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Abstract Abstract 
In the highlands of East Africa, the most populated regions in Africa, temperature is assumed to be 
intimately connected to the patterns of malaria both in time and space. A large section of the Ethiopian 
population in this region has historically been shielded from the disease mainly due to the altitudes in the 
highland regions that have remained free of the disease. However, the region has also seen a large part of 
its population being affected by malaria in epidemic outbreaks that seem to follow climatic anomalies, 
especially those of inter-annual increases in temperature. This project examines the inter-annual 
variability in the distribution of disease incidence over space and explores how changes in these 
distributions correlate to corresponding climate variability. By using extensive records of disease cases at 
high spatial resolution, it explores how population at the high end of the disease transmission range is 
affected by inter-annual climate variability. It further examines factors at play in the persistence of the 
disease in these low-transmission highland fringes to draw lessons for better targeting of interventions. 
With lessons learnt from the micro-scale investigations of associations between spread of the disease 
and generalizable factors, especially climatic factors, the project scales up to the national level to explore 
the risk of malaria transmission among the Ethiopian population, and how these risks have changed with 
the observed climatic factors in the last few decades. Finally, it quantifies the potential impacts of climate 
change on the spatial spread and intensity of malaria incidence and risks in a country whose population 
has doubled in the last 30 years. 

In chapter two, at a micro-scale and with high resolution disease and climate data, we examine the impact 
of inter-annual climate variation on the spatial distribution of malaria incidence over time. With the 
looming climate change in mind, we examine and infer what this could mean for the future. The impact of 
global warming on insect-borne diseases and on highland malaria in particular remains controversial. 
Temperature is known to influence transmission intensity through its effects on the population growth of 
the mosquito vector and on pathogen development within the vector. Spatio-temporal data at a regional 
scale in the highlands of Ethiopia provide an opportunity to examine how the spatial distribution of the 
disease changes with the interannual variability of temperature. We provide evidence for an increase in 
altitude of the malaria distribution in warmer years. This implies that climate change will, without 
mitigation, result in an increase of the malaria burden in the densely populated highlands of Africa and 
other regions with similar conditions. 

In chapter three, we stay at the same scale as in Paper II, and explore factors that explain the persistence 
of malaria in this low transmission epidemic prone region. A better understanding of malaria's 
persistence in highly seasonal environments such as highlands and desert fringes requires identifying the 
factors behind the spatial and temporal reservoir of the pathogen in the low transmission season. In 
these 'unstable' malaria regions, such reservoirs play a critical role during the low transmission season by 
allowing persistence between seasonal outbreaks. In the highlands of East Africa, the most populated 
epidemic regions in Africa, temperature is expected to be intimately connected to spatial persistence 
because of pronounced altitudinal gradients. It is not clear, however, that variation in altitude is in itself 
sufficient to explain persistence of the disease during the low season, and that other environmental and 
demographic factors, in particular population density are not also major factors. We address this question 
with an extensive spatio-temporal data set of confirmed monthly Plasmodium falciparum cases from 
1995 to 2005 that finely resolves space in an Ethiopian highland. Using a Bayesian approach for 
parameter estimation and a generalized linear mixed model that includes a spatially-structured random 
effect, we demonstrate that population density is important to disease persistence during the low 
transmission season. As malaria risk usually decreases in more urban environments with increased 
human densities, this counter-intuitive finding identifies novel control targets during the low transmission 
season in African highlands. It also underscores limitations of current coupled vector-host models of the 



population dynamics of the disease, which do not typically incorporate an explicit effect of population 
density. 

In chapter four, we scale-up to the national level and explore the use of climate factors to quantify 
spatially explicit malaria risk for Ethiopia. Climate suitability for malaria transmission has been used to 
account for Africa's continental distribution of the disease and to estimate the potential effects of climate 
change. So far, the limited application of the standard suitability index on smaller spatial scales, and the 
coarse resolution of future climate scenarios, which can overestimate malaria suitability, have hampered 
adequate estimation of the regional impact of global warming in the highly populated African highlands. 
In this chapter we intend to validate the existing African malaria Suitability index for Ethiopian conditions 
in order to study potential shifts in the epidemiology of malaria with past and predicted warming. With a 
modified suitability index for Ethiopia, we estimate that since the 1970s 12% of the rural population has 
become exposed to the disease, and 7% of the rural population who live in areas above 1000m. shifted 
into the "stable" malaria category. These figures reflect less than 1 degrees of warming that have 
occurred between 1975 and 2010. With 2 and 3 degrees of additional warming possible in the 21th 
century, the proportion of Ethiopia's population safe from malaria is likely to decrease to 10% and 5% 
respectively from 31% in the pre-1990 baseline assessment. At the same time, endemic stable malaria is 
predicted to affect 51% and 64% of the population respectively compared to 22% pre-1990s. With a 
shifting uphill burden of malaria, epidemic risk will occur in vulnerable populations without previous 
disease exposure. This risk will materialize in exceptionally warm years that can now be forecasted with 
reasonable accuracy; epidemic warning and timely intervention should be able to avoid severe morbidity 
and mortality. However, the populations that are shifted into the stable malaria category due to warming 
will have to rely on the continuation of assistance that has alleviated Ethiopia's malaria burden in the last 
decade, and future scientific progress to improve malaria control and keep ahead of developing drug and 
insecticide resistance. Despite applying a 50% reduction in malaria caused mortality to account for the 
reported progress achieved in Africa since 2000, we conservatively estimate that 2521 children and 1646 
adults (above 15 years of age) die in Ethiopia each year from warming that has occurred so far. At current 
levels of technology, control effort and population in Ethiopia, a 3 degree increase in temperature would 
result in an eight fold increase in these figures. 

Document Type Document Type 
Dissertation 

Degree Name Degree Name 
Ph.D. 

Department Department 
Geography 

First Advisor First Advisor 
Paul C. Sutton, Ph.D. 

Second Advisor Second Advisor 
Mercedes Pascual 

Third Advisor Third Advisor 
Dale Rothman 

Keywords Keywords 
Climate change, Highland malaria, Infectious diseases, Malaria, Spatial analysis, Spatio-temporal 



dynamics 

Subject Categories Subject Categories 
Environmental Sciences 

Publication Statement Publication Statement 
Copyright is held by the author. User is responsible for all copyright compliance. 

This dissertation is available at Digital Commons @ DU: https://digitalcommons.du.edu/etd/1238 

https://digitalcommons.du.edu/etd/1238


CLIMATE DRIVEN CHANGES TO MALARIA TRANSMISSION PATTERNS  

IN ETHIOPIAN HIGHLANDS 

 

__________ 

 

A Dissertation 

Presented to 

The Faculty of Natural Sciences and Mathematics 

University of Denver 

 

__________ 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

 

__________ 

 

by 

Amir S. Siraj 

August 2015 

Advisor: Dr. Paul C. Sutton



ii 
 

Author: Amir S. Siraj 

Title: CLIMATE DRIVEN CHANGES TO MALARIA TRANSMISSION PATTERNS 

IN ETHIOPIAN HIGHLANDS: 

Advisor: Dr. Paul C. Sutton 

Degree Date: August 2015 

ABSTRACT 

In the highlands of East Africa, the most populated regions in Africa, temperature 

is assumed to be intimately connected to the patterns of malaria both in time and space.  

A large section of the Ethiopian population in this region has historically been shielded 

from the disease mainly due to the altitudes in the highland regions that have remained 

free of the disease. However, the region has also seen a large part of its population being 

affected by malaria in epidemic outbreaks that seem to follow climatic anomalies, 

especially those of inter-annual increases in temperature.  This project examines the inter-

annual variability in the distribution of disease incidence over space and explores how 

changes in these distributions correlate to corresponding climate variability.  By using 

extensive records of disease cases at high spatial resolution, it explores how population at 

the high end of the disease transmission range is affected by inter-annual climate 

variability. It further examines factors at play in the persistence of the disease in these 

low-transmission highland fringes to draw lessons for better targeting of interventions.  

With lessons learnt from the micro-scale investigations of associations between spread of 

the disease and generalizable factors, especially climatic factors, the project scales up to 

the national level to explore the risk of malaria transmission among the Ethiopian 

population, and how these risks have changed with the observed climatic factors in the 

last few decades. Finally, it quantifies the potential impacts of climate change on the 
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spatial spread and intensity of malaria incidence and risks in a country whose population 

has doubled in the last 30 years. 

In chapter two, at a micro-scale and with high resolution disease and climate data, 

we examine the impact of inter-annual climate variation on the spatial distribution of 

malaria incidence over time. With the looming climate change in mind, we examine and 

infer what this could mean for the future. The impact of global warming on insect-borne 

diseases and on highland malaria in particular remains controversial. Temperature is 

known to influence transmission intensity through its effects on the population growth of 

the mosquito vector and on pathogen development within the vector. Spatio-temporal 

data at a regional scale in the highlands of Ethiopia provide an opportunity to examine 

how the spatial distribution of the disease changes with the interannual variability of 

temperature. We provide evidence for an increase in altitude of the malaria distribution in 

warmer years. This implies that climate change will, without mitigation, result in an 

increase of the malaria burden in the densely populated highlands of Africa and other 

regions with similar conditions.  

In chapter three, we stay at the same scale as in Paper II, and explore factors that 

explain the persistence of malaria in this low transmission epidemic prone region.  A 

better understanding of malaria’s persistence in highly seasonal environments such as 

highlands and desert fringes requires identifying the factors behind the spatial and 

temporal reservoir of the pathogen in the low transmission season. In these ‘unstable’ 

malaria regions, such reservoirs play a critical role during the low transmission season by 

allowing persistence between seasonal outbreaks.  In the highlands of East Africa, the 
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most populated epidemic regions in Africa, temperature is expected to be intimately 

connected to spatial persistence because of pronounced altitudinal gradients.  It is not 

clear, however, that variation in altitude is in itself sufficient to explain persistence of the 

disease during the low season, and that other environmental and demographic factors, in 

particular population density are not also major factors. We address this question with an 

extensive spatio-temporal data set of confirmed monthly Plasmodium falciparum cases 

from 1995 to 2005 that finely resolves space in an Ethiopian highland. Using a Bayesian 

approach for parameter estimation and a generalized linear mixed model that includes a 

spatially-structured random effect, we demonstrate that population density is important to 

disease persistence during the low transmission season. As malaria risk usually decreases 

in more urban environments with increased human densities, this counter-intuitive 

finding identifies novel control targets during the low transmission season in African 

highlands. It also underscores limitations of current coupled vector-host models of the 

population dynamics of the disease, which do not typically incorporate an explicit effect 

of population density.  

In chapter four, we scale-up to the national level and explore the use of climate 

factors to quantify spatially explicit malaria risk for Ethiopia.  Climate suitability for 

malaria transmission has been used to account for Africa’s continental distribution of the 

disease and to estimate the potential effects of climate change. So far, the limited 

application of the standard suitability index on smaller spatial scales, and the coarse 

resolution of future climate scenarios, which can overestimate malaria suitability, have 

hampered adequate estimation of the regional impact of global warming in the highly 
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populated African highlands. In this chapter we intend to validate the existing African 

malaria Suitability index for Ethiopian conditions in order to study potential shifts in the 

epidemiology of malaria with past and predicted warming. With a modified suitability 

index for Ethiopia, we estimate that since the 1970s 12% of the rural population has 

become exposed to the disease, and 7% of the rural population who live in areas above 

1000m. shifted into the ”stable” malaria category. These figures reflect less than 1 

degrees of warming that have occurred between 1975 and 2010. With 2 and 3 degrees of 

additional warming possible in the 21th century, the proportion of Ethiopia’s population 

safe from malaria is likely to decrease to 10% and 5% respectively from 31% in the pre-

1990 baseline assessment. At the same time, endemic stable malaria is predicted to affect 

51% and 64% of the population respectively compared to 22% pre-1990s. With a shifting 

uphill burden of malaria, epidemic risk will occur in vulnerable populations without 

previous disease exposure. This risk will materialize in exceptionally warm years that can 

now be forecasted with reasonable accuracy; epidemic warning and timely intervention 

should be able to avoid severe morbidity and mortality. However, the populations that are 

shifted into the stable malaria category due to warming will have to rely on the 

continuation of assistance that has alleviated Ethiopia’s malaria burden in the last decade, 

and future scientific progress to improve malaria control and keep ahead of developing 

drug and insecticide resistance. Despite applying a 50% reduction in malaria caused 

mortality to account for the reported progress achieved in Africa since 2000, we 

conservatively estimate that 2521 children and 1646 adults (above 15 years of age) die in 

Ethiopia each year from warming that has occurred so far. At current levels of 
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technology, control effort and population in Ethiopia, a 3 degree increase in temperature 

would result in an eight fold increase in these figures. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

Malaria is a vector borne disease that occurs when blood is infected with 

plasmodium parasites through infective Anopheles mosquito bites. The disease results 

from a complex interaction between the parasite, the mosquito vector, the human host 

and the broader environment (social and ecological).  Globally, four species of 

plasmodium are primarily responsible for malaria morbidity and mortality: Plasmodium 

falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale, with their 

spread and significances varied in different regions across the world.   P. falciparum, 

which is responsible for the deadly type of malaria, is most prevalent in Sub-Sahara 

Africa while P. vivax is most common in Asia. 

The vector is female mosquito of the genus Anopheles. Forty different species of 

anopheles mosquito are known to transmit the disease. Like in the case of the parasites, 

the vectors are also diverse in their geographic coverage and their efficiency of 

transmitting malaria. The African continent hosts several species of anopheles including 

Anophelus arabiensis, Anophelus funestus, and Anophelus gambiae s.s, the latter known 

for its affinity to human hosts and associated efficiency in transmitting malaria (Sinka et 

al., 2010; Kiszewski et al., 2004).
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The parasite’s reproductive  cycle starts when male and female sexual parasites 

(gametocytes), ingested by the mosquito during blood meal, meet inside the mosquito's 

guts and produce fertile eggs (zygotes). The zygotes in turn develop and invade the guts 

of the mosquito where they further grow, rupture, and release immature parasites 

(sporozoites) which make their way to the mosquito's salivary glands, causing the 

mosquito to become infective - capable of transmitting malaria to non-infected persons. 

This reproductive cycle is termed sporogonic cycle (Clement, 1992). The parasite 

undergoes further asexual reproduction inside the human host before making a full circle 

and getting picked up by another mosquito bite.   In this last process, the parasite causes a 

lot of suffering and possibly death to the human host. 

1.2 Public health burden  

According to the World Health Organization’s estimates, 500 million clinical 

malaria cases and more than a million deaths were reported annually in the early 2000s.  

Africa, where the deadly Plasmodium falciparum is wide spread, is disproportionately 

affected by malaria, accounting for an estimated 60 to 85 percent of the clinical malaria 

cases and 90 percent of malaria caused deaths (WHO, 2005; WHO, 2013).   Children are 

particularly affected by the disease with 75 percent of malaria caused deaths occurring 

among the under five year age group (WHO, 2013).  Recent WHO estimates indicate a 

significantly lower malaria burden, with 37 percent decrease in clinical cases and 47 

percent decreases in malaria caused deaths from the year 2000 to 2014  (WHO, 2014).   
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1.3 Malaria prevention and control 

Since the recognition of malaria as a public health priority in the mid-20th 

century, several interventions that target the transmission of the disease and/ or managing 

disease cases have been practiced at district, country, regional and global levels.  These 

interventions are broadly classified as (i) vector control including indoor residual 

spraying of houses with insecticides such as dichlorodiphenyltrichloroethane (DDT) 

(Najera et al., 2011; Mabaso et al., 2004; Tanser et al., 2007)  (ii) halting or reducing 

human-vector contacts which include using of insecticide treated bed nets (Lindblade et 

al., 2015; Choi et al., 1995)  and as a residual effect of improved housing (Lindsay et al., 

2002; Bradley et al., 2013) (iii) treating of malaria cases with chloroquine and other 

efficacious drugs  such as Arthemecinin Combination Therapy (ACT)  (Visser et al., 

2014) and (iv) vector source reduction through environmental management such are 

clearing or draining of swamps (Yohannes et al., 2005), and or larviciding (Maheu-

Giroux and Castro, 2013).    

It has however been recognized that even in regions where the disease has been 

eliminated, the biological and operational obstacles to maintain the situation are very 

high (Bruce-Chwatt 1987; Najera et al., 2011).  Widespread drug (Phillips et al., 1996; 

Trape, 2001; Murphy et al, 1993) and insecticide (Karunaratne and Hemingway, 2001) 

resistance are among the major challenges facing global public health efforts.  In 

addition, the disease is highly resurgent and a slowdown in the control efforts has been 

enough to enable the disease’s re-emergence often with devastating outcomes (Mendis et 

al., 2009; Sharma & Mehrotra 1986; Mouchet, 1998). Finally, despite many decades of 
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intense research and development effort, there is currently no commercially available 

malaria vaccine. 

1.4 Malaria and climate 

The fact that malaria involves an interaction of three species: the parasite, the 

vector and the host, has given rise to numerous opportunities for external factors to 

influence its transmission dynamics. First, the vector's choice of habitat is related to 

environmental and climatic conditions. 

Second, development of the plasmodium parasite inside the vector can be 

constrained or sped up by the prevailing climatic conditions. In this section, we review 

scientific evidences on the influence of environmental factors on the different 

components of the disease transmission dynamics. We explore how these factors affect 

the dynamics and look at field studies that corroborate these hypotheses. 

1.4.1 The vector 

Sub-Saharan Africa, the prime region affected by malaria, is inhabited by seven 

species of anopheles vectors with varying geographic coverage and efficiency1 of 

transmitting the disease: An. arabiensis, An. funestus, An. gambiae s.s., An. nili, An. 

moucheti, An. melas and An. merus (Sinka et al., 2010, Kiszewski et al., 2004). These 

vector species have varied preferences for breeding habitat and exhibit different feeding 

behaviors.  For instance, among the gambiae sibling species of the An. gambiae s.s. and 

                                                           

1
 Vector efficiency is usually expressed in terms of their feeding frequency and their degree to which they 

prefer to feed on humans (anthropophily) and in domestic settings (endophily) 
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An. arabiensis - two of the most efficient species, the latter predominates in hotter, drier 

areas (Kirby and Lindsay, 2004). 

Ambient temperature is one of the major extrinsic factors that affect rates of 

vector growth and development (Clements, 1992). Increasing temperature shortens the 

generation time of vectors hence increasing the growth rate. The development and 

survival of the vector occur within a temperature range that is defined by a lower 

developmental threshold and an upper lethal temperature (Craig et al., 1999). Moreover, 

while this temperature range varies with species, the rate of growth and development 

within the range is positively correlated with temperature (Molineaux, 1998, Anderson 

and May, 1992). 

During the vector’s immature stage, development rate peaks at around 27°C for 

An. gambiae ss and An. Arabiensis, while no adult vector comes out of the immature 

stage at or below 18°C temperature.  At the high end of the temperature limits, immature 

mosquitoes will not develop into adults when the air temperature is in the range 34-37°C 

or above (Clements, 1992; Martens et al., 1997; Bayou and Lindsay, 2003; Kirby and 

Lindsay, 2004).  

Anopheles larvae characteristically live at the air/water interface. Larvae of the 

most prevalent mosquito species in Africa live in fresh, less saline water habitat 

(Clements, 1992). However, mosquitoes adapt to changes to available water types. For 

instance, An. arabiensis and An. stephensi - a vector common in India, have adapted to 

changes in the type of surface water available in urban areas (Molineaux, 1988). Rainfall 
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affects the availability of these breeding habitats by creating pools most preferred by the 

species of An. arabiensis and An. gambiae s.s. (Molineaux, 1998). At the same time 

excessive rainfall may cause flooding which could wash out the larvae population in 

stagnant river pools. 

The longevity of mosquito vectors decreases with rising temperature, while it 

increases with rising relative humidity of the air (Molineaux, 1998). There is also some 

evidence that humidity affects the rate of digestion in mosquitoes. Observations on 

several Anopheles species showed that during days of low relative humidity, digestion of 

blood took longer than during high relative humidity days (Clements, 1992). Another 

study observed that when relative humidity went below 60%, it shortened the survival of 

the vector leading to a situation where there was no malaria transmission (Pampana, 

1969).  However, due to the fact that relative humidity is closely related to temperature it 

is difficult to prove the specific effect of relative humidity. 

1.4.2 The parasite 

Four species of plasmodium are primarily responsible for malaria morbidity and 

mortality: Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and 

Plasmodium ovale. Many studies have focused on the most prevalent two species: P. 

falciparum – responsible for the deadly type of malaria, and P. vivax. P. falciparum is the 

most prevalent species in the African continent, being responsible for 80-90% of cases.  

