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Abstract

The purpose of this dissertation is to introduce a novel approach to generate a se-

curity test suite to mitigate malicious attacks on an autonomous system. Our method

uses model based testing (MBT) methods to model system behavior, attacks and mit-

igations as independent threads in an execution stream. The threads intersect at a

rendezvous or attack point. We build a security test suite from a behavioral model,

an attack type and a mitigation model using communicating extended finite state ma-

chine (CEFSM) models. We also define an applicability matrix to determine which

attacks are possible with which states. Our method then builds a comprehensive test

suite using edge-node coverage that allows for systematic testing of an autonomous

vehicle.
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Chapter 1: Problem Statement

1.1 Introduction

As autonomous systems are becoming more popular in both military and commer-

cial use, malicious attacks that threaten them are also getting more sophisticated.

Autonomous systems generally have some remote piloted capability or rely on naviga-

tion systems such as a global positioning systems (GPS) which makes them vulnerable

to cyber security attacks. This dissertation demonstrates an approach for security

testing autonomous systems. Our approach has been demonstrated on both pre-flight

and post-liftoff launch vehicles, as well as an unmanned aerial vehicle (UAV) system.

This approach proposes a black box testing method that uses a behavioral model, an

attack type and a mitigation model to build a security test suite. We identify attack

points in a system using behavioral and attack models. We then generate a UAV

security test suite based on attack mitigation models.

Our approach focuses on finding vulnerabilities at the external interface or where

internal components interact. Previous research has found that even though indi-

vidual software components have undergone extensive testing, their interactions with

other software components still need to be extensively tested [74]. Autonomous ve-

hicles are also comprised of embedded systems with inherent vulnerabilities. Interac-

tions between these components give rise to security concerns. Security test cases can

then be derived from attack scenarios based on complex attack path and coverage
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criteria [42]. Test cases are then applied to test the security of the system. Based

on the results of these test cases, the system can be modified to increase the level of

security.

There are many examples of autonomous systems being compromised by security

attacks. On June 4, 1996, the maiden voyage of the Ariane 5 launch vehicle exploded

during liftoff. The European Space Agency (ESA) had spent ten years and seven

billion dollars developing the launch vehicle. The explosion caused an estimated

loss of 500 million dollars and Europe’s opportunity to become a front runner in

commercial space ventures. The explosion was caused by a software error when a 64

bit variable was written into a 16 bit memory location. This overflow caused complete

loss of guidance and altitude information on the Ariane 5 launch vehicle[1]. While

this error was not a malicious attack, attackers are capable of injecting data into a

system and causing it to malfunction. This is a very clear example of the importance

of security testing autonomous systems.

In April of 2005, hackers penetrated the secure network of National Aeronautics

and Space Administration’s (NASA’s) Kennedy Space Center. Space Shuttle Dis-

covery’s launch data had been gathered by a program known as stame.exe, from the

Vehicle Assembly Building (VAB). The attackers transported sensitive pre-launch

data to a computer system in Taiwan. By December of 2005, stame.exe had spread

to a NASA satellite control complex in Maryland and mission control at Johnson

Space Center (JSC). The attackers had retrieved 20 gigabytes of compressed data

from JSC alone. It took over seven months for authorities to discover the data

breach. The stolen data contained design information for the rocket engine and the

fuel systems [33].

In December of 2011, the Iranian government claimed to have captured an Ameri-

can RQ-170 Sentinel unmanned aerial vehicle (UAV). An Iranian engineer alleged the

2



attack occurred when they jammed the land-oriented and satellite control signals,

then spoofed the UAV with false global positioning system (GPS) data and forced it

to land. The Iranians have further claimed to have decrypted data from the UAV in-

cluding maintenance and intelligence information [69]. The United States government

denied the Iranian claims, but admitted that a UAV was lost in Iran. Regardless of

how it was captured, there are documented vulnerabilities in GPS. Therefore, security

testing is critical for UAV’s.

In November 2012, Japan Aerospace Exploration Agency (JAXA) reported that a

computer virus had resulted in a leak of rocket data from its M-V, H-IIA and H-IIB

rockets. JAXA suspected the attackers were interested in the solid fuel rocket data,

which could be applied to an intercontinental ballistic missile (ICBM) [2][4][23].

In these cases, hackers were suspected to be foreign government agencies that were

seeking to use the stolen data (or vehicle) for espionage purposes. To prevent security

attacks on launch systems and autonomous vehicles, a systematic method of testing

security attacks and mitigations is essential.

1.2 Software Security Test

Software has inherent vulnerabilities that must be addressed at all phases of its

life cycle. Vulnerabilities in software are often caused by lack of poor coding stan-

dards [14]. The goal of software security is to protect data from threats that could

intentionally or inadvertently alter the flow of data. Attacks on software can cause

loss of integrity, financial loss, or even loss of life.

To secure software, developers must perform risk management to evaluate situa-

tions to ensure that little or no damage is being done to the system’s confidentiality,

integrity and availability [102]. There are various types of threats to software as de-
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tailed in Appendix A as well as software threat models detailed in Appendix B.1.

While traditional software testing focuses on common cases, security testing must fo-

cus on uncommon cases in which there are very few test cases [14]. This dissertation

will focus on malicious software security attacks or cyber security attacks including:

• Denial of Service (DOS) Radio Frequency (RF) Jam Attack - RF Signal ranges

are in the public domain, an attacker can figure out which range of RF signal

an autonomous system is transmitting on and send signals in the same range

overloading an autonomous vehicle with RF Signals and confusing the system

creating a condition called a DOS attack, in which the system is confused and

does not know which signals to respond to.

• DOS Flood Attack - An attacker floods an autonomous system with commands

or data confusing the system.

• Sniff and Spoof Attack - An attacker listens to the data coming from an au-

tonomous system long enough to understand the packet data (for example an

attacker might notice that navigation packets are short and video streaming is a

larger data packet). Once the packets are understood, the attacker can attempt

to Spoof packets similar to the ones it gathered from the vehicle causing an

autonomous system to change course or become confused.

• Man in the Middle (MITM) Attack - The attacker gathers data from an au-

tonomous system and passes on either real or modified data to its intended

recipient without being recognized.

• GPS JAM Attack - While widely used, GPS has known vulnerabilities in which

positioning data can be maliciously altered to cause a vehicle to become confused

or crash.

4



1.3 Model Based Test

Model-based testing (MBT) is a state of the art method for generating test cases on

black box systems [26][78][79]. Models can be generated on a system without having

all of the intricate design detail used to design a complicated system [93]. Testing all

possible paths in a complex software system can be a very large task, depending on

the complexity of the system [93]. MBT models are designed to test the functional or

intended behavior. Utting et al.[92] classify MBT notations as State-Based, History-

Based, Functional, Operational, Stochastic, and Transition-based. Transition-based

notations are graphical node-and-arc notations that focus on defining the transitions

between states of the system such as variants of finite state machines (FSMs), ex-

tended finite state machines (EFSMs), and communicating extended finite state ma-

chines (CEFSMs)). More examples of transition-based notations also include Unified

Modeling Language (UML) behavioral models (like activity diagrams, sequence and

interaction diagrams), UML state charts, as well as Simulink Stateflow charts [93].

Each type of model has its own characteristics. For example, traditional FSMs do

not contain a communication mechanism and do not precisely model the interactions

of systems [56]. CEFSMs [21] extended finite state machines (EFSMs) to include

variables, operations based on variables, and interactions of variables. MBT is de-

signed to test the intended behavior of software. To use MBT for security testing,

we will model the behavior, threat and mitigation as independent models and derive

test paths that will be woven together. Common modeling tools include Finite state

machines (FSMs) [9], Extended Finite State Machines (EFSMs), CEFSMs [59], Petri

Nets [101] and UML models [95]. FSMs have been used for over 40 years to mathe-

matically model the behavior of a system [9]. Coverage criteria such as edge, node,

edge-pair, prime path, and W-method were shown using an FSM model [7][37][78].
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MBT has also been used to characterize black box behavior to build a test suite [92].

The three main steps in MBT are creating a functional test model, identifing test

generation criteria and building the test suite [78].

MBT has been used to automatically generate test cases for security testing [79].

Schieferdecker et al. [79] cover the types of models in model based security testing

(MBST) including architectural and functional models, threat, fault, risk models, and

weakness and vulnerabilities models. They also discuss activities involved in MBST

which include identifying security test objectives and methods, designing functional

test models, determining test generation criteria, generating the tests, and assessing

the test results. The paper [79] also addresses an approach in the DIAMONDS project

which focuses on risk-based MBST and model-based fuzz testing. However, they do

not present systematic testing of attack mitigation.

1.4 Research Questions

This dissertation is focused on a model based test approach for generating a security

test suite for autonomous systems. It will address the following research questions:

- RQ1: Can we leverage an MBT behavioral test suite to build a security test

suite?

- RQ2: Can we model required mitigations for security attacks and generate

mitigation tests?

- RQ3: Can we identify criteria for covering attack scenarios in a systematic way?

- RQ4: Can we use behavioral tests, mitigation test and attack scenarios to build

a systematic approach to security testing (MBST)?

- RQ5: Will the approach be scalable?

6



- RQ6: Will the approach work for single or multiple attacks?

- RQ7: Is the approach robust enough to be applied to various types of au-

tonomous vehicles and launch systems?

The remainder of this document is organized as follows. Chapter 2 describes

related work. Chapter 3 offers an approach to generate a security test. Chapter 4

describes our approach applied to case studies. Chapter 5 offers some suggestions

about future work. Finally Chapter 6 gives the conclusions.
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Chapter 2: Background

This chapter provides previous research in the areas of Model Based Testing, Se-

curity Testing and Mitigation Patterns. We will address publications on each of the

topics individually and demonstrate that our approach is novel and covers all three

areas of the topics. Our research will show that the other publications do not an-

swer our research questions stated above. Our approach fits into the black region

illustrated in Figure 2.1.

 

Figure 2.1: Background Venn Diagram
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2.1 Background Research

The goal of this background research is to identify key papers as well as identify

papers that intersect more than one key topic as shown in Figure 2.1. There were no

papers found that intersect all three key areas.

2.2 Model Based Testing (MBT)

Model-based testing uses functional requirements to generate behavioral models

which are used for test. Common modeling tools include Finite state machines

(FSMs) [9], Extended Finite State Machines (EFSMs), CEFSMs [59], Petri Nets [101]

and UML models [95]. FSMs have been used for over 40 years to mathematically

model the behavior of a system [9]. Coverage criteria such as edge, node, edge-pair,

prime path, and W-method were shown using an FSM model [7, 37, 78]. MBT has also

been used to characterize black box behavior to build a test suite [92]. Schieferdecker

et al. [78] provide a history of model-based testing.

Table 2.1: MBT Research Matrix

Model Research Area

Functional Test Security Test

UML [3] [45] [40] [72] [46] [47] [68] [95]

[70] [39] [71] [30] [85]

[65] [89] [52] [24] [16]

FSM [76] [90] [60] [36]

EFSM [28] [84] [48] [81]

CEFSM [59] [21] [19] [32]

[18] [43] [44] [54]
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2.2.1 Unified Modeling Language (UML)

UML is a standard tool for visualizing the design of a system including specifying,

analyzing, modeling or documenting software solutions [67, 75]. While UML is gener-

ally used for software design it has also been used to model hardware systems. It was

developed with the intention of using a graphical approach to more easily visualize

the design and interactions of a software system. UML can be used to design a system

including identifying components of the system, how the system will run, how the

components interact and external interfaces. Examples of UML in design are detailed

in [15, 55]. We will focus on UML test [40, 72, 70, 39, 71, 30]. The UML language has

simplified the process of converting specifications to test cases and models [85]. UML

models assist a designer in analyzing relationships and dependencies in a system [91].

State Chart Diagrams

Statechart diagrams model a state machine which details the different states of a

component in a system. They can be used to test an entire system or part of a system.

A statechart describes the state machine by defining the state of an object and how

the states are controlled by both internal and external events. Statechart diagrams

are one of five types of UML diagrams that are used to model a system. Statecharts

are typically used to model reactive systems by:

* Defining a state machine.

* Modeling the States of an object.

* Modeling the dynamic nature of a system.

* Modeling life of the system from beginning to end.
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Statechart diagrams contain components including states, events, transitions, pa-

rameters and guards. The states have a hierarchical nature and may contain multiple

states as well and AND or OR states. Events represent change in the model. Transi-

tions define the previous and the next state. Parameters are used to input data into

a state. Guards are Boolean conditions that allow or prevent states from transition-

ing. Offutt et al. [65] present a method to use UML statecharts to adapt pre-defined

state based specification test data generation criteria to generate test cases. They

also present several coverage criterion to transition coverage, full predicate coverage,

transition pair coverage, and complete sequence coverage. They also present results

from an empirical study. Due to the hierarchical nature of state chart diagrams, there

is a need to flatten them to produce a sets of paths which are combined to form a test

case. An automated approach is presented by Briand et al. [22]. They automate the

process of generating test cases from a statechart using coverage criteria. Coverage

criteria include:

* All Transitions.

* All Transition Pairs.

* Full Predicate.

* Round-Trip Paths.

By automating the process, they take each individual test path, identify the state,

event, input parameters and transition needed for the test. They also introduce sev-

eral methods for automating test generation. Lefticaru et al. [57] select test paths

in a state machine, then use genetic algorithms (GA) to generate test data for them.

The input parameters trigger the transitions. The GA locates the input parameters

to satisfy a given requirement. The approach uses coverage criteria, identifies a test
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path and input parameter values that would trigger the path. Prashanth et al. [3]

present an efficient method to detect safety specification violations in dynamic behav-

ior models of concurrent/reactive systems. Dynamic behavior is modeled as a UML

statechart diagram. They also present a case study where the technique is applied to

a generalized railroad crossing (GRC) system. The goal of the research is to reduce

the number of states to be checked for detecting safety violations in the behavior of

a reactive system. It is assumed that the system has multiple cooperating objects

modeled by statecharts. They also present ”relevant events”, which is a set of events

that can violate a safety property. A relevant events algorithm is described. The

method is shown using a case study. The paper describes an event based algorithm

for the verification of safety property violations in a UML statechart model of reactive

systems [3].

Activity Diagrams

A UML Activity Diagram is used to understand the business process of the sys-

tem [25]. It helps the developer understand the flow and the different paths of the

software. Activity diagrams describe the dynamic elements in a system by represent-

ing data flow from one activity to the next. Activity Diagrams contain:

* Actions - Activities in a Modeled Process

* Initial State - Beginning of a Process or Workflow

* Decisions - Branching in the Data Flow

* Split/Join - Combines Concurrent Activities

* Final State- End of a Process or Workflow
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UML activity diagrams and sequeuce diagrams have been used for generating test

cases. Tripathy et al. [89] present an approach that transforms activity diagrams into

activity graphs and sequence diagrams into sequence graphs. They then integrate the

two graphs and traverse them to generate test cases.

UML Functional Testing

Kissoum et al. [52] present a paper about the importance of verifying the accuracy

and reliability of software in multi-agent systems (MAS). They present automated test

case generation for testing MAS. They also cover the formal specification of agent

classes using the Maude algebraic language and describe the approach to test the

agents and to generate test cases for specified MAS. They give examples of sequence

and activity diagrams that specify the behavior of an agent [52].

Caire et al. [24] discuss agent behavioral representation which includes multi-

agent behavior description (MABD) and single-agent behavior description (SABD).

These agent behaviors drive the implementation phase. They discuss using UML

activity diagrams with extensions. They also present a multi-level representation of

agent behaviours and provide a new diagram called multi-agent zoomable behaviour

description (MAZBD). They also present a multi-level approach to MAS testing which

talks about agent level testing and the black-box behaviour of the agent. Their

framework is also built on top of JADE [24].

UML diagrams as shown in activity diagrams or statechart diagrams can be used

to test component based systems. Bertolino et al. [16] also combine sequence and

state diagrams to generate a test model. Their test model is used to produce test

cases.
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UML Security Testing

UMLSec is an extension of UML which incorporates security properties such as se-

cure flow of information, access control and confidentiality into a UML model. Jurjens

et al. [47] use UMLsec to present security-relevant information in the UML diagrams

in a system specification. They discuss distributed system security with respect to

type of requirements (fair exchange, secrecy, secure information flow, secure com-

munication link), UML extension mechanisms, outline of formal semantics, security

analysis, and well-formedness rules. UML extension mechanisms expand UML meta-

models by adding additonal elements or constraints to the UML models. A UML

extension creates a profile using stereotypes, constraints and values. UMLSec covers

object management group request for proposals (OMG RFPs) mandatory require-

ments (security, threat scenarios, security concepts, security mechanisms, security

primitives, underlying physical security). They extend the work in [46] to present

work for systematically testing security-critical systems. They specify the system

with a formal language and generate test cases to identify security weaknesses. They

present an approach using UMLSec and a general approach towards model-based

security engineering. They also apply the approach to Common Electronic Purse

Specification (CEPS). This approach works by adding formal security property se-

mantics to UML models. As it offers a method for development and security analysis

of a critical system, it does not answer our research questions.

Peralta et al. [68] present an approach to use UML to describe security charac-

teristics such as design flaws in software. They present a set of UML stereotypes to

identify behaviors that could compromise software security. The stereotypes are used

to model sections of the software that could contain vulnerabilities. The approach

has two goals identifying areas of vulnerability and generating security test cases.
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This approach works by automatically generating test cases using the inserted

security stereotypes. They then use the test cases to verify if a vulnerability could

be possible in the test case. It does not answer our research questions as it has only

been used on very simple test cases and further work is required to apply it to more

elaborate test cases.

Wang et al. [95] presents a threat model-driven security testing approach for de-

tecting undesirable threat behavior at run time. A threat model defines potential

threats to a system. They are derived from design models that can extract threat

traces. Each threat trace has an event sequence that should not occur during ex-

ecution. Sequence diagrams are used to model the threat behaviors. A systematic

approach is used that includes modeling threat scenarios with UML, deriving threat

traces from the threat model, instrumenting the source code, monitoring the test

execution driven by random test cases, and matching the execution traces with the

threat traces. This approach works by extending model driven testing to security

testing based on negative design specification. It does not address our research ques-

tions as we may not have access to the design models and the approach has also not

been applied to testing large systems.

2.2.2 Finite State Machine (FSM)

Finite state machines (FSMs) are mathematical models used to design or test a com-

puter system. An FSM contains states, transitions and triggering conditions. They

have been used for generating test for many years [7]. They also support various types

of coverage criteria including edge, node, edge-pair, prime path and W-method. The

formal definition of a FSM is as follows [56]:
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• M is a quintuple M = (I, O, S, δ, λ) where,

• I is a set of input symbols,

• O is a set of output symbols,

• S is a set of states,

• δ: S × I → S is the state transition function,

• λ: S × I → O is the output function, The machine starts in an initial state

s ∈ S and gets the input i ∈ I it transitions to the next state with δ(s,i) and

generates the output λ(s,o) where o ∈ O.

FSM Functional Testing

Sabnani et al. [76] present a method to generate test sequences based on a de-

terministic FSM. They tour each state transition and assign a unique input/output

(UIO) sequence to each state. Tsai et al. [90] demonstrate a method to automatically

generate test cases for an object oriented class. They use a test case tree which is

built from a state machine. Luo et al. [60] present an approach for test selection in

distributed processes modeled in FSM. They also present a method to using synchro-

nizable test sequences to automatically generate test sequences. Friedman et al. [36]

generate tests based on FSM models. They present testing constraints and state and

transition coverage criteria.

2.2.3 Extended Finite State Machine (EFSM)

Extended Finite State Machines (EFSMs) are an extension of an FSM. The FSM

is extended to include variables and operations based on variable values. In FSMs,

transitions are linked to inputs and outputs. However, in EFSMs, states transition or
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fire when predicate conditions are satisfied and data operations are fully performed.

When the transition is fired, the machine is moved from the current state to the next.

The formal definition of a EFSM is as follows:

• An EFSM is a 5-tuple = (S, I, O, T, V ) such that:

• S is a finite set of states,

• I is a set of input symbols,

• O is a set of output symbols,

• T is a set of transitions,

• V is a set of variables

However the transition t ∈ T is a 6-tuple: t = T (st, ′st, it, ot, Pt, At) such that:

• st is the current state,

• ′st is the next state,

• it is the input,

• ot is the output,

• Pt(−→v ) is the predicate that must be true in order to execute the transition,

• At(−→v ) is the action on variable values,

• (−→v ) is the variable values
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EFSM Functional Testing

EFSMs have a long history of being used for functional test and there has been

alot of interest in using EFSMs to automate the test generation process [28]. Tahat

et al. [84] propose an approach of requirement-based test generation. Their approach

takes software specifications as individual requirements expressed in textual formats.

They then automatically create a system model which is used to generate test cases.

Their approach can then be extended to be used for regression testing. Derderian et

al. [28] present an approach using a fitness function to recursively estimate the effort

to find an input sequence to trigger a path through an EFSM. They then demonstate

their approach using random sampling. Kalaji et al. [48] present an approach to

solve the problems of generating tests with EFSMs. These problems include path

feasibility and path test data generation. A path is considered not feasible if there is

no input data to trigger the path. Due to the large amounts of data in these systems,

discovering test data for a given path is also very difficult. Their approach utilizes

optimization algorithms to test from EFSM models.

di Guglielmo et al. [29] present a functional automated test packet generation

(ATPG) framework which uses the EFSM model to pseudo-deterministically generate

a set of test sequences. A constraint solver is used to build test vectors that allow

them to traverse the state space of the unit under test (UUT). The goal of the work

is to determine test cases for faults that are difficult to locate.

EFSM Security Testing

Shu et al. [81] present a method using a learning-based approach to systematically

and automatically test protocol implementation security properties. Test protocols

are defined using a symbolic parameterized extended finite state machine (SP-EFSM)
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model. They also include a message confidentiality security property. Black-box

checking theory and a supervised learning algorithm are applied to examine the UUT

while simulating the teacher with a conformance test generation scheme. To preserve

black-box implementation, they maintain a model and update it as more information

is learned using the test cases. The process continues until a security flaw is found or

no new behaviors can be learned. This method is effective at identifying message con-

fidentiality security properties. However, it is only focused on one security property

and does not answer our research questions.

2.2.4 CESFM

Communicating Extended Finite State Machine (CEFSMs) [21] extended finite

state machines (EFSMs) to include variables, operations based on variables, and in-

teractions of variables. Traditional FSMs do not contain a communication mechanism

and do not precisely model the interactions of systems [56]. In our case, we need to

model at least two parallel processes, a functional process of the system under test

and the attack process. They communicate at the rendezvous point or point of attack.

CEFSM’s can be used to model and test distributed systems and network proto-

cols [37]. CEFSMs are extended from EFSM to include a communication channel.

CEFSM F is a tuple (EF , CF where an EFSM is represented as EF and CF is repre-

sented as a set of input and output communication channels). They have been used

to model systems in [44][17][54]. CEFSM’s consist of a finite set of EFSM’s as well as

communication channels between the EFSMs [56][37]. The benefit of CEFSMs is that

it can model orthogonal states of a system in a flattened manner and does not need to

create the entire system in a single state, such as in statecharts. CEFSMs are defined

as a finite set of EFSMs as well as disjoint sets of input and output messages [56].

The formal definition of a CEFSM is as follows:
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CEFSM = (S, s0, E, P, T, M, V, A, C), such that:

• S is a finite set of states,

• s0 is the initial state,

• E is a set of events,

• P is a set of boolean predicates,

• T is a set of transition functions such that T: S×P×E→S× A×M,

• M is a set of communicating messages,

• V is a set of variables,

• A is the set of actions, and

• C is the set of communication channels required in this CEFSM.

State changes (action language): The function T returns a next state, a set of

output signals, and action list for each combination of a current state, an input signal,

and a predicate. The function is defined as:

T(si, pi, get(mi))/(sj, A, send(mj1,..., mjk)) where,

• si is the current state,

• sj is the next state,

• pi is the predicate that must be true in order to execute the transition,

• mi1,..., mik are the messages, and

The communicating message mi is defined as:

(mId, ej, mDestination) where,

• mId is the message identifier, and
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• mDestination is the CEFSM the message is sent to.

An event ei is defined as: (eId, eOccurrence, eStatus) where,

• eId is the event identifier that uniquely identifies it, and

• eOccurrence is set to false as long as the event has not occurred for the first

time and to true otherwise, and

• eStatus is set to true when the event occurs and to false when it no longer

applies. Note that eStatus allows reoccurring events to happen multiple times

(loops in the model).

CEFSMs communicate by transferring messages through communication channels

C that connect the output of one EFSM to the input of other EFSMs. Let C denote

the set {〈name, SYNC|ASYNC〉| for all the channels in the system} where name

is the name of the communication channel and SYNC and ASYNC indicate that

the channel is synchronous or asynchronous. A communication channel can be used

differently according to different transitions. A channel c ∈ C can be represented as

〈name, t, get()/send()〉 where, name is the name of the channel, t ∈ T refers to the

transition linked to this use of the channel, and get()/send() indicates whether this

channel is an input or an output channel [37].

The action ai may include an assignment and mathematical operation on the

variables. The predicate is defined as a condition that must be met prior to the

execution of a function. For example, T(S0, e0, total = 4)/(S1, {m0, m1}, (total =

0; increment(i))) describes that if a CEFSM is in a state S0 receives an event e0 and

the value of variable total is four at that time, it will move to the next state S1 and

output m0 and m1 after setting the total to zero and performing increment(i) [37].

