Measurement of Online Student Engagement: Utilization of Continuous Online Student Behaviors as Items in a Partial Credit Rasch Model

Elizabeth Anderson
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

Part of the Education Commons

Recommended Citation
https://digitalcommons.du.edu/etd/1248

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.
Measurement of Online Student Engagement: Utilization of Continuous Online Student Behavior Indicators as Items in a Partial Credit Rasch Model

A Dissertation
Presented to
the Faculty of the Morgridge College of Education
University of Denver

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

by

Elizabeth Anderson

March 2017

Advisor: Dr. Kathy E. Green
©Copyright by Elizabeth Anderson 2017

All Rights Reserved
Abstract

Student engagement has been shown to be essential to the development of research-based best practices for K-12 education. It has been defined and measured in numerous ways. The purpose of this research study was to develop a measure of online student engagement for grades 3 through 8 using a partial credit Rasch model and validate the measure using confirmatory factor analysis. The dataset for this research study comprised approximately 20,000 online students in grades 3 through 8 from five different online schools. Two random samples of 10,000 students each were drawn for the measure development process and the validation of the measures created. For this research study student engagement was defined as a three-component manifestation of cognitive engagement, affective engagement, and behavioral engagement, which are required to achieve success as measured by normalized state assessments. This research study used tracked online student behaviors as items. Online student behavior items were converted from continuous to categorical after assessing indicator strength and possible inverted U relationship with academic achievement. The measure development and item categorization processes resulted in an online cognitive engagement measure and an online behavioral engagement measure for grades 3 through 8, with each grade having its own measure. All measures were validated using the second random sample of students and all but two (grades 4 and 5) were further validated by confirmatory factor analysis to be two factor models. Future research will include measure development specifically for students receiving special education services, comparing measures developed using the original continuous items without categorization, identification of facilitators of online student engagement for grades 3 through 8 and further evaluation of the relationship between online student engagement and academic achievement.
Acknowledgements

Thank you. I am dedicating the journey and completion of my dissertation to my son, Chance and my daughter, Yapah. You both have been my inspiration and my best cheerleaders. Yapah, your creative spirit and big heart filled my world with a spectacular light, thank you for fighting off the darkness with me. And thank you for sacrificing some of our girly time for me to write and study; my time now is all yours. Chance, thank you for sharing your world with me. Your imagination and adventure stories remind me that life is colorful and holds so much more than we can see. I hope that the many challenges we all three have conquered and the adventures we have shared can be an inspiration to accomplish your dreams and bring your imaginations to life. I am so proud of you. Now is your time to put your stamp on the world. Mommy loves you. Thank you to my friends and family. Thank you, mom and dad for recognizing and supporting my perfectionistic drive; you taught me to persevere and never give up. Thank you to my siblings, Monica and Michael, you putting up with my bossy games made me a better teacher and mom. Thank you to my friends and classmates your support was unmatched and I am so glad I had you throughout this journey. Thank you to my dissertation chair, Dr. Kathy Green, and my committee members and mentors, Dr. Nicole Joseph, and Dr. Duan Zhang. Your examples of dedication, leadership and expertise in your fields have been monumental in my success. I hope I am able to be a representation of the incredible work you do to support and guide your students and colleagues. Thank you to my dissertation committee and my academic department, I could not ask for a better graduate school experience. Thank you to my coworkers, especially Mary and Margie, you got me the data I needed and helped me to find my inner expert. Thank you to anyone who I forgot. I know that it took many people to get me here, happy and healthy.
Table of Contents

List of Tables vii
List of Figures ix
Abstract ii
Acknowledgements iii

Chapter 1: Introduction and Literature Review 1
Problem Statement 3
Research Question and Hypotheses 4
Purpose Statement 5
Literature Review 8
Defining Student Engagement 10
Online Student Engagement 17
Measuring Student Engagement 20
Indicators versus Facilitators 21
Data Collection Methods 22
Surveys and Questionnaires 24
Observations and Teacher Ratings 25
Interviews 26
Experience Sampling (ESM) 27
Current Measures of K-12 Student Engagement 28
Measurement Development 33
Item Response Theory 33
Items 35
Item Response Model Selection 37
Psychometric Quality Indicators 40
Dimensionality 41
Scale Use 42
Fit: Model, Item, and Person 43
Invariance 45
Reliability/Validity and Separation 46
Chapter 2: Method

Participants 49
Instrument 50
Selection of items. 54
Splitting of the dataset. 54
Outcomes. 57
Normalizing state test scores. 58
Screening of data and data patterns 60
Missing data 60
Multicollinearity 61
Clustering 61
Nested Effects 62
Inverted U relationships 63
Strong and weak indicators. 64
Establishment of measurement core 66
Polytomous measurement model: Partial credit Rasch model 67
Building the measure. 70
Analyses Addressing Research Question and Hypotheses 74
Procedure 79
Data collection and processing. 80

Chapter 3: Results 82
Data Screening 83
Missing Data 85
Multicollinearity 91
Clustering 92
Nesting Effects 95
Inverted U Relationships 99
Strong and Weak Indicators 104
Measure Development 108
Reliability and Validity 136
Split Sample 136
List of Tables

Table 1: Types of Student Engagement Measures’ Advantages and Disadvantages

Table 2: Current Measures of Student Engagement, Sample Components, and Reliability and Validity Estimates

Table 3: Description of Participants’ Demographic Background

Table 4: Online Student Engagement for Grades 3 through 8 Measure Objective and Sub-Objectives

Table 5: Variables/Items Remaining after Data Preparation

Table 6: Variable Summary of Missing Data

Table 7: Nesting Effect Results

Table 8: Items that did not Meet Invariance Requirements by Grade for Schools

Table 9: Inverted U Relationship Tests for Grades 3 to 5

Table 10: Inverted U Relationship Tests for Grades 6 to 8

Table 11: Strong and Weak Indicators for First Random Sample

Table 12: Strong and Weak Indicators for Grade 3 to 5 Random Sample

Table 13: Strong and Weak Indicators for Grades 6 to 8 Random Sample

Table 14: Dimensionality and Fit Indices for Grades 3 through 8 with All Items

Table 15: Grade 5 Measure Development and Item Categorization Process

Table 16: Dimensionality and Fit Indices for Grade 5 Measure Development and Item Categorization Process Steps

Table 17: Cognitive Engagement Subscale Results for All Grades

Table 18: Behavioral Engagement Subscale Results for all Grades

Table 19: Test-Retest Cognitive Engagement Subscale Results for All Grades Using Second Random Sample

Table 20: Test-Retest Behavioral Engagement Subscale Results for All Grades Using Second Random Sample

Table 21: Grade Level CFA One-Factor and Two-Factor Sample Moments, Parameters to be Estimated and Conclusions
Table 22: Correlations between Person Logit Position for Online Cognitive Engagement and Online Behavioral Engagement and Academic Achievement 159

Table 23: Regressions Predicting Academic Achievement from Online Cognitive Engagement and Online Behavioral Engagement 161

Table 24: General Dimensionality and Fit Indices for Steps in Measure Development 209

Table 25: Invariance Examination for Grade Segments 212

Table 26: Item Categorization Steps for Grade Segments, Grades 3 to 5 and Grade 6 to 8 213

Table 27: Grade 3 Measure Development and Item Categorization Process 218

Table 28: Dimensionality and Fit for Grade 3 Measure Development and Item Categorization Process 219
List of Figures

Figure 1: Parsimonious Structural Equation Model for Online student engagement for grades 3 through 8
Figure 2: Three Sub-Scale Structural Equation Model for Online student engagement for grades 3 through 8
Figure 3: Overall Summary of Missing Values
Figure 4: Missing Value Patterns
Figure 5: Ten Most Frequently Occurring Patterns of Missing Data
Figure 7: Person-Item Maps for Grade 5 Cognitive Engagement Item Categorization
Figure 8: 1st Dimension- Cognitive Engagement
Figure 9: Measure Continuum Changes for Grade 5 Behavioral Engagement
Figure 10: 2nd Dimension- Behavioral Engagement
Figure 11: Grade 3 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
Figure 12: Grade 4 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
Figure 13: Grade 6 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
Figure 14: Grade 7 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
Figure 15: Grade 8 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
Figure 16: Grade 3 CFA Models
Figure 17: Grade 4 CFA Models
Figure 18: Grade 5 CFA Models
Figure 19: Grade 6 CFA Models
Figure 20: Grade 7 CFA Models
Figure 21: Grade 8 CFA Models
Figure 22: Example of Dashboard: Online Cognitive Engagement vs Online Behavioral Engagement for Free lunch Eligible Grade 8 New Students
Figure 23: Category Probability Curves for Math Total Time as a Dichotomous Item, Four Category Item and Eight Category Item
Figure 24: Grade 3 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral) 221

Figure 25: Grade 4 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral) 224

Figure 26: Grade 5 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral) 228

Figure 27: Grade 6 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral) 237

Figure 28: Grade 7 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral) 240

Figure 29: Grade 8 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral) 244
Chapter 1: Introduction and Literature Review

Students in the United States lag behind their international counterparts in both academic achievement skills (Lemke et al., 2004) and applied career-oriented literacy and numeracy skills (Goodman, Finnegan, Mohadjer, Krenzke, & Hogan, 2013). The lack of these global workforce skills contributes to a struggle with unemployment and career establishment for students in the United States as they exit college. One might assume that it is only the low-achieving students who are lagging behind their international counterparts, but the International Association of Adult Competencies found that even the wealthiest and best-educated adults in the United States lack the literacy, numeracy, and problem-solving skills required to compete in the global workforce (Goodman et al., 2013).

Career-oriented reading ability and mathematical ability that are required to compete and be successful in the global workforce are developed from the academic achievement of primary school and secondary school students (Chapin, 2008; Jao, 2013; Lemke & Gonzales, 2006). The academic achievement of primary and secondary students can be measured by student grades, internal curriculum assessments such as quizzes and exams, and state assessments, which in most US states are given annually.
starting in third grade. Ensuring that US schools effectively impart the skills essential for the global workforce as well as supporting the academic success of students throughout the curriculum is pivotal to the United States in competing with the rest of the world.

Every year, teachers, schools, and districts across the United States implement new techniques, theories, and best practices to improve student academic achievement, increase graduation rates, and decrease dropout rates. Increasing graduation rates and decreasing high school dropout rates is a critical aspect in the effort to improve the skill level and number of US graduates that competitively enter the global workforce (Bowers, 2010; Caron, 2015). The list of recommendations for improving high school graduation rates while decreasing dropout rates is long and deep, yet all recommendations require a certain investment by the student. Successful implementation of any technique, theory, or best practice requires student buy-in and participation—student engagement. Student engagement is the investment students must contribute to make all of the strategies and techniques meaningful and relevant (Appleton, Christenson, & Furlong, 2008; Fredricks & McColskey, 2012). Kuh (2009) found that engaged students are more likely to persist, achieve success, and complete qualifications for graduation. If students are not engaged in the learning that is taking place in the classroom, then they are unlikely to obtain the skills necessary to successfully move on to the next level of education (tertiary) or into the global workforce (Bowers, 2010; Stokes, 2011). Through the efforts of both the students and their teachers and schools, student engagement levels can be raised to increase academic achievement (Cano, 2015; Fredricks & McColskey, 2012; Singh, 2015).
Student engagement has been defined in several different ways as it has become a highlight of educational research in the last two decades. According to Fredricks and McColsky (2012), “researchers, educators, and policymakers are increasingly focused on student engagement as the key to address problems of low achievement, high levels of student boredom, alienation, and high dropout rates” (p. 763). Chen, Gonyea, and Kuh (2008) have defined student engagement as the quality of effort students themselves devote to educationally purposeful activities that contribute directly to desired outcomes. However, this definition may not be specific enough to apply to all learning environments or be conducive to the consistent measurement of student engagement.

The definition and measurement of student engagement become more complex in the case of online learning environments. While the definition of student engagement should stay consistent with more traditional learning environments, the measure of student engagement should be unique to the data availability of the online learning environment. Yet there is neither a universally accepted definition nor learning environment-specific measure of student engagement, both of which are needed to conduct further research on the connection between student engagement, academic success, and global workforce skills. This research study addressed this problem through the development of an online student engagement measure for students in grades 3 through 8 that utilizes student behavior data regularly collected by online schools.
Problem Statement

Student engagement is essential to the development of research-based best practices for the K-12 online learning environment, but student engagement must first be defined and measured appropriately (Morris, Finnegan, & Wu, 2005). Fredricks and McColsky (2012) believe “that a more systematic and thoughtful attention to measurement of student engagement is one of the most pressing and imperative directions for future research” (p. 779). This need for student engagement measurement extends to the online learning environment as more traditional learning environments.

The measurement of online student engagement has mimicked the measurement of student engagement in traditional learning environments. Online student engagement has been measured by single observed variables such as independent time in course (Morris, Finnegan, et al., 2005), the number of on-task and off-task Internet activities (Bulger, Mayer, Almeroth, & Blau, 2008) and self-esteem (Harbaugh & Cavanagh, 2012). In addition, student engagement measures often use surveys and questionnaires that rely on self-assessment (Harbaugh & Cavanagh, 2012). However, these methods of data collection are not necessarily applicable to the K-12 online learning environment. There is a need for a measure of student engagement for K-12 online students.
Research Question and Hypotheses

In an effort to provide a more fitting form of student engagement measurement for the K-12 online learning environment, this study aimed to answer the following research question and hypotheses:

Research Question: Does a measure of online student engagement for grades 3 through 8 comprised of continuous online student behavior items scaled using a polytomous Rasch partial credit model meet the expectations of dimensionality, model fit, item fit, construct reliability, and construct validity?

Hypothesis 1: The online student engagement measure for grades 3 through 8 encompasses three dimensions of student engagement—behavioral, affective, and cognitive—displaying fit statistics that support a three-factor model over a one-factor model for the overall measure of online student engagement for grades 3 through 8.

Hypothesis 2: The online student engagement measure for grades 3 through 8 is invariant across student special education status and grade level.

Hypothesis 3: The online student engagement measure for grades 3 through 8 displays statistically significant positive correlations with academic achievement for any subscales that comprise the measure.
The research question and hypotheses of this study not only encompass the need for a consistent student engagement measure for the K-12 online learning environment but also acknowledge that an online learning environment has different attributes that contribute to student engagement and academic achievement.

Purpose Statement

The purpose of this research study was to develop a measure of online student engagement for grades 3 through 8 that uses tracked student online behaviors as items. The online student engagement for grades 3 through 8 measure was defined in terms of online student behavioral indicators. Item response theory with a polytomous partial credit model was used to develop this measure of online student engagement for grades 3 through 8. Structural equation modeling via confirmatory factor analysis was used to assess support for the structure of the measure. At the conclusion of this research, the online student engagement measure for grades 3 through 8 measure was examined for correlation with academic achievement.

In relation to the measure being developed this study considered that previous research has found student engagement in traditional learning environments to be multifaceted (Fredricks & McColskey, 2012; Lam et al., 2014). For this research study, student engagement was considered a multifaceted latent construct that comprises behavioral, affective, and cognitive engagement components (Axelson & Flick, 2011; Fredricks, Blumenfeld, & Paris, 2004). It is hypothesized that for K-12 online students all three forms of student engagement—behavioral, cognitive, and affective—can be
observed and measured through observed online student behaviors. The inclusion of the three components of student engagement in the online student engagement for grades 3 through 8 measure was intended to capture the complexity of student engagement in an online learning environment.

