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ABSTRACT 

 

Power system management in response to extreme events is one the most 

important operational aspects of power systems. In this thesis, a novel Event-driven 

Security Constrained Unit Commitment (E-SCUC) model and a statistical method, based 

on regression and data mining to estimate the system components outages, are proposed. 

The proposed models help consider the simultaneous outage of several system 

components represented by an N-1-m reliability criterion and accordingly determine the 

proper system response. In addition, an optimal microgrid placement model with the 

objective of minimizing the cost of unserved energy to enhance power system resilience 

is proposed.  

The numerical simulations on the standard IEEE 30-bus and IEEE 118-bus test 

systems exhibit the merits and applicability of the proposed E-SCUC model, as well as 

the advantages of the data mining approach in estimating component outage, and the 

effectiveness of the optimal microgrid placement in ensuring an economic operation 

under normal conditions and a resilient operation under contingency cases.  
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1. CHAPTER ONE: INTRODUCTION 

Extreme events, including severe weather events and natural disasters, result in 

significant economic, social, and physical disruptions and cause considerable 

inconvenience for residents living in disaster areas. To address this issue, the topic of 

power grid resilience has gained significant attention in recent years. Power grid 

resilience is defined as the grid capability to withstand low-probability high-impact 

events by minimizing possible power outages and then quickly returning to its normal 

operating state. 

Power system operators commonly rely on a security-constrained unit 

commitment (SCUC) to schedule the available generation resources needed to meet the 

forecasted load and addressing prevailing system constraints in response to limited 

components unavailability. Although widely used and proved viable, the SCUC solution 

cannot guarantee a useful solution when the system is subject to extreme events, i.e. 

severe weather events and natural disasters. In other words, even though a secure solution 

is obtained, the solution does not ensure the grid resilience in response to the extreme 

event. Considering this issue, and the growing number and intensity of extreme events, 

this study proposes and formulates an Event-driven SCUC (E-SCUC) model which 

ensures a resilient supply of loads, even in the case of multiple component outages. 
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An accurate estimation of the component outages, however, is of ultimate 

importance in ensuring a viable resource schedule. Along with the proposed E-SCUC 

method, a kernel density estimation method, based on regression and data mining, is used 

to estimate and model the system components that can potentially fail during a predicted 

hurricane. The model is trained on artificial data and historical data from storm-related 

damages to predict component outages, where the prediction is further used in the 

proposed E-SCUC problem. 

In addition, microgrids, as small-scale power systems with the ability of self-

supply and islanding, are perceived as attractive investment options for both electrical 

system operators and end-use consumers due to the many economic, reliability, and 

energy efficiency benefits that they offer. One specific benefit of microgrids, which 

makes them extremely attractive, is the potential to improve resilience. The installation of 

microgrids in the proper places in power systems can be considered as a viable solution 

to power system resilience. Considering this issue and the growing number and intensity 

of extreme events, we developed a microgrid optimal placement model that determines 

the optimal size and location of microgrids in power systems to maximize system 

resilience. The model is developed considering multiple component outages and limited 

investment budget. 

The rest of the chapter is organized as follow:  Section 1.1 reviews the importance 

of power system resilience and introduces some of the existing work on improving power 

system resilience. Section 1.3 presents the literature on data driven approaches in system 

resilience and introduces the Kernel Density Estimation (KDE) method to estimate and 
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model the system components that can potentially fail during a predicted hurricane. The 

importance of microgrids in power system resilience is presented in Section 1.3. Finally, 

an overview of the contributions in this thesis are presented in Section 1.4. 

 

1.1. Power System Resilience 

Extreme events, including severe weather events and natural disasters, result in 

significant economic, social, and physical disruptions, and cause considerable 

inconvenience for residents living in disaster areas due to loss of critical lifeline systems 

(Winkler et al. 2010). The electricity infrastructure has always been significantly 

impacted by extreme events as it is dispersed over a vast geographical area to transfer the 

electric energy generated by large-scale power plants to a variety of customers via 

transmission and distribution networks. The resulting power outages shut down 

businesses, impede emergency services, and cost the economy billions of dollars annually 

in lost output and wages, delayed production, inconvenience, and damage to the 

infrastructure (Executive Office of the President 2015). The topic of power grid 

resilience, i.e., the grid capability to withstand low-probability high-impact events by 

minimizing possible power outages and quickly returning to normal operating state (Karl 

2009), has gained significant attention in recent years.  

The importance of improving resilience in power systems is widely discussed in 

the literature; however, the mathematical modeling of optimal scheduling of available 

resources based on resilience considerations and efficient modeling of weather related 

incidents is limited. In (Ball 2006), a case study on hurricane planning and rebuilding the 
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electrical infrastructure along the Gulf Coast for hurricane Katrina was presented. In (D. 

Reed et al. 2009), the interdependency of electricity and telecommunication 

infrastructures is considered during extreme events, and the resilience of networked 

infrastructures is analyzed. A resilience index for large infrastructures using belief 

functions is modeled in (Attoh-Okine et al. 2009) and a variety of qualitative 

explanations to address and analyze the system vulnerability is proposed. In (Arab, 

Khodaei, Han, et al. 2015), a framework for proactive recovery of electric power assets 

with the primary objective of resilience enhancement is introduced. The proposed 

framework develops outage models to indicate the impact of hurricanes on power system 

components, a stochastic pre-hurricane model for managing resources before the event, 

and a deterministic post-hurricane recovery model for managing resources after the event. 

One important issue, which is typically overlooked in resilience studies, is the 

significant role of available generation units in ensuring a rapid and timely recovery of 

power system assets. This issue is discussed in (Arab et al. 2014) where impact of 

potential damage due to hurricanes is incorporated in the power system maintenance 

scheduling problem. The proposed model considers component deterioration, failure due 

to loss of reliability and hurricane damages, and the interrelationship between the 

components and the grid. The objective is to find a simultaneous cost-effective unit 

commitment (UC) and hurricane planning for preventive maintenance when the 

components fail due to degradation or hurricanes. It is concluded that the saving cost due 

to implementing the preventive maintenance program is significant and it is necessary to 

include resilience in UC. 
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1.2. Data Driven Approaches in System Resilience 

In the context of data driven approaches to predict power system outages in 

response to hurricanes, the hurricane disruption in terms of number of outages and 

customers affected, geographic distribution and duration, causes of outages, and types of 

equipment affected, are studied in (Davidson et al. 2003). The study is based on large 

databases of outages in five hurricanes in Carolina. In (D. A. Reed 2008) data logs of the 

repair crews were plotted in GIS to study outage duration, fragilities, and restoration of 

an urban distribution system located in the U.S. Pacific Northwest that was affected by 

four winter storms. In (Nateghi, Guikema, and Quiring 2014), an ensemble learning 

method for regression (i.e. random decision forests) is proposed to forecast the 

power outage durations. The power outage duration models are developed and validated 

for outages caused by Hurricanes Dennis, Katrina, and Ivan in a central Gulf Coast state. 

In (Guikema et al. 2014), a hurricane power outage prediction model is introduced and 

claimed to be applicable along the full U.S. coastline. The model is trained on only 

publicly available data, and is further used to estimate the impacts of a number of historic 

storms, including Sandy and Typhoon Haiyan. 

