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Abstract
This thesis presents the design of a super-ellipsoidal potential function (SEPF)

that can be used, in a static and dynamic environment, for autonomous collision

avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the

design of the SEPF, we have the full control over the shape and size of the potential

function. In our proposed approach, a teleoperated UAV can not only autonomously

avoid collision with surrounding objects but also track the operator’s control input

as closely as possible. As a result, an operator can always be in control of the

UAV for his/her high-level guidance and navigation task without worrying too much

about the UAV collision avoidance while it is being teleoperated. The effectiveness

of the proposed approach is demonstrated through a human-in-the-loop simulation

using virtual robot experimentation platform (v-rep) and Matlab programs and ex-

perimentation using a physical quadrotor UAV in a laboratory environment.
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Chapter 1

Introduction

1.1 Motivation

Recently, due to various advantages in terms of their size, cost, weight, and,

more importantly, versatile mobility such as hovering, vertical take-off and landing

(VTOL), omnidirectional agile movement, etc., quadrotors UAVs have gained a lot

of attention from scientists and have been used successfully in many tasks such as

search and rescue, remote sensing, mapping, exploration, surveillance and many

other civil and military applications [5], [6], [7], [8]. However, nowadays robots

autonomy is still restricted by the deficiency of a robust and reliable perception,

and of higher cognitive abilities that permit sophisticated decision making in a real

world environment [9]. Thus, human supervisory is required to perform high-level

decision making while the robots execute their local autonomy such as obstacle

avoidance.

In teleoperation, the operator is physically separated from the robot. This leads

to a difficult teleoperation process due to poor situation awareness [10]. One main
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way to transfer the information to the operator is through a camera mounted on the

UAV. This visual information is often restricted due to limited camera resolution

and field of view (FOV) [11]. In the case of quadrotor UAVs, the teleoperation is

usually non-trivial due to its inherent nonlinear underactuated dynamics, fast and

agile omnidirectional mobility, etc. If a quadrotor UAV is not controlled carefully, it

can easily collide with obstacles, especially in cluttered indoor environments. And

therefore it requires a high level of expertise as well as enough training to teleop-

erate a quadrotor UAV safely. This is our main motivation to develop an algorithm

that assists the operator by making the robot avoid collision autonomously.

1.2 Thesis Objectives

The main goal of this thesis is to address the problems discussed in the motiva-

tion section by developing an autonomous collision avoidance algorithm that aids

the operator in teleoperation tasks. The proposed algorithm aims to make the tele-

operation easy and safe by not only preventing the collision with obstacles but also

tracking operator’s command, if there is one, in the collision free path so that the

operator can focus on the main task rather than avoiding collision with surrounding

objects. As a result, the teleoperation efficiency is improved as well.

2



1.3 Thesis Outline

This thesis is organized as follows.

Chapter 2 presents the literature review in which we introduce the unmanned

aerial vehicles (UAVs) with the focus on quadrotor UAVs. We also give a brief

information about the teleoperation of robots. In addition, we review the potential

function based motion planning. Finally, we present the related work.

Chapter 3 presents the design of the SEPF in a 2-dimensional space and the

extension of the design to a 3-dimensional space. The SEPF is then extended to

include the dynamic obstacles case. Collision Avoidance under Teleoperation is

finally explained.

Chapter 4 presents the validation of the proposed method through a human-in-

the-loop simulation. The simulation programs and setup are explained. And the

simulation results for the teleoperation of a quadrotor UAV in a static and dynamic

environment are demonstrated and discussed.

Chapter 5 presents a set of human-in-the-loop experiments of a physical quadro-

tor UAV teleoperation in order to further verify the proposed approach. The imple-

mentation details are also explained. The results of the experiments are finally

presented and discussed.

Chapter 6 presents the teleoperation interface program. The tools used to de-

velop the user interface are first explained. Then, two methods for visualizing the

robot’s surrounding environment are discussed and demonstrated through simula-

tion.

Chapter 7 presents the conclusion of the work presented in this thesis and pro-

vides recommendations for future research.
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We make note that some parts of this thesis are reprinted from our published

paper [12] where we presented the design of the SEPF and simulation results for

the static obstacles case. After this paper, we extended the SEPF to include the

dynamic obstacles case and validated it through simulation. Finally, we validated

our algorithm, for both static and dynamic cases, with a physical quadrotor UAV in

a laboratory environment.
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Chapter 2

Literature Review

2.1 Unmanned Aerial Vehicles

Unmanned aerial vehicles (UAVs) are generally classified into two main types:

fixed wing UAVs such as an airplane and rotary wing UAVs such as a helicopter.

For other classifications schemes, see [13], [14]. Fixed wing UAVs are usually

faster than rotary wing UAVs but with less maneuverability. Furthermore, they can

fly for long distances. Rotary wing UAVs have the ability of vertical take off and

landing (VTOL) and hovering which fixed wing UAVs do not have. They also have

high maneuverability. In this thesis, a rotary wing UAV is used. More specifically,

a quadrotor UAV is used which has four rotors because of its unique features as

illustrated in the next section.

2.1.1 Quadrotor UAVs

Quadrotors have four propellers powered by electric motors mounted on a frame

shaped like ’X’. The schematic of a quadrotor UAV is shown in Fig. 2.1. Each rotor

5



Figure 2.1: Qaudrotor schematic [1].

produces a force (e.g, F1, F2, F3 and F4 in Fig. 2.1) and a torque about the vehicle’s

body z-axis (e3B in Fig. 2.1). To make the net torque about the body z-axis equal to

zero when all the propellers are spinning, adjacent propellers spin opposite to each

other.

By adjusting rotor forces, i.e., adjusting the spinning speed of the motors, dif-

ferent movements can be achieved. We can control the thrust for translation along

the body z-axis, roll angle for translation along the body y-axis, pitch angle for

translation along the body x-axis and yaw for rotation about the body z-axis.

Quadrotors have many attracting features such as small weight and size, low

cost, omnidirectional agile movement, hovering and VTOL. They have been used

in many applications such as filming, surveillance, delivering packages, etc [15].

Despite these features, the control of quadrotors is still a challenge because of its

inherent underactuated nonlinear dynamics.

6



2.2 Teleoperation

Teleoperation can be defined as the operation of a device/machine at or over a

distance where the term tele means at or over a distance. Teleoperation scheme is

shown in Fig. 2.2. As can be seen from the figure, there are two sites: the operator

site where the operator commands the remote robot through a haptic device or joy-

stick, etc. and receives the information about the robot surrounding environment

via a visual display and sometimes a haptic device, and the remote site where the

robot receives and implements operator’s commands with the help of its sensors

and control system.

Human intervention makes the teleoperation process very beneficial as the human

intelligence can be exploited to perform high-level planning and decision making.

Hence, teleoperation has numerous applications such as dealing with hazardous

materials, space and underwater exploration, surveillance, etc. [16], [17]. Control

architectures used in teleoperation are:

Figure 2.2: Teleoperation scheme [2].
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• Direct Control: A human operator directly controls the robot without any

level of autonomy on the robot side, remote site. This method has the higher

operator workload.

• Shared Control: A human operator controls the robot with some level of

autonomy on the robot side to assist the human operator. This method has a

moderate operator workload.

• Supervisory Control: A human operator controls the robot with a high level

of autonomy and intelligence on the robot side to assist the human operator.

This method has the least operator workload.

In this thesis, the second control architecture is used. The human operator is always

in control of the UAV while the UAV has some level of autonomy, i.e., autonomous

collision avoidance.

2.3 Potential Function Based Motion Planning

The potential function approach is very common in autonomous path planning

for robots because of its mathematical elegance and simplicity. It was first intro-

duced by Khatib [18] and used for collision avoidance of a robot arm with an object

based on the relative distance between them.