The formal semantics are defined in [21].
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CEFSM Functional Testing

CEFSMs can be used to model communicating processes [21]. Li et al. present a

method to use CEFSM models to generate tests based on branching coverage [59].

Their method has two steps which include generating a flow diagram of the model

and calculating the weight of each node in the diagram.

The weights can then be plotted to the matching branches in the CEFSM model.

These priorities are used to ensure they get the most coverage with the fewest gen-

erated tests. They use a backward tracking method that selects the branches, then

selects a variable value. The method uses priority levels to guide the test genera-

tion. They validate the feasibility of the transitions by forward checking. They prove

that they can efficiently generate tests from CEFSMs. However, they do not address

security concerns and do not address our research questions.

Bourhfir et al. present a method for automatically generating test cases and test

sequences for a CEFSM model with asynchronous communication [18] [17]. Their

approach works by incrementally computing a partial product and generating tests for

only the transitions of CEFSMs which directly influence the behavior. This method

has been applied to moderate sized systems. While this method demonstrates test

generation from CEFSMs, it does not address the security issues in our research

questions.

Bourhfir et al. present automated tools for testing CEFSM such as extended finite

state machine test generator (EFTG) [19][32]. This method allows the user to create a

complete reachability graph of the system which can be used for detecting inaccessible

transitions. This method can be used to generate tests for full or partial testing of

a system. While this method again demonstrates test generation from CEFSMs, it

also does not address any of the security issues in our research questions.
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Henniger et al. [43] discuss using asynchronous CEFSMs to create a test purpose

description. They use a message sequence chart (MSC) to describe the intended

behavior of the system. As this method focuses on modeling only the intentional

behavior of the system, it does not address our research questions.

Hessel et al. [44] also present an algorithm for model-based generation of tests

based on a priority driven reachability analysis. This method leverages knowledge

about the total coverage found in the currently generated state space to direct and

crop the remaining tree. They can then limit the test suite to a more reasonable size.

This method does not answer our research questions as it is focused on testing the

intended behavior of a system.

2.3 Security Testing

Security testing is the set of actions that are required to verify a software system’s

data and control flow are protected from malicious attacks. The primary rationale

for testing the security of an embedded system is to identify and fix possible vulner-

abilities. Basic security objectives are [50]:

* Confidentiality- Data remains private and is not disclosed to unauthorized

sources.

* Integrity- Data is not altered as it is passed though the system.

* Authentication- The user can be identified.

* Authorization- The system can determine who is authorized to send or receive

data.

* Availability- Data is available when it is needed.

* Non Repudiation- A guarantee that a transaction or a communication occurred.
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2.3.1 Security Testing Process

Due to higher levels of software intensive systems and privacy concerns, the need

for information security is very important [50]. To define security in a system, it must

be understood what assets need to be protected and the cost of protecting them [63].

Traditional software testing uncovers the occurrence of errors, but not necessarily the

absence of features that would protect it [85] [63]. Security testing should incorporate

the testing of security processes with traditional software testing to guarantee that

software executes correctly even when it is being attacked maliciously [63]. Security

testing is very difficult because the tester must think like an attacker to compose

the system’s architecture with an attacker’s behaviors to adequately secure a sys-

tem [63] [91]. Traditional security testing involves running a series of known tests

that had been known to exploit a system [85]. While effective, this method identifies

known vulnerabilities but does nothing to uncover new vulnerabilities [85]. Security

testing can be performed in the following steps [85]:

* Discovery - Identify the elements of a system

* Vulnerability Scan - Use automated tools to identify security issues

* Vulnerability Assessment - Use vulnerability scans and discovery identify po-

tential vulnerabilities in system.

* Security Assessment - Build a description of the system security.

* Penetration Test - Attempt to simulate a malicious attack on the system.

* Security Audit - Provide an assessment of the system’s security using informa-

tion gathered

* Security Review - Verify the system meets industry standards for security
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There are several traditional approaches to testing software security [91]. These

approaches include security checklists, common tools (i.e. monitoring or interfacing

tools), fuzzing (blasting a system with random input), vulnerability scanners, security

use cases (converting standard use cases by changing input values), hacking (employ-

ing hackers to look for vulnerabilities) and model based security test (MBST). Our

research questions, focus MBST. We are demonstrating a method to use a behavioral

tests, mitigation test and attack scenarios to build a systematic approach to security

testing (MBST).

2.3.2 Vulnerabilities

Software vulnerabilities are areas in software that an attacker can manipulate [63].

Understanding vulnerabilities is a difficult task. Many of them have been identi-

fied, named and renamed over the years [91]. Threats to systems include: evolution

and growing elegance of bot armies, financially influenced hacking, sophistication of

malware and increased use of virtual machine root kits [83].

Once single vulnerabilities have been identified, they should be categorized into

groups of similar threats [91]. Testing can then be focused on common threats.

Categorizing and prioritizing tests can be accomplished by understanding the system’s

environment and software architecture. After vulnerabilities have been understood,

testers need to understand security testing. If there is a security issue in a single

component that has been integrated into a system, it can cause vulnerabilities for the

entire system. In general, software components are full of vulnerabilities and difficult

to debug at the source code level [97]. Security risks can be prioritized as follows:

urgent (data cannot be recovered or system crashes), high (critical functions do not

perform properly), medium (critical functions can be performed with a work around),

low (frustration or nuisance) or none (no issues) [85].
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Design and Code Vulnerabilities

Poor coding practices are the cause of many vulnerabilities [50]. They include

code implementation errors (i.e. buffer overflows), interprocedural errors (i.e. race

conditions), or design level errors (i.e. error handling) [63]. Vulnerabilities can usually

be divided into two groups: defects at the implementation level or defects at the design

level. Design level vulnerabilities are very difficult to locate. Design level flaws could

include issues in object oriented systems with error handling or data sharing issues,

timing issues or data transfer issues. Each design level flaw in a program can be

exploited [63]. A risk assessment analysis can be performed byd eveloping security

abuse cases, creating security requirements, performing architectural risk analysis,

developing test plans, implementing analysis tools, executing security tests, running

penetration testing in the final environment and cleaning up any security issues. Code

faults can generally by categorized into four groups dependency issues, user input,

design issues and implementation issues [85]. Dependency Issues are identified when

software interfaces with multiple applications that subsequently load remote libraries.

The software will inherit any vulnerabilities that exist in any of the dependent files.

Testers must inspect each dependency and verify its vulnerabilities. This may be

difficult if source code is unavailable. User input vulnerabilities are introduced when

memory buffer overflows can occur when input is keyed in by a user. If extra data is

entered, these values can be seen as instructions and executed. This can cause erratic

behavior and can be difficult to debug. Also, particular character string combinations

could be executed as a command. Design issues are vulnerabilities introduced during

the software design phase. During design, testing ports could be inadvertently left

open, insecure default values left in place, or accesses to functions left open. These

issues are often put in place for testing and then forgotten. These gaps can grant an
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attacker critical access to a system. Implementation issues occur when secure designs

are implemented in a way that is insecure. An example of this is a man-in-the-middle

attack. This attack occurs when an attacker can access data between the time it is

accessed and utilized. The best way to avert this attack is to check the time the data

was accessed and if it exceeds some nominal value simply retrieve the data again.

Three examples of known vulnerabilities that may only be detected with black

box testing are side effect behavior, control path vulnerabilities and issues in COTS

components. Side effect behavior occurs when software can have tasks executing that

are not part of the requirements. These additional undefined tasks may have been

used for early dubugging and may not be detected by automated testing [85]. An ex-

ample of an additional task vulnerability is the Windows RDISK task. This function

is intended to create an emergency repair disk for a computer. However, it also gen-

erates a temporary file that contains the system’s configuration sensitive information

with full read permissions [85]. Additional task vulnerabilities are sometimes a result

of poor coding practices. Tests to determine the function’s correctness, often do not

uncover extra features unless the system were to crash while being tested. Control

path vulnerabilities occur when a software system is transferring data or control and

it is possible to alter the execution paths. Contemporary software systems are a col-

laboration of software components and operating systems which depend on data and

control transfer from each other [97]. Therefore, even from the outside of the system,

its activity can be monitored. COTS Components may come from many different

vendors and from all over the world. Each component could pose a security risk for

the entire system [83].
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2.3.3 Defining Security Requirements

An important activity in an evaluation of information security is the generation of

security objectives and requirements. These requirements are based on an analysis of

risks, threats and vulnerabilities [50]. Security requirements are considered [50]:

- Functional Requirement - the system must perform a specific task that is

testable. A test case demonstrates the requirement and provides a pass or

fail result [50].

- Non-Functional Requirement - defines how the software will perform a specific

task.

- Positive Requirement - designates that the system must do some particular task,

not necessarily a security requirement [50].

- Negative Requirement - directs that a particular task never occur in the system.

2.3.4 Testing Tools

Testing Tools help testers identify and distinguish security flaws [85]. To test an

existing or create a new tool, the following items must be kept in mind [91]:

- Does the tool focus on the proper issue (e.g. buffer overflows)?

- Does the tool work with various systems and does not require complete knowl-

edge of these systems?

- Does the tool support the development and test life cycle of the system?

- Are the results valuable?
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While some tools are automated, others depend upon highly skilled security per-

sonnel to use them [91]. Automated tools can test a large number of cases very

quickly, human creativity is also an invaluable tool in preventing attacks [91]. Two

examples of tools that are available are:

* Attack Trees - Attack trees are used to model possible attacks on a system. They

are successful at modeling security issues. However, there is no methodical way

to generate them.

* STRIDE method - The STRIDE method (spoofing, tampering, repudiation,

information disclosure, denial of service and elevation of privilege) takes a pre-

defined list of known attacks and evaluates how a system will react to them [91].

Better tools are needed to keep up with the demands of security. Ideas for other

tools include development level tests, advanced threat modeling and improved secu-

rity debugging tools [91]. The goal of these tools should be to increase the level of

assurance the tester and the community have in a software system [91].

2.3.5 Measuring Security

Methods of measuring security are sometimes used to create metrics that detail the

security of a system [50]. These metrics are not precise or concrete but provide some

insight into a system’s security. Direct testing is a method that performs functional

or penetration testing. An evaluation method is completed by assessing known crite-

ria. An assessment can be performed by analyzing risks threats and vulnerabilities.

Accreditation occurs when a system is proven in a specific environment. Training can

support measuring security by educating security personnel. Finally, an observation

can be performed by witnessing a system avert threats [50].
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2.3.6 Relevant Papers

There are several existing approaches for security testing software. We divide the

papers into model and non model based as well as testing and analysis. The ap-

proaches are generally good at identifying where attacks could occur in a system.

However, they are not applicable in large systems and do nothing to test proper

mitigations of attacks.

Table 2.2: Security Research Matrix

Model Non-Model

Test [95] [61] [77] [79] [34] [41] [86] [87] [63]

[64] [46] [20] [99] [12]

Analysis [47] [13] [10] [88]

Model Based Security Test

Gu et al. [87] discuss general security tests. They discuss formal security testing,

model-based security testing, fault injection-based testing, fuzzy testing, vulnerabil-

ity scanning, property-based, white box-based, risk-based security tests and taxon-

omy/function of security testing tools. This paper gives a brief overview of security

testing techniques. However, they don’t give a specific method.

Wang et al. [95] demonstrate an approach using sequence diagrams to detect

threat behavior at run time. Their approach models threat scenarios with UML, de-

rives threat traces from the threat model and instruments the source code. Finally,

they monitor the test execution driven by random test cases and match threat traces.
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Marback et al. [61] proposes a threat model-based security testing approach that

automatically generates security test sequences from threat trees and transforms them

into executable tests. Their approach has three main goals building threat models

with threat trees, generating security test sequences from threat trees and creating

executable test cases by considering valid and invalid inputs.

The authors define threat modeling as a systematic process of identifying, an-

alyzing, documenting, and mitigating security threats to a software system. Their

approach identifies the assets of an application. They then determine and rank the

threats to an application. Lastly, they mitigate the threats.

Groundwork Demonstration

We demonstrate this approach by using a simple sniff attack to gather data on a

wireless Ethernet connection. We follow the steps of the approach. In step 1, we

build a threat model with a threat tree shown in Figure 2.2. In step 2, we generate

a security test sequences from our threat trees.

Our test sequences are as follows:

Sequence 1: SniffDataBus.PassiveSniffing.DownloadnetSlumber.

DisplaySignals

Sequence 2: SniffDataBus.PassiveSniffing.DownloadKismet.DisplaySSIDs

Sequence 3: SniffDataBus.PassiveSniffing.DownloadKismet.CollectMac

Sequence 4: SniffDataBus.PassiveSniffing.MineSSID.DownloadKismet.

DisplaySSIDs

Sequence 5: SniffDataBus.PassiveSniffing.MineSSID.DownloadKismet.

CollectMac

Sequence 6: SniffDataBus.PassiveSniffing.MineSSID.AttachNetwork.

DownloadAirsnort.SniffWep
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Sequence 7: SniffDataBus.PassiveSniffing.MineSSID.AttachNetwork.

DownloadCowPatty.SniffWep

Sequence 8: SniffDataBus.PassiveSniffing.MineSSID.AttachNetwork.

DownloadASLeap.CollectAuthData

Sequence 9: SniffDataBus.PassiveSniffing.MineSSID.AttachNetwork.CollectData

.DownloadWireshark.ScanPacket

We follow step 3 to create executable test cases. Tests are generated by consider-

ing both valid and invalid inputs and incoporating operations, variables and passing

messages. These test cases demonstrate how the method would travesse through the

attack tree and mitigate the attack. While effecitve, it should be noted that the

number of test cases is very high for this simple example.

Test 1: SniffDataBus[true].PassiveSniffing[true].DownloadnetSlumber[true]

.DisplaySignals[true]

Test 2: SniffDataBus[false].Return[error]

Test 3: SniffDataBus[true].PassiveSniffing[false].Return[error]

Test 4: SniffDataBus[true].PassiveSniffing[true].DownloadnetSlumber[false]

.Return[error]

Test 5: SniffDataBus[true].PassiveSniffing[true].

DownloadnetSlumber[true].DisplaySignals[false].Return[error]

Test 6: SniffDataBus[true].PassiveSniffing[true].DownloadKismet[true].

DisplaySSIDs[true]

Test 7: SniffDataBus[false].Return[error]

Test 8: SniffDataBus[true].PassiveSniffing[false].Return[error]

Test 9: SniffDataBus[true].PassiveSniffing[true].DownloadKismet[false]

.Return[error]

Test 10: SniffDataBus[true].PassiveSniffing[true].DownloadKismet[true].

32



DisplaySSIDs[false].Return[error]

Test 11: SniffDataBus[true].PassiveSniffing[true].DownloadKismet[true]

.DisplaySSIDs[true]

Test 12: SniffDataBus[false].Return[error]

Test 13: SniffDataBus[true].PassiveSniffing[false].Return[error]

Test 14: SniffDataBus[true].PassiveSniffing[true].DownloadKismet[false].

Return[error]

Test 15: SniffDataBus[true].PassiveSniffing[true].DownloadKismet[true].

DisplaySSIDs[false].Return[error]

Test 16: SniffDataBus[true].PassiveSniffing[true].DownloadKismet[true].

DisplaySSIDs[true]

Test 17: SniffDataBus[false].Return[error]

Test 18: SniffDataBus[true].PassiveSniffing[false].Return[error]

Test 19: SniffDataBus[true].PassiveSniffing[true].

DownloadKismet[false].Return[error]

Test 20: SniffDataBus[true].PassiveSniffing[true].

DownloadKismet[true].DisplaySSIDs[false].Return[error]

Test 21: SniffDataBus[true].PassiveSniffing[true].

DownloadKismet[true].CollectMac[true]

Test 22: SniffDataBus[false].Return[error]

Test 23: SniffDataBus[true].PassiveSniffing[false].Return[error]

Test 24: SniffDataBus[true].PassiveSniffing[true].DownloadKismet[false].

Return[error]

Test 25: SniffDataBus[true].PassiveSniffing[true].DownloadKismet[true].

CollectMac[false].Return[error]

Test 26: SniffDataBus[true].PassiveSniffing[true].DownloadKismet[true].
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CollectMac[true]

Test 27: SniffDataBus[false].Return[error]

Test 28: SniffDataBus[true].PassiveSniffing[false].Return[error]

Test 29: SniffDataBus[true].PassiveSniffing[true].DownloadKismet[false].

Return[error]

Test 30: SniffDataBus[true].PassiveSniffing[true].DownloadKismet[true].

CollectMac[false].Return[error]

Test 31: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].

DownloadKismet[true].DisplaySSIDs[true]

Test 32: SniffDataBus[false].Return[error]

Test 33: SniffDataBus[true].PassiveSniffing[false].Return[error]

Test 34: SniffDataBus[true].PassiveSniffing[true].MineSSID[false].

Return[error]

Test 35: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].

DownloadKismet[false].Return[error]

Test 36: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].

DownloadKismet[true].DisplaySSIDs[false].Return[error]

Test 37: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].

DownloadKismet[true].CollectMac[true]

Test 38: SniffDataBus[false].Return[error]

Test 39: SniffDataBus[true].PassiveSniffing[false].Return[error]

Test 40: SniffDataBus[true].PassiveSniffing[true].MineSSID[false].

Return[error]

Test 41: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].

DownloadKismet[false].Return[error]

Test 42: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].
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DownloadKismet[true].CollectMac[false].Return[error]

Test 43: SniffDataBus[true].PassiveSniffing[true].MineSSID[true]

.AttachNetwork[true].DownloadAirsnort[true].SniffWep[true]

Test 44: SniffDataBus[false]..Return[error]

Test 45: SniffDataBus[true].PassiveSniffing[false].Return[error]

Test 46: SniffDataBus[true].PassiveSniffing[true].MineSSID[false]

.Return[error]

Test 47: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].

AttachNetwork[false].Return[error]

Test 48: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].

AttachNetwork[true].DownloadAirsnort[false].Return[error]

Test 49: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].

AttachNetwork[true].DownloadAirsnort[true].SniffWep[false].

Return[error]

Test 50: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].

AttachNetwork[true]

.DownloadCowPatty[true].SniffWep[true]

Test 51: SniffDataBus[false].Return[error]

Test 52: SniffDataBus[true].PassiveSniffing[false].Return[error]

Test 53:SniffDataBus[true].PassiveSniffing[true].MineSSID[false].

Return[error]

Test 54: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].

AttachNetwork[false].Return[error]

Test 55: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].

AttachNetwork[true].DownloadCowPatty[false].Return[error]

Test 56: SniffDataBus[true].PassiveSniffing[true].MineSSID[true].
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AttachNetwork[true].DownloadCowPatty[true].SniffWep[false].

Return[error]

Test 57: SniffDataBus[true].PassiveSniffing[true].MineSSID[true]

.AttachNetwork[true].DownloadASLeap[true].CollectAuthData[true]

Test 58: SniffDataBus[false].Return[error]

Test 59: SniffDataBus[true].PassiveSniffing[false].Return[error]

Test 60: SniffDataBus[true].PassiveSniffing[true].MineSSID[false]

.Return[error]

Test 61: SniffDataBus[true].PassiveSniffing[true].MineSSID[true]

.AttachNetwork[false].Return[error]

Test 62: SniffDataBus[true].PassiveSniffing[true].MineSSID[true]

.AttachNetwork[true].DownloadASLeap[false].Return[error]

Test 63: SniffDataBus[true].PassiveSniffing[true].MineSSID[true]

.AttachNetwork[true].DownloadASLeap[true].CollectAuthData[false]

.Return[error]

Test 64: SniffDataBus[true].PassiveSniffing[true].MineSSID[true]

.AttachNetwork[true].CollectData[true].DownloadWireshark[true]

.ScanPacket[true]

Test 65: SniffDataBus[false].Return[error]

Test 66: SniffDataBus[true].PassiveSniffing[false].Return[error]

Test 67: SniffDataBus[true].PassiveSniffing[true].MineSSID[false]

.Return[error]

Test 68: SniffDataBus[true].PassiveSniffing[true].MineSSID[true]

.AttachNetwork[false].Return[error]

Test 69: SniffDataBus[true].PassiveSniffing[true].MineSSID[true]

.AttachNetwork[true].CollectData[false].Return[error]

36



Test 70: SniffDataBus[true].PassiveSniffing[true].MineSSID[true]

.AttachNetwork[true].CollectData[true].DownloadWireshark[false]

.Return[error]

Test 71: SniffDataBus[true].PassiveSniffing[true].MineSSID[true]

.AttachNetwork[true].CollectData[true].DownloadWireshark[true].

ScanPacket[false].Return[error]

Our example for a simple sniff attack takes 71 executable tests. If we have 5

attacks we would need attack trees to cover at least 71 steps at each interface. This

approach is can identify vulnerabilities in software systems. However, the approach

is not scalable to large systems. We will compare this approach with ours in section

4.
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Figure 2.2: Marback Approach Example
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Salas et al. [77] Present a three-model framework: model of app, model of im-

plementation, and model of attacker. Their approach outlines some of the relevant

techniques in model based and security testing. They further discuss vulnerability

analysis, fault-model-based testing, model-based security vulnerability testing and

test case generation. They also identify how the use of each model reveals certain

problems such as under-specification problems in security vulnerabilities.

Schieferdecker et al. [79] focus on model-based security testing. They cover the

types of models in the model based security test (MBST) including architectural

and functional models, threat, fault, risk models, and weakness and vulnerabilities

models. They also review activities involved in MBST which includes identifying

security test objectives and methods, designing functional test models, determining

test generation criteria, generating the tests, and assessing the test results. They also

present approaches in the DIAMONDS project which focuses on risk-based MBST and

model-based fuzz testing. Felderer et al. [34] present the value of MBT and the risks

associated with automated test generation and the value of MBT. Security testing

verifies security requirements: confidentiality, integrity, authentication, authorization,

availability, and non-repudiation.

Mouelhi et al. [64] presents a model-driven approach for specifying, deploying and

testing security policies in Java applications. They present a generic security meta-

model, define the formalism and then define a policy according to this formalism.

Their approach builds the security model for the application, produces specific pol-

icy decision points, connects the security framework with the functional code of the

application, systematically use access control policy (ACP) to enforce the policy en-

forcement point (PEP) and uses mutation testing to ensure that final running code

conforms to the security model. These five steps are performed to enforce security

policies on applications.
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Jurjens et al. [46] presents work for systematically testing security-critical systems.

They cover a general approach towards model-based security engineering. Their ap-

proach uses UMLsec with regards to common electronic purse specification (CEPS)

commonly used by banks and credit cards such as VISA International. Bozic et al. [20]

Present an approach to use model-based fuzz testing as well as mutation testing and

inference assisted evolutionary fuzz testing. They demonstrate their approach with

SQL injection. This approach uses model based test for security testing, however it

does not incorporate mitigations as our research questions require.

Wimmel et al. [99] presents an approach to generate test sequences for transac-

tion systems from a formal security model supported by computer aided software

engineering (CASE) and AutoFocus tools. They compare security models in CASE

and AutoFocus tools with UML component diagrams. They also cover vulnerability

coverage using mutations and attack scenarios and concretization of abstract tests.

This paper presents a method with a formal security model and vulnerability cover-

age, but it does not address our research questions.

Barnum et al. [12] present the need to have a firm grasp of the attacker’s perspec-

tive and the approaches used to exploit software. They note how each attack pattern

can give a list of information, such as attack prerequisites, method, skill, weaknesses,

solutions and mitigations. They also cover the concept, generation, and usage of

attack patterns as a knowledge tool in the design, development, and deployment of

secure software. Their method does not address modeling the intended behavior as

required in our research questions.

He et al. [41] present a key paper related to this dissertation. They present an

attack scenario based approach that can be used to secure software at the design

stage. Attack paths are used to automatically create security test cases. Security

test cases can then be used to verify a system’s level of security and its ability to
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defend itself against attacks [41]. Software security requirements increase with the

amount of critical data the system processes. Testing for security at the design phase

improves its chances to protect itself against vulnerabilities. The method is detailed

below [41]:

* System components are modeled by extending the activity diagram EAD

(Extended Activity Diagram) to include trust levels and boundaries- Threats

can arise from data being transferred from a component with a low level of

security to a component with a higher level of security without proper

security measures. The method uses the following definitions:

* Definition 1: Trust level is the measure of trust about a module in a system.

Let TL= { low, medium, high, unknown}

* Definition 2: Trust Boundary is a virtual or physical boundary of trust

levels. Let TB = trust boundary

* System threats are modeled using NUTM (New Unified Threat Model)- Threat

modeling has traditionally used a threat tree based UTM (Unified Threat

Model). A UTM node can be a goal that a set of subnodes satisfy. It could

also be a set of subnodes who each have the goal of satisfying the node. NUTM

expands UTM to model a node of UTM as well as a complex attack path [41].

* Definition 3: The attack sequence is a sequence of nodes of the unified

threat model. Let AS=<N1, N2, . . .Nn >represent the attack sequence.

* Definition 4: The complex attack is an attack path that includes sequential

and concurrent relations between the attack sequences Let cPa={ <N1, N2,

. . .Nn >, . . . , <N1, N2, . . .Nn >} represents the complex attack path.