Considering the large number and the frequent occurrence of hurricanes in the 

U.S., which results in a considerable amount of data, machine learning methods could be 

of significant use. Kernel Density Estimation (KDE) method, as a non-parametric way to 

estimate the probability density function of a random variable, is used for this purpose 

(Parzen 1962). This method is commonly used in data mining, data smoothing, cluster 

analysis, image processing, signal processing, and econometrics (Guidoum 2013). In this 
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case of study, KDE is used to analyze the historical hurricane and power system outage 

data and accordingly estimate the probability of failure for power system components in 

response to future events based on the center and the category of the hurricane 

 

1.3. Microgrids 

Microgrids, as small-scale power systems with the ability of self-supply and 

islanding, are perceived as attractive investment options for both electrical system 

operators and end-use consumers due to the many economic, reliability, and energy 

efficiency benefits that they offer. One specific benefit of microgrids, which makes them 

extremely attractive, is the potential to improve resilience. Power grid resilience 

represents the grid capability to withstand low-probability high-impact events by 

minimizing possible power outages and quickly returning to normal operating state 

(Executive Office of the President 2015). The topic of power grid resilience has received 

significant attention over the years as low-probability high-impact events, such as severe 

weather events and natural disasters, resulting in significant socioeconomic disruptions 

due to loss of critical infrastructure systems (Karl 2009). The power system is one of 

these critical infrastructures that has always been significantly impacted by extreme 

events, conceivably due to dispersion over vast geographical area to transfer the electric 

energy to consumers. The power outages caused by extreme events cost billions of 

dollars annually as a result of lost output, delayed production, and damage to the 

infrastructure (Executive Office of the President 2015). A study on rebuilding the power 

grid along the Gulf Coast, in response to hurricane Katrina, is presented in (Ball 2006). A 
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new attack scenario is introduced in (Zhu et al. 2014), which considers a practical attack 

strategy based on attack graph to evaluate the power grid resilience. The interdependency 

of electricity and telecommunication infrastructures are considered during extreme events 

in (D. A. Reed, Kapur, and Christie 2009), where the resilience of networked 

infrastructures is further analyzed. A resilience index for large infrastructures using belief 

functions is modeled in (Attoh-Okine et al. 2009) and a variety of qualitative 

explanations to address and analyze the system vulnerability is proposed. The study in 

(Arab, Khodaei, Khator, et al. 2015) proposes a model for repair and restoration of 

potential damages to the power system based on a proactive resource allocation, which is 

modeled as a stochastic integer program and decomposed by the Benders decomposition 

to handle computation burden. A framework for proactive recovery of electric power 

assets is introduced in (Arab, Khodaei, Han, et al. 2015), seeking to enhance the grid 

resilience. Outage models are introduced, along with stochastic/deterministic models for 

managing resources in pre-/post-hurricane stages. The role of available generation units 

in ensuring the desired level of grid resilience is an important issue that is commonly 

ignored in these studies, but however, needs to be further taken into account. The 

significant role of generation units availability in ensuring a timely recovery is discussed 

in (Arab et al. 2014), where the likely damages due to extreme events is integrated with 

the maintenance scheduling problem. Component deterioration, failure due to extreme 

events, and the interdependency between the components and the grid are further 

considered in the proposed model, and accordingly, a simultaneous cost-effective unit 
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commitment (UC) and hurricane planning for preventive maintenance was achieved. The 

study concluded that it is imperative to include resilience as part of the UC problem. 

There are limited mathematical studies in the literature on the impact of 

microgrids on the power grid resilience. A comprehensive study of state-of-the-art 

methods of resilience in microgrids can be found in (Parhizi et al. 2015). The problem of 

integrating distributed generators (DG) to microgrids from an economic and reliable 

planning perspective is investigated in (Xu et al. 2014). A multi-objective optimization 

model which includes resilience by considering network capacity for self-recovery to a 

new normal state after an extreme event is introduced in (Cano-Andrade et al. 2012). A 

composite sustainability/resilience index is calculated using fuzzy logic which allows 

expression of sustainability and resilience indices in the same units. A resilience-oriented 

microgrid optimal scheduling model is proposed in (Khodaei 2014), which schedules 

available resources in case of utility grid supply interruption to minimize the microgrid 

load curtailments. The study in (Che and Shahidehpour 2014) suggests that by deploying 

microgrids in strategic locations, the power grid resilience can be enhanced.  

In this model, the cost of lost loads, the repair cost, and the generation costs were 

considered as economic indices. The model suggested that investing on restoration 

resources can be paid off by securing expedited recovery. In resilience studies, ensuring 

adequate available generation plays an important role, which indicates the importance of 

unit commitment and economic dispatch studies. This issue is discussed in (Arab et al. 

2014), where the impact of potential damage due to hurricanes is incorporated in the 

power system maintenance-scheduling problem. The proposed model considers 
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component deterioration and also failure due to loss of reliability and failure due to 

hurricane damages. The objective is to find a simultaneous cost-effective unit 

commitment and hurricane planning for preventive maintenance when the components 

fail due to degradation or hurricanes. In the context of microgrid applications for power 

system resilience enhancement, limited work can be found in the literature, mainly 

focusing on the resilience improvement as a complimentary value proposition of 

microgrids. In (Xu et al. 2014), a case study of integrating distributed generators (DGs) to 

microgrids is investigated from a planning perspective which is modeled as an 

optimization problem with objectives of vulnerability, reliability, and economy. The 

optimization model is solved by a hybrid approach that combines multi-agent system and 

particle swarm optimization. However, the model is complicated and it is possible that 

the employed evolutionary method stops in a local minima. In (Cano-Andrade et al. 

2012), a multi-objective resilience model is proposed in order to account for the capacity 

of the network to self-recover to a normal state after a natural disaster. The study in 

(Khodaei 2014) aims at minimizing the microgrid load curtailments by scheduling 

available resources when supply of power from the utility grid is interrupted. This study 

considers uncertainties in load, renewable generation, as well as the time and the duration 

of the electricity interruptions from the utility grid. This model is one of the few 

mathematical models of the microgrid optimal scheduling problem based on resilience 

considerations which uses a decomposition method to decouple the problem into two 

operational problems, i.e., normal and resilient. A comprehensive study of microgrids 

application in providing grid support is provided in (Parhizi et al. 2015). 
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1.4. Contributions 

The contributions of this thesis are as follows: 

1.4.1. Event-driven Security-Constrained Unit Commitment (E-SCUC) 

An Event-driven Security-Constrained Unit Commitment (E-SCUC) model is 

proposed which considers the probabilistic damage model of the system components, 

develops proper scenarios to model the impact of forecasted extreme events on 

component outages, and determines the commitment and dispatch of available generation 

units to ensure an economic operation under normal conditions and a resilient operation 

under contingency cases. The focus on this study will be on hurricanes; however, the 

proposed models can be applied to other types of extreme events, without loss of 

generality, knowing the probability of arrival and damage on the system components. 

Unlike the current daily practice in system resource scheduling in which N-1 or N-2 

reliability criteria are considered, the proposed E-SCUC allows for consideration of an 

extended number of outages, i.e., N-1-m, where m is determined in this study using 

probabilistic methods.  

 

1.4.2. Component Outage Estimation Based on Statistical Learning  

Since accurate estimation of the component outages is importance in planning and 

scheduling power systems especially during an extreme event, a Kernel Density 

Estimation (KDE) method is proposed and used to estimate component outages. As there 

are only a few publicly available datasets on the impact of the hurricanes on power 

system components, the proposed method is applied on artificial data to estimate the 
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probability of components failures. The obtained component outages are further 

integrated to a developed E-SCUC model to find the optimal schedule of available 

resources that not only minimizes the operation cost but also lowers the system total load 

curtailment.  

1.4.3. Role of Microgrids in Power System Resilience 

In this study, an optimal microgrid placement model to enhance power system 

resilience is proposed. The size and location of microgrids are determined in order to 

minimize the load curtailments within the power system following hurricanes. The 

probabilistic failure model of the system components is considered to develop proper 

scenarios in order to model the impact of hurricanes on component outages. Moreover, 

this model characterizes a resilient operation under contingency cases. Microgrids are 

considered as aggregated and flexible loads from the system operator’s perspective and 

their response to component outages are accordingly modeled. The proposed work 

follows the grid modernization plans of many electric utilities in the U.S., such as 

Commonwealth Edison in Chicago, to build microgrids in strategic places in order to 

address the negative impacts of extreme weather events and improve system resilience 

(Paaso, Svachula, and Bahramirad 2015), (Paaso, Liao, and Cramer 2015) . 
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2. CHAPTER TWO: POWER GRID MANAGEMENT 

In this chapter, the model outline and formulation of the proposed approaches to 

enhance power system resilience are presented. Section 2.1 presents the proposed Event-

driven Security-Constrained Unit Commitment (E-SCUC) problem and introduces two 

new proposed reliability criteria i.e. N-m and N-1-m. The formulation of the proposed E-

SCUC is discussed in Section 2.1.1.  

The proposed approach of component outage estimation based on the KDE is 

introduced in Section 2.2. Section 2.2.1 introduces Saffir-Simpson’s category of 

hurricanes, and the formulation of the proposed Kernel Density Estimation (KDE) 

method to estimate component outages is discussed in Section 2.2.2. 

