain-life analysis. Three key technical concerns were addressed in this model in 

order to obtain an accurate fatigue life: (1) thermal expansion as a function of 

temperature distribution, (2) temperature-dependent material properties, particularly 

fatigue properties, and (3) material yielding. 
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Figure 3.2: Flow of information for the one-way FSI model to the fatigue model 

containing the strain-life analysis.  

 

3.5.1. CFD Numerical Methods 

The fluid domain was evaluated using CFD modeling with ANSYS Fluent. The 

pre-processor used to generate the fluid geometry and mesh was ANSYS Design 

Modeler. Figure 3.1 shows a comparison between the physical system and computational 

modeling setup. Transient thermal boundary conditions were applied to the CFD model 

using data imported by a user-defined function attached in Appendix B. The fluid domain 

boundary conditions are presented in Table 3.2. Three different temperature profiles were 

FSI Model Fatigue Model
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applied at 0.0, 0.3, 0.5, and 0.75 s* during the evaluation of the 1.0 s* temperature cycle. 

Profile 1 was applied from 0.0-0.3 and 0.75-1.0 s*, Profile 2 was applied from 0.3-0.5 s*, 

and Profile 3 was applied from 0.5-0.75 s*. Figure 3.3 shows the three temperature 

profiles applied. The three profiles provided different temperature contours over the 1.0 

s* cycle. However, the profiles did not capture the continually changing maximum 

temperature. Thus, the profiles were scaled by the CFD combustion model that contained 

44,500 time steps in the 1.0 s* analysis, Figure 3.4. The continual scaling of data allowed 

for the application of a unique temperature boundary condition at each time step over the 

1.0 s* cycle. Other data scaling and transfer methods were investigated, but this method 

was chosen because it allowed for the maximum data resolution while maintaining the 

steep time-dependent temperature gradients to be resolved. If these gradients were not 

resolved, material yielding due to the thermal gradients would cause reduced accuracy of 

the fatigue life prediction. This CFD model contained only a solid domain; thus, the 

energy equation found in Chapter 1, Equation 4 was evaluated with a relaxation factor of 

1.0 until the scaled convergence value was below 1.0E-6. 
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Figure 3.3: Three temperature profiles were scaled, so the maximum temperature at 

each time point reflected the maximum temperature as a function of time. 

 

Figure 3.4: Maximum temperature along exterior of part as a function of time. 
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Table 3.2: Fluid and solid domain boundary conditions.  

 

3.5.2. FEA Numerical Methods 

The solid domain was evaluated using finite element modeling with ANSYS 

Mechanical and ANSYS Thermal, which when coupled together, are capable of 

computing transient thermal expansion and its associated deformation, stress, strain, and 

forces across each node in the model. The pre-processor used to generate the geometry 

and mesh was ANSYS Design Modeler. 

The solid mesh contains approximately 4,400 HEX20 elements; it was determined 

from a mesh density investigation that a solid mesh, six elements thick, was sufficient for 

accurate results. The material used in the experiment is a nickel-based steel alloy, a heat-

resistant stainless steel with high strength, oxidation resistivity, and minimal thermal 

expansion [81]. The modulus of elasticity, thermal conductivity, specific heat, and 

coefficient of thermal expansion was each characterized as a function of temperature, 

Table 3.3. Strain-life properties are not available for the nickel-based steel alloy, so the 

strain-life properties of the closest available material—stainless steel, Table 3.4—were 

used.  

Boundary Condition

Name
Domain Type Settings

Hot Profile Fluid Wall User-defined temperature profile

Hot Profile Solid Wall Temperature prescribed by fluid domain

Cool Profile Fluid Wall User-defined temperature profile

Cool Profile Solid Wall Temperature prescribed by fluid domain

Fixed Support Solid Wall
Fixed in all degrees of translation

Fixed in all degrees of rotation

Support Structure Solid Wall
0.1 mm of free translation

Fixed in all degrees of rotation
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Table 3.3: Material properties used for computational modeling taken from a 

nickel-based steel alloy [81].  

 

 

Table 3.4: Stainless steel fatigue life properties [82].  

 

Due to cyclic loading and material yielding, material hardening was accounted for 

by applying a kinematic material hardening definition, Figure 3.5. This material property 

definition applies the stable hysteresis material properties after yielding occurs rather 

than the cyclic behavior from each cyclic load, Figure 3.6 [4,83,82]. Due to the yielding 

and resulting material hardening, the model must evaluate two full cycles in order to 

reach the long-term steady-state stress and strain fields. The first cycle generates the 

yielding and localized material hardening and the second cycle produces the stable 

hysteresis loop over which the fatigue life will be analyzed. If isentropic material 

hardening properties are used rather than kinematic material hardening properties, steady-

state behavior is not observed, and if steady-state behavior is not observed, a cycle cannot 

Temperature (K) 294 366 478 589 700 811 922 1033 1144 1255

Modulus of Elasticity (GPa) 199.9 - 184.8 - 168.2 - 149.6 139.3 128.9 121.3

Thermal Conductivity 

(W/m*K)
14.50 - 17.48 - 20.25 - 22.50 24.23 - 28.73

Specific Heat (J/kg*K) 440 - 490 - 544 - 595 624 - 687

Coefficient of thermal 

expansion (1/K * 10^-6)
- 16.31 16.81 17.26 17.66 17.95 18.25 18.5 18.9 19.4

Temperature (K) 323 373 473 573 673 773 873 973 1073 1123 1173

0.2% Yield Strength (MPa) 304.7 271.0 222.0 202.0 200.6 173.1 166.9 158.6 148.2 100.7 80.0

density (kg/m3) 7805

b -0.139°

c -0.415°

εf' 0.174°

σf' (GPa) 1.267°

K' (GPa) 2.275°

n' 0.334°
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be defined over which damage can be counted to generate fatigue life. Thus, steady-state 

behavior was observed by evaluating a model for four cycles. Material hardening data 

was not available for the nickel-based steel alloy, so the material hardening and plasticity 

properties of stainless steel were used, Table 3.4. Isentropic material hardening is 

important if the system experiences a relatively short number of cycles before failure, but 

the system evaluated here will experience tens of thousands of cycles before failure, thus 

use of the kinematic material hardening properties was appropriate. A complete list of the 

solid domain boundary conditions are presented in Table 3.2.  

 

Figure 3.5: Transient material properties behavior for no cyclic material properties 

changing (top), cyclic hardening (middle), and cyclic softening [83]. 
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Figure 3.6: Stress–strain curve for cyclic loading until a stable hysteresis loop is 

reached, resulting in steady-state material properties [83].  

 

3.5.3. Fatigue Life Numerical Methods 

To determine the number of thermal cycles the part could endure, a fatigue life 

analysis was performed using a strain-life approach. The number of cycles the part could 

endure before failure was determined by the inverse of the damage from a single cycle. 

The strain-life approach was used because large strain values and yielding were present 

in the part. Mean stress was present in the part due to the yielding and long periods of 

elevated temperatures and can be accounted for using methods like Morrow and 

Smith-Watson-Topper. The Smith-Watson-Topper method, Equation 13, was utilized 

because it accounts for both compressive and tensile stresses, while Morrow only 

accounts for tensile residual stress, thus using the Morrow method only could result in an 

over prediction of fatigue life.  
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𝜺𝒂 =
(𝝈�́�)

𝟐

𝑬∙𝝈𝒎𝒂𝒙
(𝑵)𝟐𝒃 +

𝝈�́�∙�́�𝒇

𝝈𝒎𝒂𝒙
(𝑵)𝒃+𝒄        (13) 

 

Where εa is strain amplitude, E is modulus of elasticity, σmax is the maximum 

stress in the model over the entire cycle, N is number of cycles, σ΄f, ε΄f, b, and c are 

experimentally found constants that are material-specific and generally always tested at 

room temperature. Due to the limited availability of strain-life constants at elevated 

temperatures, all constants used were measured at room temperature except for the 

modulus of elasticity.  

 

Figure 3.7: Strain-life curves for fatigue life prediction using no mean stress 

correction, Morrow, and Smith-Watson-Topper mean stress correction factors. 
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A cycle was quantified as a single 1.0 s* time span defined by the applied thermal 

boundary conditions. Because yielding was present, the cycle was evaluated twice and 

the fatigue life was analyzed based off the second cycle. To account for the effects of 

elevated temperatures, temperature-dependent material properties were not used in the 

fatigue life analysis; rather, the more conservative or worst case was used—the properties 

of stainless steel. Temperature-dependent material properties were used in the 

characterization of thermal expansion to produce the stress and strain fields. Analysis of 

the 1.0 s* cycle was broken into blocks so that a rainflow analysis could be performed 

and damage assessed for each cycle. Once the damage for one cycle was known, it was 

possible to compute the total number of cycles before failure. The fatigue life analysis 

was performed manually in Excel and again in an automated manner using ANSYS to 

ensure the rainflow analysis was properly performed accurately.  

3.5.4. Interface between Fluid and Solid Domain 

The pre-processor used for generating the geometry and mesh for both the fluid 

and solid domain was ANSYS Design Modeler. This commercially available software 

package has features that allow the fluid and solid domains to be created simultaneously 

and then separated for individual meshing and analysis techniques. This allows the faces 

to be shared for a more seamless data transfer and for interface compliance in the FSI 

coupling.  

ANSYS System Coupling was used to transfer data from the fluid domain to the 

solid domain in a weak-coupled manner at each time step. Data was transferred one way 

because the changes in the solid model due to thermal expansion have negligible effects 
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on the temperature profile applied by the fluid domain. A relaxation factor of 1.0 was 

used for transferring data between each domain; i.e. no ramping function or damping was 

introduced. The fluid domain provided temperature loads to the solid domain for thermal 

expansion. The FSI model utilized a 0.005 second time step over two 1.0 s* cycles.  

3.5.5. Parametric Study Methods 

Once the computational model base condition was completed, a parametric study 

was performed to determine what factors had the greatest effect on fatigue life. This 

parametric study and resulting discussion are intended to look at which designs perform 

better or worse relative to the base conditions—the exact number of cycles is not the 

focus. In addition to the base condition, nine other designs were evaluated, including 

cases that looked at geometry setup, applied temperature conditions, material properties, 

and a three-dimensional model with a temperature hot spot, Table 3.5. The thermal cap 

design with wall thickness of 1.5 mm and cap thickness of 5.0 mm is presented in Figure 

3.8. The temperature contour for the three-dimensional temperature hot spot is presented 

in Figure 3.12. The modified thermal boundary conditions were achieved by using the 

existing temperature profiles, but altering the scaling factors used, either up 100K or 

down 50K, to match the maximum temperature values at each time step. In reality, it is 

difficult to alter a single material property without affecting other properties, so to 

minimize these consequences in this study only one property was altered at a time. The 

coefficient of thermal expansion was reduced from 16.31E-6 1/K to 5.00E-6 1/K, which 

corresponds to the coefficient of thermal expansion for the nickel-based steel alloy and 

tungsten, respectively [81,84]. The yield strength of the material was increased from 
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304.7 MPa to 600.0 MPa, which corresponds to the yield stress of the nickel-based steel 

alloy and high-end steel alloy respectively [75,81,82]. 

Table 3.5: Parametric study properties setup. 

  

 

 

Figure 3.8: Design layout for the thermal cap geometry. 

 

3.6. Results 

3.6.1. Steady-State Material Properties 

Initial evaluation and inspection of the strain for the first four cycles indicated the 

steady-state results were not reached using isotropic material hardening, Figure 3.9 top. 

Upon redefining the material properties using kinematic material hardening, the steady-

state strain fields occurred on the second cycle, Figure 3.9 bottom. 

Thickness 

(mm)

Temperature

Profile

Coefficient of Thermal 

Expansion (1.0E-6/K)

Yield Strength

(MPa)

1.5 Standard Profile 16.31 at 366K 304.7 at 323K

1 mm thickness 1.0 Standard Profile 16.31 at 366K 304.7 at 323K

2 mm thickness 2.0 Standard Profile 16.31 at 366K 304.7 at 323K

Thermal Cap
1.5 wall thickness

5.0 cap thickness
Standard Profile 16.31 at 366K 304.7 at 323K

50 K cooler 1.5 50K Cooler 16.31 at 366K 304.7 at 323K

100 K warmer 1.5 100K Warmer 16.31 at 366K 304.7 at 323K

Reduced CTE 1.5 Standard Profile 5.00 at constant 304.7 at 323K

Increased yield strength 1.5 Standard Profile 16.31 at 366K 600.0 at constant

Tungsten 1.5 Standard Profile 5.00 at constant 900.0 at constant

1.5 Standard Profile 16.31 at 366K 304.7 at 323K

Temperature

Material 

Properties

Three-dimensional hot spot

Geometry

Base Condition

5 mm cap
thickness

1.5 mm wall thickness

Thermal Cap
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Figure 3.9: Comparison of material properties definitions for material hardening 

over four, 1.0 s* cycles.  

 

3.6.2. Computational and Experimental Comparison 

Experimental data is not available for a quantitative validation of the 

computational model, but experimental observations, trends, and failure modes are 

available. Additionally, the computational lifetime predictions from the fatigue life model 

cannot be used as a validation point because the CFD model used to apply the thermal 

boundary conditions is believed to be a worst-case condition and not the mean operating 

condition.  

3.6.2.1. Yielding Location 

The experimentally fatigued parts show residual tensile stress on the exterior 

surface of the parts. If the part was heated uniformly, no yielding would be present. 

However, if the exterior of the part is heated and the interior cooled, yielding can occur 
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along the interior surface due to the large thermal expansion of the exterior. If the part is 

then allowed to cool to a uniform temperature, residual tensile stress will be present along 

the exterior surface due to permanently yielded (expanded) material along the inside 

surface. Experimentally, this residual tensile stress is present along the exterior of the part 

and is present in the computational results as well, Figure 3.10. This does not validate the 

computational model, but supports the conclusion that the model is capturing the proper 

yielding mechanisms due to thermal expansion.  

 

 

Figure 3.10: Contour plot of plastic strain indicating strain is positive along the 

exterior of the part in agreement with experimental data. 
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3.6.2.2. Failure Location 

The failure location in the experimental data agreed with the computational data 

as occurring on the outside edge of the part halfway between the tip and the side wall, 

Figure 3.11 between the lines. This failure region is not centered in the area of highest 

observed temperature, but is one of the regions where the highest temperature gradient is 

present. The part experiences large regions with very high temperature where thermal 

expansion is significant. Large temperature changes alone are not capable of causing 

thermal stresses. A part that is unconstrained in space and experiences uniformly high 

temperatures experiences no stress due to thermal expansion. However, if a portion of the 

part is fixed or the entire part is not uniformly heated, thermal stresses can be significant. 

This part experiences large temperature spikes over short periods of time, but these spikes 

are not present over the entire part, which results in sharp temperature gradients in both 

space and time. These steep temperature gradients contribute to the thermal stress fields. 

Therefore, it would not be expected for this part to fail at the center of the high 

temperature location, but instead to fail where the steepest thermal gradients are present. 

In this setup, the steepest thermal gradients are present around the edge of the 

temperature hot spot, Figure 3.11 (left). Figure 3.11 (right) shows the predictive failure 

region of the part is in the area of steepest temperature gradient, demonstrating agreement 

with experimental failures. 
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Figure 3.11: The fatigue failure location (right) lies on the edge of the temperature 

hot spot (left) where the temperature gradient is the greatest, as indicated by the 

white lines. 

 

3.6.2.3. Failure Modes 

The computational base condition assumed the surface finish of the part was void 

of flaws (polished), but the experimental base condition contained two variations with 

machined-surface and polished-surface finish. The tool markings in the machined surface 

part are indicated in Figure 3.12 and are in the hoop direction. In the experimental case of 

the machined surface part, cracks initiate and grow parallel to the tool markings in the 

hoop direction, while the part with the polished surface showed cracks growing radially, 

Figure 3.12. The parts with polished-surface finish also experience a longer service life 

than the machined surface part. The presence of tool markings creates stress 
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concentrations that initiate crack growth. Therefore, it is not surprising that the polished-

surface finish outperformed the machined-surface finish. Because this change in the 

failure mode was so distinctive in the experiments, it is hypothesized that the hoop forces 

and radial forces are on the same order of magnitude. The principal stresses in the 

computational model indicated the maximum principal stress is in the hoop direction, 

which would lead to radial cracking, Figure 3.13. However, the second largest principal 

stress is on the same order of magnitude and in the radial direction, which would lead to 

hoop cracking. This supports the cracks forming in the hoop direction when stress 

concentrations are present, while a longer service life occurs when cracks form in the 

radial direction with a polished-surface finish.  
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Figure 3.12: Contour lines of temperature with overlaid tool markings, radial crack, 

and hoop crack. 

 

Figure 3.13: Principal stresses along the exterior of the part show the maximum and 

middle principal stresses are on the same order of magnitude, indicating the 

potential for cracks to form both radially and in the hoop direction. 
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3.6.3. Strain-Life Analysis 

The fatigue life of the part was determined from the strain in the part (Figure 3.9) 

and the strain-life curve generated from the material properties (Figure 3.14). The 

damage from each load reversal in a single 1.0 s* cycle was summed to determine the 

damage imparted by a single cycle. Using the cumulative damage of each cycle, the total 

number of cycles until failure was calculated, Table 3.6. The base condition lasted 2.9 

days and was used as a baseline for determining whether design changes improved or 

reduced the life of the part before failure occurred.  
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Figure 3.14: Damage produced from a single load amplitude of 0.001, 0.002, 0.0025, 

0.003, and 0.0035 (m/m). With the known damage contribution of each amplitude, 

the damage of a single cycle can be calculated. With the damage per cycle known, 

the number of cycles until failure can be determined. 
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Table 3.6: Results from parametric study for alternative geometry changes, applied 

thermal conditions, material properties, and three-dimenstional temperature hot 

spots.  

 

3.6.4. Parametric Study 

After the base condition was completed, the parametric study determined which 

designs had a longer fatigue life. The geometry, material properties, and thermal 

boundary conditions all had an effect of the part fatigue life, Table 3.6. The 

computational models only perturbed a single variable at a time and left the other 

variables at the base condition. 

