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Abstract 

 

In this dissertation, an integrated Plug-in Electric Vehicle (PHEV) charging loads 

forecasting model is developed for regular distribution level system and microgrid system. 

For regular distribution system, charging schedule optimization is followed up. The 

objectives are 1. Better cooperation with renewable energy sources (especially wind). 2. 

Relieving the pressure of current distribution transformers in condition of high penetration 

level PHEVs. As for microgrid, renewable energy power plants (wind, solar) plays a more 

important role than regular system. Due to the fluctuation of solar and wind plants’ output, 

an empirical probabilistic model is developed to predict their hourly output. On the other 

hand, PHEVs are not only considered at the charging loads, but also the discharging output 

via Vehicle to Grid (V2G) method which can greatly affect the economic dispatch for all 

the micro energy sources in microgrid. Optimization is performed for economic dispatch 

considering conventional, renewable power plants, and PHEVs. The simulation in both 

cases results reveal that there is a great potential for optimization of PHEVs’ charging 

schedule. Furthermore, PHEVs with V2G capability can be an indispensable supplement 

in modern microgrid. 
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Chapter 1. Introduction 

 

1.1 Theoretical Background 

 

In United States, there is a growing trend of PHEVs purchase due to their fuel 

efficiency and environmental friendliness. Electric motor is installed to improve the 

efficiency of traditional combustion engine and serves as an electric power output. 

Consequently, this type of vehicle contains hybrid power output from both combustion 

engine and electric motor. Large capacity battery packs are installed to extend the 

mileage in condition that the vehicle only relies on electricity. On/off board charger is 

equipped as well to make charging battery via home plug possible. If the amount of 

PHEVs grows as expected, future vehicles will be independent of petroleum, and PHEVs 

would become the mainstream vehicles. 
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The extra loads of PHEV battery charging will result in a load peak and increase 

the loss of life of transformer evidently. Obviously, dumb charging (V0G) will lead to the 

worst situation for transformer. There is a great potential to improve the aging problem 

by assigning an optimized starting charging time to each PHEV. The battery charging 

loads would be more evenly distributed.  

 

With the trend of transportation electrification (hybrid, battery, and fuel cell 

vehicles), there is also a great potential for “vehicle-to-grid” (V2G) technology. V2G can 

be an indispensable supplement to the stability (voltage and frequency) and reliability of 

microgrid. Three vehicle types are defined in [1] that can supply power back to microgrid 

via V2G method, and the power markets which they can sell electricity to are also 

defined and explained. Under certain system condition, V2G can become a practical 

option in power market. For instance, V2G will not be a favorable option for baseload 

power, because baseload power can be dispatched economically with large traditional 

generators. V2G’s greatest short-term objective is for quick-response, high-value electric 

services. These quick-response electric services are designed to smooth constant 

fluctuations in both generation (especially wind and solar farms) and demand sides. 

Another purpose of the introduction of V2G is to improve the robustness of system under 

unexpected equipment failures for system reliability consideration. The cost of quick-

response electric service is $ 12 billion per year in the US (5-10% of total electric cost) 

[1]. 
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Besides the advantages of V2G, compared with traditional generators, PHEVs’ 

short operation hour and high cost per kWh of electric energy suggests that V2G power 

should be sold only to high-value, short-duration demands in power market.  

There are several charging methods expected to be the mainstream methods for 

PHEVs in near future. These methods include centralized charging, self-motivated 

charging, battery swapping, etc.  

 

Since the charging schedule of PHEVs is not predictable and they are allocated in 

different areas, the penetration of this large amount of PHEVs’ charging load can be a 

great burden for microgrid in most conditions. 

 

1.2 Motivation 

 

After a new round of petroleum price increase, almost every aspect of our daily 

life is affected. For instance, the traveling cost of automobile and plane grows apparently. 

Consequently, cost of all kinds of merchandise increases. For every vehicle owner, more 

attention is paid to fuel efficiency to save money. As a result, the MPG (miles per gallon) 

value becomes an important criterion for customers who plan to purchase a new car. 

Commonly, for internal combustion engine vehicles, high MPG value usually means 

lower engine displacement, slow acceleration or compact size. To better utilize power 

from internal combustion engine, extra battery packs and electric motor are installed in 
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hybrid electric vehicles (HEV). These battery packs’ capacity is much larger than that of 

current vehicle. They also get charged while internal combustion engine is working like 

normal vehicles. But, large capacity means it not only could power the air conditioner 

system, but also the electric motor for normal running. Less gasoline consumption also 

means less pollution to environment. This type of vehicles possesses two engines, 

combustion engine and electric motor. But all power comes from gasoline. This type of 

HEV is called conventional hybrid electric vehicle. 

 

As to conventional hybrid electric vehicles, the most popular one should be 

Toyota Prius. Prius is the first type of hybrid vehicle that put into large-scale production 

in 1997. In 2001, Prius was sold to over 40 countries all over the world. Her largest 

market now is United States. The success of Prius reveals a bright future for hybrid 

electric vehicles. Hybrid electric vehicles have two or even more energy sources. For 

Prius, they are combustion engine and electric motor. Other energy sources, such as 

hydrogen and fuel cell battery, are also options in future. Compared to hybrid electric 

vehicles, they are still in research stage. In recent years, engineers are trying to install 

more battery packs in hybrid electric vehicles and let these batteries be charged from the 

grid with the help of on/off board charger. This new type of hybrid electric vehicle is 

called Plug-in Hybrid Electric Vehicle (PHEV). In next two decades, it is hoped that 

automobiles will continuously become independent of petroleum, and PHEVs will 

replace conventional combustion engine vehicles gradually.  
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That oil resource is going to be exhausted is part of the reason.  Besides, 

greenhouse gas output from combustion-engine vehicles is a serious threat to the 

environment, especially to the Atmosphere. Global warming is the most harmful 

phenomenon due to carbon gas output. Pure electric vehicle does not generate any carbon 

dioxide. They are friendlier to environment than conventional ones. If electricity is from 

renewable-energy power plant, the output of carbon dioxide could be further decreased. 

There have been many studies about PHEVs’ impacts on current power grid. These can 

be classified as vehicle performance studies, supply adequacy, Vehicle to Grid (V2G) 

studies and distribution system impact studies. This project is primarily focused on large-

scale PHEVs’ integration into power grid as charging loads and potential effects for the 

operation of the rid. 

 

1.3 Dissertation Organization 

 

In this dissertation, an integrated Plug-in Electric Vehicle (PHEV) charging loads 

forecasting model is developed for regular distribution level system and microgrid 

system. For regular distribution system, charging schedule optimization is followed up. 

The objectives are 1. Better cooperation with renewable energy sources (especially 

wind). 2. Relieving the pressure of current distribution transformers in condition of high 

penetration level PHEVs. As for microgrid, renewable energy power plants (wind, solar) 

plays a more important role than regular system. Due to the fluctuation of solar and wind 

plants’ output, an empirical probabilistic model is developed to predict their hourly 
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output. On the other hand, PHEVs are not only considered at the charging loads, but also 

the discharging output via Vehicle to Grid (V2G) method which can greatly affect the 

economic dispatch for all the micro energy sources in microgrid. Optimization is 

performed for economic dispatch considering conventional, renewable power plants, and 

PHEVs. The simulation in both cases results reveal that there is a great potential for 

optimization of PHEVs’ charging schedule. Furthermore, PHEVs with V2G capability 

can be an indispensable supplement in modern microgrid. 
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Chapter 2. Literature Review 

 

There have been a lot of studies about PHEVs. The main categories are vehicle 

performance studies, supply adequacy, Vehicle to Grid (V2G) studies, and distribution 

system impact studies. For example, a stochastic method was developed in [2] to simulate 

the charging loads of PHEVs in China. An optimization of charging pattern was 

introduced in [3] considering distribution grid constraints. For integration of PHEV 

charging and renewable energy, the study is mainly focused on utilization of surplus wind 

power. A new control method for the wind power/battery energy storage system is 

discussed in [4] to smooth out the fluctuation of wind farm (WF) output. In [5], a 

coordinated approach of wind power and PHEVs charging in market aspect was 

developed. As for the V2G study, the integration of V2G to wind farms is discussed in 

[34]. In [36], the impact of V2G to residential distribution network is evaluated and 

analyzed. From [31], V2G can not only stabilize the existing power system, but also 

support large scale of renewable energy plants. Finally, case study of Western Danish 

Power system is considered in [32] to evaluate the performance of V2G
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Chapter 3. PHEV Charging Load Forecast Model 

 

Referring to wind forecasting models [6]-[7], PHEV charging load forecasting 

models can be classified according to time-scales or methodology. Three categories are 

classified depends on the length of the prediction time-scale.  

1. Immediate-short-term (8 hours-ahead) forecasting 

2. Short-term (day-ahead) forecasting 

3. Long-term (multiple-days-ahead) forecasting 

 

Besides time-scale classification, PHEV charging load forecasting models can be 

classified depends on their methodology as well. In current research, deterministic and 

statistic are two main approaches in forecast modelling.
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 Deterministic approach (Physical approach) 

Deterministic method is based on load prediction using actual vehicle 24-hour 

data like State of Charge (SOC), daily mileage, plug in/out time point. Since the data pool 

of PHEV charging load is extremely limited so far. These parameters are manually set 

according to traffic data [8] from combustion engine vehicles. Statistical approach 

 

Statistical method is based on large amount of historical data without considering 

actual vehicle conditions. Artificial intelligence, such as neural or neuro-fuzzy network, 

can be utilized referring to wind forecasting [9]-[10]. In this disseration, due to the 

limited data pool of actual PHEV charging loads, an empirical probabilistic model is 

developed to predict hourly charging loads based on historical data from stochastic model 

which is explained in Chapter 1. 
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Table 1 Time-scale classification and possible applications 

Time-scale Range Applications 

Immediate-

short-term 

8 hours 

ahead 

Real-time grid 

operations 

Regulation actions 

Short-term Day ahead 

Economic dispatch 

planning 

Operational security in 

electricity market 

Long-term 

Multiple-

days-ahead 

Maintenance planning 

Operation management 

Optimal operation cost 

 

Immediate-short-term forecasting is performed via statistical approach which 

require vast amount of historical data. With the amount of PHEVs keep growing, large 

amount of historical charging load data will be available. Artificial neural networks can 

be trained to utilize these data and make several hours ahead forecasting like WPMS 

immediate-short-term forecasting model which is used 95% territories of whole Germany 

to predict wind power production. Since the time scale is just several hours ahead, this 

forecast data can be a great reference for real-time operation and regulation actions. 
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For short/long-term forecasting, the prediction time-scale can be single/multiple 

days. With the increase of time scale, the forecasting model cannot just rely on historical 

data. It usually utilize both deterministic and statistic approach. This hybrid approach can 

be applied for economic dispatch and optimal operation cost. Hence, a hybrid stochastic 

model is developed in following section for optimal operation cost in regular distribution 

system and economic dispatch in microgrid. 

 

 Hybrid stochastic model 

Average daily mileage for private car is only about 42 miles for commuting to and 

from work or school [8]. In this dissertation, Chevy Volt is chosen as the model of 

mainstream family sedan. Taking into account safety factors, owner of PHEV should 

charge battery every two days at home or in workplace. 

 

Private vehicle’s main function is commuting. Therefore, charging period starts 

when they arrive at working places or arrive home. Since the aging of distribution 

transformer is the topic of this dissertation, only home charging period is considered. 

Workplace charging period is not included. It can be easily figured out that there is 

comparatively abundant charging time for private car. Therefore, for both periods, slow 

charging mode is the first option.  