A potential function or potential field is defined as a differentiable real-valued

function P : Rm → R [19]. In the potential function method, the robot’s workspace

is filled with an artificial potential field. This field is a sum of two potential fields:

an attractive potential field that steers the robot towards the goal and a repulsive

potential field that repels the robot away from the obstacles.
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The gradient of the potential function represents a driving force (F) that drives

the robot towards the goal while avoiding obstacles. The attractive potential is a

function of the relative distance to the goal and the repulsive potential is a function

of the relative distance to the obstacles. When the robot starts to move, the force

vector field F is at its maximum and gradually diminishes to zero as the robot

approaches the goal. Thus, the robot gradually slows down and stops at the goal.

The potential function is defined as follows

U(q) = Uatt(q) + Urep(q) (2.3.1)

where q is the robot position. The attractive and repulsive forces vectors are defined

as the negative gradient of attractive and repulsive potentials respectively

Fatt = −∇Uatt(q) (2.3.2)

Frep = −∇Urep(q) (2.3.3)

then the reference force is the sum of the attractive and repulsive forces

Fref = Fatt + Frep (2.3.4)

One common problem with the potential function method is the local minima

problem where the vector field F approaches zero in positions other than the goal

position because of the presence of the obstacles. This local minima may trap the

robot before reaching the goal. Research on this area led to several solutions, e.g.,

[20], [21]. In teleoperation, if the robot gets trapped by a local minima, the human

9



operator can easily escape it. Thus, the local minima problem is less of concern in

teleoperation.

The potential function method can be used for path planning in static and dy-

namic environments and for static or moving goal [22].

2.4 Related Work

Collision avoidance is one of the essential tasks for mobile robots. Therefore,

collision avoidance has been widely studied in the literature. Potential function

based methods [10], [23], [24], [25] are developed for collision avoidance in a

UAV teleoperation. In [26], [27], [28], [29], teleoperation with force feedback as

a cue for the operator has been studied and applied to mobile robots to navigate in

a cluttered environment. Potential function for collision avoidance in a group of

UAVs teleoperation has been studied and implemented in [30], [31], [32].

Our main interest in this thesis is the collision avoidance in UAV teleopera-

tion. The research in this area is limited compared to collision avoidance in ground

robots. Next, we present some of the research in UAV teleoperation in a static

environment.

Brandt et al. [33] used a haptic feedback to assist the operator in avoiding colli-

sion with static obstacles. The haptic feedback aims to increase the operator’s situa-

tion awareness as the information about the environment from the camera mounted

on the UAV is often limited. In this study, the amount of force feedback is deter-

mined using three different algorithms. The first algorithm uses the time to impact

(TTI) which is the relative distance to the nearest obstacle divided by the robot’s

current velocity. The amount of feedback force is inversely proportional to TTI.
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The second algorithm uses a so-called dynamic parametric field (DPF) where the

distance to the obstacle is divided into four zones: safe zone, warning zone, transi-

tion zone and collision zone. These zones are dynamic and determine the amount

of force feedback. The last algorithm is the virtual spring (VS) in which the amount

of force feedback is determined based on the distance to the obstacle. This research

found that the best algorithm in avoiding collision is the TTI algorithm.

Mendes et al. [34] used FastSLAM (Fast Simultaneous Localization and map-

ping) to map the environment and calculate the relative distance to the obstacles.

The current robot’s velocity and the relative distance to the obstacles are used to

estimate the time to collision (TTC). TTC is classified into threat levels and the

response, i.e., no action; slow; stop and evasive maneuver, is taken accordingly to

override the operator control input and slow, stop, or move the robot oppositely to

its current direction.

Israelsen et al. [15] used a different approach from the previous two methods;

they took the actual dynamics, states, and the operator command input into account

to estimate the future trajectory of the quadrotor UAV, and they used this trajectory

to minimize the deviation from control input to automatically avoid collision with

obstacles. However, the SLAM is required for this method to work. This method

is later expanded in [35] to take the uncertainties in the on-board sensing and state

estimation into account.

It can be seen that first two methods [33] and [34] do not take the robot dynam-

ics into account and their algorithms override the operator command and stop the

robot. In addition, method [15] is computationally expensive because it requires a

SLAM to work. While method [15] performs automatic collision avoidance, it only

works in a 2-dimensional space. Note that all the above algorithms work in a static
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environment only. In this thesis and for the case of a static environment, we address

all the above problems. Our algorithm works in a 3-dimensional space, takes the

vehicle’s dynamics into account, does not require a SLAM, autonomously avoids

obstacles, and ensures that the operator is in the control of the vehicle at all times.

The research in the area of collision avoidance in UAV teleoperation in a dy-

namic environment is very limited. Thus, we present some of the research about

autonomous navigation in a dynamic environment.

In [22], a novel potential function for the navigation of mobile robots in a dy-

namic environment is presented. In this study, the target and the obstacles are mov-

ing. It is assumed that the robot encounters one moving obstacle at a time, and all

other moving obstacles are far away and their effect is negligible. Furthermore, it is

assumed the obstacles are ball-like-shape of radius ri. The relative position and ve-

locity between the robot and moving obstacle are required for collision avoidance.

The proposed method was validated through simulation.

Fulgenzi et al. [36] presented an algorithm for navigation in an unknown dy-

namic environment. This algorithm extended the rapidly-exploring random tree al-

gorithm where the probability of the collision is considered and is used in a partial

motion planner. The performance of this algorithm is tested through simulation.

In this thesis and for the case of UAV teleoperation in a dynamic environment,

we designed a new potential function that is able to deal with multiple moving ob-

stacles at the same time and obstacle shape independent. Additionally, our potential

function can deal with static and moving obstacles at the same time.
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Chapter 3

SEPF Design for Autonomous Colli-

sion Avoidance

In robot motion planning literature, the gradient of a repulsive potential func-

tion typically represents a motion vector (Vca) that repels the robot away from the

obstacles. In designing such a repulsive potential function, it must be ensured that

a vehicle will not collide with other objects under any circumstances as well as

avoids any undesirable motions. More specifically, when a vehicle is teleoperated,

a vehicle should be stationary regardless of its relative distance to an obstacle when

there is no motion command from the operator and also, more importantly, a vehi-

cle should be able to stop before an obstacle no matter how fast it is approaching

the obstacle. In this chapter, we present the design of the super-ellipsoidal potential

function (SEPF) which provides enough flexibility in terms of designing the size

and shape, and also addresses all of the above-mentioned issues.
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3.1 SEPF for Collision Avoidance

We begin this section with the following assumptions.

1. The UAV is a rotary wing UAV type that can move omnidirectionally in a

3-dimensional space.

2. The UAV is equipped with a sensor that can detect obstacles around the robot

within a sphere of radius (Rs) as a point cloud.

3. The UAV has dynamics that are the same in every direction with a constant

deceleration limit [10].

First, to include the vehicle dynamics in the design of a repulsive potential func-

tion, we take into account the minimum stopping distance (dmin), which is the re-

quired distance for a vehicle to decrease its velocity to zero using the vehicle’s

maximum deceleration (amax) allowed in the direction of motion, that is given by

dmin =
‖vr‖2

2amax
(3.1.1)

where vr is the current vehicle’s velocity. In addition, to remove the unnecessary

avoidance vectors due to surrounding obstacles when

• there is no motion command from the operator, the length of the repulsive

potential function is set to be equal to its width as shown in Fig. 3.2;

• there is a motion command from the operator, the repulsive potential function

is assigned to both current vehicle’s motion and operator’s command direc-

tions as shown in Fig. 3.2.
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bfi, bbi pro

o

vr

Figure 3.1: Representation of a 2-dimensional SEPF, showing the control parame-
ters and variables.