3.6.4.1. Geometry Alteration 

Three different geometric configurations were evaluated to determine the effects 

of geometric alterations to the fatigue life of the part. Reducing the thickness of the part 

from 1.5 mm to 1.0 mm increased the life from 1.00 days to 3.48 days, while increasing 

the thickness from 1.5 mm to 2.0 mm reduced the life from 1.00 days to 0.4 days. It was 

anticipated that added thermal mass near the hot spot by increasing the thickness of the 

Life in days

1.00

Reduced CTE 4.98

Increased yield strength 1.28

Tungsten 7.01

50 K cooler 1.11

100 K warmer 0.74

1 mm thickness 3.48

2 mm thickness 0.40

Thermal Cap 0.65

1.36

Base Conditions

Material Properties

Temperature

Geometry

3 Dimensional
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part would broaden the temperature distribution resulting in shallower temperature 

gradients. This theory was tested with the thermal cap, but instead resulted in a reduction 

of life from 1.00 days to 0.65 days. In addition to computational modeling, each of the 

three geometric configurations were experimentally tested and matched with the trends 

seen in the computational results. By reducing the thickness of the part from 1.5 mm to 

1.0 mm the Biot number within the metal is lowered, therefore reducing the thermal 

gradients resulting in decreased stress and strain, which increases the life.  

3.6.4.2. Thermal Boundary Conditions 

Two different thermal boundary conditions were evaluated to determine the 

sensitivity the thermal boundary conditions had with respect to fatigue life. Reducing the 

maximum temperature the part experienced by 50K compared to the base condition 

temperature resulted in an increased life from 1.00 days for the base condition to 1.11 

days. This increase in life is believed to not be directly related to the applied temperature 

field, but more a result of the temperature-dependent material properties. Increasing the 

overall temperature by 100K reduced the overall life compared to the base condition from 

1.00 days to 0.74 days.  

3.6.4.3. Material Properties 

Three different material conditions were evaluated to determine the effects 

material properties have on the lifetime of the part. Reducing the coefficient of thermal 

expansion resulted in significant reductions in stress magnitude and subsequently 

increased the life from 1.00 days to 4.98 days. This result was expected because the stress 

in this part is generated from thermal expansion and not from external loads. Increasing 
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the yield strength of the material resulted in reduced yielding and stress, which 

subsequently increased the lifetime of the part from 1.00 days 1.28 days. Using tungsten 

increased the life from 1.00 days to 7.01 days.  

3.6.4.4. Summary of Parametric Study 

It was evident from the parametric study that the computational model is robust 

enough to capture the effects of changes in material properties, thermal boundary 

conditions, and geometry. Although the computational model can accurately capture the 

desired changes, the effect of the coefficient of thermal expansion was the most 

significant factor with respect to lifetime. It was therefore unnecessary to perform an 

optimization because the desired outcome was clear. It was desired to have a material 

with a low coefficient of thermal expansion and high yield strength and thermal boundary 

conditions with more uniform temperature profiles and the lowest maximum 

temperatures. The ideal geometry solutions are harder to predict because any changes in 

geometry will result in an altered thermal boundary condition, which is held constant 

under these conditions.  

3.7. Conclusion  

This qualitative validation and parametric study shows that an FSI model can be 

used as a tool to design a part for optimal lifetime performance. The analysis methods in 

this study are robust enough to capture thermal effects, material properties, and geometric 

alterations. These computational models were set up and evaluated using commercially 

available software and inexpensive computational resources. This study demonstrates that 

FSI modeling can be used as a design tool in an industry-applicable environment.  
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3.8. Lessons Learned 

The methods described in this chapter lay the foundation for how thermal fatigue 

FSI models should be constructed, evaluated, and validated. Generating an accurate 

fatigue life prediction from the results of an FSI model requires a detailed understanding 

of the fluid model, solid model, and material properties used.  

The introduction of elevated temperatures can cause changes in material 

properties, specifically altered material elasticity, yield stress, material plasticity, and 

fatigue life. The material properties of exotic materials may not be known, so the 

properties from known materials may need to be substituted. If substitutions are 

performed, it is important to understand what effects these substitutions will have on 

results and fatigue life predictions.  

Accurately implementing material properties such as material hardening and 

yielding is a critical step to produce the most accurate answer. If accurate steady-state 

material properties and the resulting stress-strain fields cannot be achieved, a failure 

analysis will not yield accurate results.  

The validation of FSI models can be challenging due to the limited data available 

for qualitative comparison. If this is the case, experimental observation and trends should 

be used to ensure fluid and solid mechanisms are accurately captured in the model.  
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 CHAPTER 4: LIFETIME DESIGN FOR THERMAL-FLUID SYSTEM  

4.1. Abstract 

The modeling of thermal-fluid systems has become more available due to the 

increased computational power of modern computers and stability of algorithms 

employed. However, limited literature exists regarding the lifetime analysis and 

optimization of a thermal-fluid system. The objective of this work is to improve the 

current design of a passive thermal-fluid control system by maximizing the duration of 

applied external thermal loads, while minimizing the mass of a phase change material 

within the system. A computational model was used as a design tool to achieve optimal 

thermal life. The objective of the optimization was to maintain a uniform temperature 

distribution inside the vessel while staying within a desired temperature range and using 

the least amount of phase change material possible. The geometry consisted of a three-

dimensional model with no symmetry and the model captured phase change, free 

convection, and radiation. Experimental data was used to tune the material properties in 

the model and validate the results. The detailed material properties testing was conducted 

at the University of Denver, while our industry collaborator conducted the experimental 

tests that required access to a thermal chamber.
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4.2. Introduction 

Thermal energy management is a significant concern in diverse industries such as 

spacecraft and satellite design, high-speed aircraft, electronics, medical organs and 

therapeutic protein transport, food transportation and storage, and wine storage [52,85–

89]. In these varied industries, radiation, convection, and conduction each play an integral 

part in heat transfer that must be addressed to ensure designs, products, and systems do 

not fail as a function of exceeded temperature limits. These industries spend time and 

resources to manage thermal energy by means of open- and closed-loop control systems, 

active and passive systems, geometry, and material properties [52,85]. The resulting 

systems designed to manage thermal energy can be large, heavy, and bulky; for example, 

refrigeration units designed for food transport and storage. Other systems may be simple, 

requiring only insulation and ice blocks or specific properties, geometry features and/or 

fins [52,85]. Regardless of the method or complexity of the thermal management system, 

the goal is to manage the thermal energy so failure does not occur.  

4.3. Problem Description 

This study investigates a passive thermal-fluid system subjected to an external 

thermal load on all exterior surfaces. The system is designed as a passive cooling system 

using only ice blocks to maintain the internal contents of the vessel within a specified 

temperature range for a minimum of 60 hours. If the temperature is not maintained inside 

this range, the perishable contest of the vessel will become unusable. Prior to design 

optimization at the University of Denver, the vessel maintained the internal contents 
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within the desired temperature range for only 40 hours. The goal of this study was to 

determine the minimal amount of ice required to maintain the temperature inside the 

vessel for 60 hours. Through this study, the number of ice blocks used and location of the 

ice blocks was altered to determine the configuration resulting in the smallest amount of 

ice necessary. This study used a computational model constructed in ANSYS Fluent to 

determine the performance of each configuration. The computational model was tuned 

using experimental test results conducted at the University of Denver and validated using 

experimental test results conducted by our industry collaborator.  

4.3.1. Problem Normalization  

The setup and results for this study were normalized as requested by our industry 

collaborator. Table 4.1 outlines the methods used to normalize the setup and results, 

where 𝑇  represents the localized temperature, 𝑇0 is the minimum temperature, 𝑇∞ is the 

maximum temperature, 𝑙 is length, 𝑙𝑏𝑎𝑠𝑒 is the length of the vessel, 𝑚 is mass, 𝑚𝑏𝑎𝑠𝑒 is 

the mass of base condition, ℎ is the convective heat transfer coefficient, 𝐾 is thermal 

conductivity, 𝜌 is density, and 𝐶𝑝 is specific heat.  
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Table 4.1: Normalization units and equations for presented data.  

Quantity Modeling Units Normalization Method 
Units 

Present 

Temperature Kelvin 𝜃 =
T − 𝑇0

𝑇0 − 𝑇∞
 ϴ 

Length Meter 𝑚∗ =
𝑙

𝑙𝑏𝑎𝑠𝑒
 m* 

Mass Kilogram 𝑘𝑔∗ =
𝑚

𝑚𝑏𝑎𝑠𝑒
 kg* 

Time Second 𝑠∗ =
𝑡

𝑡∞
 s* 

Thermal Conductivity W/m-K Nusselt Number =
ℎ ∗ 𝑙

𝐾
 Nu 

Specific Heat J/kg-K Thermal Diffusivity =
𝐾

𝜌 ∗ 𝐶𝑝
 α 

 

4.3.2. Thermal System Failure 

This system is a closed thermal system where the temperature inside the vessel is 

governed by the initial thermal energy inside the system, insulation of the system, and 

applied boundary conditions. Failure of this system occurs when the temperature at any 

of the six measured locations is not with -0.192 to 0.397 ϴ for any length of time. The 

temperature measurements were collected in drawers 1, 3, and 5 with two locations 

measured per drawer represented by the X’s in Figure 4.5. The temperature measurements 

were taken in the same locations in both the computational model and experimental tests.  

4.3.3. Design Constraints 

The design requirements provided by our industry collaborator created several 

design limitations: (1) the cooling fluid inside the ice blocks must remain unchanged, (2) 

the ice blocks used must not be made smaller, (3) the dimensions of the vessel, drawers, 
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and containers must remain the same, and (4) the flat ice blocks located on the top and 

bottom of the vessel cannot be changed in any way. The alterations to the closed thermal 

system allowed by our industry collaborator were to replace perishable items with more 

ice blocks, alter the number of ice blocks per drawer, and alter the spatial arrangement of 

the ice blocks in each drawer.  

4.4. Methods 

Preliminary experimental tests were required before the boundary conditions and 

material properties could be understood and implemented into the computational model. 

Once initial experimentation was completed, experimental tests and construction of the 

increasingly complex computational model were conducted in parallel. Experimental 

tests were conducted to provide a rough estimate of material properties before these 

properties were fine-tuned using the computational model and measured experimental 

results. Testing and tuning of material properties and boundary conditions was conducted 

in the following four steps: 

1. Thermal Conductivity Experiment.  Performed experimental tests to determine the 

range for composite thermal conductivity of the vessel. 

2. Composite Thermal Conductivity Tuning.  Tune thermal conductivity of the 

vessel using the empty vessel experimental tests and computational model. 

3. Gel-Specific Heat Tuning.  Tune the specific heat of gel using the computational 

model and the experimental tests with gel and no ice. 

4. Boundary Conditions Tuning.  Tune the boundary conditions applied to the 

outside surface of the vessel using experimental tests and computational model. 
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4.4.1. Experimental Methods 

4.4.1.1. Thermal Conductivity Experiment 

The performance of this system was driven by the initial internal energy, 

boundary conditions, and insulations (material properties) of the vessel layers. The vessel 

layers consisted of a paper product, two different thermoplastic liners, and insulating 

foam, and the layers were constructed in such a way to promote maximum thermal 

resistance between the ambient conditions and cool interior, Figure 4.1. The material 

properties of the foam can vary greatly as a function of foam cell density, gas inside the 

foam cells, and operating temperature of the vessel. Polyurethane foam is a commonly 

used insolating foam. Table 4.2 shows the possible range of thermal conductivities 

available for variations of polyurethane foam. The effect of placing the insulation layers 

next to each other also adds thermal contact resistance between the insulation layers. A 

closer inspection of a cross section of the foam revealed large voids and inconsistencies 

in foam pore size and density, Figure 4.2. Due to the unknown gas composition inside the 

potentially closed-cell foam, material inconsistencies in foam cell size, and contact 

resistance between layers, it was important to model the composite thermal conductivity 

of all the layers together as a single thermal resistance. An experimental test was set up 

and conducted at the University of Denver to determine the possible range for the 

composite thermal conductivity.  
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Figure 4.1: Layers inside the vessel wall to promote maximum thermal resistance 

between ambient conditions and the cool interior. 

 

Table 4.2: Avalible material properties for polyurethane insulation and air [90–96].  

 

Mean Min Max

Polyurethane Insulation Engineering ToolBox 0.03

Micro-Cellular 

Polyurethane Foam
MatWeb 0.0865

Polyurethane Foam - 

Unreinforced
MatWeb 0.129 0.076 0.83

Polyurethane University Physics 7th Edition 0.02

Common Insulation 

Material (Polyurethane)

Federation of the European Rigid 

Polyurethane Foam Associations
0.02 0.05

Polyurethane Foam
10th International Symposium on 

District Heating and Cooling
~0.024

Air as a function of 

temperature (0-60°C)

Heat and Mass Transfer 7th 

Edition
0.0264 0.0243 0.0285

Thermal Conductivity (W/m-K)
Data SourceName 
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Figure 4.2: Cut cross section of the insulating foam interior showing the 

thermoplastic liner and material voids in the bulk of the insulating foam. 

The thermal conductivity can be found by rearranging the basic conduction heat 

transfer equation, Equation 14, for a given material or a composite group of materials. All 

of the values on the right side of Equation 14 can be measured experimentally, but 

several assumptions must be made.  

 

𝑲 =
𝑸∗𝑳

𝑨∗(∆𝑻𝟏+∆𝑻𝟏)
          (14) 

 

The experimental test performed to generate the composite thermal conductivity 

of the vessel and door was conducted by taking a constant four watt heater and placing it 

on a metal plate that fit inside the seal of the vessel cover. An additional Styrofoam seal 

was added to create a small gap between the cover and vessel to ensure the heater did not 

 

 

Foam 

ABS Shell 
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directly touch the surface of the cover. A 10 lb. load was then applied on top of the cover 

to ensure a consistent seal was present between the cover and vessel. Once the load was 

applied, the heater was turned on and allowed to run until steady-state conditions were 

reached, which took about 24 hours. Temperature measurements were taken along the top 

of the cover, between the cover and vessel, along the inside of the vessel, and on the 

outside of the seal, Figure 4.3. Once steady-state conditions were observed, the 

temperatures were recorded and the experiment was allowed to run an additional 24 

hours before the measurements were retaken. If no significant difference was observed 

over the second 24 hours, it was determined the steady-state conditions had been reached 

and the measured temperature values were used to calculate the composite thermal 

conductivity.   

 

Figure 4.3: Diagram of experimental setup with location of temperature 

measurements and heat loss.  

 

Due to the assumptions made during the test setup phase, there was a large range 

of experimental uncertainty for the measured composite thermal conductivity, but the 

experimental range fell within the range documented in published data. The assumptions 



 

105 

that lead to this uncertainty were: (1) area of heat transfer, (2) temperature uniformity, (3) 

heat generation, and (4) heat transfer efficiencies. 

(1) The area over which the heat transfer occurs has a large impact on the thermal 

conductivity calculation. Using the metal plate to distribute the heat over the entire area 

of the cover minimized the uncertainty of this experimental value. The area inside the 

seal is 0.871 m*
2
 and the area including the seal is 0.998 m*

2
. 

(2) The temperature uniformity along the heating surface, top of the cover, and 

inside of the vessel is important because the measurements are taken at a single point. If 

the surfaces have irregular temperature distributions, an average must be taken. By using 

the heating pad attached to the metal plate, the surface over which the heat is applied is 

uniform. Temperature uniformity was checked by taking temperature measurements at 

various locations along the top of the cover and inside of the vessel. The measurements 

from these locations never varied more than 0.066 ϴ.  

(3) The heat was generated using a constant four watt output heating pad. To 

verify the output of the heating pad, a power meter was used to measure the power, and 

indicated an average of 4.1 watts was used over the 48 hours. Given the slight 

inefficiencies inherent in the heater, 4.0 watts seemed to be an accurate value.  

(4) The most significant source of uncertainty comes from the assumption of how 

much heat from the heating pad is actually transferred through the vessel and cover walls 

and how much escapes through the seal, displayed as Q in Figure 4.3. The losses through 

the seals were measured at 1.31 watts using Equation 15. Where K is the thermal 
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conductivity of Styrofoam, A is the area of the seal, ΔT is the temperature across the seal, 

and L is the length of the seal.  

 

𝑸 =
𝑲∗𝑨∗∆𝑻

𝑳
            (15) 

 

4.4.1.2. Thermal Contact at Drawer Interface 

The ice and containers that hold perishable items inside the vessel each have four 

small round feet on the bottom, thus significantly reducing the contact area between the 

drawer and containers, Figure 4.4. To account for this reduced contact area and avoid 

modeling the small 1 mm gap, a small insulating material was modeled under the entire 

surface of each ice block and perishable item container. The thermal conductivity of this 

insulator was determined by a heat transfer relationship, Equation 16. By measuring the 

area of the feet and the area of the container bottoms, the resulting thermal resistance was 

determined. The thermal conductivity for the gap between the perishable items and 

drawer is 1.148 Nu, and the thermal conductivity for the gap between the ice and drawer 

is 0.575 Nu. The smaller thermal conductivity used for the ice and drawer occurred 

because the ice blocks have a smaller base area, but the same number and area of feet.  

 

𝑸𝒇𝒆𝒆𝒕 = 𝑸𝒈𝒂𝒑 =
𝑲∗𝑨∗∆𝑻

𝑳
         (16) 
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Figure 4.4: Image of feet on the ice block and perishable item containers. 

 

4.4.1.3. Thermal Chamber Experimental Test 

Transient experimental testing of the vessel was conducted by our industry 

collaborator using a controllable thermal chamber and ambient room conditions, while 

measuring the temperature inside and outside of the vessel at various time points. The 

thermal chamber experimental tests were performed with nine vessels in the chamber 

arranged in a 3x3 array and placed on wooden pallets. Multiple experiments were 

performed under a variety of conditions with multiple vessels under the same conditions. 