 

3.1 Stochastic Modeling for PHEVs 
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Charging patterns for PHEVs are affected by many factors, such as battery 

capacity, arrival and departure time, charging speed. So, it is better to define different 

charging patterns according to vehicle’s function. In this project, all PHEVs are divided 

into two parts: public transportation vehicles and private vehicles. 

 

 Public transportation vehicles 

Public transportation plays a more and more indispensable role in traffic system. 

Therefore, this portion of traffic system should not be omitted even public buses do not 

constitute significant share of all vehicles in many cities in United States.  

 

BYD electric bus is selected as the model because its electric driving capacity 

(EDC) is suitable for daily public bus operation. EDC is the miles that a PHEV could 

drive only from battery electricity, when its battery’s state of charge is 100 percent. EDC 

of BYD electric bus is 155 miles in urban condition. Average daily mileage for normal 

transportation bus is about 90 to 125 miles [11]. So, electric bus is capable for a whole 

day operation without one charging. However, safety factor must be taken into 

consideration. Deeply charging the battery would harm its life. So, charging two times a 

day is essential. For school bus, daily mileage would be only one third of that of normal 

bus. Normal bus’s operation hour begins at around 5:30 am and ends at 10:00 pm [11].  

In rush hours, almost twice buses should be added to fleet. Commuting hour is 6:30 to 

9:00 and 16:30 to 7:00 [11]. In commuting hour, time interval between two bus trips is 
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5~7 minutes. In contrast, time interval increases to 10 to 15 minutes in normal operation 

hour. 

 

The first charging period begins at about 10 am and ends at 4:30 pm between two 

commuting-hour periods. Since the charging time is quite limited. C100D, a three phase 

charger, is used for this charging period. The power for C110D is 100 kW. It takes three 

hours for the on-board batteries to be fully charged [12]. Another charging period begins 

at 11:00 pm and ends at 5:30 am. One hour is reserved for daily preparation and dispatch. 

There is enough charging time at night. C60, 60kW three phase charger is used instead of 

C100D. The full-charge time is extended to 5 hours [12]. 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

Table 2 Electric bus parameter [12] 

Dimensions Length 39.37 ft. 

Width 100.4 in 

Height 126.0 in 

Wheelbase 20.34 ft 

Track (F/R) 82.5/72.4 in 

Curb weight 30423.79 lb 

GVWR 39683.21 lb 

Seats 27+4 (foldable) +1 (driver) 

Wheelchair position 2 

Performance Top speed 62.1 mph 

Urban conditions >= 155 mi 

Power consumption 120 kWh per 62 mi 

Turning radius <40 ft 

Min ground clearance 5.5 in 

Approach/Departure 

angle 7 degrees/7 degrees 

Chassis Suspension Front & rear self-levering air 

suspension, ECAS system 

Brakes Front & rear disc-braking. ABS+ASR 

Steering ZF8098 Electric hydraulic power 

steering gear 

Tires Michelin 275/70R22.5 

Motor Type Permanent magnet synchronous motor 

Max power 160 kW 

Rated power 110 kW 

Max torque 450Nm 

Battery Type Fe battery 

Capacity 600 Ah 

Charging 

equipment 

C100D three phase 480 plus/minus 10% 

charge voltage, 100 kW 

Charge time 3h 

C60 three phase 208 plus/minus 10% 

charge voltage, 60 kW 

Charge time 5h 

Floor plan  Seats: 27 Seats + 4 Foldable + 1 Driver 

 

The starting state of charge (SOC) is assumed to follow a statistical normal 

distribution. SOC indicates the percentage of energy that remains in the battery. For 
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example, Cap is the capacity for vehicle’s battery. The remaining energy in that battery is 

Cap × SOC. The battery capacity needed to be charged is Cap (i) × (1-SOC (i)).  

 

For electric buses, when they come back to charging station, their SOC is 

generated according to equation (1).  The expected average state of charge is set to 50% 

considering safety factor and life of battery. The standard deviation is set to 10%. 

 

(' ', , )

0.5

0.1

m

Bus

Bus

Bus

SOC random norm  











 (1) 

 

Other parameters about time schedule for electric bus are summarized in Table 3. 

 

Table 3 Time schedule for electric bus 

Bus 

Average daily 

mileage 

93-124 miles   

Operation time 5:30-6:00 to 22:00-23:00   

Peak periods 6:30-9:00 Commuting hour 

16:30-18:30   

Interval 3-5 minutes Commuting hour 

7-8 minutes Normal  

Mileage capacity 155 miles   

Charging times 2 times a day Take safety factor into 

consideration 

Charging periods 10:00-16:30 Day time 

  23:00-5:30 Night time 

Starting SOC Normal distribution N (0.5, 0.1)   
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The arrival and departure time are also assumed to follow normal distribution. 

And the standard deviation is set to 45 minutes considering different arrival and departure 

times for different bus lines. Note that in one day, there are 1440 minutes. 𝐴𝑇𝑎𝑚
𝑚  means 

the arrival time in am for the m-th electric bus in array. 𝐴𝑇𝑎𝑚
𝑚  follows normal distribution, 

with a mean value of 600, corresponding to the 600th minute in 1440 minutes within a 

day. In other words, the average arrival time is 10:00 (600/60) am after morning 

commuting hour. Standard deviation is assumed to be 45 minutes. 𝐷𝑇𝑎𝑚
𝑚  is the departure 

time for m-th bus in am. Similarly, 𝐴𝑇𝑝𝑚
𝑚  and 𝐷𝑇𝑝𝑚

𝑚  are arrival and departure times in pm. 

 

(' ',600,45) 

(' ',990,45) 

(' ',1380,45) 

(' ',1440 330,45)

m

am

m

am

m

pm

m

pm

AT random norm

DT random norm

AT random norm

DT random norm







 

(2) 

 

In the morning, m-th electric bus needs 𝑇𝑐𝑎𝑚
𝑚  minutes for its battery to be fully 

charged. In the afternoon, 𝑇𝑐𝑝𝑚
𝑚  minutes are needed. CS100kW and CS60kW are the 

charging speed for 100kW and 60 kW charger respectively. The unit for charging speed is 

percent per minute.  
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The maximum charging time for m-th electric bus in day or night time is the time 

period between arrival and departure time. If m-th bus’s battery is fully charged before 

departure, the actual charging time is Tcm (full-charge time for m-th bus’s battery). On the 

other hand, if the battery could not get fully charged before departure, the actual charging 

time would be DTm – Atm (time period between arrival and departure time). Therefore, the 

actual charging time for m-th electric bus is the minor value between full-charge time and 

maximum charging time. 

 

Actual charging time min[ ,( )] m m mTc DT AT  (4) 

 

Other simulation requirements are 

1. State of charge (SOC) ≥ 0 

2. Departure time > Arrival time 

 

Input all these parameters explained before, and run simulation three times, From 

Figure 1, it can be easily figured out that the contours of load curves are similar. But, there 

are some slight differences between each time. The daytime peak lies at around 11:00 am. 

The nighttime one is at about 0:00 am. Additionally, daytime peak is higher than night one 

by about 2400 kW. 
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Figure 1 Three times of bus load simulation 

 

Select one sample from these three as the result for electric bus charging load. The 

small-scale simulation size is 200 buses. The day time peak is 14.3 MW at 10:49 am. 

Daytime peak is higher than night one by 2720 kW. 

 

 

Figure 2 Small-scale electric bus load curve 
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Taxis are also a considerable part in urban transportation system, especially in 

highly-developed modern city, because parking is always the difficult problem in 

downtown area. Taxi become the first choice for many people if they not want to spend to 

much time in finding a parking lot or spend too much on parking fee.  

 

Taxis’ daily mileage is from 217 to 310 miles [13]. Operation time for most of taxis 

is 24 hours. But driver may change shifts. BYD e6 has been operated as taxi in Shenzhen, 

China, in small scale. So, it is chosen as the model of taxi. Its EDC is 186.4 miles [14]. 

Considering taxi’s long daily mileage, two times of charging in one day is necessary. Since 

the difference between commuting hour and normal hour is not quite obvious for taxi 

drivers, they may choose to charge battery when they have lunch break or they make shifts 

at mid night. As a result, the first charging period is from 11:30 am to 2:00 pm. Another 

charging period is from 2:00 am to 4:00 am at night time when they give taxi to another 

driver. Charger for both time periods must be fast three-phase fast charger. Parameters for 

taxi charging load simulation are listed in Table 4. 
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Table 4 BYD e6 parameters [14]  

Items Parameters 

Dimensions 

& Weight 

L/W/H (Unload) 4560/1822/1630 

(mm) 

179.5/71.7/64.2 

(in.) 

  F/R Overhan 920/810 (mm) 36.2/31.9 (in.) 

  Wheelbase 2830 (mm) 111.3 (in.) 

  Track (F/R) 1556/1558 (mm) 61.3/61.3 (in.) 

  Min ground clearance 1388 (mm) 5.4 (in.) 

  Min turning diameter 11 (m) 36.1 (ft) 

  Curb weight 23600 (kg) 5202.9 (lb) 

  Tire 225/65 R17   

Performance Top speed 140 (km/h) 87.0 (mph) 

Range Urban range 300 (km) 186.4 (mi) 

Motor Max power 75 (kW) 100.6 (hp) 

  Max torque 450 (N*m) 332.1 (ft*lb) 

Suspension 

& Steering 

Front Dual wishbone and independent 

suspension 

  Rear Dual wishbone and independent 

suspension 

  Steering system EHPS   

Recharge 

System 

BYD C100D charger & 

discharger 

Power 100 (kW) 

    Time 40 (min) 

  BYD C60 DC charger Power 60 (kW) 

    Time 1.5 h 

  BYD C10 DC charger Power 10 (kW) 

    Time 6 h 

  On-board charger Power 3.3 (kW) 

    Time 20 h 
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Table 5 Taxi time schedule 

Taxi 

Average daily mileage 217-310 miles   

Operation time 24 hours   

Peak periods 6:30-9:00 Commuting hour 

16:30-18:30   

Interval N/A   

N/A   

Mileage capacity 186 miles   

Charging times 2 times a day Take safety factor 

into consideration 

Charging periods 11:30-14:00 Day time 

  2:00-4;00 Night time 

Starting SOC Normal distribution N (0.3, 0.1)   

 

Taking limited charging time and long daily mileage into consideration, the average 

starting SOC of taxi should be lower than that of bus and private vehicle. So, the average 

SOC was set to 30%. 
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(5) 

 

Arrival and departure time is defined similarly to electric bus according to Table 

5. 

 



22 

 

(' ',690,30) 

(' ',840,30) 

(' ',120,60)  

(' ', 240,60) 

m

am

m

am

m

pm

m

pm

AT random norm

DT random norm

AT random norm

DT random norm









(6) 

 

m

amAT  , m

amDT , m

pmAT and m

pmDT  are all normal distribution. The time period 

between arrival and departure time is only about 2 hour. Consequently, Taxi drivers must 

use 100 kW three-phase charger in charging station. Taxi drivers have more room to 

choose their lunch time and shift time. So, standard deviation for AT and DT in daytime 

is larger than that of electric bus. The exact time that taxi drivers make shifts are mainly 

based on their preference. Thus, the standard deviation for AT and DT in night time is set 

to one hour. 
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(7) 

 

From Table 4, the fully-charge time of BYD C100D charger is 40 minutes. 