Several studies have assessed student engagement, both in an online learning environment and in other learning environments (Chen, Lambert, & Guidry, 2010; Hamane, 2014; Lerma, 2010; McNeal, Spry, Mitra, & Tipton, 2014). Yet none of the current research studies used multiple items within the measure that were not self-reported, meaning either one item was used to represent student engagement or a self-report measure was used to quantify student engagement. The goal of this project was to utilize multiple continuous variables as items in the measure of online student engagement for grades 3 through 8.

Ultimately, the online student engagement for grades 3 through 8 measure is expected to be used to support online school decision making, student intervention developments, and overall improvement of academic success in an online learning environment for K-12 students. Establishing online students’ engagement levels provides vital information for schools and teachers on how to make focused improvements for students (Appleton et al., 2008; Carter, Reschly, Lovelace, Appleton, & Thompson, 2012; Fredricks & McColskey, 2012). In addition, measuring a student body’s overall engagement in an educational program provides essential information on how to improve student retention and academic success (Ett, 2008; Gasper, DeLuca, & Estacion, 2012).
The creation of a comprehensive measure of online student engagement for grades 3 through 8 is important in order to identify the educational methods that successfully improve K-12 online learning environments.

The online student engagement measure for grades 3 through 8 developed in this research study not only extends the understanding of student engagement in an online learning environment, but also exposes differences between the online learning environment and traditional learning environments.

Literature Review

Educational researchers have found that as student engagement is increased it contributes to higher grades, higher state assessment scores, and better school conduct (Lam et al., 2014; Pierson & Connell, 1992; Skinner & Belmont, 1993a). With an average Cohen’s d effect size of 0.48, it has been established that student engagement is important to academic achievement (Hattie, 2009). Since student engagement is a key factor in academic achievement, a reliable, valid, and grade-expansive measure of student engagement is needed. To begin to measure student engagement, the construct must first be detailed and student engagement defined; even with extensive interest in the study of student engagement, there has been little agreement over the definition of student engagement (Appleton et al., 2008; Fredricks & McColskey, 2012). The definition of student engagement has evolved and fluctuated over time, which has resulted in similar shifting trends for the measurement of student engagement. If student engagement is not
consistently measured then the impact of student engagement on academic achievement is not clear.

Some researchers view student engagement as a compilation of relationships with school, teachers, administrators, other students, and self, as well as the influences of these relationships on students’ academic achievement and conduct (Cano, 2015; Cremascoli, 2011; Ett, 2008). Other researchers define student engagement as a collection of contextual factors that can both influence targeted interventions (Appleton et al., 2008; Fredricks & McColskey, 2012) and predict developmental and academic outcomes (Lam et al., 2014; Shernoff & Schmidt, 2008). With this range of classifications of student engagement, it is no wonder that the measure of student engagement is intricate as well.

Early pioneers in education and educational access set the foundation for the definitions of student engagement as well as the items used to measure student engagement. Initial research on student engagement can be seen in the work of John Dewey in the 1940s. Dewey’s research made associations to student engagement through the relationship between interest and motivation, which in turn were linked to the desire to put forth energy to complete an academic task (Dewey, 1946). Following the work of Dewey, educational researchers then began defining and examining student engagement specifically. Current research defining student engagement draws notably on the work of the student involvement researcher Alexander Astin in the 1980s. Astin suggested that student learning is directly proportional to student involvement (Axelson & Flick, 2010). Astin’s theory of student involvement is made up of three components: inputs,
environment, and outcomes. The three components of Astin’s theory of involvement have been expanded upon and evolved into the components currently used to define and measure student engagement.

Astin’s work was expanded upon by Connell and Welborn’s (1991) self-systems process model and Finn’s (1991) participation-identification (PI) model. Connell and Wellborn’s self-systems process model focuses on how school environments can be nurtured to promote competence, motivation, and student engagement. In contrast, Finn’s PI model focuses on students’ participatory behaviors and how the effects of those behaviors can lead to increased engagement resulting in academic success. These models added to the foundation of student engagement knowledge and directed the current definitions of student engagement.

Defining Student Engagement

Before student engagement can be measured it must be defined so measurement is linked to the definition. The advancement of the definition of student engagement has enhanced the methodology of student engagement measurement. Student engagement has been defined in research in terms of effort (Meece, Blumenfeld, & Hoyle, 1988), time on task (Spanjers, Burns, & Wagner, 2008), and motivation (Pintrich & De Groot, 1990; Skinner & Belmont, 1993a). Most recently, student engagement has been broadly defined as student involvement and time of involvement in activities and practices that lead to increased academic achievement (Axelson & Flick, 2010; Coates, 2007; Leach & Zepke, 2011; Morris, Finnegan, et al., 2005). In addition, student engagement has been described
as pertaining to students’ contribution to their academic activities and experiences either in the form of time and energy of study efforts or in the form of willingness to problem solve (Axelson & Flick, 2010; Kuh, 2009). Overall the definitions of student engagement are based on the participation of students in their own learning and contribution to their academic success. In short, student engagement embodies the participation of students in their own learning and academic success.

Even with the myriad number of definitions for student engagement, researchers have agreed that student engagement is a multidimensional construct (Carter et al., 2012; Fredricks & McColskey, 2012). The agreement ends here however, in that there have been three-component models, four-dimensional models, and six-factor models proposed for the measurement of student engagement. Morris et al. (2005) found that student engagement is defined most often as cognitive-based, behavioral-based, affective-based or a combination of two or more of the previous designations. In addition, Fredricks and McColskey (2012) found that student engagement models that contained three or fewer components were more accurate because they had little to no overlap of items between components. It is important to have little to no item overlap across components or subscales to ensure the independent utility of both the subscale and the measure as a whole. The three-component model includes behavioral, affective, and cognitive components of student engagement. This research study focused on the three-component model to optimize clarity in definition and to develop a measure of online student engagement for grades 3 through 8.
The three-component model of student engagement includes behavioral engagement, cognitive engagement, and affective engagement. Most of the research has been conducted on each of these components of student engagement individually, but a few more recent studies and scales bring these components together to measure the student engagement construct (Axelson & Flick, 2011; Fredricks & McColskey, 2012; Harbaugh & Cavanagh, 2012). Measured separately, each of the components of student engagement has been found to contribute to positive academic outcomes (Fredricks et al., 2004; Sinclair, Christenson, Lehr, & Anderson, 2003). To fully understand student engagement, researchers must understand it in all three of its forms: behavioral, cognitive, and affective (Cavanaugh, 2010), in addition to understanding how these components work together to fully encompass the student engagement construct.

Now that it has been established that student engagement must be defined as a multidimensional construct that consists of three components, it is important to define each of the components to begin to define student engagement in more detail. The behavioral, affective, and cognitive components of student engagement all incorporate different aspects of the student engagement construct. The full definition of student engagement must unite the definitions of each of its components.

The behavioral component of student engagement consists of the actions that students take to gain access to the curriculum. The behavioral component of student engagement is the most studied and foundational element of student engagement research. Behavioral engagement has been measured by effort and persistence in
schoolwork (Ladd & Birch, 1997), participation in extracurricular activities (Finn, Pannozzo, & Voelkl, 1995), school attendance and participation in class activities (Appleton, Christenson, Kim, & Reschly, 2006), and preparation for class including homework completion (Fredricks & McColskey, 2012). Once a student accesses the curriculum and displays behavioral engagement, then the students can begin to make emotional ties to their learning.

Affective engagement, also called emotional engagement, is the emotional tie or how students feel about their learning (Pierson & Connell, 1992; Skinner & Belmont, 1993a), including their learning environment (Finn, 1989; Voelkl, 1997) and teachers and classmates (Appleton et al., 2006; Finn, 1989; Fredricks et al., 2004). In addition, according to Fredricks and McColskey (2012) “expressing interest and enjoyment; reporting fun and excitement; reacting to failure and challenge; feeling safe; perceiving school as valuable; and expressing feelings of belonging” (p. 772) should also be included in the measure of affective engagement. Affective engagement contributes activities that display the “care” students have for their education and for the curriculum they have accessed. In addition to accessing the curriculum and making emotional ties to the curriculum, an engaged student would also use cognitive skills and resources to display mastery of the curriculum; cognitive engagement.

The resources and skills utilized to learn and display learning are embedded in the cognitive engagement component of student engagement. The cognitive component is observed when students embrace the learning process which leads to actions with
achievement and academic success outcomes (Fredricks et al., 2004; Meece, Blumerfeld, & Hoyle, 1988). Cognitive engagement is the mental investment in academic achievement, not necessarily academic performance. The cognitive component of student engagement also encompasses the neurological process of learning as well as the knowledge of child development with cognitive learning milestones (Chi & Wylie, 2014).

In the development of curriculum, in both online and traditional formats, learning objectives are typically used to focus the learning process of students. These learning objectives are usually written with a specific taxonomy that is related to the cognitive process of learning. An example of this practice is the use of the revised Bloom’s Taxonomy to write objectives that support the flow of learning through the following stages:

1. Remember
2. Understand
3. Apply
4. Analyze
5. Evaluate
6. Create

(Krathwohl, 2002)
The established objectives also become the focus of academic achievement goals. In addition, these goals require students to mentally invest in their learning to reach said goals. This mental investment is cognitive engagement.

Educational researchers have found that academic achievement goals relate directly to cognitive engagement, which in turn influences academic achievement. Hence a student must first have sufficient levels of cognitive engagement before academic achievement can be accomplished. Yet it is difficult to separate the measure of cognitive engagement from academic achievement outcomes. For example, while grades on formative and summative assessments can be used to measure academic achievement, the number of attempts or effort that a student puts into mastering the content on the formative or summative assessments could be used to measure cognitive engagement, the investment made to attain academic achievement. Laim et al. (2014) explained that “examples of indicators of cognitive engagement include the use of learning strategies, execution of a particular work style, and self-regulated learning” (p. 215). Student motivation is also part of the cognitive component of student engagement (Fredricks & McColskey, 2012). The cognitive component of student engagement links student engagement to academic achievement through the display of the actions required to reach academic achievement expectations. The cognitive engagement component also parallels motivation research and must be distinguished from motivation to complete the multidimensional definition of student engagement.
Student motivation is very closely aligned to the cognitive component of student engagement. While educational researchers were focused on student engagement, psychologists were conducting research on motivation and forms of motivation with the same academic success outcomes. Psychologists began identifying behaviors related to student engagement as they researched the manifestations of motivation and cognition (Fredricks & McColskey, 2012). To fully understand student engagement, research must differentiate the cognitive engagement component from motivation (Fredricks & McColskey, 2012). While motivation is the internal desire to succeed, student engagement is the manifestation of motivation, in the form of behaviors, emotional expressions, and cognitive displays (Fredricks & McColskey, 2012).

Student engagement and student motivation are conceptually similar due to their shared research foundations. Both student motivation and student engagement stem from studies of self-efficacy (Schunk, 1991), interest (Dewey, 1946; Schiefele, 1991), and goal orientation (Ames & Ames, 1984; Dweck & Elliot, 1983; Nicholls, 1984). Yet psychological research examined internal sentiments (Skinner & Belmont, 1993a, 1993b), such as attributes (Weiner, 1986), perceived ability (McIver, Stipek, & Daniels, 1991), perceived control and competence (Chapman, Skinner, & Bates, 1991; Weisz & Cameron, 1985), and self-concept (Harbaugh & Cavanagh, 2012; Wigfield & Karpathian, 1991), while educational researchers focused on the outward displays of these internal sentiments. According to Skinner and Belmont (1993a), cognitive engagement, and disaffection, lack of motivation, encompass similar behaviors and motivational indicators.
Student engagement, in particular the cognitive component, is the manifestation of student motivation (Fredricks & McColskey, 2012). Motivation and cognitive engagement are similar, but motivation focuses on internal processes while cognitive engagement is focused on external actions that result from the internal processes.

In addition to the distinction between student engagement and motivation, student engagement, especially the cognitive component, must also be differentiated from the outcomes of academic achievement. If cognitive engagement is defined as the mental investment in academic achievement, then to measure it parallels academic achievement. Yet while academic achievement is defined and measured by the final score or grade on an assessment or set of assessments, cognitive engagement can be measured by the number of attempts taken to achieve the level of academic achievement. It is assumed that with increased mental investment, cognitive engagement, fewer attempts will be needed to master the curriculum assessments. Student engagement, whether behavioral, affective or cognitive, is the investment or actions taken to achieve learning and academic success (Fredricks, 2004).

Keeping with the actionable definitions of the components of student engagement, for this study student engagement was defined as a three-component manifestation of the motivation, academic behaviors, emotional expressions, and cognitive displays required to achieve success as measured by the annual state assessments. In addition, for this study student engagement for grades 3 through 8 was measured in an online context.
Online Student Engagement

The online learning environment lends itself well to the use of student behaviors to measure student engagement. The behaviors of students in an online learning environment are regularly documented. Yet since online education as we know it today is still a young industry, less than 30 years old, educational researchers are still exploring ways to collect and use the data available in an online learning environment.

Similar to traditional learning environments, student engagement is essential to the development of research-based best practices for the K-12 online learning environment. While the components of student engagement remain the same at their core, they are displayed and hence measured differently in the online learning environment. The behavioral engagement component in a traditional learning environment may be measured by attendance at school, while in the online learning environment daily logins to the online courses could represent behavioral engagement. Likewise, the affective engagement component in the online environment may be individual emails to one’s teacher, while in a traditional learning environment it may be measured by seeking out additional help from a teacher. Lastly, the cognitive component can be measured similarly in both learning environments through the display of homework, practice, and studying to reach academic achievement goals.

Also similar to traditional learning environments, student engagement must first be clearly defined and measured appropriately (Morris, Finnegan, et al., 2005; Morris,
Wu, & Finnegan, 2005) in an online learning environment to aid in future educational research.

Online student engagement has been measured by single observed variables such as independent time in course (Morris, Finnegan, et al., 2005), the number of on-task and off-task internet activities (Bulger et al., 2008), and self-esteem (Harbaugh & Cavanagh, 2012). Most of the online student engagement measures that have been developed were designed for college-aged and higher education learning environments where online learning included computer-equipped classrooms and campus-based students taking one or more online course.

The majority of the research that has been done on online student engagement comes from higher education researchers. In some cases, the participants of these research studies are campus-based students who choose to take one or more of their courses online. The National Survey of Student Engagement (NSSE) has been used to assess the engagement levels of higher education students and has been adapted for online students in a higher education setting. Yet this fuels the question of whether online student engagement should be measured differently for students who are 100% online.

Chen et al. (2008) found that not only were there demographic differences between the students who chose to take online courses and campus-based college students but also that online students had higher engagement levels than their campus-based school counterparts. However, it was not confirmed how the differences in demographics affected student engagement levels. The most highly engaged online
students in the Chen et al. (2008) research were students who were over the traditional age of college students, leading Chen et al. (2008) to question if age increases engagement levels as well as motivation for academic success.

For primary and secondary education students, researchers have done some work with traditional K-12 student engagement levels when they are using online learning resources and tutorials (R. S. Baker, Corbett, & Koedinger, 2004; Gobert, Baker, & Wixon, 2015) yet more research is needed to identify specific differences between traditional K-12 students and online K-12 students, if there are differences at all. The establishment of an online student engagement for grades 3 through 8 measure helps progress in this type of research.

Since online student engagement for grades 3 through 8 has yet to be fully defined, this study used the general definition of student engagement previously established: three-component manifestation of the motivation, academic behaviors, emotional expressions, and cognitive displays required to achieve success as measured by the annual state assessments.