Two of these experiments were used for tuning the computational model and a third was 

used for validation. Gel was used as a substitute for the perishable items to reduce the 

experimental uncertainty originating from the variability in the thermal mass of the 

perishable items.  

The first experiment contained an empty vessel with no gel and no ice. The empty 

vessel was placed inside a thermal chamber at 0.132 ϴ until thermal equilibrium was 

achieved. Then the vessel was removed and placed in a room with little air flow and 
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ambient room temperature conditions for eight hours. The applied external temperature 

load and internal temperature measurement are available in Figure 4.7.  

The second experiment contained a vessel with only gel and no ice. The vessel 

was placed inside a thermal chamber at 0.066 ϴ until thermal equilibrium was achieved. 

Once this equilibrium was achieved, an external temperature load was applied for 20 

hours and the internal temperature was measured, Figure 4.8. The configuration of gel is 

depicted in Figure 4.5 (left) but without ice blocks.  

The third experiment contained a vessel with gel and ice. The vessel was placed 

inside a thermal chamber at 0.000 ϴ until thermal equilibrium was achieved. Once this 

equilibrium was achieved, an external temperature profile was applied for 60 hours and 

the internal temperature was measured. The external temperature profile can be seen in 

Figure 4.9 and the configuration of the experiment is depicted in Figure 4.5 (left).  

    

Figure 4.5: Gel and ice locations for the validation study (left) and design 

improvement study (right). The X represents the locations for temperature 

measurements both experimentally and computationally in drawers 1, 3, and 5.  
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4.4.2. CFD Numerical Methods 

The fluid domain was evaluated using Computational Fluid Dynamics modeling 

in ANSYS Fluent 15. The pre-processor used for mesh generation was ANSYS Design 

Modeler. The mesh contained 2,230,000 elements with both tetrahedron and hexahedron 

elements. The mesh density was investigated to ensure proper element quality was 

maintained and a sufficient number of elements were present for accurate energy and 

mass transfer. The solid domain contained elements ranging in size from 1 mm to 10 mm 

in edge length and the fluid domain contained 1.8 mm elements at the edges of the 

drawers, surfaces of the ice, and surface of the vessel exterior, while the bulk fluid cells 

were 5 mm in length with a growth rate of 1.1. 

The computational model containing the fluid domain utilized the three-

dimensional Navier–Stokes equations in conjunction with the continuity and energy 

equations outlined in Chapter 1, Equations 1, 2, and 4 respectively, utilizing a pressure-

based solver due to the subsonic incompressible flow with laminar fluid flow. In the 

pressure-based solver, the momentum and continuity equations, Chapter 1, Equations 1 

and 2 respectively, were used in combination to calculate the pressure field. The model 

was evaluated using standard relaxation for pressure, density, body forces, momentum, 

turbulence kinetic energy, turbulent dissipation rate, turbulent viscosity, and energy of 

0.3, 1.0, 1.0, 0.7, 0.8, 0.8, 1.0, and 1.0 respectively, until all scaled convergence values 

were below 1.0E-3 with the energy below 1.0E-6. 

This model was a passive closed thermal system, thus the only defined boundary 

conditions were the external wall of the model, Appendix C. A more detailed discussion 
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about the boundary conditions is presented in the section titled “Boundary Conditions 

Tuning.” 

The fluid domain was initially evaluated using a computational model with two 

symmetry planes to reduce the required computational time, thus allowing the transient 

results to be generated in a timelier manner. This initial symmetric model provided a 

greater understanding of the mesh cell size, convergence criteria, and required 

convergence time as a function of time step and iterations. Information gathered from 

evaluating the symmetric model helped to reduce the amount of computational time 

required to evaluate the model and determine which time step allowed for a reliably 

stable fluid domain. The model indicated a time step up to 500 seconds could be used, but 

using a time step of 50 seconds resulted in the most efficient computational time. 

Symmetry could not be utilized over the final configuration of this model because the 

spatial orientation of the ice blocks was not symmetric in any direction. 

4.4.2.1. Material Properties  

The fluid and solid material properties are displayed in Table 4.3. The density of 

air was defined using the Boussinesq Model instead of the full ideal gas law, allowing for 

the density to be a function of temperature, thus allowing for natural convection. The 

Boussinesq Model treats the fluid as a constant density in all equations except for the 

buoyancy term in the momentum equation when it is represented as shown in Equation 

17 [57,97]. This allows natural convection-driven flow without the need to solve the full 

set of compressibility equations. The Boussinesq Model is accurate for fluid domains 

without large temperature gradients and when chemical kinetics and species modeling are 
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not present [57,97]. Ice was defined as a simplified effective heat capacity method, as 

defined in the section titled “Phase Change Modeling.” Detailed description for the solid 

material properties can be found in the sections titled “Composite Thermal Conductivity 

Tuning,” “Gel-Specific Heat Tuning,” and “Boundary Conditions Tuning.” 

 

(𝝆 − 𝝆𝟎)𝒈 ≈ 𝝆𝟎𝜷(𝑻 − 𝑻𝟎)𝒈        (17) 

Table 4.3: Material properties used in the computational model. 

 

Units Values

Density kg/m3 1.225

Compressibility 1/K 0.0036

Thermal Conductivity W/m-K 0.0242

Viscosity kg/m-s 1.79E-05

Specific Heat J/kg-K 1006.43

Density kg/m
3 2719

Thermal Conductivity W/m-K 202.4

Specific Heat J/kg-K 871

Alpha α 1.17E-07

Nusselt Number Nu 0.286

Gel Gap Alpha α 8.28E-07

Ice Gap Alpha α 1.65E-06

Gel Gap Nusselt Number Nu 0.0315

Ice Gap Nusselt Number Nu 0.0157

Alpha α 9.38E-08

Nusselt Number Nu 0.02778

Density kg/m3 998

Thermal Conductivity W/m-K 0.58

Specific Heat @ 200.00 K J/kg-K 2090

Specific Heat @ 272.65 K J/kg-K 2090

Specific Heat @ 273.15 K J/kg-K 567800

Specific Heat @ 273.65 K J/kg-K 4210

Specific Heat @ 400.00 K J/kg-K 4210

A
ir

G
a

p
C

a
g

e
G

e
l

Ic
e

A
lu

m
in

u
m



 

112 

4.4.2.2. Phase Change Modeling 

The phase change that occurred due to melting of the ice was modeled using a 

simplified effective heat capacity method [98–100]. Farid et al. introduced a simplified 

phase change model in 1998, where a single material was used to represent both sides of 

the phase change and the latent heat from melting was captured in the specific heat of the 

material property. This simplified model is desirable because it only requires modeling a 

single phase, while also not requiring a third transitionary phase. In the model, the single 

phase was modeled continuously at all temperatures, while simultaneously capturing the 

latent heat of melting in the specific heat of the material. The spike in specific heat was 

defined at the phase transition temperature. The area under this spike corresponds to the 

latent heat of melting, Figure 4.6. The width of the spike determines the range over which 

the phase change occurs. Computational instabilities are introduced as the width of the 

spike is narrowed. The latent heat from melting ice is 334,000 J/kg and if the specific 

heat spike is defined over a 1 K width, the maximum specific heat is 668,000 J/kg-K. 
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Figure 4.6: Specific heat spike to account for the latent heat of melting ice. 

 
 

4.4.3. Tuning the Computational Model 

4.4.3.1. Composite Thermal Conductivity Tuning 

A computational model of the vessel containing no gel and no ice was created and 

the composite thermal conductivity range determined experimentally was used as a 

starting point to tune the composite thermal conductivity of the computational vessel. The 

results from this computational model were compared with experimental results under the 

same empty vessel configuration. The thermal conductivity was then tuned to match the 

experimental results. 
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4.4.3.2. Gel-Specific Heat Tuning 

Gel was used as a substitute for perishable items in order to provide more 

repeatable and consistent experimental results. The exact composition of the gel was not 

known, which resulted in uncertainty in the material properties, particularly specific heat. 

A literature review indicated the specific heat of the gel was between 1.90E-7 to 4.78E-7 

α, Table 4.4 [84]. A computational model and experiment containing gel with no ice was 

created, and the range of specific heat provided by literature was used to tune the specific 

heat of the gel. The resulting tuned value fell within the published literature range.  

 

Table 4.4: Published specific heat bounds for 20% gelatin gel compared to 

computationally tuned specific heat value [84].  

 

4.4.3.3. Boundary Conditions Tuning 

Our industry collaborator performed initial experiments on the vessel under 

ambient conditions and in a thermal chamber. The experimentally applied thermal loads 

and measured results were provided. Based upon this information, different boundary 

conditions needed to be applied to represent the experimental conditions in the thermal 

chamber. During the experiments when the vessel was at ambient conditions, a constant 

temperature boundary condition was uniformly applied to all sides of the vessel because 

the air flow was negligible. However, the air flow in the thermal chamber was significant 

enough that it could not be ignored. Accounting for the air flow in the thermal chamber 

required the application of a conjugate heat transfer boundary condition on the top, sides, 

Upper Bound (α) 1.90E-07

Lower Bound (α) 4.78E-07

Tuned Value (α) 2.00E-07
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and bottom of the vessel. The thermal chamber experimental tests were performed with 

nine vessels in the chamber arranged in a 3x3 array and placed on wooden pallets. This 

thermal chamber had air entering through the floor and exiting through the ceiling. The 

walls of the thermal chamber were highly polished metal, resulting in sufficient levels of 

thermal radiation that could not be ignored. Table 4.5 shows the applied boundary 

conditions for the experimental test conducted in the thermal chamber. 

 

Table 4.5: External boundary conditions for the top, side, and bottom exterior 

surfaces of the vessel when testing occurred in the thermal chamber. 

 

4.4.4. Design Study 

The base condition design provided by our industry collaborator failed because it 

did not maintain the temperature in the desired range for 60 hours. The following steps 

were taken to determine how much ice and what configuration of ice would produce a 

passing result while using the smallest amount of ice possible: 

1. Determine how much ice mass was needed in each drawer to pass  

2. Determine how many full ice blocks were needed in each drawer to pass 

3. Determine the significance of the ice spatial arrangement in each drawer  

Top Side Bottom

Convection Convection Convection

Radiation Radiation Radiation

Velocity (m/s) 1.0 1.0 1.0

Free Stream Temperature

Additional Heat Transfer Area 0 0 16x

Convective Coefficient (W/m2-K) 6.02 6.02 48.16

External Radiation Temperature

Emissivity 0.09 0.81 0.90

Measured temperature profile

Measured temperature profile

Heat Transfer
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Step 1 of the design study utilized a simplified ice configuration as presented in 

Figure 4.5 (right). The mass of all ice was increased uniformly in all ice blocks and 

drawers until the temperatures in all the drawers were maintained in the desired range for 

60 hours. This design study resulted in the mass of each ice block being greater than 

physically possible. However, this simplified ice mass alteration model allowed results to 

be generated rapidly in an automated method. The results from this study guided the 

subsequent steps in the design study. Upon completion of this simplified ice mass 

alteration model, the inaccuracies made by the assumptions of this method were 

quantified and are discussed in the section “Step 1: Ice Mass per Drawer.” 

Step 2 of the design study used the information gained in step 1 as a rough 

estimate for how many full ice blocks were needed in each drawer to maintain a passing 

result. Only full ice blocks were used in this step and for each ice block added a gel block 

was removed, resulting in drawers completely filled with ice or gel. 

Step 3 of the design study used the number of full ice blocks required in each 

drawer found in step 2 and arranged the ice blocks spatially in each drawer to determine 

the optimal configuration. Only full ice blocks were used and for each ice block added, 

the perishable item in the corresponding location was removed. This resulted in all 

drawers being completely filled with ice or gel at all times. From these three steps, the 

optimal configuration was determined.  
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4.5. Results 

4.5.1. Experimental Thermal Conductivity 

A total of five different experimental tests were performed to measure the thermal 

conductivity of the vessel. The results for the experiments are summarized in Table 4.6, 

where minimum and maximum values are shown. Through the duration of the 

experimental tests, fluctuations were observed and quantified, resulting in the high and 

low thermal conductivity measurements. Values that resulted in a lower thermal 

conductivity were placed in the minimum values column and values that resulted in a 

higher thermal conductivity were placed in the maximum values column. This provided 

the most conservative estimate for the lower and upper bounds for possible composite 

thermal conductivity values for the vessel walls and door. Published data shows the 

thermal conductivity of polyurethane ranges from 0.02 to 0.90 W/m–K [90–96]. The 

experimental range lies within this same range and provided a guide for tuning the 

insulation in the computational model.  
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Table 4.6: Values used to calculate the composite thermal conductivity of the vessel. 

  

4.5.2. Computational Model Tuning  

The results from tuning the composite thermal conductivity using the empty 

vessel experiments produced a thermal conductivity value of 0.286 Nu. Figure 4.7 shows 

the external temperature profile and results from the experimental tests and 

computational models with various thermal conductivity values. These values fall within 

both the bounds provided by literature and the experimental tests. The results from tuning 

the specific heat using the gel-only experiments produced a specific heat value of 2.0E-7 

α. Figure 4.8 shows the external temperature profile and results from the experimental 

tests and computational model with various gel-only specific heat values. This specific 

heat value also falls within the bounds provided by literature.  

Minimum Alpha Maximum Alpha

Temperature difference between T1 and T2 (ϴ) 2.572 2.396

Temperature difference between T1 and T3 (ϴ) 2.572 2.455

Temperature difference between T1 and T4 (ϴ) 2.278 2.071

Thickness of door and vessel wall (m*) 0.123 0.137

Energy generated from heater (W) 4.0 4.1

Heat transfer area (m*2) 0.998 0.871

Heat lost through the seal (W) 1.51 0.56

Thermal Conductivity (Nu) 0.556 0.286
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Figure 4.7: Comparison of computational and experimental results for an eight hour 

empty vessel test with various thermal conductivity values. 
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Figure 4.8: Results of computational model with various specific heat values for the 

gels compared to experimental results. 

4.5.3. Validation 

The final computational model was validated against experimental results 

measured in a thermal chamber over 60 hours. The validation was sufficient because the 

computationally determined temperature in drawer 3 of the vessel did not deviate more 

than ±0.036 ϴ from the temperature in the experimental results throughout the duration of 

the 60 hour test, which was within the experimental uncertainty. Figure 4.9 shows the 

computational average, experimental average, and ±0.036 ϴ experimental temperatures in 

drawer 3 of the vessel throughout the 60 hour test.  
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Figure 4.9: Experimental and computational data averages for drawer 3 with 

temperature bounds at ± 0.036 ϴ. The top plot contains the experimental and 

computational boundary conditions labeled outside and the bottom plot contains a 

closer view of the experiment and computational results.  
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4.5.4. Design Study 

The design improvement study evaluated 39 design perturbations. Step 1 of the 

design study evaluated nine designs, step 2 evaluated 21 designs, and step 3 evaluated 

nine designs. Hundreds of additional designs were evaluated in the tuning and validation 

process.  

4.5.4.1. Step 1: Ice Mass per Drawer 

The results from the simplified ice mass alteration model (Step 1) provided the 

required ice mass in drawers 1, 3, and 5 to maintain the model in the passing region, 

Figure 4.10. The results indicated that significantly more ice was needed to keep drawer 5 

passing, while drawer 3 required the least additional ice mass to pass. This study did 

result in an unphysical amount of ice in each ice block, i.e. the density of the ice is 2700 

kg/m
3
. Figure 4.11 shows a direct comparison between the simplified ice mass alteration 

model (Step 1) and an ice replacement model (Step 2) where gel is replaced when ice 

blocks are added. In this comparison, both models contain the same total ice mass and the 

same ice mass per drawer. Drawer 5 for each model contains the equivalent of four ice 

blocks and drawer 1 contains two ice blocks, with the remaining drawers each containing 

one ice block each. Significantly lower temperatures were observed in the ice 

replacement model (Step 2) compared to the ice mass alteration model (Step 1). This 

discrepancy is not concerning because the extra ice mass comparison study was only used 

as a guide to determine approximately how many full ice blocks were needed in each 

drawer to pass.  
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Figure 4.10: Computational results for maximum temperature after 60 hour test as 

a function of ice mass with uniformly and non-uniformly distributed ice. 
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Figure 4.11: Comparison of maximum temperature in each drawer with the 

simplified ice mass alteration model (left) and ice replacement model (right). 

 

4.5.4.2. Step 2: Full Ice Blocks Required 

The results from the full ice block study (Step 2) indicated the minimum ice block 

configuration required flat ice on the top and bottom of the vessel, four ice blocks in the 

top drawer, two ice blocks in the bottom drawer, and a single block in each of the 

remaining drawers. Figure 4.11 (right) shows the configuration for how the nine ice 

Top Top

Drawer 5 Drawer 5 Ice Ice

Max Temp IceX4 Max Temp

0.661 ϴ 0.293 ϴ Ice Ice

Drawer 4 Drawer 4

Ice Ice

Drawer 3 Drawer 3

Max Temp Ice Max Temp Ice

0.395 ϴ 0.289 ϴ

Drawer 2 Drawer 2

Ice Ice

Drawer 1 Drawer 1 Ice

Max Temp IceX2 Max Temp

0.483 ϴ 0.384 ϴ Ice

Bottom BottomIce Ice

Ice Ice

Simplified Ice Mass Alteration Ice Replacement Model
Total ice mass 1.67 kg* Total ice mass 1.67 kg*
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blocks must be distributed as a function of drawers to achieve a passing result. To 

demonstrate the importance of ice mass per drawer, nine ice blocks were placed in 

drawer 3 with no ice anywhere else, resulting in a failing test. This step in the design 

improvement only assessed the ice required in each drawer and did not investigate the 

spatial arrangement of ice in each drawer.  

4.5.4.3. Step 3: Spatial Ice Block Distribution per Drawer 

The results from the spatial study (Step 3) indicated the arrangement of ice blocks 

in each drawer does affect the maximum temperature in each drawer, but this difference 

was negligible due to experimental uncertainty. Computational models were constructed 

with five configurations, resulting in the final maximum temperature ranging from 0.338 

to 0.415 ϴ, as displayed in Figure 4.12. This range of 0.077 ϴ is significantly smaller 

than the temperature difference as a function of vertical ice placement and is within the 

experimental uncertainty error. The spatial location of the ice in each drawer does affect 

the maximum temperature, but it was not significant enough for additional investigation.  