While P. vivax is common among Asian patients accounting for 70-90% of cases, there 

are parts of Africa that have significant P. vivax cases reported. Ethiopia, the subject of 

this thesis, attributes about 40% of malaria cases to P. vivax (MOH, 2001).    
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Temperature is among the principal extrinsic factors that affect the length of the 

sporogonic cycle, the stage during which the parasite develops inside the mosquito gut. 

As the temperature increases, the length of the sprogonic cycle decreases for a given 

species of malaria parasite. The sporogonic cycle lasts for 8-9 days at an ambient 

temperature of 27°C and increases to between 20-30 days as temperature drops to around 

20°C (MacDonald, 1957; Detinova, 1962; Pampana, 1969). With adult mosquito's life 

time limited to about 30 days at most, the length of sporogony is thus key to the 

probability of a mosquito biting a malaria positive person and ending up being capable of 

transmitting the disease to healthy individuals.  

The duration of sporogony increases exponentially with decreasing environmental 

temperatures to a point where parasite development ceases. This critical temperature 

varies by parasite species; for P. falciparum laboratory studies have estimated it to be in 

the range16-19°C (MacDonald, 1957; Detinova, 1962; Craig et al., 1999).  Field 

observations agree with these findings. In India, Gill (1923) observed that a monthly 

mean temperature of 16.7 °C was required for malaria transmission (Gills, 1923). 

In summary, the availability and type of the aquatic habitat, the level of ambient 

temperature together with relative humidity constitute important limiting factors in the 

vector population, a key factor in the disease's transmission dynamics. Moreover, for 

transmission of malaria to occur the ambient temperature levels have to be high enough 

to make sporogony fast enough for the vector’s lifespan, larval development fast enough 

to sustain the reproductive process; and not too high or too low so as to threaten the 

mosquito’s survival. This relationship between the physical environment and the vector 
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population also suggest that seasonal shifts in ambient temperature and/ or rainfall could 

either suppress or boost transmission of the disease. 

1.5 Epidemiological regions 

Several human biological, social, economic and behavioral factors have been 

identified as contributing to the transmission of malaria. As non-immune humans get 

infected they begin to acquire some immunity during from their previous infections. This 

process, when repeated over time, leads to an immune adult population with resilience to 

the clinical symptoms (Molineaux, 1998). Children and pregnant women are the 

exceptions who are always at risk of getting disease symptoms. 

Such preferential effects of the disease on human population create variations 

among regions based on the disease’s endemicity in those regions. In areas of stable 

transmission, where parasitamea in the population is stable, immunity is acquired over 

time. However, the disease still causes a heavy burden of illness and death especially 

among children and pregnant women.  In contrast, in areas of unstable or periodic 

transmission, the population lacks “herd” immunity and hence will have increased risk 

among all age groups. 

Geographic differences in malaria transmission patterns are usually characterized 

by the transmission’s intensity, frequency and length. Broadly, regions can be defined as: 

(1) stable – where conditions are always suitable for transmission; (2) seasonal – where 

conditions become suitable for a short season every year; (3) epidemic – where long-term 

variation in climate renders conditions suitable for transmission on an irregular basis 

(with a potential of epidemic malaria); and (4) malaria-free – where conditions are 
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always unsuitable (Craig et al, 1999).  These regions correspond to the disease’s effect on 

the population with stable region having its adult population acquiring herd immunity. 

1.6 Climate change  

The global mean surface temperature has increased by about 0.74oC since 1905. 

The rate of warming over the last 50 years is almost double that rate of warming over the 

last 100 years, and this rate is expected to increase in the future (Parry et al., 2007). In 

response to these global changes, the geographic ranges of species are expected to move 

upward in altitude and through mid-latitude towards the poles. In the current global 

scenarios warm isotherms will shift pole-wards and vector-borne diseases follow in the 

same direction (Parry et al., 2007).  

Consideration of the relationship between climatic factors and malaria 

transmission also suggests that warmer temperatures are likely to increase favorability for 

malaria transmission in many cooler and moderately warmer areas. Indeed, several 

studies have indicated that malaria transmission could shift its geographical area of 

transmission in response to climate change (Patz et al., 2005, Mc Michael et al., 1996).  

Other statistical models backed by vectorial capacity models demonstrate the potential 

for it to spread to regions of higher elevations (Martens et al., 1997, Martins et al., 1995).  

Efforts to establish relationships between environmental change and spread of 

malaria have been marred by uncertainties because (i) the causal links are often indirect, 

displaced in space and/or time, and dependent on a number of modifying forces (ii) the 

complexity of the climate system as well as the effect of other non-climate factors on 

large scale disease patterns; and (iii) the chronic lack of multiple decades of 
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epidemiological data (Barry et al, 2007).  However, a great deal could be learned about 

these causal relationships by examining the past patterns at multiannual and longer time 

scales, provided  data that can resolve small scale differences in both climatic and disease 

patterns are available. 

Projected effects of climate change on malaria transmission relies on 

understanding the historical associations, where we examine how climate variability or 

/change have played a role in changing the disease transmission patterns. Such 

associations, along with projected climate estimates are then used to estimate future 

health impacts.  Studies have provided evidence of the impact of climate variability/ 

change in last few decades in the East African highland, indicating a warming climate 

increasing the intensity of malaria transmission (Patz et al., 2002; Zhou, et al, 2004; 

Pascual et al., 2006; Chaves and Koenraadt, 2010; Omumbo et al., 2011). This evidence, 

however has led to a debate with scientists who attributed the observed increases in the 

intensity of malaria to non-climate factors such as drug- resistance and a slowing down of 

control efforts (Hay et al., 2002a, 2002b).  However, this counter argument was criticized 

for using satellite data that could have biased their analyses (Pascual et al., 2006).   

One reason for such debates is related to the fact that these two arguments were 

based on a single location and it was always going to be difficult to disentangle the effect 

of climate change from all other possible confounders.  One way to overcome this 

problem is to use a process based model that provides a complete representation of all 

factors at play, which then leads to quantifying the contribution of each factor. Another 

and perhaps less difficult approach is by looking at several relatively similar locations at 
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the same time and examining differences not just over time but also over space.   For the 

latter to happen however, there needs to be a record of climate and disease incidence data 

for several locations at high spatial and temporal resolution and for a period long enough 

to see long term trends, which unfortunately have been missing for many regions, 

especially in the African continent. 

This thesis aims to fill this scientific gap by utilizing high resolution climate and 

disease incidence data for more than 150 locations in Ethiopian highlands for over a 

decade.  By assessing historic associations between climate factors and disease incidence, 

both in time and space, we explore the potential impact future increases in temperature 

could bring about, assuming similar levels of interventions against the disease.  The 

recent decline in disease burden across Africa and the world is welcome news (WHO, 

2013). However, as has happened in the past, these improvements need a concerted effort 

to sustain them at the current level or better.  It is therefore imperative that we are aware 

of the consequences of not maintaining these high coverage interventions, while also 

reminding the scientific community and policy makers to work towards providing 

alternative solutions in the face of the multi-faceted challenges humanity has experienced 

with the deadly old foe. 

1.7 Study area 

This thesis studies Ethiopia (see Fig. 1,1) at two scales (i) at a micro scale 

covering four districts (ii) and at national scale.  In this section I provide a succinct 

introduction to the country, while specific chapters will cover the corresponding study 

areas they address.  
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Figure 1.1: Map of Ethiopia and the horn of Africa. Souces: GIS files for country and 

provincial boundaries from Esri, DeLorme, HERE, MapmyIndia, TomTom, 

OpenStreetMap contributors, and the GIS user community; for lakes and rivers sources 

ESRI, NASA, WWF, USGS EROS, Global Runoff Data Centre, GeoNames, 

Commonwealth of Australia Bureau of Meteorology, USGS, EPA. 

1.7.1 Climate 

Ethiopia has diverse topography and greatly contrasting climate.  The 

northeastern and southeastern parts of Ethiopia are dry lowlands regions with annual 

rainfall as low as 250 mm.  In contrast, the southwestern parts, which include tropical 

rainforest, cover a wet and humid region that receives up to 2000 mm in annual 
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precipitation (NMSA 2001).  In general, rainfall decreases northwards and eastwards 

from the Southwestern peaks, which benefits from its proximity to the Inter-tropical 

Tropical Convergence Zone (ITCZ) (Korecha, 2013). 

Seasonal rainfall in Ethiopia is driven mainly by the migration of the ITCZ. The 

position of the ITCZ changes over the course of the year, oscillating across the equator 

from its northern most position over northern Ethiopia in July and August, to its southern 

most position over southern Kenya in January and February. Three seasons are associated 

with high rainfall in different parts of Ethiopia: the Kiremt (June-September), Bega 

(October-December) and Belg (February-May). Kiremt, when the ITCZ is in its 

northernmost position, provides much of the rainfall in the northern half of Ethiopia. The 

eastern half of Northern Ethiopia has a second rain season during the Belg, a less intense 

and more sporadic rainfall season (see Fig 1.2, A and B).  

The southern regions of Ethiopia experience two distinct wet seasons which occur 

as the ITCZ passes through this more southern position. The Belg season is the main 

rainfall season, followed by the Bega, a lesser rainfall season (see Fig 1.2, C). 

Studies have divided Ethiopia into different homogenous rainfall regimes.  Gissila 

et al. (2004) divided the country into five homogeneous Kiremt rainfall zones. Similarly, 

Diro et al. (2010) classified the country into five Kiremt rainfall zones but with different 

boundaries. The difference between these two was primarily due to the number of 

stations each used (Diro et al., 2010). In addition, Diro et al. (2008) developed a rainfall 

regime based on the Belg rains which included five regions, again with different 
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boundaries (Diro et al., 2008).  In contrast, the National Meteorological Agency (NMA) 

has been using eight homogeneous rainfall regimes for its forecast (Korecha and 

Sorteberg, 2013).  These variations in the number of homogeneous and locations of 

rainfall regimes are mainly due to the season they were based on and the temporal 

disparities in the representation of different geographic regions in the meteorological 

records the regimes are based on. 

A more recent work that applied Principal Component Analysis (PCA) to monthly 

rainfall data revealed that 67% of the total variance in Ethiopian rainfall is accounted for 

by three major regimes, which resemble the seasonality based regimes described above 

(Korecha and Sorteberg, 2013).    

In chapter four of this thesis, we use the three broad regimes that have been 

commonly identified based on their annual cycles (see Fig.1.2) (NMSA, 2013).  Figure 

1.2 also shows the annual rainfall cycles based on stations data in the three rainfall 

regimes (our analysis).    
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Figure 1.2: Average annual rainfall based on 1961-1990 monthly station data for 

Ethiopia and its three rainfall regimes. The three major rainfall regimes are outlined in 

red. Smaller plots on the right show seasonal rainfall patterns for 149 stations in region 

A, B and C, with regional average (black line). Dots on the map are location of 

meteorological stations which provided the monthly rainfall, minimum and maximum 

temperature data for the period 1961-2010. Not all started in 1961. The number of 

stations reporting data in 1960s, 1970s, 1980s, 1990s and 2000s were 31, 57, 110, 150 

and 160 respectively. Source: Rainfall regime boundaries digitized from the World 

Meteorological Organization website, 

http://www.wmo.int/pages/prog/wcp/wcdmp/documents/Ethiopia.pdf (accessed Jan 30, 

2015) 

Regime A, comprising of the central and eastern parts of the country, has two 

rainy periods: Belg and Kiremt. This includes large areas in Eastern Oromia, Eastern 

Amhara, Eastern Tigray and Afar regions of the country.  A total population of 55 million 

(55%) reside in this regime at an estimated density of 116 people per sq. km (our estimate 

based on GPW3 after calibration using UNPDWPP 2000 data and growth rates). 
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Regime B, in the western part of the country has a mono-modal rainfall cycle 

relying on the Kiremt rains.  This regime includes areas in Western Oromia, Western 

Amhara, Western Tigray, Northwestern of SSNP, Benishangul Gumuz and Gambela 

regions. Regime B’s population is about 37 million (37% of the national total), 

distributed at an estimated density of 50 people per sq. km. 

Regime C in the south and southeast has two distinct rainy periods: Belg, and the 

shorter Bega season.  This regime includes most of Somali region, southern Oromia and 

South SNNP region.   At a sparse density of 18 people per sq. km, and with limited 

rainfall (see Fig. 1.2C), most of the 7.5 million people living in this regime are nomadic 

and dependent on livestock herding.  

Temperature in Ethiopia is greatly associated with altitude although there are 

seasonal variations in regions. Three broad classifications of regions have been widely 

used to identify regions by their average temperatures, namely: Dega (temperate and cool 

climate -highlands lying above 2500m.), Weina dega (warm- 1500-2500m), and Kola 

(hot and arid type, less than 1500m in altitude) (see Fig. 1.3).    

Majority of Ethiopia’s 98 million population lives in regions that are categorized 

as Woina dega (61%) where the average monthly temperature ranges from 15oC to 23oC.  

Another 15 percent live in areas above 2,500 meters with average monthly temperatures 

ranging from near freezing to 17oC. The remaining 24 percent live in areas below 1,500 

meters where average monthly temperature ranges from 24oC to 34oC (our estimates 

based on GPW3 and interpolated monthly station data for 1961-1990).  
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Figure 1.3: Relief map of Ethiopia. Source: Gridded altitude data at a resolution of 30m 

x30m downloaded from USGS website http://earthexplorer.usgs.gov/ (accessed on 14 March 

2011). 

A large part of the inter-annual variability of Kiremt rainfall is governed by 

systems related to the ENSO phenomenon. Other secondary forcings acting at the 

regional level, especially Indian Oceans Sea-Surface Temperatures (SST), play a 

modulating role (Korecha and Barnston, 2006, Goddard et al., 2001). Overall, dry 

conditions in Kiremt tend to occur during El Niño (ENSO Warm Phase), while wet 

conditions correspond to La Niña (ENSO Cool Phase) years.  Time series data of the last 

four decades confirm a strong El Niño signal in the seasonal precipitation in Ethiopia, 

though some years had relatively less ENSO influence as a result of other modulating 

factors in the tropical ocean basins, particularly the Indian Ocean’s delayed warming 

response to the abnormally warm tropical Pacific (Goddard et al. 2001).  
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The Belg season rainfall exhibits large annual variability in term of its amount as 

well as times of onset and secession.  Belg rainfall weakens when La Nina situations 

prevail and increases during El Nino situations.  In addition, warmer than normal South 

Western Indian ocean SST, Atlantic ocean SST and Mediterranean SST correspond with 

better than normal Belg rains in Ethiopia (NMSA 2009a).  

1.7.2 Malaria in Ethiopia 

P. falciparum accounts for 60 percent of malaria cases while P. vivax accounts for 

the remainder (40%).  The main malaria vector in Ethiopia is Anopheles arabiensis 

(White, 1980).  For the most part, malaria in Ethiopia is more of a seasonal problem, in 

addition to intermittent epidemics outbreaks. In areas above the altitude of 1500m 

anomalous climatic conditions are often associated with malaria epidemics (MOH, 1999).  

Since population in epidemic prone regions has low level of herd immunity, and due to 

the relatively higher population density in those regions of Ethiopia, epidemic outbreak 

are often marked with significant higher mortality and morbidity among all age groups. .  

 Recurrent epidemics have been reported from these densely populated highlands 

since the 1930s (Melville et al. 1945; Corradetti, 1938, 1940). In 1958 many regions in 

the central highland regions were devastated by an epidemic that caused an estimated 

three million cases and 150 thousand deaths (Fontain et al 1961). Cyclic epidemics of 

various sizes were reported from highland areas in subsequent years between 1965 and 

the end of 1980s at a frequency of 5-8 years. In more recent years, widespread and severe 

epidemics occurred in 1992, 1998 and 2003 (Bosman, 1993; Teklehaimanot, 1999; 

Negash et al 2005). The most recent epidemic in 2003 affected  more than three thousand 
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villages and 200 districts across the country causing more than two million clinical cases 

and three thousand  deaths (Negash et al 2005) 

1.7.3 The Debre Zeit Sector 

When Ethiopia launched its malaria control program in the 1970s, it was 

organized into sectors that covered about two to five districts each or 75,000 to 150,000 

people. Each malaria sector had the responsibility of running a malaria detection and 

treatment post which collected data on microscopically confirmed cases from self-

reporting patients. In addition, sectors managed indoor residual spraying (IRS) operations 

in their constituent districts.  Sector malaria control offices had been set up under a 

vertical administrative structure before they were decentralized and reorganized under 

regional administrations of Ethiopia in 1993.  Despite these changes, the sector malaria 

control offices provide examination and treatment services to patients free of charge, as 

well as carrying out IRS operations, for the entire duration covered by our data.  

Initially, four malaria sectors were established in the East Shoa zone, in the 

central part of the rift valley, at Bishoftu, Metehara, Adama, and Zeway towns (see Fig. 

1.4 and Fig. 1.5). Later in 1998 and 2002, two additional health centers in Shashemene 

and Meki towns respectively were reorganized to carry out malaria detection and 

treatment services. In all malaria detection and treatment services, blood specimen from 

patients are spread as smear, stained with Giemsa, and examined under microscope.  At 

the time of data collection, positive cases were treated with Chloroquine for P. vivax and 

Sulfadoxine/pyrimethamine (Fansidar) for P. falciparum.  Each health facility is managed 

and run by laboratory technicians specifically trained on malaria detection and treatment. 
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Figure 1.4: Geographic location of the Debre Zeit study area. The Debre Zeit sector in 

the central part of Ethiopia has an area of 3620 sq. km. Its altitude ranges between 1600m 

and 2500m. Source: Gridded altitude data downloaded from USGS website 

http://earthexplorer.usgs.gov/ (accessed on 14 March 2011); lakes from ESRI, NASA, WWF, 

USGS EROS, Global Runoff Data Centre, GeoNames, Commonwealth of Australia 

Bureau of Meteorology, USGS, EPA. 

Debre Zeit sector, East of the capital city of Addis Ababa, serves four districts in 

the East Shoa zone, namely, Ad’a Liben Chukala, Gimbichu, Akaki and Lume, and a 

total population of 572 thousand, of which 75% are rural2 (2005 estimate based on CSA 

1996; CSA, 2008).  These districts are further subdivided into smaller administrative 

units called kebeles (n=159).  On average, a kebele has a population of 3600 population 

and an area of 23 sq. km, and is further subdivided into one to four sub-units.  The sub-

units were formerly kebeles before a redistricting in the early 1990s that merged many 

                                                           
2 This section uses the definition of urban used by the Central Statistical Agency (CSA). Accordingly, 

urban center was defined as a locality with 2,000 or more inhabitants. All administrative capitals (Region, 

Zone and Wereda), and localities in which urban dwellers’ associations were established were also 

considered as urban centers, irrespective of the population size. (CSA, 1996) 
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old kebeles. Indeed, the 1994 population census of Ethiopia reported population , s at the 

old kebeles (sub-units) level. 

The Debre Zeit malaria detection and treatment center is located at Bishoftu town 

(also called Debre Zeit). Most people in the constituent kebeles walk for hours to get to 

the center for examination and treatment, while a smaller proportion, especially of those 

from towns outside Bishoftu, uses transportation mean. Half of the patients come from 

rural areas (51%) usually walking for an average of 14km (one-way aerial distance), 

while the remaining proportion comes from the five towns (including Bishoftu). The vast 

majority of cases, however, come from rural kebeles (74% for P. falciparum).  

 
Figure 1.5: Map of kebeles and towns in the Debre Zeit study area. Kebele boundaries 

digitized from administrative sketch maps. Source: Lakes from ESRI, NASA, WWF, 

USGS EROS, Global Runoff Data Centre, GeoNames, Commonwealth of Australia 

Bureau of Meteorology, USGS, EPA;  Roads from ESRI, HERE, DeLorme, USGS, 

Intermap, iPC, NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), 

MapmyIndia, TomTom, OpenStreetMap contributors, and the GIS User Community. 
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The town of Bishoftu (also called Debre Zeit) accounts for 68 percent the urban 

population and 68 percent of urban cases, followed by Mojo town which accounts for 20 

percent of the urban population and 23 percent of urban cases. Road distance to Debre 

zeit malaria detection and treatment center for the four towns (outside Bishoftu) ranges 

from just 11km (Dukem) to 41km (Koka). The most inaccessible town is Chefe Donsa 

which has a distance of 35km distance from Bishoftu town on gravel roads.  The towns of 

Mojo and Koka might find it closer to Adama malaria detection and treatment center 

(17km and 36km road distance respectively) than to Bisohftu (22km and 41km road 

distance respectively).  

The Debre Zeit Malaria cases record is organized by kebeles on a weekly basis.  

Patients report their address (district and kebele) when registering for blood examination.  