Therefore, the charging speed for BYD C100D charger is 2.5 percent per minute. 
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Figure 3 Taxi load curve 

 

Compared to electric bus’s curve, loads are concentrated at 2:30 and 11:00. The 

peak load is 19.4 MW. Taxi is the only type of vehicle that charge batteries in a large scale 

at night. If real-time pricing is put into practice, commonly, the price is comparatively low 

at midnight due to low total demand. So, taxi drivers may have strong incentive to charge 

at midnight. And, this peak load would not have a significant effect on the grid. 

 

 Private vehicle charging pattern 

Average daily mileage for private car is only about 42 miles a day. The mileage is 

much fewer than that of bus and taxi. BYD e6 is still chosen as the model of main stream 
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sedan. Take safety factor into consideration, owner of PHEV should charge battery every 

two days at home or in workplace. 

 

Private vehicle’s main function is commuting. So, charging periods starts when 

they arrive at working place or arrive home. The first charging period lies between 7:30 

and 17:00. The second period begins at 19:00 and ends at 7:00. It can be easily figured out 

that charging time for private car is comparatively abundant. Therefore, for both periods, 

slow charging mode is the first option. 100 kW fast charging mode is only for long distance 

travelling or emergency.  

 

In United States, the ratio for sedan and SUV is about 6:4. SUV also accounts for 

a considerable share in private vehicles. BYD S6DM is selected as the model for SUV. In 

consideration of output power and mileage capacity, S6DM is designed as a dual mode 

hybrid vehicle, not pure electric one. Detailed parameter is shown in below table. 
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Table 6 S6DM Hybrid SUV parameters [14] 

Items Parameters 

Dimensions & 

Weight 

L/W/H (Unload) 4810/1855/1725 (mm) 189.4/73.0/67.9 

(in.) 

  Wheelbase 2715 (mm) 106.9 (in.) 

  Fuel tank capacity 45 (L) 11.9 (gal.) 

  Tire 225/65 R17   

Performance Top speed >= 180 (km/h) >= 111.8 (mph) 

Range EV Range >= 60 (km) >= 38.0 (mi) 

Motor Motor type Permanent-magnet type synchronous 

motor 

  Max power 85 (kW) 114.0 (hp) 

  Max torque 450 (N*m) 332.0 (ft*lb) 

Engine Engine model BYD483QB   

  Displacement 1.998 (L)   

  Max power 103 (kW) 138.1 (hp) 

  Max torque 186 (N*m) 137.2 (ft*lb) 

Suspension & 

Steering 

Front McPherson strut type   

  Rear McPherson strut type   

  Steering system EPS   

Recharge 

System 

Home charge Power 2 (kW) 

    Time 8 h 
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(8) 

 

m

PVSOC  is the starting SOC of m-th private vehicle. Mean value is 50% and standard 

deviation is 10%. Owners of PHEVs are suggested not to deeply charge their batteries. 
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Parameters about time schedule for private vehicles in daily commuting is summarized in 

Table 7. 

 

Table 7 Private vehicle time schedule 

Private car 

Average daily mileage 42 miles   

Operation time Commuting hour   

Peak periods 6:30-9:00 Commuting hour 

16:30-18:30   

Interval N/A   

N/A   

Mileage capacity 190 miles   

Charging times every two days Take safety factor into 

consideration 

Charging periods 7:30-17:00 Day time 

  19:00-7:00 Night time 

Starting SOC Normal distribution N (0.5, 0.1)   
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 (9) 

 

The charging periods for private vehicle are after commuting hours. The arrival 

and departure time is set according to Table 7 in normal distribution. 
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In both charging periods, the owners of PHEVs charge their vehicles in workplace 

or at home. So, C10D, 10 kW charger, is suitable for compact sedan owners. The fully-

charge time is 6 hour. 2kW charger is selected for SUV owners. Both charging speeds are 

adapted to percent per minute in Equation (10). 

 

 

Figure 4 Private vehicle load curve in small scale 

 

Private Vehicle Load Curve in Small Scale
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Similar to the curves of bus and taxi, load peak still appears at noon. So, the highest 

peak at noon for all PHEVs could be expected. Due to long fully-charge time, loads for 

private vehicle allocates more evenly. 

 

 Charging pattern for all types of PHEVs 

 

Next step, loads for all types of PHEVs are summarized in one chart 

 

Figure 5 PHEV load curve separately 

 

From Figure 5, loads of private vehicle take the largest part of all types of electric 

vehicles. Its load peak appears at 8:59 and its value is about 25.7 MW. Load peaks for bus 

and taxi show up later at noon. Public bus’ charging peak locates at 10:49 and its value is 

14.3 MW. The latest load peak is taxis’. It appears at 11:50 and its values is 19.4 MW. In 
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night time, three load peaks for three types of vehicles arise separately. They are at 20:36, 

0:05 and 2:20.  

 

 

Figure 6 Subtotal PHEV load curve 

 

In small-scale simulation (Bus: 200; Taxi: 500; Private sedan: 10000; Private SUV: 

6000), If load curves for all three types of PHEVs are added together, the load peak is at 

11:35 a.m. The peak value is about 31.6 MW. Load grows continuously before the peak 

and drops suddenly after peak. That means there is a lot of potential to shift the peak 

backwards to relief the pressure to grid. 

 

Since three loads peaks arise in the morning one by one, the total load is at high 

level from 8:30 to 11:30. But, after the peak, load curve drops suddenly. Most vehicles 
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have finished charging after noon. That means there is a great potential to shift loads from 

morning to afternoon to relief the pressure to the grid.  

 

It should also be mentioned that at commuting hour, loads in the grid is extremely low. 

We may suggest drivers to charge their vehicles if they do not use them at rush hour. 

 

3.2 Charging Load Prediction in Large Scale 

 

To analyze the impact of large-scale PHEVs, firstly, the amount of each type of 

PEVs in next two decades should be predicted. The annual growth rate for public bus and 

taxi is assumed to be 40% between 2017 and 2020 due to government subsidy. The 

average growth rate is reduced to 20% afterwards. 

 

As to private vehicles, the growth rate would be evenly distributed in next two 

decades. Although electric vehicles saves a lot in gasoline consumption, owners of 

private vehicles might not change their car immediately due to high price of PHEV and 

worry about lack of charging station. So, this replacement of elder combustion engine 

vehicles would be continuous.  

 

PHEV might have a bright future. But, the beginning for PHEV seems not 

smooth. Pike Research, the Colorado-based clean tech analyst firm issued its latest 

forecast for electric vehicles. According to this forecast, the United States will fall behind 
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of President Obama’s widely publicized goal of having one million plug-in vehicles on 

American roads by 2015 [15]. 

 

Pike forecasts the number for cumulative sales of plug-in hybrid electric vehicles 

will be only 667,000 by 2015. But the good news is that the annual sales of PHEVs in 

2016 will be 289,000, and will reach 303,000 by 2017. Referring to Pike’s forecast, the 

U.S. will reach one million by 2017.  

 

EV sales do not grow rapidly in US. The most critical reason is that many electric 

vehicle launches are delayed. Referring to delayed introductions from Ford, Mitsubishi, 

Coda and Fisker, their new models of plug-in electric vehicles are all postponed to next 

year. As a result, there are only two models available in the market. They are Nissan Leaf 

and Chevy Volt. Other models, such as Fisker Karma and Ford Focus Electric may 

arrive, but the production would not be high. So, low sales of PHEV is mainly due to 

supply side not demand side. 

 

On the other hand, the market may face a new turn in 2013, many new 

manufacturers will join the electric vehicle market, For instance, Volkswagen, BMW and 

Hyundai will start selling plug-in electric vehicles.  In addition, Toyota and Honda have 

potential to make impact on the market in future. 

 



32 

 

Even by 2017, Pike Research’s report “Electric Vehicle Market Forecasts” 

acclaimed that pure electric car represents mere 0.8% of the U.S. market, while plug-in 

hybrids will account for 1.2%.  

 

Continued supply shortages and the high price of many models Vehicles like the 

$57,000-plus Tesla Model S are the two main reasons for low market share. However, we 

still have confidence in sales of plug-in hybrids. If PHEV equips smaller batteries, that 

means lower cost. As mentioned before, Toyota would be that sleeping giant. Owners of 

the gas powered Prius is about one million. If the Prius Plug-in Hybrid can meet the 

expectations from customers in quality and price aspects, owners may convert to Plug-in 

Hybrid in a large number. 

 

After ten years, conventional hybrids represent about 2% of auto sales. In 

contrast, plug-in hybrids would reach that market share in seven years. And the growth 

would be even faster in next ten years. Referring to the US Bureau of Transit Statistics 

for 2004, there are 243,023,485 registered passenger vehicles in the United States. About 

136 million of them were normal 2-axle, 4-tire vehicles, such as sedan and compact car. 

They accounted for 56.13% share of total amount. 91 million (37.79%) were other 2-axle, 

4-tire vehicles. For example, SUVs and buses are included in this type.  

 

Not every registered vehicle is still on road. Many of them are just sitting idle or 

waiting for total loss. So, there are approximately 250 million vehicles on road in 2012. 
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About 16 million brand new cars are sold annually. Considering old cars are also scraped 

annually, the number of all types of vehicles in 2017 would be about 320 million. In 

contrast, mere one million PHEVs will on the road. However, if the amount of PHEVs 

increases at this rate continuously, PHEVs will account for more and more share in the 

market. The detailed amount for each type of electric vehicle is listed in Table 8. 

 

Table 8 Amount of PHEV in 2017, 2020 and 2030 [16] 

Amount of Plug-in Electric Vehicles (million) 

  Public bus Taxi Sedan SUV Total amount 

2017 0.017 0.04 0.718 0.484 1.259 

2020 0.047 0.11 1.97 1.328 3.455 

2030 0.291 0.68 27.158 18.308 46.437 

 

The annual growth rate for public bus and taxi is assumed to be 40% between 

2017 and 2020. From 2020 to 2030, the average growth rate is reduced to 20%. As to 

private vehicles, the growth rate is more evenly distributed in next two decades.  

 

For large-scale of PEVs, Matlab code should also be updated since iteration 

statement’s efficiency decrease rapidly as number of vehicles is up to million level. Two 

loops are included in small-scale simulation model. As a result, Monte Carlo simulation 

method is introduced to save compute time. To further save compute time, time step is 

increased from 1 min to 10 min. 
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Figure 7 Load curve prediction in 2017 and 2020 

 

In 2017, the peak at noon is expected to be 7.12 GW. In United States, the total 

installed capacity nationwide is about 1000 GW. Peak loads of PEVs won’t have huge 

effect on the grid in 2017. However, this peak grows really fast. After 3 years, in 2020, it 

is already 19.49 GW. The load is almost tripled. Besides, two load peaks become more 

prominent. 
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Figure 8 Load curve prediction in 2020 and 2030 

 

After 10 years of development, PEVs would take 30% share of all kinds of vehicles. 

That also means its charging load become a considerable part on the grid. Its peak at noon 

would be 263.56 GW. Compared to load curve in 2020, loads in the evening and morning 

after commuting hour increase evidently. That means loads from private vehicle become 

more and more important. In contrast, load peak in mid night become less significant.  
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Chapter 4. Optimization in Regular Distribution Network 

 

4.1 Charging Load Forecast in Regular Distribution Network 

 

Simulation charging load data for private electric vehicles is shown in Fig 1. In the 

small-scale simulation, 5 Chevy Volt hybrid electric vehicles are included. In this case, it 

is assumed that the electric vehicle start charging battery when it is connected into the grid. 

If 5 PHEVs simply apply fast charging, there would be load peak at 18:00. The peak value 

is 19.2 kW. This definitely would be a huge pressure for a 25-kVA distribution transformer. 