 

Figure 4.12: Comparison of ice location and maximum recorded temperature in 

drawer 1 under various configurations. Location of ice block is indicated by “ice” 

and temperature measurements indicated by X. 
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4.6. Conclusion 

The model presented in this study demonstrated the setup, validation, and lifetime 

prediction of a thermal-fluid system over long periods of computational time, and that 

lifetime predictions can be used to increase the life of a system. One key finding is that 

the vertical arrangement of ice blocks in this passive system was significantly more 

important than the horizontal arrangement inside each drawer. This model also 

demonstrated that the exact thermal conductivity value of the system must be known, 

otherwise the energy balance will not be accurate, thus resulting in incorrect lifetime 

prediction. 

4.7. Lessons Learned 

The methods described in this chapter lay the foundation for how a thermal-fluid 

system should be constructed, validated, and evaluated. The accuracy of computational 

results pertaining to the evaluation of thermal lifetime over extended periods of time 

depend heavily on well-characterized and understood fluid material properties, solid 

material properties, material inconsistencies, and applied boundary conditions.   

The evaluation of thermal systems over long time periods involving material 

properties with low thermal conductivity requires implementing the thermal conductivity 

as a function of temperature. Even a 10% change in thermal conductivity has a significant 

effect on the final results for a model evaluated for a 60 hour period. 

Improving the defined computational boundary conditions and material properties 

has a significant effect on the accuracy of matching experimental results; however, the 

time spent tuning these parameters has diminishing returns. If the goal of a computational 
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model is to explore a design space, generic boundary conditions and broad material 

properties should be used that capture the physics of the entire design space.  

The energy released or absorbed due to phase change can be implemented using a 

single material and phase by implementation of an effective heat capacity method. This 

method accurately captures energy transport due to phase change, but does not require the 

time needed to directly model a transition phase or two independent phases.  

The computational time required to evaluate a model can be greatly reduced by 

selecting an appropriate time step, modeling a single phase before and after a phase 

change, and indirectly modeling phase change by capturing it in an effective heat 

capacity method.  
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 CHAPTER 5: LIFETIME DESIGN OF A PERISTALTIC PUMP USING FLUID–

STRUCTURE INTERACTION MODELING 

5.1. Abstract 

Engineers must be able to accurately predict the life of components as they 

fatigue, even if the fatigue is a result of complex interactions between fluid and solid 

systems operating with continuous heat transfer. Therefore, coupling fluid–structure 

interaction models as a function of temperature with fatigue life analysis is a valuable 

tool for engineers. As one key example, the pharmaceutical industry needs the ability to 

design better-performing peristaltic pumps with longer fatigue life and thus reduced 

particle generation and subsequent contamination of the fluid. Currently, after completion 

of the final filtration process, peristaltic pumps are widely used to fill vials and syringes 

with individual drug doses. Because the pumps are used to measure drug doses after final 

filtration, any contaminants introduced by the pump itself will ultimately be injected into 

the patient. To reduce the level of contaminants present in the drug vials due to tubing 

wear, the tubing is replaced frequently—a necessary process that requires shutting down 

the entire pharmaceutical manufacturing line while the tubing is replaced—causing 

revenue loss for the drug manufacturer and higher drug prices for the patient. Reducing 

or eliminating the need to close down the manufacturing line is particularly important in 

the biologic industry where the cost of drugs to the patient may already be more than 
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$1,000 per month. Therefore, it is desired to determine exactly how long the peristaltic 

pump tubing can last and what measures can be taken to increase the length of time 

between tubing replacement. This work demonstrates the ability to model a three-

dimensional fluid–structure interaction model and then utilize the model to design for 

system lifetime. The model incorporated fluid flow, solid mechanics, thermal heat 

transfer, nonlinear material properties, and fatigue life into a fully coupled model. A 

parametric study was performed to investigate the effects of geometric changes, fluid 

properties, solid properties, and operating temperature. This work presents a preliminary 

study that demonstrates it is possible to determine whether computational optimization 

using fluid–structure interaction modeling can identify design parameters with the 

potential to improve current performance. Because most of the tubing material properties 

used by pharmaceutical manufacturers are proprietary, this work focused instead on the 

amount of improvement that can be generated from a base case scenario and proves that a 

detailed design study could yield valuable results if the proprietary tubing material 

properties are known.  

5.2. Peristaltic Pump Background 

Peristaltic pumps operate on the principle of positive fluid displacement generated 

by means of compressing a flexible tube followed by its subsequent release and return to 

its original shape. The means by which this positive displacement is generated is an 

inherently multiphysics problem where the fluid flow is generated by large deformation 

of the pump tubing due to the motion of the pump cams. The performance and fluid flow 

of the pump are determined by the tubing geometry, tubing material, environmental 
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effects, and fluid properties. A wide variety of tubing is available from various 

manufacturers, with each manufacturer utilizing a unique chemical compound for its 

tubing. The diverse material properties of the tubing used are highly dependent upon 

temperature, age, and fatigue life [101].  

5.2.1. Peristaltic Pump Operation 

The nature of their positive displacement and resulting fluid motion lends 

peristaltic pumps to be widely used for fluid transport in pharmaceutical manufacturing, 

medical devices, and mining [87,102–104]. Some of the reasons peristaltic pumps are 

preferred include lower fluid shear forces relative to piston pumps, the fluid being 

pumped does not come into contact with metal surfaces, and the internal mechanisms of 

the pump can be easily replaced rather than require extensive cleaning [103,104]. There 

are two methods by which the tubing can be deformed—linear pumping or rotary 

pumping—but each method results in large tubing deformation, resulting in cracking, 

fatigue, abrasive wear, particle shedding, frictional heating, and diminishing fluid flow 

rates. If the tubing is not replaced at appropriate intervals, fluid flow rates can be greatly 

reduced, particles from the tubing wall can contaminate the fluid, and tubing rupture may 

occur [87,105,106]. Fluid contamination due to particle generation and the time required 

for tube replacement is a multimillion dollar problem in the pharmaceutical 

manufacturing industry [105]. Depending on the pump and fluid being transported, a 

wide variety of tubing materials can be used, including silicone, rubber, and 

thermoplastics, with an equally diverse set of material properties for each material type 

[104,107,108]. 
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5.2.2. Peristaltic Pump Tubing 

Failure of peristaltic pump tubing is characterized by rupture or when the flow 

rate is reduced by 50%, whichever comes first [104]. Rupture is defined as when fluid is 

no longer fully contained in the tubing due to cracks or abrasive inclusions [104,107]. 

Balancing these two failure modes requires understanding how the tubing properties 

perform over time. The flow rate in the tubing is determined by the tube geometry, pump 

geometry, pumping frequency, operating temperature, and how quickly the tube returns 

to its original shape after deformation occurs [102,104]. The long-term performance of 

the pump is determined by how well the tubing retains its original shape over prolonged 

periods of operation when experiencing cyclic loading at high strain level, temperature 

gradient, and potentially damaging chemicals passing through the tubing. To maximize 

the length of time before a 50% flow rate reduction occurs and prevent rupture, tubing 

manufacturers use proprietary chemical compounds to make the tubing more durable.  

5.2.2.1. Tubing Material Properties 

The chemical compounds used in peristaltic pump tubing can vary greatly, but 

can include silicone, rubber, and thermoplastics, to name a few [104,108,101]. These 

uniquely nonlinear materials, when tested independently, are highly temperature- and 

time-dependent, and potentially directionally dependent [109,110]. Furthermore, the 

testing method, clamping technique, and load-dependent aspects of testing these materials 

can greatly affect the experimental results [109,110]. Due to these challenges present 

when testing pure compounds, the testing and determination of material properties for 

mixed compounds can be an even more daunting task. The material properties published 
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by tubing manufacturers, Table 5.1, are insufficient for accurate representation of 

material properties in a Finite Element Analysis (FEA) model. The only material 

properties provided by all tubing manufacturers are tensile strength and ultimate 

elongation, and oftentimes these values are published as a range of values. Furthermore, 

the values in Table 5.1 represent the final strength of the material before failure, and do 

not provide any insight into the material behavior between the unstressed state and failure 

point. This lack of information leads to an infinite number of possible material properties 

characterizations.  

Table 5.1: Material properties for tubing used in peristaltic pumps from a variety of 

sources, including journal publications, Master’s theses, and manufacturing 

specifications. 

Material Name Source Location Published Material Properties 

Plasticized PVC 
Practical Guide to 
Polyvinyl Chloride 

[101] 

Flexural Modulus from 0-100% 
Elongation at 25°C is 30 kPa  

Flexural Modulus from 100-300% 
Elongation at 25°C is 8 kPa  

Flexural Modulus from >300%  
Elongation at 25°C is 4 kPa  

Elastomeric Material 
Fluid–Structure 

Interaction Analysis of 
a Peristaltic Pump [10] 

Not Provided 

Nylon - linear 
The Fluid Structure 

Interaction Analysis of 
a Peristaltic Pump [12] 

Young's Modulus = 3.0E9 Pa  
Poisons Ratio = 0.33 

Nylon - nonlinear 
The Fluid Structure 

Interaction Analysis of 
a Peristaltic Pump [12] 

Not Provided 

64 Grade Bioprene 
Watson-Marlow 

Tubing [107] 

Stress at 100% Elongation = 1.9-3.0 MPa 
Tensile Strength = 5.5-687 MPa 
Ultimate Elongation = 340-600%  

73 Grade Bioprene 
Watson-Marlow 

Tubing [107] 

Stress at 100% Elongation = 2.8-4.4 MPa 
Tensile Strength = 7.2687 MPa 

Ultimate Elongation = 380-99999%  

87 Grade Bioprene 
Watson-Marlow 

Tubing [107] 

Stress at 100% Elongation = 6.1-7.80 MPa 
Tensile Strength = 13.8-687 MPa 

Ultimate Elongation = 500-99999%  
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Polytetrafluoroethylene 
Dow Corning, Life 

Sciences [108] 
Tensile Strength = 21-35 MPa 

Elongation at break = 200-400% 

Silicone 
Dow Corning, Life 

Sciences [108] 
Tensile Strength = 6.8-8.7 MPa 

Elongation at break = 570-795% 

PVC 
Dow Corning, Life 

Sciences [108] 
Tensile Strength = 14 MPa 

Elongation at break = 400% 

Polyurethane 
Dow Corning, Life 

Sciences [108] 
Tensile Strength = 56 MPa 

Elongation at break = 550% 

Tygon® S3™ E-3603 
Masterflex® Tubing 

[104] 
Tensile Strength = 11.4 MPa 
Ultimate Elongation 450%  

Tygon® S3™ Silver 
Masterflex® Tubing 

[104] 
Tensile Strength = 15.8 MPa 
Ultimate Elongation 240%  

Tygon® 2001 
Masterflex® Tubing 

[104] 
Tensile Strength = 5.51 MPa 
Ultimate Elongation 500%  

Tygothane R C-210-A 
Masterflex® Tubing 

[104] 
Tensile Strength = 41.7 MPa 
Ultimate Elongation 500%  

Tygothane R C-544-A 
Masterflex® Tubing 

[104] 
Tensile Strength = 34.5 MPa 
Ultimate Elongation 400%  

5.2.2.2. Temperature-Dependent Material Properties 

The material and fatigue properties of silicone, rubber, and thermoplastics are 

temperature-dependent, with the potential to change properties by an order of magnitude 

over tens of degrees Celsius [101]. At lower temperatures, the tubing is more rigid and 

brittle, while at higher temperatures it is more flexible and ductile [101]. Many of the 

published material properties presented in Table 5.1 do not specify the temperature 

conditions under which the material property testing was performed. Furthermore, if a 

temperature is provided with respect to the material properties, only a single temperature 

point is provided; therefore, temperature-dependent properties cannot be defined. The 

operation of peristaltic pumps in the manufacturing process requires pumps to operate at 

high rpm, resulting in significant amounts of frictional heating with the heat being 
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dissipated through natural convection and heat transfer to the pumped fluid. Thus, the 

frictional heating and heat dissipation will result in temperature gradients within the 

tubing, resulting in non-uniform material properties. Currently, to the author’s knowledge 

there is no published dataset for peristaltic pump tubing material and/or fatigue properties 

as a function of temperature.  

5.2.2.3. Fatigue Life Properties 

The failure of peristaltic pump tubing is characterized by rupture or when the flow 

rate is reduced by 50%, whichever comes first [104]. Rupture is defined as when fluid is 

no longer fully contained in the tubing due to cracks or abrasive inclusions [104,107]. To 

determine the time before failure, it is best practice to use a strain-life analysis because of 

the large deformation experienced by the tubing. Thus, strain-life material properties are 

required. Many tubing manufacturers publish data pertaining to the life of the tubing 

produced, but these datasets lack all of the necessary information needed for a proper 

strain-life analysis. Generally, the data published is presented in number of hours until 

failure, with some manufacturers providing the pump rpm and number of cams on the 

pump head, Table 5.2. This provides the number of cycles until failure, but does not 

provide the stress, strain, force, pressure or displacement the pump exerts on the tube. As 

discussed previously, temperature has a significant effect on material behavior and 

although temperatures values are provided with the lifetime data, it is unclear if the 

temperatures are an average temperature for the entire system or represent the ambient 

air, fluid inlet or fluid outlet temperatures. Additionally, the tests were only performed at 

a single temperature; thus, temperature-dependent fatigue trends cannot be gathered. 
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ASTM testing standards do exist for testing rubber and thermoplastic elastomers, but the 

tests are highly specimen-specific and results can vary greatly depending on clamping 

techniques, specimen preparation, loading rates, and temperature conditions [109,110].  

 

Table 5.2: Published fatigue life properties for tubing used in peristaltic pumps 

from a variety of sources, including published data and manufacturing 

specifications. 

Material Name Failure Classified By  Operating Setup Fatigue Life 

Tygon® S3™  
E-3603 

Hours prior to 
rupture 

3-roller pump head 
at 600 RPM at 73°F 

30 hours (10 PSI back pressure) 
35 hours (0 PSI back pressure) [91] 

Tygon® 2001 
Hours prior to 

rupture 
3-roller pump head 
at 600 RPM at 73°F 

70 hours (10 PSI back pressure) 
100 hours (0 PSI back pressure) [91] 

Tygon® LFL 
Hours prior to 

rupture 
3-roller pump head 
at 600 RPM at 73°F 

650-700 hours (10 PSI back 
pressure) 

800 hours (0 PSI back pressure) [91] 

Generic 
Masterflex® 

Tubing 

Failure at rupture or 
time to 50% of 

original flow 

Variable RPM, 
unknown number 

of rollers 

Tubing life as a function of RPM 
[104] 

Generic 
Masterflex® 

Tubing 
Crack growth rates increase by a factor of 5,000 under cyclic loading [101] 

5.3. Problem Description 

The problem investigated in this study evaluated the fluid flow, heat transfer, 

stress–strain fields, and fatigue of peristaltic pump tubing by means of an FSI model 

combining fluid mechanics, solid mechanics, and heat transfer, Figure 5.1. An 8 mm 

inner diameter and 11 mm outer diameter polypropylene-based tube was deformed by a 

25 mm cam in a linear peristaltic pump. The cam translated in a circular motion at a rate 

of 60 rpm, depicted in Figure 5.2, to induce tubing deformation and resulting fluid flow. 

Upon completion of the FSI model, a parametric study was performed to investigate the 

influence of various parameters on the tubing lifetime.  
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Figure 5.1: Model overview for the FSI model with named components in the 

peristaltic pump.  

 

Figure 5.2: Diagram of the solid motion and resulting fluid flow directions. 
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5.4. Methods 

This study utilized a two-way FSI model in which the effects of solid mechanics, 

fluid mechanics, and heat transfer were coupled between the fluid and solid domains. 

Computational Fluid Dynamics (CFD) modeling was used to evaluate the fluid 

mechanics and heat transfer within the fluid flow. FEA was used to evaluate the solid 

mechanics and heat transfer within the solid domain. The fluid and solid domains were 

linked, allowing heat transfer between both models. Once the model containing the base 

condition was complete, a parametric study evaluated several additional variables, 

including tubing geometry, tubing material properties, fluid properties, and operating 

temperatures.  

5.4.1. CFD Numerical Methods 

The fluid domain was evaluated using CFD modeling with the commercially 

available software ANSYS Fluent 17. The pre-processor used for generating the 

geometry and meshing of the fluid domains was ANSYS Design Modeler, which will be 

discussed in detail in the section titled “FSI Numerical Methods.” 

The computational model containing the fluid domain utilized the three-

dimensional Navier–Stokes equations in conjunction with the continuity and energy 

equations outlined in Chapter 1, Equations 1, 2, and 4 respectively, utilizing a pressure-

based solver due to the subsonic incompressible flow, along with a laminar turbulence 

model. In the pressure-based solver, the momentum and continuity equations, Chapter 1, 

Equations 1 and 2 respectively, were used in combination to calculate the pressure field. 
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The fluid domain contained incompressible water under laminar conditions 

passing through the pump tubing, Table 5.3. The maximum Reynolds number at any 

point in the flow field is 1600. The fluid inlet was defined as a pressure inlet with 10 Pa 

at 20°C, the outlet was defined as a pressure outlet with 0 Pa, and the walls were defined 

as smooth walls with temperature data transfer coupled with the solid domain, Figure 5.3 

and Table 5.4. These pressure values correspond to published data from Masterflex® and 

other tubing manufacturers as outlined in their protocol for fatigue testing of peristaltic 

pump tubing [104]. A more detailed discussion about the thermal boundary conditions 

along the fluid wall is covered in the section titled “FSI Numerical Methods.” Dynamic 

smoothing and remeshing was used to maintain adequate element quality as the tubing 

was clamped closed. Initially, the fluid domain contained an unstructured 200,000 

element tetrahedron mesh with an edge element size of 0.4 mm along the walls growing 

to 1 mm in the bulk of the fluid, resulting in approximately 20 elements through the 

diameter of the tube before dynamic meshing occurred, Figure 5.3. Dynamic meshing 

was performed to maintain sufficient element quality through the thickness of the fluid 

flow, and the meshing parameters are presented in Table 5.6. The model was evaluated 

using standard relaxation for pressure, density, body forces, momentum, turbulence 

kinetic energy, turbulent dissipation rate, turbulent viscosity, and energy of 0.3, 1.0, 1.0, 

0.7, 0.8, 0.8, 1.0, and 1.0 respectively, until all scaled convergence values were below 

1.0E-3 with energy below 1.0E-6.  
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Table 5.3: Material properties of water used in the CFD model. 