Once the probable damages to system components are estimated, the buses in 

which microgrids are to be placed will be determined with the objective of minimizing 

the system total load curtailments. The role of microgrids in power system resilience and 

optimal microgrid placement formulation are presented in Section 2.3. 

 

2.1. Event-driven Security-Constrained Unit Commitment (E-SCUC) 

Figure 2-1 depicts the outline of the proposed E-SCUC model. The problem is 

solved in two consecutive stages. Stage 1 forecasts the path and the intensity of the 

hurricane that is headed toward the power system and accordingly identifies the potential
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regions that will be impacted by this event. Knowing the potential regions to be impacted 

and the power system components in that region, the outage probability of each 

component will be calculated. Using this probability, the set of components on outage in 

each region will be estimated. Once the probable damages to system components are 

estimated, Stage 2 solves the E-SCUC problem considering an N-1-m reliability criterion, 

in which N is the total number of components in the power system and m is the number of 

identified component outages in each region. In other words, the model simultaneously 

considers the power system security in response to the single component outage (N-1) 

and also in response to the outage of m components in impacted regions.  

 

FIGURE 2-1- PROPOSED E-SCUC MODEL  

 

The component state is considered as a random variable, representing two states 

of outage and operational. Variety of probability distribution models have been proposed 

to model weather-related outage rate and probability of damage of power system 

components (Arab et al. 2014; Abiri-Jahromi et al. 2013). For example, the Poisson 

Component outage estimation 

- Determine outage probability of impacted 

components, and the associated time to repair 

Event-driven Security-Constrained Unit 

Commitment 
- Optimal scheduling of available resources  

- Preventive commitment and corrective dispatch 

 

Component outages 

- Forecast the path/intensity of the hurricane and 

identifying the regions to be impacted  
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distribution is used to model the hurricane arrival rate in (Lu and Garrido 2005) and 

(Arab et al. 2014). Also, along with hurricane arrival rate, the maximum wind gust speed 

that the component is able to withstand needs to be considered to evaluate the probability 

of outage. Hurricanes in general exhibit spatial and temporal dependence structures. 

Spatial dependence refers to the fact that locations within some distance from the path of 

the event will encounter rather similar impact patterns, and temporal dependence refers to 

the consecutive periods that will encounter similar behavior from the event until it is 

passed. Various methods have been studied for the statistical modeling of extreme events 

in space and time using max-stable model with deterministic storm shapes (Smith 1990), 

pairwise censored likelihood (Huser and Davison 2014), and spatial intensity function of 

the background occurrences for earthquakes (Zhuang, Ogata, and Vere-Jones 2002). This 

study relies on the existing literature to determine the shape of the hurricane, and 

accordingly, focuses on the components’ probability of outage. It is assumed that the 

components in center of the hurricane have higher probability of outage with lower 

probability of outage in neighboring locations. The impacted region may contain 

generation units, transmission lines, substations, and load sites. Therefore, it is possible 

that more than one component are on outage due to the hurricane.  

It is common to use the N-1 criterion for reliability studies in power systems, 

where N in the total number of components in the system. This criterion expresses that 

the network should be designed such that all the loads are seamlessly supplied in case of 

a single component outage at any given time. Following a hurricane, more than one 

component can be out of service; accordingly, the N-1 criterion cannot guarantee the 



 

 15 

desired operation. To address this issue, this study employs an extended criterion, i.e., N-

m, to consider the simultaneous outage of m components. The N-m criterion ensures that 

the system is resilient against any m component outages from the set of components 

within the impacted area. It should be noted that if m components are impacted, there will 

be 2m possible failure scenarios. Since it is not practical to consider all possible scenarios, 

only scenarios with higher probability are studied. To do this, first the outage probability 

of potentially impacted power system components is determined, followed by calculating 

the occurrence probability of each scenario. Scenarios with higher occurrence probability 

are considered as the representatives of the entire outage scenarios. In addition to the 

proposed N-m criterion, the N-1-m criterion is also proposed and used in this study, which 

ensures that the system satisfies the N-1 reliability criterion for the entire system while it 

is also resilient against any m component outages from the set of components within the 

impacted area by the hurricane. For example, assuming we have 47 components in the 

system, and three scenarios for N-m criterion (top three scenarios with higher occurrence 

probability), in N-1-m criterion 50 scenarios are defined in the system, where 47 

scenarios representing the single component outage (N-1) and three representing outage 

scenarios for each path of the hurricane (N-1-m).  

Moreover, when a component is damaged by the hurricane, a certain amount of 

time is required to repair the component (known as time to repair or TTR). In (Nateghi, 

Guikema, and Quiring 2011), it was shown that the time to repair is a function of the 

number of crews, geographic characteristics of the area such as land use and land cover 

data, and climatic variables such as event duration and intensity. The time to repair of 
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each component can be seen as a random variable, due to variation in skill level of the 

repair crew and the random nature of the degree of damage (Arab, Khodaei, Han, et al. 

2015). This issue is further considered in this study. 

 

2.1.1. E-SCUC Formulation 

2.1.1.a) Outage Estimation 

The intensity and the path of hurricane can be obtained from weather forecast 

agencies. Component damages, however, are modeled using probabilistic models. The 

more accurate model to forecast the component damages based on the intensity and path 

of the hurricane, the more reliable system can be scheduled and operated. Unfortunately, 

there are not many data available for the impact of previous hurricanes on the system 

components (perceivably due to the priority in restoring the system and recovering the 

supply of power over event recording) and many utilities have trouble assembling this 

data even internally. Instead, stochastic modeling can be used to predict the probability of 

an outage of each component, assuming a certain probability model for each hurricane 

and the probability of the withstanding against wind gust speeds. 

In this study, two major components are identified for damage modeling including 

generation units and transmission lines. Damage state can be considered as a random 

variable with two outcomes: damaged and operational. Therefore, a Bernoulli random 

variable can be adopted to model the damaged/operational state of each component. The 

Bernoulli random variable, takes the value of 1 when the state of the component (UX and 

UY) is considered operational (with probability p); and takes the value of 0, when the 
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component is considered to be in damaged state (with probability 1-p). The availability 

function of each component against hurricane is considered as a dynamic stress-strength 

model as defined below: 

           



m NN mNPmNGGGGGGPR  ,...,, 2211

 

where 𝑅(𝜏) is the reliability function, 𝑁(𝜏) is the number of hurricane strikes, 𝜏 is the 

time window of upcoming hurricane, and Gi is the outcome of the ith random wind shock 

from the wind gust speed random variable G. In this study, the arrival probability of the 

hurricane during each operating period is modeled by Poisson distribution (Russell, 

Schueller, and others 1974), while the survival of component against wind gust is 

modeled by Lognormal distribution (Winkler et al. 2010). For the sake of simplicity, 

deterioration level of the component is not considered in the probability of outage in this 

study. However, the formulation is a general framework that can be expanded to other 

probability distributions. In addition, the time to repair damaged components is defined 

by the Weibull density function (2) 
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where 𝜌 is the shape parameter, and 𝜆 is the scale parameter. Which can be replaced by 

other probability distributions, such as Exponential, Gamma, and Normal, without loss of 

generality (Billinton and Wang 1999): Each component has different repair time and 

required set of skilled crews in practice. In this study, without loss of generality, a same 
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shape parameter and scale parameter is considered for different unit types, and the 

expected value of the time to repair random variable used as a reliable substitute for time 

to repair.  