Daily patient data are then manually summarized at weekly level by kebele, number 

examined, and number of cases by species of malaria. These records cover the period 

between September 1993 and August 2002.  Beginning September 2002, patient data is 

registered prospectively both on paper and in a computerized registry system the moment 

patients are registered for examination. The computerized registry and reporting system 

was designed to help the malaria detection and treatment centers (including those at 

Shashemene and Meki health centers) to automate their information system and enhance 

the existing disease surveillance system in the zone.  The prospective data registry covers 

the period between September 2002 and March 2007.   

To enable analysis of the weekly surveillance data since 1993, the Oromia 

Regional Bureau of Health digitized weekly paper records from all four sectors in the 
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zone (and since 1998 for Shashemene health center). These weekly records were then 

merged with the prospective data records for the four detection and treatment centers and 

the two health centers at Shashemene and Meki, to generate a weekly record of kebele 

level species specific cases data.  

Once the data from the facilities was compiled into a central repository system, it 

was aggregated by weeks and kebeles.  Note that patients living in Debre Zeit sector’s 

districts may have been diagnosed at a neighboring sector’s detection and treatment 

center, though such cases are very few (less than 2% of all cases for Debre Zeit sector). 

In addition, the regional bureau of health collected data on Geographic Positioning 

System (GPS) coordinates of approximate central locations (in terms of population 

distribution) of the old kebeles (sub-units).  In this study, we use the kebele level merged 

and aggregated cases data for the Debre Zeit sector and sub-unit coordinates along with 

sub-unit population obtained from the 1994 population census (CSA, 1996). 

Beginning 2005, Ethiopia scaled up antimalarial interventions with the approval 

and free provision of Artemisinin-bases combination therapy (ACT) at malaria detection 

and treatment posts, and distribution of Long Lasting insecticide-treated nets (LLINs) to 

household in areas at risk of malaria transmission. To avoid confounding our data with 

the effect of these interventions, we excluded data after September 2005, a period when 

the first ACT drugs were used in the zone. All analysis in this project is based on monthly 

aggregated P.falciparum cases disaggregated at kebele level.
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CHAPTER TWO: ALTITUDINAL CHANGES IN MALARIA INCIDENCE IN 

HIGHLANDS OF ETHIOPIA 

2.1 Introduction  

The impact of warming temperatures on highland malaria remains a subject of 

debate (Hay et al., 2002a; Zhou et al., 2004; Patz and Olson, 2006; Lindsay and Birley, 

1996; Chaves and Koenraadt, 2010; Stern et al., 2011; Bouma et al., 2011). Because the 

etiological agent has a complex life-cycle requiring an insect vector, malaria is a 

multifactorial disease and the factors that regulate its distribution and abundance are 

diverse and complex (Molineaux, 1988).  Despite the expectation that global warming 

should lead to an increase in altitudinal range for malaria, empirical evidence for this 

phenomenon is  lacking and the attribution of  trends to specific factors remains difficult 

because of  multiple drivers, including drug resistance, land use change,  human 

migrations and access to health facilities (Shanks et al., 2005; Lindblade et al., 2000).  

Increasing altitudinal range implies the potential for an increased burden of malaria with 

climate change, especially for countries of East Africa and South America with densely 

populated highlands, which have historically provided havens from this devastating 

disease (Pascual and Bouma, 2009). This is because colder temperatures at higher  

altitude in these tropical latitudes slow down and even halt the development of the 

parasite inside the mosquito vector, and also because low temperatures decrease the
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reproduction and biting rate  of the vector, reducing  if not preventing transmission 

(Molineaux, 1988). 

In recent decades (1970-2000) pronounced increases in malaria incidence have 

been documented at several locations in Africa (Hay et al., 2002a; Zhou et al., 2004; 

Loevinsohn, 1994) for which long term temporal records exist, and which precede the 

higher intervention efforts of the past decade (Otten et al., 2009). Disease trends, no less 

than climate warming trends in earlier studies (Pascual et al., 2006, Omumbo et al., 2011; 

Alonso et al., 2011), generate debate (Chaves and Koenraadt, 2010), but what has been 

missing is an analysis of spatio-temporal records that shift from looking at a single region 

over time towards examining changes both in space and time.  Increasing incidence with 

altitudinal elevation in warmer years would be a clear signal of the response of highland 

malaria to changes in climate. Interestingly, although range shifts have been documented 

with empirical evidence for the distribution of several plant and animal species (Pounds 

et al., 1999; Lenoir et al., 2008), similar patterns in vector-borne illnesses and infection 

agents of humans remain largely unexplored.  

Hence, we looked for evidence of a changing spatial distribution of malaria with 

varying temperatures for over a decade in highland regions of Central Ethiopia (Fig. 1.4).  

To do so, we considered temperature variability at interannual time scales rather than 

long-term trends. Temporal associations between malaria and climate variability have 

been described for endemic regions of Colombia (Poveda et al., 2001; Bouma and Dye, 

1997), and for epidemic regions in highlands of Ethiopia and other East African countries 

(Zhou et al., 2004; Abeku et al., 2003; Bouma, 2003).  Thus, we specifically asked how 
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temperature variability influences the spatial distribution of disease incidence along 

altitudinal gradients.    

2.2 Data and methods 

2.2.1 Description of study sites 

The Debre Zeit study area borders the East African Rift Valley and includes parts 

of the Central highlands in Ethiopia. Its altitude ranges between 1600 meters above sea 

level (masl) in the South East to 2500 masl in the North Western highlands. The area is 

epidemic prone although there are pockets reporting cases year round. The main 

epidemic season occurs from September to December (SOND), following the long rainy 

seasons from June to August (JJA).  

2.2.2 Epidemiological Data 

The records consist of monthly Plasmodium falciparum cases for 159 

administrative units, known as kebeles, in the Debre Zeit area from 1993 to 2005 (Fig. 

2.2). Ethiopia: data from 159 subunits (kebeles) of Debre Zeit sector provided by the 

government malaria office in Debre Zeit town for the period 1993 to 2007 (see 

Introduction section). We added cases that were diagnosed in neighboring sectors (less 

than 2% of all cases).   We have excluded malaria data after August 2005 because of the 

introduction of a new treatment (ACTs) for P.falciparum in September 2005, and a 

significant increase in vector control (indoor residual spraying, IRS) and prevention 

(Insecticide Treated Bednets, ITNs) in the aftermath of the severe epidemic years (2002-

2003) in Ethiopia.  
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Figure 2.1: Time series of P falciparum prevalence obtained by aggregating cases and 

population data for all locations (black lines) calculated per 10,000 population; and 

monthly mean temperature records for Debre Zeit for the period between September 1993 

and August 2004. A decline in overall cases in the last decade has been observed in other 

highland regions (Stern et al., 2011) and reflects intensified vector control and the 

introduction of Artemisinin based Combination Therapy (ACT) for the treatment of P. 

falciparum cases. We show in Fig 2.12A, when we consider the aggregated longer time 

series (with no spatial information), the recent decline is preceded by an increasing trend 

in incidence from the 1970s to the end of the 1990s.  This increasing trend is not apparent 

over the shorter time frame of our spatio-temporal analyses. Source: Siraj et al., 2014. 

Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. 

Science,343, 1154-1158, fig. S2, A. 

In addition to the spatially disaggregated data, we used a longer aggregate time 

series of monthly P. falciparum and P. vivax cases beginning in Jan 1980 for the entire 

Debre Zeit sector in Ethiopia. The pre 1993 monthly aggregated malaria data were 

reported by the same government malaria center in Debre Zeit, established in the late 

1960’s to aid Ethiopia’s eradication efforts (Tulu, 1996).  For compatibility reasons, we 

subtracted cases between 1993-2005 that were diagnosed in government clinics outside 

the sector  not counted prior to 1993 and we  added cases from 4 new clinics (not 

differentiated by kebele) that were opened after 1993 in Debre Zeit town, Mojo and 

Chefe Donsa.   

These longer data sets for Ethiopia were included to examine the consistency of 

our findings on the changes in the spatial distribution of the disease, with the temporal 
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increase of cases from the beginning of the 1980s to the end of the 1990s (see below, 

Comparison of the change in cases for 1oC).  The study region is characterized by 

seasonal transmission with an alternation of non-epidemic and epidemic seasons, the 

latter taking place from the beginning of September to the end of December in Ethiopia 

(Fig. 2.2). 

2.2.3 Cartographic and demographic data 

Altitude data were obtained from the satellite based Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model 

(GDEM) with a resolution of 30m x 30m (USGS, 2011). Population data were obtained 

from the Ethiopian Central Statistics Agency. In addition, coordinates of rural 

administrative units within each location in Ethiopia and maps of the locations were 

obtained from the Oromia Health Bureau. Finally, the altitude for each kebele was 

computed as a population-weighted average across the sub-location level populations 

(rural administrative units) within each kebele.  

2.2.4 Climate data 

Four meteorological stations in Ethiopia situated in close proximity to the study 

areas were selected. Monthly averages of daily minimum and maximum temperature data 

for the stations were obtained from the Ethiopian National Meteorological Agency 

(NMA).  The four climate stations in Ethiopia (namely Addis Ababa (Bole), Addis Ababa 

(Obs), Adama and Debre Zeit) were selected based on their proximity to Debre Zeit town 

(within 50 km) and their high correlation with Debre Zeit’s station readings. Missing data 

were filled by the lagged 5 year climatology (average for the same month in the 
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preceding five years). Data for the four stations were then averaged for the two variables, 

monthly mean temperature were generated by taking the average of the monthly 

minimum and maximum temperature. 

 
Figure 2.2: Annual cycle for cases (black line), rainfall (blue line) and temperature (red 

line) for our study area. Source: Siraj et al., 2014. Altitudinal changes in malaria 

incidence in highlands of Ethiopia and Colombia. Science,343, 1154-1158, fig. S4, A.  

For the purpose of our analyses, we used average temperatures for the four 

months preceding the epidemic seasons (including a one month overlap with the 

epidemic season itself), i.e. June to September in Ethiopia (Fig. 2.3). These seasons were 

selected based on (1) their overlap with the main rainfall season, and (2) preliminary 

analyses which indicated a maximum lagged correlation between this period and the peak 

cases months. In the Ethiopian highlands, the significance of temperatures in the 

preceding 3 months for malaria forecasting purposes has been documented (Bouma, 

2003). 
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Figure 2.3: Schematic to show the main malaria seasons and the selected windows of 

time for mean temperatures for Debre Zeit. Source: Siraj et al., 2014. Altitudinal changes 

in malaria incidence in highlands of Ethiopia and Colombia. Science,343, 1154-1158, fig. 

S5, A. 

2.2.5 Grouping Method 

To identify groups of locations with similar dynamics, we employed a non-

parametric Markov transition model in an empirical Bayesian framework (Baskerville et 

al., 2013; Reiner et al., 2012). We used the epidemiological data from 159 kebeles. In 

this method the data is discretized into a set of finite levels. All zeros were put in one 

level since transition from no cases month to some cases month may involves a 

significant epidemiological process (invasion) and warrants representation in the Markov 

process. The remaining data was then divided into observed quantiles of cases per capita; 

transitions between levels over time are described by a Markov transition matrix (see 

Table 2.1, eg. Reiner et al., 2012).  Locations are assigned to different groups based on 

Metropolis Hasting Bayesian sampling algorithm (Metropolis et al., 1953; Hasting, 1970) 

and within a group each location’s time series is assumed to follow the same transition 

matrix. Groupings thus have locations with similar dynamics assigned to the same 

groups.   The goal is to identify the grouping that has the highest marginal likelihood of 
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the Markovian model given the data. Because of the large number of possible groupings, 

the best groups are inferred via a Markov-chain Monte Carlo method (Baskerville et al., 

2013). In this method, the desired number of groups is specified prior to running the 

algorithm to identify groups with higher marginal likelihood. The transition-matrix rows 

are assigned a non-informative Jeffrey’s prior (Baskerville et al., 2013; Jeffery, 1946).  

Table 2.1  

An illustrative transition matrix  

 

 month t+1 

 

 

month t  

No malaria 

month 

Low malaria 

month 

High malaria 

month 

No malaria month 53 12 7 

Low malaria month 13 8 8 

High malaria month 5 10 27 

The figures show the count of transitions from one month to the next based a 

144-month long time series (total of 143 transitions per kebele) 

 

The resulting three groups were significantly associated with altitude (ANOVA, 

p<<0.01), a pattern consistent with the altitudinal variation of disease severity with 

altitude.  

2.2.6 Median analysis 

To characterize the spatial distribution of the disease along the altitude gradient, 

we constructed cumulative distributions of cases for each year in the whole region and 

normalized these cases by the total cases for that year. Based on these cumulative 

proportions generated for each year of our study period, we calculated the altitude 
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corresponding to the median of the cumulative distribution. We refer to this quantity as 

the ‘median altitude’. Finally, we considered the variation of the median altitude in 

relation to the mean temperatures of the critical window (see Fig. 2.3). 

In order to have an estimate of the variance around the median value, we used 

bootstrap resampling from the set of individual altitude values attached to the location of 

each time series. We considered 1000 samples generated by resampling with replacement 

and computed the standard error deviation of the mean median value.  

2.2.7 Statistical model 

The association between temperature, altitude and malaria incidence was assessed 

with a regression analysis using a General Linear Model framework (GLM). Although 

count data, such as cases, are expected to follow a Poisson distribution, it is well 

established that observed disease cases often display substantial over-dispersion 

(Lawless, 1987). Preliminary analyses also showed that our monthly cases data exhibits 

this over-dispersion problem. Thus, we fitted a statistical model assuming a negative 

binomial distribution of monthly cases. 

2.2.8 Selection of covariates 

To select which of the explanatory variables are important, a negative binomial 

GLM with logarithmic link function was fitted to the P. falciparum cases with different 

covariates starting with a model that included all covariates (mean temperature with a 3 

month lag, altitude, seasonality and their interactions).  

Various models were considered, and comparisons were assisted by model 

selection algorithms based on the AIC stepwise regression, implemented in the MASS 
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package in R. A null model included only an intercept α, while a climate model included 

selected climate covariates xit, where i is a given location and t is the time. We used a 

regional de-trended monthly mean temperature (x) and a seasonality factor common to all 

locations (n).  We also tested a non-climate model which included only the altitude for 

each place centered at the average altitude of the meteorological stations (w) and 

population size (z). The combined model is an extension of the non-climate model, with 

the addition of the selected climate covariates and their interaction with geographical and 

temporal covariates. β, γ, δ, ξ, φ, ψ and η denote  the regression coefficients.  

The best model that emerged from this analysis in both study regions was the combined 

model with selected interactions among the variables (Eq. 2.2). 

( )θ,μNegBinY itit ~                                                           (2.1)  

( ) titittiittititittittitiititit nwxnwnxwxn+x+w+α+zμ ηψϕξδγβ ++++= log)log(  (2.2) 

where Y counts the observed number of cases in a kebele of population z. The observed 

rate Y/z can then be modeled by using the negative binomial model, with a slight 

adjustment. Since the expected rate E(Y/z) = μ / z. When we apply logarithm to this 

expression we get log (μ) – log (z). Adding log (z) to both sizes of the traditional negative 

binomial model would cause inclusion of the first term in equation 2.4, i.e. log (zit). This 

term is called offset and its value is known before entering the regression model. The log-

link allows comparison of point estimates to the Poisson model.  Our model (equation 

2.4) uses logarithmic link function and thus we applied exponential function to the 
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response variable log (μ) to convert it to fitted number of cases, with a dispersion factor 

θ.    

2.3 Results  

The importance of altitude to the spatial distribution of the disease was reflected 

in the typical decrease in malaria with increasing altitude that is expected from a 

concomitant decrease in temperatures (Fig. 2.4). This classic feature of the epidemiology 

of malaria was first reported in the 19th century (Hirsch and Creighton, 1883; Laveran, 

1893).  Furthermore, when we clustered kebeles or municipalities on the basis of similar 

spatio-temporal dynamics, the resulting communities exhibited significant differences in 

altitude (Fig. 2.5).    

 
Figure 2.4: Log of cases per 10,000 population by altitude, also called the malaria lapse 

rate, for Debre Zeit in two different years, and all years combined (far right). The plots 

show patterns in 1994 (left) and 1997 (middle) with contrasting  epidemic levels 

illustrating that the declining pattern of cases with altitude occurs not just in the overall 

data set (right) but also in individual years. Source: Siraj et al., 2014. Altitudinal changes 

in malaria incidence in highlands of Ethiopia and Colombia. Science,343, 1154-1158, fig. 

S6, upper panel. 
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We selected a north-south transect along the altitude gradient for Debre Zeit 

spanning 10 locations.  We then extracted their annual number of cases for the main 

transmission season and plotted these as a function of their corresponding altitudes (Fig. 

2.4).  Results show the expected negative slope indicating lower altitude areas have a 

higher number of cases normalized by population. 

 

Figure 2.5: Geographic areas based on similar temporal dynamics of malaria cases 

correspond to different elevations.  The first map shows the three different sets of 

administrative units categorized based on the temporal patterns of monthly cases for the 

study regions.  These sets were obtained with a Bayesian grouping algorithm that 

identified locations based on similar temporal dynamics using a non-parametric Markov 

transition model (see section on grouping method).  Figures B show corresponding 

elevation map, with elevation weighted by the population sizes within each location.  The 

identified sets correspond to significant differences in altitude (ANOVA, p<<0.01 for A). 

Source: Siraj et al., 2014. Altitudinal changes in malaria incidence in highlands of 

Ethiopia and Colombia. Science,343, 1154-1158, fig. 1, A and B. 

Because the absolute number of malaria cases from one year to the next can vary 

with a number of demographic and environmental factors, and we are interested in the 

spatial distribution of cases in a way that is independent from temporal variability 

including trends, we built cumulative distribution curves for yearly cases during the 
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epidemic season along the elevation gradient. The altitude corresponding to the median 

of this cumulative distribution is the ‘median altitude’.  The median altitude changed in 

time to reflect the movement of the distribution up or down the altitudinal gradient.  

Figure 2.6 illustrates these patterns for two given years and shows that the median 

altitude for case distribution changed across years as a function of the average 

temperature in a critical period preceding the epidemic season (Fig. 2.6, Fig. 2.3). Thus, 

the median altitude for case distribution increased with mean temperature (Fig. 2.6, B) 

and malaria cases occurred at higher elevation in warmer years, notably in 1997 and 2002 

(Fig. 2.66, C). This phenomenon (Bouma et al., 1994) may be related to above normal 

global temperatures that accompany El Niño events. 
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Figure 2.6: Changes in altitudinal distribution of malaria cases with mean temperature 

across years.  Altitudinal cumulative distributions of cases for Debre Zeit are shown as a 

function of time, as well as mean temperatures preceding the transmission season.  The 

left panels (A) illustrate the altitudinal cumulative curves generated with the incidence 

data in two given years, together with the location of the 50th percentile and its 

corresponding altitude. By definition, this is the altitude for which 50% of the cases occur 

below (and 50%, above) in the altitudinal gradient.  A shift of this cumulative curve to 

the right indicates that more malaria cases have occurred at higher altitudes in a given 

year. This does not mean the number of cases has increased from 1994 to 1997, but that 

the distribution of the disease has moved towards a higher elevation. The center panels 

(B) show the corresponding scatter plots of the median altitude against these 

temperatures, demonstrating a movement of the distribution to higher altitudes in warmer 

years for the two highland regions.  The right panels (C) show the yearly variation in the 

median altitude of cases (blue line), together with the mean temperatures in the critical 4-

month window (red line) (Fig. 2.3).  Uncertainty in the median value is estimated by 

bootstrap resampling (see median analysis) and is shown as one standard deviation in the 

plots. Source: Siraj et al., 2014. Altitudinal changes in malaria incidence in highlands of 

Ethiopia and Colombia. Science,343, 1154-1158, fig. 2, A, B and C. 

In our ‘median analysis’, we focused on the median of the altitudinal cumulative 

distribution of cases to examine the elevation expansion in the spatial distribution of the 

disease. .  Here, we show that similar changes, with temperature, have occurred in other 

quantiles of the cumulative distribution (Fig. 2.7).     
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Figure 2.7: Altitudinal cumulative distribution of cases at different quantiles as a 

function of mean temperature for Debre Zeit.  The plots are for quantile values of 60, 75 

and 85% (from left to right) and the uncertainty bars correspond to one standard 

deviation.  Source: Siraj et al., 2014. Altitudinal changes in malaria incidence in 

highlands of Ethiopia and Colombia. Science,343, 1154-1158, fig. S7, upper panel. 

To examine the robustness of our results to a potential bias introduced by control 

efforts in Ethiopia, we repeated the analysis after excluding all locations in the Debre Zeit 

area that have experienced indoor residual spraying (IRS) during the study period. 

Results are similar to those obtained with all kebeles included (compare Fig. 2.6, with 

Fig. 2.8 below).  