Measuring Student Engagement

Once student engagement is defined then it can begin to be measured. For both brick-and-mortar K-12 schools and online K-12 schools there are challenges that need to be addressed to establish a measure with support for validity. Fredricks and McColskey (2012) stated “One of the challenges with research on student engagement is the large variation in the measurement of this construct, which has made it challenging to compare
findings across studies” (p. 763). Two aspects of measurement that contribute to the challenge of student engagement measurement development are:

1. Differences between indicators and facilitators used for measurement items
2. Data collection methods utilized

By addressing these two concerns a measure of student engagement can have fewer inconsistencies and greater validity (Fredricks & McColskey, 2012).

Indicators versus Facilitators

The distinction between indicators of student engagement and facilitators of student engagement need to be kept in mind as a measure for student engagement is constructed and evaluated (Appleton et al., 2008). Skinner, Furrer, Marchand, and Kindermann (2008) were the first to identify the need to distinguish between indicators and facilitators in the construction of student engagement measures and listed differentiation as one of the problems leading to inconsistencies in student engagement research. According to Lam et al. (2014), “Indicators refer to the features that define student engagement, whereas facilitators are contextual factors that exert influences on student engagement” (p. 215). Thus indicators are the student behaviors, student emotions, and student cognitive displays that are used to directly measure the engagement level of students. Facilitators are all the best practices, teacher professional development, and school cultural implementations that try to encourage higher levels of student engagement within the classroom. Lam et al. (2014) gave the example of “use of learning strategies, execution of a particular work style, and self-regulated learning” (p.
22

215) as indicators for cognitive engagement and “time spent on task” as an indicator for behavioral engagement.

For this study, only indicators were included in the measure of student engagement, with future research discussed to include identifying the facilitators of student engagement.

Data Collection Methods

The second aspect of student engagement measurement that contributes to the inconsistency of measure development is the data collection method employed. Researchers have used several different methods of measurement for student engagement, including but not limited to surveys and questionnaires, observations and teacher ratings, interviews, and experience sampling. In most cases the component of student engagement—behavioral, affective, or cognitive—that is being measured controls the data collection method utilized (Appleton et al., 2006; Fredricks & McColskey, 2012). Now that researchers are attempting to measure multiple components of student engagement simultaneously, there is substantial argument on what would be the psychometrically appropriate form of data collection (Appleton et al., 2006; Finn & Zimmer, 2012). Each of these methods of measurement of student engagement has its own set of advantages and disadvantages, as seen in Table 1. Some data collection methods are ill suited to collecting the necessary data to measure all components of student engagement. This, along with the contrast between the advantages and
disadvantages of each type of data collection method, illustrates the challenge of comparing results across studies of student engagement (Fredricks & McColskey, 2012).

Table 1

Types of Student Engagement Measures’ Advantages and Disadvantages

<table>
<thead>
<tr>
<th>Type of student engagement measure</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
</table>
| Surveys and Questionnaires | • Suitable for item analysis, factor analysis and item response theory
• Simple administration
• Quantitative or qualitative techniques
• Detailed and descriptive
• Real time data
• Can link contextual factors to student engagement levels | • Self-report
• Lack of real time data collection
• Participant bias | |
| Observations and Teacher Ratings | • Good for collecting cognitive processing data
• Identifies contextual factors of student engagement
• Can collect in-depth information on student engagement | • Individual or small samples at a time
• Time consuming
• Not easily generalizable
• Cannot yet clearly measure affective and cognitive engagement
• Observer bias
• One interview at a time
• Time consuming
• Socially desirable responses
• Interview training dependent
• Difficult to generalize to population |
| Experience Sampling (ESM) | \- Real time engagement ratings
| | \- Tracks length and intensity of engagement
| | \- Observations without the observer
| | \- Multiple students’ data collected simultaneously
| | \- Time consuming
| | \- Depends on participation of student participants
| | \- Struggle to include items that represent multidimensional constructs
| | \- Not suitable for younger children; student participants |

Surveys and Questionnaires

Due to the ease of administration, surveys and questionnaires are most often used in student engagement research studies. Surveys and questionnaires are frequently used with students, teachers, and parents (Handelsman, Briggs, Sullivan, & Towler, 2005; Harbaugh & Cavanagh, 2012). The psychometric properties of quantitative surveys and questionnaires are most suitable for item analysis, factor analysis, and item response theory analysis. This form of data collection is also practical with simple administration.

Yet the disadvantages of surveys and questionnaires, such as their self-report nature, lack of real-time data collection, and participant bias can skew the results and paint an unreal picture of student engagement. Participation bias is the most concerning disadvantage of self-report surveys and questionnaires. If student participants do not feel comfortable and honestly answer the self-report surveys and questionnaires then researchers are not capturing the actual behavior or cognitive strategies being employed (Appleton et al., 2006; Garcia & Pintrich, 1995). This participation bias can be
emphasized by broadly worded items that allow participants to respond generally instead of to specific tasks or classroom circumstances (Fredricks & McColskey, 2012).

Surveys and questionnaires have been used and continue to be used to expand research on student engagement, yet strategies for overcoming the disadvantages, especially participant bias, are necessary.

Observations and Teacher Ratings

Observations and teacher ratings can be utilized both at an individual and at a classroom level. Also the data collected from observations and teacher ratings can be quantitative, qualitative, or a mixture of both. Most researchers that have used observations and/or teacher ratings to study student engagement have started with some predetermined categories of behaviors that constitute either engagement or disengagement (Jao, 2013). Other researchers used qualitative techniques to collect narrative and descriptive data to measure student engagement levels. Teacher ratings have been used to assess behavioral and emotional engagement (Finn, Folger, & Cox, 1991; Finn et al., 1995; Skinner & Belmont, 1993a) as well as the multi-component construct of student engagement (Wigfield et al., 2008). Similar to observations, teacher ratings can potentially document levels of student engagement, especially related to particular academic content. Overall, the greatest advantage to using observations and teacher ratings is the capability to document contextual factors connected with high and low student engagement (Fredricks & McColskey, 2012).
The primary disadvantage of observations and teacher ratings is they are only able to capture engagement levels and behaviors for one individual student or classroom at a time (Fredricks & McColskey, 2012). This makes observations and teacher ratings very time consuming and not easily generalizable to the larger population of students. Observations and teacher ratings are currently unable to clearly capture the data needed to measure aspects of affective and cognitive engagement such as quality of effort, participation, or thinking (Fredricks & McColskey, 2012; Peterson, Swing, Stark, & Waas, 1984). In addition, research has shown a disconnect between the student engagement levels teachers assign to students versus the student engagement levels students assign to themselves (Fredricks & McColskey, 2012), especially in relation to emotional engagement. Similarly, observations can be heavily biased by the observers, especially untrained observers, along with participation bias due to knowledge of being observed (Fredricks & McColskey, 2012).

While observations and teacher ratings work well for linking contextual factors or specific classroom activities with student engagement levels, neither observations nor teacher ratings can capture the full source of student engagement.

Interviews

Another common data collection method used by student engagement researchers is interviews. Interviews for student engagement research have been conducted quantitatively, with structured questions, and qualitatively, with open-ended questions (Turner & Meyer, 2000). Interviews have been a good way to collect the
cognitive processing data needed to understand the cognitive engagement component of student engagement. Interviews have been used to assess how and which contextual factors relate to student engagement (Meece, Blumerfeld, et al., 1988) and to extract meaningful vignettes concentrating on how engagement relates to the student’s school experiences. These attributes of interviews give them the ability to gather in-depth data related to both affective and cognitive engagement.

Interviews also have some disadvantages that would need to be overcome to use the data from interviews to develop a measure of student engagement. Interviews are heavily reliant on the training and position of the interviewer. If the interviewer is seen as an authority figure or reporting to an authority figure, then the student participant may give socially desirable answers instead of honest answers. Also, interviews are so personal that it is difficult to relate the findings from interviews to the student engagement of the larger population (Fredricks & McColskey, 2012).

Although interviews collect in-depth personal information from students about their engagement levels, interviews are not able to accumulate data necessary to develop a psychometrically sound measure of student engagement (Katz-Buonincontro & Hektner, 2014).

Experience Sampling (ESM)

Experience sampling or ESM is another data collection method used in student engagement research. ESM utilizes technology to have students give engagement ratings in real time during activities along with tracking the amount of time engagement or
intense focus on a task takes place (Katz-Buonincontro & Hektner, 2014). ESM has been
used to observe engagement in a classroom setting without an observer needing to be
present and allows the tracking of multiple students’ engagement levels at one time
(Shernoff, Csikszentmihalyi, Schneider, & Shernoff, 2003; Shernoff & Schmidt, 2008;
Yair, 2000). Hektner, Schmidt, and Csikszentmihalyi (2007) found that ESM could
effectively be used to collect a large amount of comprehensive data in real time while
limiting the problems of retrospective answers and socially desirable responses. ESM is
useful for examining student engagement over time and classroom scenarios, such as
transitions into new lessons.

Yet with all of its advantages, ESM is still very time consuming, relies heavily on
the participation of student participants, and may not be suitable for younger students
(Fredricks & McColskey, 2012). ESM captures more of the facilitators of student
engagement instead of the indicators that would need to be used to develop a measure of
student engagement. Moreover, ESM measures struggle to include enough items to
encompass the multidimensional nature of student engagement (Fredricks & McColskey,
2012).

ESM is useful in collection of more data from more students than other data
collection methods but ESM is not useful in measuring the multiple components of
student engagement concurrently.

The advantages and disadvantages of each of these data collection methods with
regard to student engagement highlight the complexity of the construct of student
engagement. Additionally, the current data collection methods for student engagement research do not seem appropriate for students in an online learning environment.

Current Measures of K-12 Student Engagement

Survey and questionnaire data may not be appropriate for online K-12 students due to the additional entry points for bias, misadministration, and low response rates. Yet many of the current measures of student engagement use surveys and or questionnaires as their main source of data.

Fredricks and McColskey (2012) published a comprehensive evaluation of the student engagement measures currently available and being employed in educational research. This evaluation details the development and data collection methods of 11 self-report student engagement measures, 4 of which (Table 2) were used in this research study to set a foundational basis for the development of the Online student engagement for grades 3 through 8 measure. Four student engagement surveys—NSSE, HSSSE, MES, and SEI/SEI-E—represent both student engagement measures that are used as a base for other measures and measures that contain items for all three components of student engagement.

The National Survey of Student Engagement (NSSE) was developed from the College Student Experiences Questionnaire (CSEQ) to measure college-aged student engagement (Kuh, 2009), yet several measures of student engagement at the primary and secondary school level have been based on the NSSE (Fredricks & McColskey, 2012).
The High School Survey of Student Engagement (HSSSE) is derived from the NSSE and was developed to collect data on the view of high school students in relation to their schoolwork, school learning environment, and interactions with school community (Fredricks & McColskey, 2012; Yazzie-Mintz, 2007). The student engagement construct measured by the HSSE includes all three components of student engagement.

The Motivation and Engagement Survey (MES) and the Student Engagement Instrument (SEI) also encompass the three components of student engagement, as well as a measure of disengagement. The MES is a self-report measure that was developed for informing instruction and interventions by identifying students who are at risk for low motivation and engagement (Fredricks & McColskey, 2012).

SEI was originally developed for the measurement of middle school and high school affective and cognitive engagement. The SEI was then adapted for elementary aged students to create the Student Engagement Instrument- Elementary Version (SEI-E). The SEI-E was developed for third through fifth grade students to expand the research with student engagement longitudinally and to attempt the early identification of students at risk for disengagement and high school dropout (Appleton et al., 2006).

Table 2 provides information about participants, measure type with number of items, components of student engagement measured, subscales, and reliability/validity of the most frequently used measures of student engagement. All of the measures listed in Table 2 are self-report surveys and questionnaires that were developed using item response theory.
Table 2

Current Measures of Student Engagement, Sample Components, and Reliability and Validity Estimates

<table>
<thead>
<tr>
<th>Measure</th>
<th>Participants</th>
<th>Measure Type (# of items)</th>
<th>Components of Student Engagement Measured</th>
<th>Subscales</th>
<th>Reliability and Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Survey of Student Engagement (NSSE)</td>
<td>College Students</td>
<td>Self-Report Survey (~75+)</td>
<td>Not intended to measure three components of student engagement but engagement in general in relation to college outcomes.</td>
<td>• Student behaviors • Institutional actions and requirement • Reactions to college • Student background info • Student learning development</td>
<td>Internal Consistency Cronbach’s alpha 0.81 to 0.91</td>
</tr>
<tr>
<td>Student Engagement Instrument (SEI) and Elementary Version (SEI-E)</td>
<td>SEI - Middle school and high school students</td>
<td>Self-Report Survey (35)</td>
<td>Affective</td>
<td>SEI- 6 subscales</td>
<td>Test-retest interrater reliability Cronbach’s alpha 0.60 to 0.62</td>
</tr>
<tr>
<td></td>
<td>SEI-E – Elementary students</td>
<td>Self-Report Survey (33)</td>
<td>Cognitive</td>
<td>SEI- 5 subscales</td>
<td></td>
</tr>
</tbody>
</table>

31
Analysis validity for 6 scales SEI and 5 scales SEI-E

<table>
<thead>
<tr>
<th>High School Survey of Student Engagement</th>
<th>High School Self-Report Survey (121)</th>
<th>Behavioral</th>
<th>Cognitive/intelligent/academic engagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation and Engagement Survey (MES)</td>
<td>Middle School Self-Report Survey (44)</td>
<td>Behavioral Affective Cognitive</td>
<td>Social/behavioral/participatory engagement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Emotional engagement subscales</td>
</tr>
</tbody>
</table>

Test-retest interrater reliability Cronbach’s alpha

- 0.61 to 0.81
- Internal Consistency Cronbach’s alpha

- 0.70 to 0.87

Measurement Development

Student engagement self-report surveys and questionnaires are sometimes developed and validated using item response theory. Item response theory was used in the development of this researcher’s measure of online student engagement for grades 3 through 8. The items all consisted of recorded online student behaviors, which are
continuous variables. These online student behaviors, like human behaviors in general, can range on a continuum. The distribution of values on this continuum was the guide for fitting the items into an item response model.

Item Response Theory

Latent trait theory focuses on the use of observed variables to measure a complex trait or ability that cannot be directly measured or observed, such as online student engagement for grades 3 through 8. Latent trait theory began with Ferguson’s 1942 normal ogive item characteristic function for items with dichotomous responses, which was supported by the 1943 work of Lawley (Bejar, 1977). Latent trait theory expanded to the measurement of attitude with the work of Lord (1952) and Lazarsfeld (1959). Now latent trait theory is termed item response theory and encompasses different models for unique item types. Bejar (1977) notes that “latent trait theory characterizes testees’ (participants’) trait levels by their position on a continuum, denoted by θ, which is assumed to be $-\infty < \theta < \infty$” (p. 510). Researchers primarily use item response theory to develop, evaluate, and validate their measures of complex human behaviors, emotions, and abilities.

Item response theory (IRT) is a set of non-linear models that give each participant an ability estimate (θ) on an interval scale instead of an ability estimate based on an overall test score. The raw score transformation to an interval scale (θ) is the main advantage of using IRT over the classical test theory models that were used prior to IRT. An additional benefit gained by using IRT instead of its classical test theory (CTT)
predecessor is its sample-free characteristic as well as capability to create a measure from the item level instead of at the test level. The person ability and item difficulty logit positions that are calculated using IRT are test independent (sample-free) probabilities that place items and participants on the same measurement continuum.