2.1.1.b) E-SCUC 

The objective of the E-SCUC problem is defined as: 

  
t i t s b

btsitit vLCIPF ,min 0                               (3) 

where F(Pit0, Iit) is the operation cost in normal system operation (which includes the 

generation cost and startup/shut down costs) and LCbts is the cost of unserved energy at 

bus b at time t during contingency scenarios s. The value of lost load, v, is defined as the 

average cost that each type of customer - residential, commercial, or industrial - is willing 

to pay in order to avoid load interruptions (Economics 2013). Assuming UXits as the 

outage state of unit i at time t in scenario s (1 when operating and 0 when on outage) and 

UYlts as the outage state of line l at time t in scenario s (1 when operating and 0 when on 

outage), the proposed objective function is subject to the following operational 

constraints:  
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Load balance equation (4) ensures that the total injected power to each bus from 

generation units and line flows is equal to the total consumed load at each load bus. Load 

curtailment variable (LCbts) is further added to the load balance equation to ensure a 

feasible solution when there is not sufficient generation to supply loads (due to outage of 

power system components). Load curtailment will be zero under normal operation 

conditions. Generation unit output power is limited by its capacity limit and will be set to 

zero depending on its commitment and outage states (5). Generation units are further 

subject to prevailing technical constraints including ramp up and down rate limits (6)-(7), 

minimum up and down time limits (8)-(9). System operating reserve requirement is 

represented in (10). The change in unit generation is further limited by the maximum 

permissible limit between normal and contingency scenarios (11). Transmission line 

capacity limits and power flow constraints are modeled by (12) and (13), respectively, in 

which the outage state is included to effectively model the line outages in contingency 

scenarios. 
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The proposed model ensures that the obtained unit schedule provides a cost-

effective solution in normal system operation and a secure solution in case of multiple 

component outages. Component outages are handled by a combination of proper 

preventive actions (i.e., commitment of additional generation units) as well as corrective 

actions (i.e., generation redispatch of committed units). The outcome of this model is an 

event-driven SCUC model that can be utilized when an extreme event is forecasted to 

approach the system, thus assuring that the system is ready to face the event and the 

probable load curtailments in response to multiple component outages will be reduced. 

 

2.2. Component Outage Estimation Based on KDE 

 Figure 2-2 depicts the outline of the proposed E-SCUC model. The model has 

three stages. In Stage-1, the category and the path of the potential hurricane that is 

heading toward the power system is forecasted. This forecast data can be obtained from 

weather forecast channels. In Stage-2, after knowing the potential regions and the 

category of the hurricane, the outage probability of each system component is calculated 

using KDE method on historical hurricane data. As the publicly available data on the 

impact of hurricanes on power system components is limited, an artificial set of data is 

generated in this study to estimate the probability of the component outages. Once the 

probable damages to system components are estimated, the E-SCUC problem based on 

the obtained scenarios of outages is solved in Stage-3.  
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FIGURE 2-2- PROPOSED E-SCUC MODEL WITH MACHINE LEARNING-BASED OUTAGE 

ESTIMATION 

 

2.2.1. Categories of Hurricanes 

A hurricane is typically assigned a “category” of one through five based on its 

maximum 1-minute sustained wind speed according to the Saffir-Simpson Hurricane 

Scale (Schott et al. 2012). The minimum and maximum sustained wind speeds 

corresponding to each hurricane category are shown in Table 2-1. Category 1 and 2 

storms, with sustained winds of 74-95 mph and 96-110 mph, respectively, are less 

dangerous categories but however require preventive measures. Usually there is no 

significant structural damage to most well-constructed permanent structures or there are 

only minor damages to poorly constructed windows or doors. However extensive power 

outages may happen lasting from few minutes to several days. The U.S. National 

Hurricane Center classifies hurricanes of Category 3 and above as major hurricanes. 

Event-Driven Security-Constrained Unit 

Commitment 
- Optimal scheduling of available resources  

- Preventive commitment and corrective dispatch 

Component outage estimation 

- Determine the probability of outage based on KDE 

on previous hurricane data/artificial data 

Forecast the hurricane 

- Forecast the arrival time, category and the path of 

the hurricane from weather forecast channels 
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Category 3 hurricanes can cause some structural damage to small residences and utility 

buildings, particularly those of wood frame. There is a very high risk of injury or death in 

Category 4, and catastrophic damage will occur in hurricane Category 5 (Schott et al. 

2012). Since the extreme wind rating of utility structures is based on a three-second gust, 

it is also useful to think of hurricane categories in terms of gust speeds. A typical 

hurricane will have three-second gusts that are about 25% greater than one-minute 

sustained wind speeds (Brown 2009). Using this 25% gust factor, the minimum and 

maximum expected three-second gust speeds corresponding to each hurricane category 

are shown in Table 2-1. 

TABLE 2-1- SAFFIR-SIMPSON HURRICANE SCALE 

 1-min sustained (mph) 3-sec gust (mph) 

Category Min Max Min Max 

1 74 95 93 119 

2 96 110 120 138 

3 111 130 139 163 

4 131 155 164 196 

5 156 180 195 225 

 

2.2.2. Kernel Density Estimation (KDE) 

The operational/outage state of a component can be considered as a random 

binary variable. A variety of probability distribution models have been proposed to model 

the probability of damages on the power system components (Arab et al. 2014; Abiri-

Jahromi et al. 2013). Given a sample 𝑥 ∈ ℝ𝑑 from some unknown densities, the general 

form of a multivariate kernel density estimate at x is computed as 
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where K is d-variate function (the kernel), xi is the training example, n is the number of 

training examples and h is a smoothing parameter called the bandwidth. The bandwidth is 

a rescaling factor, which determines the extent of the region over which the probability 

mass for a point xi is spread. The kernel is generally chosen to be an even function, i.e., 

K(x)= K(-x), which usually integrates to one and has a mean value of zero. The most 

widely used kernel is the Gaussian of zero mean and unit variance as: 

K x( ) =
1

2p( )
d

exp -
x

2

ì
í
î

ü
ý
þ

   (15) 

KDE methods are not very sensitive to the choice of K, and different functions 

that produce good results can be used. In practice, the bandwidth plays an important role 

and has a great effect on the shape of the estimator. If the bandwidth is small, an under-

smoothed estimator with high variability will be obtained. On the contrary, a large 

bandwidth results in an over-smooth estimator and farther from the estimated function. 

Thus, the quality of a kernel density estimator highly depends on the choice of the 

smoothing parameter. A common way to estimate an optimum value of the bandwidth is 

by measuring the mean integrated squared error (MISE) between the density and its 

estimate integrated over the domain of definition (across the training examples) as in (16) 

(Wand and Jones 1994): 

       
d

dxxfxfhMISE h

2
ˆ

   (16) 

 

In other word, a KDE with different bandwidth is applied on training examples 

and the bandwidth with minimum MISE is assumed as the optimal bandwidth. Figure 2-3 

illustrates the effect of bandwidth on KDE of a standard normal distribution. As shown, 
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small bandwidth (h=2) results a higher variability estimation and a large bandwidth 

(h=20) results in an over-smooth estimator, while the calculated optimal bandwidth can 

estimate the probability of random samples more accurately. 

 

FIGURE 2-3- KERNEL DENSITY ESTIMATION (KDE) WITH DIFFERENT BANDWIDTH TO ESTIMATE 

A STANDARD NORMAL DISTRIBUTION 

 

2.3. Role of Microgrids in Power System Resilience 

The path and the intensity of the upcoming hurricane, which can be obtained from 

weather forecasting channels, will be collected as a first step. Then, according to the 

potential regions to be impacted by the hurricane, the outage probability of the 

components in those regions will be calculated. Once the probable damages to system 

components are estimated, the buses in which microgrids are to be placed will be 

determined with the objective of minimizing the system total load curtailments. 

Component outages should be modeled by probabilistic distribution functions 

using the hurricanes’ intensity and path that are obtained from weather forecasting 
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agencies. Since there are not many data available for the impact of previous hurricanes on 

the system components, stochastic modeling can be used to predict the probability of 

component outages, which assumes a certain probability model for each hurricane. The 

components can have two states of damaged (i.e., on outage) and operational (i.e., in 

service). A variety of distribution models have been proposed to model weather related 

failure rate and probability of failure/damage of power system components (Arab et al. 

2014) (Abiri-Jahromi et al. 2013). In (Arab et al. 2014), the deterioration levels of the 

components have also been taken into account to calculate the probability of failure, 

where the higher the level of deterioration, the higher the probability of failure. In this 

study, the arrival probability of hurricanes during each operating period is modeled by 

Poisson distribution (Russell, Schueller, and others 1974), while the survival of 

components against wind gust is modeled by Lognormal distribution (Winkler et al. 