Compared to fast charging option, if normal or slow charging option is applied. The 

charging load curve would be much smoother. The peak load value of normal charging 

option is 7.2 kW. The peak load value of slow charging option is even lower. It is only 4.8 

kW. The relationship between extra charging loads and aging of transformer would be 

explained in following section. 
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Figure 9 Plug-in electric vehicles load curves of three charging options 

 

4.2 Charging Load Schedule Optimization for Distribution Transformer 

 

In regular distribution network, the first electric appliance that can be greatly 

affected by PHEVs’ charging load is distribution transformer. Transformer’s relative loss-

of-life is mainly related to the LV/HV wiring insulation. The insulation is in the function 

of hot-spot temperature. In this dissertation, hot-spot temperature is calculated using the 

IEEE method. This method applies to oil-filled transformers. The equation is given below. 

This method applies to oil-filled transformers. 

 

  H A TO H      (11) 
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Where 

A  = ambient temperature 

TO = temperature gradient of the top oil temperature over the ambient 

temperature 

H = temperature gradient of the hot spot over the top oil temperature 

 

If loads changes,  and TO H   are given by following equations 

 

/

, , ,( )(1 )   t TO

TO TO U TO i TO ie           (12) 

Where 

,TO U = ultimate steady-state top oil temperature gradient 

,TO i = initial top oil temperature gradient 

t = duration of the load change, h 

TO = oil time constant, h 
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(13) 

Where 

R = ratio of load losses at rated load to no-load losses from the test report 

Ki = ratio of the initial load to the rated load 

,TO R = top oil temperature gradient at rated load from the test report 
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n = an empirical exponent that depends on the cooling class 
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Where KU = the ratio of the ultimate (final) load to the rated load 

 

The winding hot temperature gradient is given by  

 

/
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H H U H i H ie            (15) 

Where 

,H U = ultimate steady-state hot-spot temperature gradient 

,H i = initial hot spot temperature gradient 

W = winding time constant, h 
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Where 

,H R = the hot-spot temperature gradient at rated load from the test report 

m = an empirical exponent depending on the cooling class 

 



40 

 

The aging acceleration factor (FAA) is the ratio of the per unit life at the design 

temperature of 100°C divided by the per unit life at some operating temperature
H . 

 

39.16 15000/( 273)H

AAF e
 

  (17) 

 

The equivalent aging of a transformer, FEQA, can be obtained by averaging the FAA 

over the period of time that the transformer is under study. 
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The hours of life lost in the total time period is 

24Loss EQAT F   (19) 

 

Percent loss of life (LOL%) in the time period is 

% 100% 
1.8 5

LossT
LOL

e
  (20) 

 

If no EV charging load is added, the aging acceleration factor versus time in 

condition of base loads is shown in Figure 10. All necessary parameters of 25-kVA 

distribution transformer is available in [17]. Base load curve data is from RELOAD 

database [18]. 
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Figure 10 Hourly winter load seen by a 25 kVA transformer 

 

 

Figure 11 FAA curve in base loads condition 

 

 PHEV charging schedule optimization for distribution transformers 

 

In simulation conducted in previous sections, owners of PHEVs start charging their 

vehicles when batteries are plugged into the grid. There is great potential to re-coordinate 
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the charging scheme, so as to relieve its impact on the distribution transformer. Since the 

available charging time for private vehicles is abundant. There is great potential to shift 

peak loads backwards, and then relief the pressure on transformer and improve the aging 

program due to extra battery charging loads. Obviously fast charging has the greatest 

impact on transformer aging. The FAA curve in condition of 5 fast-charging PHEVs is 

shown in Figure 12. 

 

 

Figure 12 25-kVA distribution transformer network 
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Figure 13 FAA curve in condition of 5 fast-charging PHEVs 

 

Particle swarm optimization method is introduced to find the best start charging 

time for each vehicle. Particle swarm optimization utilize Pseudo velocity – magnitude a 

function of distance from minimum which is given in below equation. Main objective 

function is shown in the following equation. 

 

1 1 1 2 2( ) ( )i i i i i

k k k k k k kV W V c r p x c r g x      (21) 

Where 

i

kp = best location for particle i up to time k 

kg = global best location up to time k 

1 2 and r r = random numbers [0, 1] 

1 2 and c c = cognitive and social scaling parameters 

kW = initially 1 and gradually reduced 
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Particles are initially randomly distributed through design space, 
0

i

lb ubx x x  . 

Velocities are initialized randomly from max

0 00 iV V  . max

0 0.5( )ub lbV x x  . 

 

Main objective function is shown in the following equation. 
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Constraints are as follows. 
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(23) 

 

Figure 14 FAA with 5 PHEV after optimization 
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Table 9 Comparison of loss of life after optimization 

 

 

From 

 

Figure 14, the FAA curve is clearly smoothed out after optimization. The peak 

FAA value is successfully reduced from 3.84 to 7.6e-3. From Table 9, FEQA and LOL% 

also decrease evidently after charging time re-scheduling. The loss-of-life over 24-hour is 

decreased by 98.82% percent. The particle swarm optimization method helps to improve 

distribution transformer aging problem effectively without interfere individual PHEV 

owner’s charging habit. 

 

4.3 V2H and Demand Response System Theory 

 

FEQA LOL%

BaseLoad 2.720E-02 1.511E-05

Extra 5 EVs 5.792E+00 3.218E-03

Extra 5 Evs after optimization 6.787E-02 3.771E-05
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In the following section, based on the charging schedule generated from V1G 

method, each private vehicle is assigned a better starting charging time. Then, the Vehicle 

to Home (V2H) charging method is applied to organize the daily charging schedule of 

PHEVs for each house. The battery of PHEV serves as an energy storage device. The 

objective is to develop an integrated charging scheme based on the real-time subtotal 

household loads to avoid exceeding demand limit for each house. The vehicle battery 

may supply or absorb the electricity to home depending on its battery SOC. The 

charging/discharging strategy is Figure 15 [13]. 

 

 

Figure 15 V1H strategy considering different SOC level 

 

In Figure 15, SOC1 is the first level of battery charging. Under this level, the 

battery needs to charge. Once the charging process starts, the system is not able to shut it 

down until battery SOC reaches SOC1. SOC2 is the second level. If the battery SOC is 

above this level, PHEV is ready to participate in V2H system and supply power back to 

the house.  

 

Demand response is included in V2H system as well. Loads in each house could 

be defined into two categories,   unresponsive loads (Lu) and responsive loads (Lr). 

Energy management system may shut down certain controllable load depending on load 

priority setting of each house if the subtotal load is over the demand limit (DL). The 
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demand limit level could be flexible or flat rate. In this dissertation, flat rate demand limit 

is applied. Once this demand limit level is set, the HAN control center will perform V2H 

in real time to each house according to the load priority and preference setting 

individually. Each electric appliance has a Rank value. Rank = 0 means that the appliance 

is critical or uncontrollable. The higher rank value means the less important in 

consumer’s setting. For instance, if the subtotal load (Ls) is over the demand limit and if 

the water heater is ON and has the highest rank value, DR would turn off the water heater 

first and check whether Ls is still over DL. If the load value is below the limit, all 

controllable loads will resume their normal operation. If not, DR may find the second less 

important controllable load to turn off. 

 

 Single deterministic model testing 

 

The flat demand limit is set as 6.5 kW. Then V2H strategy is performed according 

to the rank setting in Table 10 and the V2H strategy shown in Figure 16. Since BYE e6 is 

pure electric vehicle and it is not practical in United States yet, Chevy Volt is chosen as 

the PHEV model instead to test V2H method. Chevy Volt has three charging options: 

slow, normal and fast. To test the extreme condition, fast charging is chosen since it 

needs the most power. All charging options and full-charge time are shown in Table 11. 
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Figure 16 Flow chart of V1G and V2H system 

 

Table 10 Rank setting 
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Table 11 Chevy Volt charging options 

 

 

From Figure 17, it is clear that with the V2H method the load curve is evidently 

smoothed out. PHEV is plugged in at 16:00. Without V2H strategy, the subtotal load 

would be above the demand limit at 16:00, 17:00 and 18:00. Furthermore, the peak value 

is 11.34 kW at 16:00. This peak value is almost twice the demand limit. If the V2H 

method applied to this case, loads of charging PHEV are shifted backwards to avoid 

creating a load peak. The actual charging period is from 19:00 to 23:00. In the meantime, 

the subtotal load is controlled under a flat demand limit (6.5 kW) successfully. 

 

 

Figure 17 Optimized load curve under low-SOC condition 

 (Plug-in SOC = 0.2) 
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Chapter 5. Optimization in Microgrid 

 

5.1 Renewable Energy Sources Modelling 

 

Solar and wind are two main stream micro power sources that are widely used in 

microgrid. Compared to traditional power plant, they both cannot provide a stable output. 

It is hard to forecast the outputs from both renewable energy sources. Consequently, the 

economic dispatch for all power sources in microgrid is difficult to be performed due to 

the uncertainties induced by renewable energy sources. 
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The fluctuation of wind farm power output is due to the continuous change of 

wind speed. Similarly, the output of solar farm is dependent on radiation from sun. In 

daytime, the solar altitude angle and insolation changes seasonally. In this dissertation, a 

versatile probability distribution model is used to represent the forecast error for both 

renewable sources in microgrid and applied to economic dispatch problem. 

 

To begin with, the probability density function (PDF), cumulative distribution 

function (CDF), and inverse function of CDF of versatile distribution are shown below 

[19].  
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where 

x: random variable 

,  ,     : shape parameters 

Cs: confidence level 

 

The reasons why versatile distribution is a better option to represent the forecast 

error of renewable energy sources’ outputs are 
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1. Suitable values for shape parameters can be determined from historical data. The 

root-mean-square error (RMSE) between actual CDF and versatile CDF is much 

smaller than the RMSE between actual CDF and Gaussian/Beta CD [19]. 

2.  The analytic forms for both CDF and inverse CDF are available for versatile 

distribution. This characteristic can facilitate the solution of economic dispatch 

problem. It will be further explained in later sections [20]. 

 

As an example, data from solar farms [21] in February is used here. The feasible 

output time period is from 7 a.m. to 7 p.m. daily. Outside this period, the output is almost 

zero due to low solar radiation. The forecast span is set as 15 days. Specifically, 15-day 

actual output data from a 100 kW solar farm from Feb 1st to Feb 15th is utilized to 

generate suitable shape parameters for versatile distribution model. The detailed 

procedure is explained in following section. 

 

1. The actual CDF is generated from 15-day solar farm data; 

2. 10-20 characteristic points  are selected from actual CDF; 

3. nlinfit/lsqcurvefit functions in Matlab are used for curve fitting according to the 

characteristic points. 

 

The curve fitting results are shown in Figure 18 to compare the performance by 

two different functions. Power base is set as 100 kW in this dissertation.  
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Figure 18 Different curving fitting functions’ performance 

 

It is clear that the CDF generated by nlinfit is more accurate than the CDF curve 

by lsqcurvefit. To verify the accuracy of curve fitting, the actual PDF and versatile PDF 

is illustrated in following Figure 18.  
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Figure 19 Actual PDF versus Versatile PDF 

 

The versatile PDF fits actual PDF curve reasonably well. The performance and 

accuracy are both verified in this solar farm case. Similarly, the versatile distribution can 

be applied to wind farm as well to represent the forecast error in a 15-day forecast span. 