 

Figure 2.8: Scatter plots of the median altitude of SOND cases against JJAS mean 

temperatures for Debre Zeit excluding locations that experienced IRS operations during 

the study period. This demonstrates a movement of the median to higher altitudes in 

warmer years (left). On the right side is the yearly variation in median altitude of SOND 

cases (blue), together with JJAS mean temperature variation (red) for locations that 

experienced no IRS operations during the study period. Source: Siraj et al., 2014. 

Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. 

Science,343, 1154-1158, fig. S8. 
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Based on altitudinal cumulative curves generated for annual cases in the main 

season, we considered   all combination of two-year pairs, and computed the differences 

in their respective area under the cumulative curve (AUC). This difference allowed us to 

examine whether the distribution of cases moved towards a higher or lower altitude   for 

positive and negative values respectively.  We then considered the linear correlation 

between these differences and the corresponding mean temperature values (for the critical 

window), to get a quantitative measure of the AUC difference per given temperature 

change (Fig. 2.9).  

 

Figure 2.9: Changes in the area under the curve (AUC) for the cumulative distribution 

between two years as a function of the corresponding changes in mean temperatures in 

Debre Zeit. In these plots, warming temperatures are associated with a negative change in 

AUC displaying a shift to the right of the cumulative curve, a pattern representing an 

expansion upwards in the altitude of affected areas. 

To analyze variation in incidence with temperature and altitude, we fitted a 

negative binomial regression to the monthly cases (see section on selection of covariates). 

Covariates included seasons, altitude, and linearly de-trended temperature (lagged by 3 

months), where the latter represented a regional mean value. Model selection (based on 
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the Akaike Information Criterion, AIC) was used to compare models with different 

numbers of covariates and their interactions. The best model included temperature, 

seasons, and altitude, as well as a mix of the two-way and three-way interactions between 

these covariates (Table 2.2, Fig. 2.10). More importantly, the best statistical model 

showed a significant positive effect of mean temperature on the logarithm of malaria 

cases.  This effect corresponded to a percent change in cases between 35 and 64% per 

1oC for kebeles in Ethiopia at the peak of the malaria season (Fig. 2.11, A).   

Table 2.2  

Parameter estimates for the negative binomial regression model with log malaria cases 

the dependent variable. 

 

Covariates 

 

Coefficient  (std. error) 

(Intercept) -9.3348 (0.0402)*** 

Season  factor 9.6623 (0.3509)*** 

Temperature 0.1880 (0.0316)*** 

Altitude -0.0037 (0.0001)*** 

Temperature:Altitude -0.0002 (0.0001)*** 

Temperature:Season 0.8437 (0.3919)* 

Season:Altitude -0.0091 (0.0010)*** 

***: significant at 0.001; ** significant at 0.01; * significant at 0.05 

Source: Adapted from Siraj et al., 2014.  Altitudinal changes in 

malaria incidence in highlands of Ethiopia and Colombia. Science, 

343, table 2. 
 

    

We used the statistical models to estimate rates of change in the response variable 

(log number of cases) for an increase in temperature of 1oC, with all other explanatory 

variables set to constant values and for the different mean altitudes of the different 

administrative units (Fig. 2.11, A). 
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Figure 2.10: Observed versus fitted log cases for SOND based on the statistical model. 

The red curve is a local regression smoothing (Loess) curve. 

To estimate the change in the number of cases associated with a given change in 

temperature, we considered a window of altitudinal range corresponding to locations 

associated with the long time series. Thus, for the overall Debre Zeit region, this included 

all locations in the study area. For each cumulative curve (representing cases in the main 

transmission season for one year), we computed the fraction of the distribution falling 

within the relevant altitudinal range, and converted this fraction to number of cases. We 

then considered all possible pairs of years and computed the corresponding differences in 

the number of cases within the altitudinal range of interest, as well as the differences in 

the corresponding temperatures within the critical window (Fig. 2.11, B). Results show 

an increase of 2600 cases in the epidemic seasons per 1oC increase in temperature for the 

Debre Zeit region. 
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Figure 2.11: (A) Percent increase in number of cases at the peak season per 1oC increase 

in mean temperature in the critical window (JJAS). The plots include the effect of altitude 

and its interactions with temperature and seasonal effects- see regression model in 

equations (2.1) and (2.2); (B) Changes in the number of cases for the entire region and 

the corresponding changes in temperature for the critical window (JJAS) computed for all 

pairs of years. Source: Siraj et al., 2014. Altitudinal changes in malaria incidence in 

highlands of Ethiopia and Colombia. Science,343, 1154-1158, fig. S10,A and S11, A. 

For the long time series of monthly P. falciparum cases and mean temperatures, 

we observed an increasing trend from 1980 to 1999 (Fig. 2.12). We estimated a general 

rate of increase by fitting a linear regression for cases as a function of time, as well as 

temperature as a function of time. This resulted in a temperature rate of 1oC for 378 

months, and a corresponding increase in cases of 2310 for the main transmission season 

of SOND in Debre Zeit.    
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Figure 2.12: Temporal trends in temperature and malaria cases for the whole region of 

Debre Zeit (Ethiopia). The malaria cases for P. falciparum and P. vivax (top panel) are 

shown with the corresponding mean temperatures (bottom panel). Both P falciparum and 

P. vivax cases exhibit an increasing trend from the 1980s to the end of the 1990s.  So does 

mean temperature at 1oC in 378 months (estimated as a linear trend).  An increase of 1oC 

corresponds to an additional 2166 cases during the main transmission season (from 

September to December).  This malaria increase over time is consistent with what is 

expected from the trend in temperature, given the described change in the altitudinal 

distribution of cases with the interannual variation of temperature over a shorter time 

period (Fig. 2.11, B).  Source: Siraj et al., 2014. Altitudinal changes in malaria incidence 

in highlands of Ethiopia and Colombia. Science,343, 1154-1158, fig. 3. 

2.4 Discussion 

Our results showed that in this highland region increases in temperature across 

years extended the spatial distribution of malaria cases to higher elevations. The 
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implication is that global warming will increase the risk of contracting highland malaria 

in the future. The rapid climate variations associated with the pronounced topographic 

changes of highlands are poorly, if at all, captured by the coarse resolution of Global 

Circulation Models and their future projections (Price, 1994), and the intricacies of 

mountain climates may complicate local climate change predictions. Moreover, highlands 

tend to be poorly covered by the global network of meteorological stations (Barry, 1992). 

However, because of the potential attribution of rising malaria to warming, station 

temperature records in East African highlands have received much attention (Hay et al., 

2002a; Pascual et al., 2006; Omumbo et al., 2011). In particular, for the Debre Zeit 

station, significant trends in rising day and night time temperatures are uncontroversial 

(Hay et al., 2002b).   

The spread of chloroquine resistance has been proposed as the main reason behind 

the increasing trends in malaria time series in the Kenyan highlands (Shanks et al., 2005).  

Interestingly, our retrospective data sets can be extended backwards in time to the early 

1980s (albeit with no spatially explicit information) for the whole aggregated region of 

Debre Zeit in Ethiopia, and for both parasites, P. falciparum and P. vivax (Fig. 2.12).  

Although drug resistance to chloroquine almost exclusively applies to P. falciparum, also 

in the Debre Zeit region (Tulu et al., 1996), the longer time series of cases show similarly 

increasing trends from the 1980s to the 1990s for both parasites.  This increase occurred 

before the intensification of vector control and treatment of the past decade led to lower 

incidence (Otten et al., 2009).  
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Climate change appears to have already influenced the burden of malaria in these 

regions. Specifically, the trend for malaria in Ethiopia since the 1980s (Fig. 2.12) is 

consistent with the rate of change we would expect from the inter-annual variation in the 

spatiotemporal data (Fig. 2.11, B). This expected change is approximately 2160 cases per 

degree Celsius over a season (September to December), and the value obtained from 

fitting linear trends to both the P. falciparum and temperature time series is of similar 

magnitude: 2310 cases. This means that the change expected from increasing 

temperatures alone can account for the retrospective temporal trend in cases observed in 

the recent past at both locations. 

It has been argued that the effect of climate change on malaria globally will be 

negligible compared with the potential impact of intervention and improved socio-

economic conditions (Gething et al., 2010). However, in the East African highlands a 

strong temperature determined malaria lapse-rate persists (Bouma et al., 2011).  

Importantly, a higher potential transmission intensity, driven by warmer temperatures, 

will require even greater control efforts, especially in countries such as Ethiopia with 

large populations at high elevation. In the altitude range of the Debre Zeit sector, between 

1600 and 2400 m, approximately 37 million people live in rural areas at risk of malaria, 

which corresponds to 43% of Ethiopia's total population. Based on Ethiopia's current 

population size and the malaria lapse rate from pre-control mass survey prevalence data 

since the 1930s (Cox et al., 1999), we had previously estimated that a one degree rise in 

temperature would result, without mitigation, in an additional 410,000 infections per year 

due to malaria’s territorial extension (Pascual and Bouma, 2009). An additional 2.8 
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million annual infections would occur in the population below the age of fifteen at 

altitudes where the disease would intensify, and where adults would have a degree of 

immunity (Pascual and Bouma, 2011). These estimates were based on the assumption of 

a temperature-dependent shift of the disease to higher altitudes (Lindsay and Martens, 

1998; McCarthy et al., 2001).  By supporting this assumption, our findings here 

underscore the size of the problem and emphasize the need for sustained intervention 

efforts in these regions, especially in Africa where more highly anthropophylic vectors 

preclude extrapolation from the earlier and easier victories against malaria in latitudinal 

fringes of temperate climates (Bouma et al., 2011). 

Fortunately, the control of malaria at the edge of its altitudinal distribution is 

considerably easier than in highly endemic, lower-elevation regions. Despite Africa’s 

exceptionally efficient vectors, an early eradication pilot scheme in highland regions 

shows that malaria transmission at altitudes in excess of 1130 m (3700 feet) can be fully 

interrupted (de Zulueta et al., 1961). Public health policies should therefore be 

formulated that mitigate the effects of climate change on malaria in highland regions, 

including those policies that extend and sustain the network of diagnostic and monitoring 

facilities. These measures should further contribute to the early warning of epidemics and 

assist global malaria elimination. 
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CHAPTER THREE: THE ROLE OF TEMPERATURE AND POPULATION 

DENSITY IN THE PERSISTENCE OF HIGHLAND MALARIA 

3.1 Introduction 

Highland regions in East Africa are located at the edge of malaria’s transmission 

range due to seasonal rainfall patterns and low average temperatures, which limit the 

development of the parasite and the abundance of the mosquito vector (MacDonald, 

1957; Detinova 1962). In these regions of epidemiological transition, disease 

transmission is generally low, but exhibits intermittent seasonal outbreaks with high 

mortality and morbidity among large populations with low herd-immunity. Given that 

climate variables set the limits to the spatial distribution of the disease, changes in 

temperature and rainfall are expected to have clear, direct effects on malaria transmission 

in these regions (Lindsay and Martens, 1998). In particular, it has recently been shown 

that inter-annual variation in average temperatures can significantly expand and contract 

the spatial distribution of the disease following the main rainfall season, with 

implications for the impact of decadal warming trends (Siraj et al., 2014).     

Spatial variation in incidence is also important at the seasonal scale in relation to 

the persistence of the disease during inter-epidemic periods when transmission is at its 

lowest.  A better understanding of the spatial regions that act as spatio-temporal 

reservoirs of the pathogen is ultimately important to elimination strategies. Altitude, 

through its well know relation to temperature, is expected to influence spatial patterns of 
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persistence at regional levels.  A dynamical understanding of persistence would require, 

however, consideration of spatial variation in demographic and environmental factors 

other than temperature at sufficiently high spatial and temporal resolution. Although 

among demographic factors, human mobility has recently attracted attention (Buckee et 

al., 2013, Stoddard et al., 2013; Tatem et al., 2014; Yukich et al., 2013; Alemu et al. 

2014), the role of population density remains poorly understood in the population 

dynamics of malaria and other vector-transmitted diseases. In particular, host population 

size in mathematical models generally introduces a dilution effect by which larger 

numbers of hosts dilute the number of vector bites and in so doing also decrease 

transmission rates (Dobson, 2004).  In only a few zoonotic pathogens, namely hantavirus 

and lymphocytic choriomeningitis virus, positive associations have been reported 

between host population density and infection prevalence (Mills et al., 1999; Tagliapietra 

et al., 2009). Despite the large spatial variations in population density and associated 

socio-economic conditions, the question of whether and how these factors interact with 

temperature to maintain disease transmission remains open.  The fast population growth 

in highlands of East Africa makes questions on population density particularly pressing.  
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Figure 3.1: Location of study area (A), Log of number of P. falciparum cases per 1000 

population in the low transmission season by altitude of kebele (B) and by population 

density of kebele (C).  Illustration comparing the number of cases per 1000 population in 

two contrasting years - for the low  (D) and high season (E).  Source: Siraj et al., 2015. 

Temperature and population density determine reservoir regions of spatial persistence in 

highland malaria. Submitted to The Proceedings of the Royal Society – B, fig. 1 

By combining an extensive eleven-year long record of monthly cases of 

exceptional spatial resolution and a spatially-explicit statistical approach, we examine 

here the effects of demographic factors in concert with temperature. We specifically 

consider the influence of population density on malaria’s variability during the low 

transmission season, as well as that of access to roads, as a main factor in human 

mobility. We also consider other environmental factors that could confound our results 

by affecting soil water content and moisture retention of relevance to the availability of 

breeding habitats for mosquitoes. These factors include land slopes, water holding 

capacity of the soils and their interactions, as well as proximity to perennial surface water 

bodies, since  dams and rivers have been shown to provide breeding sites during the dry 

season when surface water availability is low (Ghebreyesus et al., 1999; Mouchet et al., 
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1996).  Our analyses identify population density, in addition to temperature, as having a 

significant role in the spatial distribution of disease incidence during seasonal troughs.  

This effect of population density is missing from current dynamical models of malaria 

transmission, despite its potential relevance to control efforts, which we discuss.  

3.2 Material and methods 

3.2.1 Epidemiological data 

A monthly time series of Plasmodium falciparum cases confirmed through 

microscopy examination of blood slides from clinical (febrile) individuals is used in this 

study.  The data is from 159 subunits (kebeles) surrounding the Debre Zeit sector, 

collected at the malaria examination and treatment center in Bishoftu town for the period 

from September 1993 to February 2007.  We have excluded malaria data after August 

2005 because of the introduction of a new treatment (ACTs) for P. falciparum in 

September 2005 in the aftermath of the severe epidemic years (2002-2004) in Ethiopia. In 

order to look at the dynamics at the seasonal level, we aggregated the monthly data for 

each kebele into four month seasonal blocks of January-March (JFMA), May-August 

(MJJA), September-December (SOND), representing the low, intermediate and high 

transmission seasons, for a total of 11 data points per kebele for each of JFMA, MJJA and 

SOND seasons.   

3.2.2 Demographic and cartographic data 

Each of the 159 kebele further encompasses up to 4 smaller administrative sub-

units for which population data were obtained from the Central Statistical Agency of 

Ethiopia for 1994 and 2007 (CSA 1996, 2008).  We interpolated these population data 
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temporally based on growth rates between the two censuses conducted in 1994 and 2007, 

separately considering changes in urban and rural populations at the district level. Spatial 

coordinates for these sub-units were obtained from the Oromia regional Bureau of 

Health. These coordinates, along with the population data, were used to weight all 

spatially explicit variables and obtain population weighted estimates aggregated at the 

kebele level.  

We obtained digital elevation model (DEM) data at a 30-meters resolution from 

the Global Earth portal managed by United States Geological Survey (USGS 2011).  By 

using ArcGIS software tools, we generated gridded slope from the high resolution DEM. 

For better data manageability, we resampled the high resolution DEM, averaged at a 0.5-

arc-minutes resolution. Finally, we overlaid locations of our administrative sub-units on 

the DEM and slope gridded surfaces to obtain estimates for altitude and slope 

respectively at the sub-unit level. 

As a measure of human mobility, we considered distance to roads adjusted for the 

type of roads, based on the notion that some surfaces are more difficult and costly to 

traverse than others. Thus, to account for differences in accessibility due to the type of 

roads, distances to gravel roads were multiplied by 1.5 when compared to alternative 

routes connecting to paved roads. After estimating the shortest distance to roads for each 

administrative sub-unit, population weighted aggregates were generated at kebele level. 

3.2.3 Population density 

Having spatially located the center of each of the 432 sub-unit in our study area 

along with their projected population sizes, we used this high resolution data to generate 
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our own estimate of population density.  We drew circles of 5km radii around each sub-

unit and summed the population that fell within each of these circles, giving the 

population in a buffer of 5km around each sub-unit.  We divided the total population of 

each buffer by the area of the circle (~74.54sq. km for a circle of 5km radius) to generate 

an estimate of population density (population per square km).  We finally averaged the 

sub-unit level population densities inside a kebele to aggregate them at the kebele level.  

We repeated the steps for a buffer size of 10km to generate a second measure of 

population density.   

Note that the circles we drew around sub-units, for which population was 

summed, could overlap, and as could the population densities themselves. As such, our 

population density estimates cannot be multiplied by the area size to get the total 

population of a sub-unit or kebele, as is the usual case.   This is a departure from the 

common method of generating population density where regions are subdivided before 

the population is aggregated within each region, and not across regions. Since the 

objective our estimating population density is to account for proximity of human to one 

another in the context of disease transmission, we assert that our method a more accurate 

account. 

3.2.4 Climate Data 

Daily readings of minimum and maximum temperature for Ethiopian stations 

were obtained from the National Meteorological Agency (NMA). Four meteorological 

stations in Ethiopia situated in close proximity to the study areas (namely Addis Ababa 

(Bole), Addis Ababa (Obs), Adama and Debre Zeit) were selected based on their 
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proximity to Bisoftu/ Debre Zeit town and their high correlation to Debre Zeit’s station 

readings. Missing data were filled by estimating from the linear association of altitudes 

and temperature readings of the remaining station. We then developed regional minimum 

and maximum temperature lapse rates for each month of the year. This was done by 

pooling all four-station readings for a single month of the year (eg. January) and 

regressing the readings on the corresponding station altitude values to estimate a slope 

(change in temperature for a given change in altitude).  These slopes were used to 

estimate the minimum and maximum monthly temperature at the altitude of each 

administrative sub-unit, by assuming the average of the four-station readings corresponds 

to the average altitude of the four stations (=2071 meters above sea level).  Estimates at 

each administrative sub-unit were weighted by their respective population and averaged 

at the kebele level.  

In addition, daily readings of rainfall from 13 stations in close proximity to 

Bishoftu town were obtained from the National Meteorological Agency (NMA). These 

stations are Addis Ababa (Bole), Addis Ababa (Obs), Aleltu, Chefe Donsa,  Debre Zeit, 

Dertu Liben, Ejere, Guranda Meta, Hombole (had only 9 months of data), Koka Dam, 

Mojo, Nazeret and Sebeta. Missing data were filled by randomly selecting one reading 

from the same date of the year  in the four nearby years: two years prior and two years 

after. If missing data were for Feb 29th of a leap year, we randomly selected from the Feb 

28th data for the four years. Daily readings from these stations were then spatially 

interpolated by using ordinary Kriging (Krige, 1951). We cross-validate model estimates 

at each station by varying the type of variogram model and its parameters (sill, nugget 
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and range). We selected the best global parameters from a range of reasonable values by 

comparing the root mean square errors for all stations (Hofstra et al., 2008). The 

interpolated grids were made to have spatial resolution of 0.5 degrees covering the entire 

study region. Administrative sub-unit coordinates were then overlaid to obtain (drill 

down) daily estimates, which were then aggregated at the kebele level weighted by the 

sub-unit population.  

Finally, all daily estimates of rainfall and temperature were aggregated at one, two 

and three month blocks to examine associations with cases in the low transmission 

season. 

3.2.5 Other variables 

Other climate related variables considered include Sea Surface Temperature 

(SST) anomalies for the Niño 3.4 region and monthly average Normalized Difference 

Vegetation Index (NDVI) at a resolution of 0.1 degrees. Monthly Sea Surface 

Temperature (SST) anomalies for the Niño 3.4 region were obtained from NOAA 

Optimal Interpolation SST Version 2 database (IRI, 2014b). Monthly average 

Normalized Difference Vegetation Index (NDVI) at a resolution of 0.1 degrees were 

obtained from the IRI analysis of USGS data for the period 1993 to 2004 (IRI, 2014a). 