2010). For the sake of simplicity, the deterioration level of the components is not 

considered in this study. However, the formulation is general and can be expanded to 

other probability distributions based on the extreme weather event and components 

characteristics. By nature, extreme events exhibit a spatial dependence structure, meaning 

that neighboring locations within some distance show similar patterns, as well as 

temporal dependence, which can be seen from similar high values for two consecutive 

time periods (e.g. within hours). Each type of extreme event has different spatial 

dependency and pattern, as studied in this study. The components impacted by a 

hurricane may contain generation units and transmission lines. The objective of this study 

is to find the optimal size and location of microgrids in order to minimize load 
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curtailments in the entire system and to ensure a resilient operation. During normal 

operation, i.e., without any component outages, the loads are fully supplied by the 

generation units. In the event of component outages, however, loads in buses located in 

the impacted area will be partially supplied by microgrids. Two sets of binary parameters 

are employed to consider the failure state: UXits as the failure state of unit i at time t in 

scenario s and UYlts as the failure state of line l at time t in scenario s (in both cases, 1 

when operating and 0 when on outage). Since binary parameters can have only two states, 

Bernoulli random variable can be adopted to model the operational state (with probability 

p) and damaged state (with probability 1-p) for each component.  

 

2.3.1. Optimal Microgrid Placement Formulation 

The optimal microgrid placement model to ensure the system resilience against 

hurricanes is formulated as follows: 
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The objective function (17) is the cost of unserved energy during outage 

scenarios. The cost of unserved energy is the value of lost load (VOLL) times the amount 

of load curtailments in each scenario. VOLL represents customers’ willingness to pay for 

reliable electricity service in order to avoid interruptions, and is different for different 

customer types, i.e., residential, industrial, and commercial (Lotfi and Khodaei 2015). In 

this problem, it is assumed that the loads are supplied by the utility grid, and its operation 

is separate from microgrids’ operation, so the system operation cost is not considered in 

the objective function. Instead, there is a limited budget to increase the system resilience 

by installing microgrids with optimal size and location. This assumption is in line with 

practice for many electric utilities under deregulated environments that can use 

microgrids for reliability and resilience improvement but not for economic purposes. The 

constraints associated with the objective function (17) are defined in (18)-(28). The load 

balance equation (18) ensures that the sum of total power generated by generation units 

and the microgrid as well as line flow injections at each bus is equal to the bus load 

during all scenarios. The load curtailments variable LCbts will be zero under normal 
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conditions. The power output of generation units is limited by their capacity limits and 

can be set to zero depending on their commitment state and the failure state (19). The 

minimum generation capacity is considered to be zero to remove the need for accurately 

modeling commitment states in each operation time period. The change in the power of 

generation units between normal and contingency operations is limited by the maximum 

permissible change (20). The line flow is limited by the line capacity and outage state in 

contingency scenarios (21)-(22). If a transmission line is on outage, i.e., UYlts=0, its 

power flow would be zero and that line will be removed from the power flow equations. 

The microgrid generation at each bus in all times and scenarios is limited by its installed 

capacity (23). The microgrid installed capacity at each bus is assumed to be limited by a 

predetermined ratio of the maximum load at that bus (24). In other words, a maximum of 

kDb
max can be supplied by the microgrid where Db

max is the peak load at bus b. The 

amount of load curtailments at each bus in each scenario is limited by the amount of load 

not supplied by the microgrid at that bus (25). By changing the microgrid capacity, the 

load curtailments can be potentially reduced (Khodaei 2014) (Shahidehpour 2010). 

Furthermore, the sum of the investment cost of all installed microgrids in the system 

cannot exceed the available budget set by the system planner (26).  

Based on the definition, the microgrid is switched to the islanded mode in 

response to upstream network disturbances. Considering this, if any of the lines 

connected to the microgrids upstream bus is on outage due to the hurricane, the microgrid 

will be disconnected from the system. The microgrid operation state is defined as the 

product of failure state of lines connecting to the microgrid bus (27). If any of these lines 
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is on outage, the microgrid operation state ubts would be set to zero, i.e., the microgrid is 

in the islanded mode, otherwise grid-connected. The proposed constraint is linearized to 

ensure the MIP nature of the developed formulation as in (29). 
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When switched to the islanded mode, the microgrid load from the system 

operator’s perspective will be zero, meaning that the microgrid will supply its forecasted 

load, i.e., kDbt, thus the maximum microgrid load can be modeled as in (28). The 

proposed formulation efficiently models the microgrid grid-connected and islanded 

operation modes, while ensuring a reliable operation of the entire system in case of 

upstream network outages caused by hurricanes. 
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3. CHAPTER THREE: NUMERICAL SIMULATIONS 

This chapter presents the numerical simulations of the proposed approaches for 

enhancing system resilience. The proposed E-SCUC problem is applied to the standard 

IEEE 30-bus test system in Section 3.1.  In order to exhibit the effectiveness of the 

proposed model, three cases are studied as: Case 1) SCUC with N-1 reliability, Case 2) 

SCUC with N-1 reliability against m outages, and Case 3) E-SCUC with N-1-m 

reliability. The obtained results advocate that by increasing the number of simultaneous 

component outages, the operation cost increases, evidently due to the increased number 

of units that need to be committed in the normal operation and used in contingencies. 

Section 3.2 presents the numerical simulation of the proposed component outage 

estimation based on the machine learning method and the E-SCUC problem on the IEEE 

30-bus test system. The proposed KDE approach is trained on artificial data and used to 

estimate component outage. The outage scenarios are then used to evaluate the proposed 

E-SCUC in improving system resilience comparing with SCUC in three different case 

studies: Case 1) SCUC with N-1 reliability, Case 2) SCUC with N-1 reliability against m 

outages, and Case 3) Proposed E-SCUC comparing with SCUC. Comparing the results of 

E-SCUC with SCUC indicates that the proposed E-SCUC model is more resilient against 

multiple simultaneous component outages.  
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The optimal microgrid placement model ensures the system’s resilience is applied 

to the standard IEEE 30-bus in Section 3.3. Four cases are studied: 

 Case 1: Load curtailments calculation without microgrid installations 

 Case 2: Load curtailments calculation with microgrid installations  

 Case 3: Impact of the investment budget on system load curtailments 

 Case 4: Impact of the ratio of loads supplied by microgrids on system load 

curtailments  

The results demonstrate the importance of micogrids in power system resilience 

and show that increasing the ratio of the loads supplied by microgrids would significantly 

reduce the total load curtailments due to the capability of installing larger microgrid 

capacities. 

 

3.1. Event-driven Security-Constrained Unit Commitment (E-SCUC) 

The proposed E-SCUC problem is applied to the standard IEEE 30-bus test 

system as shown in Figure 3-1 (“IEEE 30-Bus System - Illinois Center for a Smarter 

Electric Grid (ICSEG),” n.d.). A hurricane passes through three hypothetical paths with 

different intensities. The procedure introduced in (Arab et al. 2014) is followed to find 

the probability of survival for each system component in response to a forecasted 

hurricane. Particularly, based on the available hurricane data and maximum wind gust 

speed that the components can withstand (Lu and Garrido 2005), the probability of 

survival from each hurricane is found. The impacted regions are also shown in Figure 

3-1. Table 3-1 shows the components that are damaged in the path of hurricanes in three 

contingency scenarios (hurricane paths).  
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FIGURE 3-1- IEEE 30-BUS TEST SYSTEM AND THE FORECASTED HURRICANE PASSING THROUGH 

THREE HYPOTHETICAL PATHS IN THE SYSTEM 

 

TABLE 3-1- SIMULTANEOUS COMPONENTS ON OUTAGE ALONG HURRICANE PATH  

(L: TRANSMISSION LINE, G: GENERATION UNIT) 

 Scenario 1 Scenario 2 Scenario 2 

m=1 L1 L3 G1 

m=2 L1, L2 L3, L2 G1, L3 

m=3 L1, L2, L17 L3, L2, L4 G1, L3, L4 

m=4 L1, L2, L17, L20 L3, L2, L4, L1 G1, L3, L4, L16 

m=5 L1, L2, L17, L20, L18 L3, L2, L4, L1, L16 G1, L3, L4, L16, L17 

m=6 L1, L2, L17, L20, L18, 

L30 

L3, L2, L4, L1, L16, 

L18 

G1, L3, L4, L16, 

L17, L6 

m=7 L1, L2, L17, L20, L18, 

L30, L32 

L3, L2, L4, L1, L16, 

L18, L17 

G1, L3, L4, L16, 

L17, L6, L5 

m=8 L1, L2, L17, L20, L18, 

L30, L32, L22 

L3, L2, L4, L1, L16, 

L18, L17, L20 

G 1, L3, L4, L16, 

L17, L6, L5, L9 

 

In order to exhibit the effectiveness of the proposed model, three cases are studied 

as follows:  

3.1.1. SCUC with N-1 reliability 

In this case, only one component outage is considered in each contingency 

scenario, i.e., an N-1 reliability criterion is imposed. The operation cost is obtained as 

Scenario 1 
Scenario 2 

Scenario 3 
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$10,730. No load curtailment has occurred in this case, so the cost of unserved energy is 

zero and the system is secure against any single component outage.  