As briefly mentioned above, we construct a repulsive potential function, called

SEPF, using a pair of super-ellipses as shown in Fig. 3.1. One main advantage of

using super-ellipse in the design of a potential function is that we can easily adjust

the length (a), width (b), and the amount of flattening (n) at the SEPF tips. As

can be seen from Fig. 3.1, an SEPF consists of an inner and outer two halves of a

super-ellipse centered at the center of the vehicle.

The length (afo) of the outer half super-ellipse in the front direction of a vehi-

cle is designed to be equal to the maximum distance sensor range when there is a

motion command from an operator and to be equal to its width (bfo) when there

is no motion command from an operator. The width (bfo) of the same front half

super-ellipse is chosen to be, at least, two times greater than the radius (RU ) of the

smallest circle that encircles the UAV (See Fig. 3.1). The another outer half super-
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ellipse facing toward the back of a vehicle has a length (abo) that is equal to its width

(bbo) to form a half circle behind the vehicle. To ensure the continuity between the

two outer half super-ellipses, the width of the backward facing super-ellipse (bbo)

should be chosen to be equal to (bfo). The amount of tip flatting (n) of the outer

front half super-ellipse is chosen to be more than 2 so that the repulsive function

can cover more area at the tip of the SPEF in the front of the vehicle. Next, for the

inner half super-ellipse which is in the front direction of a vehicle, the length (afi)

of the super-ellipse is designed to be

afi = RU + ds + dmin (3.1.2)

where dmin is as in (3.1.1), RU is as in Fig. 3.1, and ds is the fixed safety distance

that is pre-defined to restrict the minimum closest distance between a UAV and

obstacles. Note that afi should be chosen to be less than afo with enough margin

so that the repulsive collision avoidance motion vectors can grow smoothly from

zero to its maximum allowed magnitude and also in order to ensure a technical

condition in (3.1.4) for not having an infinite collision avoidance motion vector

due to the division by zero. This condition is easy to meet and can be satisfied by

increasing the distance sensor maximum range or limiting the vehicle speed. For

the same reason, the width bfi should be chosen to be less than bfo. The length (abi)

and width (bbi) of the other inner half super-ellipse which is facing to the backward

direction of a vehicle can be designed in the similar way that we design the outer

backward half super-ellipse. The amount of tip flatting (n) of the inner front and

back half super-ellipse are chosen to be equal to the values of (n) of the outer front

and back half super-ellipse respectively. Conceptually, the inner two halves of a
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super-ellipse represent the forbidden region, the shaded region in Fig. 3.1. The

obstacles should stay outside this region for a safe collision avoidance.

Now, let us consider a point (e.g., o) that lies in between the inner and outer

super-ellipses as shown in Fig. 3.1. Let pro be the distance vector from the center

of a UAV to the point and vr be the velocity vector of the UAV. We then define two

distance variables di(pro,vr) and do(pro,vr) where di(pro,vr) is the distance from

the point to the inner super-ellipse along the direction of pro and do(pro,vr) is the

distance from the inner super-ellipse to the outer super-ellipse along the direction of

pro. (Note that specific values for both di and do depend on the vector pro and vr.

This dependency is represented explicitly in our notations of di and do. However, in

the sequel, we use di to denote di(pro,vr) and do to denote do(pro,vr) for simplicity

of notation.) Now, using these two variables, we can represent the relative position

of the point with respect to the inner and outer super-ellipses of the SEPF so that the

repulsive potential function value can be determined as a function of the ratio di/do.

Note that if the point is on the boundary of the outer super-ellipse, then di/do = 1.

And if the point is on the boundary of the inner super-ellipse, then di/do = 0.

Let f : R→ R be a continuous real-valued function that satisfies two boundary

conditions, that are f(0) = 1 and f(1) = 0. Then we formally define an SEPF

(PSrep) as follows:

PSrep(pr,po,vr) =


0, if o is outside outer super-ellipse

1, if o is inside inner super-ellipse

µf
(
di(pro,vr)
do(pro,vr)

)
, otherwise

(3.1.3)
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where µ is a design parameter used to scale the repulsive potential function, pr

and po are the current robot’s and obstacle’s position respectively. In principle,

the function f(·) can be any function as long as it is continuous and satisfies both

boundary conditions mentioned above. It could be a linear, quadratic, sine, or cosine

function. However, we choose a quadratic function because the magnitude of its

gradient, i.e., repulsive collision avoidance motion vector (Vca), evolves linearly

from zero at the outer super-ellipse to the required maximum magnitude at the inner

super-ellipse. Then, the repulsive potential field becomes

PSrep(por,vr) =


0, if o is outside outer super-ellipse

1, if o is inside inner super-ellipse

µ
(
‖por‖−Ri(vr)
Ro−Ri(vr)

− 1
)2
, otherwise

(3.1.4)

where Ro and Ri are the distances from the center of a UAV to the outer and inner

super-ellipse respectively as shown in Fig. 3.1. Note that Ri is a function of the

robot’s current velocity. We can see this if we substitute (3.1.1) in (3.1.2), and

then (3.1.2) in (3.1.6). Also, note that Ri and Ro can be easily calculated using the

following super-ellipse equation represented in polar coordinates [37]

R =
ab

n
√
|acos(θ)|n + |bsin(θ)|n

(3.1.5)

where a, b, and n are the length, width, and the amount of tip flattening respectively

and θ ∈ [−π, π] is the angle of the vector pro with respect to the horizontal axis.

Two-dimensional contour plot of the SEPF is shown in Fig. 3.2.
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Figure 3.2: Two-dimensional contour plot of the SEPF. (a) SEPF in both operator’s
command (Vin) and current UAV’s motion directions when there is a command
input from the operator. (b) SEPF length is set to be equal to its width when there
is no command input from the operator.

3.1.1 SEPF in 3-Dimensional Space

Since the proposed potential function is designed based on super-ellipses, it is

indeed a simple matter to extend the potential function from a 2-dimensional space

to a 3-dimensional space. To extend the repulsive SEPF into a 3-dimensional space,

we extend RU in (3.1.2) to be the radius of the smallest sphere that encircles the

UAV, andR in (3.1.5) to be the equation of a super-ellipsoid in spherical coordinates
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[38] which is given by

R =
1

n

√∣∣∣ cos(θ)sin(φ)a

∣∣∣n +
∣∣∣ sin(θ)sin(φ)b

∣∣∣n +
∣∣∣ cos(θ)c

∣∣∣n (3.1.6)

where a, b, c, and n are length, width, height, and the amount of tip flattening

respectively and θ ∈ [−π, π], φ ∈ [0, π] are two angles of a vector represented

in spherical coordinate system. The contour slice plot of a 3-dimensional repulsive

SEPF is shown in Fig.3.3. The height (cfo) of the front half super-ellipsoid is chosen

to be, at least, two times greater than the RU . And the height (cbo) of the back half

super-ellipsoid is chosen to be equal to cfo to guarantee the continuity between the

two outer half super-ellipsoids. Note that cfi should be chosen to be less than cfo

with enough margin so that the avoidance vectors can evolve smoothly from zero

to its maximum allowed magnitude and also in order to avoid division by zero, i.e.,

infinite Vca in (3.1.4). Similarly, cbi is chosen to be less than cbo and equal to cfi to

ensure the continuity between them.