The simulation results based on actual data [22] are shown in below Figure 20 and Figure 

21. 
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Figure 20 wind farm versatile PDF 

 

 

Figure 21 wind farm versatile CDF 
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1) Wind farm generation cost 

Due to the accuracy limitation of wind power prediction, the actual output power 

can be higher or lower than the predicted output. This inaccuracy will result in 

operational penalty. The three components (direct cost, overestimation cost, 

underestimation cost) of wind generation costs are calculated in following set of 

equations [20].   

 

, ( )w j j wj jC w d w
   (27) 

where 

Cw,j: cost function of wind farm j 

wj: scheduled power of wind farm j 

dwj: direct cost coefficient of wind farm j 
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where 

Cpw,j: underestimation cost function of wind farm j  

wav,j: actual available power of wind farm j 

kp: underestimation cost coefficient 

wr,j: installed capacity of wind farm j 

gwj(.): PDF of the output of wind farm j for the forecast values 



57 

 

 

, , ,

0

( ) ( )

( ) ( )

j

rw j j av j r av j

w

r j j

C w w k wj w

k w x gw x dx

  

 
 (29) 

where 

Crw,j: overestimation cost function of wind farm j 

kr: overestimation cost coefficient 

 

2) Solar farm generation cost 

 

Similarly, the solar farm shares the same pattern of generation cost of wind farm. 

However, there is some difference between solar power and wind power. The feasible 

output period of solar farm is dependent on the actual solar radiation period. In this 

dissertation, according to actual data [21], the feasible output period is set as from 7 a.m. 

to 7 p.m. for a 15-day forecast span. Set of cost functions are shown below.  
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where 

Cs,k: cost function of solar farm k 
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sk: scheduled power of solar farm k 

dsk: direct cost coefficient of solar farm k 

Cps,k: underestimation cost function of solar farm k 

sav,k: actual available power of solar farm k 

sr,k: installed capacity of solar farm k 

gsk(.): PDF of the output of solar farm k for the forecast values 

Crs,k: overestimation cost function of solar farm k 

 

5.2 Vehicle to Grid (V2G) Modelling 

 

High amount of charging loads of PHEVs can be a great burden to the whole 

power grid. However, via vehicle to grid method, the huge energy in PHEVs’ battery can 

supply power back to grid if necessary. Especially in microgrid circumstance, V2G can 

serve as an energy storage device to smooth out the fluctuation of solar and wind 

generation. To begin with, some characteristics of PHEVs need to be discussed: 

 

1. Originally, PHEV is a commuting device for all the owners. The 

charging/discharging procedure need to be conducted with no conflict with owner’s daily 

driving behavior. So, the available time period and capacity is limited corresponding to 

individual user. 

2. The randomness of charging/discharging behavior of each PHEV must be 

considered. 
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These characteristics make V2G technology not totally reliable. A great number 

of PHEVs charging/discharging without planning and order not only increase the 

pressure on the grid but also waste electricity in the end. As a result, the research about 

V2G charging/discharging capacity is essential for the following control strategy 

research. 

 

In the beginning of PHEV development, the total scale and amount of PHEVs is 

very limited. Compared to the whole system, the impact can be even neglected. However, 

for microgrid system, comparatively low capacity renewable energy power plants are 

installed in it. The impact of PHEV cannot be overlooked. The PHEV control center can 

reasonably utilize the response from all the PHEVs in certain area for peak shaving and 

valley filling to increase efficiency of energy usage.  

 

In microgrid, power generators can be divided into conventional power plant, fuel 

cell, PV, wind turbine, and bio energy, etc. To some extent, microgrid can be represented 

as a combination of several micro energy resources. In the circumstance of microgrid, the 

system setting needs to take PHEVs into consideration. In the following part, 

conventional power plant, wind farm, solar farm and PHEV are all included. Hence, a 

comprehensive optimized strategy can be developed.  
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Based on the simulation results from [23] and [24], the versatile distribution 

model of V2G in microgrid is developed. Due to the uncertainty of V2G output, the cost 

functions consist of three parts: direct cost, underestimation cost, and overestimation cost. 

The PDF of V2G output from 15 Chevy Volt is shown below. 

 

Figure 22 Versatile PDF of V2G power output 

 

5.3 Economic Dispatch in Microgrid 

 

In microgrid, the goal is to minimize the total generation cost. CTotal is set as the 

subtotal generation cost of the whole microgrid system. In this example, CTotal includes 

the generation cost of conventional power plant, wind farm, solar farm, and V2G of 

PHEVs. 
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The simulation is based on standard IEEE 33 bus test system. Bus 1 is reference 

bus. 

 

Objective function (cost minimization) 
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L is the system demand. er is installed capacity of PHEV fleet l. ru,i and rd,i are the 

up and down regulation reserves provided by conventional power plant i. These two 

constraints represent that the over/underestimation of wind farm output must be covered 

by up/down regulation reserves of conventional power plant. The cost function of 

conventional power plant is 

 

2( )i i i i i i iC p a p b p c  
  (41) 

where ai, bi, and ci are fuel cost coefficients of conventional power plant i. 

 

 
 

Figure 23 Modified IEEE 33 bus system with PHEVs and DGs 

 

As shown in Figure 23, a 100 kW wind farm and two conventional power plants 

are all connected to Bus 1. On Bus 2, a 100 kW solar farm is connected to it. The output 

capacity of both conventional power plants is 100 kW. In this case study, 15 PHEVs are 
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connected to Bus 3 as the V2G energy source. The rated output is 3.5 kW per vehicle. All 

generation variables are expressed in per unit. The system power base is 100 kW. The 

direct cost coefficient of wind power and solar power is 2 $/MWh. For V2G, the direct 

cost coefficient is 10 $/MWh. The underestimation and overestimation cost coefficients 

kp and kr are set as 1.5 $/MWh and 3 $/MWh [25]. The up regulation reserve is 0.2 per 

unit. The down reserve is 0.1 per unit. The confidence level cu and cd are both set as 0.95. 

The fuel cost coefficients and output limits for both conventional power plants are listed 

in Table 12. The parameters of versatile distribution for wind, V2G, and solar are given 

in Table 13.  

 

Table 12 Parameters of conventional power plants (CPP) 

 

 

Table 13 Parameters of wind, V2G, and solar 

  Alpha beta gamma 

Wind 32 0.98 0.48 

V2G 32 1 0.3 

Solar 4.48 55.98 -0.57 

 

Since the inverse CDF of versatile distribution has analytical form, the 

optimization problem can be linearized and solved by Sequential Linear Programing 

a ($/h) b ($/h) c ($/h) Pmin (p.u.) Pmax (p.u.)

CPP 1 100 200 10 0.4 1

CPP 2 120 150 10 0.4 1
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(SLP). Detailed procedure can be found in [19] and [20]. The simulation results are 

shown in Figure 18. P1 and P2 are two conventional power plants’ outputs respectively. 

S1 is solar farm output. E1 is V2G output. X1 is wind farm output. There are two obvious 

load peaks around noon and around evening. The load peak at 8:00 a.m. is 2.9 per unit. 

And the peak load of all day is 3.37 per unit at 6:00 p.m. From Figure 19, it can be 

figured out that V2G participates in power generation at 6, 7, and 8 p.m. These time 

points are also in load peak period in which V2G can be a quick responsive power source 

to dispatch in microgrid. 

 

 

Figure 24 Forecast value of all micro power sources (CPP: P1, P2 Solar: S1 EV: 

E1 Wind: X1) 
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Figure 25 Output value of wind, V2G, and solar (Solar: S1 EV: E1 Wind: X1) 

 

In Chapter 1, a versatile distribution model is utilized to forecast the output error 

for wind farm, V2G, and solar farm. Then, the probabilistic distribution models are 

applied to economic dispatch problem in microgrid. From the IEEE 33 Bus case study 

results, it reveals that V2G can serve as a quick responsive energy source to 

accommodate peak loads. As a result, the power quality in microgrid can be improved.  

 

In conclusion, transportation electrification in microgrid will surely become more 

and more critical in distributed generation. Since the main energy sources in microgrid 

are wind and solar farms in future, the microgrid system always needs a reliable and 

responsive power source. V2G can be a favorable option with the increasing penetration 
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level of PHEVs. On the other hand, V2G is able to help microgrid become more 

independent of external power grid. 
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Chapter 6. Optimization in Generation Side 

 

6.1 Charging Load Schedule Optimization Referring to Real-time Pricing 

 

Smart grid and smart meter make it possible that costumers could know real time 

electricity price before they use. Consequently, this will give them a strong incentive to 

charge their PEV when price is low or even sale electricity from vehicle to grid (V2G) to 

make money when the price is high.  

 

As to taxis and buses, they might get notice from operation center to suggest them 

charge battery when price is low. For instance, they might bring forward a break to 

charge battery at low price to save money. Since their daily mileage is far more than that 

of private vehicle. The cumulative saving is considerable. Furthermore, shift load peak 

would relief the stress on the grid at noon and midnight. 
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Figure 26 Reference regional price curve [22] 

 

Here is a reference regional price curve in 7/8/2012. There are two obvious price 

peaks in the morning and evening. The morning peak is from 50 to 65. The reference 

regional price is about $90 per MWh.  The evening peak is quite short. It is from 107 to 

116. The peak value is about $95 per MWh.  

 

The optimization’s goal is shift loads from these two areas to valley areas. Real 

time price usually implies the total demand of this region. So, when the price is high, it 

means total demand is at high level and system needs the help from high-cost facilities. If 

loads could be shifted from these peak areas, this act could relief the pressure on the grid 

and prevent new price peak in this area. Another advantage is obvious. Owners of PHEVs 
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could save money on electricity bill. On the other hand, their batteries are still charged as 

much as possible. 

 

Compared to the real-time pricing schedule, it is obvious that charging loads all 

locate at the time period that the price is low. If we compare the optimized results with 

original simulation results, it is clear that loads in morning peak area are shifted to right. 

Similar optimization method could also be applied to taxi charging pattern and private 

vehicle charging pattern. 

 

 

Figure 27 Bus load curve after optimization 
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Similar optimization method could also be applied to taxi charging pattern and 

private vehicle charging pattern. 

 

 

Figure 28 Optimized taxi load curve 

 

Similar to the results of electric bus, load of taxi also lies in the area where real time 

price is low. That also reveals that there is great potential for taxi load operation.  
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Figure 29 Optimized load curve for 3 types of vehicles 

 

From Figure 29, it is clear that private vehicle was shifted rightwards. After the 

load peak, load curve decreases gradually until 15:00 o’clock in the afternoon. 
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Figure 30 Optimized total load curve compare to RRP curve 

 

The overall load patter for three types of vehicles after optimization according to 

real-time pricing is shown in Figure 30. We may recall the results from small scale 

simulation, loads suddenly drops to zero after 11:30. However, in optimized load curve, 

loads allocate more evenly, and loads decrease to zero until 15:00. That means loads were 

shifted to afternoon successfully.  

 

6.2 Charging Load Schedule Optimization Referring to Renewable Power 

Output 

 

Besides real-time pricing, if wind output curve is also considered in objective 

function, excess wind power could be better utilized. The reasons why wind power should 
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be coordinated with PHEV charging are as follows: (1) as is known to all that it is hard to 

control wind power output. Wind farm may suddenly generate many megawatts of power 

or drop to zero output in ten minutes. That is always a risk for voltage and frequency 

stability. Normally, if wind farm output increases abruptly, operation center will have to 

decrease generation from other power plants to maintain the balance. Now, charging loads 

join the grid and when to charge these loads could be controlled since their charging time 

is pretty ample. These loads could be utilized to pick up this increase from wind farm 

without shutting down other power plant. (2) A lot of wind power in midnight is just 

wasted, and charging loads in midnight is able to utilize this excess power. (3) PHEV is 

friendly to environment. If electricity is also from clean energy, that means there is no 

carbon dioxide emission from energy source to every vehicle terminal.  