The measure continuum of item response theory models is based on estimates of item difficulty and person ability, a process called parameterization. Parameterization specifics are based on the type of item response model utilized and produce a more accurate estimate of the latent construct than an overall score.

Using IRT this study’s measure continuum consisted of all items and all subscales with each subscale having its own measure continuum. Research focused on multidimensional latent constructs has additional challenges. Bond and Fox (2007) remind researchers

“we are all aware that the complexity of human existence can never be satisfactorily expressed as one score on any test. We can, however, develop some useful quantitative estimates of some human attributes, but we can do that only for one attribute at a time” (p. 33)

All of the student engagement measures previously reviewed used self-report data collection methods followed by either factor analysis or item response theory analysis for measure construction and evaluation. Both factor analysis and item response theory are useful in grouping items to measure a latent construct or ability. Factor analysis constructs a measure continuum that yields participants’ test-based ability scores. The lack of sample-free ability scores means that the results of factor analysis can
change with every data set used and hence a reusable measure is not formed (Wright, 1996). On the other hand, item response theory results in a measure continuum that is more stable with changing samples, or sample-free. Item response theory can generate a consistent, usable measure while factor analysis cannot (Wright, 1996). According to Bond and Fox (2007), “This (factor analysis’) dependence on sample-dependent correlations, without analysis of fit or standard errors, severely limits the utility of factor analysis results” (p. 252). Instead of using factor analysis to develop a measure, an item response theory model is used to develop a measure that produces both item difficulty and person ability estimates.

IRT was the preferred method of measure development for the current study but results are still contingent on the quality of items in the measure.

Items

IRT models differ by the type of items they accommodate to create the measure continuum. If items have only two possible responses, such as True/False or Yes/No, a dichotomous response model is employed for measure development (Ostini, Finkelman, & Nering, 2015). For multiple choice questions that have more than two options but are still ordinal in nature, a polytomous model is used in measure development (Ostini et al., 2015).

Whether dichotomous items or ordinal items, types of items are not only pertinent to selecting an item response model for measure development the measure but are also important in increasing the accuracy of person ability and item difficulty
estimations. As more items are placed along the measure continuum, the range of person ability levels identified generally increases and the estimation error between participants’ true ability and estimated ability decreases (Bond & Fox, 2007). Likewise, as the range of person ability increases, then the accuracy of estimation of item difficulty also increases (Bond & Fox). Increasing the number of items and number of person abilities along the measurement continuum means that there are more possible patterns of responses which can generate more accurate measurement of the latent construct (Boone, Staver, & Yale, 2014). It is the goal of researchers to fashion a measurement continuum that is able to clearly distinguish between both the extreme low and extreme high levels of the construct/ability of measure but also those levels that are in the mid-range (Boone et al., 2014). The items should be carefully selected to create the measure continuum that will be useful with a wide range of ability levels. If a theoretical foundation is used to select items, the ability levels will be estimated based on the theory. Without a strong theoretical foundation, a pragmatic viewpoint can be used to select items based on perspective participant abilities (Boone et al.).

The items for the measure of online student engagement for grades 3 through 8 were selected using both a theoretical foundation of the three components of student engagement—behavioral, affective and cognitive—as well as from a pragmatic viewpoint of participant ability along with the malleability of items. Student engagement is considered to be malleable (Fredricks, 2004), so malleable items were included in the measurement of student engagement. The items selected to measure the behavioral engagement component of the online student engagement measure are most malleable,
followed by the items selected to measure the affective engagement component of online student engagement. While somewhat malleable, the items selected to measure the cognitive engagement component are more rigid in that they rely on other items, such as those used to measure behavioral engagement and affective engagement, to change. Yet by creating a measure of online student engagement that consists of mostly malleable items, tools and resources to influence the level of online student engagement can be developed in the future for use by practitioners (teachers and schools) in the field.

The items selected, regardless of whether they are continuous behaviors or data collected from a survey/questionnaire, establish the foundation for the IRT model to be used in measure development.

Item Response Model Selection

Once items are written and/or selected, a researcher can determine which item response model to use in order to develop the measure. While dichotomous models use items that have only two possible responses per item, polytomous models work with items that have multiple categorical responses for each item. Different polytomous models take into consideration the scale of each item and how items fit together to encompass the measure (Ostini et al., 2015). The graded response model and the partial credit model are two polytomous item response models. Both of these polytomous models work with items that have multiple categorical response scales. With the use of either the graded response model or the partial credit model, parameter estimation takes into account that the items have more than two ordinal categories (J. G. Baker, Rounds,
& Zevon, 2000). Yet the graded response model assumes that all items have the same ordinal category scale (Ostini et al., 2015). Alternatively, the partial credit model takes items having different scales into account when parameter estimates are calculated.

Although the theory behind the continuous response model is that it will increase the accuracy of the measure by increasing the possible response patterns, this theory has only been substantiated by limited previous research (Zopluoglu, 2013). In addition, not enough research has been done with the continuous response model to establish ranges of parameter estimates that would support the accuracy of the measure (Zopluoglu). Lastly, while the graded response model and the partial credit model are available in software commonly used for item response theory, continuous response model measures would need to be developed in a different software package that has yet to be validated (Zopluoglu). Therefore, the model used in this work was the partial credit Rasch model.

Following continuous data being transformed into items with categorical response scales, the items can now be entered into a polytomous response model for this study the partial credit Rasch model for parameterization. The parameterization process consists of the estimation of item difficulty and the estimation of person ability. The estimate of item difficulty is the probability that a person at each ability level (student engagement level) will get the item correct or exhibit the item in sufficient quantity. The estimate of person ability is the probability that a person will get each item correct or exhibit the level of the item associated with that item in sufficient quantity. Bond and Fox (2007) explain this process as “the response probability for any person n attempting any item I is a function
of the difference between the ability of the person \((B_n)\) and the difficulty of the item \((D_i)\)” (p. 48). Both the item difficulty estimates and the person ability estimates are on a logit scale and they are placed on the measurement continuum.

Once the item difficulty logits and the person ability logits are reflected on the measurement continuum, then it is important to evaluate the item locations. There should be items that measure each potential level of person ability and items should increase in difficulty (level of student engagement) as they go up the scale. If the hypothesis is that behavioral engagement items are the lowest levels of student engagement, followed by affective engagement items, and the highest levels of student engagement measured by cognitive engagement items holds, empirical item order would support or not support the hypothesis. At this point in the research study the researcher diagnoses whether additional items should be added, if there are gaps in the measurement continuum, or items removed if there is too much overlap of items at a particular level of ability (student engagement). The selection of items is pertinent and greatly affects not only the accuracy of the measure but also reduces the amount of time necessary to fine tune it.

Psychometric Quality Indicators

During measure development and after the measure is constructed, the following psychometric quality indicators must be met adequately for the measure to show evidence of reliability and validity (Bond & Fox, 2007). A glossary of the numerous terms specific to the Rasch model and to evaluation of items and scale use is found as Appendix A.

- Dimensionality
• Scale Use
• Fit
• Invariance
• Reliability and Separation

There is a circular relationship between dimensionality, scale use, item fit, and person fit. As a measure is created using IRT, any change to improve one or more of these indices must be followed by the re-examination of them all. The goal of measure development is to create a unidimensional measure with support for reliability and validity made up of items that cover the array of person abilities and have scales that clearly contribute to the measurement continuum. Using IRT models, this is done by taking into consideration the cyclical relationship between the psychometric quality indicators.

Dimensionality

Dimensionality is a key assumption of IRT models that ensures only one ability, trait or construct is measured at a time (Bond & Fox, 2007). Similar to other IRT models, the partial credit model requires a unidimensional construct as the focus of the measure, meaning that all the items included in the measure contribute to a single construct.

However, it is possible to have multiple scales, such as the three components of student engagement, as part of a larger measure but each scale needs to meet the unidimensionality assumption. The measure was first evaluated for dimensionality with all items included in one measure. This is the most parsimonious model (Bond & Fox,
2007), but if this model is found to contain more than one scale then items would need to be separated into different scales and dimensionality re-assessed for each scale individually (Bond & Fox, 2007). Multiple dimensions were identified through the number of potential “contrasts” listed with the dimensionality results for the parsimonious model.

The dimensionality of a measure is investigated using the principal components analysis of residuals (PCAR) (Bond & Fox, 2007; Boone et al., 2014), specifically the raw variance explained by the measure, residual variance explained by the first contrast (or a potential second factor), and the variance explained by the first contrast. Along with the residual variance due to a first contrast, the variance between the person abilities and item difficulties contribute to the determination of dimensionality. PCAR was used to evaluate the variance of the person and item logit positions not explained by the measure. If the measure is not unidimensional there are several adjustments that can be made to reach the unidimensionality expectation aside from seeking a second dimension in the data.

In order to reach unidimensionality, items can be removed from the measure that are found to measure a construct other than the main construct or items’ scales can be adjusted to better fit the measure continuum of the latent construct measurement.

Scale Use

One of the adjustments that can be made to help determine if unidimensionality is feasible is modifying item response scale use (Bond & Fox, 2007; Boone et al., 2014).
Scale use interpretation is two-fold in that it is both how the measurement continuum is designed as well as the use of the item response scales by participants.

For many IRT models, all the items have the same scale. The item scale use is scrutinized for ordered categories so that each category measures a particular ability level of participants on an individual item. Similar to the overall measurement continuum, each item’s scale should measure a range of possible ability levels at the item level. Item categories can be reordered or collapsed as needed to achieve appropriate use of the rating scale.

For items with a continuous response scale, the number of response categories can be increased until no positive change in measurement properties is noted. When an item’s scale categories are changed, the dimensionality of the measure is reassessed after each change (Bond & Fox, 2007; Boone et al., 2014).

The measurement continuum can be examined to ensure that the items are measuring different ability levels along the continuum. If there is a gap in the measurement continuum, in that some participants at a particular level do not have an item to measure their ability level, then an item may need to be added to the measure to fill the measurement continuum scale (Bond & Fox, 2007). If this is done, then the measure would need to be re-administered for re-evaluation. This is not an ideal solution for the researcher, so item scale use along with person and item fit should be manipulated to meet dimensionality and measurement continuum goals prior to adding items to the measure (Boone et al., 2014). Similarly, if there are multiple items at any location on the
measurement continuum, items with worse fit may be removed, improving overall fit and unidimensionality, without loss of measurement precision.

Fit: Model, Item, and Person

Once the dimensionality of the measure is established it is important to evaluate the fit of the model, together with person fit and item fit. Model fit is evaluated using the root mean square error (RMSE). RMSE is calculated using the estimates of person fit and item fit. The model fit indices can give clues when there are problems with the fit of the data to the model but it is person fit and item fit that give the most information in order to make adjustments to improve overall model fit.

The process of estimating the fit of person ability and item difficulty to the model is done in two steps: (1) calibration of person abilities and item difficulties, and (2) estimation of fit (Linacre, 2002; Masters, 1982). The person fit and item fit examines the pattern of actual scores versus the pattern of expected scores. The statistics used to determine the quality of fit are infit and outfit. The unstandardized form of infit and outfit, for both person and item, is the mean square statistic. Wright (1994) suggests that acceptable mean square item infit/outfit will fall between 0.7 and 1.4, with values over 1.0 being considered underfit, while values below 1.0 are overfit.

Underfit is noisy or unpredictable item and/or person performances which disrupt the predictive nature of IRT models. Overfit is “too good to be true” item and person performances which can give a false sense of reaching ideal fit. Yet a model that exhibits overfit mean square person and item infit/outfit values is better than a model dominated
by underfit. While overfitting can be remedied with a larger or more variable sample, underfitting degrades the quality of the measure and is not easily remedied (Bond & Fox, 2007). If an infit/outfit value of 1.0 indicates a perfect model fit then underfit indicates that there is more variance than expected while overfit indicates that there is less randomness than expected. Neither the presence of overfit or underfit is ideal, yet overfit would be preferred to underfit.

When specific items and/or persons are identified as misfitting, the researcher must examine if the item(s) or person(s) need to be removed from the measure. These ill-fitting items and persons are identified using fit indices. Misfit is the identification of instances when items and or persons are not functioning as expected (Boone et al., 2014). In the case of misfit, the estimates of the item difficulty and person ability are not a good representation of the data (Bond & Fox, 2007). As the sample size increases, the identification of misfit can become convoluted. As Bond and Fox (2007) shared in their communication with Margaret Wu (2004),

If we use mean-square fit values to set criteria for accepting or rejecting items on the basis of fit, we are likely to declare what all items fit well when the sample size is large enough. On the other hand, if we set limits to fit t values as a criterion for detecting misfit, we are likely to reject most items when the sample is large enough. (p. 24)

In addition to misfit, the invariance of the measure should also be tested to ensure both items and persons fit the measurement scale and the measurement continuum is accurately determining ability levels.
Invariance

An invariant item is one that does not change in difficulty when presented to different person groups. To test item parameter invariance, a differential item function (DIF) statistic is used. The DIF test identifies item bias by comparing the responses of different person groups, such as student ethnicity groups. If it is found that there is a statistically significant ($\alpha = 0.01$) DIF statistic between two groups on a particular item then the effect size must be evaluated to know the extent of the difference. An item with a statistically significant DIF statistic with a DIF contrast value greater than 0.64 does not meet invariance requirements. If an item is found to have statistically significant DIF, then the item bias would be addressed by either replacing the item with a less biased item, or removing the item from the measure.

Reliability/Validity and Separation

Reliability and validity must be evaluated for a newly developed measure. While reliability indicates that the measure consistently measures ability levels, validity suggests that it is measuring what it was intended to measure. Yet you cannot have validity without reliability, therefore reliability is tested first, followed by validity.

Measures can be found to be reliable in a number of different ways. The three most common tests for reliability are test-retest, alternate form and internal consistency (Boone et al., 2014). Test-retest uses the measure to test the same population multiple times to ensure that the same participants receive relatively the same scores each time the
measure is administered. With many measures the first time a participant completes the measure affects subsequent times they take the measure, this introduces bias into the test for reliability. Alternate forms use multiple versions of a test to check that similar levels of ability are measured with either form. And internal consistency “is based on the average correlation among the items of an instrument” (Boone et al., 2014, p. 223). Coefficient alpha is typically reported to show the consistency of the relationship between items. All three of these forms of reliability would in most cases use a correlation or Cronbach’s alpha to assess reliability, yet these indices and the reliability tests that use these indices are linear while the IRT models are inherently nonlinear (Boone et al., 2014).

Linacre (2015) has established nonlinear indices within the IRT software Winsteps that can be used to establish reliability of a developed or developing measure. Winsteps provides person reliability, item reliability, and separation indices. All of these indices consider reliability as the consistency of the measure to establish ability levels of persons and difficulty levels of the items.

Person reliability indices evaluate the likelihood of a person getting the same ability level every time the measure or any form of the measure is used; the measure accurately and consistently measures the level of ability of persons. Similarly, item reliability indices evaluate the consistency of the item difficulty remaining the same when different participants complete the measure. Both person reliability and item reliability require that there is a full range of person abilities, low to high, and item difficulties
included in the measure development process. Boone et al. (2014) detail how person
reliability indices should be interpreted: [P]erson reliability” can be interpreted similarly
to more traditional reliability indices in classical test theory (i.e., KR-20 and Cronbach’s
alpha; Linacre 2012). Meaning that values closer to 1 indicate a more internally
consistent measure. (p. 222)

Both person reliability and item reliability are supported by separation indices.
Person separation and item separation evaluate the level of noise (inconsistent results) in
relation to the level of signal (consistent results). The separation coefficient is “the square
root value of the ratio between the true person variance and the error variance” (Boone et
al., 2014, p. 222). With the addition of the separation indices both person reliability and
item reliability can be determined. Once reliability has been shown to meet expectations,
the validity of the measure can be tested.
Chapter 2: Method

The purpose of this research study was to use tracked student online behaviors as items in the development of an online student engagement measure for grades 3 through 8. The research question and hypotheses of this study guided the development of the measure as well as acted as the foundation for future research in the area of K-12 online student engagement.