3.1.2 Repulsive Collision Avoidance Vector

The SEPF is designed to provide us with the repulsive collision avoidance mo-

tion vector (Vca). The gradient of a SEPF with respect to the relative position be-

tween the vehicle and an obstacle located at (o) gives the repulsive collision avoid-

ance motion vector. From the fact that ∇x‖x‖ = x/‖x‖ where x is a vector, the

repulsive collision avoidance motion vector of the SEPF when ‖pro‖ ∈ (Ri, Ro) is

given by

∇por

{
µf(por,vr)

}
= µ̄

(‖por‖ −Ri(vr)

Ro −Ri(vr)
− 1
)
nor (3.1.7)
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Figure 3.3: (a) Contour slice plot of the SEPF with v=2 m/s, afo = 20m, abo =
bfo = bbo = cfo = cbo = 5m, bfi = 1.5 + v2/2amax, bfi = cfi = abi = bbi = cbi =
1.5, n = 4, µ = 1, amax = 1. (b) one slice at z = 0, (c) one slice at x = 0, (c) one
slice at y = 0.

where the continuous function f(·) is as defined in (3.1.4), µ̄ = 2µ/(Ro − Ri) and

nor = por/‖por‖. Note that the value of ((‖por‖−Ri)/(Ro−Ri)−1) is zero when

an obstacle is at the boundary of the outer super-ellipsis and is negative one when

an obstacle is on the boundary of inner one. Hence, to ensure the continuity of the
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repulsive motion vector on the boundary of the inner super-ellipsis, the repulsive

collision avoidance motion vector is chosen to be -µ̄nor. Thus we finally have the

following collision avoidance motion vectors in the case of static environment:

VSca = ∇porPSrep(por,vr)

VSca =


0, if o is outside outer super-ellipse

−µ̄nor, if o is inside inner super-ellipse

µ̄
(
‖por‖−Ri(vr)
Ro−Ri(vr)

− 1
)
nor, otherwise

(3.1.8)

3.2 SEPF Based Collision Avoidance in Dynamic En-

vironment

The design of the SEPF in Section 3.1 is for static environments. For the case of

moving obstacles, we need to consider the relative velocity between the robot and

the moving obstacle in addition to the relative position between them. The relative

velocity (vro) between the robot and the point (o) in the direction from the robot to

the point (o) in Fig. 3.1 is given by

vro = vTrelnro (3.2.1)

where vrel = vr − vo, vr is the vehicle’s current velocity, vo is the obstacle’s

current velocity and nro = pro/‖pro‖ is a unit vector directing from the robot to
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the obstacle. Then dmin in (3.1.1) becomes

dmin =
v2ro

2amax
(3.2.2)

Note that when the robot is moving away from an obstacle, i.e., vro ≤ 0, col-

lision avoidance algorithm is not needed. However, when the robot is approaching

an obstacle, i.e., vro > 0, collision avoidance algorithm is considered. Then (3.1.4)

becomes

PDrep(por, vrel) =


0, if o is outside outer super-ellipsoid

1, if o is inside inner super-ellipsoid

µ
(
‖por‖−Ri(por,vrel)
Ro−Ri(por,vrel)

− 1
)2
, otherwise

(3.2.3)

In the sequel, we use PDrep to denote PDrep(por, vrel) andRi to denoteRi(por, vrel)

for simplicity of notation. Note that Ri is a function of the relative position (por)

and relative velocity (vrel) between the robot and the obstacle. We can see this if we

substitute the equation of vrel (3.2.2) which is also a function of the relative position

and relative velocity between the robot and the obstacle in (3.1.2), and then (3.1.2)

in (3.1.6).

3.2.1 Repulsive Collision Avoidance Vector

The gradient of an SEPF with respect to the relative position (por) and relative

velocity (vrel) between the robot and point (o) in Fig. 3.1 gives the avoidance vector

(VDca). The repulsive collision avoidance motion vector of the SEPF when ‖pro‖ ∈
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(Ri, Ro) and vro > 0 is given by

VDca = ∇porPDrep +∇vrelPDrep (3.2.4)

the gradient of the third row of (3.2.3) with respect to the relative position (por) and

velocity (vrel) is given by

∇porPDrep =
2µ

(Ro −Ri)2

(‖por‖ −Ri

Ro −Ri

− 1
)
<1 (3.2.5)

∇vrelPDrep =
2µ

(Ro −Ri)2

(‖por‖ −Ri

Ro −Ri

− 1
)
<2 (3.2.6)

where <1 is

<1 = (Ro −Ri)(∇por‖por‖ − ∇porRi)− (‖por‖ −Ri)(∇porRo −∇porRi),

and <2 is

<2 = (Ro −Ri)(∇vrel‖por‖ − ∇vrelRi)− (‖por‖ −Ri)(∇vrelRo −∇vrelRi).

If we substitute (3.2.2) in (3.1.2) and then (3.1.2) in (3.1.6), we get

Ri =
1

n

√∣∣∣ cos(θ)sin(φ)
v2ro

2amax
+RU+ds

∣∣∣n +
∣∣∣ sin(θ)sin(φ)b

∣∣∣n +
∣∣∣ cos(θ)c

∣∣∣n . (3.2.7)

To calculate the gradient ofRi with respect to the relative position (por) and velocity

(vrel), we need to calculate the gradient of vro with respect to the relative position
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(por) which is given by

∇porvro = −vrel + vronor
‖pro‖

, (3.2.8)

and the gradient of vro with respect to the relative velocity (vrel) which is given by

∇vrelvro = nro = −nor. (3.2.9)

Now using (3.2.7), (3.2.8), and (3.2.9), we obtain the gradient of Ri with respect to

relative position (por) and relative velocity (vrel)

∇porRi = −ξvro
vrel + vronor
‖pro‖

(3.2.10)

∇vrelRi = −ξvronor (3.2.11)

where ξ is

ξ =

∣∣∣ cos(θ)sin(φ)
v2ro

2amax
+RU+ds

∣∣∣n−1sign( cos(θ)sin(φ)
v2ro

2amax
+RU+ds

) cos(θ)sin(φ)

(
v2ro

2amax
+RU+ds)2amax

n

√(∣∣∣ cos(θ)sin(φ)
v2ro

2amax
+RU+ds

∣∣∣n +
∣∣∣ sin(θ)sin(φ)b

∣∣∣n +
∣∣∣ cos(θ)c

∣∣∣n)1+n (3.2.12)

We also need to know the following gradients to calculate (3.2.5) and (3.2.6)

∇por‖por‖ = nor (3.2.13)

∇vrelpor = ∇vrelRo = ∇porRo = 03×1. (3.2.14)
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Now, substituting (3.2.10), (3.2.11), (3.2.13), (3.2.14) in (3.2.5), (3.2.6) and

then (3.2.5), (3.2.6) in (3.2.4) , we obtain the final value of the gradient of the third

row of (3.2.3) which is given by

VDca = µ̄1ρnor − µ̄2ρ
vrel + vronor
‖pro‖

(3.2.15)

where µ̄1 = 2µ
(Ro−Ri)2

(Ro−Ri−(‖por‖−Ro)ξvro), µ̄2 = 2µ
(Ro−Ri)2

(‖por‖−Ro)ξvro

and ρ = (‖por‖−Ri

Ro−Ri
− 1). The value of ρ is zero when point (o) is on the boundary of

the outer super-ellipse, while it is negative one when point (o) is on the boundary of

inner one. Hence, the gradient of the SEPF is chosen to be−(µ̄1nor− µ̄2
vrel+vronor

‖pro‖ )

when the point (o) is inside the inner ellipse to ensure the continuity of the repulsive

avoidance vector.