3.1.2. SCUC with N-1 reliability against m outages 

In this case, the calculated commitment in Case 1 is used to solve the problem for 

the m component outages along hurricane path in each contingency scenario. The purpose 

of this study is to identify how much load curtailment will occur if the system is 

scheduled for N-1 but is subject to an extreme event. Table 3-2 shows the system 

operation cost and the load curtailment (LC) of each contingency scenario obtained from 

solving the SCUC problem based on the identified outages. As the same commitment is 

used for each number of component on outage (m), the total operation cost is constant. 

However, the results indicate that by increasing the number of simultaneous component 

outages, the load curtailment increases drastically. In other words, although the N-1 

criterion is suitable for ensuring power system security in daily operation, but it is not a 

viable criterion when dealing with extreme events.  

 

TABLE 3-2- OPERATION COST AND LOAD CURTAILMENT OF SCUC FOR MULTIPLE 

COMPONENT OUTAGES 

 Total Cost LC Scenario 1 

(MWh) 

LC Scenario 2 

(MWh) 

LC Scenario 3 

(MWh) 

m=1 $10,730 0 0 0 

m=2 $10,730 180 0 0 

m=3 $10,730 180 33 146 

m=4 $10,730 180 180 146 

m=5 $10,730 180 180 348 

m=6 $10,730 180 184 348 

m=7 $10,730 315 373 834 

m=8 $10,730 318 373 862 
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3.1.3. E-SCUC with N-1-m reliability 

In this case, the proposed E-SCUC is used to consider the simultaneous outage of 

m components along with the N-1 reliability criterion. Particularly, 50 scenarios is 

defined in the system, 47 scenarios representing the single component outage (N-1) and 3 

representing outage scenarios for each path of the hurricane (N-1-m). Table 3-3 shows the 

system operation cost and the load curtailment of each contingency scenario obtained 

from solving the E-SCUC problem based on the identified outages. In addition, the cost 

increase and average load curtailment decrease compared to the SCUC with N-m 

reliability criterion (Case 2) are shown in Table 3-3.  

 

TABLE 3-3- OPERATION COST AND LOAD CURTAILMENT OF THE PROPOSED E-SCUC FOR 

STUDIED SCENARIOS 

 Total 

Cost 

Cost  

Increase 

LC S1 

(MWh) 

LC S2 

(MWh) 

LC S3 

(MWh) 

Avg. LC 

Decrease 

m=1 $10,759 0.27% 0 0 0 0% 

m=2 $10,865 1.24% 70 0 0 61% 

m=3 $10,874 1.33% 70 33.70 67 55% 

m=4 $10,890 1.48% 112.77 80 67 49% 

m=5 $11,259 4.71% 117.05 88 131 52% 

m=6 $11,259 4.71% 118.94 88 131 52% 

m=7 $11,315 5.17% 215.05     130    316 57% 

m=8 $11,320 5.21% 234.92     175     464 44% 

 

The obtained results advocate that by increasing the number of simultaneous 

component outages, the operation cost increases, evidently due to the increased number 

of units that need to be committed in the normal operation and used in contingencies. 

Comparing the results of E-SCUC with SCUC (Case 2) indicates that the proposed E-

SCUC model is more resilient against multiple simultaneous component outages as the 
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amount of load curtailment is considerably lower than SCUC problem in same 

contingency scenarios. This significant advantage is obtained at the expense of limited 

cost increase, which is less than 6% in all studied cases. The final decision on the number 

of outages, i.e., m, represents a tradeoff between solution cost and resilience that need to 

be made by the system operator.  

 

3.2. Component Outage Estimation Based on KDE    

The proposed component outage estimation based on KDE and E-SCUC problem 

is applied to the IEEE 30-bus test system. It is assumed that a hurricane passes through 

three hypothetical paths with different categories as shown in Figure 3-1 (“IEEE 30-Bus 

System - Illinois Center for a Smarter Electric Grid (ICSEG),” n.d.). Five hundred 

samples with different wind gust speeds around the center of the hurricane are generated 

following a normal distribution with a small noise (10%). Accordingly, a Gaussian kernel 

is applied on the center of the hurricane to estimate the probability of failure of each 

component. Figure 3-2 shows the estimated probability of component failure for each 

hurricane category. The optimal bandwidth is estimated as 4.86 (Category 1 & 2), 9.76 

(Category 3), 16.22 (Category 4), and 26.75 (Category 5). The proposed probability 

distribution functions can be better estimated if more significant and reliable data from 

previous hurricanes were available; however, the proposed model is a general framework 

that can be applied to any available set of data, with different degrees of accuracy, 

without loss of generality. In each hurricane path, based on the distance of each 

component to the center of the hurricane and the category of the hurricane, the 
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probability of survival is determined. Table 3-4, Table 3-5, and Table 3-6 show the 

probability of failure for different components in each studied area (shown in Figure 3-1) 

based on data mining and KDE on artificial data. Probability of component failure over a 

threshold of 0.1 is considered for component failure (shown bold in Table 3-4, Table 3-5, 

and Table 3-6). 

 
FIGURE 3-2- ESTIMATED PROBABILITY DENSITY FUNCTION OF COMPONENT FAILURE FOR EACH 

HURRICANE CATEGORY 

 

3.2.1. SCUC with N-1 Reliability 

In this case, N-1 reliability criterion is considered in each contingency scenario. 

The operation cost is obtained as $10,730. No load curtailment has occurred in this case, 

and the system is secure against any single component outage. 

3.2.2. SCUC with N-1 Reliability against m Outages 

The purpose of this case study is to identify how much load curtailment will occur 

if the system is scheduled for N-1 but multiple components outage happen due to an 
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extreme event. In other words, the calculated commitment in Case 1 is used to solve the 

problem for the m component outages in each contingency scenario. Component outages 

along each hurricane path (contingency scenario) are shown bold in Table 3-4, Table 3-5, 

and Table 3-6. A cut-off probability of 0.1 is considered, i.e., any failure probability 

larger than this will result in component outage, while probabilities less than this will 

ensure that the component will continue to operate in the functional state.  

TABLE 3-4- PROBABILITY OF FAILURE FOR DIFFERENT COMPONENTS IN HURRICANE PATH 1. 

 Category 

 1 & 2 3 4 5 

Line 5 0.3882 0.4031 0.3646 0.3424 

Line 6 0.0393 0.2623 0.3274 0.3077 

Line 7 0.0099 0.2069 0.3067 0.2892 

Line 25 0.0045 0.1345 0.2722 0.2687 

Line 26 0 0.0264 0.1447 0.2091 

Line 27 0 0.0198 0.1188 0.1924 

Line 28 0 0.0006 0.0632 0.134 

Line 31 0 0.0004 0.0598 0.1309 

 

TABLE 3-5- PROBABILITY OF FAILURE FOR DIFFERENT COMPONENTS IN HURRICANE PATH 2. 

 Category 

 1 & 2 3 4 5 

Line 5 0.3397 0.4383 0.3802 0.3601 

Line 6 0.0676 0.292 0.3153 0.3083 

Line 7 0.0104 0.1781 0.2775 0.2816 

Line 21 0.0001 0.0775 0.2202 0.2483 

Line 23 0 0.0661 0.2088 0.2435 

Line 24 0 0.0064 0.0629 0.1819 

Line 30 0 0.0016 0.0494 0.1637 

Line 38 0 0.0001 0.0387 0.1387 
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TABLE 3-6- PROBABILITY OF FAILURE FOR DIFFERENT COMPONENTS IN HURRICANE PATH 3. 