Research Question: Does a measure of online student engagement for grades 3 through 8 comprised of continuous online student behavior items and scaled using a polytomous Rasch partial credit model meet the expectations of dimensionality, model fit, item fit, construct reliability, and construct validity?

Hypothesis 1: The online student engagement measure for grades 3 through 8 encompasses three dimensions of student engagement—behavioral, affective, and cognitive—displaying fit statistics that support a three-factor model over a one-factor model for the overall measure of Online student engagement for grades 3 through 8.
Hypothesis 2: The online student engagement measure for grades 3 through 8 is invariant across student special education status and grade level.

Hypothesis 3: The online student engagement measure for grades 3 through 8 displays statistically significant positive correlations with academic achievement for any subscales that comprise the measure.

State assessment scores normalized across states and grades were used as outcome variables for the measure as a whole, measure subscales, and individual measure items. The outcome variables are the only variables not collected from the learning management system that houses both student performance data and student behavior data for the online learning environment. The outcome variables are stored in a separate database and were added to the dataset containing the student performance data and student behavior data.

The expectation was that this research study would produce a measure of online student engagement for grades 3 through 8 that can be utilized in future research and as a model for similar measures of latent constructs.

Participants

All of the participants in this study were in grades 3 through 8 during the 2013-2014 school-year and completed state required assessments in math and reading. In addition, all of these student participants started and completed the 2013-2014 school-
year in an online charter school, where all the curriculum/content along and all student-teacher interactions takes place in an online learning environment.

Online charter schools are public charter schools that are funded primarily through state and school district funding while offering a public education in an online learning environment. Similar to other public charter schools, online charter schools offer an alternative to traditional public education. Online charter schools are required to meet the same standards and expectations as other public schools, including satisfactory results in annual state assessments. The results of these annual state assessments are used to evaluate all public schools and teachers, including online charter schools and their teachers.

In the online education industry it is important to note that there is a difference between the online charter school and the company that supplies curriculum and school management services. The Keeping Pace Report, produced by the Evergreen Education Group, defines online learning suppliers as:

entities that provide online and digital learning products and services to schools, and sometimes directly to students, but usually coordinated and monitored by the school. A supplier is not responsible for a student’s academic activity and performance and is not authorized to do so (Watson, 2015, p. 8)

An online learning supplier is a support entity for the online charter schools. Yet the responsibility of meeting district and state standards is solely the responsibility of the school. The relationship between schools and suppliers in the online learning environment creates a unique dynamic for online educational research. The sample used
for this research study was supplied by an online learning supplier and is typical of the online charter school population in terms of demographics and student group representativeness.

The online learning environment is a subpopulation to the population of all students in grades 3 through 8. Ideally students in the online learning environment would be compared to the population as a whole or compared to another subpopulation within the same population but data is not available to make this comparison. Therefore, the online learning environment is considered the population for this research study.

All participants in the provided sample had demographic variables that designated socioeconomic status (FRL), whether they were part of the general education or special education program (SPED), and how long they had attended school in an online setting (Number of Years at Same Online School). These demographic variables were in addition to the general demographic variables of sex, ethnicity, and grade. Table 3 displays percentages for demographic variables for those participants included in both of the two randomly selected datasets used in this research study.

The final dataset had approximately 20,000 online students in grades 3 through 8 from approximately 32 schools. Table 3 displays percentages of demographic variables for those participants included in both randomly selected datasets of 10,000 students each used for this research study. It should be noted that the final datasets used were randomly selected from the 10,000 student datasets and included 5,000 students in the Grades 3 to 5 grade segment and 5,000 students in the Grades 6 to 8 grade segment. This change in
method became necessary when grade segments had to be examined for measure
development separately.

Table 3
Description of Participants’ Demographic Background

<table>
<thead>
<tr>
<th>Demographic</th>
<th>Dataset Sample 1</th>
<th>Dataset Sample 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Size</td>
<td>n = 10,000</td>
<td>n = 10,000</td>
</tr>
<tr>
<td>Special Education (SPED)</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>• Students Receiving SPED services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socioeconomic Status (FRL)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Receive Free or Reduced Priced Lunch</td>
<td>65%</td>
<td>Receive Free or Reduced Priced Lunch 65%</td>
</tr>
<tr>
<td>• Not Qualified for Free or Reduced Priced Lunch</td>
<td>34%</td>
<td>Not Qualified for Free or Reduced Priced Lunch 34%</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 3rd Grade</td>
<td>17%</td>
<td>18%</td>
</tr>
<tr>
<td>• 4th Grade</td>
<td>10%</td>
<td>9%</td>
</tr>
<tr>
<td>• 5th Grade</td>
<td>24%</td>
<td>24%</td>
</tr>
<tr>
<td>• 6th Grade</td>
<td>9%</td>
<td>10%</td>
</tr>
<tr>
<td>• 7th Grade</td>
<td>13%</td>
<td>14%</td>
</tr>
<tr>
<td>• 8th Grade</td>
<td>27%</td>
<td>26%</td>
</tr>
<tr>
<td>Grade Level</td>
<td>Elementary (Grades 3-5)</td>
<td>Elementary (Grades 3-5) 50%</td>
</tr>
<tr>
<td>• Elementary (Grades 3-5)</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>• Middle (Grades 6-8)</td>
<td>Middle (Grades 6-8) 50%</td>
<td>Middle (Grades 6-8) 50%</td>
</tr>
<tr>
<td>Number of Years at Same Online School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• First Year</td>
<td>37%</td>
<td>37%</td>
</tr>
<tr>
<td>• 1 year less than 2 years</td>
<td>28%</td>
<td>29%</td>
</tr>
<tr>
<td>• 2 years less than 3 years</td>
<td>17%</td>
<td>16%</td>
</tr>
</tbody>
</table>
The following process was followed for this research study to ensure the customary requirements for measure development, measure reliability/validity, and measure invariance are met.

1. Selection of Items
2. Splitting of the dataset
3. Outcome Variables
 a. Normalizing State Test Scores
4. Screening of Data and Data Patterns
 a. Missing Data
 b. Multicollinearity
 c. Clustering
 d. Nesting Effects
5. Inverted U Relationships
6. Strong and Weak Indicators
7. Establishment of Measurement Core
8. Polytomous Model- Partial Credit Model
Selection of items

Similar to the process of question writing when a survey/questionnaire is constructed for measurement of a latent construct, the items for the measure of online student engagement for grades 3 through 8 were selected based on their representativeness of the measure objective and sub-objective. The overarching measurement objective was to establish a level of online student engagement for grades 3 through 8 using online student behaviors as indicators. This overarching objective was for each of the components of student engagement to be included in the measure continuum: behavioral engagement, affective engagement, and cognitive engagement. The measure objective and sub-objectives are outlined with potential items in Table 4.

Table 4
Online Student Engagement for Grades 3 through 8 Measure Objective and Sub-Objectives

<table>
<thead>
<tr>
<th>Component of Online student engagement for grades 3 through 8</th>
<th>Sub-Objective</th>
<th>Potential Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral Engagement</td>
<td>Gain access to the curriculum to be learned</td>
<td>Time in course, Course logins, Progress in course, Attendance, Practice session logins, Ratio Time in course and Progress in course</td>
</tr>
<tr>
<td>Affective</td>
<td>Quantify the</td>
<td>Internal emails from student</td>
</tr>
</tbody>
</table>

Measure Objective

Establish a level of online student engagement for grades 3 through 8 using online student behaviors as indicators.
Items were also selected so that they represent items from surveys of student engagement, yet reduce the potential for bias as they were based on information recorded by the learning management system. In addition to the inconvenience of using self-report data collection methods, the potential bias from participants and selection bias would be increased due to participants being solely contacted through online avenues. Therefore the use of online student behavior data from the learning management system can potentially reduce bias. Selection bias was decreased with all participants being included in the sample. Participant bias was reduced through the elimination of self-report items thus eliminating dishonest answers due to administration by an authority figure. Lastly, by collecting the online student behaviors from all students who participate in courses.
housed in the learning management system, there was an increase in sample size which assists in the construction of a measure continuum for online student engagement.

Following the aggregation of the data into one row per student per subject area (math and English/language arts), each row of data was converted to a column representing the variable to be used as an item in measure development. Once each student had only one row of items, where only one item was represented by a column, final preparations of the dataset for creation of the measure could be done.

For this research, the measure of online student engagement for grades 3 through 8 used continuous online student behaviors with a partial credit Rasch model to parameterize the estimates. This means that all of the continuous online student behavior items were categorized to fit the partial credit model.

Splitting of the dataset

It was expected that the dataset for this research study would include data for approximately 20,000 K-12 online students. Instead of using this very large dataset for the development of the measure, two smaller randomly selected datasets of approximately 5,000 students were generated using IBM SPSS random sample function. These smaller datasets were then used to develop the measure of online student engagement for grades 3 through 8 using a partial credit model, test the measure using the partial credit Rasch model, confirm the measure structure with confirmatory factor analysis and validate the measure by correlation with academic achievement scores in math and reading.
Outcomes

Researchers have established the relationship between student engagement and academic achievement (Hattie, 2009). To ensure that this relationship was present in these data, academic achievement outcomes were collected. All students in grades 3 through 8 are required to take state tests each year to confirm students are meeting state and federal standards of academic achievement. Yet all states have different state tests with different score scales and different proficiency cut score expectations. For this reason, all state test scores were normalized/standardized in order to be compared and considered the same measure of academic achievement.

Normalizing state test scores.

The process of normalizing/standardizing the state test scores is a similar process to the calculation of z scores. Z scores begin with all scores being centered using the population/sample mean then dividing by the population/sample standard deviation. Z scores are essentially the number of standard deviations each original score is from the mean.

\[
\frac{\text{Original score} - \text{Mean}}{\text{Standard Deviation}} = Z \text{ score} \tag{1}
\]
In contrast to z scores, the normalization/standardization process for this research study substituted each state’s proficiency cut score by grade for the mean in the z score calculation. Thus original state test scores were first centered using the state proficiency cut score by grade and then divided by the population/sample standard deviation. The population/sample standard deviation was calculated using the range rule of thumb. The range rule of thumb states that any standard deviation can be calculated by subtracting the minimum possible score from the maximum possible score and dividing by four (Ramirez & Cox, 2012).

\[
\text{Standard Deviation} = \frac{\text{maximum value} - \text{minimum value}}{4} \tag{2}
\]

\[
\frac{\text{OSTS} - \text{SSPCSG}}{\text{Standard Deviation}} = \text{Normalized State Test Score} \tag{3}
\]

Where OSTS = Original State Test Score

SSPCSG = State Specific Proficiency Cut Score by Grade

The standard deviation was calculated in this way because the true population standard deviation is unable to be calculated without each state population’s full set of state test scores. States do not provide this full dataset nor do they provide a state population standard deviation. The calculation of standard deviations using the range rule
of thumb could increase the variability of the normalized/standardized scores but is the most accurate value without the state population data or standard deviation value.

In this manner each original state test score becomes the number of standard deviations away from proficiency. Since proficiency is the academic achievement expectation for the state it is a representative statistic for academic achievement. The normalization of state test scores does not take into consideration differing levels of test difficulty by state.

Screening of data and data patterns

Missing data

While Rasch analysis does not require the removal or imputation of missing data for stable estimate calculations it is important to understand missingness in the dataset, especially when using structural equation modeling for structure confirmation. By understanding missing data and the patterns of missing data the consequences of the options in dealing with missing data, including doing nothing at all, can be considered.

In this dataset from online students in grades 3 through 8, it was expected that there would be a high number of missing data points across all variables, with some students missing all item values besides demographic items (SPED, FRL, number of years in online school). Yet in understanding how the online student behavior items combine to measure higher levels of student engagement, the students who are missing all item values are the true disengaged student, the lowest point on the measure
continuum. For this reason imputation was not an option because in shifting the zero or disengaged level it would not be a true representation of the behaviors of online students that contribute to their student engagement level.

The IBM SPSS Missing Values Analyzer was used to analyze the patterns of missing data in the first randomly selected sample of approximately 5,000 students.

Since items are student behaviors and not survey/questionnaire items, it is expected that many of the items would likely have large amounts of missing data. Students who were missing all online student behavior item values were kept in both datasets as the 100% disengaged (lowest point of measurement continuum) student.

Multicollinearity

Multicollinearity exists when independent variables are highly related to each other. If unresolved, multicollinearity inflates error terms and weaken analyses performed by including redundant information.

Multicollinearity was assessed using a bivariate correlation matrix. A statistically significant correlation with a correlation coefficient equal to or greater than 0.9 was identified as a multicollinear pair of items. If multicollinearity was identified, one item/variable in the multicollinear pair of items was removed and multicollinearity reassessed. Multicollinearity checks were performed using each of the random samples of 5,000 students each so item removals could be checked for consistency between random samples.
Clustering

The items selected for this measure were chosen based on overall measure objective and subscale measure objectives. The clustering effect of the items helps to confirm or disconfirm the grouping of these items. A principal components analysis (PCA) was conducted using all items remaining after multicollinearity checks and removal of items. A scree plot and eigenvalue evaluations with a parallel analysis were used to determine the number of factors that represented by the items of the measure. In addition, the grouping of items was further examined and documented for use in measure development.

The expectation was that items selected for each of the components of student engagement – behavioral engagement, affective engagement, and cognitive engagement – would group together appropriately. If any of the components were left with minimal (less than 3) items then the combination of component items was examined.

If it was found that all the items could not be included together in one measure (there are subscales of the measure) then the results of the PCA were used to separate subscales and continue measure development.

Nested Effects

Educational data is naturally nested since students occupy classrooms and classrooms are in schools. Each of the randomly selected data sets of 5000 students was
examined for nesting effects of schools. This analysis examined whether simply being in a particular school accounted for a large portion of the variance in outcome variables.

Outcome variables used in this assessment were the math normalized state test score and the reading normalized state test score. HLM7 Student edition was used to examine nesting effects by school. Each of the outcome variables was examined in a hierarchical linear model that had no level I or level II predictors: the null model. For each of these models the intraclass correlation (ICC, Equation 4) was calculated using the between school variance and total variance. If the ICC was less than 0.1 or 10% of variance explained then the nesting effect of schools was considered negligible.

\[\text{Intraclass Correlation (ICC)} = \frac{\text{Between Group Variance}}{\text{Total Variance}} = \frac{\tau}{\sigma^2 + \tau} \quad (4) \]

Inverted U relationships

Once state test scores are normalized/standardized, the relationship between outcomes (academic achievement) and measure items can be examined. The identification of inverted U relationships between outcomes and items was important since any item that has an inverted U relationship with an outcome variable should be split into two items instead of simply mentioned as one item.