Thus, we finally have the following collision avoidance motion vectors in case

of dynamic obstacles:

VDca =


0, if o is outside outer super-ellipsoid

−µ̄1nor + µ̄2
vrel+vronor

‖pro‖ , if o is inside inner super-ellipsoid

µ̄1ρnor − µ̄2ρ
vrel+vronor

‖pro‖ , otherwise

(3.2.16)

It can be seen form (3.2.16) that the relative position and relative velocity are

only needed to avoid collision with the moving obstacles.
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3.3 Collision Avoidance under Teleoperation

3.3.1 Generation of The Reference Velocity Command for a UAV

In teleoperation, an operator sends control commands to a UAV through a tele-

operation device which is an Xbox 360 controller in our case. The operator’s com-

mand is considered as a velocity control input (Vin) in the simulation and angle

control input (Ain) in the experimentation. Now, to generate the control reference

input that a UAV should track in the case of static obstacles, the operator’s control

input and collision avoidance motion vector (VSca) can be integrated into a single

vector. This integration is a simple vector sum

Vref = Vin −VSca (3.3.1)

in case of simulation where Vref is the reference velocity that a UAV should track,

and

Aref = Ain −ASca (3.3.2)

in case of experimentation where Aref is the reference angle that a UAV should

track. However, to generate the control reference input that a UAV should track

in the case of dynamic obstacles, the operator control input and collision avoidance

motion vector from both static and dynamic obstacles can be integrated into a single

vector.

Vref = Vin −VSca −
m∑
i=1

VDcai (3.3.3)
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in case of simulation where VSca and VDca are the velocity avoidance vectors in

case of static and dynamic obstacles respectively, and

Aref = Ain −ASca −
m∑
i=1

ADcai (3.3.4)

in case of experimentation where ASca and ADca are the angle avoidance vectors

in case of static and dynamic obstacles respectively and m is the number of moving

obstacles.

3.3.2 Repulsive Collision Avoidance Vector From Multiple Points

The discussion in Section 3.1.2 and 3.2.1 about the repulsive collision avoidance

motion vector (Vca) is for one point on an obstacle. However, a 3D range sensor

usually detects a point cloud on the obstacle. There are several ways to combine

multiple repulsive collision avoidance motion vectors from multiple points on an

obstacle into one final avoidance vector.

1. The sum of all the repulsive vectors generated from the point cloud. In gen-

eral, this method results in a large avoidance vector which is undesirable be-

cause it restricts the UAV motion.

2. The mean of all repulsive vectors generated from the point cloud. This

method sometimes leads to a small avoidance vector and a collision may oc-

cur because large avoidance vectors are averaged with small avoidance vec-

tors.

3. The sum of maximum positive and minimum negative components of repul-

sive vectors. Let Vfca = [xf , yf , zf ]
T be the final avoidance vector, xp be the
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vector of positive components constructed from the positive component of

each avoidance vector in x direction and xn be the vector of negative compo-

nents constructed from the negative component of each avoidance vector in x

direction, then xf = max(xp) + min(xn). yf and zf can be calculated in the

same way. In this method, the tangential repulsive vectors’ components of a

symmetric point cloud around an obstacle will cancel each other. For exam-

ple, if the UAV is moving perpendicular to the wall, it will stop before hitting

the wall because the tangential components to the wall will cancel each other

while the normal ones force the vehicle to stop (see Fig. 4.2). However, if a

UAV is moving towards the wall with an acute angle, it will deviate its path

when approaching to the wall and then move parallel to the wall as shown in

Fig. 4.4b.

We used the last method during the simulation and experimentation to validate the

proposed method.

3.3.3 Directions of The SEPFs

In the case of static obstacles, the direction of a repulsive potential function is

typically in the direction of current vehicle motion. However, in teleoperation case,

the SEPF is assigned to both operator’s control input and current vehicle’s motion

directions. If it is assigned to current vehicle’s motion direction only, this will lead

to a chattering behavior and the UAV will eventually collide with obstacles. For

example, if a UAV is moving with an acute angle towards the wall, the vehicle first

reaches the closest safety distance (ds) to the wall and it continues to move along

the wall and hence the SEPF direction is along the wall as well. However, the user
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control input is still towards the wall, and the robot follows it again because there

is no SEPF towards the wall, but there is not enough time for the repulsive vector

to prevent the collision this time, i.e., the wall entered the forbidden region of the

SEPF. Further, if the SEPF is assigned to current operator’s command direction

only, this might lead to a collision with obstacles because the generated avoidance

vector might steer the vehicle to a direction where there is no SEPF. In the case

of dynamic obstacles, when obstacles enter the distance sensor’s sensing range and

vro > 0, a new SEPF is assigned to the direction of each moving obstacle in addition

to the SEPFs from the static obstacles case.

3.3.4 Magnitude of The Repulsive Vector

In the case of static obstacles, the maximum magnitude of the repulsive vector

resulting from the SEPF in the direction of an operator’s control input is chosen

to be equal to the magnitude of the operator control input, i.e., µ̄ = ‖Vin‖. The

reason for choosing µ̄ to be varying with an operator’s control input is to limit the

magnitude of the collision avoidance motion vector to the current magnitude of the

operator’s control input since a large repulsive avoidance vector is not needed when

the UAV is commanded to move with very small velocities. For similar reasons,

the maximum magnitude of the repulsive vector resulting from the SEPF in the

direction of motion is also chosen to be equal to the magnitude of current vehicle

velocity (vr), i.e., µ̄ = ‖vr‖. In the case of dynamic obstacles, an appropriate value

for µ in (3.2.3) is chosen to scale VDca and make the collision avoidance process

smooth.

30



Chapter 4

Simulation

A human-in-the-loop simulation for the teleoperation of a quadrotor UAV is

implemented using the virtual robot experimentation platform (v-rep) program [39]

in conjunction with Matlab program to validate the performance of the proposed

autonomous collision avoidance framework using the SEPFs.

4.1 Simulation Setup

All the simulations and calculations were performed on a laptop computer with

an Intel(R) Core(TM) i7-3632QM CPU and 8GB of RAM.

The simulation for quadrotor UAV dynamics is performed inside the v-rep. V-

rep is a powerful simulator in which one can create, compose and simulate any

robot. It has numerous built-in models which can be separately controlled by an

embedded script, a plugin, a ROS node, a remote API client, or a custom solution

[40]. It can be programmed using many programming languages such as Matlab,

C/C++, and Lua. Attitude, velocity and position tracking controller were built,
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implemented using Lua language, inside v-rep to stabilize/control the quadrotor

UAV. A built-in 3D sensor model inside v-rep was used to measure the relative

distance to obstacles.

Human
Xbox 

Controller

Matlab
SEPF

Remote
API

v-rep
UAV

Remote
API

Reference velocity
𝑽𝒓𝒆𝒇

Control input
𝑽𝒊𝒏

Vehicle velocity
Sensor data

Figure 4.1: Simulation diagram showing data transfer between Matlab and v-rep
and from human operator to Matlab.

As shown in Fig. 4.1, there is a human operator who drives the virtual quadrotor

UAV inside v-rep. Also, there is a Matlab program in between the operator and v-

rep that is implemented to

• take input commands from the operator to calculate Vin,

• receive simulated velocity of the quadrotor UAV as well as sensor data from

v-rep to calculate VSca and VDca (in the case of dynamic obstacles), and

• perform all necessary calculations to generate a reference velocity Vref and

send it to the v-rep quadrotor UAV model through a remote API connection.
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4.2 Teleoperation of a Quadrotor UAV in Static En-

vironment

In this section, simulation results for the teleoperation of a quadrotor UAV in

an environment with static obstacles are presented. We found that the best way to

express the results is the action sequence of images technique. In all simulation

figures, the black curve, the red arrow, and the blue arrow represent the path of the

quadrotor UAV, operator’s command direction, and current UAV’s motion direction

respectively.