 

Wind power output curve on 1/1/2011 is illustrated in Figure 31 [22]. The 

variability for wind power output is considerably large. The output is at high level from 

0:00 to 15:00 and suddenly drops to zero. Nowadays, there are many methods to predict 

wind power output. If the predicted load curve could be utilized in optimization, which 

would surely help to better take advantage of wind power. 
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W[t] is the wind power output curve. This output curve is from a 72 Mits Wind 

farm on 1/1/2011. P[t] is the reference regional price curve. Since regional reference price 

curve and wind power output curve are not on the same scale, all of them should be 

normalized in order to assign similar importance to each one. P1 and P2 are two constants. 

P1 + P2 = 1. Operator may assign different values for P1 and P2 to lay more emphasis on 

real-time pricing or wind power output. 
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Figure 31 Wind power output curve on 1/1/2011 

 

  Considering wind power output curve, more vehicle charging loads were 

fulfilled when wind output is high. In Figure 31, the most productive area for wind power 

is from 60 min to 80 min. Compared to load curve without considering wind power, loads 

in this area increase to some extent clearly. In future work, besides wind power, solar 

power and other factor could also be taken into consideration. That would grant the 

operator more potential to optimize the charging pattern for PHEVs. 

 



76 

 

 

Figure 32 Optimized load curve with wind and reference regional price 

 

6.3 Charging Load Schedule Optimization Referring to Output from Hybrid 

Wind System 

 

 SOC feedback control of wind power/battery energy storage system 

 

In this section, hybrid wind power/battery energy storage system would be 

introduced. Compare to the normal WF, a battery energy storage system (BESS) is 

installed to smooth out the fluctuation of the total WF output [26]. BESS could supply 

power to the WF or get charged from it according to the Target Output signal. Figure 33 

shows the outline for BESS control. WF output data goes through a First Order Lag Filter 

to produce a Target Output with a time constant T (T is called smoothing time constant). 
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Then, the difference between WF output and Target output would be value that BESS 

should supply or absorb via an AC-DC converter. Ideally, if the capacity and 

charge/discharge power of BESS is large enough, the Smoothed output that consists of 

BESS output and WF output could be constant. That means the fluctuation of the WF 

output is perfectly smoothed out. However, in real life, the perfectly smoothed output is 

not practical due to the cost of battery packs and other limitations. 

 

 

Figure 33 Hybrid wind power/battery energy storage system 

 

The Target output, BESS output and Remaining Energy level (REL) of the battery are 

determined by the following functions. REL is the percentage of energy that remains in the 

battery.  
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(43) 

 

G(s) is the total WF output. O0(s), H0(s) and I0(s) are output values without SOC 

feedback control. To avoid overcharge or deep discharge cases, a SOC feedback (SOC-FB) 

loop is added to monitor the battery status. The block diagram of hybrid wind power/battery 

energy storage system with SOC-FB control is shown in Figure 34. 

 

 

Figure 34 Block diagram of SOC-FB control system 

 

The REL, I(s) can be determined by following equation 
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where 

A (sec-1): Feed back gain 

B= T  (sec): Target output gain 

E (kWh): Battery rated capacity 

CWF (kW): WF rated output 

 

Simulation parameters 

1. WF 

Max WF output = 16.972 MW, 12 Mitsubishi wind turbines 

 

2. BESS control system 

24 hours, Max BESS power output = 6000 kW, Capacity of battery = 60000 kWh 

T= 60 min, A = 1/T, Margin rate = 10% 

 

3. Initial condition 

When t = 0, Target output = WF output 

REL (%) = 0% 
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Figure 35 WF output 

 

 

Figure 36 BESS output 

 

 

Figure 37 Combined output of hybrid system 
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Figure 38 Remaining energy level of the battery pack 

 

In Figures Figure 35~Figure 38, 10 minutes is the unit for time axis. It could be 

easily figured out that the output of the hybrid system is much smoother than the original 

WF output curve. For instance, the minimum value of WF output is only 152.66 kW at 

11:40 p.m. BESS helps to mitigate the variations and increase the minimum value to 

546.47 kW. On the other hand, from Figure 38, the REL of BESS is controlled in a 

proper range (10%~90%). Deep discharging and over charging are prevented to 

maximize the battery lifetime. 

 

Taking into account the wind power output curve, more vehicles charging loads 

are fulfilled when the wind output is high. In Figure 39, the most productive area of wind 

power is from 8:00 a.m. to 3:00 p.m. Compared to the load curve without considering 

wind power, loads in this area increase to some extent clearly, which means wind power 

is better utilized. On the other hand, if smoothed wind output data is applied, the 

optimized load curve would become smoother and load peaks decrease evidently as 

shown in Figure 39. 
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Figure 39 Optimized load curve w and w/o smoothed wind 
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Chapter 7. Economic Potential of Schedule Optimization 

 

7.1 V2G Capacity Prediction  

 

With the growing trend of PHEV market, high amount of PHEVs plugged into the 

grid simultaneously surely will lay a great impact on both stability and economics of the 

whole power system. In some research papers, they describe this certain level of PHEV 

charging as an enormous burden to the grid. That is the reason why V2G tech is 

meaningful under this circumstance. Since PHEVs are treated as generators when the 

bulk energy in PHEVs is more than sufficient.  
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However, with the participation of PHEVs in power dispatch of the microgrid, 

some characteristics of PHEVs need to be mentioned 

 

1. PHEV is a commuting device for all the users originally. The 

charging/discharging procedure need to be conducted with no confliction with user’s 

daily driving behavior. So, the available time period and capacity is limited 

corresponding to individual user. 

2. The randomness of charging/discharging behavior of each PHEV must be 

considered. 

 

These characteristics make V2G tech not that reliable. A great number of PHEVs 

charging/discharging without sequence and order not only increase the pressure on the 

grid but also waste electricity in the end. As a result, the research about V2G 

charging/discharging capacity is essential for the following control strategy research. 

 

In the beginning of PHEV development, the total scale and amount of PHEVs is 

very limited. Compared to the whole system, the impact can be even neglected. However, 

for microgrid system, comparatively low capacity renewable energy power plants are 

installed in it. The impact of PHEV cannot be overlooked. The PHEV control center can 

reasonably utilize the response from all the PHEVs in certain area for peak shaving and 

valley filling to increase efficiency of energy usage.  
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In microgrid, power generators can be divided into conventional power plant 

(CPP), fuel cell, PV, wind turbine, and bio energy, etc. To some contend, microgrid can 

be represented as a combination of several micro energy resources. In the circumstance of 

microgrid, the system setting needs to take PHEV into consideration. In the following 

part, CPP, wind farm, battery pack and PHEV are all included. Hence, an optimized 

strategy can be generated. 

 

7.2 Dispatch Strategy of V2G in Microgrid 

 

To decrease the effect of large amount of PHEVs charging/discharging 

simultaneously and to avoid the loss of life (LoL) increases due to charging/discharging 

frequently, an optimized dispatch strategy needs to be developed with the participation of 

PHEVs into microgrid. 

 

1. Direct control: Microgrid stays in the leading role. It send signals to PHEVs 

and let them charging/discharging at certain requirement of the system. 

2. Indirect control: Both microgrid and PHEVs have the same priority. PHEVs 

made decisions due the real time price of electricity from the system. They can sell at 

high price and purchase at low price. 
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However, compared to the first control strategy, it is hard to make it practical. In 

this research, first method is adapted. To enforce the direct control strategy, both sides 

must follow below agreements. 

 

1.Plug-in time point of PHEVs 

The driving behavior of different type of PHEVs has already been covered in 

Section 6.2. The results of simulation reveals that there would be to charging peaks in 24 

hours. One moon peak and one evening peaks. According to driving behavior simulation, 

it also reveals that there would be great potential to shift the peak loads to valley area.  

2.Payment from microgrid to PHEVs 

If PHEVs supply services to microgrid, the operator of microgrid needs to pay 

owners of PHEVs service fee. The amount of service fee depends on the capacity of 

PHEV’s battery. 

3.Energy trading price 

There would be energy trading between PHEVs and microgrid when PHEVs 

supply power. The sell price must be higher than purchase price to motivate PHEV 

owners to make money by V2G service. For the microgrid side, the purchase price from 

PHEVs need to be lower than the purchase price from the grid. Under these two 

conditions, this is a win-win situation for both PHEV owners and microgrid. 

 

7.3 Economic Analysis Model of Microgrid with V2G 
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The economy of microgrid includes initial fixed investment and operation cost. 

For the fixed investment, it mainly depends on the type and number of energy resources 

that going to be used in this microgrid. Referring to load prediction results, the cost of 

power output in microgrid can be calculated considering installed capacity and operation 

cost. In this studied microgrid system, CPP is set as the critical core. It is responsible for 

heating in winter and cooling in summer and partially dispatch certain amount of load. 

With this strategy, the efficiency of energy utilization is improved. 

 

1. Operational cost from fixed investment 

 

In microgrid, the fixed investment for micro energy source includes purchasing 

expense, operational life span, maintenance cost, and the amount of micro energy source, 

etc. Four types of common micro energy sources are listed in below table. 

 

Table 14 Micro energy sources 

Type 
Rated Output 

(kW) 

Purchasing Expense 

($/per) 

Maintenance 

cost ($) 

Operational Life 

Span (Yr) 

CPP 65 20000 1000 10 

WT 60 25000 1250 15 

PHEVs 3.5 -  -  -  

PV 60 25000 1300 15 

 

The annual cost function of purchasing, maintenance, and life span for each micro 

energy source is shown below. 

 



88 

 

(1 )

(1 ) 1

i

f inv mendi

r r
C C C

r






  

 
 (45) 

 

Cf is the annual operation cost of a micro generator. Cinv is the purchase cost. 

Cmend is the maintenance cost. r is the interest rate. i  is the expected life of micro 

generator. 
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 is the coefficient of return on investment. 

 

From above, the annual running cost of microgrid is 
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  (46) 

 

Ni is the amount of certain type of micro generator. C1 is the running cost of 

microgrid in response to loads. 

 

2. Operational cost from dispatching load 

 

The energy source for wind farm is wind. Wind is no cost and renewable for 

human. The maintenance cost for wind turbine is comparatively low as well. So, in 

microgrid, wind farm is preferred to stay in maximum output status. In condition that it 

cannot dispatch load individually, micro gas turbine and PHEVs may substitute to cover 
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the shortfall between load and output. Purchasing electricity from nearby microgrid is 

also an optional in deregulated power system. 

 

The operational cost function from dispatching load for each energy source in 

everyday is shown below 

 

24

,

1

2 ( ) ( ) ( )mti mti i mt pchs sell b s

i

C C V C C C C C


         (47) 

 

Cmti is the price of natural gas, Vmti is the volume of natural gas that be consumed 

by micor gas turbine i. Cpchs is the cost of electricity purchase from external network. Csell 

is the profit of selling electricity to external power grid. Cp is the cost of electricity 

purchase from PHEV control center. Cs is the profit of selling electricity to PHEV control 

center. In island condition, Cpchs = Csell = 0.  

 

The subtotal cost for the entire microgrid daily is 

 

1
1 2

365
C C C    (48) 

 

Objective function is to minimize the subtotal operational cost daily: 

Min(C) 
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Constraints 

 

The constraints in microgrid includes power dispatch balance, micro gas turbine 

output, wind farm output, and PHEVs charging, discharging constraints, etc. 