 

 

 

Figure 5.3: Fluid tetrahedron mesh with temperature and flow boundary conditions. 

 

Table 5.4: Boundary conditions for fluid and solid domains.  

  

Density (kg/m3) 998.2

Viscosity (kg/m-s) 1.003E-03

Specific Heat (J/kg-K) 4182

Thermal Conductivity (W/m-K) 0.6

Pressure Inlet
• Pressure 10 Pa
• Temperature 20°C
• Laminar flow

Pressure Outlet
• Pressure 0.0 Pa
• Backflow 

temperature 20°C

Fluid Solid Interface Wall
• No slip
• Smooth surface
• Constant temperature 

determined by solid model

Boundary Condition 

Name
Domain Type Settings

Fluid inlet Fluid Pressure inlet

Pressure 10 Pa

Temperature 20°C

Laminar flow

Fluid outlet Fluid Pressure outlet
Pressure 0.0 Pa

Backflow temperature 20°C

Fluid solid

interface wall
Fluid Wall

No slip

Smooth surface

Temperature defined from solid domain

Coupled with dynamic meshing to allow for motion

Tube-fixed Solid Fixed support
Fixed in all degrees of translation

Fixed in all degrees of rotation

Base Solid Fixed support
Fixed in all degrees of translation

Fixed in all degrees of rotation

Cam Solid
Joint 

Movement

X displacement defined in Equation 14

Y displacement defined in Equation 15
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The fluid domain was initially evaluated independently of the solid domain and 

without dynamic meshing. This simplified, uncoupled CFD model allowed for greater 

understanding of the mesh cell size sensitivity, convergence criteria as a function of fluid 

flow rate, and required convergence time as a function of time step size and number of 

iterations. This information gathered from evaluating just the CFD model without 

dynamic meshing or the solid domain provided valuable insight into what time step size 

and flow rate produced the optimal balance of a reliably stable fluid solution while 

reducing the amount of computational time required to evaluate the model.  

5.4.2. FEA Numerical Methods 

The solid domain, including the temperature distribution in the solid, was 

evaluated using FEA with the commercially available software ANSYS Mechanical 17. 

The pre-processor used for generating the geometry and mesh was ANSYS Design 

Modeler, which is discussed in the section titled “FSI Numerical Methods.”  

The computational model utilized the three-dimensional strain displacement, 

nodal displacement, and stress equations, Chapter 1, Equations 8 through 10 respectively, 

to solve for the force, deformation, stress, strain, and contact across each node in the 

model. The rigid cams and base surface mesh contained 3,450 QUAD8 elements and the 

deformable tubing volume mesh contained approximately 13,000 HEX20 elements. A 

mesh density study was performed to determine the minimum number of elements 

required for the length, thickness, and circumference of the tubing. Furthermore, the 

elements used were defined as thermal–structural elements allowing for thermal degrees 

of freedom as well as structural degrees of freedom.  
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Figure 5.4: Solid domain with QUAD8 elements along the surface of the cam and 

base with HEX20 elements through the volume of the tubing with boundary 

conditions defined. 

 

The circular motion of the cam is defined by the X and Y displacement with 

respect to time using Equations 14 and 15 respectively. These equations represent a pump 

operating at 60 rpm. This is the lower end of operational pump speed, but demonstrates 

the operational feasibility of the FSI model. A time step of up to 0.001 seconds was 

utilized, but the model could be evaluated more efficiently if variable time steps were 

used. A more detailed discussion of the time step setup is contained in the section titled 

“FSI Numerical Methods.” Contact between the cam and tube was defined as frictional 

Base
• Rigid
• Constant temperature 30°C

Tube fixed ends
• Fixed in rotation
• Fixed in translation
• Constant 

temperature 30°C

Tubing interior
• Temperature 

defined by fluid

Cam
• X displacement (meters) =

-0.0086* (cos(360*time)-1)
• Y displacement (meters) =

-0.0086*(sin(360*time)
• Constant temperature 30°C
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with a coefficient of static friction of 0.2 [111]. Contact between base and tube was 

defined as frictional with a coefficient of static friction of 0.1 [111]. Self-contact within 

the tube was defined as frictional with a coefficient of static friction of 0.2, and a gap size 

of 0.5 mm was defined to ensure a small gap was present so that convergence could still 

be achieved in the fluid domain. Energy conservation was achieved by applying a heat 

source term equal to the energy absorbed through friction [4]. The frictional heat source 

term was applied at a nodal basis resulting in heat generation directly at the source of the 

friction. This heat source was applied at all three contact pairs along the exterior and 

interior of the tubing. The exterior surfaces were treated as warm ambient temperature at 

30°C. The interior tubing surface in contact with the fluid was defined as a convective 

boundary condition and will be discussed in more detail in the section titled “FSI 

Numerical Methods.”  

 

𝐗 𝐃𝐢𝐬𝐩𝐥𝐚𝐜𝐞𝐦𝐞𝐧𝐭 𝐢𝐧 𝐦𝐞𝐭𝐞𝐫𝐬 = −𝟎. 𝟎𝟎𝟖 ∗  (𝐜𝐨𝐬(𝟑𝟔𝟎 ∗ 𝐭𝐢𝐦𝐞) − 𝟏)       (14) 

 

𝐘 𝐃𝐢𝐬𝐩𝐥𝐚𝐜𝐞𝐦𝐞𝐧𝐭 𝐢𝐧 𝐦𝐞𝐭𝐞𝐫𝐬 = −𝟎. 𝟎𝟎𝟖 ∗  𝐬𝐢𝐧(𝟑𝟔𝟎 ∗ 𝐭𝐢𝐦𝐞)        (15) 

 

Although ANSYS Mechanical is a robust FEA software capable of solving a wide 

range of complex solid mechanics problems, at its core it assumes the model is under 

uniform temperature distribution in both time and space. In order to implement 

temperature-dependent degrees of freedom, the element type must be redefined as a 

multiphysics element through text commands located in Appendix D. Once temperature 
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degrees of freedom were enabled, thermal material properties and boundary conditions 

were implemented through text commands, Appendix D. Heat generation as a function of 

frictional heating was governed by Equation 16, while the frictional heating factor of 10 

W/m
2
–K and even heat distribution into each contact surface were defined using text 

commands, Appendix D [4]. 

 

𝐇𝐞𝐚𝐭 𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐞𝐝 = (𝐅𝐫𝐢𝐜𝐭𝐢𝐨𝐧𝐚𝐥 𝐇𝐞𝐚𝐭𝐢𝐧𝐠 𝐅𝐚𝐜𝐭𝐨𝐫) ∗ (𝐂𝐨𝐧𝐭𝐚𝐜𝐭 𝐏𝐫𝐞𝐬𝐬𝐮𝐫𝐞)      (16) 

 

Due to the complex features implemented in the solid domain, it was initially 

evaluated uncoupled from the fluid domain to ensure the complex intricacies of the solid 

domain were properly implemented. The features evaluated in the uncoupled solid 

domain were (1) heat transfer in the solid domain, (2) nonlinear material properties, (3) 

temperature-dependent material properties, (4) multiple contact regions, and (5) frictional 

heat generation. Additional detail about each evaluation is discussed below. 

(1) Testing the multiphysics elements and heat transfer in the solid domain was 

performed by applying constant temperature and convective boundary conditions, while 

observing the temperature distribution and heat flux between the domains. This was done 

using various combinations of boundary conditions to ensure the thermal boundary 

conditions were applied properly and the heat was being distributed correctly in both 

space and time.  

(2) The three material properties investigated, Figure 5.5, were initially 

implemented at constant temperatures to isolate the effects of the nonlinearities of the 
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material properties. This nonlinear material testing resulted in nine separate evaluations 

of the model to test the entire range of material properties independently from 

temperature.  

(3) The material properties that were previously tested were then applied to the 

model with thermal boundary conditions that resulted in temperature gradients across the 

model. The resulting deformation, stress, and strain was then observed to ensure the 

material properties were changing as a function of temperature. This was conducted for 

each of the three material properties curves.  

(4) The three contact regions were tested to ensure element penetration was not 

achieved and element quality was maintained within the solid model. Testing the self-

contact region along the tubing interior was of particular importance, because poor 

element quality along the pinched portion of the tube was likely. Both visual and 

numerical methods were used to ensure element quality was maintained when self-

contact was achieved.  

(5) Frictional heat generation was tested while using perfectly insulated external 

boundary conditions. This setup was evaluated both with and without friction. The results 

were compared to ensure heat generation was present in the frictional model.  

Once the desired features were tested and properly implemented, the overall 

stability of the model was evaluated to determine the limits of the hyperelastic material 

and ensure the most efficient time step and mesh were utilized.  
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5.4.3. Peristaltic Pump Tubing Properties 

The materials properties published in S.G. Patrick’s Practical Guide for Polyvinyl 

Chloride were used to represent the nonlinear and temperature-dependent materials of the 

peristaltic pump tubing [101]. Because of the proprietary nature of the exact tubing used 

in the pharmaceutical industry, operational material properties bounds were created from 

the properties defined by Patrick [101]. Patrick characterizes the material properties of 

various types of PVC as a function of chemical composition, temperature, and strain 

level. Patrick’s characterization of plasticized PVC most closely relates to the material 

used for peristaltic pump tubing. From this dataset, material properties were created at 

three temperatures and a linear interpolation method was used to determine the properties 

at other temperature between the defined values. This dataset does not provide details for 

material behavior between unstressed and 100% strain measurement. Therefore, three 

material assumptions were made to demonstrate the completeness of the computational 

model by evaluating the extremes that encompass the actual material properties of the 

peristaltic pump tubing. Figure 5.5 and Table 5.5 present the material properties for the 

linear, upper bound, and lower bound materials at 0, 25, and 45°C. The author believes 

this range of material properties encompasses the accurate nonlinear temperature-

dependent material properties if the actual material properties could be obtained. 

Additionally, the author believes that once the accurate material properties are obtained, 

the properties can be implemented into the computational model and the model will 

achieve stable results.  
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Figure 5.5: Possible material properties paths for stress–strain material properties 

behavior between the unstressed and 100% strain measurement. 

 

Table 5.5: The material properties for the linear, upper, and lower bounds were 

defined using a three parameter Mooney–Rivlin hyperelastic model. 
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Stress at 100% 

Strain (Pa)
C01 (Pa) C10 (Pa) C11 (Pa) D (1/Pa)

0 50,000 -183.8 4627 -167.3 1.0

25 30,000 -110.3 2776 -100.4 1.0

45 10,000 -36.76 925.4 -33.45 1.0

0 50,000 12170 986.0 -101.2 1.0

25 30,000 7302 591.6 -60.71 1.0

45 10,000 2434 197.2 -20.24 1.0

0 50,000 5221 -1487 397.9 1.0

25 30,000 3132 -892.5 238.7 1.0

45 10,000 1044 -297.5 79.57 1.0

Linear Plasticised 
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Upper Bound 

Plasticised PVC
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5.4.4. FSI Numerical Methods 

ANSYS Design Modeler was used as the pre-processor for generating the fluid 

and solid geometries in a single software. This allowed for the geometries to be created 

simultaneously before being split into separate domains for meshing and analysis. 

ANSYS System Coupling was used to transfer data between the fluid and solid domains 

in a strong-coupled manner at each time step. A relaxation factor of 1.0 was used for 

transferring data between each domain, i.e. no ramping function or damping was 

introduced and the full loads were applied at each data transfer. The fluid domain 

provided pressure loads, near wall temperature, and the convective heat transfer 

coefficient, while the solid domain passed the displacement and wall temperature, Figure 

5.5. Other configurations of the thermal energy transfer were implemented, but were 

significantly less stable. It is hypothesized that this thermal energy transfer is more stable 

because the convection coefficient and near wall temperature values are calculated within 

Fluent as opposed to the ANSYS Mechanical solver. Fluent is well known in the CFD 

industry for having a robust and stable solver; therefore, allowing it to effectively handle 

discrete changes in the transferred thermal boundary conditions passed by ANSYS 

Mechanical. The model was evaluated until each CFD and FEA model converged 

independently and the root mean square of the data transfer error was less than 0.01 for 

each data transfer. 
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Figure 5.6: Diagram of the system coupling data transfer methods between the fluid 

and solid models. 

Each domain was evaluated independently prior to evaluating them as a single 

coupled model. This process of initially evaluating each model independently allowed for 

a greater understanding of the instabilities contributed from time steps, contact, data 

transfer, and dynamic meshing. The maximum allowable time step for the fluid side was 

0.1 second when the flow channel was not restricted and 0.005 seconds when the flow 

channel was closed. The allowable time step for the solid model was 0.05 seconds when 

minor deformations were present and 0.001 second with large deformations and tubing 

self-contact. One of the limitations with ANSYS System Coupling is the same time step 
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must be used for the CFD and FEA models and the time step cannot be changed as a 

function of time [4]. This means the same time step must be used when there is little 

deformation with no flow constriction and when there is large deformation with 

significant flow constriction. Therefore, a time step of 0.001 second was used for the 

coupled CFD and FEA modeling over the full 0.5 seconds of the evaluation. 

Once the FSI numerical model was set up, the dynamic meshing and data transfer 

methods were evaluated to ensure they were implemented properly. The only region 

where dynamic meshing was performed was in the bulk fluid, where a minimum cell size 

of 0.1 mm, maximum cell size of 1.0 mm, maximum skewness of 0.9, and dynamic 

smoothing/diffusion parameter of 0.5 was used. The fluid–solid interface defined in the 

fluid model maintained at least a 0.1 mm cell thickness along the wall. The solid domain 

contact surface containing the fluid domain was defined to maintain a gap size of 0.5 mm 

to ensure a negative volume was not generated in the fluid domain. This 0.5 mm gap 

allowed for at least four elements to be maintained across the thickness of the fluid 

channel at maximum deformation. After the dynamic meshing was set up, the heat 

transfer between the fluid and solid domains was tested as defined in Figure 5.6. Other 

thermal data transfer configurations were explored, but either did not produce results as 

efficiently or failed to converge.  

Table 5.6: Dynamic meshing conditions. 

 

 

Location
Minimum cell 

size (mm)

Maximum cell 

size (mm)

Maximum 

skewness

Dynamic smoothing - 

diffusion parameter

Fluid Solid Interface Wall 0.1 1.5 0.9 0.5

Bulk Fluid 0.1 1.5 0.9 0.5



 

150 

Only after the fluid domain, solid domain, and coupling models were 

independently tested were the results of the multiphysics model processed. This process 

of evaluating each domain independently and then confirming the success of individual 

components together allowed for a greater understanding of the instabilities contributed 

by each portion of the model.  

5.4.5. Failure Analysis 

Upon completion of the FSI model, the stress and strain field were input into a 

strain-life analysis to determine the number of cycles until failure. Due to the unpublished 

fatigue life properties, arbitrary strain-life data was used and the results were 

nondimentionalized by Equation 17 where 𝐶𝑦𝑐𝑙𝑒𝑠 𝑢𝑛𝑡𝑖𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑏𝑎𝑠𝑒 is the life of the 

base conditions. This step in the analysis process demonstrates how this modeling tool 

can be implemented if appropriate material and fatigue properties are obtained. A general 

comparison was be made regarding the life of the tubing in the various cases in the 

parametric study. However, this was only a qualitative analysis to determine which 

parameters in the parametric study increase the tubing lifetime. 

 

𝑳𝒊𝒇𝒆∗ =
𝑪𝒚𝒄𝒍𝒆𝒔 𝒖𝒏𝒕𝒊𝒍 𝒇𝒂𝒊𝒍𝒖𝒓𝒆

𝑪𝒚𝒄𝒍𝒆𝒔 𝒖𝒏𝒕𝒊𝒍 𝒇𝒂𝒊𝒍𝒖𝒓𝒆𝒃𝒂𝒔𝒆
             (17) 

 

5.4.6. Parametric Study 

Once the computational model base condition was completed, a parametric study 

was performed to determine what factors had the greatest effect on tubing life. As 
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previously discussed in the section titled “Peristaltic Pump Tubing,” tubing life was 

classified by two modes of failure. Because strain hardening material properties are not 

available, the tubing degradation and reduced fluid flow cannot be characterized. Thus, 

only the fatigue failure mode was investigated. Although the lifetime of peristaltic pump 

tubing is important in many industries and applications, this parametric study and 

resulting discussion were specifically tailored for application by the pharmaceutical 

manufacturing industry. In addition to the base condition, four additional design 

parameters were explored, Table 5.7: (1) tubing geometry, (2) tubing material properties, 

(3) fluid properties, and (4) operating temperature.  

(1) Tubing geometry is potentially the easiest and most cost effective design 

change and was investigated by changing the tubing wall thickness from 1.5 to 2.0 mm, 

while maintaining the same 11 mm tubing outer diameter.  

(2) The tubing material properties have the potential for the most drastic 

improvement in life, but pose challenges such as the difficulty in accurately defining 

material properties, changing one property without affecting another, and balancing the 

two failure modes to achieve the best match for life. For this reason, the generalized 

tubing material properties were utilized. The base condition was evaluated using linear 

material properties and the altered material properties were evaluated using the upper and 

lower limit of the nonlinear material bounds.  

(3) The pharmaceutical industry has the desire to pump solutions at higher drug 

concentrations, which results in higher fluid viscosities [106]. The pumping efficiencies 

of peristaltic pumps are directly related to the fluid viscosity and the relationship between 
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drug concentration and fluid viscosities is exponential [102,104]. Therefore, two cases 

were evaluated with fluid viscosities at 0.01 and 0.1 kg/m-s (SAE 10W-40 at 100°C is 

0.0148 kg/m-s and 0.104 kg/m-s at 40°C) [112].  