For 2005, we obtained NDVI from the MODIS/Terra Vegetation Indices for the year 

2005 (USGS, 2014) at a temporal resolution of 16 days and spatial resolution of 500m, 

which were aggregated to monthly average at a resolution of 0.1 degree, to match the 

resolutions before 2005. 
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In order to examine the role of other possible sources of mosquito breeding sites, 

we considered distances from subunits to perennial water bodies. In addition, we 

examined the ability of local soils to retain rain and flood water – water holding capacity 

as well as landscape slopes. All were aggregated at the kebele level in the same way as 

for the climate data. We used shape files of perennial rivers obtained from Food and 

Agriculture Organization (FAO, 2014), and lakes obtained from the Environmental 

Systems Research Institute (ESRI, 2013), and computed the distance between each 

administrative sub-unit and its closest perennial water body.  This distance was 

considered to have a decay effect (the effect on malaria transmission decays 

exponentially as distance increases); thus we used the inverse-square distance, all 

weighted by sub-unit’s population and aggregated at the kebele level.   

We used the GAEZ soil database (FAO/IIASA, 2011) for the dominant soil type 

at a resolution of 5 arc minutes. We also obtained ISRIC-WISE soil water content data 

(in mm) at 30 arc minutes resolution (Batjes, 2005), which includes relative size of 

different soil types and their specific water capacities.  By matching the higher resolution 

dominant soil types layer to the water capacity layer sorted by area size, we were able to 

obtain water capacity at higher resolution of 5 arc minutes. We then overlaid the 

administrative sub-units coordinates on the water holding capacity layer to estimate 

values at each subunit.  

3.2.6 Control interventions 

Our intervention data consists of indoor residual spraying (IRS) operations at the 

kebele level during the 11 year period spanned by the case data, obtained from the 
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Oromia Regional Bureau of Health.  A categorical binary value of 1 was assigned to each 

month a kebele had an effective IRS and 0 other wise.  A kebele is considered to have an 

‘effective’ IRS for the duration of residual effect of the insecticide sprayed (6 months for 

DDT, 3 months for Malathion) (WHO, 1997).  

3.2.7 Least cost distance estimates 

A least-cost measure is based on the concept of minimizing the accumulated cost 

of a traveler in moving from point A to point B over a landscape. If the cost of traveling a 

certain distance is equal for all directions, then the least-cost distance is the Euclidean 

distance. The concept has been well developed in transportation, environmental 

economics and archeology where economic and social forces have a recognized influence 

on the spatial distribution of events (Stone, 1998; White and Surface-Evans, 2012).   In 

relation to infectious disease dynamics, the concept applies to capturing connectivity 

between regions with consideration of the geographic space humans cover in their social 

and economic activities.   

In this study, we assume cost of travel is contingent on the surface of travel 

corresponding to paved road, gravel road or walking trail.  Studies have compared costs 

of travel on paved road and dirt roads (Stone, 1998), as well as on paved road and hiking 

trails (Pingel, 2010). We recognize that in addition to taking longer time, hiking is more 

laborious as compared to traveling on vehicles that utilize roads. While the cost of these 

transportation means is context specific (depending on availability, the quality of roads, 

the opportunity cost of walking etc.), we can use them as reference points for making our 

own assumptions.  Thus, we assumed that for a given distance, travel on gravel roads is 
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1.5 times more costlier than that on paved roads, while hiking is two times costlier. This 

estimate seems conservative, but is most probably closer to reality than not using any 

concept of cost, which would imply equal cost per distance for all means of mobility. 

3.2.8 Neighborhood Structures 

We plotted all possible routes of connectivity between each administrative sub-

units (n=342) using geographic information system (GIS) methods. We identified the 

least-cost routes for each pair of administrative sub-units using the ArcGIS‘s Network 

Analyst tool. Then neighborhood structures were implemented by considering 1) adjacent 

kebeles (2) kebeles with sub units at most 5km apart   (3) kebeles with sub units at most 

10km apart (least-cost distance estimates for paved-roads) .  

3.2.9 Selection of explanatory variables  

We started our analysis by defining a suite of explanatory variables to be assessed 

for their association with malaria cases during the low transmission season from January 

to April (JFMA), following the main transmission season from September to December 

(SOND).  The low transmission season typically follows the coldest period of the year 

and receives the lowest rainfall accumulation (Fig.2.2).  Because we expect the inter-

annual variation in cases for this season to be associated with inter-annual climate 

variability, we included mean temperature and total rainfall at different aggregation 

windows, as well as NDVI and the Niño 3.4 SST anomalies, all at different lag periods.    

Land use change through deforestation was not considered here due to its small area 

impact, although it has been proposed to increase incidence in other regions (Stryker and 

Bomlies, 2012; Hahn et al., 2014; Vittor et al., 2006). 
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Because malaria represents a transmission system, the number of cases in one 

season should depend, in part, on the number of cases in prior seasons.  Such temporal 

latent effects have been the basis for the temporal autoregressive terms used in statistical 

models for vector-borne diseases (e.g. Zhou et al., 2004; Lowe et al., 2013). We used 

here a lagged relative risk computed as the log-standardized ratio of observed SOND 

cases to the global expected seasonal malaria cases.  The latter is the population in an 

area multiplied by a global estimate of the average seasonal malaria rate, a value 

estimated by dividing the total number of cases by the total population across all areas 

(Lowe et al., 2013, Zhou et al., 2004).  

To select among these possible explanatory variables of the low season (JFMA) 

malaria cases, we used a generalized linear model (GLM) framework. Because observed 

count data, such as reported cases in infectious diseases, often exhibit significant over-

dispersion (Lawless, 1987), and our exploratory analysis confirmed this pattern for our 

data, we used a negative binomial distribution of cases.  We then tested different 

combinations of explanatory variables by step-wise model selection based on the Akaike 

information criteria (AIC).   

The negative binomial model GLM used here has the following general form: 

  

           (3.1) 

              (3.2)  

where yit is the number of JFMA cases for kebele i and year t, μ is the mean count of 

JFMA malaria cases, θ is a scale parameter (dispersion factor),  eit is the expected number 
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of cases , a known offset (the corresponding population multiplied by the global expected 

malaria rate), α is the intercept, βj are coefficients of regression for xj, the time and space 

varying factors including mean temperature and rainfall (with different lag periods), 

effective IRS status, population density and NDVI; δj are coefficients of regression for 

the wj , non-time varying factors including slope, soil water capacity, water bodies, and 

distance to roads; γ is the coefficient of regression for zit, the log ratio of prior season 

cases to the expected cases;  and τ is the coefficient of regression for  st, Sea Surface 

Temperature anomalies from the Niño 3.4 region.  

We account for population in each kebele by using the offset term eit, which is the 

global expected rate (a global constant k) multiplied by the population p at each kebele.  

For an expected number of cases of e = k*p in a kebele i at time t, the expected rate 

E(Y/p) = μ / (k* p). When we apply logarithm to this expression we get log (μ) – log 

(k*p). Adding log (k*p) on both sizes of the negative binomial model would cause 

inclusion of the first term in equation 3.2, i.e. log (eit), serving as the population offset. 

The log-link allows comparison of point estimates to the Poisson model.  Our model 

(equation 3.2) uses logarithmic link function and thus we applied exponential function to 

the response variable log (μ) to convert it to fitted number of cases, with a dispersion 

factor θ. 

3.2.10 Generalized Linear Mixed Model 

After identifying the variables that are significantly associated with the JFMA 

count of cases, we tested their significance in a negative binomial (Venables and Ripley, 
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2002) Generalized Linear Mixed Model (GLMM) framework that includes (i) a spatially-

unstructured random effect and (ii) a spatially-structured random effect.  Spatially 

structured random effects explicitly account for spatial autocorrelations and weight 

relative risks in regions according to the relative risks in their neighborhood.  This is 

consistent with the latent effect of increased infectious disease risks from neighboring 

regions of high transmission recommended for both mathematical (Longini, 1988; 

Viboud et al., 2006, Bertuzzo et al., 2011) and statistical models (Kazembe, 2007; Lowe 

et al., 2011).   

We tested three different neighborhood structures to represent the spatially-

structured random effect: a) that of adjacency where neighborhood consists of kebeles 

with common borders (b) that of proximity within 5km (paved road distance equivalent) 

and (c) that of proximity within 10 km.  The weighted proximity measure provides a 

means of incorporating different travel infrastructure types including trails, the latter 

being of particular importance during the dry seasons in this region (see section on least 

cost distance estimates) . A normal conditional autoregressive (CAR) prior distribution is 

assumed for these structured spatial effects (Baseg et al, 1995): 

 

         (3.3) 

where σ2 controls the strength of local spatial dependence, and aij are neighborhood 

weights for each kebele as defined above, with  simple binary values of 1 when kebele i is 

a neighbor of kebele j, and 0 otherwise.  Since the CAR distribution is improper, we 

applied a ‘sum to zero’ constraint on each vi.  
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We chose a Bayesian Markov Chain Monte Carlo (MCMC) parameter sampling 

implementation in WINBUGS to estimate model parameters and their distributions (Lunn 

et al., 2000). We generated a sample of 10,000 parameters sets to form our posterior 

distributions. The general form of the Generalized Linear Mixed Model (GLMM) is as 

follows: 

                        (3.4) 

                      (3.5)     

where ϕ and  ν are the unstructured and structured random effects respectively.  All other 

covariates and parameters are similar to those described above (in equation 3.2) except 

that, here all covariates are standardized to zero mean and unit variance to aid 

convergence in the MCMC sampling. Model selection was based on the Deviance 

Information Criterion (DIC), a goodness of fit measure for Bayesian models that 

penalizes for increasing model complexity (Spiegelhalter et al., 2002). 

3.3. Results 

A temporal pattern of expansion and contraction through the seasons is typically 

observed. It is exemplified in Figure 3.1E for the trough preceding the large peak of 

1997.  The documented changes suggest that a horseshoe-shaped area in the center of the 

study region accounts for the majority of cases during the low transmission season.  As 

the main transmission season develops, increasingly more and more cases are reported 

from a larger area encompassing more kebeles at higher elevations.  This temporal 

expansion is followed by a contraction in a seasonally-recurrent pattern (Fig. 3.1, D). 
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This pattern appears to be associated with elevation differences where lower altitude 

areas are generally those that contribute to the burden of cases in the low transmission 

season (Fig. 3.1, B). The contraction area during the low transmission season would serve 

as the reservoir of the pathogen from which disease transmission spatially expands in the 

main season. To examine the determinants of this area, we consider next the results from 

the statistical models.  

The initial selection of significant explanatory variables revealed that rainfall and 

mean temperatures in December-February (DJF) are significantly associated with JFMA 

cases, as was the lagged malaria relative risk.  Furthermore, our analysis showed that 

population density obtained from circles of 5 km radius around each sub-administrative 

units, was the most significant non-climatic factor associated with JFMA cases. Neither 

proximity to a road nor the other environmental factors (including NDVI, landscape 

slope, soil water holding capacity and proximity to a water body) were significant. Niño 

3.4 anomaly lagged by 6 months was dropped from further consideration despite being 

significantly associated with JFMA cases, as it was highly collinear with DJF rainfall. 
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Figure 3.2: Figure A shows the population density obtained by adding all population 

within a 5km radius around each administrative sub-unit (up to 4 per kebele) and by 

dividing the value by the area of the circle (see text for details). The high-density area at 

the center is Bishoftu/ Debre zeit town (A). Figure B shows the elevation map, with 

elevation weighted by the population size of the administrative sub-units within each 

kebele (see text for details). Source: Siraj et al., 2015. Temperature and population 

density determine reservoir regions of spatial persistence in highland malaria. Submitted 

to The Proceedings of the Royal Society – B, fig. S2. 

Table 3.1 

Comparison of goodness of fit for the different models based on the Deviance 

Information Criterion (DIC) with log JFMA malaria cases the dependent variable.

                 

Model 

 

Deviance Information 

Criterion (DIC) 

I. Fixed effect only  

A. climate factors only 4346 

B. climate factors and population density 4333 

C. climate factors, population density and IRS status 4324 

II. Fixed effect and unstructured random effect  

A. climate factors only 4277 

B. climate factors and population density 4275 

C. climate factors, population density and IRS status 4272 

III. Fixed effect, unstructured and structured random 

effect 

 

A. climate factors only 4256 

B. climate factors and population density 4256 

C. climate factors, population density and IRS status 4258 

Source: Adapted from Siraj et al., 2015.  Temperature and population density determine 

reservoir regions of spatial persistence in highland malaria. Submitted to The 

Proceedings of the Royal Society – B, table 1. Smaller DIC values signify better fit. 
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Inclusion of the random effects (both structured and unstructured) resulted in the 

best model. Moreover, neighborhood structure based on 10 km least-cost distance 

proximity (equivalent to 10 km paved roads and 5km trail distance) proved to be best in 

capturing the random effects around each kebele.  Population density also contributed 

significantly when considered together with structured and unstructured random effects 

(see Table 3.1).  During the low malaria season, the residual effect of IRS was not 

significant in all three models (the coefficients’ posterior distributions included zero), 

despite a slight improvement of DIC over the models with non-structured random effect.     

  

Figure 3.3: Structured random effect from model III-A (with no population density) (A), 

and the sum of structured random effect and population density from model III-B (with 

population density) (B), both normalized to range between 0 and 1 for the median 

parameter values.  The two random variables have high partial correlation (r-value = 0.9), 

indicating the importance of population density in explicitly defining the model’s 

structured random effects. Source: Siraj et al., 2015. Temperature and population density 

determine reservoir regions of spatial persistence in highland malaria. Submitted to The 

Proceedings of the Royal Society – B, fig. 4. 
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Importantly, population density and the spatial random effect seem to explain 

similar variation in JFMA cases, where the spatial random effect would compensate for 

population density when the latter is not included.  Consistent with this observation, the 

spatial random effect alone in model III-A (with no population density) has high partial 

correlation with the sum of the spatial random effect and population density in model III-

B (with population density) (Fig.3.3; Table 3.1). This pattern is largely due to the fact 

that population density and the neighborhood structure, which is defined through 

proximity measures, are closely related. Indeed, kebeles that have several population 

centers in their neighborhood are also likely to fall in a region with high population 

density. The inclusion of population density in our model helps to explicitly define part 

of what would have been otherwise incorporated as structured random effects.   

Table 3.2 

Coefficients of the best GLMM model in the low transmission season with log JFMA 

malaria cases the dependent variable. 

Covariate Median  95% CI* R-hat 

Total DJF rainfall β1 0.2001 [0.117, 0.280] 1.005 

Mean DJF temperature β2 0.5299 [0.345, 0.723] 1.008 

Population density β3 0.1055 [0.003, 0.204] 1.001 

Lagged malaria relative risk γ 1.4270 [1.340, 1.518] 1.002 

Spatial unstructured hyper-

parameter 

σ2
ϕ 0.3257 [0.134, 0.632] 1.001 

Spatial structured hyper-parameter σ2
ν 0.0026 [0.000, 0.042]  1.001 

Over dispersion parameter θ -1 2.5190 [2.062, 3.098] 1.001 
* Credible Intervals (CI) obtained from the 2.5% and 97.5% quantiles of each parameter’s distribution. 

Source: Adapted from Siraj et al., 2015.  Temperature and population density determine 

reservoir regions of spatial persistence in highland malaria. Submitted to The 

Proceedings of the Royal Society – B, table 2. R-hat is the potential scale reduction 

factor on split chains. Values close to 1.0 indicate convergence. 
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Figure 3.4: Observed versus fitted JFMA log cases with the best GLMM model (smooth 

curve computed by loess, in red) (A). Comparison in time of observed and fitted total 

JFMA cases from the best GLMM model (that includes structured and unstructured 

random effects) (B). The 95% Credible Intervals (CI) are obtained from the 2.5% and 

97.5% quantiles of the distribution. The GLMM 95% CI includes the observed cases in 

more than 80% of the time.  Source: Siraj et al., 2015. Temperature and population 

density determine reservoir regions of spatial persistence in highland malaria. Submitted 

to The Proceedings of the Royal Society – B, fig. 3. 

All parameters in the best model (with population density and both unstructured 

and structured random effects) are significantly different from zero, with posterior 

distributions from the two chains well mixed and converged (see Table 3.2).  Model fits 

are reasonably good (Fig. 3.4, A and B), with JFMA incidence (in quantiles) correctly 

predicted 65 percent of the time for the all quantiles, while for the zero-case quantile we 

get 82 percent correct predictions. Similarly, for the highest-incidence quantile, we get 63 

percent correct predictions (Fig. 3.5; Table 3.3).  
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Figure 3.5: Observed (first row) and fitted quantiles of JFMA cases for five years (1997-

2001). These quantiles are generated by considering zero cases in one class, and by 

subdividing all nonzero JFMA cases into five equally-sized quantiles, with the resulting 

categories representing respectively no cases, very low, low, high and very high cases, 

with colors ranging from yellow to red. Source: Siraj et al., 2015. Temperature and 

population density determine reservoir regions of spatial persistence in highland malaria. 

Submitted to The Proceedings of the Royal Society – B, fig. 4. 

 

Table 3.3 

Counts of observed versus predicted quantiles of JFMA cases. 

 Observed 

No case Very low Low High Very High 

   No case 883 113 27 13 2 

   Very low 163 85 47 35 16 

predicted   Low 23 32 26 28 7 

   High 6 15 16 43 26 

   Very high 5 10 8 32 88 

Source: Adapted from Siraj et al., 2015.  Temperature and population density 

determine reservoir regions of spatial persistence in highland malaria. Submitted to 

The Proceedings of the Royal Society – B, table S1.  
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Table 3.4 

 Median Coefficients of the best GLMM model for the high transmission season with 

log SOND malaria cases the dependent variable 

Covariate Median  95% CI R-hat 

Total JJA rainfall β1 -0.1188 [-0.1654, -0.0729] 1.001 
Mean JJAS temperature β2  0.6750 [0.5853, 0.7665] 1.001 
Population density β3 -0.1681 [-0.4000, 0.0738] 1.009 
Indoor Residual Spraying β4 -0.2810 [-0.4727, -0.0806] 1.001 

Lagged malaria relative risk γ  0.2934 [1.3400, 1.5183] 1.001 

Spatial unstructured hyper-parameter σ2
ϕ  0.0115 [0.0003, 0.1419] 1.163 

Spatial structured hyper-parameter σ2
ν  4.1288 [2.9638, 5.7176]  1.003 

Over dispersion parameter θ -1  1.9180 [1.7000, 2.1600] 1.001 

Credible Intervals (CI) obtained from the 2.5% and 97.5% quantiles of the distribution. 

Source: Adapted from Siraj et al., 2015.  Temperature and population density 

determine reservoir regions of spatial persistence in highland malaria. Submitted to 

The Proceedings of the Royal Society – B, table S2. R-hat is the potential scale 

reduction factor on split chains. Values close to 1.0 indicate convergence. 

 

3.4 Discussion 

The spatial distribution of malaria expands and contracts as we transition from 

high to low seasons in a way that at first sight might appear simply related to altitude (or 

equivalently, to temperature). Our results indicate however that while climate factors play 

an important role, it is their combined effect with population density that maintains a 

reservoir of disease transmission and explains the spatial heterogeneity of persistence 

during the troughs between transmission seasons.  Thus, our analyses reveal that the 

spatial variation in malaria incidence in the low transmission season is explained not just 

by lagged temperature and rainfall values during critical windows, but also by the more 

densely populated and spatially interconnected population centers. Population density 

helps explicitly define the spatial effects identified in the statistical models. In particular, 

areas of persistence, where malaria transmission continues in the low season, are largely 
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confined to a stretch of land adjacent to the town of Bishoftu with a  considerably high 

population density ranging from 150 to 700 persons (30-80 households) per sq. km. (Fig. 

3.2).   

Our results also indicate that human mobility as represented by a simple 

proximity to roads is not significantly associated with the number of cases in the low 

season.  This could be due the fact there are only a few roads in the region, and trails 

rather than roads tend to have wider use, especially in the dry season.  Reliance on 

weighted proximity (as opposed to adjacency) as a basis for neighborhoods appears  

effective in capturing   human movement patterns that influence disease transmission in a 

way that is independent from the adjacency of geographic regions. This observation is 

consistent with other studies that used proximity measures as opposed to adjacency 

measures (Longini, 1988; Viboud et al., 2006, Bertuzzo et al., 2011). Moreover, our 

results confirm significant spatial autocorrelation as expected for vector-borne infections 

from similar studies (Low et al., 2013; Kazembe, 2007). 

Increases in mean temperature during the period between December and February 

have a delayed prompting effect on transmission in the low transmission season (Jan -

Apr). Since this period includes the coldest months of the year, our results imply that 

higher DJF temperatures can limit the seasonal inhibition on the development of 

parasites, the population growth of vectors and their biting frequency (Craig et al., 1999; 

Detinova 1962, Moulneux 1988).  This finding is consistent with the demonstrated 

temperature effects on malaria transmission in highland regions, where warmer years 
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contribute to increases in the intensity of the disease (Siraj et al., 2014, Pascual et al., 

2006; Zhou et al., 2004).  

Higher DJF rainfall also aids malaria transmission during the low season, a period 

of low precipitation where vector breeding continues during these colder months.  