While most outcome-item relationships were anticipated to be linear, inverted U relationships have different linear relationships on either side of the middle term of the outcome, in this case “proficiency.” An inverted U relationship is a quadratic relationship
where there is a statistically significant positive slope for the lower outcome values while there is a statistically significant negative slope for higher outcome values, with a peaking turning point connecting these two slopes. To identify inverted U relationships a process used in economics, proposed by Hirschberg and Lye (2005) was used. This process states that inverted U relationships meet the following three requirements:

1. The slope of the squared independent variable/item is significant and negative
2. The slope at the lowest variable/item value is positive and significant while the slope at the highest variable/item value is negative and significant
3. The turning point (first derivative of the regression equation) and its calculated 95% confidence interval are well within the data range of the variable/item

When an item has an inverted U relationship with the outcome variable, it is split into a low end variable and a high end variable, where each student would have a value on one item or the other, but not both. Consequently, a student who has a negative normalized/standardized score would use the low end of the item, while a student who has a positive normalize/standardized outcome would use the high end of the item. These low end and high end items were individually scaled based on the linear relationship with the outcome variable.

Strong and weak indicators

In addition to the identification of inverted U relationships, the relationships between academic achievement outcomes and items were used to identify strong and weak indicators. The identification of strong and weak indicators was important in the
process of putting the continuous items into categories for measure development using a polytomous partial credit Rasch model.

Weak indicators are those items that have a weak relationship with outcome variables as identified by a statistically significant correlation coefficient (r) that is less than 0.4 (Bobko, 2001). The process for transforming these weak indicators into categorical items from continuous items began with creating dichotomous variables with the split between categories at the mean value of the item. As each item’s scale use was reviewed (using item thresholds, observed average, and step structure described below) the two halves were split into additional categories until the item scale covered the measure continuum where it was most probable to occur.

Strong indicators are those that have a strong relationship with outcome variables as indicated through a statistically significant correlation coefficient (r) greater than 0.5 (Bobko, 2001). It was expected that strong indicator items contribute more to the measure continuum than weak indicator items. For this reason all strong indicator items were split into 101 (100 splits) category items. Through scale use analysis, categories were made larger or smaller to ensure the item response scale consistently contributed to the measure continuum. This categorization process ended when each category had a portion of the measure continuum where it was most probable to occur.

Once continuous items had been appropriately categorized based on their status as a weak or strong indicator item, the items were put into a polytomous model to fully develop the measure as a whole, starting with the measurement core.
Establishment of measurement core

The measurement core is the foundation from which an expanded measure can be built. For this research study, a measurement core first needed to be established before the measure could be fully realized. The measurement core was identified first through the use of strong and weak indicators where the strong indicators were assumed to be the best items for the measurement core, with weak indicator items added to the core one at a time to build up the measure. Theoretically, each component of student engagement (behavioral, affective and cognitive) had strong indicators to contribute to both the online student engagement measurement core and the component measurement core. If the identified strong indicators do not make a unidimensional measurement core or multiple unidimensional subscale measurement cores then all items would be included in the initial measure, excluding those removed for missing data concerns or multicollinearity.

Both techniques of measurement core development are essentially identifying a measurement core from no pre-established known measure of online student engagement. There is no clearly defined measure core or foundation for the measure because key online student engagement items have not been identified from the available continuous online student behavior variables. This means that in the process of measure development the online student behaviors that should be included in the measurement core needed to be identified as well. The measurement core items should relate to the outcome variables.
enough to be considered student engagement but should not relate enough to be considered academic achievement.

The process of measurement core development and measure development required many iterations through the Winsteps program, using a partial credit Rasch model. This process is usually used to establish construct validity of survey/questionnaire items, but in this case the process was used to build the measure from the core outward. The items that make up the measurement core should be items that explain a large (over 40%) amount of the variance in person ability (student engagement level) and increase the ability of student engagement to predict the variance in the academic achievement outcome variables.

The goal of this project was to build a measurement core that consists of items that were able to separate the student participants into at least two groups: engaged (high ability) and not engaged (low ability). Then the addition of more items fine-tuned the measurement continuum to split person ability (level of student engagement) into more levels which yield a finer gradient.

Polytomous measurement model: Partial credit Rasch model

A family of models has evolved to accommodate the development of measures and models of latent constructs, such as online student engagement for grades 3 through 8. Polytomous models are based on item response theory and accommodate items that have more than two categories. This research study used a partial credit Rasch model. The process of developing the measure was iterative. Items were categorized and
indicator statistics reviewed until an optimal categorization was reached for each item. [See Appendix A for a list and definitions of indicator statistics.] Items were rejected if they misfit the polytomous measurement model or if they failed invariance testing. Rejected items were removed from both of the datasets. Thus, the researcher conducted multiple runs through the data in order to develop the measure.

The partial credit Rasch model works with items that have multiple categorical responses (J. G. Baker et al., 2000). This model also allows for items to have different multiple category response scales. With the potential of a mix of strong and weak indicators, it was unlikely that all items would end the categorization process with the same response scales. According to (Ostini et al., 2015, p. 289),

A major distinction that applies only to polytomous IRT models pertains to the way that category boundaries within an item are modeled. Boundary locations can either be modeled across an item, in terms of cumulative category response (GRM-type models), or locally, with respect to adjacent category responses only (Rasch-type models).

The partial credit Rasch model (PCM) is a model which defines category boundaries by the probability of responding to adjacent categories. Since the PCM models each category boundary separately it allows for “more general parameterization for ordered polytomous items” (Ostini et al., 2015, p. 287). This further allows for specific objectivity which in turn allows for objective comparisons by estimating different people’s abilities independently (Ostini et al.). The mathematical form of the PCM (Equation 5) shows the model:
\[P_{jk}(\theta) = \frac{\exp \sum_{v=1}^{k} \theta - \delta_{jv}}{\sum_{c=1}^{m_j} \exp \sum_{v=1}^{c} \theta - \delta_{jv}} \] (5)

Where \(P_{jk}(\theta) \) = the probability of responding in category \(k \) of item \(j \)

\[\delta_{jv} = \text{the difficulty parameter for category boundary parameter } v \text{ of item } j \]

The partial credit model calculates the probability that a person will respond in a particular category for each item on the item’s response scale. These probabilities are calculated for each person in the sample for each item included in the measure. In addition, these probabilities are the basis for the parameter estimates produced by the partial credit model. This type of polytomous model is called an adjacent category model for the way parameters are calculated from the probabilities. The equation (Equation 6) used to calculate the parameters from the probabilities is as follows:

\[\log_e \left(\frac{P_{nijs}}{P_{ni(j-1)}} \right) = B_n - D_{ij} \] (6)

Where \(P_{nijs} \) = probability that person \(n \) is observed in category \(j \) of the response scale specific to item \(i \)

\(B_n = \) ability level of person \(n \)

\(D_{ij} = \) difficulty level of category \(j \) of item \(i \)
\[P_{ni(j-1)} = \text{probability that person } n \text{ is observed in category } j-1 \text{ (one category lower than category } j) \text{ of the response scale specific to item } i \]

The partial credit model was used since after the categorization process items were likely to have different rating scales and/or a mix of dichotomous and polytomous items.

Building the measure

Winsteps software was used, and is developed and maintained by Linacre (2016). Winsteps was used in both the establishment of each item’s rating scale and the development of the measure. While dimensionality, fit, and scale use were monitored throughout the item categorization process, invariance was checked only after the measure was initially built. Dimensionality is whether one or more latent constructs seem to underlie item responses and is assessed in the partial credit Rasch model with principal components analysis of residuals (PCAR) described below. Fit is assessed by several statistics and indicates whether the data fit the expectations of the partial credit Rasch model. Fit is assessed by mean square and standardized infit and outfit. Infit, or information-laden fit, is a weighted fit statistic based on a chi-square that weighs responses close to the person position more heavily than responses distant from the person position. Outfit, or outlier sensitive fit, is unweighted so extreme responses are more heavily weighted. Both person fit and item fit statistics are generated by the Winsteps software. Bond and Fox (2007) recommend that mean square fit values
between 0.6 and 1.4 indicate fitting items, while person fit values less than 3.0 indicate adequate fitting persons. Standardized fit values are affected by sample size, with large samples yielding large standardized fit values, and were not used in this study. Scale use indices are described below.

The initial use of Winsteps was in the categorization of the continuous online student behavior items followed by the development of the measure with the categorical items created.

Principal components analysis of residuals (PCAR) for the measure as a whole was used to assess the dimensionality of the measure (Linacre, 2015). This information was checked and results recorded after each change was made to any item to ensure that unidimensionality of the measure was maintained. PCAR is also used to identify the need to establish multiple scales. It was hypothesized that this measure may yield three scales, one for each type of student engagement—behavioral engagement, cognitive engagement, and affective engagement. Unidimensionality is tenable if, in a PCAR, the variance explained by the measure is approximately 40%, with a first contrast eigenvalue (an indicator of a possible second dimension) less than 2.0, and variance to the first contrast of less than 5% (Bond & Fox, 2007). A first contrast eigenvalue exceeding 2.0 indicates that item relationships to a potential second factor should be examined.

Item fit and person fit were registered both while items are being categorized and as the measure was being developed. Item fit, person fit, adjusted standard deviation, item separation, person separation, item reliability, and person reliability statistics were
monitored. These statistics are used to ensure that the measure continuum that is being built item by item is clearly representing persons’ abilities being measured, in this case level of student engagement. Adjusted standard deviation is the observed standard deviation adjusted for measurement error. The error standard deviation is calculated taking into account that as misfit increases, the error standard deviation inflates. Separation is then calculated by dividing the adjusted standard deviation by the error standard deviation, and represents the number of distant strata that can be identified in person ability by the measure (Bond & Fox, 2007; Boone et al., 2014). Person separation reliability and Cronbach’s alpha are based on the same concept; both calculate the amount of observed variance that is reproducible (Bond & Fox, 2007). Person separation reliability (R_p) uses the following formula (Formula 7):

$$R_p = \frac{SA_p^2}{SD_p^2}$$

Where $SA_p^2 = \text{adjusted person variability} = \text{Adjusted } SD^2$

$SD_p^2 = \text{total person variability} = \text{Observed } SD^2$

The resulting person separation reliability estimate has values ranging between zero and one (Masters, 1982). In addition, Cronbach’s alpha was calculated and monitored as well.

Along with dimensionality and fit, scale use were examined during both the item categorization process and the measure development process. Scale use was observed
item by item when rating scales for items were being developed and all items were observed once the initial measure was built. Threshold, observed average logit position and category probability curves were monitored. A display of the partial credit map distributions with persons and items displayed along the measure continuum was generated and reviewed. Threshold is the boundary of person ability and item difficulty that each category in an item’s response scale displays in relation to other categories. In other words, each category in an item’s response scale should have unique boundaries that represent a particular level of person ability and item difficulty. Observed average logit positions display the location of each item category, and its threshold, in relation to item difficulty and measure continuum. Examining the observed average logit position can expose how each item category contributes to the item difficulty as well as the measure continuum. The category probability curve of an item displays the observed average logit position and thresholds for each category of an item. On a category probability curve there should be little to no overlap in categories and no inversion of categories. Inversion, or disordering, in observed average or threshold indicates that the category is not functioning as intended. One resolution of category malfunction is collapsing the category with an adjacent category.

Once each item continuum was split into categories and the initial measure built, invariance was evaluated so either further adjustments could be made or items altered to meet invariance requirements. Invariance means that the items measure student engagement levels for different student groups in the same way, while misfit can threaten the invariance of an item or measure as a whole. Invariance was assessed using t-tests
evaluated at the < 0.01 significance level. Items were considered to fail invariance if \(p < 0.01 \) and the differential item function (DIF) contrast was greater than \(|.64| \) (Bond & Fox, 2007).

If any item was found to not meet the invariance requirements for a specific student group then the item would be altered, split into two or more items, or deleted to meet the invariance requirements. An item could be removed for not meeting invariance requirements but this option was avoided as much as possible throughout the measure development process.

Analyses Addressing Research Question and Hypotheses

Research Question: Does a measure of online student engagement for grades 3 through 8 comprised of continuous online student behavior items and scaled using a polytomous Rasch partial credit model meet the expectations of dimensionality, model fit, item fit, construct reliability, and construct validity?

The research question was addressed by examination of the dimensionality, fit, separation, and reliability of the measure. The measure developed on the first sample was used with a second sample of approximately 5,000 cases with dimensionality, fit, separation, and reliability computed from the partial credit Rasch model.

Hypothesis 1: The online student engagement measure for grades 3 through 8 encompasses three components of student engagement—
behavioral, affective, and cognitive—displaying fit statistics that support a three-factor model over a one-factor model for the overall measure of online student engagement for grades 3 through 8.

The structure of the developed measure was confirmed using structural equation modeling with the second random sample of approximately 5,000 cases. Both the most parsimonious model with all items contributing directly to online student engagement for grades 3 through 8 (Figure 1) and the three subscale model, where items are indirectly related to online student engagement for grades 3 through 8 and the components of student engagement—behavioral, affective, and cognitive (Figure 2)—were compared. Figures 1 and 2 below provide examples of potential unidimensional and three-factor models.

The fit indices used to compare the models were chi-square, root mean square error of approximation (RMSEA), and comparative fit index (CIF). Structural equation models are subject to a parsimonious principle in that the most parsimonious model is preferred so examination of the models began with the most parsimonious and moved to the least parsimonious model. The chi-square fit statistic is the most commonly used and referenced fit statistic for structural equation modeling yet it is susceptible to sample size so requires other fit indices to support the findings. Models that are just-identified have a chi-square around 0, so the model that has a chi-square statistic that was statistically significant at the 0.05 significance level and was closest to 0 was determined to be the
best model fit according to chi-square (Kline, 2011). RMSEA and CIF fit indices were used to support the findings of the chi-square statistic. RMSEA considers the sample size in its calculation of fit and adjusts for model complexity. Browne and Cudeck (1993) state that an RMSEA value below 0.05 indicates an approximate fit, RMSEA values between 0.05 to 0.08 reasonable approximate fit, and RMSEA values over 0.10 indicate poor fit. Lastly, CIF was used to support the chi-square statistic results. CIF values of 0.90 or above indicate relatively reasonable fit (Kline, 2011).
Figure 1: Parsimonious Confirmatory Factor Model for Online student engagement for grades 3 through 8
Figure 2: Three Sub-Scale Confirmatory Factor Model for Online student engagement for grades 3 through 8
Hypothesis 2: The online student engagement measure for grades 3 through 8 is invariant across student special education status and grade level.

Invariance was tested for students receiving special education services vs. general education students and for different grade levels using the criteria described above.

Hypothesis 3: The online student engagement measure for grades 3 through 8 displays statistically significant positive correlations with academic achievement for any subscales that comprise the measure.

Support for validity of the measure was evaluated by correlation of the logit person position from each random sample with math and reading normalized scores.

Procedure

While item variables were collected from the learning management system that houses the online courses for all participants/students, outcome variables came from a separate database that houses state test scores for the online charter schools included in this study.

Permission for data use followed strict FERPA guidelines and was obtained both from the online supplier’s legal department and executive board. Once permission for data was approved, authorization for this research study and use of secondary data was obtained from the University of Denver Institutional Review Board.
Data collection and processing

The selected items were collected from the learning management system and processed for use in the development of the measure. The data collection and processing were done in three steps.

1. Extract data from learning management system (LMS)
2. Aggregate data into continuous online student behavior variables
3. Turn continuous variables into categorical variables for use in polytomous IRT models

The data were collected from the learning management system (LMS) owned and operated by the online supplier of the online charter schools included in this research study. Since all the item data were collected from the same source and participants utilized the same curriculum it was assumed that small differences in school, teacher, etc. would be negligible.