 

1) Power dispatch balance 

To achieve the balance between generation and load, the output from different 

type of power source need to subject to following equation. 

 

1 1 1 1

w e mt sn n n n

wi ei mti si

i i i i

P P P P P L D
   

          (49) 

 

Pwi is the output from wind farm. Pei is the output from PHEVs. Pmti is the output 

from micro gas turbine. P is the trading power from power market.  

 

2) Constraints for wind farm output 

 

For safety consideration, the maximum wind farm output need to be restricted. 

 

,min ,maxwi wi wiP P P   (50) 

 

3) Constraints for micro gas turbine output 
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,min ,maxmti mti mtiP P P   (51) 

 

4) Constraints for micro gas turbine output 

 

,min ,maxsi si siP P P   (52) 

 

5) Constraints for PHEVs output 

PHEVs can both consume or supply power from micro grid. If PHEVs are 

charging their battery, Pe is negative. If PHEVs are discharging battery to supply power 

back to system, Pe is positive. 

 

Charging condition 

 

, , min0 min[ , ( )]ei dis dis N ijP P SOC SOC    (53) 

 

Discharge condition 

 

, max ,min[ , ( )] 0c N ij ei cP SOC SOC P     (54) 

 

SOCij is the state of charge for i th PHEV in time j. SOCmin is the minimum state 

of charge. It is set to 0.2 to prevent the battery from over discharging. SOCmax is the 

maximum state of charge. To protect the battery from overly charge and damage the 
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battery life span, it is set to 0.9. Pei,dis is the discharging power for i th PHEV. Pei,c is the 

charging power. Pc,N is the rated charging power. Pdis,N is the rated discharging power.  

 

7.4 Case Study – Minimize System Operation Cost 

 

Simulation method 

 

In this section, PSO will still be employed to optimize the load allocation. The 

main procedure is shown below. 

 

1) Initialize the particle velocity, location and sufficiency 

2) Generate wind speed, charging/discharging power value from probabilistic 

distribution via Monte Carlo method. Check whether satisfy all the constraints 

afterwards. Obtain the position and speed for initial particle swarm that is feasible. 

3) Calculate the sufficiency function for each particle 

4) Compare the sufficiency value with local optimized value. If it is better, then 

update the local optimized value. 

5) Compare all the sufficiency values with global optimized value. If any of it is 

better, then update the global optimized value. 

6) Update particle location and speed, check the constraints again. If constraints 

are not all satisfied, speed and location of particle need to be updated again till all 

constraints are met. Repeat step 3) to 6) till the final solution is obtained.  



93 

 

7) Generate global optimized solution. 

 

Method improvements 

 

1) The inertia weight 

The optimized expectation for PSO is high global searching performance in initial 

stage, and in later stages, the local searching performance is strong. From function aspect, 

w(k) may increase or keep constant at initial stage and begin to decrease gradually 

afterwards. 

 

( ) start end
start

w w
w k w k

K


   (55) 

 

K is the up limit of iterations, k is the current number of iterations. 

 

2) Learning factor 

The purpose of learning factor is to enhance the performance in global optimized 

solution searching. In the whole process, learning factor c1 decreases while learning 

factor c2 increases. The effect of this learning factor is that the particle can go through 

the whole searching area in the beginning. While in later stage, particle is more likely to 

direct to global solution. 

 



94 

 

1 1
1( ) 1

2 2
2( ) 2

start end
start

start end
start

c c
c k c k

K

c c
c k c k

K


 


 

 (56) 

where 

c1start and c1end are two constants for c1’s initial and final value 

c2start and c2end are two constants for c2’s initial and final value 

 

Simulation results with higher penetration level of PHEVs 

 

For this simulation, the amount of signed PHEVs raise from 10 to 20. All the 

other generation data remains the same. The objective is to minimize the system daily 

operational cost, C, of this microgrid via particle swarm method stated in above.  

 

With the growing amount of PHEVs, the V2G generation is expected to play a 

more and more important role in distributed generation. In Fig 6.26, the output from V2G 

increases greatly and occupies more percentage among all the DGs’ outputs. 
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Figure 40 Generation from all power sources w higher penetration level 

 

 

Figure 41 Buying-in power in both cases 
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Figure 42 PHEV V2G output 

 

In Figure 41, it is clear that the buying-in electricity from power grid or nearby 

microgrid decreases enormously. That means microgrid is more and more independent of 

the external grid. Meanwhile, the generation capacity and average output via V2G both 

increases due to the growing amount of PHEVs. With the generation from V2G 

becoming more and more reliable, the stability voltage and frequency in the microgrid 

can be improved with a higher penetration level of PHEVs. 
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Chapter 8. Optimization in Game theory 

 

8.1 Game Theory Introduction 

 

Electric storage units are inherently devices that can store energy, or extra 

electricity available at participating customers. Deployment of storage unit in future 

smart grid faces many challenges such as 

1. Determining the required grid infrastructure (communication and control 

nodes) to enable smart energy exchange. 

2. developing new power manage management strategies. Especially, with the 

penetration of PHEV loads. 

3. The potential economic impact of deploying new types of energy storage 

devices, such as V2G. 

 

The challenged that going to be discussed in this chapter is the analysis of the 

energy trading decision making processes involving complex interactions between the 

storage units and the various smart grid elements. 
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A game theoretic approach to the control of individual sources/loads was adopted 

to enhance the reliability and robustness of a power system without using central control. 

From the storage units’ point of view, on the energy exchange market that arises due the 

competition among a number of storage , each of with could belong to a different 

customer and can interact at different levels. Due to the promising outlook of introducing 

energy storage units into the smart grid, devising new schemes to model and analyze the 

competition accompanying such energy exchange markets is both challenging and 

profitable.  

 

In the following sections, a new frame work that enables a number of storage 

units belonging to different customers to individually and strategically choose the amount 

of stored energy that they wish to sell to customers in need of energy is developed. First 

of all, a double-auction market model is designed to allow the incorporation of power 

markets with multiple buyers and multiple sellers. Secondly, sellers are allowed to 

strategically decide on the amounts they put up for sale depending on the current market 

state. Thirdly, results are based on the existence of a Nash equilibrium. Last but not least, 

a learning algorithm is introduced to guarantee an equilibrium is reached for both market 

based auction and no cooperative game.  

 

To achieve this innovative frame work, following two factors need to be 

addressed first. 
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1. Introducing a new approach using which the storage units can intelligently 

decide on the energy amount to sell while taking into account the effect of these decisions 

on both their utilities and the energy trading price in the market. 

2. Developing and analyzing a mechanism to characterize the trading price of the 

energy trading market that involves the storage units and the potential energy buyers in 

the grid. 

 

8.2 Power Market Modelling in Game Theory 

 

In regulated market, the system operator is capable of conducting the optimized 

strategy that stated above. In previous simulation case, to dispatch the load demand and 

achieve the optimized result (Minimum generation cost), the system operator must have 

the “common knowledge” of the system and is “rational” to set up the strategy for all the 

micro energy sources. “Common knowledge” means the operator is informative of all the 

generation, transmission, and distribution data in the microgrid. In last case, being 

“rational” means the operator selects strategy depends on the total generation cost. For 

example, a rational operator always chooses the strategy with lower cost regardless of 

which energy sources are included in this strategy.  

 

Since the generation data from the solar, wind, and PHEVs are all stochastic 

based, the system operator can evaluate and determine the optimal strategy based on the 

expected cost. This optimal strategy can be calculate through the procedure stated in 
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Chapter 7 every single time. However, if the simulation objective is a deregulated 

microgrid, every micro energy source can be treated as an energy seller. For each energy 

seller, they are also rational and have the common knowledge of the system. They know 

the outcome and payoff for their individual strategy as well. In this case, for each seller or 

player, the objective is to make more money in the energy trading market. Then, this 

energy trading in microgrid can be modelled as a no-cooperative game including sellers 

(utility) and buyers (demand). 

 

For simplicity and comparison reason, the noncooperative game is applied to the 

previous IEEE 33-bus system microgrid system. The microgrid system contains N sellers 

and M buyer. (N = 5, M = 3). Each buyer 𝑗 ∈ 𝑀 has a reservation bid bj in the market 

indicating the price that she is willing to purchase the energy. The amount of energy 

demand over an hour is noted as dj. dj is the average value that the buyer expected to 

demand in one hour. 

Each seller 𝑖 ∈ 𝑁 is capable of choosing the amount of energy, si, which is willing 

to put into the market. si must satisfy following inequality. 

 

i i is C R     (57) 

 

Ci is the capacity of the energy storage utility i. Ri is the reservation amount of the 

energy storage utility i. Each seller i participate the energy trading market with a 



101 

 

reservation price, rpi, for per unit energy. The reservation price indicate the lowest price 

that the player consider to sell the energy. 

 

A no-cooperative normal-form game Γ is formulated to simulate the energy 

trading in microgrid includes three components as follows: 

 

1. A finite set of players, N = {1, 2, 3, 4, 5} 

2. A collection of pure strategies, {S1, S2, S3, S4, S5} 

3. A set of payoff functions, {v1, v2, v3, v4, v5} 

 

1) The five players are wind, solar, conventional plant 1, 2, and PHEVs. 2) The 

strategies for each player is the amount energy si that will be sold in the market. 3) The 

payoff function for each seller i is vi which includes the revenue and cost with respect to 

the pure strategies si. 

 

( , ) ( ) ( ) ( )i i i ij i ij ij

j M j M

v s p rp q f q

 

 
      

 
 s s s s   (58) 

 

In this payoff function, s-i is a (N-1)*1 vector which includes all the strategies 

except utility i. pij(s) is the trading price between seller i and buyer j. qij(s) is the quantity 

of energy trading between seller i and buyer j. Function f() is the cost function of utility i. 

It mainly depends on two factors 1) type of energy source, 2) the total amount of sold 

energy ( )ijq a . Generally, utility functions are defined for each type of energy source. 
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Moreover, utility function must be an increasing function with respect to the amount of 

sold energy. 

 

In this no-cooperative energy trading game Γ, the objective of each seller is to 

take the best response by evaluating its own payoff function. In payoff function, the 

trading price pij(s) has not been addressed yet. The trading price is a function of an N*1 

strategy vector s. In this chapter, double auction mechanism is introduced to determine 

trading price in this energy market for each trade. 

 

Double auction is a convenient method to obtain the trading price pij(s), the 

amount of trading energy q, and the seller i and buyer j that participates in this trade. To 

begin with, the reservation prices, rpi, are sorted in increasing order.  

 

1 2 Nrp rp rp      (59) 

 

On the other hand, the biding prices, bj, are sorted in decreasing order. 

 

1 2 Mb b b      (60) 
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Figure 43 double auction market example 

 

The reservation price sequence, rpi, is used to generate the supply curve as a 

function of si (the amount of energy seller put into market). Similarly, the demand curve 

is generated by the buyer’s bid, bj, as a function of dj (the amount of energy buyer 

demands). In most cases, these two curves intersects at a point. One double auction 

market example is shown in Figure 43. From this point, the first couple of seller L and 

buyer K can be easily traced to satisfy 

 

K Lb rp    (61) 

 

Then seller L -1 and buyer K -1 can follow up to participate the market and finish 

the energy trade.In the end, the total amount of supply and demand must match to 
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complete the energy trading process in an hour. According to the double auction method 

in [27][28], the trading price for seller i < L and buyer j < K can be any price that between 

rpL and bK. In this chapter, for simplicity, a unified trading price, �̅�(𝒔), is defined for all 

seller i < L and buyer j < K. 