40



* Definition 5: The attack scenario identifies how an attacker will exploit a

system and identifies mitigations to prevent the attack.

* Attacks are created and verified- Preventing attacks can be better achieved by

reviewing the attacker’s goals, entry points and reasons for exploiting a system.

Attacks are created as an attack scenario that encapsulates the target of the

attack (EAD object nodes), the system’s actors (or activity section), a feasible

attacker (NUTM’s root node) and a possible mitigation node. The EAD object

nodes can be used to identify the TB of data paths. These are possible attacker

entry points [41].

* Test cases are generated with the following items [41]:

- Test Case ID and Name (Used for identification of test)

- Precondition (A set of conditions that must be satisfied)

- Security Reaction (System Response to prevent attack)

Test criteria require that tests must exert each node and relation and cover each

attack path in the NUTM at least once . Test cases can then be executed on

the system and a tester can determine if the system is successful at preventing

the attack [41].

* System threats are mitigated- If the system cannot successfully prevent the

attack from occurring, it must be improved to meet the security requirements.

Attacks should be prevented by disabling the attacker’s access.

This approach can help developers improve a system’s design by identifying pos-

sible areas for attack as well as the system’s response to the attack [41]. They define

a set of test requirements as TR. They define the test set as T and the coverage
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criteria C. The coverage criteria can be satisfied if and only if at least one T exists

for each TR. Where, TR equals the attack scenario and complex attack path. Tests

are generated by defining sequential and concurrent attacks in an attack path.

Groundwork Demonstration

We apply this approach to our simple robotics example and give a single attack to

demonstrate their approach as shown in Figure 2.3. In our example we show a UML

diagram for a robot with the following functions:

* Power up Interface- provides the mechanism to power the robot on

* Robot Power On - Indicator that the power is on

* Robot Start Video - the interface that starts, stops and sends the robot’s camera

data

* Robot Read Position - Sends the robots current location

* Robot Wait for Position - the interface that accepts and executes commands to

move the robot

A trust boundary line is drawn between the areas where attacks can occur. The

functions above the trust boundary line are considered to not be high risk interfaces.

Functions below the trust boundary are considered to be high risk. As each interface

needs to be tested with each attack, the state space becomes very large, very quickly.

Test Case ID: STC 01

- Name: DOS RFJam

- Precondition: Robot is functional and powered on
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- Test Steps:

- Attacker Action: Jam robot with RF signals

- System expected reaction: Detect this action, turn off RF communication

channels, return robot to safe position

- Expected Security Reaction: The system should prevent attacks from jamming

robot with RF signals

Test Case ID: STC 02

- Name: DOS Flood

- Precondition: Robot is functional and powered on

- Test Steps:

- Attacker Action: Flood robot with commands

- System expected reaction: Detect this action, turn off communication

channels, return robot to safe position

- Expected Security Reaction: The system should prevent attacks from flooding

robot with commands signals

Test Case ID: STC 03

- Name: Sniff and Spoof

- Precondition: Robot is functional and powered on

- Test Steps:

- Attacker Action: Gather robot communication data
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- System expected reaction: Detect this action, log message, send message

to controller

- Attacker Action: Create and send malicious commands

- System expected reaction: Detect this action, stop listening to commands

and return robot to safe position

- Expected Security Reaction: The system should prevent attackers from listening

to data or acting on malicious commands

Test Case ID: STC 04

- Name: Sniff and Man in the Middle (MITM)

- Precondition: Robot is functional and powered on

- Test Steps:

- Attacker Action: Gather robot communication data

- System expected reaction: Detect this action, log message, send message

to controller

- Attacker Action: Pass data on to intended recipient

- System expected reaction: Detect this action, log message, send message

to controller

- Attacker Action: Replace instructions

- System expected reaction: Detect this action, stop listening to commands

and return robot to safe position

- Expected Security Reaction: The system should prevent MITM attacks
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Test Case ID: STC 05

- Name: GPS Jam

- Precondition: Robot is functional and powered on

- Test Steps:

- Attacker Action: Jam robot with miscellaneous GPS signals

- System expected reaction: Detect this action, turn off GPS communication

channels, return robot to safe position

- Expected Security Reaction: The system should prevent attacks from jamming

robot with GPS signals

In the example, a simple robot with 5 interfaces and 5 attacks requires 25 tests.

The approach is not scalable for large systems. We will compare it with our method

in section 4.
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Non-Model Based Security Test

Thompson et al. [86] present a paper that discusses black box testing in all operating

conditions. They discuss how extreme conditions (stress on system, network failure,

I/O error, memory failure) can affect the security of a system. They also discuss the

need to integrate these failures into test cases. They also highlight the fact that error

handling is generally not testing as thoroughly as the main functional code, leaving

any code untested in danger and that all code should be executed and tested under

adversarial conditions.

McGraw et al. [63] focus on risk-based security tests. They discuss how classical

black-box testing is not enough for security testing. They also reiterate the notion

that coding errors create most of the vulnerabilities in software. Their definition

of software attacks includes timing attacks, race conditions, and two-stage buffer

overflow attacks.

Antoniol et al. [10] present a paper on privilege escalation testing, SQL injection,

robustness (fuzz) and penetration testing, and intrusion detection systems (IDS).

They define vulnerabilities and examine search based software testing (SBST) ap-

proaches to detect them. They also discuss genetic programming and using trees to

model IDS. Tondel et al. [88] present an approach to develop a vulnerability repos-

itory. The repository would include information in all software development phases

(requirements, design, implementation and testing). Each record in the repository

would address the following info: date, category, where, root cause, risk and counter-

measure.

Stytz et al. introduce the need for an intelligent system to secure software systems.

An intelligent system can be used to test software for defects throughout the devel-

opment cycle [83]. It should be able to reveal software flaws and provide information
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on assessing the system’s environment [83]. The intelligent system would have the

capability of executing various types of attacks, execute more than one attack at a

time, provide an assessment of a system’s security at the component level and report

security metrics [83]. To design an intelligent system the user must ascertain the intel-

ligent testing system requirements, construe its behaviors by using use case diagrams

and documentation, develop software that meets requirements with use case diagrams

and documentation and refine the system. This cycle is recursive until the testing

system has reached an acceptable performance and defects are revealed [83]. The

development knowledge base must be modified with each system tested and threats

to the system. To simulate a real attack, each threat case should contain a narrative,

and be modeled using a UML use-case and state chart diagrams [83]. The authors

have not yet built an intelligent system. However, they claim that it should be able

to improve the security of software and divert attacks. It also proves that there is a

need for a solution to secure software.

Attack Simulator

Beech et al. [14] present their design to implement and evaluate an attack simulator

tool. This tool can be used to dynamically inject well known attacks into a system

without changing the original source code. Their simulator builds test cases using a

tuple which includes:

- A compiled program P

- Protection Mechanism

- Input to P

The attack simulator will insert attacks at different points and evaluate how the

security mechanism reacts. The simulator injects machine instructions. Therefore,
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the integrity of the compiled program is never changed. The simulator is built using

a dynamic compiler. The dynamic compiler goes into a loop where it builds machine

instructions that would execute sequentially. The requirements for the simulator are

as follows:

- Generality- Support multiple languages and vulnerabilities or attacks

- Systematic testing - Inject attacks at any point

- Automatic - Minimal User specifications required

- Robustness - Accurate reporting of results

- Low overhead - Must not incur overhead to the program

Their simulator is successful at automatically identifying attack points reliably

with minimal overhead. They are also successful at identifying a common type of

attack called stack smashing. While their simulator is successful in identifying attack

points, it is a much different approach than ours which weaves in the mitigations

at the attack points. We could, however, make use of the simulator to execute our

security test cases.

2.4 Mitigations

Security mitigations are s series of events that are intended to keep a computer

system safe against a malicious attack. Mitigations can be pattern based, in which

they follow a specific arrangement. They can also be non-pattern based , in which

they do not follow a particular model. This dissertation focuses on pattern based

mitigations.

49



Table 2.3: Mitigation Research Matrix

Mitigation Research Matrix

Pattern Non-Pattern

Security [98] [82] [12] [38] [35]

[5] [6] [27]

2.4.1 Pattern Based Mitigations

Wiesauer et al. [98] present security patterns including: secure pipe, secure logger,

single access point, check pointed system, and limited view patterns. They present

many different security design pattern definitions and specifications as well as dif-

ferent taxonomies for security design patterns. They argue that current methods

are inadequate and present a new taxonomy based on attack patterns. Their attack

patterns include, spoofing, identity spoofing, content spoofing, man in the middle,

denial of service, resource depletion, privilege exploitation, etc. They also explore the

relationship between attack patterns, security design patterns and test cases. They

also measure the quality of security design patterns by analyzing documentation and

repeatability. Security design patterns must have adequate documentation to allow

designers who are not security experts to use them. Test cases are used to demon-

strate repeatability by showing that patterns can be applied correctly, and attacks

will be prevented.

Smith et al. [82] also research security test patterns similar to how software design

patterns work; a universally accepted way of designing software in certain situations.

A security test pattern is a template of a test case that exposes vulnerabilities, typ-

ically by emulating what an attacker would do to exploit those vulnerabilities. This
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article demonstrates the use of security test patterns to generate better black box

security tests. They demonstrate their technique by conducting a user study of 21

graduate and 26 undergraduate students with a low level of security testing knowl-

edge. The students used a tool to generate a black box security test plan using

security test patterns. The results of the case study indicated that by using valid

security test patterns, students with little experience could effectively generate black

box security test plans.

Barnum et al. [12] discusses the need to have a firm grasp of the attacker’s perspec-

tive and the approaches used to exploit software. Attack patterns can help understand

the types of exploits and attacks. They can be used to build secure software as well

as define mitigation patterns. Each attack contains:

- Pattern Name and Classification - unique identifier

- Attack Prerequisites - Required conditions for the attack to be successful

- Description - sequence of events in an attack

- Related Vulnerabilities or Weaknesses - weaknesses that the attack will leverage

- Method of Attack - type of attack used

- Attack Motivation or Consequence - The goal of the attacker

- Attacker Skill - Specific knowledge of the attacker

- Resources - Computing resources required for attack

- Solutions and Mitigations - Any steps that can mitigate the attack

- Context Description - Describes the context on a successful attack
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Gegick et al. [38] discuss how attack patterns can show security vulnerabilities

in a software system design. They also present how to match attack patterns with

vulnerabilities in the design phase to increase security efforts early on in the software

development process. This article is focused on how to build secure software by in-

tegrating security early on in the design phase. They also discuss about being able

to use external intrusion detection or firewalls. They analyze security vulnerabilities

in four vulnerability databases to determine which ones are valid and decide com-

mon methods to exploit them. They present an analysis of components that can be

used to exploit a vulnerability. They use regular expressions to abstract and formal-

ize events that can be used in an attack. This research demonstrates that security

vulnerabilities can be identified by using abstract attack patterns. The technique of

finding vulnerabilities can be accomplished by matching a sequence of components in

a system design. This method can be used to increase security awareness during the

software life cycle. They also perform a study to compare which vulnerabilities they

can identify and how to best increase security awareness.

Alvi et al. [5] proposes a method to classify software security patterns. Their

approach is unique in using security patterns to prevent the cause of an attack on a

system. They present a security pattern template based on analyzing available pat-

tern templates. They then incorporate classification parameters. They also present

a classification for software security patterns using software development life cycle

(SDLC) phases such as requriements, design, code, test and deployment . Each life

cycle phase is further classified by using security flaws, requirement security objec-

tives , design security properties, and implementation attack patterns. Their method

demonstrates how a user can map the attack pattern to a security pattern and select

the best option. Alvi et al. [6] also present further work to classify the different types

of security patterns based on attack patterns and on security flaws.
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de Muijnck-Hughes et al. [27] discuss security design patterns, for example, solu-

tions to recurring security problems in software. They discuss issues affecting security

design patterns (how security problems can be addressed). They note that there are

a variety of existing pattern templates as shown in Table 2.4 can be used by pattern

developers. However, there is no central repository of pattern templates. Some of

these pattern templates are unique, while others are variations of existing templates.

Due to the large number of pattern templates and no central repository, accessi-

bility of these patterns to developers is limited. They recommend that, patterns

should be put in a formally evaluated framework. Mitigations can be derived using

software development experience to locate recurring problems and their associated

solutions [103].

Security Pattern Catalog
Name Goal

Single Access
Point

Provide a security module and access
to login

Check Point Consolidating security checks and im-
pacts

Roles Consolidating users with similar secu-
rity accesses

Session Combing global data in a multi-user
setting

Full View with
Errors

Provide a complete view to users (in-
cluding exceptions)

Limited View Displays only data a user can access
Secure Access
Layer

Integrates application security with low
level security

Table 2.4: Security Pattern Catalog [103]
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2.4.2 Non Pattern Based Mitigations

Firesmith et al. [35] present a paper that compare and contrast the differences

between security and safety requirements. They consider both security and safety

requirements to be quality requirements. They define defenseability problem types

as:

1. Malicious Harm - Causes Damage to the Asset

2. Security Incidents - Cyber Attacks

3. Security Threats - Perceived Danger

4. Security Risks - A Combination of the Frequency of the Attack and the Result-

ing Damage

They define defenseability solution types as:

1. Prevention - Malicious harm, Threats or Risks

2. Detection - Malicious harm, Threats or Risks

3. Reaction - Notification and Repair of Malicious harm, Threats or Risks

4. Adaptation - Avoid or Minimize Consequences of Malicious harm, Threats or

Risks

They also define setting security requirements, constraints and a taxonomy of

security requirements for a system. They also explore the issue with some being

opposed to implementing all security countermeasures and finding the compromise to

defending a system while not over burdening it with security requirements.
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Chapter 3: Approach

3.1 Process

Our goal is to generate a security test suite for an autonomous or semi-autonomous

vehicle. This test suite is required to be scaleable and use an MBT approach to

test proper mitigation of security attacks. We also want to be able to leverage a

behavioral test suite. To keep models smaller we do not want to integrate required

security attack mitigations into the primary functional model. Rather, the goal is to

keep these two models separate.

Figure 3.1 shows the test generation process. Rectangular boxes show artifacts

(models, rules, etc.) while oblong boxes refer to activities. The process consists of

four steps. The first generates a behavioral test suite, the second mitigation tests,

the third attack scenarios and the forth, the security test suite.

3.1.1 Step 1: Black Box Functional Test Generation

The test generation process starts with a black box model of system behavior,

the behavioral model (BM) in Figure 3.1. We associate coverage criteria with BM

(i.e. BC) and generate a behavioral test suite (BT). BT can be generated using any

graph-based testing criteria from [7] [59] [19] [32] [18] [43] [54].
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3.1.2 Step 2: Generate Mitigation Tests for all Attack Types

First, we need to determine attack types (A) and determine attack mitigation

requirements. These attack mitigation requirements are transformed into attack mit-

igation models (MM), one for each type of attack. As in the case of the behavioral

model, we use coverage criteria (MC) for the mitigation models to direct the gener-

ation of test paths (MT) for each mitigation model. Since not all attacks may make

sense in every behavioral state, we need to determine in which states an attack may

occur. The attack applicability matrix (AM) defines this.

3.1.3 Step 3: Generate Security Test Requirements

Then, we need to determine at which point in the execution of a behavioral test

an attack could occur (i.e. where the behavioral and attack process rendezvous and

which attack type could occur) These will be our attack security test requirements.

We define coverage criteria for them.

3.1.4 Step 4: Generate Security Test Suite

At the point of attack p for attack type a, a required mitigation test path is activated

(see Figure 3.2) Weaving rules specify how this mitigation test path is combined with

the original test path to create the security test path. The next section describes each

step in more detail.

 

 

 

Attack  

Rendezvous Point 

Behavior  
Mitigation  

Figure 3.2: Combining Behavioral Test, Attacks and Mitigations
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3.2 Step 1: Generating BM with CEFSM

Our approach combines several parallel processes: a behavioral process, an attack

process, and a mitigation process. They intersect (communicate) at the point of

attack. This is why we need a model capable of representing parallel processes. We

chose CEFMs because they have successfully been used to model both distributed

systems and network protocols. They can also model orthogonal states of a system in

a flat manner and it is not necessary to compose the entire system in one state [37].

CEFSM’s consist of a finite set of EFSM’s as well as communication channels between

the EFSMs [56][37]. CEFSMs are defined as a finite set of consistent and specified

EFSMs as well as two disjoint sets of input and output messages [37] [56].

Definition 1: We formally define a CEFSM as follows [37]

CEFSM = (S, s0, E, P, T, M, V, A, C), such that:

• S is a finite set of states,

• s0 is the initial state,

• E is a set of events,

• P is a set of boolean predicates,

• T is a transition function such that T : S×P×E→S× A×M,

• M is a set of communicating messages,

• V is a set of variables,

• A is the set of actions, and

• C is the set of communication channels required in this CEFSM.
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State changes (action language): The function T returns a next state, a set of output

signals, and action list for each combination of a current state, an input signal, and

a predicate. The function is defined as:

T(si, pi, get(mi))/(sj, A, send(mj1,..., mjk)) where,

• si is the current state,

• sj is the next state,

• pi is the predicate that must be true in order to execute the transition,

• mi1,..., mik are the messages, and

The communicating message mi is defined as:

(mId, ej, mDestination) where,

• mId is the message identifier, and

• mDestination is the CEFSM the message is sent to.

An event ei is defined as: (eId, eOccurrence, eStatus) where,

• eId is the event identifier that uniquely identifies it, and

• eOccurrence is set to false as long as the event has not occurred for the first

time and to true otherwise, and

• eStatus is set to true when the event occurs and to false when it no longer

applies. Note that eStatus allows reoccurring events to happen multiple times.

CEFSMs communicate by transferring messages through communication chan-

nels C that connect the output of one EFSM to the input of other EFSMs. Let

C denote the set {〈name, SYNC|ASYNC〉| for all the channels in the system}
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where name is the name of the communication channel and SYNC and ASYNC

indicate that the channel is synchronous or asynchronous. A communication

channel can be used differently according to different transitions. A channel c

∈ C can be represented as 〈name, t, get()/send()〉 where: [37]

- name is the name of the channel

- t ∈ T refers to the transition linked to this use of the channel

- get()/send() indicates whether this channel is an input or an output chan-

nel

The action ai may include an assignment and mathematical operation on the

variables. The predicate is defined as a condition that must be met prior to the

execution of a function. For example, T(S0, e0, total = 4)/(S1, {m0, m1}, (total

= 0; increment(i))) describes that if a CEFSM is in a state S0 receives an event

e0 and the value of variable total is four at that time, it will move to the next

state S1 and output m0 and m1 after setting the total to zero and performing

increment(i) [37].

The formal semantics are defined in [21]. Test criteria such as edge-coverage,

prime-path coverage, etc. [7] can be defined. Bourhfir et al. [18] [43] and Hesse [44]

propose test generation techniques for CEFSMs. We can use any one of them to create

the behavioral test suite BT as a set of paths through BM. Let BT = {bt1..btl} be

the set of such paths.

3.2.1 Test Case Generation

Once the behavioral model CEFSM has been defined, we can build the behavioral

test cases. Behavioral tests are abstract tests and not executable. The example
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Figure 3.3: Behavioral Test Nomenclature

behavioral test suite nomenclature is illustrated in Figure 3.3. The tests are made up

of the current state, completion boolean (to indicate if the test is completed), next

state, and message parameters in the following format:

1. Test Path

2. Sequence of nodes

3. Transitions between states

4. Actions

5. Guards

6. Predicates

7. Messages

3.3 Step 2: Identify Attack Types and Mitigations

Software attacks are malicious injections into the system under test (SUT) to at-

tempt to alter or disrupt normal execution. Our attacks are defined in Table 3.1.

This dissertation focuses on black box testing, therefore, not all threats described
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in Appendix A or threat models in Appendix B are applicable. The attacks we are

focused on are:

• Denial of Service (DOS)Radio Frequency (RF) Jam Attack - RF Signal ranges

are in the public domain, an attacker can figure out which range of RF signal

an autonomous system is transmitting on and send signals in the same range

overloading an autonomous vehicle with RF Signals and confusing the system

creating a condition called a DOS attack, in which the system is confused and

does not know which signals to respond to.

• DOS Flood Attack - An attacker floods an autonomous system with commands

or data confusing the system

• Sniff and Spoof Attack - An attacker listens to the data coming from an au-

tonomous system long enough to understand the packet data (for example an

attacker might notice that navigation packets are short and video streaming is a

larger data packet). Once the packets are understood, the attacker can attempt

to Spoof packets similar to the ones it gathered from the vehicle causing an

autonomous system to change course or become confused.

• Man in the Middle (MITM) Attack - The attacker gathers data from an au-

tonomous system and passes on either real or modified data to its intended

recipient without being recognized.

• GPS JAM Attack - While widely used, GPS has known vulnerabilities in which

positioning data can be maliciously altered to cause a vehicle to become confused

or crash.
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Table 3.1: Summary of Software Attacks

Attack Type Description

a1 DOS RFJam Floods RF Channels

a2 DOS Flood Floods Comm Channels

a3 Sniff & Spoof Listens then injects Packets

a4 Sniff & MITM Listens, Forwards and Injects Packets

a5 DOS GPS JAM Flood GPS Channels

a6 ..ak Combination Any attacks can be combined to create a new attack

Definition 2: We formally define a set of attacks as follows

Let ai be attack type i

for (i = 1 to k)

Let k be the number of attack types

Let A be the set of attack types

Therefore A = {a1, a2 . . . , ak} represents the set of attack types.

A software attack is an asynchronous process that executes in parallel with func-

tional behavior and interacts with the SUT at particular attack points. Attacks can

occur in parallel and in more than one state. We build an attack applicability matrix

to identify for each attack whether it can occur in a given state in the behavioral

model or not. Attacks can occur as:

1. A Single Attack - For example an attacker may simply sniff the data and do

nothing further.

2. Multiple Attacks of Different Types - For example an attacker may attempt to

spoof data and create a man in the middle attack.
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3. Multiple Attacks of the Same Type - For example an two attackers may attempt

to spoof data in the same state.

Definition 3: We formally define an attack applicability matrix as follows:

Let aj be attack type i

for (i = 1 to k)

Let k be the number of attack types

Let A be the set of attack types

Let si be the state of the attack

Let i be the index of states in the matrix Let j be the index of attacks in the matrix

(1 ≤ a ≤ k).

AM(i, j) =


1 if attack aj is applicable in state si

0 otherwise

(1 ≤ i ≤ |S|; 1 ≤ j ≤ |A|)

Therefore, AM represents the attack applicability matrix ass a two dimensional

array where each column represents a specific behavioral state s ∈ S and each row is

a specific attack type

Table 3.2 gives an example of an attack applicability matrix if 5 attacks were

possible or if (k = 5). For example, a DOS RF JAM, DOS Flood, and a DOS GPS

JAM can happen in any behavioral state, while a sniff and spoof or main in the middle

attack only happens in two of the four states. These attacks can only happen after
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Figure 3.7: M4: Retry
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Table 3.2: Attack Applicability Matrix

A/S s1 s2 s3 s4

a1 1 1 1 1

a2 1 1 1 1

a3 1 0 1 0

a4 1 0 0 1

a5 1 1 1 1

Table 3.3: Software Attacks with Mitigations

Attack Type Mitigation

a1 DOS RFJam M1 - Roll Back to Idle State

a2 DOS Flood M2 - Roll Forward to Safe State

a3 Sniff/Spoof M3 - Encrypt Data

a4 MITM M5- Switch to Redundant Services

a5 GPS JAM M1- Roll Back to Idle State

the system has moved out of the idle state and into a state where it is transmitting

or receiving data. For each attack type, we need to determine how the attack is to be

mitigated. A mitigation can consist of many actions. Attack mitigation requirements

tend to follow certain patterns. Table 3.3 shows suggested mitigation requirements

for the four attack types in Table 3.1. Mitigation requirements now have to be

transformed into mitigation models. We define mitigation models as follows[11][58]:

M1: Rollback: return the system to a previous (safe) state in which the attack

is not possible. For example, the system may return to an idle state.

M2: Rollforward: jump to the next (safe) state in which the attack is not

possible. For example, a launch vehicle may roll forward to an abort state or

an autonomous vehicle may roll forward to a ”go home” state.
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M3: Try other alternatives: pursues an alternative. For example, a network

may encrypt data or attempt to use a different frequency.

M4: Retry: the system is rolled back to a previous (safe) state where the

attack is not possible, then the activity is re-executed. For example, a system

may attempt to retry a command, such as reconnect to the network.

M5: Compensate: the system contains enough redundancy to allow an attack

to be masked. For example a launch system generally has a redundant set of

avionics hardware or a UAV may have a redundant flight computer. In this

case, no mitigation test is required, the behavioral test is executed as is.

Definition 4: Mitigation models are defined as: Let A be the set of attack types

Let j be the index of attacks in the matrix MMj(1 ≤ j ≤ |A|). Therefore, MM

represents the mitigation model for attack type j.

Not all mitigation requirements need a mitigation model. For example, ”Compensate”

may require the system to take action without any further test input required to

identify a problem. Similarly ”rollback” shown in Figure Figure 3.4 rolls the system

back to a safe state (where the attack is not possible) and re-executes. The mitigation

”rollforward”, shown in Figure 3.5 rolls the system forward. Figure 3.6 shows an

example of a mitigation model for the mitigation pattern ”try other alternatives”.