Figure 4.2: The quadrotor is commanded to move forward with its maximum ve-
locity towards the wall in front

Fig. 4.2 shows the case where the operator steers the quadrotor UAV forward

towards the wall in front with its maximum velocity. The quadrotor UAV gradually

decreased its velocity and came to a full stop before the wall when it reached the

minimum safety distance to the wall (ds). The reason behind this behavior is that
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the component of the avoidance vector (VSca) perpendicular to the wall cancels the

operator command (Vin) component which also perpendicular to the wall and has

the same magnitude of the perpendicular component of VSca but opposite direction.

Furthermore, the tangential components of the VSca to the wall cancel each other

because the point cloud detected on the wall is symmetric.

Figure 4.3: The quadrotor is moving towards a sloped wall in (x−y) plane. The red
SEPF represents operator’s command direction and the blue one represents current
UAV’s motion direction.

Fig. 4.3 represents the case when an operator keeps commanding the quadrotor

UAV to move straightforward with its maximum velocity to make the quadrotor

UAV collide with the sloped wall in front. As shown in the figure, the quadrotor

UAV does not collide with the wall despite the operator’s continuous command

in the forward direction. Instead, the vehicle continues to follow the operator’s

command while avoiding collision with the wall. The reason for this behavior is

that when the quadrotor UAV comes close to the wall, the component in Vin which

is perpendicular to the wall is canceled by the component in VSca which is also
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perpendicular and has the same magnitude but opposite direction, and the velocity

vector component in Vin which is parallel to the wall is tracked by the quadrotor

UAV. Further, when the quadrotor UAV continues to approach the left side wall,

the blue SEPF constructed along the direction of the vehicle’s motion prevents the

collision this time, and the vehicle eventually enters the narrow passage without

having any collision at all.

In Fig. 4.4, the quadrotor UAV is driven to approach the right side wall with an

acute angle. Fig. 4.4a shows the case that the quadrotor UAV fails to avoid collision

with the right side wall because the SEPF is assigned to the current UAV’s motion

direction only as discussed in Section 3.3.3. On the other hand, when the SEPF

is assigned to both current UAV’s motion and operator’s command directions, the

quadrotor UAV succeeds to avoid the collision with the wall. Then, it moves along

the wall until it reaches the corner and stops there. The reason behind this behavior

is that the component in the operator’s command (Vin) that is perpendicular to the

wall is gradually decreased as the quadrotor UAV approaches the right side wall

by the perpendicular component to the wall in VSca until these components cancel

each others while the component in the operator’s command (Vin) that is parallel to

the wall is followed by the quadrotor UAV. When the vehicle reaches the corner, it

stops there because the two components in Vin and VSca are now perpendicular to

the walls and have the same magnitudes with opposite directions as shown in Fig.

4.4b.

In Fig. 4.5, the quadrotor UAV is moving forward with its maximum velocity

towards an obstacle protruded from the right side wall. Fig. 4.5a illustrates that

the quadrotor UAV succeeds to bypass the protruded obstacle from the right side

wall but collides with the left side wall where the SEPF is directed to the opera-
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(a) The SEPF is in the direction of current UAV’s motion direction only; collision occurred.

(b) The SEPF is in both current UAV’s motion and operator’s command direction; no collision oc-
cured

Figure 4.4: The quadrotor is moving with an acute angle towards the wall. Collision
occurred in the top figure while no collision occurred in the bottom figure because
of the direction of the SEPFs.

tor’s command direction only and no SEPF is directed towards the left side wall

to prevent the collision as discussed in Section 3.3.3. On the other hand, when the
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(a) The SEPF is in the direction of operator’s direction only; collision took place.

(b) The SEPF is in both current UAV’s motion and operator’s command direction; no collision took
place

Figure 4.5: The quadrotor is steered towards an obstacle protruded from the right
wall. Collision took place in the top figure while no collision took place in the
bottom figure because of the direction of the SEPFs.

SEPF is directed to both current UAV’s motion and operator command direction,

the quadrotor UAV succeeds to avoid the collision with both the left side wall and
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protruded obstacle from the right side wall. The UAV first decreases it forward ve-

locity and then moves parallel to the sloped obstacle. Now, the SEPF constructed in

the current UAV’s motion direction is facing the left side wall and hence prevents

collision with it because the components of the (VSca) from the left side wall and

the protruded obstacle cancel each other and the UAV finally tracks the operator

command which is still in forward direction as shown in Fig. 4.5b.

Figure 4.6: The quadrotor is moving towards a sloped wall in (y − z) plane. The
quadrotor avoided collision with sloped wall and stopped before the wall.

Fig. 4.6 represents the case when the quadrotor UAV is steered forward towards

a sloped wall in (y − z) plane. As shown in the figure, the quadrotor UAV slows its

velocity and then deviates its path to move along the sloped surface. After avoiding

the sloped surface, the quadrotor UAV continues to move forward and stops before

the wall, similar to the case of Fig. 4.2.
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4.3 Teleoperation of a Quadrotor UAV in Dynamic

Environment

Simulation results for the teleoperation of a quadrotor UAV around moving ob-

jects are presented in this section. Note that, in all simulation figures presented in

this section, when the quadrotor UAV is at position 1, the moving obstacle is at po-

sition 1 as well and when the quadrotor UAV is at position 2, the moving obstacle

is at position 2 as well and so on.

Figure 4.7: The quadrotor is commanded to move towards a vertically moving ob-
stacle. The quadrotor UAV succeeded in bypassing the moving obstacle.

In Fig. 4.7, the operator commands the vehicle to move towards a vertically

moving obstacle (with a speed of 1 m/s). The vehicle avoids collision with the

obstacle, moves parallel to the obstacle, and then bypasses it. This happens be-

cause the components of the avoidance vector (VDca) decrease the relative velocity
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Figure 4.8: The quadrotor is commanded to fly towards a diagonally moving obsta-
cle. The quadrotor UAV avoided the collision with the moving obstacle and moved
parallel to the wall.

towards the obstacle (vro) to prevent the collision the obstacle and increase the rel-

ative velocity perpendicular to vro to drive the vehicle to bypass the obstacle.

Fig. 4.8 illustrates the case when the operator drives the vehicle towards a di-

agonally moving obstacle (with a speed of 1 m/s). At first, the quadrotor UAV

decreases its relative velocity toward the moving obstacle, bypasses it at position 4,

then moves parallel to the wall, and finally stops at the corner which is similar to

the case of Fig. 4.4b.

The quadrotor UAV avoiding multiple moving obstacles (each with a speed of

1 m/s) is shown in Fig. 4.9. The quadrotor UAV first deviates its path due to

the black obstacle to avoid colliding with it. Then, at position 5, it faces another

moving obstacle (the blue one), deviates its path again away from the obstacle and

tracks operator’s command perfectly because there is no more obstacles until it

faces a wall, and stops there because the perpendicular avoidance vector component
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Figure 4.9: The quadrotor UAV is steered forward where there are two moving
obstacles in the environment.

generated from the wall cancels command vector component perpendicular to the

wall, and there is no command vector component parallel to wall to track by the

vehicle.

To prove that our algorithm also works in a 3-dimensional space, a case of Fig.

4.10 is implemented. The vehicle moves towards an up and down moving sloped

obstacle (with a speed of 1 m/s). The first rise in robot’s path is because the ob-

stacle is moving upward (not shown in the figure for the clarity of presentation).