The data collected from the LMS were all continuous data. In addition, selected variables were chosen as representatives of variables that are commonly used either solely as student engagement measures or have been part of survey based student engagement measures.

All items to be included in the measure of online student engagement for grades 3 through 8 were aggregated from the LMS. The LMS houses all the online courses as well as the landing page where general course descriptive statistics can be viewed by the
student, teacher, and/or parent/learning coach. The learning management system archives student data on a per student per course login basis. For example, if a student logs into their math class five times in one day and spends 15 minute per login on their math course, then they will have five rows of data for that particular day and math class in the LMS. When data were initially pulled from the LMS they must be aggregated into a usable form, so each student has one row for math and one row for English/language arts that aggregate the total of each data point across all days and logins. These aggregates were the total of each variable for all days and logins from the start of school-year to when the student took their state test. Once the items were extracted from the learning management system and appropriately aggregated, they were considered to be the continuous online student behavior variables used in the measure development.
Chapter 3: Results

The purpose of this research study was to develop a measure of online student engagement for grades 3 through 8 using tracked online student behaviors as items. Similar to the definition established by Chen, Gonyea, and Kuh (2008), student engagement was defined as the quality of effort students themselves devote to educationally purposeful activities that contribute directly to desired outcomes, and encompassed the three components of student engagement: cognitive engagement, behavioral engagement, and affective engagement.

Data were collected, aggregated, and screened. Relationships between the individual items and academic achievement outcomes (math and reading) were then assessed to identify and account for non-linear relationships, multicollinearity, nesting effects, and clustering. The items remaining after the data screening processes were then identified as either strong or weak indicators of academic achievement preceding measure development, including item categorization. The measure development process began with item categorization. It was found that online student engagement was best measured by individual grade and contained two subscales of cognitive engagement and behavioral engagement for each grade. Using a partial credit Rasch model, six measures of online student engagement were developed, with two subscales at each grade level.
These measures contained few core items and generally need additional items to expand to a more comprehensive measure. Each measure structure was validated using split sample procedures and confirmatory factor analysis. Results of analysis steps are described in detail below and in Appendix B.

Data Screening

In order to prepare the dataset for measure development, all variables/items were aggregated and screened for inclusion in the dataset. Both outcome variables were normalized using the methodology described in the method chapter (pp.53-54), where a normalized score of zero indicates a score equal to the proficiency level which was assigned based on state and grade level.

The dataset was limited to five schools in order to minimize the nesting effect that can occur with the use of educational data. The five schools were selected because they did not have any changes in the state test scores administered for the 2012-2013 school-year or the 2013-2014 school-year, they had a representative sample of students in grades three through eight, and they were large enough to accommodate a 20,000 student dataset as described in the methods chapter.

Once the data from these five schools were collected all variables were examined and those variables that contained below 5% completed values were removed. Unfortunately, the majority of the variables removed belonged to the group of items representing the affective engagement component of the measure, thus only two variables--month of enrollment and number of years enrolled—were included in the final
dataset to represent the affective engagement component of student engagement. In addition to the two affective engagement component items, 15 behavior engagement component items and 13 cognitive engagement items were included in the dataset for measure development. Also included in the final data were seven student characteristic variables and two outcome variables. Table 5 displays the variables and their related student engagement components.

Table 5
Variables/Items Remaining after Data Preparation

<table>
<thead>
<tr>
<th>Potential Items</th>
<th>Variables/Items Remaining after Data Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral Engagement (15 items)</td>
<td>Time in course- math, ELA, and total</td>
</tr>
<tr>
<td></td>
<td>Course logins- math, ELA, and total</td>
</tr>
<tr>
<td></td>
<td>Progress in course- math, ELA and average</td>
</tr>
<tr>
<td></td>
<td>Practice session logins- math, ELA, and average</td>
</tr>
<tr>
<td></td>
<td>Ratio time in course and Progress in course- math, ELA, and total</td>
</tr>
<tr>
<td>Affective Engagement (2 items)</td>
<td>Month of enrollment</td>
</tr>
<tr>
<td></td>
<td>Number of years with school (Number of years at the same online school)</td>
</tr>
<tr>
<td>Cognitive Engagement (13 items)</td>
<td>Number of formative assessments mastered on first attempt- math, ELA and total</td>
</tr>
<tr>
<td></td>
<td>Number of summative assessments mastered on first attempt- math, ELA, and total</td>
</tr>
<tr>
<td></td>
<td>Internal assessment scale score- math, reading and total</td>
</tr>
<tr>
<td></td>
<td>Dichotomous previous state test score- math and reading</td>
</tr>
<tr>
<td></td>
<td>Continuous normalized previous state test score- math and reading</td>
</tr>
<tr>
<td>Student Characteristics</td>
<td>School Grade</td>
</tr>
<tr>
<td></td>
<td>Receiving Special Education Services (Yes/No)</td>
</tr>
<tr>
<td></td>
<td>Eligible for Free/Reduced Lunch services (Yes/No; socioeconomic status)</td>
</tr>
<tr>
<td></td>
<td>Categorical number of years with school (Less than 1 year; 1 year but less than 2 years; 2 years but less than 3 years; 3 years or more)</td>
</tr>
<tr>
<td>Outcome Variables</td>
<td>Math normalized current year state test score</td>
</tr>
</tbody>
</table>
From the larger data set of 20,000 students two randomly selected datasets of 5,000 students each were created using the IBM SPSS “Select Data” random selection option. The majority of data screening was performed on the first randomly selected dataset of 5,000 students, which was used to develop the initial measure.

Missing Data

Even though IRT analyses do not require imputation of missing data it is important to understand the patterns of missing data within the dataset used to develop a measure. Usually when using IRT analyses the missing data is non-response to survey or questionnaire questions but for this study the missing data for online student behaviors also represented the lowest level of online student engagement (not engaged).

IBM SPSS offers analysis of missing data using multiple imputation and a missing value analysis (MVA) function. The multiple imputation missing data analysis gives the number and percentage of missing variables, cases, and individual cells as well as a summary of the data patterns for missing data. MVA describes the patterns of missing data, estimates the means, standard deviations, covariances, and correlations for different imputation methods using the expectation-maximization (EM) algorithm. The total and average items were not included in the missing data analysis as they would have the same pattern of missingness as the variables used to make them, so provided redundant information.
According to the multiple imputation missing data analysis 18 of 21 (not including Total and Average variables) or 85.71% of the variables had at least one missing value; 4,412 of 5,000 or 88.24% of cases had at least one missing value, and there were 27,519 of 105,000 or 26.21% of all values missing in the dataset (Figure 3). Of the 18 variables that had at least one missing value, 13 had at least 10% of their values missing and six of the 13 variables had over 50% missing values (Table 6). The six variables that had over 50% missing values were: ELA ratio of time in hours and progress, ELA percent complete, math ratio of time in hours and progress, math percent complete, 2012-2013SY math normalized score, and 2012-2013SY reading normalized score. In addition, there were three variables-math percent complete, ELA percent complete, and ELA ratio of time in hour and progress—that displayed patterns of monotonicity, meaning data on these variables could be missing not at random (Figure 4).

Evaluating the missing data patterns also revealed that six patterns were more prevalent than others in the missing data (Figure 5). Figure 5 displays the missingness patterns, where a larger pattern number indicates more variables combined to make the pattern, by percent of cases missing. Four of the six widespread patterns of missing data included multiple variables missing at one time. This means that students who were missing one online student behavior were most likely missing multiple online student behaviors and would therefore be considered less engaged.
Figure 3: Overall Summary of Missing Values

Table 6
Variable Summary of Missing Data

<table>
<thead>
<tr>
<th>Missing</th>
<th>N</th>
<th>Percent</th>
<th>Valid N</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELARatioTimehrsProgress</td>
<td>3096</td>
<td>61.9%</td>
<td>1904</td>
<td>233.85</td>
<td>1124.42</td>
</tr>
<tr>
<td>ELAPercentComplete MathRatioTimehrsProgress</td>
<td>3079</td>
<td>61.6%</td>
<td>1921</td>
<td>.59</td>
<td>.24</td>
</tr>
<tr>
<td>MathPercentComplete MathRatioTimehrsProgress</td>
<td>2961</td>
<td>59.2%</td>
<td>2039</td>
<td>97.06</td>
<td>75.80</td>
</tr>
<tr>
<td>MathPercentComplete</td>
<td>2953</td>
<td>59.1%</td>
<td>2047</td>
<td>.93</td>
<td>.25</td>
</tr>
<tr>
<td>12-13SY Math Normalized Score</td>
<td>2934</td>
<td>58.7%</td>
<td>2066</td>
<td>2.02</td>
<td>3.47</td>
</tr>
<tr>
<td>12-13SY Reading Normalized Score</td>
<td>2933</td>
<td>58.7%</td>
<td>2067</td>
<td>1.94</td>
<td>3.49</td>
</tr>
<tr>
<td>MathFormativeTotalMastered</td>
<td>1856</td>
<td>37.1%</td>
<td>3144</td>
<td>83.51</td>
<td>51.39</td>
</tr>
<tr>
<td>ELAFormativeTotalMastered</td>
<td>1427</td>
<td>28.5%</td>
<td>3573</td>
<td>39.15</td>
<td>31.31</td>
</tr>
<tr>
<td>@1314SYSIELARibbonsExposed</td>
<td>1424</td>
<td>28.5%</td>
<td>3576</td>
<td>.79</td>
<td>.31</td>
</tr>
<tr>
<td>@1314SYSIMathRibbonsExposed</td>
<td>1424</td>
<td>28.5%</td>
<td>3576</td>
<td>.78</td>
<td>.30</td>
</tr>
<tr>
<td>ScantronReading1314SYFallSS</td>
<td>1263</td>
<td>25.3%</td>
<td>3737</td>
<td>2845.22</td>
<td>351.22</td>
</tr>
<tr>
<td></td>
<td>ScantronMath1314SYF</td>
<td>ELASummativeMastered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>allISS</td>
<td>1223</td>
<td>697</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.5%</td>
<td>13.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3777</td>
<td>4303</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2589.20</td>
<td>33.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>257.34</td>
<td>30.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4: Missing Value Patterns
To further expand on what is known about the missing data and data patterns of the first random sample dataset, the missing value analysis (MVA) module in IBM SPSS was used. First, the MVA confirmed the variables found to have more than 10% missing data (Table 6). Using the separate t-tests provided by the MVA, it was found then that eight variables had significant differences on the 2012-2013SY math normalized score and on the 2012-2013SY reading normalized score between students who were missing the variable and those who were not. In all cases, students who were not missing the variable had higher mean values than those missing the variable. This suggests that students who were not performing either of these online student behaviors had lower academic achievement in both math and reading. Educational researchers found that as
student engagement increases academic achievement as measured by student grades and state assessment scores also increases (Lam, 2014; Pierson, 1992; Skinner, 1993). Since previous research has established a positive correlation between student engagement levels and academic achievement, we infer that these students also have lower student engagement levels and we should see this difference in the person logit scores from the developed measure.

Lastly, MVA provides a table of tabulated patterns in missing data to evaluate how missing data in each variable relates to other variables. The most frequently observed patterns were:

1. If math practice is missing then reading practice is missing
2. If math internal assessment is missing then reading internal assessment is missing
3. If 2012-2013SY reading normalized score is missing then 2012-2013SY math normalized score is missing
4. If ELA percent complete is missing then ELA ratio of time and progress is missing
5. If math percent complete is missing then math ratio of time and progress is missing
6. If ELA summative assessments mastered is missing then ELA formative assessments mastered is missing

All of these missing patterns has a reasonable explanation through understanding how the variables relate to each other. Understanding the patterns of missing data and
potential sources of missing data helps to explain why some students have lower levels of online student engagement. For measure development, with the partial credit Rasch model, no adjustment was made for missing data, setting students who are missing all student behaviors as the lowest levels of online student engagement.

Multicollinearity

Multicollinearity exists when independent variables or items in a measure are so strongly related to each other that they skew the results of analysis, and thus also those of measure development. Correlation coefficients over 0.9 would identify a multicollinear pair of variables/items.

All variables/items were checked for multicollinearity starting with the first random sample of cases to be used for measurement development. All the total and average variables were removed because of their strong correlations with other variables. In addition, it was found that the 2012-2013SY math normalized score and the 2012-2013SY reading normalized score had a statistically significant correlation coefficient of 0.96, yet instead of removing either of these variables they were combined into a 2012-2013SY normalized score. Once the 2012-2013SY normalized score was generated and total/average variables were removed, there were no statistically significant correlations with coefficients over 0.9. As such it was assumed that variables were related enough to measure a latent factor of student engagement but not related so highly as to skew the results with multicollinearity.
Later in the measure development process it was found that the dataset needed to be separated by grade segments (grades 3 to 5 and grades 6 to 8), so multicollinearity was checked again, this time including the total/average variables in order to identify other variables that could be included in the measure core.

For grades 3 to 5, math ratio of time and progress, 2012-2013SY normalized reading score, total time, ELA logins, ELA percent complete, average practice, ratio of total time and average progress complete, total formative assessments mastered, total summative assessments mastered, total practice, and 2012-2013SY normalized score were removed to avoid multicollinearity. Once these variables/items were removed there were no statistically significant correlations over 0.9. For grades 6 to 8, 2012-2013SY normalized score interaction, total summative assessments mastered, ratio of total time and average progress, math practice, ELA practice, average percent complete, total logins, total time, and total formative assessments mastered were removed from the dataset to avoid multicollinearity.

Once the listed variables were removed due to multicollinearity they were not present for any of the analyses or measure development procedure.

Clustering

Clustering was evaluated to ensure there was no clustering among students’ patterns of online student behaviors, meaning that particular student behavior patterns would not cause identification of latent factors other than those that are to be measured. A principal components analysis (PCA) for the first random sample that included all of the
grades together, resulted in a scree plot that showed potentially 4 or 5 factors. A parallel analysis compared with the non-rotated eigenvalues found that there were six factors identified among the items. When the six factors were analyzed it was seen that nearly every item crossloaded onto multiple factors. When the same items were then forced into a three-factor model, as theorized previously for student engagement, it was found that most of the items selected for behavioral engagement loaded on the first factor and most of the items identified for cognitive engagement loaded on the third factor while the affective engagement items loaded on the second factor, with items crossloading on the other two factors. It was decided that measure development and item categorization would continue as planned, in hopes that multiple subscales containing measure cores would be identified.

When the dataset needed to be split into grade segments (grades 3 to 5 and grades 6 to 8), the clustering effects amongst items were re-analyzed. For both grades 3 to 5 and grades 6 to 8 samples, a varimax rotation was used.

For grades 3 to 5 the scree plot showed that there were potentially three or four factors, yet comparing eigenvalues to a parallel analysis found that there were up to six factors. The loading patterns were then examined for the six-factor model, a four-factor model and a three-factor model.

Once the 2012-2013SY normalized state test score variables were removed, it was apparent that there were potentially two factors containing items for cognitive engagement and behavioral engagement. The item number of years enrolled did not fit
into either one of these factors, but crossloaded across both so it was retained with the understanding that it could potentially be removed if it did not fit well with either subscale. The items identified with the cognitive engagement component were math percent complete, math practice, ELA practice, math formative assessments mastered, ELA formative assessments mastered, math summative assessments mastered, ELA summative assessments mastered, math internal assessment score, reading internal assessment score, and average percent complete. The items identified with the behavioral engagement component were math total time, ELA total time, math login, ELA ratio between total time and progress, and total logins.