Lastly, ”retry” shown in Figure 3.7, simply retries the command.

Definition 5: Graph-based [7] mitigation criteria is defined as: Let ai be an attack

type
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for (i = 1 to k)

Let k be the number of attack types

Let A be the set of attack types

Let si be the state of the attack

Let i be the index of states in the matrix Let j be the index of attacks in the matrix

Let MCi be used to generate mitigation test paths

Let MTi = mti1 , ...,mtik

for attack ai

Therefore, each attack ai is associated with a mitigation model MMi

where i = 1, . . . , k.

We can assume that the models are of the same type as the behavioral model

BM (i.e. CEFSM). Assuming MC is edge coverage for the mitigation model shown

in Figure 3.6. MT consists of two paths:

MT = {mt1..mt2}

mt1 = (N2, N1, N2)

mt2 = (N2, N4)

This mitigation would execute a mitigation at the point of attack and then proceed

with the remainder of the behavioral test, stop or even go to a safe state. These op-

tions are examples of weaving rules. Table 3.3 gives an example of possible mitigation

requirements for the four attack types of Table 3.1.

Mitigations vary in complexity. Simple ones such as ”Roll Forward” may take

the system to an abort state and ”Internal Compensate” may switch the system

to a redundant avionics system. However, other mitigation models may be more

complicated and consist of multiple alternative behaviors.
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3.3.1 Combining Software Attacks

This dissertation focuses on basic software attacks. These attacks can be combined

in any order to form new attacks. In order to formally combine attacks we look at

them as abstract partitions as shown in 3.8. A partition must satisfy:

1. Partitions must cover entire domain space

2. Blocks must be disjoint and not overlap

 

Block 1-
A1 

Block 2- 
A2 

Block 3 -
A3 

Block 4 –
A4 Block 5 –

A5 

Figure 3.8: Attack Partitions

We can derive coverage criteria from using common combination strategies such as

[7]:

1. All Combination Coverage - All combinations used (Would not be practical in

systems with more than 2 or 3 blocks)

2. Each Choice Coverage - One value from each block or characteristic used in at

least one test case
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3. Pair Wise Coverage - A value from each block is combined with a value from

every block

4. T-Wise Coverage - A value from each block for each group of T character-

istic must be combined. T should be selected between 2 and the number of

partitions. In our case, it would be between 2 and 5.

5. Base Choice Coverage - A base test is selected and all other tests are chosen

from non-base tests.

6. Multiple Base Choice Coverage - Multiple base tests are selected and all other

tests are chosen from non-base tests.

3.4 Step 3: Generate Security Test Requirements

The rendezvous point (attack point) is the intersection where the intended behavior

and a single attack or multiple attacks occur. Some attacks have preconditions and

others can occur in parallel. Security test requirements specify where in the behavioral

test bti ∈ BT the attack is to occur (i.e. figure 3.2) and in which bti ∈ BT the attack

should occur. The top rows of Tables 3.4, 3.5, 3.6 and 3.7 show an example of CT . We

define four different coverage criteria. For simplicity, and to express the behavioral

test suite as attack points along a fixed length.
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Definition 6: We formally define a security test requirement as follows:

Let CT be the concatenation of test paths in BT .

That is CT = {bt1 ◦ bt2 ◦ bt3 . . . btl}

Let len(bt) be the number of nodes in bt.

Let I = len(CT ) =
l∑

i=1

len(bti)

Let the rendezvous point p is a position in the behavioral test suite where a single or

multiple attacks can occur (1 ≤ p ≤ I)

Let an attack type a (1 ≤ a ≤ |A|) be applied at position p

Let the attack scenario be defined as (p,a) The set of attack scenarios constitutes the

security test requirements for which security tests need to be generated.

Let a pair (p, a) define an attack scenario in terms of where in CT an attack is to be

injected.

Assume: we can only select a feasible attack scenario.

Let node (p) be the node s in position p.

Then an attack scenario (p, a) is feasible if and only if AM(node(p), a))= 1.

We use coverage criteria to determine a set of attack scenarios (i.e. security test

requirements) as follows:

Let s be a state in the behavioral model.

Assume: there is at least one state in any behavioral model where an attack can be

injected.

Therefore, for a given attack type a ∈ A there must be some node s such that

AM(s, a) = 1 is true.

Attack coverage criteria AC for selecting (s, a) must be defined.
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Example: This example demonstrates the differences between the four types of cov-

erage criteria for all combinations (p, a). Suppose we have a test suite that has two

test paths, i.e. CT = {bt1} where

bt1 = {s1, s2, s2, s3, s3, s4, s4, s4} , then

I = [1,10]. Assume we have 5 attack types and the attack applicability matrix of

Table 3.2.

A = {a1, a2, a3, a4, a5} ; |A| = 5.

Criteria 1: All feasible combinations of (p, a). Criteria 1 would require to select all

attack scenarios(p, a) where AM(node(p), a)= 1. Table 3.4 specifies 31 such security

test requirements based on AM of Table 3.2.

Criteria 2: All unique nodes, all applicable attacks. This only requires
k∑

j=1

5∑
i=1

Table 3.4: Position Attack Matrix- Criteria 1

bt1

A/CT s1 s2 s2 s3 s3 s4 s4 s4

a1 1 1 1 1 1 1 1 1

a2 1 1 1 1 1 1 1 1

a3 1 0 0 1 1 0 0 0

a4 1 0 0 0 0 1 1 1

a5 1 1 1 1 1 1 1 1

(AM(i,j)=1) combinations, i.e. the number of ”1” entries in the applicability matrix.

When nodes occur multiple times in a test suite only one needs to be selected. This

could lead to not testing attack mitigation in all tests bti ∈ BT . Table 3.5 shows an

example of (p, a) attack scenarios that fulfill this criteria. There are 16 such security

test requirements.
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Table 3.5: Position Attack Matrix- Criteria 2

bt1

A/CT s1 s2 s2 s3 s3 s4 s4 s4

a1 1 1 0 1 0 1 0 0

a2 1 1 0 1 0 1 0 0

a3 1 0 0 1 0 0 0 0

a4 1 0 0 0 0 1 0 0

a5 1 1 0 1 0 1 0 0

Criteria 3: All tests, all unique nodes, all attacks which are applicable. In addition

to criteria 2, this criterion requires to select positions representing all tests bti ∈ BT.

Table 3.6 shows a set of attack requirements that meets this criterion. Note that

we end up with the same number of security test requirements as in criteria 2 but

different positions (in different tests).Note that criteria 3 subsumes criteria 2. As

before, there are 16 security test requirements.

Table 3.6: Position Attack Matrix- Criteria 3

bt1

A/CT s1 s2 s2 s3 s3 s4 s4 s4

a1 1 0 1 0 1 0 0 1

a2 1 0 1 0 1 0 0 1

a3 1 0 0 0 1 0 0 0

a4 1 0 0 0 0 0 0 1

a5 1 0 1 0 1 0 0 1

Criteria 4: All tests, all unique states, some attacks. All attacks must be paired

with a state at least once, but not with every state. Table 3.7 shows a set of security

test requirements that meets this criteria. We only have 5 security test requirements.
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Table 3.7: Position Attack Matrix- Criteria 4

bt1

A/CT s1 s2 s2 s3 s3 s4 s4 s4

a1 1 0 0 0 0 0 0 0

a2 0 1 0 0 0 0 0 0

a3 0 0 0 1 0 0 0 0

a4 0 0 0 0 0 1 0 0

a5 0 1 0 0 0 0 0 0

3.4.1 Multiple Attacks

The four criteria described above cover a single attack. Multiple attacks are also

possible. We define two types of multiple attacks. The first being, multiple attacks of

different types. An attacker may attempt two entirely different attacks in the same

state. For example, an attacker may attempt to spoof data and create a man in the

middle attack at the same time. Our approach would cover this attack as a new

attack type.

We also define multiple attacks of the same type. An attacker may attempt to

execute the same attack twice in the same states. For example, An attacker may

attempt to spoof data in 2 separate attacks in the same state. Our approach would

consider this attack simply as a new attack type.

3.4.2 Attack Priorities

We also need to set priorities for some attack combinations and states. Attacks that

would cause the most harm to the system are given a higher priority. Attacks such
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Table 3.8: Software Attack Priorities

Attack Type Priority

a1 DOS RFJam 2

a2 DOS Flood 2

a3 Sniff & Spoof 1

a4 Sniff & MITM 1

a5 DOS GPS 2

as Sniff and Spoof and Sniff and Man in the middle are given the highest priority as

they have the potential of manipulating the system’s behavior by injecting malicious

commands. Attacks such as DOS RF JAM, DOS FLOOD and DOS GPS JAM

are also very dangerous, but they are at a lower level, because they should be the

easiest to identify and mitigate. Let SRi be the set of (p, a) pairs selected by criteria

Ci(i− 1...4). SRi forms our set of security test requirements.

3.5 Step 4: Security Test Generation

We generate a security mitigation test (SMT). The SMT is comprised from data

gathered in the mitigation pattern table shown in Table 3.9. Test paths are then then

generated by examining the test cases defined in criteria 4 and weaving in the proper

mitigation. The SMT is definition as:

Definition 7: Let CT be the concatenated test path

Let a be an attack type

Let p be a position in CT

Let SR be a security test requirement

Let i be an index in SR
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For each requirement (p, a) ∈ SRi,

Let bt ∈ BT be the test which includes position p ∈ CT

Let mta ∈MTa be a mitigation for attack type a

Let s = node(p) be the behavioral state in position p of CT . Therefore, we create

smt ∈ SMT with the weaving rules wra ∈ WRa as follows:

1. Keep path represented by bt until state s

2. Apply attack a at state s

3. Apply weaving rule wra to construct smt

Our weaving rules are similar to [8]. We formally define them for each type of attack.

Let t = { s1...node(p)...sk }

WR1: Fix

1. Option 1 - Compensate: (Partial Fix and proceed) mitigates the attack

and continues with the remainder of the behavioral test. So, smt =

s1 . . . node(p)mta node(p) . . . sk. mta may be zero, if mitigation does not

require a user input.

2. Option 2 -Fix and stop: Mitigates an attack and ignores the remainder of

t : smt = s1 . . . node(p)mta.

WR2: Rollforward

1. Option 1 - Rollforward: mitigates the attack, and proceeds. Therefore,

smt = s1...node(n) mtasf . . . sk where sf is the node in bt to which we

rollforward. If no other actions are required then mta is empty and smt =

s1 . . . node(p)sf . . . sk.
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2. Option 2 - Deferred Fixing: If the failure can only be fixed after reaching

the rollforward node sf then smt becomes:

smt = s1 . . . node(p)sfmtasf+1 . . . sk. Note that further variations of this

weaving rule can exist, like a state sd between sf and sk at which the

failure mitigation mta is inserted.

bt = s1 . . . sb . . . node(p) . . . sf . . . sd . . . sk

smt = s1 . . . node(p)sf . . . sdmta . . . sk

WR3: Rollback

1. Option 1 - Rollback: Apply mitigation path mta from point of attack to

state in which attack is not applicable and continue with remainder of

behavioral test. smt = s1 . . . node(p)mtasb . . . sk where sb is a node before

node(p).

2. Option 2 - Rollback and Stop: smt = s1 . . . node(p)mtasb

3. Option 3 - Retry Once: smt = s1 . . . node(p)node(p)
r . . . sk where r = 1.

WR4: Internal compensate (no action required)

This attack is mitigated when a system switches to a redundant set of hardware.

The test would include applying the attack and continuing to execute the test

bt. As attacks evolve, mitigations and weaving rules may change as well.

We now proceed to generate an attack mitigation for each (p, a) ∈ SRi The results

of applying these weaving rules is SMT. We have to select input values to make the

tests executable. We define an example security test suite as shown in Table 3.10. This
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Table 3.9: Example Mitigation Pattern

State Attack Risk MT Mitigation WR

s1 a1 Roll Forward to Abort WR2 Option 1

a2 Roll Forward to Abort WR2 Option 1

a3 Roll Forward to Abort WR2 Option 1

a4 Roll Forward to Abort WR2 Option 1

a5 Roll Forward to Abort WR2 Option 1

s2 a1 Roll Back to s1 WR3 Option 1

a2 Roll Back to s1 WR3 Option 1

a3 NA

a4 NA

a5 Roll Back to s1 WR3 Option 1

s3 a1 Roll Back to s1 WR3 Option 1

a2 Roll Back to s1 WR3 Option 1

a3 Roll Back to s1 WR3 Option 1

a4 NA

a5 Roll Back to s1 WR3 Option 1

s4 a1 Roll Back to s1 WR3 Option 1

a2 Roll Back to s1 WR3 Option 1

a3 NA

a4 Roll Back to s1 WR3 Option 1

a5 Roll Back to s1 WR3 Option 1
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test suite assumes roll back mitigation and covers the tests that would be required

for criteria 4 noted above.

Table 3.10: Security Mitigation Test for Criteria 4

Security Test SMT bt

smt1 s1,N2,N4 bt1

smt2 s1, s2,N2,N1,N2, s1, s2, s2, s3, s3, s4, s4, s4 bt1

smt3 s1, s2, s2, s3,N2,N1,N2, s1, s2, s2, s3, s3, s4, s4, s4 bt1

smt4 s1, s2, s2, s3, s3, s4,N2,N1,N2, s1, s2, s2, s3, s3, s4, s4, s4 bt1

smt5 s1, s2,N2,N1,N2, s1, s2, s2, s3, s3, s4, s4, s4 bt1

We complete the example by demonstrating executable tests. Our tests have been

built using the SMT shown in Table 3.10 by adding variables and messages. Our

executable tests demonstrate the weaving rules and mitigations interlaced into the

test paths.

SMT1 :

s1 : (Idle, [startSequence = True],

startSequence/send(TestState1Success)(TestState2)

s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState2)

N2 : (Attack, [Attack = True][AttackType = a1]

RolllForward/send(AbortMessage)(RollForwardAbort)

N4 : (RollForwardAbort, [Abort = True],

AbortSuccess/send(AbortSuccess)(EndSequence);

SMT2 :

s1 : (Idle, [startSequence = True],

startSequence/send(TestState1Success)(TestState2)
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s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState2)

N2 : (Attack, [Attack = True][AttackType = a2]

RollBack/send(RollbackMessage)(RollBackSafe)

N1 : (RollBackSafe, [SafeState = s1],

RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

N2 : (Attack, [Attack = True][AttackType = a2]

RollBack/send(RollbackMessage)(RollBackSafe)

s1 : (Idle, [startSequence = True],

startSequence/send(TestState1Success)(TestState2)

s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState2)

s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState3)

s3 : (TestState3, [TestState3 = True], T estState3Success

/send(TestState3Success)(TestState3)

s3 : (TestState3, [TestState3 = True],

T estState3Success/send(TestState3Success)(TestState4)

s4 : (TestState4, [TestState4 = True],

T estState4Success/send(TestState4Success)(TestState4)

s4 : (TestState4, [TestState4 = True],

T estState4Success/send(TestState4Success)(TestState4)

s4 : (TestState4, [TestState4 = True],

T estState4Success/send(TestState4Success)(EndSequence);

SMT3 :

s1 : (Idle, [startSequence = True],
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startSequence/send(TestState1Success)(TestState2)

s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState2)

s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState3)

s3 : (TestState3, [TestState3 = True],

T estState3Success/send(TestState3Success)(TestState3)

N2 : (Attack, [Attack = True][AttackType = a3]

RollBack/send(RollbackMessage)(RollBackSafe)

N1 : (RollBackSafe, [SafeState = s1],

RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

N2 : (Attack, [Attack = True][AttackType = a3]

RollBack/send(RollbackMessage)(RollBackSafe)

s1 : (Idle, [startSequence = True],

startSequence/send(TestState1Success)(TestState2)

s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState2)

s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState3)

s3 : (TestState3, [TestState3 = True], T estState3Success

/send(TestState3Success)(TestState3)

s3 : (TestState3, [TestState3 = True],

T estState3Success/send(TestState3Success)(TestState4)

s4 : (TestState4, [TestState4 = True],

T estState4Success/send(TestState4Success)(TestState4)

s4 : (TestState4, [TestState4 = True],
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TestState4Success/send(TestState4Success)(TestState4)

s4 : (TestState4, [TestState4 = True],

T estState4Success/send(TestState4Success)(EndSequence);

SMT4 :

s1 : (Idle, [startSequence = True],

startSequence/send(TestState1Success)(TestState2)

s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState2)

s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState3)

s3 : (TestState3, [TestState3 = True],

T estState3Success/send(TestState3Success)(TestState3)

s3 : (TestState3, [TestState3 = True],

T estState3Success/send(TestState3Success)(TestState4)

s4 : (TestState4, [TestState4 = True],

T estState4Success/send(TestState4Success)(TestState4)

N2 : (Attack, [Attack = True][AttackType = a4]

RollBack/send(RollbackMessage)(RollBackSafe)

N1 : (RollBackSafe, [SafeState = s1],

RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

N2 : (Attack, [Attack = True][AttackType = a4]

RollBack/send(RollbackMessage)(RollBackSafe)

s1 : (Idle, [startSequence = True],

startSequence/send(TestState1Success)(TestState2)

s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState2)
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s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState3)

s3 : (TestState3, [TestState3 = True], T estState3Success

/send(TestState3Success)(TestState3)

s3 : (TestState3, [TestState3 = True],

T estState3Success/send(TestState3Success)(TestState4)

s4 : (TestState4, [TestState4 = True],

T estState4Success/send(TestState4Success)(TestState4)

s4 : (TestState4, [TestState4 = True],

T estState4Success/send(TestState4Success)(TestState4)

s4 : (TestState4, [TestState4 = True],

T estState4Success/send(TestState4Success)(EndSequence);

SMT5 :

s1 : (Idle, [startSequence = True],

startSequence/send(TestState1Success)(TestState2)

s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState2)

N2 : (Attack, [Attack = True][AttackType = a5]

RollBack/send(RollbackMessage)(RollBackSafe)

N1 : (RollBackSafe, [SafeState = s1],

RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

N2 : (Attack, [Attack = True][AttackType = a5]

RollBack/send(RollbackMessage)(RollBackSafe)

s1 : (Idle, [startSequence = True],

startSequence/send(TestState1Success)(TestState2)

s2 : (TestState2, [TestState2 = True],
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TestState2Success/send(TestState2Success)(TestState2)

s2 : (TestState2, [TestState2 = True],

T estState2Success/send(TestState2Success)(TestState3)

s3 : (TestState3, [TestState3 = True], T estState3Success

/send(TestState3Success)(TestState3)

s3 : (TestState3, [TestState3 = True],

T estState3Success/send(TestState3Success)(TestState4)

s4 : (TestState4, [TestState4 = True],

T estState4Success/send(TestState4Success)(TestState4)

s4 : (TestState4, [TestState4 = True],

T estState4Success/send(TestState4Success)(TestState4)

s4 : (TestState4, [TestState4 = True],

T estState4Success/send(TestState4Success)(EndSequence);

3.6 Integrating New Attacks

We will add a new attack A6 to the attack matrix in Table 3.11. We will also

update the attack applicability matrix by adding a row in Table 3.12 to give example

states in which our new attack is possible. Suppose we have a test suite with two test

paths, i.e. CT = {bt1} where bt1 = {s1, s2, s2, s3, s3, s4, s4, s4} ,

then I = [1,10]. Assume we have 6 applicable single attacks

A = {a1, a2, a3, a4, a5, a6} ; |A|.

As shown in Table 3.13, Table 3.14, Table 3.15 and Table 3.15. The only tests that

would need to be performed would be in the row labeled Ar as they are the only tests

that have been modified.
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Table 3.11: Existing Software Attacks with New Attack to Test

Attack Type Description

a1 DOS RFJam Floods RF Channels

a2 DOS Flood Floods Comm Channels

a3 Sniff & Spoof Listens then injects Packets

a4 Sniff & MITM Listens, Forwards and Injects Packets

a5 DOS GPS JAM Flood GPS Channels

a6 New Attack

Table 3.12: Attack Applicability Matrix

A/S s1 s2 s3 s4

a6 1 1 1 1

Table 3.13: New Attack Position Matrix- Criteria 1

bt1

A/CT s1 s2 s2 s3 s3 s4 s4 s4

a6 1 1 1 1 1 1 1 1

Table 3.14: New Attack Position Matrix- Criteria 2 and 3

bt1

A/CT s1 s2 s2 s3 s3 s4 s4 s4

a6 1 1 0 1 0 1 0 0

Table 3.15: New Attack Position Matrix- Criteria 4

bt1

A/CT s1 s2 s2 s3 s3 s4 s4 s4

a6 0 0 0 0 0 1 0 0
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Chapter 4: Case Studies

4.1 Case Study Research Questions

We demonstrate our approach using four case studies. Our case studies include a

launch vehicle (both pre and post launch), a UAV and a robot. We will use the case

studies to answer the following questions:

- CSQ1: Can we show applicability to various systems?

- CSQ2: Can we demonstrate generalization in different domains?

- CSQ3: Can we prove effectiveness in detecting and mitigating attacks?

- CSQ4: Can we exhibit efficiency in the size of our test suites?

4.2 Case Study 1: Pre-Launch System

In this section we demonstrate our approach with a launch vehicle example to show

how to test for security attacks. The goal of this case study is to demonstrate our

approach on a critical system. Launch vehicles such as the Atlas 5 or Delta 4 are

used to deploy satellites into space. Launch vehicles have also been used in silos to

deploy war heads, such as the Minuteman. The potential harm in a launch vehicle

being compromised is huge. On the launch pad they could explode which could result

in loss of life and loss of the vehicle.
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A launch system consists of a launch conductor, ground system, launch pad, mo-

bile launch platform and an expendable launch vehicle which is comprised of a booster,

upper stage and a payload. Launch vehicles are classified by the number of stages

they contain. A vehicle can contain between one and five stages. For this example

the vehicle will have two stages. Launch vehicles are also characterized by how much

weight they can carry into orbit. Launch vehicles are capable of delivering payloads

to low earth orbit (LEO), medium earth orbit (MEO) and geostationary earth orbit

(GEO).

- small lift - Capable of Lofting 4400 lbs into LEO

- medium lift - Capable of Lofting up to 44,100 lbs into LEO

- heavy lift - Capable of Lofting up to 110,000 lbs into LEO

The launch pad can be a spaceport, fixed missile silo, or mobile seaport. In this

example the launch pad will be a spaceport. The booster and upper stage are fueled by

cryogenic fuels which can only be liquefied at extremely low temperatures. Cryogenic

fuels, such as liquid hydrogen (LH2) and liquid oxygen (LOX) are selected because

they are widely available and inexpensive. They are also chosen because they generate

a high specific impulse(up to 4.4 km/s), which defines their efficiency of fuel relative

to the amount consumed.

The launch controller is responsible for initiating the launch sequence and ver-

ifying the safety and security of the launch control system throughout the launch.

The launch conductor communicates to the vehicle through the ground system. The

ground system is physically connected to the launch vehicle via Ethernet cables, serial

cables, 1553 data cables and fuel lines.

The sequence begins twenty four hours before a launch. The launch conductor

initiates a network connection. This action powers on hazard lights (include both
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search lights and amber warning lights) to indicate to launch personnel that the

launch pad is ”hot” (or a launch is imminent). The launch conductor clears the

area of non-essential personnel using a public announcement system and begins the

countdown clock.

The launch conductor then initiates an environmental control system (ECS) on the

launch pad. This includes soliciting a weather briefing, performing an air conditioning

check as well as a nitrogen purge function. When the ECS is complete, the system

transitions into a fuel check mode.

The mobile launch platform (MLP) and vehicle are moved to the spaceport launch

pad. A cryogenic fuel check is completed by verifying the launch vehicle’s Liquid

Oxygen LO2, helium and Liquid Hydrogen LH2. These fuels are chosen because as

noted above, they are the most efficient launch vehicle fuels. They are also highly

explosive and must be checked often.

The system moves into a pre-flight stage, where an instrumentation check is per-

formed and cryogenic testing is completed. The launch conductor initiates a chill

down procedure (which is used to keep the cryogenic fuels at the proper tempera-

ture), then a battery check is performed. The launch conductor verifies fuel pressures

and initiates fueling if the pressures are low. The launch vehicle system is now ready

for flight.

The launch conductor prepares the vehicle by switching the launch system to run

on its own internal battery power and begins sending the flight command to initiate

the launch. If all is successful, the vehicle successfully lifts off of the launch pad.

Should there be an issue after launch, the flight can be terminated using a safe arm

device (SAD).