Then, the robot moves forward in x − y plane, i.e., tracking operator command,

because the obstacle is moving downward (vro ≤ 0, i.e., VDca = 0) and the robot

sees no static obstacles (VSca = 0). The second rise in robot’s path is because the

obstacle is now moving upward again, i.e., position 1,2 and 3. The robot moves up-

ward to avoid collision with the moving obstacle. Then, the robot tracks operator’s

command and moves forward.
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Figure 4.10: The quadrotor is moving towards an up and down moving sloped
obstacle.
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Chapter 5

Experimentation

A human-in-the-loop experiments for the teleoperation of a quadrotor UAV is

implemented using a physical quadrotor UAV, AR.Drone 2.0 which is shown in

Fig. 5.1, and a motion capture system in a laboratory environment of dimensions

4m × 3m × 2m with the help of Robot Operating System (ROS) [41] to validate

the performance of the proposed autonomous collision avoidance framework using

the SEPFs.

Figure 5.1: AR.Drone 2.0 photo [3].
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Figure 5.2: Experimentation diagram showing data transfer between ROS and
AR.Drone 2.0 and from human operator to ROS.

5.1 Experimental Setup

All the experiments and calculations were performed on the same computer that

is used in the simulation of the proposed method.

A virtual 3D range sensor is implemented using the data provided by the mo-

tion capture system. This virtual sensor supplies a point cloud of distance mea-

surements. In all experiments, the obstacles are virtual and predefined. A position

tracking controller is also implemented to improve the hovering performance of the

AR.Drone 2.0 quadrotor. All the calculations during the experiments are performed

within ROS framework. Fig. 5.2 illustrates the experimentation diagram. As shown

in the figure, there is a human operator who drives the AR.Drone 2.0 quadrotor via

an Xbox controller. Also, there is a program inside ROS written in C++. The

function of this program is to
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• take input commands from the operator to calculate Ain,

• obtain the quadrotors position and orientation from the motion capture system

to implement the position tracking controller for the quadrotor,

• receive the legacy navigation data from the quadrotor, and

• perform all necessary calculations to generate a reference angle Aref and

send it to the AR.Drone 2.0 quadrotor through a WIFI connection.

5.2 Teleoperation of a Quadrotor UAV in Static En-

vironment

In this section, experimentation results for the teleoperation of a quadrotor UAV

in an environment with static obstacles are presented. We found that the best way

to express the results is to use the action sequence of images technique.

In all experiment figures, the white curve, the red arrow, and the blue arrow

represent the path of the quadrotor UAV, operator’s command direction, and current

UAV’s motion direction respectively. Since all the obstacles are virtual, we used

rviz (3D visualization tool for ROS) package in ROS to help visualize the obstacles

in the environment as well as the quadrotor position with respect to the virtual

obstacles as shown Fig. 5.3 and Fig. 5.4. We performed two experiments which are

similar to the simulation cases.

The first experiment is shown in Fig. 5.3. The quadrotor UAV is commanded to

fly with an acute angle to the wall; it does not collide with the wall, as expected from

the simulation in Fig. 4.4b, and moves parallel to the wall as shown in Fig. 5.3a.
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(a) The quadrotor is moving with an acute angle towards the virtual wall on the left.

(b) Visualization of the above scene in rviz showing the virtual obstacles

Figure 5.3: The quadrotor is moving with an acute angle towards the wall on the
left.

The virtual walls, UAV’s path, UAV’s current direction, and operator’s command

direction are shown in Fig. 5.3b.
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(a) The quadrotor is moving towards a virtual sloped wall in (y − z) plane.

(b) Visualization of the above scene in rviz showing the virtual obstacles

Figure 5.4: The quadrotor is moving towards a sloped wall in (y − z) plane. The
quadrotor avoided collision with sloped wall and stopped before the wall.

The second experiment is shown in Fig. 5.4. The quadrotor UAV is moving

towards a sloped wall in (y − z) plane; it deflects its path, as expected from the

simulation in Fig. 4.6, and moves along the sloped wall, and then moves forward
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and stops before the wall as shown in Fig. 5.4a. The virtual walls, UAV’s path,

UAV’s current direction, and operator’s command direction are shown in Fig. 5.4b.

5.3 Teleoperation of a Quadrotor UAV in Dynamic

Environment

Experimentation results for the teleoperation of a quadrotor UAV around mov-

ing objects are presented in this section. Note that, in all experiment figures pre-

sented in this section, when the quadrotor UAV is at position 1, the moving obstacle

is at position 1 as well and when the quadrotor UAV is at position 2, the moving

obstacle is at position 2 as well and so on. We performed three experiments which

are similar to some extent to the simulation cases.

The first experiment is shown in Fig. 5.5. In Fig. 5.5a, the vehicle moves to-

wards a horizontally moving obstacle (with a speed of 0.6m/s). The vehicle avoids

collision with the obstacle by detouring the obstacle for the reasons discussed in

simulation case, Fig. 4.7. At position 5, the moving obstacle tries to collide with

the quadrotor from its left side. The quadrotor, hence, moves to the right, and even-

tually, tracks operator command input. Fig. 5.5b shows the static and dynamic

virtual obstacles, the path of the quadrotor, UAV’s current direction, and operator’s

command direction.

The second experiment is shown in Fig. 5.6. In Fig. 5.6a, the vehicle moves

towards a diagonally moving obstacle (with a speed of 0.5 m/s). The quadrotor

does exactly the same as the simulation case shown in Fig. 4.8. the static and

dynamic virtual obstacles, the path of the quadrotor, UAV’s current direction, and

operator’s command direction are illustrated in Fig. 5.6b.
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(a) The quadrotor is commanded to move towards a horizontally virtual moving obstacle.

(b) Visualization of the above scene in rviz showing the virtual static and daynmic obstacles

Figure 5.5: The quadrotor is commanded to move towards a horizontally moving
obstacle. The quadrotor UAV succeeded in bypassing the moving obstacle.

The third experiment is shown in Fig. 5.7. The quadrotor avoiding multiple

moving obstacles (each with a speed of 0.5 m/s) is shown in Fig. 5.7a. Each obsta-

cle moves back and forth from position1 to 6. This case is similar to the case shown
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(a) The quadrotor is commanded to fly towards a diagonally virtual moving obstacle.

(b) Visualization of the above scene in rviz showing the virtual static and daynmic obstacles

Figure 5.6: The quadrotor is commanded to fly towards a diagonally moving obsta-
cle. The quadrotor UAV avoided the collision with the moving obstacle and moved
parallel to the wall.

in Fig. 4.9. Fig. 5.7b demonstrates the static and dynamic virtual obstacles, the

path of the quadrotor, UAV’s current direction, and operator’s command direction.
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(a) The quadrotor UAV is steered forward where there are two virtual moving obstacles in the envi-
ronment.

(b) Visualization of the above scene in rviz showing the virtual static and daynmic obstacles

Figure 5.7: The quadrotor UAV is steered forward where there are two moving
obstacles in the environment.
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Chapter 6

Teleoperation Interface Program

In teleoperation, the operator drives a robot from a remote distance and visu-

alizes the environment around the UAV via a camera mounted on the UAV. This

camera usually has a limited field of view, and hence the operator cannot visual-

ize the UAV’s surrounding environment properly. This leads to a lack of situation

awareness for the operator and decrease the efficiency and safety of the teleopera-

tion process, i.e., collision might occur because the robot may move in a direction

that is out of the camera’s field of view, especially in the case of the quadrotor UAV

which can move in any direction.

So far, we have developed an algorithm to assist the operator in autonomously

avoiding collision with obstacles and to follow the operator’s command as closely

as possible. To further enhance the operator’s situation awareness, the data, i.e., a

point cloud, from the range sensor, e.g., vision sensor or LIDAR, can be used to

visualize the surrounding environment, e.g., bulding a map.

In this chapter, we present a user interface program developed based on rviz

package, a 3D visualization tool for ROS (Robot Operating System), to assist the

52



operator during the teleoperation by building a 3D map of the environment or just

visualizing the environment around the robot using the point cloud of measurements

provided by the range sensor.