(4) Due to the highly temperature-dependent material properties of the pump 

tubing, the operating temperature of the system were adjusted by means of fluid inlet 

temperature from in the base condition at 20°C to a chilled temperature at 10°C.  

 

Table 5.7: Cases investigated during the parametric study. 

  

5.5. Results 

5.5.1. Base Condition Results 

5.5.1.1. Fluid Results 

The computational results for the FSI model indicate the total flow over one cycle 

to be 2.32 ml at a pump speed of 60 rpm. At maximal flow constriction the fluid channel 

is 0.5 mm tall as specified by the contact methods. Figure 5.7 shows a cross sectional 

view of the tetrahedron mesh at 0, 0.25, and 0.5 seconds. The dynamic meshing and solid 

contact settings allow for between four and five elements in the thickness of the tubing at 

Design Name
Tubing Wall 

Thickness (mm)

Solid Material 

Property Behavior

Viscosity

(kg/m-s)

Fluid Inlet 

Temperature (°C)

Base Case 1.5 Linear 0.001003 20

Case 1 2.0 Linear 0.001003 20

Case 2a 1.5 Upper bound 0.001003 20

Case 2b 1.5 Lower bound 0.010000 20

Case 3a 1.5 Linear 0.010000 20

Case 3b 1.5 Linear 0.100000 20

Case 4 1.5 Linear 0.001003 10
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maximum deflection. The average flow rate of the exit over two cycles is seen in Figure 

5.8. The flow rate reaches steady-state in the tubing in the second cycle after the 

maximum flow rate is reach and the cam is nearly fully clamped. The velocity contour 

plot at 0, 0.125, 0.25, 0.375, and 0.5 seconds is presented in Figure 5.9. 

 

Figure 5.7: Cross section of three-dimensional tetrahedron mesh at 0, 0.25, and 0.5 

seconds. 

 

0.0 Seconds

0.25 Seconds

0.5 Seconds
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Figure 5.8: The flow rate as a function of time over two pumping cycles. 
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Figure 5.9: Fluid velocity contour plot at 0, 0.125, 0.25, 0.375, and 0.5 seconds. 

 

The mass average fluid inlet and outlet temperature as a function of time was 

insignificant and never exceeded a temperature difference of 0.5ºC. The temperature 

contours of the base condition at 0, 0.125, 0.25, 0.375, and 0.5 seconds are presented in 

Figure 5.10. The temperature difference between the fluid inlet and outlet was small, and 

the reasoning for this is discussed in the section titled “Solid Results.”  
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Figure 5.10: Static temperature contour in the fluid at 0, 0.125, 0.25, 0.375, and 0.5 

seconds. 

 

5.5.1.2. Solid Results 

The mesh investigation for the solid domain of the FSI model indicated 60 

elements were necessary along the circumference of the tubing with five elements 

through the tubing wall thickness. Increasing the number of cells in the circumference 

and thickness resulted in higher aspect ratios, while reducing the number of cells resulted 

in failed elements when maximum flow constriction was applied. The von Mises stress 
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and strain is plotted as a function of time in Figure 5.11, while the maximum and 

minimum normal stress and strain in the constriction direction as a function of time are 

presented in Figure 5.12 and Figure 5.13 respectively. The maximum normal stress and 

strain values in the constriction direction as a function of time and contour plots are 

presented in Figure 5.14 and Figure 5.15. The maximum normal stress and strain as a 

function of time occur at 0.25 seconds. The material properties were defined using the 

100% strain values stated in Patrick’s Practical Guide for Polyvinyl Chloride [101]. The 

material properties behavior between the unstressed and 100% strain data was defined 

linearly in the base condition. The greatest maximum normal strain experienced by the 

material is 0.55 m/m, indicating the material properties have been sufficiently defined 

over the operating range of the material. The lack of stress and strain concentrations at 

the end of the tube indicates the length of the tube is sufficient to not cause end effects 

from the boundary conditions.  
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Figure 5.11: Maximum von Mises stress and maximum principal strain in the 

tubing as a function of time. 

 

Figure 5.12: Maximum stress and strain in the constriction direction as a function of 

time. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0

10

20

30

40

50

60

70

80

0.00 0.10 0.20 0.30 0.40 0.50

M
ax

im
u

m
 P

ri
n

ci
p

al
 S

tr
ai

n
 (

m
/m

)

vo
n

 M
is

e
s 

St
re

ss
 (

kP
a)

Time (seconds)

Stress

Strain

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0

0.5

1

1.5

2

2.5

3

3.5

4

0.00 0.10 0.20 0.30 0.40 0.50

M
ax

im
u

m
 N

o
rm

al
 S

tr
ai

n
 (

m
/m

)

M
ax

im
u

m
 N

o
rm

al
 S

tr
es

s 
(k

P
a)

Time (seconds)

Stress

Strain



 

159 

 

Figure 5.13: Minimum stress and strain in the constriction direction as a function of 

time 

 

Figure 5.14: Normal strain in the constriction direction at 0.25 seconds with 

maximum strain of 0.47 and minimum strain of -1.09. 
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Figure 5.15: Normal stress in the constriction direction as 0.25 seconds with 

maximum strain of 3.62 kPa and minimum strain of -35.7 kPa. 

 

The tube-to-base, tube-to-cam, and tube-to-tube contact regions defined in the 

solid domain all experienced touching between surfaces and are depicted at 0.25 seconds 

in Figure 5.16, Figure 5.17, and Figure 5.18, respectively. The reason the tube-to-tube 

contact region does not experience sliding is due to the gap that has been defined between 

the contact surfaces.  
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Figure 5.16: Contact status between tubing and base at 0.25 seconds. 

 

 

Figure 5.17: Contact status between tubing and cam at 0.25 seconds. 
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Figure 5.18: Contact status for tubing self-contact at 0.25 seconds. Status in near 

because 0.5 mm gap has been specified to ensure fluid domain is present. 

 

The temperature through the thickness of the tubing is depicted in Figure 5.19. 

The amount of frictional heating at the contact interface is directly related to the 

magnitude of the contact pressure at the surface of the contact. Due to the poorly defined 

material properties, the contact pressure is very low, resulting in minimal frictional 

heating and low temperature gradients. These shallow temperature gradients are then 

translated to the fluid, resulting in minimal fluid heating.  
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Figure 5.19: Contour of temperature at 0.25 seconds in the solid domain. 

 

5.5.1.3. Fatigue Life Results 

The location of failure occurred along the inside of the tubing where the tubing is 

pinched during constriction, Figure 5.20. The lifetime of the base condition and resulting 

designs from the parametric study have been normalized by dividing the number of 

cycles until failure by the minimum number of cycles until failure of the base condition. 

Thus the lifetime of the base condition is 1.00. 
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Figure 5.20: Contour of tubing life* for the base condition with shorter lifetime in 

red and longer lifetime in blue. 

 

5.5.2. Parametric Study 

The results from the parametric study indicated that altering the tubing geometry, 

tubing material properties, fluid properties, and operating temperature does have an effect 

on fluid flow rate, stress, strain, and/or lifetime, Table 5.8. Altering the linear material 

properties to the upper material bound significantly reduced the lifetime of the design, 

while altering the linear material properties to the lower material bound increased the 

lifetime by three times. Increasing the fluid viscosity had no effect of the stress and strain 

levels in the solid model, but did reduce the flow rate significantly. Changing the 

operating temperature of the fluid inside the pump had a small effect on the stress and 

strain levels due to the temperature-dependent solid material properties. Thus, based on 
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the parametric study, it is desired to have tubing properties similar to the lower material 

bound because fluid flow rate remains the same while tubing lifetime can be improved.  

 

Table 5.8: Results for the parametric study including flow rate, stress, strain, and 

lifetime. 

 

5.6. Conclusion 

This study presented the setup and evaluation of a thin-walled tube geometry with 

nonlinear and temperature-dependent material properties to create large solid deformation 

and fluid motion. This model allowed for tubing displacement, fluid pressures, and 

thermal energy to be exchanged between the fluid and solid domains. The parametric 

study presented in this chapter shows that an FSI model can be used as a tool to predict 

system lifetime performance relative to other design alterations. The analysis methods in 

this study are robust enough to capture the effects of solid material properties, fluid 

material properties, and operating temperatures on lifetime performance. Of all the design 

Design Name
Tubing Wall 

Thickness (mm)

Solid Material 

Property Behavior

Viscosity

(kg/m-s)

Fluid Inlet 

Temperature (°C)

Flow Rate per 

Cycle (ml)
Lifetime (Life*)

Base Condition 1.5 Linear 0.001003 20 2.35 1.00
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Thick Tubing 2.0 Linear 0.001003 20 1.72 3.07

Upper Material 

Bound
1.5 Upper bound 0.001003 20 2.28 0.05

Lower Material 

Bound
1.5 Lower bound 0.010000 20 2.34 3.08

Medium Viscosity 1.5 Linear 0.010000 20 1.66 1.00

High Viscosity 1.5 Linear 0.100000 20 0.88 1.01
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alterations explored, the largest impact on tubing lifetime performance resulted from 

alterations of material properties, while the largest impact on fluid flow rate was a result 

of altered fluid viscosity. This computational model was set up and evaluated using 

commercially available software and inexpensive computational resources, thus 

demonstrating that FSI modeling can be used as an industry-appropriate design tool. 

5.7. Lessons Learned 

The coupling of thermal energy between the fluid and solid domains is best 

achieved when the fluid domain passes near wall temperature and convective heat 

transfer coefficient to the solid domain and the solid domain passes wall temperature to 

the fluid domain. Other configurations are possible but are less stable and require 

significantly more computational time.  

FSI problems that utilize a displacement-driven mechanism are more stable than 

force- or pressure-driven problems, i.e. if a problem can be simplified or defined using 

displacement, a more stable model may result. 
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 CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

This dissertation demonstrates that fluid–structure interaction (FSI) modeling can 

be efficiently used by industry as a design tool through utilizing inexpensive 

computational resources and commercially available software. Quantitative validation of 

FSI models can be difficult due to the challenges associated with measuring the physical 

systems; therefore, significant effort and care was put into the validation process of these 

computational models to ensure the models accurately represent the physical system they 

replicate. As discussed in Chapter 1 in the section titled “Computational Instabilities and 

Validation,” many of the physical systems where FSI modeling could be a helpful design 

tool are inherently unstable and therefore require the use of multiple techniques to 

achieve a converged solution. The insight an FSI model can provide to an engineer in the 

design process can be invaluable in a way that is both cost-effective and otherwise not 

possible with experimental testing. The studies presented in this dissertation demonstrate 

the ability to accurately represent physical systems using FSI modeling under various 

failure modes. The use of FSI modeling in the design process has a broad application 

basis as a practical design tool for a number of industries. All computational modeling 

utilizes assumptions and simplifications that limit the accuracy of the results. Knowing 

the extent of these assumptions and simplifications is important to understand the 

confidence in the agreement between the computational model and the physical system.  
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6.1. Novel Contributions and Limitations of Each Study 

6.1.1. Study 1: FSI Flap Validation 

The FSI flap validation study presented in Chapter 2 outlined the methods and 

techniques used to achieve a stable solution for a thin-walled fluid–structure geometry 

with nonlinear material properties. This study performed the first known, direct, 

quantitative analysis of experimental and computational results by comparing a physical 

experiment with FSI modeling results. The quantitative validation achieved via this 

dataset lays the foundation for using FSI modeling in industry by demonstrating that FSI 

modeling can accurately represent physical systems.  

Although Study 1 produced a quantitative dataset used for validation of this FSI 

model, the dataset contains assumptions and is limited in scope to the steady-state 

material properties. During the experimental measurement of the flap deflection, a 

hysteresis clearly occurred within the flap material. This hysteresis was minimized by 

using multiple flaps and pre-fatiguing the flaps to reduce the effect of previous stressed 

conditions. These techniques enabled the study to produce repeatable results and avoid 

capturing the hysteresis in both the computational model and the experiment. This was 

sufficient for demonstration and validation of the FSI model during steady-state material 

properties conditions, but might pose a problem if evaluating the specific performance of 

the flap at the beginning, middle, and end of life. Modeling the hysteresis of the material 

can be accomplished using material properties definitions utilizing material hardening 

properties. Despite these limitations, the conclusions of Study 1 were unaffected because 

the goal of this study was to achieve a quantitative comparison of experimental and 
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computational results and provide the methods to achieve a stable computational model. 

Additional experimental testing would be necessary to properly characterize the material 

hardening as a function of time and stress. However, once these material properties are 

known, they could be implemented via the methods used in Study 2, Chapter 3. 

6.1.2. Study 2: FSI Model with Thermal-Cyclic Loading 

The study presented in Chapter 3, which evaluated an FSI model with thermal-

cyclic loading, outlined the methods and techniques used to predict fatigue life and 

optimize lifetime performance by modifying geometry, thermal loads, and material 

properties. This model is unique because it couples a thermal-driven cycle with thermal 

expansion, and thermal stress with fatigue life prediction. Previous published work has 

not linked Computational Fluid Dynamics (CFD) modeling with fatigue methods to 

predict lifetime. Traditionally, CFD modeling has been used to determine optimal 

operation conditions, but not the length of time before the thermal system fails.  

Although this study demonstrated the ability to alter the fatigue life of the part, 

constant thermal boundary conditions and idealized material property assumptions were 

made that limited the depth and extent to which these design alterations can be 

implemented into the physical system. The thermal boundary conditions applied to the 

model were generated from a transient CFD model requiring 30 days to run on a high 

performance computer cluster. Such a substantial amount of computational time made it 

infeasible to generate an independent thermal boundary condition for each design 

alteration, so the same thermal boundary conditions were held constant for all geometric 

and material design alterations. Knowing these limitations is important because a change 
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in part thickness, density or specific heat will affect the thermal mass in the systems, 

resulting in an altered thermal boundary condition. In order to isolate these material 

properties modifications as much as possible, material properties modifications were 

limited to only altering a single property at once. However, it is difficult, if not 

impossible, to alter a single material property without affecting any others. Because these 

assumptions were taken into account when forming the conclusions of this study, they do 

not change the outcome of the study. The goal of the study was to assess the sensitivity of 

various parameters on fatigue life and not to provide the exact number of cycles before 

failure. Significantly more computational time and discussions with our industry partner 

about their requirements regarding design alterations would be required if more detailed 

design work is desired.  

6.1.3. Study 3: Thermal-Fluid Lifetime Design 

The thermal-fluid study presented in Chapter 4 demonstrates the capability of 

using computational fluid dynamics to model for system lifetime. As demonstrated in 

Chapter 4, previous optimization work in the area of CFD modeling only pertains to 

optimal operating conditions and does not model the length of service life. This work 

demonstrated that time-dependent factors can be used not only to accurately predict life, 

but also as a design tool to find the optimal configuration for the lifetime of thermal-fluid 

systems.  

Although this study demonstrated the ability to accurately predict and prolong the 

lifetime of a thermal system, its accuracy is limited due to inconsistencies present in the 

experimental methods. Extensive experimental testing was performed at the University of 
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Denver to understand the thermal properties of the materials within the physical system. 

Despite this testing, many of the experiments used to determine the material properties 

required significant temperature differences for accurate measurements. This required the 

tests to be performed over the large temperature range that the vessel experienced in 

operation. The most important material property in the system was the thermal 

conductivity, followed by the specific heat. The thermal conductivity of the materials 

used increases as a function of temperature; therefore, using the material properties 

values that were tested at elevated temperatures would make the prediction of life more 

conservative. Because these limitations were factored into the interpretation of the 

results, they do not change the conclusions of the study, but make the thermal lifetime 

predictions more conservative. The experimental tests performed on the vessel were 

performed in a thermal chamber by our industry collaborator. Significant discussion and 

documentation was conducted before, during, and after the experiment with our industry 

collaborator to reduce the discrepancies between the computational models and the 

experiments used for validation. Based upon this discussion and documentation, nine 

vessels were tested at a time in order to minimize discrepancies between results and 

modeling. During our discussions about the model validation with our industry 

collaborator, it was determined the limiting factor was the experimental accuracy of 

±0.036 ϴ.  

6.1.4. Study 4: FSI Model of Peristaltic Pump 

The peristaltic pump study presented in Chapter 5 outlined the methods and 

techniques used to create an FSI model containing both mechanical and thermal data 
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transfer. This model demonstrated that a thin-walled geometry with large deformations 

can be modeled using nonlinear temperature-dependent material properties. Previous 

published work about modeling in this area has not yet incorporated thermal and 

mechanical data transfers into a single model. This work is unique due to the multiple 

data transfers involved, and presented a complex modeling challenge because it 

performed modeling on an unstable, thin-walled part comprised of nonlinear and 

temperature-dependent material properties, while experiencing large deflections. 

Furthermore, this single comprehensive FSI model was evaluated using commercially 

available software and relatively inexpensive computational resources that companies in 

industry could access and find cost effective as a practical solution. Previous work 

demonstrating this level of modeling complexity has only been performed using custom 

software codes on extremely powerful and expensive computers.  

Although this work is novel and contributes knowledge about techniques and 

methods for successful FSI modeling, it is limited due to the availability of accurate and 

sufficient material properties. Due to the nonlinear and temperature-dependent material 

properties, a sufficient database was not available for the desired material properties. 

Furthermore, testing nonlinear and temperature-dependent material properties is tedious. 

Peristaltic pump tubing properties were not available, so plasticized PVC—the closest 

matching material for material properties that were defined as a function of 

temperature—was used as a substitute. Future experimental work should be conducted to 

determine the nonlinear behavior of peristaltic pump tubing as a function of temperature. 

After these properties are defined, they can be implemented in the computational model. 
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To demonstrate that nonlinear material properties would provide a stable converged 

solution, extreme nonlinear material properties were evaluated in the FSI model. Due to 

the missing peristaltic pump tubing material properties, the exact fatigue lifetime could 

not be determined. 