Figures 4.1 and 4.2 show the CEFSM model of the launch system including states,

transitions, variables, events, and messages. The CEFSM begins with the initializa-
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tion phase. In this phase, the model transitions with t1 from an ”idle” state s1 (where

no attacks are possible) to the ”network connection” state s2. If the ”network con-

nection” s2 state fails, retry’s are attempted with t2. if the ”network connection”

state s2 is successful, a success message is sent and the model transitions with t3 to

the ”hazards lights on” state s3. The ”hazards lights on” state s3 is retried with a t2

transition on a failure. For a success, the ”hazards lights on” state s3 sends a success

message and transitions to a ”countdown clock reset” state s4. The model transitions

to environmental system control (ESC) ”initialization state” s5, which is considered

to be a safe state and no attacks are possible. The model then transitions with t8

to the ”air conditioning” state s6, which performs an air conditioning check of the

vehicle. If this is successful, the model transitions using t10 to the ”nitrogen purge”

state s7. This completes the ESC initialization and the model transitions with t12

to s8 Fuel check ”initialization state”. This state s8 is also considered a safe state

with no attacks possible. The model transitions with t13 to begin a cryogenic fuel

check is completed by verifying the launch vehicle’s Liquid Oxygen LO2 in state s9,

transitions with t15 to a ”helium state” s10 and transitions with t17 to the ”Liquid

Hydrogen LH2” state s11. When the fuel check is complete, the model transitions

with t19 to a pre-flight stage. The ”initialization state” s12 is also a state state. The

model transitions using t20, where an ”instrumentation check” is performed in s13

transitions with t22 to a ”cryogenic testing” state s14. The model transitions with a

t24 to the ”chill down” state s15, (which is used to keep the cryogenic fuels at the

proper temperature). Then the model transitions with t26 to a ”battery check” state

s16. Then, the model transitions with t28 to the ”initiate fueling” state s17 which

verifies fuel pressures and initiates fueling if the pressures are low. The launch vehicle

system is now ready for flight and transitions with t30 to a fight ”initialize state” s18

(considered a safe state). The vehicle transitions with t31 to the ”internal battery”
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state s19, which prepares the vehicle by switching the launch system to run on its own

internal battery power. The model then transitions with t33 to the ”flight command”

state s20, so that the vehicle can accept the flight command to initiate the launch.

4.2.1 Security Attacks on a Launch System

Security attacks can be injected at each state where there is a communication with

the ground system. Attacks on the initialization stages are less extreme, as the fueling

has not yet begun and the issue may be resolved so that the launch can continue.

The initialization sequence includes network connection, countdown clock and hazard

lights states. Any of these can be mitigated with a retry before an abort command is

issued. The remaining states are the the most critical and could result in explosion

of the launch system. If these states have experienced an attack, the only mitigation

is to abort or initiate the SAD. The attacks that are possible in a pre-flight systems

are defined in Table 4.1.

Table 4.1: Possible Pre-flight Launch Vehicle Attacks

Attack Type Description

a1 DOS RFJam Floods RF Channels

a2 DOS Flood Floods Comm Channels

a3 Sniff & Spoof Listens then injects Packets

a4 Sniff & MITM Listens, Forwards and Injects Packets

4.2.2 Launch Vehicle Behavioral Model

Figure 4.1 depicts the behavioral model of a launch vehicle in Communicating Ex-

tended Finite State Machine (CEFSM) format. The model contains 21 unique states

and 34 transitions. Test paths are determined by following both states and transi-
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Figure 4.1: Pre-Flight Launch Vehicle CEFSM Part 1

91



 

t1:(Idle, [startSequence=True],startInitialize)/(NetworkConnection) 

t2:( NetworkConnection. [NetworkConnection =False])/send(NetworkConnectionFailure)( 
NetworkConnection) 

t3:( NetworkConnection. [NetworkConnection =True])/send(NetworkConnectionSuccess) 
(HazardLightsOn,) 

t4:( HazardLightsOn. [HazardLightsOn =False])/send(HazardLightsOn Failure) (HazardLightsOn,) 

t5:( HazardLightsOn. [HazardLightsOn =True])/send(HazardLightsOn Success) ( 
CountdownClockReset) 

t6:( CountdownClockReset. [CountdownClockReset 
=False])/send(CountdownClockResetFailure) (CountdownClockReset) 

t7:( CountdownClockReset. [CountdownClockReset =True]) 
/send(CountdownClockResetSuccess)(Init) 

t8:( Init. [startSequence=True],start ECSInitialization)/ (AirConditioning) 

t9:( AirConditioning. [AirConditioning =False)/send(AirConditioningFailure) (AirConditioning) 

t10:( AirConditioning. [AirConditioning =True])/send(AirConditioning Success)(NitrogenPurge) 

t11:( NitrogenPurge. [NitrogenPurge =False])/send(NitrogenPurgeFailure) (NitrogenPurge) 

t12:( NitrogenPurge. [NitrogenPurge =True])/send(NitrogenPurgeSuccess) (Init) 

t13: ( Init. [startSequence=True],LO2Chk)/ (LO2Chk) 

t14:( LO2Chk. [LO2Chk =False])/send(LO2ChkFailure)( LO2Chk) 

t15:( LO2Chk. [LO2Chk =True])/send(LO2ChkSuccess) (HeliumChk) 

t16:( HeliumChk. [HeliumChk =False])/send(HeliumChkFailure)(HeliumChk) 

t17:( HeliumChk. [HeliumChk =True]])/send(HeliumChkSuccess)( LH2Chk) 

t18:( LH2Chk. [LH2Chk =False])/send(LH2ChkFailure)( LH2Chk) 

t19:( LH2Chk [LH2Chk =True]])/send(LH2ChkSuccess) (Init) 

t20: ( Init. [startSequence=True],startPreflight)/ ( INSTChk) 

t21:( INSTChk. [INSTChk =False])/send(INSTChkFailure) (INSTChk) 

t22:( INSTChk. [INSTChk =True])/send((INSTChkSuccess)( CryoTesting) 

t23:( CryoTesting. [CryoTesting =False])/send(CryoTestingFailure)(CryoTesting) 

t24:( CryoTesting. [CryoTesting =True])/send(CryoTestingSuccess)(ChillDown) 

t25:( ChillDown. [ChillDown =False])/send(ChillDownFailure)(ChillDown) 

t26:( ChillDown. [ChillDown =True])/send(ChillDownSuccess) (BatteryCheck) 

t27:( BatteryCheck. [BatteryCheck =False])/send(BatteryCheckFailure)( BatteryCheck) 

t28:( BatteryCheck. [BatteryCheck =True])/send(BatteryCheckSuccess) (InitiateFueling) 

t29:( InitiateFueling. [InitiateFueling =False])/send(InitiateFuelingFailure) (InitiateFueling) 

t30:( InitiateFueling. [InitiateFueling =True])/send(InitiateFuelingSuccess) (Init) 

t31: ( Init. [startSequence=True],Flight)/ (InternalBattery) 

t32:( InternalBattery. [InternalBattery =False])/send(InternalBatteryFailure) (InternalBattery) 

t33:( InternalBattery. [InternalBattery =True])/send(InternalBatterySuccess) (FlightCommand) 

t34:( FlightCommand. [FlightCommand =True])/send(Success) 

 

 

 

Figure 4.2: Pre-Flight Launch Vehicle CEFSM Part 2
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Table 4.2: Pre-flight Launch Attacks

State Attack Risk MT Mitigation WR

s1 NA

s2 a1 No Network M1/M4 Rollback to s1 WR3 Option 1

a2 No Network M1/M4 Rollback to s1 WR3 Option 1

s3 a1 Confusion M1/M4 Rollback to s1 WR3 Option 1

a2 Confusion M1/M4 Rollback to s1 WR3 Option 1

a3 Loss of Control M1/M4 Rollback to s1 WR3 Option 1

a4 Loss of Control M1/M4 Rollback to s1 WR3 Option 1

s4 a1 Confusion M1/M4 Rollback to s1 WR3 Option 1

a2 Confusion M1/M4 Rollback to s1 WR3 Option 1

a3 Loss of Control M1/M4 Rollback to s1 WR3 Option 1

a4 Loss of Control M1/M4 Rollback to s1 WR3 Option 1

s5 NA

s6 a1-a4 Fire M3 Roll Forward to Abort WR2 Option 1

s7 a1-a4 Fire M3 Roll Forward to Abort WR2 Option 1

s8 NA

s9 a1-a4 Fire M3 Roll Forward to Abort WR2 Option 1

s10 a1-a4 Fire M3 Roll Forward to Abort WR2 Option 1

s11 a1-a4 Fire M3 Roll Forward to Abort WR2 Option 1

s12 NA

s13 a1-a4 Fire M3 Roll Forward to Abort WR2 Option 1

s14 a1-a4 Fire M3 Roll Forward to Abort WR2 Option 1

s15 a1-a4 Fire M3 Roll Forward to Abort WR2 Option 1

s16 a1-a4 Fire M3 Roll Forward to Abort WR2 Option 1

s17 a1-a4 Fire M3 Roll Forward to Abort WR2 Option 1

s18 NA

s19 a1-a4 Fire M3 Roll Forward to Abort WR2 Option 1

s20 a1-a4 Fire M3 Roll Forward to Abort WR2 Option 1
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Table 4.3: Launch Vehicle Attack Applicability Matrix

A/CT s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21

a1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0

a2 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0

a3 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0

a4 0 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 0

tion in the CEFSM. The specifics of transitions can be found in [37]. The test suite

CT = {bt1} where bt1 = { s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7, s7, s7, s8, s9, s9, s10, s10,

s11, s11, s11, s12, s13, s13, s14, s14, s15, s15, s16, s16, s17, s17, s17, s18, s19, s19, s20, s21}.

Assuming edge coverage is required, the test paths BT fulfill this requirement. By

using reachability analysis, we find that these paths are feasible because there are no

conflicting predicates along the paths. Some attacks are only feasible in certain states.

Table 4.3 shows the attack applicability matrix AM. Some attacks are launch stage

specific. We use mitigation actions to mitigate these attacks and avoid adversary

behavior. We choose (p,a) pairs that meet node attack coverage criteria. Note that

in this case study, A5 is not applicable as there is no GPS system on a launch vehicle.

4.2.3 Security Test Requirements

Next, we determine security test requirements (p, a) for coverage criteria 1-4 (SR1-

SR4). As per the definition of CT in Section 4.2.1, CT is given as CT = bt1 = { s1,

s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7, s7, s7, s8, s9, s9, s10, s10, s11, s11, s11, s12, s13,

s13, s14, s14, s15, s15, s16, s16, s17, s17, s17, s18, s19, s19, s20, s21}˙ There are 39 positions.

We now apply coverage criteria for the above positions (1 ≤ s ≤ 39) and attacks (1

≤ a ≤ 4).
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Coverage Criteria 1: all states, all applicable attacks. The required (p,a) combina-

tions are shown in Table 4.4 as 1 entries. This requires 126 security tests. While

theoretically feasible, it is a large number of tests. This is not only due to the length

of CT, but also due to the large proportion of 1 entries in AM, i.e. whether attacks

are feasible in most states or not.

Coverage Criteria 2 and 3: all unique nodes, all applicable attacks and all tests, all

unique nodes, all applicable attacks. The launch vehicle example is very sequential.

Therefore, criteria 2 and criteria 3 have the same matrix, as shown in Table 4.5. They

both require 52 security tests.

Coverage Criteria 4: all tests, all unique nodes, some attacks. This criteria does

not require that all attacks be injected at every state even though each attack must

be selected at least once. (p,a) combinations that meet this requirement are shown

in Table 4.6 as 1 entries. There are 5 security tests required.

4.2.4 Mitigation Requirements

The mitigation requirements are summarized in Table 4.2. The tables list each state

with possible attacks, the risks of the attack being executed as well as the mitigation

required and the weaving rule we will use to mitigate the attack. If a state is not

listed in the table, it is because no attack is possible in that state (i.e. idle states).

For example in state 2 (s2) or (network connection) an attacker could execute either

a RF DOS attack (a1) or a DOS Flood attack (a2) which would result in a loss or

network connection or confusing the launch conductor or vehicle. The mitigation

would be to roll the system back to the idle state (s1) and attempt to reconnect to

the network.
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Rollback = T 

 

Figure 4.3: Roll Back Mitigation Model M1

Table 4.7: Security Mitigation Test for Criteria 4

Security Test SMT bt

smt1 s1, s2, N1, s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6,

s7, s7, s7, s8, s9, s9, s10, s10, s11, s11, s11, s12, s13, s13,

s14, s14, s15, s15, s16, s16, s17, s17, s17, s18, s19, s19, s20, s21 bt1

smt2 s2, s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7,

s7, s7, s8, s9, N11, N12 bt1

smt3 s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7,

s7, s7, s8, s9, s9, s10, s10, s11, s11, s11, s12, s13, s13,

s14, N11, N12 bt1

smt4 s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6,

s7, s7, s7, s8, s9, s9, s10, s10, s11, s11, s11, s12, s13, s13,

s14, s14, s15, s15, s16, s16, s17, s17, s17, s18, s19, N11, N12 bt1

4.2.5 Pre Launch System Mitigation Models

Security attacks can be injected into any state that gets a command from the

launch conductor. Mitigations for this test case include a roll-back to a safe state

or a roll-forward to a safe state (such as an abort command), as these are the only

two feasible mitigations. Mitigation models are shown in Figure 4.3 and Figure 4.4.

MT = {mt1..mt2} mt1 = (N1, s1) mt2 = (N11,N12)
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Figure 4.4: Roll Forward Mitigation Model M2

4.2.6 Pre Launch System Security Test Suite

The security test suite for a pre-launch vehicle is defined in Table 4.7. This test

suite covers the tests that would be required for criteria 4 noted above. We complete

the example by demonstrating executable tests are as follows:

SMT1 :

s1 : (Idle, [startSequence = True], startInitialize)

/(NetworkConnection)

s2 : (NetworkConnection.[NetworkConnection = True])

/send(NetworkConnectionSuccess)(HazardLightsOn, )

N1 : (RollBackSafe, [AttackType = a1][SafeState = s1],

RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

s1 : (Idle, [startSequence = True], startInitialize)

/(NetworkConnection)

s2 : (NetworkConnection.[NetworkConnection = True])

/send(NetworkConnectionSuccess)(NetworkConnection, )

s2 : (NetworkConnection.[NetworkConnection = True])

/send(NetworkConnectionSuccess)(HazardLightsOn, )

s3 : (HazardLightsOn.[HazardLightsOn = True])
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/send(HazardLightsOnSuccess)(HazardLightsOn)

s3 : (HazardLightsOn.[HazardLightsOn = True])

/send(HazardLightsOnSuccess)(CountdownClockReset)

s4 : (CountdownClockReset.[CountdownClockReset = True])

/send(CountdownClockResetSuccess)(CountdownClockReset)

s4 : (CountdownClockReset.[CountdownClockReset = True])

/send(CountdownClockResetSuccess)(Init)

s5 : (Init.[startSequence = True], startECSInitialization)

/(AirConditioning)

s6 : (AirConditioning.[AirConditioning = True])

/send(AirConditioningSuccess)(AirConditioning)

s6 : (AirConditioning.[AirConditioning = True])

/send(AirConditioningSuccess)(NitrogenPurge)

s7 : (NitrogenPurge.[NitrogenPurge = True])

/send(NitrogenPurgeSuccess)(NitrogenPurge)

s7 : (NitrogenPurge.[NitrogenPurge = True])

/send(NitrogenPurgeSuccess)(Init)

s8 : (Init.[startSequence = True], LO2Chk)/(LO2Chk)

s9 : (LO2Chk.[LO2Chk = True])/send(LO2ChkSuccess)

(LO2Chk)

s9 : (LO2Chk.[LO2Chk = True])/send(LO2ChkSuccess)

(HeliumChk)

s10:(HeliumChk.[HeliumChk = True]])

/send(HeliumChkSuccess)(HeliumChk)

s10:(HeliumChk.[HeliumChk = True]])

/send(HeliumChkSuccess)(LH2Chk)
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s11:(LH2Chk[LH2Chk = True]])

/send(LH2ChkSuccess)(LH2Chk)

s11:(LH2Chk[LH2Chk = True]])

/send(LH2ChkSuccess)(Init)

s12:(Init.[startSequence = True],

startPreflight)/(INSTChk)

s13:(INSTChk.[INSTChk = True])

/send((INSTChkSuccess)(INSTChk)

s13:(INSTChk.[INSTChk = True])

/send((INSTChkSuccess)(CryoTesting)

s14:(CryoTesting.[CryoTesting = True])

/send(CryoTestingSuccess)(CryoTesting)

s14:(CryoTesting.[CryoTesting = True])

/send(CryoTestingSuccess)(ChillDown)

s15:(ChillDown.[ChillDown = True])

/send(ChillDownSuccess)(ChillDown)

s15:(ChillDown.[ChillDown = True])

/send(ChillDownSuccess)(BatteryCheck)

s16:(BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(BatteryCheck)

s16:(BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(InitiateFueling)

s17:(InitiateFueling.[InitiateFueling = True])

/send(InitiateFuelingSuccess)(InitiateFueling)

s17:(InitiateFueling.[InitiateFueling = True])

/send(InitiateFuelingSuccess)(Init)
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s18:(Init.[startSequence = True], F light)

/(InternalBattery)

s19:(InternalBattery.[InternalBattery = True])

/send(InternalBatterySuccess)(InternalBattery)

s19:(InternalBattery.[InternalBattery = True])

/send(InternalBatterySuccess)(FlightCommand)

s20:(FlightCommand.[FlightCommand = True])

s21:(Success.[Success = True])(EndSequence);

SMT2 :

s1 : (Idle, [startSequence = True], startInitialize)

/(NetworkConnection)

s2 : (NetworkConnection.[NetworkConnection = True])

/send(NetworkConnectionSuccess)(HazardLightsOn, )

N1 : (RollBackSafe, [AttackType = a1][SafeState = s1],

RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

s1 : (Idle, [startSequence = True], startInitialize)

/(NetworkConnection)

s2 : (NetworkConnection.[NetworkConnection = True])

/send(NetworkConnectionSuccess)(NetworkConnection, )

s2 : (NetworkConnection.[NetworkConnection = True])

/send(NetworkConnectionSuccess)(HazardLightsOn, )

s3 : (HazardLightsOn.[HazardLightsOn = True])

/send(HazardLightsOnSuccess)(HazardLightsOn)

s3 : (HazardLightsOn.[HazardLightsOn = True])

/send(HazardLightsOnSuccess)(CountdownClockReset)

s4 : (CountdownClockReset.[CountdownClockReset = True])
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/send(CountdownClockResetSuccess)(CountdownClockReset)

s4 : (CountdownClockReset.[CountdownClockReset = True])

/send(CountdownClockResetSuccess)(Init)

s5 : (Init.[startSequence = True], startECSInitialization)

/(AirConditioning)

s6 : (AirConditioning.[AirConditioning = True])

/send(AirConditioningSuccess)(AirConditioning)

s6 : (AirConditioning.[AirConditioning = True])

/send(AirConditioningSuccess)(NitrogenPurge)

s7 : (NitrogenPurge.[NitrogenPurge = True])

/send(NitrogenPurgeSuccess)(NitrogenPurge)

s7 : (NitrogenPurge.[NitrogenPurge = True])

/send(NitrogenPurgeSuccess)(Init)

s8 : (Init.[startSequence = True], LO2Chk)/(LO2Chk)

s9 : (LO2Chk.[LO2Chk = True])/send(LO2ChkSuccess)

(LO2Chk)

N11 : (Attack, [Attack = True][AttackType = a3]

RolllForward/send(AbortMessage)(RollForwardAbort)

N12 : (RollForwardAbort, [Abort = True],

AbortSuccess/send(AbortSuccess)(EndSequence);

SMT3 :

s1 : (Idle, [startSequence = True], startInitialize)

/(NetworkConnection)

s2 : (NetworkConnection.[NetworkConnection = True])

/send(NetworkConnectionSuccess)(HazardLightsOn, )

N1 : (RollBackSafe, [AttackType = a1][SafeState = s1],
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RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

s1 : (Idle, [startSequence = True], startInitialize)

/(NetworkConnection)

s2 : (NetworkConnection.[NetworkConnection = True])

/send(NetworkConnectionSuccess)(NetworkConnection, )

s2 : (NetworkConnection.[NetworkConnection = True])

/send(NetworkConnectionSuccess)(HazardLightsOn, )

s3 : (HazardLightsOn.[HazardLightsOn = True])

/send(HazardLightsOnSuccess)(HazardLightsOn)

s3 : (HazardLightsOn.[HazardLightsOn = True])

/send(HazardLightsOnSuccess)(CountdownClockReset)

s4 : (CountdownClockReset.[CountdownClockReset = True])

/send(CountdownClockResetSuccess)(CountdownClockReset)

s4 : (CountdownClockReset.[CountdownClockReset = True])

/send(CountdownClockResetSuccess)(Init)

s5 : (Init.[startSequence = True], startECSInitialization)

/(AirConditioning)

s6 : (AirConditioning.[AirConditioning = True])

/send(AirConditioningSuccess)(AirConditioning)

s6 : (AirConditioning.[AirConditioning = True])

/send(AirConditioningSuccess)(NitrogenPurge)

s7 : (NitrogenPurge.[NitrogenPurge = True])

/send(NitrogenPurgeSuccess)(NitrogenPurge)

s7 : (NitrogenPurge.[NitrogenPurge = True])

/send(NitrogenPurgeSuccess)(Init)

s8 : (Init.[startSequence = True], LO2Chk)/(LO2Chk)
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s9 : (LO2Chk.[LO2Chk = True])/send(LO2ChkSuccess)

(LO2Chk)

s9 : (LO2Chk.[LO2Chk = True])/send(LO2ChkSuccess)

(HeliumChk)

s10:(HeliumChk.[HeliumChk = True]])

/send(HeliumChkSuccess)(HeliumChk)

s10:(HeliumChk.[HeliumChk = True]])

/send(HeliumChkSuccess)(LH2Chk)

s11:(LH2Chk[LH2Chk = True]])

/send(LH2ChkSuccess)(LH2Chk)

s11:(LH2Chk[LH2Chk = True]])

/send(LH2ChkSuccess)(Init)

s12:(Init.[startSequence = True],

startPreflight)/(INSTChk)

s13:(INSTChk.[INSTChk = True])

/send((INSTChkSuccess)(INSTChk)

s13:(INSTChk.[INSTChk = True])

/send((INSTChkSuccess)(CryoTesting)

s14:(CryoTesting.[CryoTesting = True])

/send(CryoTestingSuccess)(CryoTesting)

N11 : (Attack, [Attack = True][AttackType = a3]

RolllForward/send(AbortMessage)(RollForwardAbort)

N12 : (RollForwardAbort, [Abort = True],

AbortSuccess/send(AbortSuccess)(EndSequence);

SMT4 :
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s1 : (Idle, [startSequence = True], startInitialize)

/(NetworkConnection)

s2 : (NetworkConnection.[NetworkConnection = True])

/send(NetworkConnectionSuccess)(HazardLightsOn, )

N1 : (RollBackSafe, [AttackType = a1][SafeState = s1],

RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

s1 : (Idle, [startSequence = True], startInitialize)

/(NetworkConnection)

s2 : (NetworkConnection.[NetworkConnection = True])

/send(NetworkConnectionSuccess)(NetworkConnection, )

s2 : (NetworkConnection.[NetworkConnection = True])

/send(NetworkConnectionSuccess)(HazardLightsOn, )

s3 : (HazardLightsOn.[HazardLightsOn = True])

/send(HazardLightsOnSuccess)(HazardLightsOn)

s3 : (HazardLightsOn.[HazardLightsOn = True])

/send(HazardLightsOnSuccess)(CountdownClockReset)

s4 : (CountdownClockReset.[CountdownClockReset = True])

/send(CountdownClockResetSuccess)(CountdownClockReset)

s4 : (CountdownClockReset.[CountdownClockReset = True])

/send(CountdownClockResetSuccess)(Init)

s5 : (Init.[startSequence = True], startECSInitialization)

/(AirConditioning)

s6 : (AirConditioning.[AirConditioning = True])

/send(AirConditioningSuccess)(AirConditioning)

s6 : (AirConditioning.[AirConditioning = True])

/send(AirConditioningSuccess)(NitrogenPurge)
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s7 : (NitrogenPurge.[NitrogenPurge = True])

/send(NitrogenPurgeSuccess)(NitrogenPurge)

s7 : (NitrogenPurge.[NitrogenPurge = True])

/send(NitrogenPurgeSuccess)(Init)

s8 : (Init.[startSequence = True], LO2Chk)/(LO2Chk)

s9 : (LO2Chk.[LO2Chk = True])/send(LO2ChkSuccess)

(LO2Chk)

s9 : (LO2Chk.[LO2Chk = True])/send(LO2ChkSuccess)

(HeliumChk)

s10:(HeliumChk.[HeliumChk = True]])

/send(HeliumChkSuccess)(HeliumChk)

s10:(HeliumChk.[HeliumChk = True]])

/send(HeliumChkSuccess)(LH2Chk)

s11:(LH2Chk[LH2Chk = True]])

/send(LH2ChkSuccess)(LH2Chk)

s11:(LH2Chk[LH2Chk = True]])

/send(LH2ChkSuccess)(Init)

s12:(Init.[startSequence = True],

startPreflight)/(INSTChk)

s13:(INSTChk.[INSTChk = True])

/send((INSTChkSuccess)(INSTChk)

s13:(INSTChk.[INSTChk = True])

/send((INSTChkSuccess)(CryoTesting)

s14:(CryoTesting.[CryoTesting = True])

/send(CryoTestingSuccess)(CryoTesting)

s14:(CryoTesting.[CryoTesting = True])
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/send(CryoTestingSuccess)(ChillDown)

s15:(ChillDown.[ChillDown = True])

/send(ChillDownSuccess)(ChillDown)

s15:(ChillDown.[ChillDown = True])

/send(ChillDownSuccess)(BatteryCheck)

s16:(BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(BatteryCheck)

s16:(BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(InitiateFueling)

s17:(InitiateFueling.[InitiateFueling = True])

/send(InitiateFuelingSuccess)(InitiateFueling)

s17:(InitiateFueling.[InitiateFueling = True])

/send(InitiateFuelingSuccess)(Init)

s18:(Init.[startSequence = True], F light)

/(InternalBattery)

s19:(InternalBattery.[InternalBattery = True])

/send(InternalBatterySuccess)(InternalBattery)

N11 : (Attack, [Attack = True][AttackType = a3]

RolllForward/send(AbortMessage)(RollForwardAbort)

N12 : (RollForwardAbort, [Abort = True],

AbortSuccess/send(AbortSuccess)(EndSequence);
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4.2.7 Discussion

We have demonstrated that our approach can be applied to a pre-flight launch

vehicle. We have also demonstrated that we can categorize attacks into more and

less severe, depending on when they occur in the launch sequence. In the early stages

of the launch, we can roll-back and retry various commands, but when the cryogenic

fuels start being deployed, it becomes much more difficult to mitigate an attack and

in most cases a controlled abort is the only option. We have demonstrated a phased

approach using a single test path. Our approach has limited actions including: abort

and safe state. Our approach has shown that we can test the security of a pre-flight

launch vehicle with a very small security test suite. We demonstrate that we can

leverage an MBT behavioral test suite to build a security test suite, using CEFSM

models. We show that we can model required mitigations for security attacks and

generate mitigation tests. We can identify criteria for covering attack scenarios in a

systematic way. We can also use behavioral tests, mitigation test and attack scenarios

to build a systematic approach and build our security testing (MBST). It is a scalable

approach that can be applied to a pre-launch vehicle.