 

( )
2

L Krp b
p


s    (62) 

 

The unified trading price is a function of vector s which means the trading price is 

depending on the individual seller’s strategy {s1, s2,.., sN}. The change of each seller’s 

strategy can affect the intersection point of supply and demand curve. Consequently, the 

unified trading price can be different value as well. 

 

Since the trading price has been determined, the amount of energy trading 

between seller i < L and buyer j < K need to be find out. A unified trading price �̅�(𝒔) is 

set up, as a result, for buyer j < K, only the amount of energy that put on sale differs the 

seller i < L. In addition, the cost function f() is defined as a quadratic function. Hence 

wise, the utility function becomes 

 

2( , ) ( ) ( ) ( )i i i i i i iv s p rp Q Q
   
 

s s s s    (63) 
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αi is the weighting factor depending on the type of energy source. Qi(s) is the total 

amount of energy that sold by seller i. The value is determined by below equation for a 

given strategy vector s. 

 

1 1

1 1
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s    (64) 

 

The function simply describes two scenarios. The first row is the over-demand 

scenario. The total demand for buyers j < K is greater than the total supply for sellers i < 

L. As a rational seller, the strategy must be selling all the energy that plan to put into 

market. 

 

On the other hand, in the oversupply scenario, the oversupply needs to be shared 

by the sellers i < L. Hence, the shared burden for seller i is  

 

1 1

1 1

1
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i j

i j

i

s d

L


 

 






 
   (65) 

 

Iteratively, the remaining oversupply burden is shared by the left L-2 sellers till all 

the utility sells a non-negative value.  
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Based on the double auction method that stated above, each seller i is capable to 

set up the strategy (si, amount of energy to sell). The objective is always to maximize its 

own payoff considering all the other sellers’ strategies. Among different kinds of 

methods (IESDS, rationalizability, etc.), Nash equilibrium (NE) is selected to find out the 

most possible solution for a rational and knowledgeable seller. The definition of Nash 

equilibrium is 

 

The pure strategy profile 𝑠∗ = (𝑠1
∗, 𝑠2

∗, … , 𝑠𝑛
∗) ∈ 𝑆 is a Nash equilibrium if 𝑠𝑖

∗ is a 

best response to 𝑠−𝑖
∗ , for all 𝑖 ∈ 𝑁, that is 

 

* * ' * '( , ) ( , )    for all  and all i i i i i i i iv s s v s s s S i N       (66) 

 

However, it is not guaranteed that for every game the Nash equilibrium must 

exist. As a result, before apply the NE method, the existence of NE in the noncooperative 

double auction game must be proven first. According to [29], the following theorem is 

introduced. 

 

For the noncooperative game Γ, at least one pure-strategy Nash equilibrium 

exists. The detailed proven can also be found in [29]. Since the NE exists, to find out the 

NE, the best response of each seller must be defined first.  

The strategy 𝑠𝑖 ∈ 𝑆𝑖 is player i’s best response to his opponents’ strategies 𝑠−𝑖 ∈

𝑆−𝑖 if 
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' '( , ) ( , )   i i i i i i i iv s s v s s s S       (67) 

 

Each seller (player) always set up the strategy to maximize its own payoff as the 

best response to his beliefs of the opponents’ strategies. Another requirement for a NE is 

that his beliefs of the players about their opponents are correct.  The common solution or 

solutions within the best responses from all the players is or are the Nash Equilibria 

solution(s). Following iterative algorithm [30] is introduced to ensure the game converge 

to a Nash Equilibria solution. 
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ω is a searching inertia weight, 0 < ω < 1. The converge criterion is
( 1)n n

i is s   
. 

After a number of iteration, the si will converge and the final iteration is shown below. 

The final Nash equilibria solution si is obtained for seller i. 
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8.3 Case study – Noncooperative Energy Trading Game in 33-bus 

Microgrid System. 

 

To apply the iterative algorithm to the microgrid case, firstly, each player needs to 

set an initial value of their strategy. In microgrid case, seller i will decide how much 

energy, si, they are willing put into the market. To ensure the total supply and demand 

can match, the initial strategy of each seller is assumed as the maximum surplus energy 

which is available for sale.  

 

int    i i is C R i N       (71) 

 

Then, the iterative process begins with all the initial values. After each iteration, 

each seller adjust his strategy to obtain a better payoff as a response to his opponents’ 

strategies. In the final iteration, all the seller reaches his best response. Consequently, the 

noncooperative game also reaches its Nash equilibrium. In this microgrid case, the sellers 

(micro energy source utilities) are assumed to act in a set order. After the strategy phase, 

the sellers put the amount of energy which is suggested as the best response into the 

energy trading market for rewards accordingly. 
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In actual simulation, the search inertia weight, ω, affects the computation 

efficiency. The criterions to evaluate ω is 1) the result of NE convergence 2) the number 

of iteration it takes to converge. To find the optimized search inertia, since the interval is 

from 0 to 1, the simplest method is to arbitrarily start from 1 and decrease in a small 

interval (e.g. 0.1) to dig out the solution. Obviously, the method must work but also takes 

a great amount time. To improve the efficiency, two methods from optimization can be 

introduced. One is the bisection method. Another is the gold section method. Bisection 

method use the mid-point to narrow down the interval of searching in each iteration. Gold 

section method use gold section point instead of mid-point. In following part, gold 

section method is utilized to calculate the optimized searching inertia weight, ω. 

 

Table 15 Parameters of micro energy sources 

  

Surplus energy 

(kWh) 

Cost weighting factor α 

($/kWh2) 

Wind 50 0.2 

Solar 35 0.2 

CPP1 80 0.1 

CPP2 80 0.12 

PHEV*35 10 1 

 

Surplus energy and cost weighting factor α is shown in above table. The 

reservation price for each seller is randomly generated from a range of [10, 50] dollars 

per MWh. Similarly, the price bid for each buyer is randomly chosen from a range of [15, 

60] dollars per MWh. Via gold section method, Searching inertia weight, ω, is calculated 

to be 0.45.  
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Firstly, four scenarios is applied to the model to test the performance of the 

double auction energy trading market. They are low demand (100 kWh), medium demand 

(300 kWh), high demand (500 kWh), and peak demand (700 kWh). The supply and 

demand curves and intersection points are show in Figure 44. 

 
Figure 44 Double auction model in four scenarios (100, 300, 500, and 700 kWh) 

 

From the simulation result, it is clear that the double auction market acts similar 

to the actual real-life market in trading price aspect. The higher the demand from all the 

sellers always result in a higher unified trading price. The increasing trend is illustrated in 

Figure 45. The price increases from $21 (100 kWh case) to $43 (500 and 700 kWh 

cases). From amount of trading energy aspect, the higher demand results in the more 

trading energy after double auction. Consequently, more trading energy means more 
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sellers can participate in market and complete energy trading. Especially for V2G, due to 

the highest generation cost, V2G is only capable of picking up the peak load if necessary.  

 

Figure 45 Intersection points in four scenarios (100, 300, 500, and 700 kWh) 

 

In following case, the total demand is set as 175 kWh. Buyer 1, 2, and 3 share the 

demand evenly. To search for the Nash equilibrium, the iterative method stated in 8.2 is 

utilized. The detailed procedure is listed below. 

 

1. From initial strategy 𝑠𝑖
𝑖𝑛𝑡 to get unified price �̅�(𝐬) (Maximum capacity for each 

seller) 

2. Apply �̅�(𝐬) in the utility function to approach the best response 𝑟(𝐬−𝑖) 
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3. Update the strategy 𝐬𝑖 and repeat step 1 and 2 till the result converge to Nash 

equilibrium. 

 

 

Figure 46 Nash Equilibrium via iterative method  

 

In Figure 46, after 17 iterations, the converged result show that only wind (X1) 

and solar (S1) will participate and complete trading. The amount of energy trading of 

other three micro energy sources (P1, P2, and E1) drops to zero in second iteration which 

means that they are not competitive in this scenario (demand = 175 kWh) and their best 

response is to remain idle and sell no energy.  

 

Simulation result analysis 

▪ Computational complexity is challenging due to the fact that the trading price 

varies during the iterative process. The computational complexity of compare 
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supply and demand curves and find the intersection point is O (L + K), since the 

unified price is determined by seller L and buyer K. In overdemand condition, the 

best response, 𝑟(𝒔−𝑖) =
�̅�(𝒔)−𝑟𝑝𝑖

2𝛼𝑖
, is independent of market size. So, the 

computational complexity is O(1). On the other hand, if supply is greater and 

demand, the best response, 𝑟(𝒔−𝑖) =
[�̅�(𝒔)−𝑟𝑝𝑖](𝐿−1)+2𝛼𝑖(∑ 𝑠𝑖

𝐿−1
𝑖=1 −∑ 𝑑𝑗

𝐾−1
𝑗=1 )

2𝛼𝑖(𝐿−1)
, is depend 

on seller L and buyer K. The computational complexity is also O (L + K). In this 

case study, only L -1 sellers’ best responses are considered. K – 1 buyers are 

assumed to hold and do no change their strategies. Since the sequential algorithm 

is utilized in above case, the computational complexity then is O (L - 1) (L + K). 
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▪ PHEV V2G approach is not competitive in energy trading market comparing to 

the microgrid optimization case. V2G supplies energy in 18:00, 19:00, 20:00, and 

23:00 in microgrid case. In comparison, V2G is in service only in peak demand in 

double auction market. 

▪ Nash equilibrium in most scenarios is not the Pareto optimal can result in waste of 

social resources. A system operator who is informative of the data from 

transmission distribution system and energy sources in microgrid is capable of 
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optimizing the economic dispatch and utilizing the preferred energy sources 

(wind, solar).  
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Chapter 9. Research Conclusion and Future Work 

 

With the growth of the amount of PHEVs, the implementation of V2G method with 

large scale renewable energy will be the next inevitable challenge for current power system 

[31]-[34]. If V2G and renewable energy are not coordinated, the charging loads of PHEVs 

would surely present a great pressure on the distribution level grid [35]-[40].  

 

In this dissertation, a stochastic forecasting model is developed for PHEV charging 

load. Based on the prediction data, the Loss of Life of distribution transformer can be a 

burden for current distribution system. Particle swarm optimization method is applied to 

relieve the pressure on distribution transformer. The simulation results reveal that without 

replacing existing distribution transformer the pressure can be greatly reduced by re-

scheduling the PHEV charging plan. 
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For charging strategy optimization in microgrid, a versatile distribution model is 

utilized to forecast the output error for wind farm, V2G, and solar farm. Then, the 

probabilistic distribution models are applied to economic dispatch problem in microgrid. 

From the modified IEEE 33 Bus case study results, it reveals that V2G can serve as a quick 

responsive energy source to accommodate peak loads. As a result, the power quality in 

microgrid can be improved. Furthermore, simulation is also conducted in deregulated 

energy market in the same modified IEEE 33 bus system. The energy trading market is 

considered as a noncooperative normal game with energy sellers and buyers. The 

simulation results reveal that V2G is not a favorable micro energy source in deregulated 

market expect the peak demand period.  

 

In conclusion, transportation electrification in both regular distribution system and 

microgrid will surely play a more and more important role. If proper optimization strategy 

is applied, the negative impact of high penetration level of PHEVs’ charging load can be 

minimized. Moreover, since the main energy sources in microgrid are wind and solar farms 

in future, the microgrid system always needs a reliable and responsive power source. V2G 

can be a favorable option with the increasing penetration level of PHEVs. On the other 

hand, V2G is able to help microgrid become more independent of external power grid. 
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