Conversely, we observe a reverse effect of rainfall in the main transmission season 

(SOND), where more rainfall in the preceding wet months of JJA decreases malaria 

incidence in SOND, most likely due to a wash-out effect on mosquito habitats.    

 Although indoor residual spraying was not identified here as significant for the 

low season, it is found to be a major factor in the main transmission season (Table 3.4). 

Because IRS operations in our study area exclusively target the main season 90% of the 

time, they provide no protection in the low transmission season, which can account for 

the poor association with disease incidence.  

The use of host population size as the only demographic factor in malaria 

transmission models may be insufficient for low intensity regions (and seasons) with high 

spatial heterogeneity in incidence levels.  A spatially-resolved dynamical model would 

require a more explicit characterization of differences in demographic factors, especially 

population density to capture its heterogeneity. Our results imply that incorporating 

population density in dynamical models of malaria and similar vector transmitted 

diseases would account for fine-scale differences in incidence.   

Along these lines, a recent study on the spatial heterogeneity of malaria risk in a 

region of low transmission with similar seasonal patterns suggests the importance of 
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considering   risk ‘hot spots’  at different spatial scales (Bejon et al., 2014). For highland 

regions, which represent the highly populated low transmission regions, our results show 

that these ‘hotspots’ are associated with both temperature and population density. With 

the efficacy of the African vectors diminishing in urban areas with higher population 

densities (Trape and Zoulini, 1987; Robert et al., 2003; Hay et al, 2005; Keiser et al., 

2004), the significance of population density identified here is counter intuitive. People 

who settle in densely populated, peri-urban areas are often met however with 

underdeveloped programs, personnel, and resources to combat infectious diseases, a 

situation exacerbated by poverty, low levels of education, and poor infrastructure (Robert 

et al., 2003). They are also involved in economic activities (agriculture, in our case) that 

demand higher mobility which together with the higher population density elevate the 

risk of infection. Higher population numbers in a given area may also alter the 

agricultural landscape in ways that create additional recruitment sites for the vector 

(Bomblies et al, 2008).   

Moreover, higher human density may facilitate vector aggregation, and in so 

doing, increase the probability of a vector biting clusters of hosts. As climate conditions 

supporting widespread malaria transmission dwindle during the low transmission season, 

the vector is expected to take every little comparative advantage it has for it survival – in 

this case concentration in areas with higher human population density where other 

limiting factors are also tolerable for the vector. By contrast, we should not necessarily 

expect any particularly strong correlations between malaria incidence and population 
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density during the main transmission season which covers larger geographic areas and 

affects a larger fraction of the population.  

The results presented here make a case to strengthen control during the low 

transmission season in rural areas with higher population densities. Such control 

measures would consist of targeting the spatial reservoir of the pathogen in humans 

(finding and treating symptomatic and non-symptomatic carriers) and/ or the vector 

(additional rounds of IRS). These measures would improve cost effectiveness and aid 

existing initiatives to eliminate malaria from African highlands.  Our findings could be 

relevant to other locations with seasonal malaria.   
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CHAPTER FOUR: CLIMATE WARMING AND MALARIA SUITABILITY IN 

ETHIOPIA 

4.1 Introduction 

Malaria transmission is greatly influenced by environmental and climatic factors. 

Temperature affects the transmission cycle of the malaria parasite Plasmodium 

falciparum in many ways. Within a certain range, increasing temperature shortens the 

time required for the parasite to develop inside the vector (sexual reproduction or 

sporogony), during which time the parasite matures and is ready for transmission to a 

healthy human host (Detinova, 1962; Molineaux, 1988). At the same time, an increase in 

temperature increases the probability that a mosquito survives the sporogony period, 

shortens the larval stage of mosquito, which increases the abundance of adults, and 

increases the vector’s feeding frequency (Molineaux, 1988).   

Similarly, rainfall provides breeding habitat for the aquatic stage of mosquito 

development. It also increases relative humidity, which in turn boosts the survival rate of 

the vector (Pampana, 1969). Climate therefore plays a critical role in the epidemiology of 

malaria, particularly before the active human control of the disease (Gething et al., 2010), 

but still obvious in endemic dryland and highland areas in endemic countries (Bouma et 

al., 2011). This provides an opportunity for using climate to develop a malaria suitability 
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index that takes into account both rainfall and temperature suitability for the vector as 

well as the parasite. 

Historically, altitude has been used to differentiate regions by their risk of malaria 

transmission. In the early 20th century, European researchers documented the altitudinal 

pattern of malaria transmission in Ethiopia ranging from stable to seasonal, to malaria-

free regions along altitude gradients. Based on parasitological and entomological surveys, 

Corradetti (1938, 1940) observed seasonality becoming more pronounced as altitude 

increases. For instance, between 1000 and 1500m elevations, transmission was 

widespread in the wet season, but only isolated cases appeared in dry seasons. Also, 

between 1500 and 1900m transmission was completely absent during the dry season and 

rose gradually after the onset of the wet season, reaching its altitude limits of 2000m at 

the end of the rainy season (Corradetti,1940). This altitudinal upper limit for stable 

malaria transmission was further confirmed in an era that saw limited human 

interventions (Melville et al. 1945),   

In Chapter 1 we showed that the distribution of malaria shifts to higher altitudes 

during warmer years, with the implication that this is likely to occur too in a warmer 

world (Siraj et al., 2014). This would permanently introduce malaria to populations not 

previously exposed, and intensify malaria where low temperatures mitigate transmission 

(Bouma and Pascual, 2014). With its large population living at high altitudes, Ethiopia 

seems particularly vulnerable to global warming. Malaria in the Ethiopian highlands 

appears, contrary to most malaria endemic regions, a relative simple disease with 

temperature as main determinant because rainfall due to “orographic lifting” does not 
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appear to constrain transmission in many highland regions such as in our study area in 

Chapter 1 (Siraj et al., 2014). In addition, Ethiopia’s malaria epidemiology has only one 

(dominant) vector, An. arabiensis, and therefore a less complicated epidemiology than in 

many other endemic countries. In this chapter the hypothesis of malaria as a mainly 

temperature driven disease in Ethiopia is further explored. Confirming the limited 

complexity of the epidemiology of malaria in Ethiopia would allow more robust 

estimates of the changes in malaria’s public health burden for the country that may have 

occurred since the warming trend commenced in the 1980s, and projections for the 21th 

century if warming continues. 

The true burden of malaria in is notoriously difficult to establish in any malarious 

region, but particularly countries with limited diagnostic facilities. This is further 

complicated by difficulties to estimate malaria as a co-factor in other health problems and 

mortality, and to differentiate new infection (transmission) from disease in endemic 

regions (Snow, 2003). 

To assess the implication of climate change for the epidemiology of malaria not 

only a reliable assessment of the current burden of malaria, but also a realistic 

extrapolation based on climate sensitivities of the disease is fundamental.  Indirect 

country estimates for malaria’s disease burden can be obtained from extrapolations of 

surveys (establishing the prevalence of the parasite in the surveyed population, usually 

children), which is not necessarily representative of the whole country (Bouma and 

Pascual, 2014). Potentially, more comprehensive estimates could be obtained from high 
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resolution weather and climate parameters if these parameters can be shown to accurately 

reflect malaria risk, and taking into account the distribution of the population.  

For continental Africa a climate based suitability index for P.falciparum was 

developed based on rainfall and temperature, generating values between 0 and 1 for every 

grid point (Craig et al., 1999). On a continental scale this Falciparum Climate Suitability 

(FCS) corresponded well to the high and low endemic regions and the latitudinal and 

altitudinal fringes of the disease. However, this approach did not find much following by 

national programs to assess malaria burdens or assist in planning control efforts. 

Attempts to validate the method on country level have been limited. In Kenya with 

extensive highlands this climate suitability approach was shown to predict classes of 

endemicity as measured by parasite prevalence accurately (Snow et al., 1998), and for the 

East African highlands, including Ethiopia, a striking relation was uncovered between 

historical prevalence surveys and MARA’s climate suitability index (Cox et al., 1999).  

Kenya’s study also identified that the duration of months suitable for transmission, using 

similar climate criteria, was a very good predictor of prevalence.  

To assess impact of climate change for the countries of Africa, both the FCS and 

the length of the season (malaria suitable months) have been used subsequently by co-

authors of the (Snow et al., 1998) paper, but with very different conclusions (Tanser et 

al., 2003; Hay et al., 2006). Tanser (2003) identified the high altitude regions of Africa as 

most vulnerable to climate change with striking rises of malaria risk with climate change. 

For Ethiopia an increase in “person-months malaria exposure” of 149 %, 231% and 349% 

was predicted, for increase in temperature of 1.9, 2.2 and 3 oC respectively compared to 
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the 1920-1980 baseline corresponding to the 2070-2099 climatology under different 

climate change scenario’s (Tanser et al, 2003). Hay et al. (2006) used the Falciparum 

suitability for an all Africa estimate under the A2 high emission and HADCM3 

circulation model for 2015 and 2030, with 1960-1990 and the 2005 climatology as 

baseline. Their continental results suggest that the effect of population growth outstrips 

those of climate change in the absolute increases of population at risk, downplaying the 

impact of climate change. They dismissed their results on country level (provided in an 

electronic annex), particularly for the highlands despite striking rises observed (Bouma 

and Pascual, 2014), because of the resolution of their climatologies centered on 2015 and 

2030 (2.5 by 2.5 degrees, corresponding to 275 x 275 km) introduced bias when “up-

sampled” to higher resolutions similar to the 1960-1990 base-line historical climatology 

at higher definition (55 x 55km) base line climatology.  

In this chapter we aim to validate the MARA suitability index for Ethiopian 

conditions, improve the index if desirable, and repeat the procedures of Hay et al (2006) 

without the use of coarse climate resolutions that could overestimate malaria suitability. 

Ethiopia has 3 regions with strikingly different rainfall patterns which may compromise 

conclusions for the whole country. Analysis is therefore also conducted for each separate 

region. As Ethiopia also has a significant proportion of P.vivax cases, which is unusual in 

the African context (Duffy antigen with genetic resistance), we added the VCS (Vivax 

Climate Suitability) to this investigation. We used the pre-control survey data (Cox et al., 

1999; Tulu, 1996; and Melville et al., 1945) and the consensus that around 1/3 of the 

population in Ethiopia resided in malaria free territory prior to the 1990s (Tulu, 1993), as 
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reference points to validate the FCS and VCS, and create a high resolution (5 x 5 km) 

baseline climatology using records of 146 meteorological stations in Ethiopia. To this 

improved climatology 1, 2 and 3 oC were added to simulate warming in the 21th century 

without changing the high resolution to assess the associated changes in malaria risk. 

Populations depending on their residence and accompanying malaria climate suitability 

can be classified in 4 categories, from malaria free (CS=0) to CS is between .75 and 1, 

corresponding with stable endemic malaria (Snow et al., 2003). Results from changes in 

the suitability are then used to estimate the changes in the disease burden in Ethiopia, 

based on the established estimates of mortality under malaria stable (endemic) conditions. 

4.1.1 The MARA model 

The Mapping Malaria in Africa (MARA) project uses monthly temperature and 

rainfall from gridded climate surfaces to estimate and plot malaria climate with values 

between 0 and 1 (Craig et al, 1999; Hay et al., 2006).  The model is based on the 

perceived effects of mean rainfall and temperature on the biology of one of Africa’s main 

vectors, An.gambiae (including An.arabiensis ), and Africa’s most important malaria 

species, Plasmodium falciparum (Craig et al, 1999).  The suitability estimate depends on 

3 components: 1) The temperature range suitable for the parasite to develop in the vector 

(the sexual stage of the parasite or sporogony), 2) suitable amounts of rainfall 

concomitant with the first component, and 3) suitable temperatures for the vector 

population to survive the coldest month of the year. The last component was added to 

account for the South African latitudinal boundary (of An. Arabiensis), and malaria, as 

this vector species appears unable to maintain itself in regions where frost occurs (at any 
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time of the year). However, for the African highlands, where An.arabiensis is an 

important vector too, this factor apparently was not considered.  

The MARA climate suitability model relied on the mean monthly temperature and 

total monthly rainfall based on 1961-1990 climatology, for each location on a grid system 

covering the entire African continent.  For each grid cell and each month of the year (Jan, 

Feb, etc), a suitability value was assigned with respect to the mean temperature first. This 

assumed a lower limit of 18oC and an upper limit of 40oC, beyond which mean 

temperature was considered unsuitable (FCS=0) for the P. falciparum parasite and the 

vector respectively. The model then included an ascending suitability curve between the 

mean temperature values of 18oC and 22oC; and a descending one between 32oC and 

40oC, while for the range between 22oC and 32oC, mean temperature was assumed 

maximally suitable (FCS=1).   The ascending and descending curves of temperature 

suitability follow the equation given in (4.1) and (4.2) respectively and are described in 

Table 4.1 (Craig et al., 1999).  

         for ascending curve and  (4.1) 

           for descending curve    (4.2) 

where x is the particular climate variable being considered, l is the lower limit and u is the 

upper limit of the range for which fuzzy logic is applied. 
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Table 4.1 

Lower and upper limits of climatic ranges where fuzzy logic is applied based on the 

MARA climate suitability model for P. falciparum. 

Mean monthly temperature (oC)     Ascending 

 

l = 18, u = 22 

    Descending 

 

l = 32, u = 40 

Monthly total rainfall (mm)     Ascending 

 

l = 0, u = 80 

Coldest month's minimum 

temperature (oC) 

    Ascending l = 4, u = 6 

 

Similarly for rainfall, the MARA model assumed a single ascending curve for the 

total monthly rainfall amount between 0 and 80mm, which follows the equation given in 

(equation 4.1).  MARA model acknowledges that flooding often causes destruction of 

breeding sites and a temporary reduction of vectors. Nonetheless, very high rainfall was 

considered optimal for transmission as it never eliminates the vector (Craig et al., 1999). 

These temperature and rainfall cutoff points were determined by examining 

patterns of mean climatic conditions in different sites across Africa as they relate to 

different epidemiological settings. These sites (n=20) were selected from regions where 

malaria transmission has traditionally been regarded as perennial (annual, for more than 

six months), seasonal (annual, for less than six months), epidemic (transmission not 

recorded every year) and malaria-free (malaria never recorded).  Results confirmed 18°C 

to be the approximate cutoff between epidemic and no-malaria zones, and that 22°C 

allows stable transmission (Craig et al, 1999). 

The analysis by MARA also showed that a single month of 80mm rainfall was not 

sufficient to sustain stable malaria transmission. In regions where temperature is high but 
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rainfall is limiting, such as the fringes of the North African deserts, mosquito populations 

increase rapidly at the onset of rain, because of short developmental cycles. Thus, three 

months of rain was considered sufficient to constitute one transmission season.  In 

regions where temperature is limiting during the colder season, as is the case in large 

parts of southern Africa and highland areas, mosquito populations increase slowly at the 

onset of rain, and thus is where five months of rain was considered necessary to 

constitute one transmission season (Craig et al., 1999).  Consequently, the composite 

suitability index (based on both mean temperature and rainfall suitability indices) each 

month of the year were aggregated per grid cell into a single value determined calculating 

the maximum fuzzy values that persisted for five months (three months if north of 8oN).   

Once the two climate factors were converted into suitability indices, a composite 

index was generated by taking the minimum of the mean temperature and rainfall 

suitability indices for each grid cell and each month of the year; resulting in suitability for 

malaria Plasmodium falciparum transmission in each month of the average year for each 

grid cell. 

At the same time, the MARA suitability index considered the effect of frost in the 

coldest month of the year. A single ascending suitability curve was modeled for monthly 

minimum temperature of the average year between 4oC and 6oC, where suitability 

follows equation (4.1) and described in Table 4.1. With respect to the effect of frost 

alone, temperature below 4oC temperature was considered completely unsuitable 

(FCS=0), while above 6oC it was considered maximally suitable (FCS=1). Finally, the 

MARA suitability index for a grid cell was determined by considering the minimum of 
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the aggregated composite suitability and the frost related suitability index, with values 

ranging between 0 – representing areas completely unsuitable, and 1 – representing areas 

maximally suitable (Craig et al., 1999) 

4.1.2. Malaria climate suitability assessment for Ethiopia 

The climate suitability index for Ethiopia calculated for the areas where the 

historical surveys were conducted suggested a good match between the prevalence values 

(between 0 and 100%) and the FCS values (between 0 and 1) (Cox et al., 1999). Hay et 

al. (2006) has used the FCS to estimate present and projected populations at risk of 

malaria in different categories of epidemiological settings for all countries in Africa, 

including Ethiopia. They dismissed the validity of results for individual countries 

however, particularly for fringe areas such as the highlands due bias introduced by “up-

sampling” of the low resolution of the climate scenarios (275 x 275km at the equator), to 

the base-line climatology (55 x 55km). The scale sensitivity of climate surfaces for 

establishing the FCS was indeed confirmed, showing an overestimation of the suitability 

(and malaria population at risk for malaria) using lower climate resolutions (Bouma and 

Pascual., 2014). 

A climate suitability model that utilizes high resolution climate surfaces can 

greatly reduce the difficulty of disentangling the real and potential effect of climate 

change by enabling the resolution of subtle (fuzzy) differences in the biological 

constraints of climate on parasite and vector development.  Thus, while malaria risk 

model can benefit from insight gained by including high resolution risk modifiers 

including demographic and land use/ land cover, improving the resolution should further 
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aid resolving malaria’s fringe areas that are more sensitive to the effects of climate 

change. 

The MARA climate suitability index can also be further refined in view of the 

Ethiopian climatic and epidemiological conditions.  Firstly, due to its exclusive design 

targeting suitability for P. falciparum, it is expected to have excluded a large portion of 

the country that might be suitable for P. vivax.  Secondly, owing to its design targeting 

the African continent, in an attempt to generalize for the entire continent, the MARA 

model might have included constraints not relevant to the Ethiopian climatic conditions. 

In this study, we made use of a high resolution (5 x 5 km) climate surface data 

that we developed from a maximum of 146 stations across Ethiopia Fig. 1.2) for the 

period 1961 to 1990.  We analyze the effect of different climate constraints included in 

the FCS model by using results of historical malaria prevalence surveys across Ethiopia 

(Cox et al., 1999; Melville et al., 1945).  Further we enhance its results by include 

suitability for P. vivax which account for estimated 40% of clinical cases in Ethiopia 

(MOH, 2001).  Based on the best estimate of malaria suitability measures, we make 

further inference on the population at risk at present both now and in the future, assuming 

mean global temperature changes based on IPCC scenarios, and projecting temperature 

rises of 1, 2 and 3oC.   

4.2 Data and methods 

4.2.1 Climate data 

Data on monthly total rainfall and. monthly average minimum and maximum 

temperature readings for a maximum of 146 stations across Ethiopia was obtained from 
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the Ethiopian National Meteorological Agency (NMA) for the period 1961 to 1990 (see 

Fig. 1.2 for location of stations).  The initial number of stations in 1961 was only 26 with 

others joining in later years.  Missing data were filled by the lagged 5 year climatology 

(average for the same month in the preceding five years).  

A Digital elevation model (DEM) at a 1 arc second resolution was obtained from 

the Global Earth portal managed by USGS (USGS 2011). To match the resolution of the 

gridded population, we reduced the resolution of the DEM, to a 2.5’ x 2.5’ spatial 

resolution by averaging values in the same larger grid.   

A thin plate spline interpolation model was trained by using rainfall readings from 

all stations for each month as the response variable and their coordinates and altitude 

values as covariates (Fields Development Team, 2015).  The gridded altitude obtained 

from DEM was then used as a linear covariate to generate a rainfall surface based on the 

thin plate spline model. The result is a gridded rainfall surface for each month at a 

resolution of 2.5-arc minutes.  (4.6km x 4.6km) 

Similarly, we used a thin plate spline model using monthly minimum temperature 

(or maximum temperature) station readings as the response variable with station 

coordinates, rainfall reading and altitude as covariates. A gridded altitude value obtained 

from DEM and a gridded rainfall value obtained by interpolation were then used as a 

linear covariates to generate a minimum temperature (or maximum temperature) surfaces 

based on the thin plate spline model. This resulted in monthly gridded minimum and 

maximum temperature surfaces at 2.5’ x 2.5’ spatial resolution (equivalent to 0.0417o x 
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0.0417o).  Monthly mean temperature surfaces were generated by simply taking the 

average of the monthly minimum and maximum temperature surfaces. 

4.2.2 Population data 

We used population data from the Gridded Population of the World (GPW) 

version 3.0 (CIESIN/ CIAT, 2005). At a 2.5’ x 2.5’ spatial resolution, each grid cell 

represents the residential population count for the year 2000, based on the census of 

1994. We started by calibrating the gridded population count for Ethiopia by multiplying 

by a factor to match it to the historical record of total Ethiopian population obtained from 

the World Urbanization Prospects: The 2014 Revision. For comparison with at risk 

population done by others, we projected population after classifying grids into urban and 

rural classes. 