The user interface program was implemented in simulation only and not tested

in the experiments using a physical quadrotor because the current quadrotor UAV

does not have an on-board range sensor, and this work is currently in-progress to

apply in real experiments.

6.1 Rviz

Rviz is a 3D visualization tool for ROS. It is a powerful ROS package that

makes it easy to visualize point clouds, laser range sensor measurements, a video,

etc. because of its many built-in display types. The main window of rviz when it

starts is shown in Fig. 6.1

Figure 6.1: Rviz the 3D visualization tool for ROS [4].
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When the Add button, on the left side Fig. 6.1, is clicked, A new display will

appear with many display types as shown in Fig. 6.2a. Once the display is added,

it will appear on the display panel of the main rviz window. Each display has many

properties (see Fig. 6.2b) such as colors, size, the topic to subscribe to, etc. Besides

the built-in display types, one can add its own customized display through plugins.

Each added display will appear in the 3D view in the middle of the main rviz

window. One can interact with the 3D view using the mouse, e.g., zoom, rotate,

etc., or from the view panel on right side of the main rviz window.

(a) Display types. (b) Display properties

Figure 6.2: Rviz display types and properties [4].

6.2 3D Map Building

Building a map is very important for mobile robots, especially in teleoperation

tasks because of its various advantages. For example, it increases the situation

awareness for the operator which leads to easy and efficient teleportation; it can
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be used for robot localization in simultaneous localization and mapping (SLAM)

process in places where there is no GPS signal; it is beneficial in collision avoidance

process where the distance to obstacles can be estimated from the built map.

The map building process is tested through simulation, and an octomap ROS

package [42] is used to generate the 3D map of the environment and display it

using rviz. The diagram for the 3D map building using v-rep and ROS is shown in

Fig. 6.3. As can be seen from the figure, the point cloud from the range sensor and

video are published as a ROS topics by v-rep. The octomap package then subscribes

to the point cloud topic to generate the map and publish it. Finally, rviz subscribes

to the map and video topics and displays them for the operator.

3D map building process using the above discussed method was tested in three

different scenes. The first scene is shown in Fig. 6.4 where the quadrotor UAV is

moving in a corridor and facing a protruded obstacle from the right wall. The top

figure (Fig. 6.4a) is the simulation scene while the three figures (Fig. 6.4b, Fig.

6.4c and Fig. 6.4d) in the middle demonstrate the stages of the map building. The

bottom figure (Fig. 6.4e) shows the complete 3D map of the scene. The other two

simulation scenes are shown in Fig. 6.5 and Fig. 6.6. It should be noted that the

3D map building is suitable for a static environment. In a dynamic environment,

it is better to just visualize the point cloud of the range sensor measurements as

discussed in the next section.
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Figure 6.3: Diagram for 3D map building using v-rep and ROS.
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(a) The simulation scene for the case shown below

(b) (c) (d)

(e) The UAV stopped before the wall.

Figure 6.4: 3D map building for the case where the quadrotor UAV is moving in a
passage and facing a protruded obstacle from the right wall.
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(a) The simulation scene for the case shown below

(b) (c) (d)

(e) The UAV stopped at the corner

Figure 6.5: 3D map building for the case where the UAV is steered with an acute
angle toward a wall on the right side.
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(a) The simulation scene for the case shown below

(b) (c) (d)

(e) The UAV stopped before the wall

Figure 6.6: 3D map building for the case where the UAV is moving toward a sloped
wall in (y − z) plane.
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6.3 Point Cloud Visualization

Sometimes map building is computationally expensive or even misleading, par-

ticularly in a dynamic environment where objects are moving, and they will be

mapped on several locations on the map which is undesirable. To address these

problems, the point cloud from the distance sensor can be visualized online without

any map building. In this case, the operator can visualize the environment around

the robot and can recognize if there are moving obstacles. The point cloud visual-

ization for the scenes in Fig. 6.4a, Fig. 6.5a and Fig. 6.6a are shown in Fig. 6.7,

Fig. 6.8 and Fig. 6.9 respectively. Fig. 6.10 demonstrates the case of moving obsta-

cles where the operator can easily distinguish the moving obstacle from the static

objects even if it is not seen by the front camera as can be seen in Fig. 6.10b, Fig.

6.10c and Fig. 6.10d. The diagram for the point cloud visualization using v-rep and

ROS is shown in Fig. 6.3.

Figure 6.7: Point cloud visualization for the case where the quadrotor UAV is mov-
ing in a passage and facing a protruded obstacle from the right wall.
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Figure 6.8: Point cloud visualization for the case where the UAV is steered with an
acute angle toward a wall on the right side.

Figure 6.9: Point cloud visualization for the case where the UAV is moving toward
a sloped wall in (y − z) plane.
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(a) The simulation scene for the moving obstacle case shown below. When the UAV is at position 1

the moving obstacle is at position 1 as well and so on.

(b) (c) (d)

(e) The quadrotor stopped before the wall

Figure 6.10: Point cloud visualization for the case of moving obstacles in which the
operator can distinguish the moving obstacles from the static ones.
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Chapter 7

Conclusions and Future Research

This thesis proposed a 3-dimensional autonomous collision avoidance algorithm

in static and dynamic environments based on the idea of super-ellipsoidal potential

function (SEPF.) In the design of the SEPF, we have a full control over the shape

and size of the potential function. In particular, we can adjust the length, width,

height, and the amount of flattening at the tips of the potential function so that

the collision avoidance motion vector generated from the potential function can be

adjusted accordingly. The proposed method is computationally inexpensive and

requires the relative distance to the obstacle in order to work in the case of static

obstacles and the relative distance and velocity to the obstacle in the case of moving

obstacles.

In the proposed algorithm, operator’s commands that are only in the direction of

the obstacle are overridden and others that are in the obstacle-free path are tracked.

In this way, our algorithm ensures that: i) the UAV autonomously avoids obstacles

in its path; ii) the UAV chooses the obstacle-free path if there is a control input in
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that path direction; and iii) the operator is always in control of the vehicle. Thus,

our algorithm enables easy and safe teleoperation.

The results show the effectiveness of the proposed algorithm where the algo-

rithm was first validated using the v-rep simulation program in conjunction with

Matlab program. Then, it was validated using a real quadrotor UAV, AR.Drone 2.0

and a motion capture system. In all simulation and experiment cases, the opera-

tor failed to collide the quadrotor UAV with the obstacles and the quadrotor UAV

tracked the operator’s command as closely as possible.

Recommendations for future research include:

• On-board Collision Avoidance: Since the ultimate goal of this research is

to assist the UAV operator in real life situations and not just inside a labora-

tory environment where the obstacles are programmed and the location of the

UAV is known using the motion capture system, we need to eliminate the de-

pendency on the motion capture system by performing the following in order

to enable the proposed method to work outside the motion capture system:

– On-board Sensing: Even though we implemented our method on a

physical quadrotor UAV, the obstacles were virtual and programmed for

each experiment and a motion capture system was used to obtain the

UAV position. In an unknown real world environment, an on-board 3D

range sensor is needed so that the obstacles can be detected. This can be

achieved by using a method similar to [25] or using vision sensors that

provide point clouds of measurements.

– Position Tracking Controller Using On-board Sensors Only: Cur-

rently, we are using the data provided by the motion capture system to
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implement a position tracking controller. If we go outside the motion

capture system, we need a method to implement a position tracking con-

troller using on-board sensors only, especially in indoor environments

where there is no GPS signal.

• Haptic Feedback: The use haptic feedback in conjunction with the proposed

method is beneficial because it increases the operator’s situation awareness.

• Multiple UAVs: It is worthy to test the proposed algorithm in multiple UAVs

teleoperation.
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