4.3 Case Study 2: Post Launch System

Our approach can also be demonstrated on a launch vehicle post-liftoff. The goal

of this case study is to expand our previous case study to include states after the

vehicle has left the launch pad. After the launch vehicle has jettisoned off the launch

pad, an attack could have serious consequences that could not only include loss of

the vehicle or loss of life, but could be redirected for malicious intent or intentionally

misused to target and explode a high profile location such as the white house or a

military facility. We will demonstrate that we can leverage an MBT behavioral test
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suite to build a security test suite, using CEFSM models and that our approach can

be applied to a post-launch vehicle. The launch vehicle for this example is a two stage

launch vehicle which consists of a stack including the:

- booster - Generally a solid rocket motor which jettisons the vehicle into orbit.

- upper stage - A smaller engine capable of maneuvering the payload into the

proper position.

- payload - A Satellite or Item that is intended to be delivered into orbit generally

a science instrument or a military communication device.

The behavioral model of the post launch vehicle in Communicating Extended

Finite State Machine (CEFSM) format is shown in Figures 4.5 and 4.6. At the

time of launch, the vehicle transitions (t1) to the booster fire (s1) and the vehicle

lifts off of the launch pad. The vehicle transitions (t2) and initiates a Safe Arm

Device (SAD)(s3). One and half minutes into the flight, the booster (typically a

Solid Rocket Motor SRM) is commanded to separate (s4) from the vehicle. Four

minutes into flight, a payload fairing jettison (s6) command is sent to release the nose

cone (payload protective cover), which exposes the payload (s7). Seven minutes into

the flight, a fire command (s9) is sent and the first stage separates (s10) from the

vehicle. When the vehicle reaches LEO, another fire (s12) command is sent and the

first stage is separated (s13)from the payload. Finally the payload is injected into

orbit(s14). If all goes as expected, the mission is complete. If an error is detected

before the booster is separated, the launch conductor may initiate an abort using

a safe arm device (SAD). The SAD forces the SRM to ignite, which terminates the

flight by exploding the solid rocket motor. Once the vehicle has left the launch pad,

the only option to abort the mission is to destroy the vehicle and the payload.
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4.3.1 Post Launch System Behavioral Model

There are 14 unique states and 25 transitions in the model. States and transitions

define the test paths. The specifics of transitions can be found in [37].

The test suite CT = {bt1} where

bt1 = {s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7, s7, s7, s8, s9, s9, s10, s10, s10, s11, s12, s12,

s13, s13, s14, s14, s14}. The paths are feasible based on reachability analysis, as there

are no conflicting predicates between transitions.

4.3.2 Security Attacks on a Post Launch System

Security attacks with the post launch vehicle can be injected at each state where

there is a communication with the ground system. DOS RFJAM and DOS Flood

commands are possible in every state except the idle states. Spoofed and MITM

commands are also applicable in all states except idle as each has a communication

path to the launch conductor or ground system. DOS attacks to the vehicle can be

rolled back and reattempted. However, spoofed commands that can separate key

elements of the vehicle must result in an abort. The attacks that are possible in a

post-flight system are defined in Table 4.8. Note that A5, the GPS JAM attack is

not included, because GPS is not used in a launch vehicle.

Table 4.8: Possible Post-flight Launch Vehicle Attacks

Attack Type Description

A1 DOS RFJam Floods RF Channels

A2 DOS Flood Floods Comm Channels

A3 Sniff & Spoof Listens then injects Packets

A4 Sniff & MITM Listens, Forwards and Injects Packets
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Figure 4.5: Post Launch Vehicle CEFSM Part 1
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t1:(Init, [startSequence=True],startLaunch)/(BoosterFire) 

t2:( BoosterFire. [BoosterFire =False])/send(BoosterFireFailure) 

(BoosterFire) 

t3:( BoosterFire. [BoosterFire =True])/send(BoosterFireSuccess) (SAD) 

t4:( SAD. [SAD =False])/send(SADFailure) (SAD) 

t5:( SAD. [SAD =True])/send(SADSuccess) ( BoosterSep) 

t6:( BoosterSep. [BoosterSep =False])/send(BoosterFireFailure) 
(BoosterSep) 

t7:( BoosterSep. [BoosterSep =True])/send(BoosterFireSuccess) 

t8:( Init. [startSequence=True],startFairing)/ ( Fairing) 

t9:( Fairing. [Fairing =False)/send(FairingFailure) (Fairing) 

t10:( Fairing. [Fairing =True])/send(FairingSuccess)(Jettison) 

t11:( Jettison. [JettisonSep =False])/send(JettisonSepFailure) (Jettison) 

t12:( Jettison. [JettisonSep =True])/send(JettisonSepSuccess) 

t13: ( Init. [startSequence=True],startFS)/ ( FSFire) 

t14:( FSFire. [FSFire =False])/send(FSFireFailure)(FSFire) 

t15:( FSFire. [FSFire =True])/send(FSFireFailure) (FSSeparation) 

t16:( FSSeparation. [FSSeparation =False])/send(FSSeparationFailure) 

(FSSeparation) 

t17:( FSSeparation. [FSSeparation =True]])/send(FSSeparationSuccess) 

t18: ( Init. [startSequence=True],startPL)/ ( PLFire) 

t19:( PLFire. [PLFire =False])/send(PLFireFailure) (PLFire) 

t20:( PLFire. [PLFire =True])/send((PLFireSuccess)( PLSeparation) 

t21:( PLSeparation. 
[PLSeparation=False])/send(PLSeparationFailure)(PLSeparation) 

t22:( PLSeparation. [PLSeparation 
=True])/send(PLSeparationSuccess)(Orbit) 

t23:( Orbit. [Orbit =False])/send(OrbitFailure)(Orbit) 

t24:( Orbit. [Orbit =True])/send(OrbitSuccess) 

 

 

Figure 4.6: Post Launch Vehicle CEFSM Part 2
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N1 S1 
Rollback = T 

 

Figure 4.7: Roll Forward Mitigation Model

4.3.3 Post Launch System Mitigation Models

Security attacks can be injected into any state that gets a command from another

stage or from the ground system. Any attack on a post-liftoff launch vehicle has the

potential to be catastrophic. Mitigations in this case include an abort command or

rollback to a safe state, as these are the only two feasible mitigations post-launch.

Mitigation models are shown in Figure 4.7 and Figure 4.8.

MT = {mt1..mt2}

mt1 = (N1, s1)

mt3 = (N11,N12)
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Figure 4.8: Roll Back Mitigation Model

Table 4.9: Post Launch Test Attacks

State Attack Risk if Attack Successful MT Mitigation WR

s1 NA
s2 A1-A4 Command Spoofed M1 Roll Back s1 WR3 Option 1
s3 A3-A4 Command Spoofed M1 Roll Back s1 WR3 Option 1
s4 A3-A4 Malicious Command M4 Rollforward Abort WR2 Option 1
s5 NA
s6 A1-A4 Command Spoofed M4 Rollforward Abort WR2 Option 1
s7 A3-A4 Malicious Command M4 Rollforward Abort WR2 Option 1
s8 NA
s9 A1-A4 Command Spoofed M4 Rollforward Abort WR2 Option 1
s10 A3-A4 Command Spoofed M4 Rollforward Abort WR2 Option 1
s11 NA
s12 A1-A4 Command Spoofed M4 Rollforward Abort WR2 Option 1
s13 A3-A4 Malicious Command M4 Rollforward Abort WR2 Option 1
s14 A3-A4 Malicious Command M4 Rollforward Abort WR2 Option 1
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4.3.4 Security Test Requirements (Attack Scenarios)

Mitigation requirements are summarized in Table 4.9. The tables list each state

with possible attacks, the risks of the attack being executed as well as the mitigation

required and the weaving rule we will use to mitigate the attack. If a state is not

listed in the table, it is because no attack is possible in that state (i.e. idle states).

For example in state 2 (s2) or (booster command sniffed) an attacker could attempt

to execute either a RF DOS attack (A1) or a DOS Flood attack (A2) which would

result in the booster not getting its command. The mitigation would be to roll the

system back to the idle state (s1) and retry the booster command.

Table 4.10: Post Launch Vehicle Attack Applicability Matrix

A/CT s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

a1 0 1 1 1 0 1 1 0 1 1 0 1 1 1

a2 0 1 1 1 0 1 1 0 1 1 0 1 1 1

a3 0 1 1 1 0 1 1 0 1 1 0 1 1 1

a4 0 1 1 1 0 1 1 0 1 1 0 1 1 1

4.3.5 Post Launch System Security Attacks and Attack Applicability

We define I =
4∑

i=1

len(ti) states s to select for attack a. CT = {s1, s2, s2, s3, s3, s4, s4,

s4, s5, s6, s6, s7, s7, s7, s8, s9, s9, s10, s10, s10, s11, s12, s12, s13, s13, s14, s14, s14}

There are 27 positions in this model. We now apply coverage criteria for the above

positions (1 ≤ p ≤ 39) and attacks (1 ≤ a ≤ 4).

Coverage Criteria 1: all states, all applicable attacks. The required (p, a) combi-

nations are shown in Table 4.11 as 1 entries. This requires 92 tests. This approach

is practical but would not be scaleable in a larger model. Criteria 1 depends on the

size of the test suite, the number of attack types, and where the attacks can occur.
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Coverage Criteria 2 and 3: all unique nodes, all applicable attacks and all tests,

all unique nodes, all applicable attacks. Demonstrated in Table 4.12 requires 40 tests.

Coverage Criteria 4: all tests, all unique nodes, some attacks. This criteria only

injects attacks at one unique test point. Demonstrated in Table 4.13 requires 4 tests.

Table 4.11: Post Launch Security Attack Scenarios- Criteria 1

bt1

A/CTs1 s2 s2 s3 s3 s4 s4 s5 s6 s6 s7 s7 s7 s8 s9 s9 s10 s10 s10 s11 s12 s12 s13 s13 s14 s14 s14

a1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1

a2 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1

a3 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1

a4 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1

Table 4.12: Post Launch Security Attack Scenarios- Criteria 2 and Criteria 3

bt1

A/CTs1 s2 s2 s3 s3 s4 s4 s5 s6 s6 s7 s7 s7 s8 s9 s9 s10 s10 s10 s11 s12 s12 s13 s13 s14 s14 s14

a1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0

a2 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0

a3 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0

a4 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0

Table 4.13: Post Launch Security Attack Scenarios- Criteria 4

bt1

A/CTs1 s2 s2 s3 s3 s4 s4 s5 s6 s6 s7 s7 s7 s8 s9 s9 s10 s10 s10 s11 s12 s12 s13 s13 s14 s14 s14

a1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

a4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
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Table 4.14: Security Mitigation Test for Criteria 4

Security Test SMT bt

smt1 s1, s2,N1, s1, s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7, s7, s7,

s8, s9, s9, s10, s10, s10, s11, s12, s12, s13, s13, s14, s14, s14 bt1

smt2 s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6,N11,N12 bt1

smt3 s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7, s7, s7, s8, s9, s9,

s10, N11, N12 bt1

smt4 s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7, s7, s7, s8, s9, s9,

s10, s10, s10, s11, s12, s12, s13, s13, N11, N12 bt1

4.3.6 Post Launch System Security Test Suite

The security test suite for a post launch vehicle is defined in Table 4.14. This test

suite covers the tests that would be required for criteria 4 noted above. Eleven tests

are required to provide adequate coverage. We complete the example by demonstrat-

ing executable tests are as follows:

SMT1 :

s1 : (Init, [startSequence = True], startLaunch)

/(BoosterF ire)

s2 : (BoosterF ire.[BoosterF ire = True])

/send(BoosterF ireSuccess)(BoosterF ire)

N1 : (RollBackSafe, [AttackType = a1][SafeState = s1],

RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

s1 : (Init, [startSequence = True], startLaunch)

/(BoosterF ire)

s2 : (BoosterF ire.[BoosterF ire = True])

/send(BoosterF ireSuccess)(BoosterF ire)

s2 : (BoosterF ire.[BoosterF ire = True])
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/send(BoosterF ireSuccess)(SAD)

s3 : (SAD.[SAD = True])/send(SADSuccess)

(SAD)

s3 : (SAD.[SAD = True])/send(SADSuccess)

(BoosterSep)

s4 : (BoosterSep.[BoosterSep = True])

/send(BoosterF ireSuccess)(BoosterSep)

s4 : (BoosterSep.[BoosterSep = True])

/send(BoosterF ireSuccess)(Init)

s5 : (Init.[startSequence = True], startFairing)

/(Fairing)

s6 : (Fairing.[Fairing = True])

/send(FairingSuccess)(Fairing)

s6 : (Fairing.[Fairing = True])

/send(FairingSuccess)(Jettison)

s7(Jettison.[JettisonSep = True])

/send(JettisonSepSuccess)(Jettison)

s7(Jettison.[JettisonSep = True])

/send(JettisonSepSuccess)(Init)

s8 : (Init.[startSequence = True], startFS)

/(FSFire)

s9 : (FSFire.[FSFire = True])

/send(FSFireFailure)(FSFire)

s9 : (FSFire.[FSFire = True])

/send(FSFireFailure)(FSSeparation)

s10:(FSSeparation.[FSSeparation = True]])

118



/send(FSSeparationSuccess)(FSSeparation)

s10:(FSSeparation.[FSSeparation = True]])

/send(FSSeparationSuccess)(Init)

s11:(Init.[startSequence = True], startPL)

/(PLFire)

s12:(PLFire.[PLFire = True])

/send((PLFireSuccess)(PLFire)

s12:(PLFire.[PLFire = True])

/send((PLFireSuccess)(PLSeparation)

s13:(PLSeparation.[PLSeparation = True])

/send(PLSeparationSuccess)(PLSeparation)

s13:(PLSeparation.[PLSeparation = True])

/send(PLSeparationSuccess)(Orbit)

s14:(Orbit.[Orbit = True])

/send(OrbitSuccess)(EndSequence);

SMT2 :

s1 : (Init, [startSequence = True], startLaunch)

/(BoosterF ire)

s2 : (BoosterF ire.[BoosterF ire = True])

/send(BoosterF ireSuccess)(BoosterF ire)

s2 : (BoosterF ire.[BoosterF ire = True])

/send(BoosterF ireSuccess)(SAD)

s3 : (SAD.[SAD = True])/send(SADSuccess)

(SAD)

s3 : (SAD.[SAD = True])/send(SADSuccess)

(BoosterSep)
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s4 : (BoosterSep.[BoosterSep = True])

/send(BoosterF ireSuccess)(BoosterSep)

s4 : (BoosterSep.[BoosterSep = True])

/send(BoosterF ireSuccess)(Init)

s5 : (Init.[startSequence = True], startFairing)

/(Fairing)

s6 : (Fairing.[Fairing = True])

/send(FairingSuccess)(Fairing)

s6 : (Fairing.[Fairing = True])

N11 : (Attack, [Attack = True][AttackType = a3]

RolllForward/send(AbortMessage)(RollForwardAbort)

N12 : (RollForwardAbort, [Abort = True],

AbortSuccess/send(AbortSuccess)(EndSequence);

SMT3 :

s1 : (Init, [startSequence = True], startLaunch)

/(BoosterF ire)

s2 : (BoosterF ire.[BoosterF ire = True])

/send(BoosterF ireSuccess)(BoosterF ire)

s2 : (BoosterF ire.[BoosterF ire = True])

/send(BoosterF ireSuccess)(SAD)

s3 : (SAD.[SAD = True])/send(SADSuccess)

(SAD)

s3 : (SAD.[SAD = True])/send(SADSuccess)

(BoosterSep)

s4 : (BoosterSep.[BoosterSep = True])

/send(BoosterF ireSuccess)(BoosterSep)
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s4 : (BoosterSep.[BoosterSep = True])

/send(BoosterF ireSuccess)(Init)

s5 : (Init.[startSequence = True], startFairing)

/(Fairing)

s6 : (Fairing.[Fairing = True])

/send(FairingSuccess)(Fairing)

s6 : (Fairing.[Fairing = True])

/send(FairingSuccess)(Jettison)

s7(Jettison.[JettisonSep = True])

/send(JettisonSepSuccess)(Jettison)

s7(Jettison.[JettisonSep = True])

/send(JettisonSepSuccess)(Init)

s8 : (Init.[startSequence = True], startFS)

/(FSFire)

s9 : (FSFire.[FSFire = True])

/send(FSFireFailure)(FSFire)

s9 : (FSFire.[FSFire = True])

/send(FSFireFailure)(FSSeparation)

s10:(FSSeparation.[FSSeparation = True]])

/send(FSSeparationSuccess)(FSSeparation)

N11 : (Attack, [Attack = True][AttackType = a3]

RolllForward/send(AbortMessage)(RollForwardAbort)

N12 : (RollForwardAbort, [Abort = True],

AbortSuccess/send(AbortSuccess)(EndSequence);

SMT4 :

s1 : (Init, [startSequence = True], startLaunch)
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/(BoosterF ire)

s2 : (BoosterF ire.[BoosterF ire = True])

/send(BoosterF ireSuccess)(BoosterF ire)

s2 : (BoosterF ire.[BoosterF ire = True])

/send(BoosterF ireSuccess)(SAD)

s3 : (SAD.[SAD = True])/send(SADSuccess)

(SAD)

s3 : (SAD.[SAD = True])/send(SADSuccess)

(BoosterSep)

s4 : (BoosterSep.[BoosterSep = True])

/send(BoosterF ireSuccess)(BoosterSep)

s4 : (BoosterSep.[BoosterSep = True])

/send(BoosterF ireSuccess)(Init)

s5 : (Init.[startSequence = True], startFairing)

/(Fairing)

s6 : (Fairing.[Fairing = True])

/send(FairingSuccess)(Fairing)

s6 : (Fairing.[Fairing = True])

/send(FairingSuccess)(Jettison)

s7(Jettison.[JettisonSep = True])

/send(JettisonSepSuccess)(Jettison)

s7(Jettison.[JettisonSep = True])

/send(JettisonSepSuccess)(Init)

s8 : (Init.[startSequence = True], startFS)

/(FSFire)

s9 : (FSFire.[FSFire = True])
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/send(FSFireFailure)(FSFire)

s9 : (FSFire.[FSFire = True])

/send(FSFireFailure)(FSSeparation)

s10:(FSSeparation.[FSSeparation = True]])

/send(FSSeparationSuccess)(FSSeparation)

s10:(FSSeparation.[FSSeparation = True]])

/send(FSSeparationSuccess)(Init)

s11:(Init.[startSequence = True], startPL)

/(PLFire)

s12:(PLFire.[PLFire = True])

/send((PLFireSuccess)(PLFire)

s12:(PLFire.[PLFire = True])

/send((PLFireSuccess)(PLFire)

s13:(PLSeparation.[PLSeparation = True])

/send(PLSeparationSuccess)(PLSeparation)

s13:(PLSeparation.[PLSeparation = True])

/send(PLSeparationSuccess)(Orbit)

N11 : (Attack, [Attack = True][AttackType = a3]

RolllForward/send(AbortMessage)(RollForwardAbort)

N12 : (RollForwardAbort, [Abort = True],

AbortSuccess/send(AbortSuccess)(EndSequence);
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4.3.7 Discussion

We have demonstrated that while a launch vehicle’s flight only lasts for a matter

of 10 to 15 minutes, the ability of an attack to compromise the system could be

disastrous. We have also shown that we can mitigate most DOS attacks on a post

launch vehicle by rolling back and retrying. We have also shown that on the most

critical spoofing attacks, we can inject a roll forward to abort the launch. While this

is extreme, it prevents the vehicle from being used for malicious purposes. This case

study also demonstrated our approach’s ability to be applied to multiple vehicles.

Our approach has shown that we can test the security of a post-flight launch vehicle

with a very small security test suite. We demonstrate that we can leverage an MBT

behavioral test suite to build a security test suite, using CEFSM models. We show

that we can model required mitigations for security attacks and generate mitigation

tests. We can identify criteria for covering attack scenarios in a systematic way.

We can also use behavioral tests, mitigation test and attack scenarios to build a

systematic approach and build our security test (MBST). It is a scalable approach

that can be applied to a post-launch vehicle.

4.4 UAV Case Study

4.4.1 Description of a UAV System

In this section we demonstrate our method using a UAV model. The goal of this case

study is to expand our previous case studies by applying our approach to an entirely

different vehicle as well as adding a new attack (GPS). The UAV launch system

contains a semi-autonomous air vehicle and a ground operator. The vehicle stays in

contact with the ground operator to receive flight commands. We will demonstrate

that we can leverage an MBT behavioral test suite to build a security test suite, using
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CEFSM models and that our approach can easily be applied to a UAV and mitigate

security attacks.

The behavioral model of the UAV in Communicating Extended Finite State Ma-

chine (CEFSM) format is shown in Figures 4.9 and 4.10. The first phase of the UAV

flight is to perform a series of pre-arm checks which verifies the physical state of the

aircraft. It must be inspected for readiness. These checks include a battery check(s2),

a propulsion check(s3), then finally a sensor check(s4). When the checks are complete

the system transitions with (t7) into the second phase which is called arming. The

arming phase provides power to the propulsion system. Arming may only occur in a

manual or stabilized mode. The system transitions between a mode check(s6), a home

position check (s7) (which registers the GPS coordinates of the current location of the

vehicle), verifies the propulsion has been armed (s8) as well as performing a final arm

check(s9). The third phase is a series of preflight checks that include a manual control

surface check (s11) (to register if the UAV can be controlled manually if necessary),

a stabilized control surface check(s12) (to verify the stability of the vehicle) as well

as a throttle check(s13). The system then transitions to a launch phase in which it

performs an environment check (s15) as well as an abort area clear(s16). The system

then transitions to a flight mode in which it performs a radio range check (s18) to

verify it can communicate with the ground operator and accepts flight commands

(s19) to take off and navigate or land. Preventing security attacks in a UAV are very

important as attacks could cause the UAV to be used for malicious purposes or end

up in the enemy’s hands.
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Figure 4.9: UAV CEFSM
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t1:(Init, [startSequence=True],startPrearm)/(BatteryCheck)
t2:(BatteryCheck. [BatteryCheck =False])/send(BatteryCheckFailure)(BatteryCheck)
t3:(BatteryCheck. [BatteryCheck =True])/send(BatteryCheck Success) ( PropCheck)
t4:( PropCheck. [PropCheck =False])/send(PropCheck Failure) (PropCheck)
t5:(PropCheck. [PropCheck =True])/send(PropCheck Success) (SensorCheck)
t6:(SensorCheck. [SensorCheck =False])/send(SensorCheckFailure) (SensorCheck)
t7:(SensorCheck. [SensorCheck =True])/send(SensorCheck Success)
t8:(Init. [startSequence=True],startArming)/ (ModeCheck)
t9:( ModeCheck. [ModeCheck =False)/send(ModeCheck Failure) (ModeCheck)
t10:(ModeCheck. [ModeCheck =True])/send(ModeCheck Success)(HomePosition)
t11:(HomePosition. [HomePosition =False])/send(HomePositionFailure) (HomePosition)
t12:(HomePosition. [HomePosition =True])/send(HomePositionSuccess) (PropArmed)
t13:(PropArmed. [PropArmed =False])/send(PropArmedFailure) (PropArmed)
t14:(PropArmed. [PropArmed =True])/send(PropArmed Success) (ArmCheck)
t15:(ArmCheck. [ArmCheck =False])/send(ArmCheckFailure) (ArmCheck)
t16:(ArmCheck. [ArmCheck =True])/send(ArmCheckSuccess)
t17:(Init. [startSequence=True],Preflight)/ (ManCtlSurfCheck)
t18:(ManCtlSurfCheck. [ManCtlSurfCheck =False])/send(ManCtlSurfCheck)(ManCtlSurfCheck)
t19:(ManCtlSurfCheck. [ManCtlSurfCheck =True])/send(ManCtlSurfCheckSuccess) (Stabilize)
t20:(Stabilize. [Stabilize =False])/send(StabilizeFailure)(Stabilize)
t21:(Stabilize. [Stabilize =True])/send(StabilizeSuccess) (Throttle)
t22:(Throttle. [Throttle =False])/send(ThrottleFailure)(Throttle)
t23:(Throttle. [Throttle =True])/send(Throttle Success) 
t24:(Init. [startSequence=True],Launch)/ (EnviCheck)
t25:(EnviCheck [EnviCheck =False])/send(EnviCheckFailure)(EnviCheck)
t26:(EnviCheck . [EnviCheck =True])/send(EnviCheck Success) (AbortClear)
t27:(AbortClear. [AbortClear =False])/send(AbortClear Failure)(AbortClear)
t28:(AbortClear. [AbortClear =True])/send(AbortClear Success)
t29:(Init. [startSequence=True],Flight)/ (RadioRange)
t30:(RadioRange. [RadioRange =False)/send(RadioRangeFailure) (RadioRange)
t31:(RadioRange. [RadioRange =True])/send(RadioRangeSuccess)(FlightCmds)
t32:(FlightCmds. [FlightCmds =False])/send(FlightCmdsFailure) (FlightCmds)
t33:(FlightCmds. [FlightCmds =True])/send(FlightCmdsSuccess) (Idle)
t34:(End. [endSequence =True])/send(Success)

Figure 4.10: UAV CEFSM
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4.4.2 UAV System Behavioral Model

There are 19 unique states and 33 transitions in the model. The test suite CT = bt1

where

bt1 = {s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7, s7, s8, s8, s9, s9, s9, s10, s11, s11, s12,

s13, , s13, s13} , s14, s15, s15, s16, s16, s16, s17, s18, s18, s19, s19, s19, s20}

The paths are feasible based on reachability analysis, as there are no conflicting

predicates between transitions.