We obtained population size for Ethiopia, separated by urban and rural, for the 

years 2000 and 2005 from the World Urban Prospect (UNPD, 2014).  We then computed 

population growth for urban and rural between the two years. In order to apply 

differential population growth rates to the 2000 gridded population of Ethiopia (GPW3) 

and obtain a projected population estimates for 2005, we used the corresponding 2000 

GPW3 gridded population density of Ethiopia (CIESIN/ CIAT, 2005) and tested different 

population density based urban-rural cutoffs in the range between 120 and 1500 persons 

per km (at every 20 steps), applying the population growth rates to the grids according to 

which side of the cut-off they are, and aggregating the population in all grid cells to get a 

national estimate for 2005.  The candidate cutoff that produced a projected 2005 
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population closest to the UNPD figures was selected as the best cutoff between urban and 

rural.  That cut off was 320 persons per sq.km. 

After applying different growth rates for urban and rural (separated by using 320 

persons/ km as the cutoff population density), the total Ethiopian population for 2005, 

2015 and 2030 were all within 0.01% of records and estimates of the UN data and 

estimated (UNPD, 2012)  [also could be downloaded at http://esa.un.org/unpd/wpp/].  

For the classification of populations at risk in different epidemiological classes we 

only used the rural population. Urban populations are exposed to a reduced risk of 

malaria (1 to 2 orders of magnitude), because breeding conditions for the vector in an 

urban environment are severely restricted (Kaiser et al., 2003; Hay et al., 2005).   

Finally, while the main objective of this study is to estimate the effect of climate 

warming on future population at risk of malaria, using projected population and applying 

it to the changes of climate suitability would add an uncertainty that would make 

interpretation our results difficult.  Moreover, a comparison of the proportion of 

population at different altitude ranges based on two gridded population products for the 

years 1990 and 2000 (GPW3), revealed that there is no significant difference between the 

1990 and 2000 proportion of population living at the altitude ranges of above 2600m, 

2200-2600m, 1800-2200m, 1400-1800m, 1000-1400m and below 1000m, with all 

differences within 0.3 percentage points.  Consequently, except for comparison with 

other works, all future population proportions are based on constant 2015 population.   
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4.2.3. Climate models 

We used 20 Global Circulation Models (GCMs) included in the Model for 

Greenhouse gas Induced Climate Change (MAGICC) and SCENGEN software 

application (Hulme et al. 2000). The GCMs are consistent with the IPCC Fourth 

Assessment Report (AR4) and generate projected global-mean surface air temperature 

changes for a specified year at a resolution of 2.5o x 2.5o spatial resolution 

[http://www.cgd.ucar.edu/cas/wigley/magicc/].  To enable comparison with previous 

works, we chose the high A2 emission scenario. We also chose HadCM3 coupled 

atmosphere-ocean general circulation model (AOGCM), to ensure our results are 

comparable with those of Hay et al. (2006).  Since model simulations for individual years 

can be noisy MAGICC/ SCENGEN provides 30 year averages for future climate. We 

chose outputs centered on 2015 (2000-2030) and 2030 (2015-2045).  To match the spatial 

resolution of population density we resampled all temperature change projections using 

cubic-spline interpolation to get a spatial resolution of 0.0417o x 0.0417o from the GCM 

resolution of 2.5o x 2.5o.  

4.2.4 Fuzzy climate suitability and disease burden. 

We implemented the FCS (Craig et al, 1999) based on the 1961-1990 climatology 

that we developed from the interpolated monthly surfaces for minimum temperature 

(Tmin), mean temperature (Tmean), and rainfall based on station data obtained from the 

Ethiopian Meteorology Agency . In addition we generated a climate suitability surface 

for P. vivax (VCS) by using the lower limit for parasite development to be 16oC (as 

opposed to the current 18oC for P. falciparum) due to its tolerance to develop at lower 

temperatures (Molineaux, 1988).  To examine future changes to FCS and VCS surfaces 
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as well as the population that will be at risk as a result of potential changes we test the 

effect of adding 1oC, 2oC and 3oC to the mean temperature while setting the population 

constant (extrapolated for 2015).  

Finally, we added the temperature change surface (low resolution) obtained from 

GCM (both for HADCM3 and ensemble) to the baseline climatology (therefore 

maintaining its resolution) and generated FCS values based on the new mean temperature 

surfaces. We examined changes over time of population that reside in each region falling 

under areas with stable malaria transmission (FCS>=0.75), seasonal malaria transmission 

(FCS between 0.25 and 0.75), epidemic prone (FCS< 0.25) and no malaria transmission 

(FCS=0). Malaria burden estimates have been generated in recent decades for these 

epidemiological classes, particularly for the “stable” endemic malaria class with fuzzy 

climate suitability index greater than 0.75 and corresponding 25 percent malaria 

prevalence among children (Snow et al., 2003). We used these to estimate the impact of 

climate change for rural Ethiopia. These estimates build on extensive efforts in the last 

decades to establish the health burden of malaria. For estimating malaria specific 

mortality, a demographic surveillance system (DSS) was developed, to monitor 

prospectively births, deaths and migration of populations between 20,000 and 100,000 

people in West Africa (Smith and Morrow, 1996). The established malaria specific 

mortalities are summarized below (Snow et al., 2003).  

Based on twelve independent estimates for malaria related mortality of children 

(0-4) living in areas of endemic malaria in Africa (prevalence rates >= 25%) provide a 

median malaria specific mortality rate amongst these communities of 9.33 per 1000 per 
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year (Interquartile range of 7.38 to 14.57), 52.2% of all deaths in this age group. Amongst 

children in 10 communities between 5 and 14 this was 1.58 (IQR 0.66-2.77), and 

amongst those over 15, the median rate in 15 samples amounts to 0.6/1000 per year (IQR 

0.37-0.94).  

We used the median mortality rates to estimate the Ethiopia’s country burden 

using and the age distribution based of the last census (CSA, 2008). We only used the 

rural population because the urban population is at strikingly lower malaria risk due to 

unfavorable breeding conditions for the vector (Keiser et al., 2004), and for the mortality 

estimates we excluded the relatively small population in region C as the malaria 

dynamics in this arid part of Ethiopia are much less temperature (change) dependent. 

4.3 Results 

Based on the distinctly different rainfall regimes in Ethiopia Fig. 1.2), in timing, 

intensity and associated differences in population density, we computed the malaria 

climate suitability for each region separately. In the southern part of Ethiopia (Fig. 1.2, 

C), with (semi) arid sections, low rainfall is likely to limit malaria suitability. Not 

surprisingly, temperature is strongly related to altitude in all regions Fig. 4.1, lower  

panel), the physical lapse rate (for the mean annual temperature) being similar for regions 

A and B (respectively 0.59 oC and 0.53 oC  degree per 100m and 0.99 oC per 100 m in the 

dryer region (seasonal precipitation dependent lapse rates not shown). In all regions there 

is an increase of rainfall with altitude related with orographic lifting, most pronouncedly 

in the most populated region A Fig. 4.1, upper 3 panels). 
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Figure 4.1:   Average annual rainfall (mm) by altitude for regions A, B and C (Panel 1); 

annual mean temperature (in degree Celsius) by altitude in rainfall regimes A, B and C 

(Panel 2) for 146 stations.  

 

The standard Falciparum Climate Suitability (FCS) computed for Ethiopia using 

a high resolution climate surface of 4.6 x 4,6 km (See methods), and  based on the 1961-

1990 climatology is shown in Figure 4.2 for P.falciparum (FCS) and for P.vivax (VCS). 

It reveals a far larger area with suitability index for P. vivax than for P. falciparum in the 

higher altitudes. With its tolerance to develop at lower temperatures (16 instead of 18 C), 

P.vivax would in theory be able to occupy much higher altitudes than P.falciparum, and 

the population in the zero suitability class would shrink to 11.8% when this higher 

tolerance for lower temperatures is applied in the VCS (results not shown). This is not 

consistent with historical or recent observations. The territory on high altitudes where 

P.vivax appears at an advantage over P.falciparum is trivial (Tulu et al., 1996). With the 
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very low vector densities encountered at higher altitudes in East African highlands (e.g. 

Bodker et al., 2003), it appears most likely that vectors are not present in sufficient 

densities to provide the P. vivax parasite with its genetic advantage over P.falciparum.  

 
Figure 4.2: Fuzzy suitability index for P. falciparum malaria (A) and P. vivax (B), 

developed based on temperature and rainfall suitability for any 3 months of the year (5 

months if south of 8oN). Of the total area of the country 34% (or 29%) falls in regions 

with P falciparum (or P. vivax) climate suitability below 0.1. Suitability of Pv exceeds Pf 

because of the parasite’s lower temperature requirement (16oC vs 18o C). Yellow 

horizontal line marks the 8oN latitude. The altitude range between 1000m and 2100m, 

shown in red, is historically associated with steady decrease in malaria prevalence from 

the highest levels at the lower end to zero at the high end (Melville et al., 1945).  

In the standard MARA model, the vector in Southern Africa, An.arabiensis, the 

same as the main vector in Ethiopia, is curtailed by the frost-line (corresponding with 

Tmin of 4oC in the coldest month of the year). In Figure 4.3 we show that in Ethiopia this 

vector “niche isotherm” does not limit the suitability for the parasite P.falcipum. The 

same is the case for P.vivax (not shown). With its proximity to the equator and its high 

altitude, there is less seasonal variation in the Tmin, but more pronounced diurnal 
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temperature variation. Therefore the lowest Tmin in the coldest month is not likely to 

apply to Ethiopia.  

 
Figure 4.3: Malaria suitability exclusion zones based on suitability threshold for the 

vector (minimum temperature of coldest month below 6oC) (white), and for the parasite 

development in the vector (mean temperature below 18o C) (black). This shows that the 

critical frost temperature for the vector does not lower the standard FCS in Ethiopia.  

When we increase, empirically, the requirement of the Tmin for the vector from 4 

to 10 degrees, the high altitude distribution of P.vivax is reduced, as visible from the 

percentage of the population living in P.vivax free territory Table 2). A value of 8 oC for 

Tmin of the coldest month in the year appears to reduce the vivax territory without much 

affecting the falciparum suitability, and the historical malaria free fraction of the 

population (around 1/3, e.g. Tulu, 1993) is retained. In table 2 we also show that a 3 

month window of consecutive suitable months North of 8o Latitude and 5 months for the 

region south of this meridian (in the standard MARA model) when replaced by a 3 month 
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window for all Ethiopia is not changing much in view of the share of both parasites over 

the different suitability classes (see also Fig 4.6).  

 

Figure 4.4: Historical malaria prevalence (Melville et al., 1945, see Fig. 4.10) by climate 

suitability and its separate components. Each point represents a constant 50m altitude bin 

ranging from 1000 (low)  to 2100m (high), and correspond to the average malaria 

prevalence at the that altitude (y-axis).   On the x axis are malaria suitability indices 

generated from three different combinations: suitability based on both mean temperature 

and rainfall (A), based on mean temperature only (B) and based on rainfall only (C). We 

note that, the point where prevalence gets to 0.0 corresponds with 0.2 suitability based on 

temperature alone, and that rainfall appears restrictive on lower altitudes.  

 

By using the historical association between altitude and malaria prevalence 

(Melville et al.,1945)  we examined the significance of the three components of the FCS, 

namely monthly mean temperature’s lower limit for parasite sporogony length (18oC for 

P. falciparum and fuzzy increase up to 22oC). We show in Figure 4.4 that, for the altitude 

range associated with steady decrease in malaria prevalence (1000-2100m), the FCS 

based on temperature alone explains 97% of the variance in malaria prevalence (Fig. 4.4, 

B), and support the hypothesis of temperature (and altitude) as main determinant of 

malaria suitability in the highlands.  When the prevalence gets to 0.0 at the altitude of 

around 2100m, Tmean based suitability also goes to around 0. 2, significantly below the 
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value of 0.25 often used to separate areas with no stable malaria (epidemic outbreaks) 

and those suitable for seasonal malaria transmission (Craig et al., 1999).  

Matching the FCS zero value with the zero value for the prevalence (Melville, 

1945) would also be possible by increasing the Tmean for falciparum parasite from 18 to 

19 C (see Fig. 4.10),  We further tested the effectiveness of models with different 

combinations of climate parameters and temperature cut-off’s and compared proportions 

of population falling in different classes of malaria stability with the proportions we get 

when using the standard one – based on temperature and rainfall suitability.  

Our results reveal that, while suitability based on temperature alone captures the 

proportions at the malaria free regions, it poorly reflects the proportions of population in 

regions of stable malaria transmission (Fig. 4.5). The reduced (rainfall related) suitability 

at lower altitudes seems also supported by the (limited) survey prevalence values (Fig 

4.10). This supports the view that, rainfall, although on its own not predictive for malaria 

(suitability) on higher altitudes, is indeed an important co-factor at the lower part of the 

1000-2000 m range. Rainfall was therefore retained in our “modified” suitability index.  
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Figure 4.5: Comparisons of changes in the distribution of Ethiopian population (urban 

and rural) over different suitability classes using the standard MARA’s FCS as a result of 

climate change projected for 2015 (2000-2030) and 2030 (2015-2045) under HADCM3 

and an ensemble of 20 GCMs (A2) scenario’s. Baseline climatologies centered on 1975 

(1961-1990) from New et al. and our climatology (this study). The four epidemiological 

classes are (from top to bottom) stable (FCS greater than or equal to 0.75), seasonal (FCS 

between 0.25 and 0.75), epidemic prone (FCS greater than 0 and less than 0.25) and 

malaria free (FCS equal to 0). HADCM3 estimates by Hay (2006) based on “up-

sampled” low resolution forecasts using temperature and rainfall. This is compared to 

anomalies of the HADCM3 temperature forecasts with the IPCC 1960-1990 climatology 

added to my high resolution 1960-1990 climatology (this study).  

As a result of our examinations of different combinations of climate factors, 

temperature cut-off’s and required length of the transmission season, we chose the model 

which is based on both temperature and rainfall, with Tmin limits of 8oC, and requiring 

suitability that lasts 3 consecutive months. These modifications more accurately reflect 

the distributions of both P. falciparum and P. vivax for Ethiopia. The changes in the 

malaria suitability are visually displayed in Figure 4.6.  

We applied the standard FCS (Craig et al., 1999) to our climatology surfaces so 

that our results are comparable with those of Hay et al. (2006) and help investigate the 

effects of up-sampling, which allegedly biased the suitability forecasts in fringe areas 
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(Hay et al., 2006). In subsequent analyses, however, we used the modified suitability 

index for Ethiopia “FCSmod” and “VCSmod”.  

Table 4.2 

 Proportion of population in the malaria free class under different minimum 

temperature lower limits for the vector’s niche. 

 Temperature  and rainfall based    Temperature based 

Lower 

limits 

3 months 3 (or 5) months  3 months 3 (or 5) months 

Pf  a Pv  
b
 Pf   c Pv  d  Pf   

e
 Pv  f Pf  

g
 Pv  

h
 

4 oC 27.81% 11.79% 30.21% 13.44%  27.81% 11.79% 30.49% 13.46% 

5 oC 27.81% 11.79% 30.21% 13.44%  27.81% 11.79% 30.49% 13.46% 

6 oC 27.81% 12.28% 30.21% 13.91%  27.81% 12.28% 30.49% 13.93% 

7 oC 27.82% 17.53% 30.22% 18.27%  27.82% 17.53% 30.50% 18.33% 

8 oC 31.06% 28.44% 33.26% 28.44%  31.06% 28.44% 33.59% 28.73% 

9 oC 40.12% 39.44% 40.74% 39.16%  40.12% 39.44% 41.08% 39.51% 

10oC 53.65% 53.48% 53.49% 53.03%  53.65% 53.48% 53.94% 53.48% 

By raising the Tmin lower limit for the coldst month to 8oC the malaria free population 

remains around the observed histroic malaria free zone 30%, and the suitability for Pv 

is reduced to realistic values as compared to Pf. The columns in the table correspond to 

FCS and VCS based on the standard climate variables and requiring 3 consecutive 

months of suitability (columns a and b), reqiuring 3 month in the north and 5 in the 

southern part (column c and d); FCS and VCS based on suitable temperature only and 

requiring 3 consecutive months (columns e and f), and reqiuring 3 month in the north 

and 5 in the southern part (column g and h). 

The striking difference between the HADCM3 from Hay et al. (2006), and from 

our study is shown in Figure 4.5. In the coarse resolution from the HADCM3 and other 

climate change scenario’s (275 x 275 km) Ethiopia consists of less than 20 pixels. Even 

in the high resolution surface Hay et al. (2006) used as their climatology, Ethiopia has 

only 768 pixels, compared to over 100.000 in the climatology we developed. In the “up-

sampled” results from Hay et al. (2006), Ethiopia’s malaria suitability is greatly 

overestimated, with scarcely any population remaining in the malaria free territory. This 
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further demonstrates the inadequacy of the methods Hay et al. (2006) selected to assess 

the impact of climate change in highland areas Fig. 4.5).  

 
Figure 4.6: 2015 (rural) population distributed in the four P. falciparum (Pf) and P. vivax 

(Pv) epidemiological classes based on the 1961-1990 climatology for Ethiopia and the 

three rainfall regimes; based on (A) temperature and rainfall suitability in 3 (or 5 if south 

of 8oN) consecutive months, (B) temperature and rainfall suitability in 3 consecutive 

months, (C) temperature only in 3 (or 5 if south of 8oN) consecutive months, (D) in 3  

consecutive months; all with minimum temperature limit set at 8oC.  The four 

epidemiological classes represent (from top to bottom) areas with FCS greater than or 

equal to 0.75, between 0.25 and 0.75, greater than 0 and less than 0.25, and equal to 

0.Proportion of population in regions with stable malaria seems too high in plot C and D, 

indicating temperature suitability index’s struggles to capture malaria suitability in dry, 

low altitude regions without rainfall complementing.  

We have by-passed the up-sampling problem by adding anomalies to our fine 

scale climatology, thus retaining the information on the sharp altitudinal variations of the 

Ethiopian landscape. These anomalies were calculated from the scenario outputs of the 

coarse scale scenario’s (HADCM3 and the ensemble of 20 GCM’s) with the base-line 
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climatology (See methods). Our “local” baseline climatology (Fig 4.5) shows higher 

levels of FCS compared to New et al. climatology for the 1960-1990 baseline calculated 

by Hay et al. (2006).  This is possibly due to the differences in resolution (of the order of 

10).   

 
Figure 4.7: Improved fuzzy suitability index for P. falciparum malaria (A) and P. vivax 

(B), lasting for 3 consecutive months for all of Ethiopia and of the Tmin for the coldest 

month increased to 8oC.  

We estimated changes to population living in the four suitability classes based on 

P. falciparum and P. vivax suitability (FCSmod and VCSmod) by applying constant 

increases of local temperature at 1, 2, and 3oC and same amount of increase in global 

mean temperatures Fig. 4.8).  For the global climate change projections we tested an 

ensemble of 20 GCM ‘s models and HADCM3. Our results show a consistent shift to 

populations living under higher stability of malaria transmission. This is the case for both 

parasites and in all scenarios.  
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Figure 4.8: Comparisons of changes in population distribution (rural) over different 

epidemiological classes based on P. falciparum suitability index (panel 1) and P. vivax 

suitability index (panel 2) due to climate change assuming increases in the mean local 

and global ( change in the global mean) air temperature of 1oC, 2oC and 3oC. Both 

HADMC3 and the ensemble mean projection have the years 2036, 2065 and 2087 as the 

years of global mean temperature increase (over the those centered on 1975) by 1oC, 2oC 

and 3oC respectively. The global climate projection results were up-sampled from 2.5o x 

2.5o resolution before being applied to our base climate suitability based on the 1961-

1990  climatology at 2.5’ x 2.5’.  

Effects of the lower resolution projections are still visible in the observed slightly 

higher suitability estimates compared to our “local” climatology. With a 3oC increase in 

the HADCM3 based climate projection, of the 30 million people who are in malaria free 

areas based on the 1061-1990 climatology (centered on 1975), an estimated 26 million 

people (84%) will become exposed to malaria, with more than 40 million additional 

people living in areas of stable malaria transmission (see Figure 4.8). 
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Figure 4.9: Population (rural 2015 estimates) residing in areas that are free of malaria 

(blue line) and stable malaria (red line) for P. falciparum by years in a five-year sliding 

window on every five year step between 1973 and 2008 (146 stations), based on 

combined population of the two larger rainfall regimes A and B.  Climatology (centered 

at 1975) and future population in malaria-free territory (blue cross), and stable malaria 

territory (red cross) under climate change scenario A2 (HADCM3) with temperature rises 

of 1, 2 and 3oC projected for 2036, 2065 and 2087 respectively.  