6.2. Conclusion 

The techniques and methods presented in this dissertation demonstrate how a 

physical system can be captured and validated in a single FSI model. Study 1 provided 

the methods, results, and experimental dataset for future validation of FSI models. Study 

2 demonstrated that FSI models can be used as a design tool capable of accounting for 

geometry modification, material properties changes, and altered thermal conditions. 

Study 3 demonstrated the use of optimal lifetime design of a thermal-fluid system 

evaluated over a large domain and evaluation time. This dissertation culminated in Study 

4 by combining the techniques and methods outlined in the first three studies to use a 

single FSI model to simulate a thin-walled part comprised of nonlinear and temperature-

dependent material properties, while experiencing large deflections. As with all 

computational modeling, there are limitations to the accuracy and completeness of each 

computational model. Knowing these limitations and the effect they have on the results 

and conclusions directly relates to the accuracy and depth by which modeling can be used 

as a design tool. Future FSI modeling efforts should attempt to use the techniques and 

methods outlined in this dissertation, while also accounting for known limitations 

experienced in computational modeling.  
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The body of this work demonstrates the ability to perform FSI modeling using 

commercially available software on relatively inexpensive computational resources. This 

dissertation indicates that FSI modeling is a viable design tool that can be implemented in 

an industry setting where results must be generated in a cost-effective and time-efficient 

manner. 
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 APPENDICES 

Appendix A: Matlab Optimization Scripts for Study 1 

%create global variable 

clear 

clc 

global gnum 

gnum = 1; 

  

%define bounds and options for optimisation 

lb=[8.5,  5]; 

x0=[10,  10]; 

ub=[15,  15]; 

options = optimset('DiffMaxChange', 0.1,'DiffMinChange', 

0.01, 'display', 'iter', 'TolFun', 1e-2); 

[x,fval] = 

fmincon(@Run_ANSYS_oil_non_linear_errorbars,x0,[],[],[],[],

lb,ub,[],options) 

  

%%send text message when done 

    text=sprintf('Oil optimization Complete - %i steps', 

gnum-1); 

    send_text_message('503-476-4311', 'verizon',text) 

 

%evaluate FSI model and determine performance 

function error = Run_ANSYS_oil_non_linear_errorbars(x0) 

global gnum youngs poi; 

time = 0.1; 

error=0; 

  

%create folder and go into the new folder 

dir='C:\Donn_Ansys\FSI_Benchmark\oil_opt\'; 

cd(dir); 

file='Oil40-'; 

filename = sprintf('%s%0.4i', file, gnum); 

  

%test to see if there is a performance file in the folder 

filech='\perform.txt'; 

check = exist(sprintf('%s%s%s', dir, filename, filech)); 

  

%if the file does exist read the file and return the 

performance peramiter 

if check; 
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    cd(filename); 

    error_hold=dlmread(filech, '\t'); 

    error=error_hold; 

  

%if it does not exist  

else 

mkdir(filename); 

cd(filename); 

  

%copy the Gambit and Fluent journel files 

copyfile('C:\Donn_Ansys\FSI_Benchmark\oil_opt\set_material_

time_run-non_linear-tall-no_support-

same.wbjn','set_material_time_run.wbjn'); 

copyfile('C:\Donn_Ansys\FSI_Benchmark\oil_opt\replaceinfile

.m','replaceinfile.m'); 

  

%define variable that will determin the geometry 

youngs=x0(1)*1.32e6; 

poi=x0(2)*0.0000034; 

new_youngs = sprintf('%i', youngs); 

new_poi = sprintf('%i', poi); 

new_time = sprintf('%d', time); 

new_file ='holding_file.wbpj'; 

  

%replace the old values with the new one's 

replaceinfile( 'oldyoungs', new_youngs, 

'set_material_time_run.wbjn', '-nobak'); 

replaceinfile( 'oldpoi', new_poi, 

'set_material_time_run.wbjn', '-nobak'); 

replaceinfile( 'oldtime', new_time, 

'set_material_time_run.wbjn', '-nobak'); 

replaceinfile( 'oldaddress', new_file, 

'set_material_time_run.wbjn', '-nobak'); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 

    %%run workbench 

    command='runwb2 -b -r'; 

    file ='\set_material_time_run.wbjn'; 

    funfilef=sprintf('%s%s%s', dir, filename, file); 

    runwb=sprintf('%s %s', command, funfilef); 

    dos(runwb); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 
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%%results reading and processing  

fluid_height = 0; 

while fluid_height<0.0300 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 

%%rerun FSI if fluid level still needs to rise 

  

    %%increase model end time 

    time=time+0.01; 

    new_time = sprintf('%d', time); 

    

copyfile('C:\Donn_Ansys\FSI_Benchmark\oil_opt\set_time_run-

non_linear.wbjn','set_time_run.wbjn'); 

    replaceinfile( 'oldtime', new_time, 

'set_time_run.wbjn', '-nobak'); 

    replaceinfile( 'oldaddress', filename, 

'set_time_run.wbjn', '-nobak'); 

  

    %%run workbench 

    command='runwb2 -b -r'; 

    file ='\set_time_run.wbjn'; 

    funfilef=sprintf('%s%s%s', dir, filename, file); 

    runwb=sprintf('%s %s', command, funfilef); 

    dos(runwb); 

     

%%read input file into table (x, y, z, water-vof) 

    file_name='\profile_fluid_output'; 

    fluent_folder='\holding_file_files\dp0\FFF\Fluent'; 

    full_name = sprintf('%s%s%s%s', dir, filename, 

fluent_folder, file_name); 

    profile=dlmread(full_name, ',',5,1); 

    profile_size=size(profile); 

    profile_size=profile_size(1); 

  

%%get average fluid height from output file 

    height_hold=0; 

    fluid_count=0; 

    i=1; 

    while i<profile_size 

        water_vof=profile(i,4); 

        if (water_vof>0.1) && (water_vof<0.8) 

            fluid_height=profile(i,2); 

            height_hold=fluid_height+height_hold; 

            fluid_count=fluid_count+1; 

        end 
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        i = i+1; 

    end 

    fluid_height=height_hold/fluid_count; 

  

%%write file for monitoring 

    monitor1=[time fluid_height]; 

    dlmwrite('monitor.txt', monitor1, 'delimiter', '\t', '-

append'); 

  

     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%     

%%measure line deflection data 

%%measure fluid deflection 

        %%get deflection point 30 mm 

        def30_hold=0; 

        def30_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.028) && (height<0.032) 

                def30=profile(i,1); 

                def30_hold=def30_hold+def30; 

                def30_count=def30_count+1; 

            end 

            i = i+1; 

        end 

        def30=def30_hold/def30_count-0.015; 

        %%get deflection point 50 mm 

        def50_hold=0; 

        def50_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.048) && (height<0.052) 

                def50=profile(i,1); 

                def50_hold=def50_hold+def50; 

                def50_count=def50_count+1; 

            end 

            i = i+1; 

        end 

        def50=def50_hold/def50_count-0.015; 

        %%get deflection point 70 mm 

        def70_hold=0; 

        def70_count=0; 
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        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.068) && (height<0.072) 

                def70=profile(i,1); 

                def70_hold=def70_hold+def70; 

                def70_count=def70_count+1; 

            end 

            i = i+1; 

        end 

        def70=def70_hold/def70_count-0.015;     

        %%place deflection data in matrix 

        def(1,1)=def30; 

        def(1,2)=def50; 

        def(1,3)=def70; 

         

        %% write data to file 

        deflection=[time fluid_height def30 def50 def70]; 

        dlmwrite('line_deflection.txt', deflection, 

'delimiter', '\t', '-append'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%     

     

%%determine if fluid_height is at 20mm 

    if (fluid_height>0.0195) && (fluid_height<0.02001) 

        fluid_h20=fluid_height; 

        %%get deflection data at 3 points 

        %%get deflection point 30 mm 

        def30_hold=0; 

        def30_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.028) && (height<0.032) 

                def30=profile(i,1); 

                def30_hold=def30_hold+def30; 

                def30_count=def30_count+1; 

            end 

            i = i+1; 

        end 

        def30=def30_hold/def30_count-0.015; 

        %%get deflection point 50 mm 

        def50_hold=0; 

        def50_count=0; 

        i=1; 
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        while i<1536 

            height=profile(i,2); 

            if (height>0.048) && (height<0.052) 

                def50=profile(i,1); 

                def50_hold=def50_hold+def50; 

                def50_count=def50_count+1; 

            end 

            i = i+1; 

        end 

        def50=def50_hold/def50_count-0.015; 

        %%get deflection point 70 mm 

        def70_hold=0; 

        def70_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.068) && (height<0.072) 

                def70=profile(i,1); 

                def70_hold=def70_hold+def70; 

                def70_count=def70_count+1; 

            end 

            i = i+1; 

        end 

        def70=def70_hold/def70_count-0.015;     

        %%place deflection data in matrix 

        def(1,1)=def30; 

        def(1,2)=def50; 

        def(1,3)=def70; 

         

        %% write data to file 

        deflection=[time fluid_height def30 def50 def70]; 

        dlmwrite('monitor_deflection.txt', deflection, 

'delimiter', '\t', '-append'); 

    end 

     

%%determine if fluid_height is at 22.5mm 

    if (fluid_height>0.022) && (fluid_height<0.02251) 

        fluid_h22=fluid_height; 

        %%get deflection data at 3 points 

        %%get deflection point 30 mm 

        def30_hold=0; 

        def30_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 
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            if (height>0.028) && (height<0.032) 

                def30=profile(i,1); 

                def30_hold=def30_hold+def30; 

                def30_count=def30_count+1; 

            end 

            i = i+1; 

        end 

        def30=def30_hold/def30_count-0.015; 

        %%get deflection point 50 mm 

        def50_hold=0; 

        def50_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.048) && (height<0.052) 

                def50=profile(i,1); 

                def50_hold=def50_hold+def50; 

                def50_count=def50_count+1; 

            end 

            i = i+1; 

        end 

        def50=def50_hold/def50_count-0.015; 

        %%get deflection point 70 mm 

        def70_hold=0; 

        def70_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.068) && (height<0.072) 

                def70=profile(i,1); 

                def70_hold=def70_hold+def70; 

                def70_count=def70_count+1; 

            end 

            i = i+1; 

        end 

        def70=def70_hold/def70_count-0.015;     

        %%place deflection data in matrix 

        def(2,1)=def30; 

        def(2,2)=def50; 

        def(2,3)=def70; 

        %% write data to file 

        deflection=[time fluid_height def30 def50 def70]; 

        dlmwrite('monitor_deflection.txt', deflection, 

'delimiter', '\t', '-append'); 

    end 
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%%determine if fluid_height is at 25mm 

    if (fluid_height>0.0245) && (fluid_height<0.02501) 

        fluid_h25=fluid_height; 

        %%get deflection data at 3 points 

        %%get deflection point 30 mm 

        def30_hold=0; 

        def30_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.028) && (height<0.032) 

                def30=profile(i,1); 

                def30_hold=def30_hold+def30; 

                def30_count=def30_count+1; 

            end 

            i = i+1; 

        end 

        def30=def30_hold/def30_count-0.015; 

        %%get deflection point 50 mm 

        def50_hold=0; 

        def50_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.048) && (height<0.052) 

                def50=profile(i,1); 

                def50_hold=def50_hold+def50; 

                def50_count=def50_count+1; 

            end 

            i = i+1; 

        end 

        def50=def50_hold/def50_count-0.015; 

        %%get deflection point 70 mm 

        def70_hold=0; 

        def70_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.068) && (height<0.072) 

                def70=profile(i,1); 

                def70_hold=def70_hold+def70; 

                def70_count=def70_count+1; 

            end 

            i = i+1; 
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        end 

        def70=def70_hold/def70_count-0.015;     

        %%place deflection data in matrix 

        def(3,1)=def30; 

        def(3,2)=def50; 

        def(3,3)=def70; 

        %% write data to file 

        deflection=[time fluid_height def30 def50 def70]; 

        dlmwrite('monitor_deflection.txt', deflection, 

'delimiter', '\t', '-append'); 

    end 

     

%%determine if fluid_height is at 27.5mm 

    if (fluid_height>0.0265) && (fluid_height<0.02751) 

        fluid_h27=fluid_height; 

        %%get deflection data at 3 points 

        %%get deflection point 30 mm 

        def30_hold=0; 

        def30_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.028) && (height<0.032) 

                def30=profile(i,1); 

                def30_hold=def30_hold+def30; 

                def30_count=def30_count+1; 

            end 

            i = i+1; 

        end 

        def30=def30_hold/def30_count-0.015; 

        %%get deflection point 50 mm 

        def50_hold=0; 

        def50_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.048) && (height<0.052) 

                def50=profile(i,1); 

                def50_hold=def50_hold+def50; 

                def50_count=def50_count+1; 

            end 

            i = i+1; 

        end 

        def50=def50_hold/def50_count-0.015; 

        %%get deflection point 70 mm 
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        def70_hold=0; 

        def70_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.068) && (height<0.072) 

                def70=profile(i,1); 

                def70_hold=def70_hold+def70; 

                def70_count=def70_count+1; 

            end 

            i = i+1; 

        end 

        def70=def70_hold/def70_count-0.015;     

        %%place deflection data in matrix 

        def(4,1)=def30; 

        def(4,2)=def50; 

        def(4,3)=def70; 

        %% write data to file 

        deflection=[time fluid_height def30 def50 def70]; 

        dlmwrite('monitor_deflection.txt', deflection, 

'delimiter', '\t', '-append'); 

    end 

     

    %%determine if fluid_height is at 30.0mm 

    if (fluid_height>0.029) && (fluid_height<0.030) 

        fluid_h30=fluid_height; 

        %%get deflection data at 3 points 

        %%get deflection point 30 mm 

        def30_hold=0; 

        def30_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.028) && (height<0.032) 

                def30=profile(i,1); 

                def30_hold=def30_hold+def30; 

                def30_count=def30_count+1; 

            end 

            i = i+1; 

        end 

        def30=def30_hold/def30_count-0.015; 

        %%get deflection point 50 mm 

        def50_hold=0; 

        def50_count=0; 

        i=1; 
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        while i<1536 

            height=profile(i,2); 

            if (height>0.048) && (height<0.052) 

                def50=profile(i,1); 

                def50_hold=def50_hold+def50; 

                def50_count=def50_count+1; 

            end 

            i = i+1; 

        end 

        def50=def50_hold/def50_count-0.015; 

        %%get deflection point 70 mm 

        def70_hold=0; 

        def70_count=0; 

        i=1; 

        while i<1536 

            height=profile(i,2); 

            if (height>0.068) && (height<0.072) 

                def70=profile(i,1); 

                def70_hold=def70_hold+def70; 

                def70_count=def70_count+1; 

            end 

            i = i+1; 

        end 

        def70=def70_hold/def70_count-0.015;     

        %%place deflection data in matrix 

        def(5,1)=def30; 

        def(5,2)=def50; 

        def(5,3)=def70; 

        %% write data to file 

        deflection=[time fluid_height def30 def50 def70]; 

        dlmwrite('monitor_deflection.txt', deflection, 

'delimiter', '\t', '-append'); 

    end 

     

end 

  

%%exit if fluid_height is over 30mm 

    %%calculate error/performance perameter 

    exp_lower=[0.0000 0.00011 0.00045; ... 

            0.00000 0.00136 0.00183; ... 

            0.00114 0.00198 0.00389; ... 

            0.00187 0.00448 0.00738; ... 

            0.00453 0.00925 0.01366]; 

    exp_upper=[0.001 0.00111 0.00145; ... 

            0.00200 0.00236 0.00371; ... 
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            0.00214 0.00325 0.00543; ... 

            0.00313 0.00552 0.00853; ... 