4.4.3 Security Attacks on a UAV

Security attacks can be injected into any state that gets a command from the ground

operator or GPS data. Any attack on a UAV has the potential to be catastrophic.

Under most circumstances, it would be intended for the UAV to stay on its mission

and mitigate. Therefore, most attacks on the UAV can be mitigated with a roll back

and retry. There are only two cases in which it would be worth attempting to get the

UAV to return home. Those would be a flight command compromised or a spoofed

flight command. These are the two cases when it might be the intent of the attack to

carry out malicious activity with the UAV. Attacks to the UAV are shown in Table

4.15.

Table 4.15: Possible UAV Attacks

Attack Type Description

A1 DOS RFJam Floods RF Channels

A2 DOS Flood Floods Comm Channels

A3 Sniff & Spoof Listens then injects Packets

A4 Sniff & MITM Listens, Forwards and Injects Packets

A5 DOS GPS JAM Flood GPS Channels
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Abort = T 

 

Figure 4.11: Roll Forward Mitigation Model

 
  

N11 N12 

Abort = T 

 

Figure 4.12: Roll Back Mitigation Model

4.4.4 UAV System Mitigation Models

Mitigations for this case study include a roll-back to a safe state or a roll-forward

to a safe state (such as a go home command), as these are the only two feasible mit-

igations. Mitigation models are shown in Figure 4.11 and Figure 4.12.

MT = {mt1..mt2}

mt1 = (N1, s1)

mt2 = (N11,N12)
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Table 4.16: UAV Attack Applicability Matrix

A/CT s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20

a1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0

a2 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0

a3 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0

a4 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0

a5 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1 0

4.4.5 UAV Attack Applicability

We define I =
5∑

i=1

len(ti) state s to select for attack a. Concatenating the tests gives

us the number of states in test suite CT = bt1 = {s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6,

s7, s7, s8, s8, s9, s9, s9, s10, s11, s11, s12, s13, , s13, s13, s14, s15, s15, s16, s16, s16, s17, s18, s18, s19,

s19, s19}

There are 37 positions in this model. We now apply coverage criteria for the above

positions (1 ≤ s ≤ 37) and attacks (1 ≤ a ≤ 5).

Coverage Criteria 1: all states, all applicable attacks. The required (s, a) combina-

tions are shown in Table 4.4.6 as 1 entries. This required 165 tests. This approach

is practical but would not be scaleable in a larger model. Criteria 1 depends on the

size of the test suite, the number of attack types, and where the attacks can occur.

Coverage Criteria 2 and 3: all unique nodes, all applicable attacks and all tests, all

unique nodes, all applicable attacks. Demonstrated in Table 4.4.6 requires 70 tests.

Coverage Criteria 4: all tests, all unique nodes, some attacks. This criteria only

injects attacks at one unique test point. Demonstrated in Table 4.4.6 requires 5 tests.
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4.4.6 Mitigation Requirements

Mitigation requirements are summarized in Table 4.17. The tables list each state

with possible attacks, the risks of the attack being executed as well as the mitigation

required and the weaving rule we will use to mitigate the attack. If a state is not

listed in the table, it is because no attack is possible in that state (i.e. idle states).

For example in state (s2) or (battery check compromised) an attacker could execute

either a RF DOS attack (A1) or a DOS Flood attack (A2) which would result in a

confusing battery result. The mitigation would be to roll the system back to the idle

state (s1) and attempt to check the battery again.

Table 4.17: Mitigation Test Suite
State Attack Risk if Attack Successful MT Mitigation WR

s1 NA
s2 A1-A5 Batt Check M1 Rollback s1 WR3 Opt 1
s3 A1-A5 Prop Check Compromised M1 RollBack s1 WR3 Opt 1
s4 A1-A5 Sensor Check M1 Rollback s1 WR3 Opt 1
s5 NA
s6 A1-A5 Mode Check M1 Rollback s5 WR3 Opt 1
s7 A1-A5 Home Recorded M1 Rollback s5 WR3 Opt 1
s8 A1-A5 Prop Arm M1 Rollback s5 WR3 Opt 1
s9 A1-A5 Arm Check M1 Rollback s5 WR3 Opt 1
s10 NA
s11 A1-A5 Man Control M1 Rollback s10 WR3 Opt 1
s12 A1-A5 Stab Control M1 Rollback s10 WR3 Opt 1
s13 A1-A5 Throttle M1 Rollback s10 WR3 Opt 1
s14 NA
s15 A1-A5 Enviro Check M1 Rollback s14 WR3 Opt 1
s16 A1-A5 Abort Area M1 Rollback s14 WR3 Opt 1
s17 NA
s18 A1-A5 Radio M1 Rollback s17 WR3 Opt 1
s19 A1-A5 Flight Command M1 Rollforward WR2 Opt 1
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Table 4.21: Security Mitigation Test for Criteria 4

Security Test SMT bt

smt1 s1, s2, N1, s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7, s7, s8, s8,

s9, s9, s9,s10, s11, s11, s12,

s13, s13, s13,s14, s15, s15, s16,

s16, s16 ,s17, s18, s18, s19, s19, s19, s20 bt1

smt2 s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7,N11, N12 bt1

smt3 s1, s2, N1, s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7, s7, s8,

s8, s9, s9, s9, s10, s11,s11, s12,

s13, N11, N12 bt1

smt4 s1, s2, N1, s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7, s7, s8,

s8, s9, s9, s9, s10, s11,s11, s12,

s13, , s13, s13,s14, s15, N11, N12 bt1

smt5 s1, s2, N1, s1, s2, s2, s3, s3, s4, s4, s4, s5, s6, s6, s7, s7, s8,

s8, s9, s9, s9, s10, s11,s11, s12,

s13, , s13, s13,s14, s15, s15, s16, s16, s16

,s17, s18, s18, s19, N11, N12 bt1

4.4.7 UAV Security Test Suite

The security test suite for a UAV is defined in Table 4.21. This test suite covers

the tests that would be required for criteria 4 noted above. We complete the example

by demonstrating executable tests are as follows:

SMT1;

s1 : (Init, [startSequence = True], startPrearm)

(BatteryCheck)

s2 : (BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(BatteryCheck)

N1 : (RollBackSafe, [AttackType = a1][SafeState = s1],
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RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

s1 : (Init, [startSequence = True], startPrearm)

/(BatteryCheck)

s2 : (BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(BatteryCheck)

s2 : (BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(PropCheck)

s3 : (PropCheck.[PropCheck = True])

/send(PropCheckSuccess)(PropCheck)

s3 : (PropCheck.[PropCheck = True])

/send(PropCheckSuccess)(SensorCheck)

s4 : (SensorCheck.[SensorCheck = True])

/send(SensorCheckSuccess)(SensorCheck)

s4 : (SensorCheck.[SensorCheck = True])

/send(SensorCheckSuccess)(Init)

s5 : (Init.[startSequence = True], startArming)

/(ModeCheck)

s6 : (ModeCheck.[ModeCheck = True])

/send(ModeCheckSuccess)(HomePosition)

s7 : (HomePosition.[HomePosition = True])

/send(HomePositionSuccess)(HomePosition)

s7 : (HomePosition.[HomePosition = True])

/send(HomePositionSuccess)(PropArmed)

s8 : (PropArmed.[PropArmed = True])

/send(PropArmedSuccess)(PropArmed)

s8 : (PropArmed.[PropArmed = True])
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/send(PropArmedSuccess)(ArmCheck)

s9 : (ArmCheck.[ArmCheck = True])

/send(ArmCheckSuccess)(ArmCheck)

s9 : (ArmCheck.[ArmCheck = True])

/send(ArmCheckSuccess)(Init)

s10 : (Init.[startSequence = True],

P reflight)/(ManCtlSurfCheck)

s11 : (ManCtlSurfCheck.[ManCtlSurfCheck = True])

/send(ManCtlSurfCheckSuccess)(ManCtlSurfCheck)

s11 : (ManCtlSurfCheck.[ManCtlSurfCheck = True])

/send(ManCtlSurfCheckSuccess)(Stabilize)

s12 : (Stabilize.[Stabilize = True])

/send(StabilizeSuccess)(Stabilize)

s12 : (Stabilize.[Stabilize = True])

/send(StabilizeSuccess)(Throttle)

s13 : (Throttle.[Throttle = True])

/send(ThrottleSuccess)(Throttle)

s13 : (Throttle.[Throttle = True])

/send(ThrottleSuccess)(Init)

s14 : (Init.[startSequence = True],

Launch)/(EnviCheck)

s15 : (EnviCheck.[EnviCheck = True])

/send(EnviCheckSuccess)(EnviCheck)

s15 : (EnviCheck.[EnviCheck = True])

/send(EnviCheckSuccess)(AbortClear)

s16 : (AbortClear.[AbortClear = True])
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/send(AbortClearSuccess)(AbortClear)

s16 : (AbortClear.[AbortClear = True])

/send(AbortClearSuccess)(Init)

s17 : (Init.[startSequence = True],

F light)/(RadioRange)

s18 : (RadioRange.[RadioRange = True])

/send(RadioRangeSuccess)(RadioRange)

s18 : (RadioRange.[RadioRange = True])

/send(RadioRangeSuccess)(FlightCmds)

s19 : (FlightCmds.[FlightCmds = True])

/send(FlightCmdsSuccess)(FlightCmds)

s19 : (FlightCmds.[FlightCmds = True])

/send(FlightCmdsSuccess)(End)

s20 : (End.[endSequence = True])/send(Success)(EndSequence);

SMT2 :

s1 : (Init, [startSequence = True], startPrearm)

/(BatteryCheck)

s2 : (BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(BatteryCheck)

s2 : (BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(PropCheck)

s3 : (PropCheck.[PropCheck = True])

/send(PropCheckSuccess)(PropCheck)

s3 : (PropCheck.[PropCheck = True])

/send(PropCheckSuccess)(SensorCheck)

s4 : (SensorCheck.[SensorCheck = True])
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/send(SensorCheckSuccess)(SensorCheck)

s4 : (SensorCheck.[SensorCheck = True])

/send(SensorCheckSuccess)(Init)

s5 : (Init.[startSequence = True], startArming)

/(ModeCheck)

s6 : (ModeCheck.[ModeCheck = True])

/send(ModeCheckSuccess)(HomePosition)

s7 : (HomePosition.[HomePosition = True])

/send(HomePositionSuccess)(HomePosition)

N11 : (Attack, [Attack = True][AttackType = a2]

RolllForward/send(AbortMessage)(RollForwardAbort)

N12 : (RollForwardAbort, [Abort = True],

AbortSuccess/send(AbortSuccess)(EndSequence);

SMT3 :

s1 : (Init, [startSequence = True], startPrearm)

/(BatteryCheck)

s2 : (BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(BatteryCheck)

s2 : (BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(PropCheck)

s3 : (PropCheck.[PropCheck = True])

/send(PropCheckSuccess)(PropCheck)

s3 : (PropCheck.[PropCheck = True])

/send(PropCheckSuccess)(SensorCheck)

s4 : (SensorCheck.[SensorCheck = True])

/send(SensorCheckSuccess)(SensorCheck)
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s4 : (SensorCheck.[SensorCheck = True])

/send(SensorCheckSuccess)(Init)

s5 : (Init.[startSequence = True], startArming)

/(ModeCheck)

s6 : (ModeCheck.[ModeCheck = True])

/send(ModeCheckSuccess)(HomePosition)

s7 : (HomePosition.[HomePosition = True])

/send(HomePositionSuccess)(HomePosition)

s7 : (HomePosition.[HomePosition = True])

/send(HomePositionSuccess)(PropArmed)

s8 : (PropArmed.[PropArmed = True])

/send(PropArmedSuccess)(PropArmed)

s8 : (PropArmed.[PropArmed = True])

/send(PropArmedSuccess)(ArmCheck)

s9 : (ArmCheck.[ArmCheck = True])

/send(ArmCheckSuccess)(ArmCheck)

s9 : (ArmCheck.[ArmCheck = True])

/send(ArmCheckSuccess)(Init)

s10 : (Init.[startSequence = True],

P reflight)/(ManCtlSurfCheck)

s11 : (ManCtlSurfCheck.[ManCtlSurfCheck = True])

/send(ManCtlSurfCheckSuccess)(ManCtlSurfCheck)

s11 : (ManCtlSurfCheck.[ManCtlSurfCheck = True])

/send(ManCtlSurfCheckSuccess)(Stabilize)

s12 : (Stabilize.[Stabilize = True])

/send(StabilizeSuccess)(Stabilize)
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s12 : (Stabilize.[Stabilize = True])

/send(StabilizeSuccess)(Throttle)

s13 : (Throttle.[Throttle = True])

/send(ThrottleSuccess)(Throttle)

N11 : (Attack, [Attack = True][AttackType = a3]

RolllForward/send(AbortMessage)(RollForwardAbort)

N12 : (RollForwardAbort, [Abort = True],

AbortSuccess/send(AbortSuccess)(EndSequence);

SMT4 :

s1 : (Init, [startSequence = True], startPrearm)

/(BatteryCheck)

s2 : (BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(BatteryCheck)

s2 : (BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(PropCheck)

s3 : (PropCheck.[PropCheck = True])

/send(PropCheckSuccess)(PropCheck)

s3 : (PropCheck.[PropCheck = True])

/send(PropCheckSuccess)(SensorCheck)

s4 : (SensorCheck.[SensorCheck = True])

/send(SensorCheckSuccess)(SensorCheck)

s4 : (SensorCheck.[SensorCheck = True])

/send(SensorCheckSuccess)(Init)

s5 : (Init.[startSequence = True], startArming)

/(ModeCheck)

s6 : (ModeCheck.[ModeCheck = True])
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/send(ModeCheckSuccess)(HomePosition)

s7 : (HomePosition.[HomePosition = True])

/send(HomePositionSuccess)(HomePosition)

s7 : (HomePosition.[HomePosition = True])

/send(HomePositionSuccess)(PropArmed)

s8 : (PropArmed.[PropArmed = True])

/send(PropArmedSuccess)(PropArmed)

s8 : (PropArmed.[PropArmed = True])

/send(PropArmedSuccess)(ArmCheck)

s9 : (ArmCheck.[ArmCheck = True])

/send(ArmCheckSuccess)(ArmCheck)

s9 : (ArmCheck.[ArmCheck = True])

/send(ArmCheckSuccess)(Init)

s10 : (Init.[startSequence = True],

P reflight)/(ManCtlSurfCheck)

s11 : (ManCtlSurfCheck.[ManCtlSurfCheck = True])

/send(ManCtlSurfCheckSuccess)(ManCtlSurfCheck)

s11 : (ManCtlSurfCheck.[ManCtlSurfCheck = True])

/send(ManCtlSurfCheckSuccess)(Stabilize)

s12 : (Stabilize.[Stabilize = True])

/send(StabilizeSuccess)(Stabilize)

s12 : (Stabilize.[Stabilize = True])

/send(StabilizeSuccess)(Throttle)

s13 : (Throttle.[Throttle = True])

/send(ThrottleSuccess)(Throttle)

s13 : (Throttle.[Throttle = True])
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/send(ThrottleSuccess)(Init)

s14 : (Init.[startSequence = True],

Launch)/(EnviCheck)

s15 : (EnviCheck.[EnviCheck = True])

/send(EnviCheckSuccess)(EnviCheck)

N11 : (Attack, [Attack = True][AttackType = a4]

RolllForward/send(AbortMessage)(RollForwardAbort)

N12 : (RollForwardAbort, [Abort = True],

AbortSuccess/send(AbortSuccess)(EndSequence);

SMT5 :

s1 : (Init, [startSequence = True], startPrearm)

/(BatteryCheck)

s2 : (BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(BatteryCheck)

s2 : (BatteryCheck.[BatteryCheck = True])

/send(BatteryCheckSuccess)(PropCheck)

s3 : (PropCheck.[PropCheck = True])

/send(PropCheckSuccess)(PropCheck)

s3 : (PropCheck.[PropCheck = True])

/send(PropCheckSuccess)(SensorCheck)

s4 : (SensorCheck.[SensorCheck = True])

/send(SensorCheckSuccess)(SensorCheck)

s4 : (SensorCheck.[SensorCheck = True])

/send(SensorCheckSuccess)(Init)

s5 : (Init.[startSequence = True], startArming)

/(ModeCheck)
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s6 : (ModeCheck.[ModeCheck = True])

/send(ModeCheckSuccess)(HomePosition)

s7 : (HomePosition.[HomePosition = True])

/send(HomePositionSuccess)(HomePosition)

s7 : (HomePosition.[HomePosition = True])

/send(HomePositionSuccess)(PropArmed)

s8 : (PropArmed.[PropArmed = True])

/send(PropArmedSuccess)(PropArmed)

s8 : (PropArmed.[PropArmed = True])

/send(PropArmedSuccess)(ArmCheck)

s9 : (ArmCheck.[ArmCheck = True])

/send(ArmCheckSuccess)(ArmCheck)

s9 : (ArmCheck.[ArmCheck = True])

/send(ArmCheckSuccess)(Init)

s10 : (Init.[startSequence = True],

P reflight)/(ManCtlSurfCheck)

s11 : (ManCtlSurfCheck.[ManCtlSurfCheck = True])

/send(ManCtlSurfCheckSuccess)(ManCtlSurfCheck)

s11 : (ManCtlSurfCheck.[ManCtlSurfCheck = True])

/send(ManCtlSurfCheckSuccess)(Stabilize)

s12 : (Stabilize.[Stabilize = True])

/send(StabilizeSuccess)(Stabilize)

s12 : (Stabilize.[Stabilize = True])

/send(StabilizeSuccess)(Throttle)

s13 : (Throttle.[Throttle = True])

/send(ThrottleSuccess)(Throttle)
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s13 : (Throttle.[Throttle = True])

/send(ThrottleSuccess)(Init)

s14 : (Init.[startSequence = True],

Launch)/(EnviCheck)

s15 : (EnviCheck.[EnviCheck = True])

/send(EnviCheckSuccess)(EnviCheck)

s15 : (EnviCheck.[EnviCheck = True])

/send(EnviCheckSuccess)(AbortClear)

s16 : (AbortClear.[AbortClear = True])

/send(AbortClearSuccess)(AbortClear)

s16 : (AbortClear.[AbortClear = True])

/send(AbortClearSuccess)(Init)

s17 : (Init.[startSequence = True],

F light)/(RadioRange)

s18 : (RadioRange.[RadioRange = True])

/send(RadioRangeSuccess)(RadioRange)

s18 : (RadioRange.[RadioRange = True])

/send(RadioRangeSuccess)(FlightCmds)

s19 : (FlightCmds.[FlightCmds = True])

/send(FlightCmdsSuccess)(FlightCmds)

N11 : (Attack, [Attack = True][AttackType = a5]

RolllForward/send(AbortMessage)(RollForwardAbort)

N12 : (RollForwardAbort, [Abort = True],

AbortSuccess/send(AbortSuccess)(EndSequence);
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4.4.8 Discussion

We have demonstrated that our method can be applied to a UAV model. The goal

of this case study was to add a new attack and apply it to a semi-autonomous air

vehicle with a ground operator. We show that we can model required mitigations for

security attacks and generate mitigation tests. We can identify criteria for covering

attack scenarios in a systematic way. We can also use behavioral tests, mitigation

test and attack scenarios to build a systematic approach and build our security test

suite (MBST). It is a scalable approach that can be applied to a UAV.

4.5 Case Study 4: Robot

In this section we demonstrate our approach with a robot example to show how to

test for security attacks. The goal of this case study is to demonstrate our approach

on a critical system. Robots are used to for search and rescue missions, explosive

containment and other critical functions. They rely on public communication channels

and therefore are vulnerable to security attacks.

A robot consists of a semi-autonomous vehicle and a ground operator. The semi-

autonomous vehicle is comprised of a camera and a GPS device. Robots can vary in

complexity, for this example we focus on a very simple example. The controller is

responsible for powering up the robot, retrieving the robots location, sending the robot

a new location and starting and stopping the camera. The robot simply executes the

commands it receives from the controller. For this example, we will always attempt

to retry the commands instead of aborting.

Figures 4.13 and 4.14 show the CEFSM model of the robot system including

states, transitions, variables, events, and messages. The CEFSM begins with the

initialization phase. In this phase, the model transitions with t1 from an ”idle” state
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s1 (where no attacks are possible) to the ”power on” state s2. If the ”power on” s2

state fails, retry’s are attempted with t2. if the ”power on” state s2 is successful,

a success message is sent and the model transitions with t3 to the ”location check”

state s3. The ”location check” state s3 is retried with a t4 transition on a failure.

For a success, the ”location check” state s3 sends a success message and transitions

to a ”camera on” state s4. The model transitions with t7 to a move state (s6). If

successful, the model transitions with t9 to a ”camera off” state. If successful, the

robot transitions to the ”end” state (s8).

4.5.1 Security Attacks on a Robot

Security attacks can be injected at each state where there is a communication with

the controller. Attacks are the most critical when the robot is being commanded to

move as the robot could be manipulated to be used for malice. The attacks that are

possible in a robot system are defined in Table 4.22.

Power 
On

Location 
Check

MoveInit
Camera 

On
Camera

Off

End

S1 S2 S3 S5
S6 S7

S8

t1

t2

t3

t4

t5

t7

t8

t9

t10

t11

t12

t6

Figure 4.13: Robot CEFSM Part 1
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Table 4.22: Possible Robot Attacks

Attack Type Description

a1 DOS RFJam Floods RF Channels

a2 DOS Flood Floods Comm Channels

a3 Sniff & Spoof Listens then injects Packets

a4 Sniff & MITM Listens, Forwards and Injects Packets

Table 4.23: Robot Attacks

State Attack Risk MT Mitigation WR

s1 NA

s2 a1-a4 confusion M3 M1/M4 Rollback to s1 WR3 Option 1

s3 a1-a4 confusion M3 M1/M4 Rollback to s1 WR3 Option 1

s4 a1-a4 confusion M3 M1/M4 Rollback to s1 WR3 Option 1

s5 a1-a4 confusion M3 M1/M4 Rollback to s1 WR3 Option 1

s6 a1-a4 confusion M3 M1/M4 Rollback to s1 WR3 Option 1

s7 a1-a4 confusion M3 M1/M4 Rollback to s1 WR3 Option 1

s8 NA
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t1:(Init, [startSequence=True],startRobot)/(PowerOn)
t2:(PowerOn. [PowerOn =False])/send(PowerOn Failure)(PowerOn)
t3:(PowerOn. [PowerOn =True])/send(PowerOn Success)(LocationCheck)
t4:(LocationCheck. [LocationCheck =False])/send(LocationCheckFailure)(LocationCheck)
t5:(LocationCheck. [LocationCheck =True])/send(LocationCheck Success)(CameraOn)
t6:(CameraOn. [CameraOn =False])/send(CameraOnFailure) ( CameraOn)
t7:(CameraOn. [CameraOn =True])/send(CameraOn Success) ( Move)
t8:(Move. [Move =False])/send(MoveFailure) ( Move)
t9:(Move. [Move =True])/send(Move Success) ( CameraOff)
t10:(CameraOff. [CameraOff =False])/send(CameraOff Failure) ( CameraOff)
t11:(CameraOff. [CameraOff =True])/send(CameraOff Success) (End)
t12:(End, [endSequence=True])

Figure 4.14: Robot CEFSM Part 2

4.5.2 Behavioral Model(BM),Test Criteria (BC), and Test Suite (BT)

Figure 4.13 depicts the behavioral model of a robot in Communicating Extended

Finite State Machine (CEFSM) format. The model contains 8 unique states and 12

transitions. Test paths are determined by following both states and transition in the

CEFSM. The specifics of transitions can be found in [37]. The test suite

CT = {bt1} where

bt1 = { s1, s2, s2, s3, s3, s4, s4, s5, s5, s6, s6, s7, s7, s8}

Assuming edge coverage is required, the test paths BT fulfill this requirement.