Finally, to assess the impact of warming that has already occurred, we used the 

rural populations of the two large rainfall regimes (see Fig. 1.2, A and B)  in Ethiopia to 

generate suitability index values for five year sliding windows beginning in 1971 and 

ending in 2010, and computed population falling in the different epidemiological classes 

(Fig. 4.9). Compared to the climatology of 1975, an estimated 8 million new rural people 

were exposed to malaria risk in the period up to 2010. At the same time, 3.5 million new 

people (rural) shifted into the highest (stable) malaria risk class. Table 4.3 gives the 

numbers of people entering the “stable” malaria class, and the associated mortality (See 

section 4.2.4 in methods section), since 1975. Projections for 2036, 2065 and 2087 relate 

to warming of 1, 2 and 3oC under the HADCM3 (with A2 scenario of high emissions) 

projections for Ethiopia.  
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Table 4.3 

Rural population in regimes A and B, transitioning to endemic (stable) malaria 

transmission class for in the 21 century, and the corresponding annual death 

associated with the shifts by age groups.  

 

Persons shifting to the stable malaria  

condition (x 1000)  Annual deaths by age group 

Year  0 to 4  5 to 14   >15yr All ages  0 to 4 5 to 14 >15 yr All ages 

2010 524 949 2,081 3,554  1,371 892 1,478 3,741 

2036 1,314 2,381 5,224 8,919  3,441 2,238 3,708 9,387 

2065 2,705 4,901 10,752 18,358  7,083 4,607 7,633 19,322 

2087 3,769 6,829 14,981 25,580  9,869 6,419 10,635 26,924 

The years 2036, 2065 and 2087 are years at which global mean temperature is 

projected to increase by 1oC, 2oC and 3oC from those centered in 1961-1990 (centered 

on 1975) respectively, based on HADCM3 under high A2 emission scenario. 

 

 

 
Figure 4.10:   The 1975 centered climatology based FCS by altitude at each grid between 

1000 and 2500m in altitude, and prevalence survey results compiled by Cox et al. (1999) 

(red), Tulu (1996) (blue) and Melville et al. (1945) (cross) by taking lower and upper 

mean temperature limits of (A) 18oC and 22oC (standard) and (B) 19oC and 23oC for the 

fuzzy suitability for parasite inside the vector; based on the two larger regimes A and B.   

Recognizing that climate suitability has both lower and upper limits of 

temperature, we examined the effect of increasing temperature on areas already near the 

upper limits of temperature.  Regime C, in the South East of Ethiopia provides a good 

case where increasing temperature by 2 and 3oC causes suitability to stabilize and start 
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reversing.  This is due to the (see Fig. 4.11, A).  This is due to part of the regime being 

pushed out of the suitable temperature range above the higher limit which we have 

lowered for this experiment to 33oC, and fuzzy decrease starting at 28oC (Mordecai et al., 

2013). 

 

Figure 4.11: (A) Distribution of population in the regime C, hot dry part of Ethiopia, in 

21st century based on a modified FCS using mean temperature limit of 33oC and fuzzy 

decrease starting at 28oC (Mordecai et al., 2013). Suitability stabilizes at 2oC and 3oC 

increases after a sharp increase for 1oC increase.   (B) Distribution of Ethiopia’s 

population by mean annual temperature gradients binned at every 0.5oC. Dotted vertical 

line show the increasing and decreasing fuzzy temperature limits, the latter modified 

based on Mordecai et al. (2013).  This graph clearly shows with increase of 1, 2, 3, 4, 5oC 

mean annual temperature, the Ethiopia’s population niche and that the malaria niche are 

coming together, causing dramatic increases in population at risk of malaria. 

At the national level, however, the net effect of climate warming is clearly 

increasing malaria risk, even with the modified lowered upper limit of temperature (see 

Fig. 4.11, B). Comparison of population entering and leaving the suitable temperature 

range shows that, at 3oC increase in the mean annual temperature, an additional 26 

million will enter while only .75 million will leave the malaria suitable temperature range 

(between 18 and 33oC) (see Table 4).. 
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Table 4.4 

Ethiopian population entering and leaving the lowered malaria suitable temperature 

range of 18 to 33oC (in millions) 

   

Climatology 

 

+1oC 

 

+2oC 

 

+3oC 

Leaving  Population 0 0.208 0.551 0.751

18-33oC Change 0 0.207 0.551 0.751

 

Entering  Population 61.391 71.606 81.262 88.119

18-33oC Change 0 10.215 19.871 26.728

 

Net  10.008 19.32 25.977

 

4.4 Discussion 

Unstable highland malaria with fulminant epidemics in Ethiopia have been 

documented since the 1950s (e.g. Fontaine et al., 1962), with a pause during the era 

Ethiopia attempted eradication in the 1960 and 70s. Since 1992 a trend of more frequent 

epidemic episodes have occurred in some parts of the country, some localized, and in 

other parts with sustained higher transmission rates (Kiszewski and Teklehaimanot, 

2004). This echoes the findings of a dramatic rising trend with intermittent interannual 

exacerbations in the Debre Zeit region of Oromia (Tulu, 1996), located in region A of 

this study, and our study region described in chapter 1.  Kiszewski and Teklehaimanot 

(2004) offer no explanation for their observation that “a transition appears underway to 

higher levels of endemicity” in Ethiopia, whereas Tulu (1996) has pointed to rising 

temperatures, particularly for the mean minimum temperatures. Findings of Abeku et al. 

(2003) that epidemics were significantly more frequent preceded by high minimum 

temperatures supports this finding.  
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Warming for the Ethiopian highlands since the 1980 has indeed been undisputed 

(see Siraj et al., 2014), and we have now shown that warming pushes malaria’s 

distribution to higher altitudes (Siraj et al., 2014). In this chapter we provide further 

evidence that raised temperatures provide the most likely explanation for the rise of 

malaria, and that persistent global warming threatens the privileged position of a large 

fraction of the Ethiopia population that live at malaria free altitudes.   

Ethiopia is not the only country where highland malaria has become a serious 

public health problem. Highlands in Kenya, Uganda, and Tanzania all had their share of 

attention after the first serious climate change related malaria concerns were voiced from 

Madagascar (de Zulueta, 1988) and Ruanda (Loevinsohn, 1994). However, Ethiopia has 

the largest highland population on the continent, has the most reliable records with a 

large fraction of microscopically diagnosed cases, and the co-existence of P.falciparum 

with P.vivax that has shown a similar ascent. Serious drug resistance in P.falciparum, 

frequently blamed for Africa’s malaria woes, does not apply to P.vivax. For these 

reasons, a thorough case study for Ethiopia is of significant importance, also for countries 

with less prominent highlands. Suitable methods to assess impact of climate change on 

vector borne disease could play an important role in guiding public health in mitigating 

populations at risk for the impacts of climate change. 

Climate driven suitability models can be used to measure shift in malaria risk and 

disease burden for the country. GIS have played a great role in the last decades to map 

vector borne diseases, their vectors and help to study their environmental determinants 

(Thomson, 1996; Hay et al., 1998). The standard climate suitability index for Africa was 
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here applied to Ethiopia, and adjusted to match the country’s epidemiology. As the 

suitability index does not take into account the levels of malaria control, the historical 

prevalence survey data that predate most human intervention provided an important 

component in this validation process.  

A three month window of successive suitable transmission months was adopted, 

instead of a three month window for the northern and a five month window for the 

southern part of the country. This division in the standard FCS to account for continental 

differences in the length of the transmission season between the parts of Africa N and 

South of 8 degrees introduced an unwarranted artificial jump in suitability. The critical 

minimum temperature for the coldest month was raised from 4 to 8 degrees to account for 

the limited altitudinal extension of P.vivax (more permissive for low temperatures than 

P.falciparum) that appeared greatly exaggerated when MARA’s suitability model was 

applied. We infer that the vector (and its temperatures required to colonize an area), is the 

restrictive factor on high altitude, rather than the critical temperature for the P. vivax 

malaria parasite. Whether the empirical isotherm of 8 degrees in Ethiopia’s corresponds 

with the frost-line (for which this parameter was designed) remains to be explored. 

The validity of MARA’s climate suitability index had been established in its 

extended HIMAL program (Cox et al., 1999) in African highland countries. However, the 

continental application of climate suitability (including Tanser et al, 2003; Hay et al., 

2006) generated serious interpretation difficulties and much acrimonious debate. It has 

probably discouraged others to pursue this method in regions where malaria is a relative 

simple disease such as in arid regions and highlands. In this study we have not included 
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the possible effects of changes in rainfall resulting from climate change. Changes in 

rainfall are part of the climate change scenario’s, but contrary to the predictions for 

temperature there is considerable variation between these scenario’s. Rainfall also 

modulates local temperatures, and changes in seasonal (physical) lapse rates may arise 

from changes in air moisture without actual rainfall. However, we do not foresee that 

changing in the seasonality of rainfall (rather than total rainfall) that are reported in 

response to climate change in East Africa, are likely to modify malaria risk. The relation 

between the FCS and parasite rates appears to have changed over the last century.  

It has been argued that warming climate may also improve condition in areas near 

the higher limit of temperature suitability (Lafferty, 2009).  By using a 30 year gridded 

monthly rainfall and temperature data for Africa, we show that increasing temperature 

has a net increasing effect on risk of malaria (see Figure 4.12, Table 4.5).   
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Figure 4.12:  (A) Distribution of Africa’s population by mean annual temperature 

gradients binned at every 0.5oC. Dotted vertical line show the increasing and decreasing 

fuzzy temperature limits, the latter modified based on Mordecai et al. (2013).  (B) Map of 

annual mean temperature (oC) for Africa. The first graph clearly shows with increase of 

1, 2 and 3 oC mean annual temperature, malaria niche seems to be coming closer to 

Africa’s population niche especially for the lower peak, which includes regions in the 

East and Southern Africa (blue in B). Even for the larger peak, no net decrease occurs in 

the population at risk with increases of 1 and 2oC.   the larger peak population includes 

regions in West Africa with temperature in the range of 26-27.5oC. Source: Climate data 

for Africa obtained from Harris et. al. (2014) at a resolution of 0.5o x 0.5o. 

The effect of mean temperature increases in Africa is not much different from 

what we concluded for Ethiopia, with net increase in the number of people at risk of 

malaria (see Fig. 4.12, Table 4.5). .  These results confirm that the effect of climate 

change is not limited to highland regions and it affects all regions in Africa.  Two 

processes are believed to explain this result. First, as the mean annual temperature 

increases, malaria transmission may shift its seasonality by moving to mildly warm 

months causing regions to maintain their suitability for transmission. Second, despite the 

larger population peak happening in temperatures near the higher limit of malaria niche, 

African population also comprises of a significantly broad population to the left of the 

malaria niche curve that is poised to come closer to the malaria niche temperature ranges 
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as a result of increasing global temperature (Fig. 4.12, A).  Table 4.5 further confirms the 

net effect of climate change on the population at risk of malaria, where an additional 95 

million people will be exposed to the risk of malaria with 3oC increase in the mean 

annual temperature. 

Table 4.5 

African population entering and leaving the lowered malaria suitable temperature 

range of 18 to 33oC (in millions) 

   

Climatology 

 

+1oC 

 

+2oC 

 

+3oC 

Leaving  Population 0 0 0 0.193

18-33oC Change 0 0 0 0.193

 

Entering  Population 642.771 686.011 717.447 738.471

18-33oC Change 0 43.24 74.676 95.7

 

Net  43.24 74.676 95.507

 

The slope of the malaria lapse rate, apparent from surveys in the 1940 (de 

Melville et al., 1945) with a very good match between suitability (0 to1) and prevalence 

(0 to 100%), gradually flattened in the later part of the century. This is visible Fig. 4.10) 

from the prevalence survey’s between 1950 and 1980 uncovered by Cox et al. (1999) 

from the WHO archives, and the even “flatter” altitude related prevalence figures from 

the surveys of Tulu (1996) in the 1980s in the Debre Zeit area. The altitudinal malaria 

slope described by the malaria pioneers of the 19th century is still present in Ethiopia’s 

most recent surveys (Bouma et al., 2011). Interestingly, whereas the slope of the malaria 

lase rate has changed in the 20th century, most likely reflecting improved control of the 
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disease, the altitude a which malaria disappears has changed in the 20th century Fig. 

4.10).  

Our study in Chapter 1 (Siraj et al., 2014) suggests that this is likely to change 

with global warming. Our finding of a dramatic shift in malaria risk under the high 

emission scenario’s for the 21th century is likely, without breakthroughs in malaria 

control, to expose tens of millions of people to malaria for the first time. Warmer high 

risk malaria years in the East African highlands are associated with the years of El Nino 

(Bouma et al., 1995), the climate system that periodically changes the global ocean and 

air circulation. An early warning system in Ethiopia based on this climate system can aid 

epidemic warning and timely intervention in conjunction with close monitoring of cases 

(e.g. Abeku et al., 2003; Teklehaimanot et al., 2004). It has been difficult to establish 

reliable mortality figures for regions at risk of epidemics (Cox et al., 2007), but epidemic 

mortality in Ethiopia in unprepared populations without adequate medical facilities may 

suffer mortalities exceeding 20% during a single epidemic event (Fontaine et al., 1962).   

Malaria early warning should therefore be a cornerstone of adaptation to climate change 

in East Africa.  

Malaria is easiest to control and prevent where the disease in unstable as it is in 

the highland fringes. Effective intervention could therefore prevent most of the dramatic 

mortality associated with epidemic malaria. However, as warming increases the malaria 

exposure to those on lower altitudes intensifies. The burden of stable endemic malaria is 

most difficult to alleviate, but perhaps most accurate to establish. Child mortality, the 

most prominent feature of endemic malaria has remained rather stable during the 20th 
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century. Greenwood et al (1987) reported a mortality of 10.4 per 1000 per year in infants 

(1-4 year), a figure similar to that quoted 30 years earlier (Greenwood et al., 1987). The 

more recent multi center (median) estimates for Africa we here used (described by Snow 

et al., 2003) are 9.3 per 1000 per year in areas with parasite prevalence rates over 25%. 

Perhaps the recent efforts and advances in controlling African malaria, that has seen 

mortality rates drop sharply since the beginning of this century, suggest that we could 

cautiously halve the mortality rates and the burden predicted for Ethiopia’s warming in 

the 21th century.  
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CHAPTER FIVE: CONCLUSIONS 

 

The Sub-Sahara African highlands are home for more than 165 million people 

(19% of sub-Saharan population below 15oN), of which about 60 million live in areas 

higher than 2000m3.  Historically, these highland regions have avoided stable malaria 

transmission due to their low mean temperature, which negatively effects parasite 

sporogony and vector development.  Our results have shown that in highland regions of 

Ethiopia, inter-annual increases in temperature extend the spatial distribution of malaria 

cases to higher elevations. The implication is that global warming will increase the risk of 

contracting highland malaria, in regions among the most densely populated regions in 

Africa.  

Based on the evidence from Ethiopian highlands, climate change appears to have 

already influenced the burden of malaria in these regions. We have shown that the change 

expected from increasing temperatures alone can account for the retrospective temporal 

trend in cases observed in the recent past.  In the East African highlands, in particular, a 

strong temperature determined malaria lapse-rate persists.  As the global temperature

                                                           

3 Our estimates based on GPW3 and GDEM calibrated and projected to 2015 using Ethiopia’s data and 

growth rate for all locations south of 15oN).  Highlands in this case are areas with altitude higher than 

1500m. 
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increases, countries such as Ethiopia with large populations at high elevation will have to 

deal with increased spread and intensity of malaria in areas that used to have no or little 

incidence.   

Projected temperature changes for 2015 based on the IPCC global circulations 

models (MAGICC, 2014) seems to underestimate observed warming even under the high 

emission scenario A2. Despite that, our estimates based on these projections show a 

dramatic shift in malaria risk for the 21th century, where tens of millions of people in 

Ethiopia will be exposed to malaria for the first time.  

With its two co-existing parasites, P. falciparum and P. vivax, showing similar 

patterns, Ethiopia also offers an opportunity to isolate the effect of drug resistance, which 

is frequently blamed for Africa’s malaria woes, and is only applicable to P. falciparum 

(Tulu, 1996). In addition, the availability of most reliable records with a large fraction of 

microscopically diagnosed cases, Ethiopia is well positioned to provide significant lesson 

to other countries.  

The suitability index we have improved in this project can easily be adapted to 

other regions especially in Africa where similar parasite and vector species exist.  We 

have seen how, aided by artificially decreased maximum thermal limits, further warming 

could start slowing the observed worsening condition in areas where it is already hot.  In 

Ethiopia, where very small proportion of its population lives in areas near the higher end 

of temperature suitability, this phenomenon could be negligible in the 21st century even 
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assuming a lowered maximum temperature limits. Similar effect can be expected in 

countries with large population living at high altitude.  

The hypothesis that increasing temperature could improve conditions in areas 

already hot warrants careful study and rigorous evaluation, since increase in the mean 

temperature could also result in changes to the seasonality of the disease, where the 

vector, along with the disease transmission, shifts its niche to seasons that are mildly hot.  

However, even with no considerations of such changes, our results have demonstrated 

that, climate change will have a worsening effect on malaria, with far larger population 

being exposed to the risk of disease than those supposed to have lesser risk, both in 

Ethiopia and the entire African continent. 

Recent decline in malaria incidence in many African countries in the last decade 

have been associated with intensive control measures including distribution of insecticide 

treated bed nets and provision of efficacious drugs (Otten et al., 2009; Karema et al., 

2012).  The evidences that the suppression of the disease was only possible with 

significant scaling up of interventions suggest that consolidation of these results through 

sustained interventions is imperative in order to avoid a possible resurgence, as has 

happened in the past (Sharma & Mehrotra 1986; Mouchet, 1998).   

Elimination of malaria from countries where the intensity of transmission is high 

and stable such as in tropical Africa will require more potent tools and stronger health 

systems than are available today (Mendes et al., 2009). In addition, malaria control and 

elimination are under the constant threat of the parasite and vector developing resistance 
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to medicines and insecticides, which are the cornerstones of current antimalarial 

interventions (Mendes et al., 2009).  In the absence of alternative tools, therefore, global 

malaria control and eradication will remain elusive. 

As public health continues to witness significant reductions in malaria 

transmission through intensified control measures, the role of reservoirs of the pathogen 

will become more prominent in low transmission regions and seasons.  Our findings have 

shown population density, along with temperature, as the main risk factors associated 

with pathogen reservoirs, through their contribution towards the persistence of the 

disease. Control measures would consist of targeting the spatial reservoir of the pathogen 

in humans (finding and treating symptomatic and non-symptomatic carriers) and/ or the 

vector (additional rounds of IRS). Such measures would improve cost effectiveness and 

aid existing initiatives to eliminate malaria from African highlands.  These findings are 

believed to be relevant to other locations that are dealing with low intensity transmission 

in general, and those with seasonal malaria transmission as well as those affected by 

intermittent epidemic outbreak, in particular. 

Future works 

 

Implementation of climate based suitability is expected to inform countries with 

significant population at high altitude on what the potential effects of climate change 

could be.  Since changes in the risk levels to population primarily concern population 

living at the fringes of climate suitability, which exhibit large variations within small 

geographic area, the required data on population distribution and climate factors need to 
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be at an appropriate spatial resolution.  Geographic Information Systems (GIS) have 

played a great role in the last few decades in mapping vector borne diseases, their vectors 

and help to study their environmental determinants.  Analysis of spatially coexisting 

natural and demographic factors, is essential in assess impact of vector borne disease in 

the face of changing global climate.   GIS approaches to the analysis of climate and 

population distribution will continue to be useful. The lessons learned from Ethiopia, as a 

result of the availability of good quality data at high resolution, will serve as a 

springboard to implement similar studies in other malaria affected countries with 

significant population at risk of malaria.  

Process-based models are increasingly confronted by retrospective temporal data 

to address specific hypotheses on the population dynamics of infectious diseases and the 

feasibility of their predictions. With the possibility of non-climatic factors confounding 

the effect of climate variability and climate change, in order to disentangle the effects of 

individual factors, process based models that couple human population dynamics and 

their vector counterpart will be in high demand in regions of rapidly changing 

topography.  With the availability of large computational power improving by the day, 

the feasibility of process based models is no more in question. 

Spatial factors of disease transmissions are poorly understood in the context of 

vector-borne diseases especially malaria.  Movement of the pathogen among 

communities, through humans as well as the vectors, is greatly influenced by how close 

the communities are to each other, not just in physical distance but also in their social and 

economic interactions.  These factors need to be considered when climatic and other 
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spatially explicit factors are examined in process based models as well as in more general 

spatio-temporal statistical models. 
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