 Category 

 1 & 2 3 4 5 

Line 5 0.3875 0.4541 0.3802 0.3053 

Line 6 0.0862 0.3082 0.3395 0.3057 

Line 7 0.0629 0.2769 0.3312 0.3032 

Line 18 0 0.0583 0.2253 0.2544 

Line 19 0 0.0758 0.2442 0.2638 

Line 21 0 0.0032 0.085 0.1698 

Line 15 0 0.0008 0.0617 0.1489 

Line 29 0 0 0.0393 0.1255 

 

Table 3-7 shows the system operation cost and the load curtailment (LC) in each 

contingency scenario obtained from solving the SCUC problem based on the identified 

outages. As the same commitment is used for each number of components on outage (m), 

the total operation cost is constant. However, the results indicate that by increasing the 

number of simultaneous component outages, the load curtailment increases drastically. 

For larger amounts of outage i.e. hurricane category 5, the SCUC problem is not able to 

find a feasible solution. The results indicate that although the N-1 criterion is suitable for 

ensuring power system security in daily operation, but it does not provide a viable 

solution when dealing with extreme events and multiple component outages.  

TABLE 3-7- OPERATION COST AND LOAD CURTAILMENT OF N-1 SCUC FOR DIFFERENT 

HURRICANE CATEGORIES 

Hurricane 

Category 

Total Cost LC Scenario 1 

(MWh) 

LC Scenario 2 

(MWh) 

LC Scenario 3 

(MWh) 

1&2 $10,730 0 0 0 

3 $10,730 145 128 128 

4 $10,730 237 528 128 

5 - - - - 
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3.2.3. Proposed E-SCUC 

In this case, the proposed E-SCUC is used to find optimal scheduling of the 

simultaneous outage of multiple components along with the N-1 reliability criterion. 

Particularly, 50 scenarios is defined, 47 scenarios representing the single component 

outage (N-1) and 3 representing outage scenarios for each path of the hurricane (N-1-m). 

Component outages along each hurricane path are the same as components that are 

studied in Case 2 (shown bold in Table 3-4, Table 3-5, and Table 3-6). Table 3-8 shows 

the system operation cost and the load curtailment in each contingency scenario obtained 

as the E-SCUC solution. In addition, the cost increase and average load curtailment 

decrease compared to the SCUC with N-m reliability criterion (Case 2) are shown in 

Table 3-8.  

 

TABLE 3-8- OPERATION COST AND LOAD CURTAILMENT OF THE PROPOSED E-SCUC FOR 

STUDIED SCENARIOS 

Category Total 

Cost 

Cost  

Increase 

LC S1 

(MWh) 

LC S2 

(MWh) 

LC S3 

(MWh) 

Avg. LC 

Decrease 

1&2 $10,759 0.26% 0 0 0 0% 

3 $10,847 1.09% 0 0 0 100% 

4 $10,937 1.92% 0 87 42 85% 

5 $10,943 - 318 373 862 - 

 

The obtained results advocate that for more destructive categories of hurricane 

(where the number of simultaneous component outages increases), the operation cost 

increases, evidently due to the increased number of components that need to be 

committed in the normal operation and used in contingencies. Comparing the results of 
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E-SCUC with SCUC (Case 2) indicates that the proposed E-SCUC model is more 

resilient against multiple simultaneous component outages as the amount of load 

curtailment is considerably lower than SCUC problem under similar contingency 

scenarios. As an example, the load curtailment in response to a category 3 hurricane is 

reduced to zero when the proposed E-SCUC is utilized.  

 

3.3. Role of Microgrids in Power System Resilience 

The proposed optimal microgrid placement model is applied to the standard IEEE 

118-bus test system (“IEEE 118-Bus System - Illinois Center for a Smarter Electric Grid 

(ICSEG),” n.d.). It is assumed that a hurricane passes through the system under three 

path/intensity scenarios as shown in Figure 3-3. Since the probability and severity of 

hurricanes from the southwest side of the system are higher compared to those of 

hurricanes from other directions, only this section of the system is shown in Figure 3-3. 

The outage probability of components in the path of hurricanes is calculated based on the 

available hurricane data and maximum wind gust speed that the components can 

withstand (Lu and Garrido 2005), where those with higher probabilities are selected. The 

number of components on outage is changed from 1 to 9 in order to be able to compare 

the results. Table 3-9 represents the components that are potentially damaged. The annual 

peak load in the system is 3733 MW. For simplification, the hourly changes in the load 

are not considered, and the load is divided into three levels of peak load (3733 MW), 

intermediate load (3241 MW), and base load (2749 MW). The VOLL at all buses and 

ratio of the load supplied by microgrids, i.e., k, are considered to be $10,000/MWh and 
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10%, respectively. The microgrids capital cost and total investment budget are considered 

to be $1.5 million per MW and $70 million, respectively. The problem is formulated by 

mixed-integer programming (MIP) and solved by CPLEX 12.6 (“CPLEX 12, IBM ILOG 

CPLEX, User’s Manual, 2013,” n.d.)i. Following cases are studied: 

 

 

FIGURE 3-3- IEEE 118-BUS TEST SYSTEM AND THE FORECASTED HURRICANE PASSING 

THROUGH THREE HYPOTHETICAL PATHS 

 

 

3.3.1. Without considering microgrids 

In this case, the proposed model without considering microgrids is solved. The 

results are represented in Table 3-10. If there are up to two components on outage, there 

would not be any load curtailments in the system. By increasing the number of 

components on outage, the load curtailments, and hence the cost of unserved energy, 

would increase since the system cannot supply all the loads. 

 

Scenario 1 

Scenario 2 Scenario 3 
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TABLE 3-9- SIMULTANEOUS COMPONENTS ON OUTAGE ALONG THE HURRICANE PATHS 

 (L: TRANSMISSION LINE, G: GENERATION UNIT) 

No. of comp. 

on outage 
Scenario 1 Scenario 2 Scenario 2 

1 L33 G12 G4 

2 L33,L181 G12, L34, G4,L35 

3 L33,L181,L182 G12, L34, L43 G4,L35,L40 

4 L33,L181,L182,L41 G12, L34, L43,L42 G4,L35,L40,L37 

5 
L33,L181,L182,L41, 

L25 
G12,L34, L43,L42,L37 G4,L35,L40,L37, L39 

6 
L33,L181,L182,L41, 

L25,L27 

G12,L34,L43,L42, 

L37,L22 

G4,L35,L40,L37, 

L39,L20 

7 
L33,L181,L182,L41, 

L25,L27,L54 

G12,L34,L43,L42, 

L37,L22,L21 

G4,L35,L40,L37, 

L39,L20,L16 

8 
L33,L181,L182,L41, 

L25,L27,L54,L46 

G12,L34,L43,L42, 

L37,L22,L21,L26 

G4,L35,L40,L37, 

L39,L20,L16,L17 

9 
L33,L181,L182,L41, 

L25,L27,L54,L46,L47 

G12,L34,L43,L42, 

L37,L22,L21,L26,L44 

G4,L35,L40,L37,L39,L

20,L16,L17,G5 

 

TABLE 3-10- LOAD CURTAILMENTS RESULTS IN RESPONSE TO HURRICANE SCENARIOS 

WITHOUT MICROGRID INSTALLATIONS 

No. 

components 

on outage 

LC Scenario 1 

(MW) 

LC Scenario 

2 (MW) 

LC Scenario 

3 (MW) 

Cost of Unserved 

Energy ($) 

1-2 0 

0 

0 0 

3-5 60.8 66.4 1,271,806 

6-8 110.6 66.4 1,769,537 

9 201.8 758.5 9,603,675 

 

 



 

 43 

3.3.2. Installing microgrids in load buses 

In this case, it is assumed that microgrids can be installed, in load buses, to help 

reduce system load curtailments as encountered in Case 0. Table 3-11 summarizes the 

load curtailments results with respect to outage scenarios, the buses where microgrids are 

installed, the total installed capacity of microgrids, and the microgrids costs. By having 

only one component on outage, there is no need to install any microgrids since the load 

curtailments is zero. By increasing the number of components on outage, microgrids 

would be installed in affected buses or their adjacent buses. As the number of 

components on outage increases, microgrids would be installed in more buses, and the 

microgrids total capacity would increase in order to compensate for the system inability 

to adequately supply loads. According to Table 3-11, the total load curtailments in the 

system would increase by increasing the number of components on outage, but it has 

decreased compared to that in Case 0. It should be noticed that there is not any outage in 

response to scenario 2, meaning that the direction of the hurricane in scenario 2 is such 

that the system is completely reliable and would be able to fully supply loads. 