By using reachability analysis, we find that these paths are feasible because there are

no conflicting predicates along the paths. Some attacks are only feasible in certain

states. Table 4.24 shows the attack applicability matrix AM. We choose (p,a) pairs

that meet node attack coverage criteria. Note that in this case study, A5 is not

applicable as there is no GPS system on this robot example.
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Table 4.24: Robot Attack Applicability Matrix

A/CT s1 s2 s3 s4 s5 s6 s7 s8

a1 0 1 1 1 1 1 1 0

a2 0 1 1 1 1 1 1 0

a3 0 1 1 1 1 1 1 0

a4 0 1 1 1 1 1 1 0

4.5.3 Security Test Requirements

Next, we determine security test requirements (p, a) for coverage criteria 1-4 (SR1-

SR4). As per the definition of CT CT is given as CT = bt1 = { bt1 = { s1, s2, s2,

s3, s3, s4, s4, s5, s5, s6, s6, s7, s7, s8} There are 14 positions. We now apply coverage

criteria for the above positions (1 ≤ s ≤ 14) and attacks (1 ≤ a ≤ 4).

Coverage Criteria 1: all states, all applicable attacks. The required (p,a) combi-

nations are shown in Table 4.25 as 1 entries. This requires 52 security tests. While

theoretically feasible, it is a large number of tests. This is not only due to the length

of CT, but also due to the large proportion of 1 entries in AM, i.e. whether attacks

are feasible in most states or not.

Coverage Criteria 2 and 3: all unique nodes, all applicable attacks and all tests, all

unique nodes, all applicable attacks. The robot example is very sequential. Therefore,

criteria 2 and criteria 3 have the same matrix, as shown in Table 4.26. They both

require 28 security tests.

Coverage Criteria 4: all tests, all unique nodes, some attacks. This criteria does

not require that all attacks be injected at every state even though each attack must

be selected at least once. (p,a) combinations that meet this requirement are shown

in Table 4.27 as 1 entries. There are 4 security tests required.
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Table 4.25: Robot Security Test Requirements - Criteria 1

bt1
A/CT s1 s2 s2 s3 s3 s4 s4 s5 s5 s6 s6 s7 s7 s8 s8

a1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
a2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
a3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
a4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 4.26: Robot Security Test Requirements - Criteria 2 and 3

bt1
A/CT s1 s2 s2 s3 s3 s4 s4 s5 s5 s6 s6 s7 s7 s8 s8

a1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
a2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
a3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
a4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

4.5.4 Mitigation Requirements, Models, Security Mitigation Tests

The mitigation requirements are summarized in Table 4.23. The tables list each

state with possible attacks, the risks of the attack being executed as well as the

mitigation required and the weaving rule we will use to mitigate the attack. If a state

is not listed in the table, it is because no attack is possible in that state (i.e. idle or

end states). For example in s1 or s8, no attacks are possible.

Table 4.27: Robot Security Test Requirements - Criteria 4

bt1
A/CT s1 s2 s2 s3 s3 s4 s4 s5 s5 s6 s6 s7 s7 s8 s8

a1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
a2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
a3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
a4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
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Rollback = T 

 

Figure 4.15: Roll Back Mitigation Model M1

Table 4.28: Security Mitigation Test for Criteria 4

Security Test SMT bt

smt1 s1, s2, N1, s1, s2, s2, s3, s3, s4, s4, s5, s5, s6, s6,

s7, s7, s8, s8 bt1

smt2 s1, s2, s2, s3, s3, N1, s1, s2, s2, s3,

s3, s4, s4, s5, s5, s6, s6, s7, s7, s8, s8 bt1

smt3 s1, s2, s2, s3, s3, s4, s4, s5, N1,

s1, s2, s2, s3, s3, s4, s4, s5, s6, s6,

s7, s7, s8, s8 bt1

smt4 s1, s2, s2, s3, s3, s4, s4, s5, s5, s6, s6,

N1, s1, s2, s2, s3, s3, s4, s4, s5, s5, s6,

s6, s7, s7, s8, s8 bt1

4.5.5 Robot System Mitigation Models

Security attacks can be injected into any state that gets a command from the con-

troller. Mitigations for this test case include a roll-back to a safe state, this is the

only feasible mitigation. The mitigation model is shown in Figure 4.15.
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4.5.6 Robot System Security Test Suite

The security test suite for a robot is defined in Table 4.28. This test suite covers

the tests that would be required for criteria 4 noted above. We complete the example

by demonstrating executable tests are as follows:

SMT1 :

s1 : (Init, [startSequence = True], startRobot)

/(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(PowerOn)

N1 : (RollBackSafe, [AttackType = a1][SafeState = s1],

RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

s1 : (Init, [startSequence = True], startRobot)

/(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(CameraOn)

s5 : (CameraOn.[CameraOn = True])/send(CameraOnSuccess)

(CameraOn)

s5 : (CameraOn.[CameraOn = True])/send(CameraOnSuccess)

(Move)
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s6 : (Move.[Move = True])/send(MoveSuccess)

(Move)

s6 : (Move.[Move = True])/send(MoveSuccess)

(CameraOff)

s7 : (CameraOff.[CameraOff = True])/send(CameraOffSuccess)

(CameraOff)

s7 : (CameraOff.[CameraOff = True])/send(CameraOffSuccess)

(End)

s8 : (End, [endSequence = True])(EndSequence);

SMT2 :

s1 : (Init, [startSequence = True], startRobot)

/(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(CameraOn)

N1 : (RollBackSafe, [AttackType = a2][SafeState = s1],

RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

s1 : (Init, [startSequence = True], startRobot)

/(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(PowerOn)
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s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(CameraOn)

s5 : (CameraOn.[CameraOn = True])/send(CameraOnSuccess)

(CameraOn)

s5 : (CameraOn.[CameraOn = True])/send(CameraOnSuccess)

(Move)

s6 : (Move.[Move = True])/send(MoveSuccess)

(Move)

s6 : (Move.[Move = True])/send(MoveSuccess)

(CameraOff)

s7 : (CameraOff.[CameraOff = True])/send(CameraOffSuccess)

(CameraOff)

s7 : (CameraOff.[CameraOff = True])/send(CameraOffSuccess)

(End)

s8 : (End, [endSequence = True])(EndSequence);

SMT3 :

s1 : (Init, [startSequence = True], startRobot)

/(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(LocationCheck)
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s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(CameraOn)

s5 : (CameraOn.[CameraOn = True])/send(CameraOnSuccess)

(CameraOn)

N1 : (RollBackSafe, [AttackType = a1][SafeState = s1],

RollBackSuccess/send(RollBackSuccess)(RollBackSafe)

s1 : (Init, [startSequence = True], startRobot)

/(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(CameraOn)

s5 : (CameraOn.[CameraOn = True])/send(CameraOnSuccess)

(CameraOn)

s5 : (CameraOn.[CameraOn = True])/send(CameraOnSuccess)

(Move)

s6 : (Move.[Move = True])/send(MoveSuccess)

(Move)

s6 : (Move.[Move = True])/send(MoveSuccess)

(CameraOff)
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s7 : (CameraOff.[CameraOff = True])/send(CameraOffSuccess)

(CameraOff)

s7 : (CameraOff.[CameraOff = True])/send(CameraOffSuccess)

(End)

s8 : (End, [endSequence = True])(EndSequence);

SMT4 :

s1 : (Init, [startSequence = True], startRobot)

/(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(CameraOn)

s5 : (CameraOn.[CameraOn = True])/send(CameraOnSuccess)

(CameraOn)

s5 : (CameraOn.[CameraOn = True])/send(CameraOnSuccess)

(Move)

s6 : (Move.[Move = True])/send(MoveSuccess)

(Move)

s6 : (Move.[Move = True])/send(MoveSuccess)

(CameraOff)

N1 : (RollBackSafe, [AttackType = a1][SafeState = s1],

RollBackSuccess/send(RollBackSuccess)(RollBackSafe)
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s1 : (Init, [startSequence = True], startRobot)

/(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(PowerOn)

s2 : (PowerOn.[PowerOn = True])/send(PowerOnSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(LocationCheck)

s3 : (LocationCheck.[LocationCheck = True])/send(LocationCheckSuccess)

(CameraOn)

s5 : (CameraOn.[CameraOn = True])/send(CameraOnSuccess)

(CameraOn)

s5 : (CameraOn.[CameraOn = True])/send(CameraOnSuccess)

(Move)

s6 : (Move.[Move = True])/send(MoveSuccess)

(Move)

s6 : (Move.[Move = True])/send(MoveSuccess)

(CameraOff)

s7 : (CameraOff.[CameraOff = True])/send(CameraOffSuccess)

(CameraOff)

s7 : (CameraOff.[CameraOff = True])/send(CameraOffSuccess)

s8 : (End, [endSequence = True])(EndSequence);
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4.5.7 Discussion

We have demonstrated that our approach can be applied to a simple robot. The

purpose of this case study is to apply our method to a different type of vehicle. We will

also copare this method to other published methods from our background chapter.

This approach has limited actions, in that it always rolls back to the safe state and

retries. This was selected as aborting the mission would generally abandon the robot

in an unknown area.

4.6 Case Study Evaluation

4.6.1 Applicability

Using our case studies, we show applicability to various systems. Our approach

was used to generate a security test suite to identify and mitigate security attacks in

a launch vehicle (both pre and post launch) and a UAV. Our approach was applied

to four examples and we could achieve edge coverage with a small test suite.

In the He method the trust boundary line is drawn between the areas that attacks

can occur. The functions above the trust boundary line are considered to not be high

risk interfaces. Functions below the trust boundary are considered to be high risk.

As each interface needs to be tested with each attack, the state space becomes very

large, very quickly. In the example, a very simple example with 5 interfaces and 5

attacks requires 25 tests. In our test cases in section 4, we have between 24 and 34

state transitions which would result in 120 and 170 tests.

We can compare our robot model to the He [41] method from the Background

Chapter. Modeling the robot with 5 interfaces and 5 attacks would result in 25 tests.

We demonstrate using the CEFSM that testing every interface with every attack

would result in 52 tests (maximum amount of tests). We also demonstrate that if we
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used criteria 2 or criteria 3, we would need 28 tests. However, if we used criteria 4, we

would only require 4 tests. Which is a significant improvement over they He method.

4.6.2 Generalizability

In our case studies, we have used CEFSM models for each of the systems. How-

ever we could use different model types such as UML to demonstrate generalization.

To demonstrate generalization, we use UML models to describe the behavior of an

Activmedia Pioneer 3 AT (All Terrain) robot. Our robot contains a wireless network

adapter. The wireless interface operates on a standard 2.4 GHz frequency band. The

robot is capable of being commanded over a wireless network with ARIA (Advanced

Robot Interface for Applications) software. The UML activity diagram is shown in

Figure 4.16.

 

 

 

Figure 4.16: Robot UML
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4.6.3 Effectiveness

We prove effectiveness in detecting and mitigating attacks by determining if security

flaws would be found. We demonstrated this in a lab environment, with a commercial

off the shelf (COTS) Activmedia Pioneer 3 AT robot. We commanded the robot to

follow a yellow line on the floor. We then set up a malicious computer, which was

intended to confuse the robot’s wireless communication transmission. Our malicious

computer successfully sniffed data, decoded WEP, and viewed data on wireless bus

using Wireshark free software then sniffed data was used to spoof messages to the

robot using LibNet free software. Our protocol successfully highlighted the areas of

the black box robot that were vulnerable for attack.

4.6.4 Efficiency

We can exhibit efficiency in the size of our test suites by examining the results. We

have demonstrated four case studies with varying sizes of models. They all resulted

in a small test suite that gave adequate coverage to verify they can mitigate against

a security attack. Table 4.29 compares the number of states and transitions in each

of the case studies.

Table 4.29: Method Applicability Matrix

Prelaunch Postlaunch UAV Robot

States 21 14 19 8

Transitions 34 24 33 12

Attacks 4 4 5 4

Criteria 1 126 92 165 53

Criteria 2 and 3 52 40 70 28

Criteria 4 5 4 5 5
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Chapter 5: Future Work

5.1 Attack and Mitigation Simulator

In the background chapter, we mentioned the method by Beech et al. [14] that

designed, implemented and evaluated an attack simulator tool. We could expand on

this tool to generate a simulation and mitigation tool. Their tool would need to be

expanded to:

- A compiled program P

- Protection Mechanism

- Input to P

- Mitigation to attack M

The current attack simulator can insert attacks at different points and evaluate

how the security mechanism reacts. The simulator injects machine instructions as

attacks. It could be expanded to inject machine instructions that mitigate the at-

tack as well. This method would be valuable, because the integrity of the compiled

program (or black box) would not be altered. The current simulator is built using a

dynamic compiler. The dynamic compiler goes into a loop where it builds machine

instructions that would execute sequentially. At the same time the dynamic compiler

could generate mitigation machine instructions.
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Building this simulator would be a valuable addition to our approach as it would

make the attacks, behavior and mitigations executable. It would also give us an

environment to compare the models against an actual execution.

5.2 Different Models

Additional work could be done to model the autonomous vehicles with different

modeling tools such as UML, Petri Nets or SDL. Using different models would validate

the ability of the approach independent of the models. A comparison could be done

to determine which models are most efficient, easiest to use and provide the most

information. All models would have to be able to model concurrent processes.

161



Chapter 6: Conclusions

This dissertation proposes a black box scalable MBT approach for generating a

security test suite for autonomous and semi-autonomous vehicles. We have demon-

strated that we can use graph-based modeling (such as CEFSM) to model the behavior

of a system, an attack as well as a mitigation. We have also demonstrated that we can

keep the models smaller by not integrating all attacks and mitigations at all attack

points. Rather, we weave in only the necessary mitigation test paths.

In the first step of our process, we demonstrate that we can create a black box

behavioral model (BM) using graph-based testing criteria of the system. Our BM

accurately depicts the intended behavior of the system. With this model, we show

that we can associate coverage criteria and build a behavioral test suite (BT). It is

important for us to identify which attacks are possible at given states. Attacks can be

divided into 5 basic categorizations. However, we can combine any of the attacks to

create new attacks. We understand that attackers are constantly evolving and that in

the future, more categories could be required. Our approach allows for new attacks to

easily be appended to the attack list. The second step of our process, we have shown

that we can determine attack types, an attack applicability matrix and mitigation

requirements. We have built mitigation models (MM) for each type of attack. We

have also shown that we can use coverage criteria (MC) to determine the test paths

for each model (MT). We have also demonstrated that not all attacks are applicable

in all states and we have defined the attack applicability matrix (AM). In the third
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step of our process, we have demonstrated that we can determine at which point in

the execution an attack could occur. This information is used with coverage criteria

to derive our security test requirements. In our final step we have demonstrated that

we can define weaving rules to determine which mitigation will be woven into the

original test paths at attack points.

We have also demonstrated that while it might seem like a good idea to integrate

all attack and mitigation models at all attack points, it would quickly make the model

too large. We have shown that as long as the models are created using a graph based

model tool, they can be woven together to mitigate attacks in test paths.

In this dissertation, we have conducted three case studies using variations of au-

tonomous vehicles with different model sizes, possible attacks and mitigations. In our

pre-launch test case, we demonstrated that there were multiple rendezvous points in

which an attacker could compromise the vehicle, the results of such a compromise

would be devastating and could result in a loss of the vehicle or loss of life. We

discussed that early in the launch, the system could be rolled back and states retried

if an attack were to happen. However, once the fueling begins on the launch vehicle

a mitigation may only be to abort the launch to prevent explosion.

In our post launch test case, we showed that the time from launch to orbit is rela-

tively short, an attacker could compromise the launch vehicle and use it for malicious

purposes. In the case study, we noted that during a DOS attack, we could potentially

roll the system back to a safe state and retry. However, spoofed commands that could

prematurely separate stages of the vehicle would need to be mitigated by rolling for-

ward to an abort state, which would ignite the SRM and destroy the vehicle and the

payload.

As described in our UAV example, we have demonstrated that given known vul-

nerabilities in the GPS guidance system, an attacker could confuse our navigation
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system and take over our vehicle. We describe that before the vehicle takes off it is

important to save the home location and if the vehicle is compromised, we can roll

forward to a state that forces the vehicle to fly home. In our launch vehicle examples,

there is never a fear of the vehicle getting into enemy hands. That is not true with

our UAV example. So we must keep it from getting confused and landing in enemy

territory.

In each of the three case studies, we have successfully generated behavioral mod-

els, identified attacks that are possible, built an attack applicability matrix, identified

mitigations and built a security test suite. Each of the models is a different size. How-

ever, our approach is scalable for all three. We have also successfully demonstrated

that our attack is applicable to multiple types of autonomous or semi-autonomous

vehicles and different stages.

Our method is a robust novel approach to security test autonomous vehicles. It

is a much simpler than generating attack trees for each of the test cases and we do

not have state based explosion problems. Our method is also unique because we can:

• Leverage an MBT approach to build a security test suite

• Model security attacks as well as mitigation tests

• Systematically identify criteria for attack coverage

• Use behavioral tests, mitigation test and attack scenarios to build an approach

for security testing (MBST) In addition,

• We have shown the approach is scalable

• We have demonstrated that the approach will work for single or multiple attacks
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• We have also shown the approach is robust enough to be applied to various

types of autonomous vehicles and launch systems, such as launch vehicles or

UAVs

We can expand on this work to generate an attack and mitigation simulator tool.

The tool could be used to build an environment to compare models against an exe-

cution. It could also be used to try out new single or multiple attacks and evaluate

the results.
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Appendix A: Software Threat Types

Software Threat Types
Threats Type How They Means to Deal Reference

Work With Them Papers
Proces- Physical Systems 1.Choose basic [51]
sing Limit- have security primitives.
Perfor- ation resource 2.Use of cryptographic
mance constrains algorithms.

minimizes 3.Meticulous design of
security software and hardware

implementation
Power Physical Energy 1.Use of energy [51]
Consump- Limit- consump- efficient security
tion ation tion is protocol.
Optimiz- influenced 2.Meticulous design
ation bulky of software and

encrypted hardware
data implementation

3.Allow behavior
adaptation by
altering tasks to
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Software Threat Types cont
Threats Type How They Means to Deal Reference

Work With Them Papers
Viruses, Software Operating 1.Ensure privacy and [31] [51]
Worms, Attacks Systems integrity at each [49] [53]
Trojan may not step of execution. [73] [66]
Horses, have bound- 2.Define safe [80] [96]
etc. ary checks environment to [104]

Malicious execute code from
code gains 3.Validate software
access to before execution.
stack, 4. Remove loopholes
heap, and that compromise
function security.
pointers 5.Involve hardware

support by using a
secure co-processor.
6.Verify
bootstrapping is
secure.
7.Enhance operating
system to
provide security.
8.Use of
cryptographic
algorithms.
9.Involve security
considerations early
in the
design.
10. Meticulous
software and
hardware co-design.

Timing Physical Systems 1. Use of a [62]
Constra- Limit- have delay-aware
ints ation resource heuristic that

constra- adapts levels of
ints security to meet

timing constraints
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Software Threat Types cont
Threats Type How They Means to Deal Reference

Work With Them Papers
Eavesdr- Physical Attackers 1.Choose basic [51]
opping Attack use probes security [94]

to eaves- primitives [73]
2.Use of

drop on cryptographic
inter- algorithms.
component 3.Meticulous
communica- design of software
tion and hardware
directly implementation.
at the 4. Using processors
level to encrypt/decrypt

all data on buses.
5. Employ a hard-
ware architecture
that utilizes an
off-chip memory
security solution.
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Software Threat Types cont
Threats Type How They Means to Deal Reference

Work With Them Papers
Simple Physical The power 1.Addition of [51]
Power Attack profile of tamperevident [94]
Analysis cryptogr- packaging [73]
Attacks aphic technologies

algorithm (i.e.seal or
computat- enclosure)
ions can 2. Employ use of
be used to cryptoprocessors
gain with internal
access to tamper circuitry
cryptogr- to physically
aphic key secure data.

3. Meticulous
design of
software and
hardware
4. Using processors
to encrypt/decrypt
all data
on buses.
5. Employ a
hardware archite-
cture that uses
an off-chip memory
security solution
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Software Threat Types cont
Threats Type How They Means to Deal Reference

Work With Them Papers
Differe- Physical Attack 1. Addition of tamper- [51]
ntial Attack uses stat- evident packaging techn- [94]
Power istical ologies (i.e. seal oe [73]
Analysis aphic enclosure)
Attacks analysis 2. Employ use of crypto

of the processors with internal
difference tamper circuitry to
between physically secure data.
traces to 3. Meticulous design of
deduce the software and hardware
cryptogr- 4. Using processors to
aphic key encrypt/decrypt all data

on buses.
5. Employ a hardware
architecture that uses
an off-chip memory
security solution
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Software Threat Types cont
Threats Type How They Means to Deal Reference

Work With Them Papers
Instruc- Side Crypto- 1. The use of a [51]
tion Channel graphic random clock [100]
Execu- Attack key can be signal removes [73]
tion broken by determinism
Time analyzing makes it more
Varia- number of difficult to
tion cycle and replicate the
Attacks data clock signal.

2.Introducing
noise into power
measurement data
3.Using data
masking to
conceal
sensitive data
4.The use of
scheduling
algorithms which
use slack
time to run
security tasks
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Software Threat Types cont
Threats Type How They Means to Deal Reference

Work With Them Papers
Perform- Side Optimiz- 1. The use of a [51] [73]
ance Channel ation may random clock [100]
Optimiz- Attack introduce signal removes
ation vurnerab- determinism
Attacks ility in makes it more

execution difficult to
paths replicate the

clock signal
2.Introducing
noise into power
measurement data
3.Use data mask-
ing to conceal
sensitive data.
4.The use of
scheduling
algorithms which
use slack
time to run
security tasks
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Software Threat Types cont
Threats Type How They Means to Deal Reference

Work With Them Papers
Privacy Fault Attackers 1. The use of a random [73]
Attacks Injecti- use fault clock signal removes

on injections determinism makes it
Attacks to break more difficult to

cyrptogra- replicate the clock
phic keys signal.

2.Introducing noise
into power
measurement data.
3.Using data masking
conceal
sensitive data.
4.Employ use of crypto
processors with
internal circuitry to
physically secure data

Pre- Fault Attackers 1. The use of a random [73]
Cursor Injecti- use fault clock signal removes
Attacks on injections determinism makes it

Attacks as a pre- more difficult to
cursor to replicate the clock
software signal.
attacks 2.Introducing noise

into power measurement
data.
3.Using data masking to
conceal sensitive data
4.Employ use of crypto
processors with
internal circuitry to
physically secure data
5.Verify bootstrapping
is secure
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Software Threat Types cont
Threats Type How They Means to Deal Reference

Work With Them Papers
Electro- Radiat- Attackers 1. The electro-magnetic [73]
Magnetic ion Emi- attempt to field must be kept
Analysis ssion measure isolated
Attacks Attacks electro-

magnetic
radiation
to
recreate
screen
contents

Integr- Fault Attackers 1. The use of a [73]
ity Injecti- corrupt random clock
Attacks on code or signal removes

Attacks data in determinism
memory makes it more

difficult to
replicate the
clock signal.
2.Introducing
noise into
power
measurement data.
3.Using data
masking to
conceal
sensitive data.
4.Employ use of
crypto
processors with
internal
circuitry to
physically
secure data

Table A.1: Software Threats
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Appendix B: Software Threat Models

Software Threat Model
Identify Understand Categorize Mitigation Test
Threats Threats Threats
Data Attacker Tampering, The code Through
Substit- can Elevation block and Testing
ution substitute a of hash are With

requested Privilege encrypted Attempts to
data block Spoofing by the substitute
for another compiler data blocks
without compared at
detection runtime

Data Attacker Tampering, Use CRC32 Through
Injection/ can guess Information as a uni- Testing
Modifi- location of Disclosure, que With Attempts
cation runtime Elevation of signature to locate

stack by Privilege or in each the stack
looking at Spoofing, block of
the data Repudiation, code
write backs Denial of encrypted

Service
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Software Threat Model
Identify Understand Categorize Mitigation Test
Threats Threats Threats
Code Attacker Spoofing,
Injection/ tries to Tampering Run Time Through
Execution replace Information Code Testing
Disruptions or modify Disclosure Integrity With Attempts

a section Elevation of Checking to replace
of encrypted Privilege or modify
instructions sections of
without code
detection

Instruction Attacker Tampering, Validate Through
Replay replays a Information that the Testing

set of Disclosure, data With Attempts
encrypted Elevation of contents to replace
instructions Privilege or are from a set of
from memory Spoofing the mem instructions
without location
detection they were

requested
from

Control Attacker Tampering, Control Through
Flow can sniff Information flow must Testing
Attacks the data Disclosure, be embed- With Attempts

bus to gain Elevation of ded and to alter the
access to Privilege or validated control flow
control Spoofing, by a
flow Repudiation, built in
structure Denial of applica-

Service tion

Table B.1: Threat Model
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