            0.00547 0.01052 0.01657]; 

  

    a=1; 

    b=1; 

    while a<=5 

        while b<=3 

            def_exp(a,b) = def(a,b); 

            if def(a,b) < exp_lower(a,b) 

                def_exp(a,b) = exp_lower(a,b); 

            end 

            if def(a,b) > exp_upper(a,b) 

                def_exp(a,b) = exp_upper(a,b); 

            end 

            b=b+1; 

        end 

        b=1; 

        a=a+1; 

    end 

     

    a=1; 

    b=1; 

    while a<=5 

        while b<=3 

            error=(def_exp(a,b)-def(a,b))^2 + error; 

            b=b+1; 

        end 

        b=1; 

        a=a+1; 

    end 

     

%%scall error by 1,000,000 

error = error * 10000000; 

  

%%write data to file 

    all=[gnum youngs poi error]; 

    perform=error; 

    deflection=[fluid_h20 def(1,1) def(1,2) def(1,3) ... 

                fluid_h22 def(2,1) def(2,2) def(2,3) ... 

                fluid_h25 def(3,1) def(3,2) def(3,3) ... 

                fluid_h27 def(4,1) def(4,2) def(4,3) ... 

                fluid_h30 def(5,1) def(5,2) def(5,3)]; 

    dlmwrite('deflection_data.txt', deflection, 

'delimiter', '\t'); 
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    dlmwrite('perform.txt', perform, 'delimiter', '\t'); 

    cd(dir); 

    dlmwrite('run_info.txt', all, 'delimiter', '\t', '-

append'); 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%% 

end 

cd(dir); 

gnum=gnum+1; 
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Appendix B: Fluent User-Defined Functions for Study 2 

#include "udf.h" 

#include <stdio.h> 

 

float time_scale[44500], scaling_table[44500]; 

float time_scale_hold, scaling_table_hold; 

float solid_exterior2plusx[35], solid_exterior2plus0[35], 

solid_exterior2plus6[35], solid_exterior2plus10[35]; 

float solid_exterior2plusx_hold, solid_exterior2plus0_hold, 

solid_exterior2plus6_hold, solid_exterior2plus10_hold; 

float solid_exterior2minusx[162], 

solid_exterior2minus0[162], solid_exterior2minus6[162], 

solid_exterior2minus10[162]; 

float solid_exterior2minusx_hold, 

solid_exterior2minus0_hold, solid_exterior2minus6_hold, 

solid_exterior2minus10_hold; 

float solid_fixedx[200], solid_fixed0[200], 

solid_fixed6[200], solid_fixed10[200]; 

float solid_fixedx_hold, solid_fixed0_hold, 

solid_fixed6_hold, solid_fixed10_hold; 

float fluid_interfaceplusx[165], fluid_interfaceplus0[165], 

fluid_interfaceplus6[165], fluid_interfaceplus10[165]; 

float fluid_interfaceplusx_hold, fluid_interfaceplus0_hold, 

fluid_interfaceplus6_hold, fluid_interfaceplus10_hold; 

float fluid_interfaceminusx[165], 

fluid_interfaceminus0[165], fluid_interfaceminus6[165], 

fluid_interfaceminus10[165]; 

float fluid_interfaceminusx_hold, 

fluid_interfaceminus0_hold, fluid_interfaceminus6_hold, 

fluid_interfaceminus10_hold; 

float time_hold; 

 

char line[80]; 

FILE *finp, *fout; /* declare file pointers */ 

 

DEFINE_EXECUTE_ON_LOADING(report_version, libname)  

{ 

 /*read scaling data*/ 

 int i=0; 

 time_hold=0; 

 finp = fopen("scaling_data.txt", "r"); /* open finp 

for read */ 

 while( feof(finp) == 0 ) /* read until EOF reached in 

input */ 
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  { 

   fgets(line, 70, finp); /* read 70 characters 

*/ 

   sscanf(line, "%g %g", &time_scale_hold, 

&scaling_table_hold); 

   time_scale[i] = time_scale_hold; 

   scaling_table[i] = scaling_table_hold; 

   i=i+1; 

  }  

 fclose(finp); /* close finp */  

    Message("Reading scaling data complete\n"); 

 

 /*read data*/ 

 i=0; 

 finp = fopen("solid_exterior2-plus.txt", "r"); /* open 

finp for read */ 

 while( feof(finp) == 0 ) /* read until EOF reached in 

input */ 

  { 

   fgets(line, 70, finp); /* read 70 characters 

*/ 

   sscanf(line, "%g %g %g %g", 

&solid_exterior2plusx_hold, &solid_exterior2plus0_hold, 

&solid_exterior2plus6_hold, &solid_exterior2plus10_hold); 

   solid_exterior2plusx[i] = 

solid_exterior2plusx_hold; 

   solid_exterior2plus0[i] = 

solid_exterior2plus0_hold; 

   solid_exterior2plus6[i] = 

solid_exterior2plus6_hold; 

   solid_exterior2plus10[i] = 

solid_exterior2plus10_hold; 

   i=i+1; 

  }  

 fclose(finp); /* close finp */  

    Message("Reading plus temperature data complete\n"); 

 

 /*read profile data plus*/ 

 i=0; 

 finp = fopen("solid_exterior2-minus.txt", "r"); /* 

open finp for read */ 

 while( feof(finp) == 0 ) /* read until EOF reached in 

input */ 

  { 
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   fgets(line, 70, finp); /* read 70 characters 

*/ 

   sscanf(line, "%g %g %g %g", 

&solid_exterior2minusx_hold, &solid_exterior2minus0_hold, 

&solid_exterior2minus6_hold, &solid_exterior2minus10_hold); 

   solid_exterior2minusx[i] = 

solid_exterior2minusx_hold; 

   solid_exterior2minus0[i] = 

solid_exterior2minus0_hold; 

   solid_exterior2minus6[i] = 

solid_exterior2minus6_hold; 

   solid_exterior2minus10[i] = 

solid_exterior2minus10_hold; 

   i=i+1; 

  }  

 fclose(finp); /* close finp */  

    Message("Reading minus temperature data complete\n"); 

 

 /*read profile data plus*/ 

 i=0; 

 finp = fopen("solid_exterior2-minus.txt", "r"); /* 

open finp for read */ 

 while( feof(finp) == 0 ) /* read until EOF reached in 

input */ 

  { 

   fgets(line, 70, finp); /* read 70 characters 

*/ 

   sscanf(line, "%g %g %g %g", 

&solid_fixedx_hold, &solid_fixed0_hold, &solid_fixed6_hold, 

&solid_fixed10_hold); 

   solid_fixedx[i] = solid_fixedx_hold; 

   solid_fixed0[i] = solid_fixed0_hold; 

   solid_fixed6[i] = solid_fixed6_hold; 

   solid_fixed10[i] = solid_fixed10_hold; 

   i=i+1; 

  }  

 fclose(finp); /* close finp */  

    Message("Reading solid_fixed temperature data 

complete\n"); 

 

 /*read profile data plus*/ 

 i=0; 

 finp = fopen("fluid_interface-plus.txt", "r"); /* open 

finp for read */ 
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 while( feof(finp) == 0 ) /* read until EOF reached in 

input */ 

  { 

   fgets(line, 70, finp); /* read 70 characters 

*/ 

   sscanf(line, "%g %g %g %g", 

&fluid_interfaceplusx_hold, &fluid_interfaceplus0_hold, 

&fluid_interfaceplus6_hold, &fluid_interfaceplus10_hold); 

   fluid_interfaceplusx[i] = 

fluid_interfaceplusx_hold; 

   fluid_interfaceplus0[i] = 

fluid_interfaceplus0_hold; 

   fluid_interfaceplus6[i] = 

fluid_interfaceplus6_hold; 

   fluid_interfaceplus10[i] = 

fluid_interfaceplus10_hold; 

   i=i+1; 

  }  

 fclose(finp); /* close finp */  

    Message("Reading fluid_interiorplus data complete\n"); 

 

 /*read profile data plus*/ 

 i=0; 

 finp = fopen("fluid_interface-minus.txt", "r"); /* 

open finp for read */ 

 while( feof(finp) == 0 ) /* read until EOF reached in 

input */ 

  { 

   fgets(line, 70, finp); /* read 70 characters 

*/ 

   sscanf(line, "%g %g %g %g", 

&fluid_interfaceminusx_hold, &fluid_interfaceminus0_hold, 

&fluid_interfaceminus6_hold, &fluid_interfaceminus10_hold); 

   fluid_interfaceminusx[i] = 

fluid_interfaceminusx_hold; 

   fluid_interfaceminus0[i] = 

fluid_interfaceminus0_hold; 

   fluid_interfaceminus6[i] = 

fluid_interfaceminus6_hold; 

   fluid_interfaceminus10[i] = 

fluid_interfaceminus10_hold; 

   i=i+1; 

  }  

 fclose(finp); /* close finp */  

    Message("Reading fluid_interiorminus data complete\n"); 



 

203 

 

} 

 

DEFINE_PROFILE(solid_exterior2_plus,t,i) 

{ 

   face_t f; 

 

   real point[ND_ND]; 

   real x; 

   real scaling; 

   real time = CURRENT_TIME; 

   real profile_max; 

   real temp, temp_u, temp_l; 

   int j; 

 

   begin_f_loop(f,t) 

   { 

      F_CENTROID(point,f,t); 

      x = point[0]; 

 

 /* define profile*/ 

   j=0; 

   temp_u=300; 

 

   if (time < 6) 

   { 

    profile_max=547; 

    while (solid_exterior2plusx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = solid_exterior2plus0[j+1]; 

     j=j+1; 

    } 

   } 

   if (time >= 6 && time < 10) 

   { 

    profile_max=1033; 

    while (solid_exterior2plusx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = solid_exterior2plus6[j+1]; 

     j=j+1; 

    } 

   } 

   if (time >= 10) 
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   { 

    profile_max=893; 

    while (solid_exterior2plusx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = solid_exterior2plus10[j+1]; 

     j=j+1; 

    } 

   } 

 

 /* define scaling*/ 

   j=0; 

   if (time != time_hold) 

   { 

    while (time_scale[j] < time) 

    { 

     scaling = scaling_table[j]/profile_max; 

     j=j+1; 

    } 

   } 

   time_hold = time; 

 

 /* define scaled profile*/ 

     temp = (temp_l + temp_u)/2; 

   temp = ((temp-300)*scaling)+300; 

   F_PROFILE(f,t,i) = temp; 

   } 

   end_f_loop(f,t) 

} 

 

DEFINE_PROFILE(solid_exterior2_minus,t,i) 

{ 

   face_t f; 

 

   real point[ND_ND]; 

   real x; 

   real scaling; 

   real time = CURRENT_TIME; 

   real profile_max; 

   real temp, temp_u, temp_l; 

   int j; 

 

   begin_f_loop(f,t) 

   { 

      F_CENTROID(point,f,t); 
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      x = point[0]; 

 

 /* define profile*/ 

   j=0; 

   temp_u=300; 

 

   if (time < 6) 

   { 

    profile_max=547; 

    while (solid_exterior2minusx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = solid_exterior2minus0[j+1]; 

     j=j+1; 

    } 

   } 

   if (time >= 6 && time < 10) 

   { 

    profile_max=1033; 

    while (solid_exterior2minusx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = solid_exterior2minus6[j+1]; 

     j=j+1; 

    } 

   } 

   if (time >= 10) 

   { 

    profile_max=893; 

    while (solid_exterior2minusx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = solid_exterior2minus10[j+1]; 

     j=j+1; 

    } 

   } 

 

 /* define scaling*/ 

   j=0; 

   if (time != time_hold) 

   { 

    while (time_scale[j] < time) 

    { 

     scaling = scaling_table[j]/profile_max; 

     j=j+1; 
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    } 

   } 

   time_hold = time; 

 

 /* define scaled profile*/ 

     temp = (temp_l + temp_u)/2; 

   temp = ((temp-300)*scaling)+300; 

   F_PROFILE(f,t,i) = temp; 

   } 

   end_f_loop(f,t) 

} 

DEFINE_PROFILE(solid_fixed_t,t,i) 

{ 

   face_t f; 

 

   real point[ND_ND]; 

   real x; 

   real time = CURRENT_TIME; 

   real temp, temp_u, temp_l; 

   int j; 

 

   begin_f_loop(f,t) 

   { 

      F_CENTROID(point,f,t); 

      x = point[0]; 

 

 /* define profile*/ 

   j=0; 

   temp_u=300; 

   if (time < 6) 

   { 

    while (solid_fixedx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = solid_fixed0[j+1]; 

     j=j+1; 

    } 

   } 

   if (time >= 6 && time < 10) 

   { 

    while (solid_fixedx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = solid_fixed6[j+1]; 

     j=j+1; 
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    } 

   } 

   if (time >= 10) 

   { 

    while (solid_fixedx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = solid_fixed10[j+1]; 

     j=j+1; 

    } 

   } 

   temp = (temp_l + temp_u)/2; 

   F_PROFILE(f,t,i) = temp; 

   } 

   end_f_loop(f,t) 

} 

DEFINE_PROFILE(fluid_int_minus,t,i) 

{ 

   face_t f; 

 

   real point[ND_ND]; 

   real x; 

   real time = CURRENT_TIME; 

   real temp, temp_u, temp_l; 

   int j; 

 

   begin_f_loop(f,t) 

   { 

      F_CENTROID(point,f,t); 

      x = point[0]; 

 

 /* define profile*/ 

   j=0; 

   temp_u=300; 

   if (time < 6) 

   { 

    while (fluid_interfaceminusx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = fluid_interfaceminus0[j+1]; 

     j=j+1; 

    } 

   } 

   if (time >= 6 && time < 10) 

   { 
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    while (fluid_interfaceminusx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = fluid_interfaceminus6[j+1]; 

     j=j+1; 

    } 

   } 

   if (time >= 10) 

   { 

    while (fluid_interfaceminusx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = fluid_interfaceminus10[j+1]; 

     j=j+1; 

    } 

   } 

   temp = (temp_l + temp_u)/2; 

   F_PROFILE(f,t,i) = temp; 

   } 

   end_f_loop(f,t) 

} 

DEFINE_PROFILE(fluid_int_plus,t,i) 

{ 

   face_t f; 

 

   real point[ND_ND]; 

   real x; 

   real time = CURRENT_TIME; 

   real temp, temp_u, temp_l; 

   int j; 

 

   begin_f_loop(f,t) 

   { 

      F_CENTROID(point,f,t); 

      x = point[0]; 

 

 /* define profile*/ 

   j=0; 

   temp_u=300; 

   if (time < 6) 

   { 

    while (fluid_interfaceplusx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = fluid_interfaceplus0[j+1]; 
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     j=j+1; 

    } 

   } 

   if (time >= 6 && time < 10) 

   { 

    while (fluid_interfaceplusx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = fluid_interfaceplus6[j+1]; 

     j=j+1; 

    } 

   } 

   if (time >= 10) 

   { 

    while (fluid_interfaceplusx[j] < x) 

    { 

     temp_l = temp_u; 

     temp_u = fluid_interfaceplus10[j+1]; 

     j=j+1; 

    } 

   } 

   temp = (temp_l + temp_u)/2; 

   F_PROFILE(f,t,i) = temp; 

   } 

   end_f_loop(f,t) 

} 
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Appendix C: Fluent User-Defined Functions for Study 3 

!Reading tabulare temperature data for BC 

#include "udf.h" 

#include <stdio.h> 

 

float hour[600], hot[600], cold[600], mean[600]; 

float hour_hold, hot_hold, cold_hold, mean_hold; 

float table_size; 

 

char line[80]; 

FILE *finp, *fout; /* declare file pointers */ 

 

DEFINE_EXECUTE_ON_LOADING(read_data, libname)  

{ 

 /*read temperature data*/ 

 int i=0; 

 finp = fopen("temp_data.txt", "r"); /* open finp for 

read */ 

 while( feof(finp) == 0 ) /* read until EOF reached in 

input */ 

  { 

   fgets(line, 70, finp); /* read 70 characters 

*/ 

   sscanf(line, "%g %g %g %g", &hour_hold, 

&hot_hold, &cold_hold, &mean_hold); 

   hour[i] = hour_hold*3600; 

   hot[i] = hot_hold; 

   cold[i] = cold_hold; 

   mean[i] = mean_hold; 

   i=i+1; 

  }  

 table_size = i-2; 

 

 fclose(finp); /* close finp */  

    Message("\n\nReading temperature data complete\n\n"); 

} 

 

DEFINE_PROFILE(hot_temp,t,i) 

{ 

   real time = CURRENT_TIME; 

   real temp = 1; 

   face_t f; 

   int j; 
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   begin_f_loop(f,t) 

   { 

 /* define profile as a function of hour*/ 

   j=0; 

   while (j < table_size) 

   { 

    if (hour[j] <= time) 

    { 

     temp = hot[j]; 

    } 

    j=j+1; 

   } 

   F_PROFILE(f,t,i) = temp; 

   } 

   end_f_loop(f,t) 

} 

 

DEFINE_PROFILE(cold_temp,t,i) 

{ 

   real time = CURRENT_TIME; 

   real temp = 1; 

   face_t f; 

   int j; 

 

   begin_f_loop(f,t) 

   { 

 /* define profile as a function of hour*/ 

   j=0; 

   while (j < table_size) 

   { 

    if (hour[j] <= time) 

    { 

     temp = cold[j]; 

    } 

    j=j+1; 

   } 

   F_PROFILE(f,t,i) = temp; 

   } 

   end_f_loop(f,t) 

} 

 

DEFINE_PROFILE(mean_temp,t,i) 

{ 

   real time = CURRENT_TIME; 

   real temp = 1; 
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   face_t f; 

   int j; 

 

   begin_f_loop(f,t) 

   { 

 /* define profile as a function of hour*/ 

   j=0; 

   while (j < table_size) 

   { 

    if (hour[j] <= time) 

    { 

     temp = mean[j]; 

    } 

    j=j+1; 

   } 

   F_PROFILE(f,t,i) = temp; 

   } 

   end_f_loop(f,t) 

} 
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Appendix D: ANSYS Mechanical APDL Custom Scripting for Study 4 

!define thermal material properties 

mp,c,3,200 

mp,kxx,3,0.001 

mp,kyy,3,0.001 

mp,kzz,3,0.001 

 

mp,c,12,1 

mp,kxx,12,0.001 

mp,kyy,12,1 

mp,kzz,12,1 

 

!define frictional heating parameter between tube to base 

keyopt,5,1,1 

keyopt,6,1,1 

 

rmodif,5,9,500e6 

rmodif,5,14,100 

rmodif,5,15,1 

rmodif,5,18,0.50 

 

rmodif,6,9,500e6 

rmodif,6,14,100 

rmodif,6,15,1 

rmodif,6,18,0.50 

 

!define frictional heating parameter between tube to cam 

keyopt,8,1,1 

keyopt,9,1,1 

 

rmodif,8,9,500e6 

rmodif,8,14,100 

rmodif,8,15,1 

rmodif,8,18,0.50 

 

rmodif,9,9,500e6 

rmodif,9,14,100 

rmodif,9,15,1 

rmodif,9,18,0.50 

 

!define frictional heating parameter between tube to tube 

keyopt,10,1,1 

keyopt,11,1,1 

 



 

214 

rmodif,10,9,500e6 

rmodif,10,14,100 

rmodif,10,15,1 

rmodif,10,18,0.50 

 

rmodif,11,9,500e6 

rmodif,11,14,100 

rmodif,11,15,1 

rmodif,11,18,0.50 

 

!changes element type form SOLID186/187 to SOLID226/227, 

enables temperature degrees of freedom 

 

/prep7 

! Get max element type number 

*get,etype_num,etyp,0,num,max 

 

! Define coupled field elements with thermal-structural DOF 

et,etype_num+1,solid226,11 

et,etype_num+2,solid227,11 

 

! Change solid187 to solid227 

esel,s,ename,,187 

emodif,all,type,etype_num+2 

 

! Change solid186 to solid226 

esel,s,ename,,186 

emodif,all,type,etype_num+1 

 

! Select all elements 

esel,all 

 

/solu 

 

! Thermal Boundary Conditions 

! This commenad set the initial temperature to 20.0 C and 

applies a convection coefficient of 500 W/m2-C 

 

! Set initial temperature condition to 

ic,all,temp,30.0 

 

! Apply a temperature constraint on the tubing_exterior 

d,tube_exterior,temp,30.0 
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