 

3.3.1. The effect of budget on the microgrid capacity and load curtailments 

This case discusses the effect of budget on the microgrid installed capacity and 

load curtailments when all other parameters are kept unchanged. The results of N-9, i.e., 

9 components on outage, are represented in Table 3-12. Having the budget of $20M or 

$30M would result in the microgrid installation of 13.3 MW and 20.0 MW, respectively. 

In these two cases, the maximum possible capacity of microgrids would be installed since 
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the total capital cost is equal to the maximum available budget. By increasing the budget, 

the microgrid installed capacity would increase too up to 34 MW (associated with the 

budget of $55M) which acts as a saturation point. In other words, by increasing the 

budget more than $55M, the total microgrid installation would not change. It is 

noticeable that although there is an increase in the total microgrid installed capacity by 

increasing the budget up to $55M, the load curtailments does not change. The reason is 

that the objective of this model is to minimize the cost of unserved energy, not the capital 

cost. However, the load curtailments, and thereby the cost of unserved energy, would 

decrease compared to the base case under N-9 criterion, as shown in Table 3-12. 

 

3.3.1. The effect of changing the ratio of loads supplied by microgrids 

In this case, the effect of changing the ratio of loads supplied by microgrids, i.e., 

k, on the system load curtailments under N-9 criterion is studied. The results are 

summarized in Table 3-13. The parameter k is increased by steps of 5%. It is expected 

that following an increase in the ratio of loads supplied by microgrids, more capacity of 

microgrids be installed which causes the system load curtailments to reduce. Similar to 

previous cases, there would not be any load curtailments following the hurricane in 

scenario 2. It is observable that following the increase in k, the cost of unserved energy 

would significantly reduce compared to the base case with 9 damaged components. The 

increase in the total microgrid installed capacity would increase the total capital cost such 

that it reaches the maximum available budget when 25% of the load is supplied by the 

microgrids.  
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TABLE 3-11- LOAD CURTAILMENTS RESULTS IN RESPONSE TO HURRICANE SCENARIOS 

CONSIDERING MICROGRID INSTALLATIONS 

No. of 

comp. on 

outage 

LC  

Scen. 1 

(MW) 

LC  

Scen. 2 

(MW) 

LC  

Scen. 3 

(MW) 

Change in cost 

of unserved 

energy (%) 

Buses with 

installed 

microgrid 

Total 

Installed 

MG  

(MW) 

Total 

MG 

Costs 

(M$) 

1 0 

0 

0 0 - 0.0 0.0 

2 0 0 0 28,29,115 6.7 10.0 

3 

54.7 

59.7 -10.0 

28,29, 

114,115 
7.5 11.3 

4 
23,28,29, 

114,115 
8.3 12.4 

5 
17,20,23,28,2

9,114,115 
11.4 17.0 

6 

99.5 

16,17,20,21,2

3,28,29, 

114,115 

15.5 23.2 

7 

11,13,16,17,2

0,21,23, 

28,29,114, 

115 

26.5 39.8 

8 

11,13,14,16,1

7,20,21, 

23,28,29,35,1

14,115 

31.5 47.3 

9 181.6 732.5 -4.8 

11,13,14,16,1

7,20,21, 

23,28,29,33,3

5,114,115 

34.0 51.0 

 

TABLE 3-12- IMPACT OF THE BUDGET ON THE SYSTEM LOAD CURTAILMENTS 

Budget 

(M$) 

LC  

 Scen. 1 

(MW) 

LC 

Scen. 2 

(MW) 

LC  

Scen. 3 

(MW) 

Change in cost 

of unserved 

energy (%) 

Total 

Installed 

MG  

 (MW) 

Total MG 

Costs (M$) 

20 181.6 0 742.8 -3.7 13.3 20.0 

30 181.6 0 732.5 -4.8 20.0 30.0 

40 181.6 0 732.5 -4.8 21.8 32.7 

50 181.6 0 732.5 -4.8 30.0 44.9 

≥55 181.6 0 732.5 -4.8 34.0 51.0 
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TABLE 3-13- IMPACT OF THE RATIO OF LOADS SUPPLIED BY MICROGRIDS ON THE SYSTEM 

LOAD CURTAILMENTS 

k 

LC  

Scen. 1 

(MW) 

LC  

Scen. 2 

(MW) 

LC  

Scen. 3 

(MW) 

Change in cost 

of unserved 

energy (%) 

Total 

Installed 

MG 

(MW) 

Total MG 

Costs (M$) 

0.00 201.8 

0 

758.5 0.0 0.0 0 

0.05 191.7 745.5 -2.4 17.0 25.5 

0.10 181.6 732.5 -4.8 34.0 51.0 

0.15 171.6 719.6 -7.2 37.1 55.7 

0.20 161.5 706.6 -9.6 43.3 65.0 

0.25 151.4 693.6 -12.0 46.7 70.0 
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4. CHAPTER FOUR: CONCLUSION 

Resilience in response to extreme events is one the most important aspects of 

power systems. SCUC is commonly used for scheduling available generation resources to 

satisfy the forecasted load in response to limited components unavailability.  

In this thesis, an Event-driven SCUC model was proposed and developed to 

consider the simultaneous outage of several system components, representing an N-1-m 

reliability criterion. The numerical simulations on the standard IEEE 30-test system 

exhibited the merits and applicability of the proposed E-SCUC model in ensuring an 

economic operation under normal conditions and a resilient operation under contingency 

cases. Comparing the results of the proposed E-SCUC with the SCUC indicated that the 

proposed E-SCUC method is more resilient against multiple component outages. In 

particular, it can reduce the amount of load curtailment (~50%) compared to the SCUC 

problem, while resulting in a small cost increase (~5%). This survey studied hurricanes as 

a common form of extreme events. The proposed models, however, could be extended 

and applied to other types of extreme events with minimum adjustments.  

The proposed event-driven security-constrained unit commitment (E-SCUC) 

model was further studied by considering the simultaneous outages of several system 

components, representing an N-1-m reliability criterion. A KDE method, based on 

regression and data mining, was used to estimate and model the system components that 

will likely fail due to a predicted hurricane. An artificial set of data was generated in this
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study to estimate the probability of the component outages, as the publicly available data 

on the impact of hurricanes on power system components is limited. The proposed KDE 

approach is a general framework, which can ensure more accurate estimations if it is 

trained on extensive historical data from storm-related damages and their impacts on the 

system components. The numerical simulations on the standard IEEE 30-bus test system 

illustrated the merits and applicability of the proposed E-SCUC model. Comparison of 

the results of the proposed E-SCUC with those from the conventional SCUC without the 

events modeled indicated that the proposed E-SCUC method can produce a more robust 

solution that can protect the system against multiple component outages due to a 

hurricane.  

Finally, an optimal microgrid placement model to enhance power system 

resilience was proposed. The objective was to minimize the cost of unserved energy 

following hurricanes. For developing proper scenarios to model the impact of hurricanes 

on component outages, the probabilistic failure model of the system components was 

considered. The problem was formulated by MIP, solved by CPLEX, and applied to the 

standard IEEE 118-bus test system. It was shown that installing microgrids in proper 

locations would significantly increase the system resilience by reducing the load 

curtailments during contingency scenarios. It was demonstrated that increasing the 

budget would allow for installing a larger microgrid capacity, hence reducing the cost of 

unserved energy, while reaching a saturation point after certain budgets. It was further 

shown that increasing the ratio of the loads supplied by microgrids would significantly 
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reduce the total load curtailments due to the capability of installing larger microgrid 

capacities. 
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