A PCA with a varimax rotation was used to analyze the sample of grades 6 to 8. The scree plot originally showed that there were three or four factors identified. The use of a parallel analysis showed that there were up to five factors identified among items. The items were analyzed in a five-factor model, a four-factor model, and a three-factor model. Based on these results, both of the affective engagement items—month of enrollment and number of years enrolled—were removed from the sample. In addition, it was found that the items associated with the 2012-2013SY state test scores loaded together on a separate factor for all models examined, these items were excluded as measuring academic achievement more than student engagement. This resulted in a cognitive engagement factor and a behavioral engagement factor. Similar to grades 3 to 5, it was found that the percent complete items loaded with the cognitive engagement component as grade to date instead of on the behavioral component as progress in course. The final items included in the cognitive engagement factor were math percent complete,
ELA percent complete, math formative assessments mastered, ELA formative assessments mastered, math summative assessments mastered, ELA summative assessments mastered, math internal assessment score, reading internal assessment score, and average practice. The final items included in the behavioral engagement factor were Math total time, ELA total time, Math logins, ELA logins, and math ratio between total time and progress.

Nesting Effects

Educational data are actually nested with students within classrooms and classrooms within schools, yet it was important to make sure that the nesting effect was not accounting for a large portion of the variance in the items. Students were unable to be assigned to individual teachers, because most students had a homeroom teacher, a math teacher, and an English language arts teacher. So the school nesting effect was assessed. The intraclass correlation (ICC) was calculated for both the math normalized current state test scores, and the reading normalized current state test scores. The ICC is a calculation of the amount of variance between groups for an outcome, and represents the variance explained by the nesting effect. The equation for the ICC was given above (p. 58).

Both of the randomly selected data sets of 5000 students each were assessed for nesting effects by school. Hierarchical linear modeling was used where each outcome was a level one outcome with no level I or level II predictors. This would be considered the null model. The following are the model equations (Equations 8 and 9) used to evaluate the amount of variance explained by the nesting effect between schools:
\[\text{SYM}_{ij} = \gamma_{00} + u_{0j} + r_{ij} \] (8)

\[\text{SYR}_{ij} = \gamma_{00} + u_{0j} + r_{ij} \] (9)

Nesting effects were evaluated by school, starting with the first random sample. For the first random sample 4.1% of the variance was explained by nesting for the math outcome and 5.6% of the variance was explained by nesting for the reading outcome.

When it was discovered that there was not invariance for the developing measure across elementary (grades 3 to 5) and middle school (grades 6 to 8) grade levels, the sample was split into grade segments and the nesting effect was re-evaluated to see whether it had a greater influence on particular grade segments. For grades 3 to 5, 5.8% of the variance in the math score was due to nesting and 6.9% of the variance in reading was due to nesting. For grades 6 to 8, 3.7% of the variance in the math score was due to nesting and 3.0% of the variance in the reading score was due to nesting. The differences in the grade segments could be due to varying requirements or changes in curriculum.

For math in grades 3, 4, 5, and 8, less than 10% of the variance was explained by nesting of schools, while grade 6 had 10.4% of the variance in math explained by the nesting of schools and grade 7 had 16.3% of the variance in math score, which is explained by the nesting of schools. Grade 7 had 12.1% of the variance in reading score explained by nesting schools while grade 3 had 97.6% of the variance in reading score explained by the nesting effect of schools. For grade 3 reading a .976 ICC means that nearly all (97.6%) of the variance in reading normalized state test score can be explained by which school a student attended. Grade 3 is the first year students are required to take state testing, which requires a lot of reading. It is also the first year where students are
required to work independently for reading and writing. The differences in the programs’ strategies and interventions are evident with such a high nesting effect for grade 3 reading.

There are a number of school level factors that could potentially account for the ICCs over 0.10, more than 10% of the variance in outcome explained by the school nesting effect. Yet even though not taking into account high nesting effects will increase the Type I error rate by giving a false number of degrees of freedom (Tabachnick & Fidell, 2013), grade level measure development continued as planned. Future research is recommended to better understand the school nesting effects that were found to have ICCs over 0.10 (10% variance explained by school), especially for grade 3 reading outcomes. Once the cause of the school nesting effects are better understood then adjustments can be made to the grade level measures of online student engagement to account for school nesting effects.

Table 7
Nesting Effect Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Math Outcome ICC</th>
<th>Reading Outcome ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>τ</td>
<td>σ²</td>
</tr>
<tr>
<td>Random Sample 1 (n = 5000)</td>
<td>0.02</td>
<td>0.34</td>
</tr>
<tr>
<td>Random Sample 2 (n = 5000)</td>
<td>0.02</td>
<td>0.30</td>
</tr>
<tr>
<td>Grades 3 to 5 Random Sample 1 (n = 5000)</td>
<td>0.02</td>
<td>0.25</td>
</tr>
<tr>
<td>Grades 6 to 8 Random Sample 1 (n = 5000)</td>
<td>0.01</td>
<td>0.28</td>
</tr>
<tr>
<td>Grade 3 (n = 1012)</td>
<td>0.03</td>
<td>0.32</td>
</tr>
</tbody>
</table>
Since nesting effects were found that explained 10% or more of the variance in outcome score for grade 3 reading, grade 6 math, grade 6 reading, and grade 7 math, the items included in measure development for these grades were evaluated for invariance. Table 8 shows the invariance tests by grade for schools. The results of invariance for particular items may be used in future research to explain the nesting effects results.

Table 8
Items that did not Meet Invariance Requirements by Grade for Schools

| Grade | Item | DIF Contrast (>|.64|) | Probability (<.05) | Schools |
|-------|------------------------|-------------------------|---------------------|---------|
| 3rd Grade | Math Formative | .72 | <.001 | 2 and 5 |
| 3rd Grade | Math Summative | 1.19 | <.001 | 2 and 5 |
| 3rd Grade | Math Practice | -.93 | <.001 | 2 and 4 |
| | | -1.65 | <.001 | 2 and 5 |
| | | -.72 | .004 | 4 and 5 |
| 3rd Grade | ELA Practice | -1.74 | <.001 | 2 and 5 |
| | | -1.49 | <.001 | 4 and 5 |
| 3rd Grade | Math Total Time | .96 | <.001 | 2 and 5 |
| 3rd Grade | ELA Total Time | -.92 | <.001 | 2 and 5 |
| 6th Grade | Math Summative | -1.19 | <.001 | 1 and 2 |
| | | 1.10 | <.001 | 2 and 4 |
| | | 1.57 | <.001 | 2 and 5 |
| 6th Grade | ELA | 1.10 | <.001 | 1 and 2 |
Inverted U Relationships

Each of the online student behavior items was assessed for inverted U relationships with both outcome variables (2013-2014SY normalized math score and 2013-2014SY normalized reading score). In economics it has been suggested that three different tests be used to verify an inverted U relationship:

1. The slope of the squared independent variable/item is significant and negative

2. The slope at the lowest variable/item value is positive and significant while the slope at the highest variable/item value is negative and significant
3. The turning point (first derivative of the regression equation) and its calculated 95% confidence interval are well within the data range of the variable/item

When these three criteria were used to evaluate the types of relationships between items and outcome variables it was found that there were no inverted U relationships between any of the items and the outcome variables for the first random sample, so all of these relationships were assumed to be linear for measurement development.

Inverted U relationships were evaluated again when the random sample was split by grade segments (grades 3 to 5 and grades 6 to 8). Again, there were no items for either of the grade segment samples that met all three of the criteria for an inverted U relationship, yet several items met two of the three criteria, as seen in Tables 9 and 10. This resulted in speculation that nonlinear quadratic relationships do exist amongst these items and outcomes. Inverted U relationships were also explored for each individual grade level. No inverted U relationships were found for any of the items at any of the grade levels, yet several items met two of the three requirements for inverted U relationships. Future research should include the examination of the types of relationships and relationship patterns that exist amongst online student behaviors and state test score outcomes.
Table 9
Inverted U Relationship Tests for Grades 3 to 5

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement 1</th>
<th>Requirement 2A</th>
<th>Requirement 2B</th>
<th>Requirement 3</th>
<th>Relationship Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math Time</td>
<td>$\beta_2 = -1.34E-5$</td>
<td>$\beta_{XL} = .002$</td>
<td>Not met</td>
<td>Turning Point = 186.99</td>
<td>Assume d Linear</td>
</tr>
<tr>
<td></td>
<td>$p < .001$</td>
<td>$p < .001$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Login</td>
<td>$\beta_2 = -5.85E-6$</td>
<td>$\beta_{XL} = .002$</td>
<td>Not met</td>
<td>Turning Point = 256.24</td>
<td>Assume d Linear</td>
</tr>
<tr>
<td></td>
<td>$p = .024$</td>
<td>$p < .001$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Percent Complete</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Turning Point = 0.532</td>
<td>Assume d Linear</td>
</tr>
<tr>
<td>Math Practice</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Turning Point = 0.394</td>
<td>Assume d Linear</td>
</tr>
<tr>
<td>Math Formativ</td>
<td>$\beta_2 = -1.73E-5$</td>
<td>$\beta_{XL} = .003$</td>
<td>Not met</td>
<td>Turning Point = 202.78</td>
<td>Assume d Linear</td>
</tr>
<tr>
<td></td>
<td>$p < .001$</td>
<td>$p < .001$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Summativ</td>
<td>$\beta_2 = -.001$</td>
<td>$\beta_{XL} = .030$</td>
<td>Not met</td>
<td>Turning Point = 18.5</td>
<td>Assume d Linear</td>
</tr>
<tr>
<td></td>
<td>$p < .001$</td>
<td>$p = .001$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Internal Assessment</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Turning Point = 2422.87</td>
<td>Assume d Linear</td>
</tr>
<tr>
<td>Reading Time</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Turning Point = 430.05</td>
<td>Assume d Linear</td>
</tr>
<tr>
<td>Reading Practice</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Turning Point = 0.229</td>
<td>Assume d Linear</td>
</tr>
<tr>
<td>Reading</td>
<td>$\beta_2 = -5.36E-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 10
Inverted U Relationship Tests for Grades 6 to 8

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement 1</th>
<th>Requirement 2A</th>
<th>Requirement 2B</th>
<th>Requirement 3</th>
<th>Relationship Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio Reading Formative</td>
<td>8 p = .040</td>
<td>Not met</td>
<td>Not met</td>
<td>Point = 0 Met</td>
<td>d Linear</td>
</tr>
<tr>
<td>Reading Summative ELA Internal Assessment</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Assume d Linear</td>
</tr>
<tr>
<td>Formative Average % Complete</td>
<td>$\beta_2 = -.665$ p = .007</td>
<td>Not met</td>
<td>Not met</td>
<td>Turning Point = 0.70 Met</td>
<td>Assume d Linear</td>
</tr>
</tbody>
</table>

Math Time

- $\beta_2 = -7.42E-6$ p < .001
- $\beta_{XL} = .002$ p < .001
- Not met
- Turning Point = 202.16 Met
- Assume d Linear

Math Login

- Not met
- Not met
- Not met
- Turning Point = 29.75 Met
- Assume d Linear

Math Percent Complete

- Not met
- Not met
- Not met
- Turning Point = -1.15 Met
- Assume d Linear

Math Ratio

- $\beta_2 = -2.63E-5$ p < .001
- $\beta_{XL} = .001$ p < .001
- Not met
- Turning Point = 380.23 Met
- Assume d Linear

Math Formati

- $\beta_2 = -2.03E-5$ Not met Not met
- Turning Point = Assume d Linear
<table>
<thead>
<tr>
<th>Category</th>
<th>p Value</th>
<th>(\beta_2)</th>
<th>(\beta_{XL})</th>
<th>Turning Point</th>
<th>Met Status</th>
<th>Linear Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math Summative</td>
<td>.003</td>
<td>-3.77E-6</td>
<td>.001</td>
<td>246.91</td>
<td>Not met</td>
<td>Assume Linear</td>
</tr>
<tr>
<td>Math Internal</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>1271.62</td>
<td>Turning Point= 1271.62 Met</td>
<td>Assume Linear</td>
</tr>
<tr>
<td>Assessment</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>265.32</td>
<td>Turning Point= 265.32 Met</td>
<td>Assume Linear</td>
</tr>
<tr>
<td>Reading Time</td>
<td>(p < .001)</td>
<td>(p < .001)</td>
<td>Not met</td>
<td>429.18</td>
<td>Turning Point= 429.18 Met</td>
<td>Assume Linear</td>
</tr>
<tr>
<td>Reading Logins</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
</tr>
<tr>
<td>ELA Percent</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
</tr>
<tr>
<td>Complete Reading</td>
<td>(p = .007)</td>
<td>-1.94E-9</td>
<td>.001</td>
<td>21744.19</td>
<td>Turning Point= 21744.19 Met</td>
<td>Assume Linear</td>
</tr>
<tr>
<td>Reading Ratio</td>
<td>(p = .050)</td>
<td>-1.57E-5</td>
<td>.004</td>
<td>190.60</td>
<td>Turning Point= 190.60 Met</td>
<td>Assume Linear</td>
</tr>
<tr>
<td>Reading Formative</td>
<td>(p = .020)</td>
<td>-6.21E-5</td>
<td>.008</td>
<td>88.54</td>
<td>Turning Point= 88.54 Met</td>
<td>Assume Linear</td>
</tr>
<tr>
<td>ELA Internal</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
</tr>
<tr>
<td>Assessment</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
</tr>
<tr>
<td>Average Practice</td>
<td>Not met</td>
<td>Not met</td>
<td>Not met</td>
<td>.158</td>
<td>Turning Point= .158 Met</td>
<td>Assume Linear</td>
</tr>
</tbody>
</table>

102
Strong and Weak Indicators

Strong and weak indicators were to be identified amongst the student behavior items in order to establish a sequence for adding items into the measure for measure development and establishment of a measurement core. Strong indicators of online student engagement were those items that had statistically significant correlation coefficients with either outcome variable (2013-2014SY normalized math score and 2013-14SY normalized reading score) at or over 0.5, thus all items with statistically significant correlation coefficients under 0.5 as weak indicators. Strong indicators were to be developed into a measure core first then weak indicators added to expand the measure, however, as seen in Tables 11, 12, and 13, there were no identified strong indicators for the first random dataset or for grade segment datasets.

Table 11
Strong and Weak Indicators for First Random Sample

<table>
<thead>
<tr>
<th>Online Student Behavior Item</th>
<th>13-14SY Math Normalized State Test Score</th>
<th>13-14SY Reading Normalized State Test Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pearson Correlation Coefficient</td>
<td>p-value</td>
</tr>
<tr>
<td>Month of Enrollment (Affective)</td>
<td>.03</td>
<td>.05</td>
</tr>
<tr>
<td>Number of Years Enrolled (Affective)</td>
<td>.04</td>
<td>.004</td>
</tr>
<tr>
<td>Math Total Time hrs (Behavior)</td>
<td>.10</td>
<td>< .001</td>
</tr>
<tr>
<td>ELA Total Time hrs (Behavior)</td>
<td>.10</td>
<td>< .001</td>
</tr>
<tr>
<td>Math Logins (Behavior)</td>
<td>.16</td>
<td>< .001</td>
</tr>
<tr>
<td>ELA Logins (Behavior)</td>
<td>.07</td>
<td>< .001</td>
</tr>
<tr>
<td>Online Student Behavior Item</td>
<td>13-14SY Math Normalized State Test Score Pearson Coefficient</td>
<td>13-14SY Math Normalized State Test Score p-value</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Month of Enrollment (Affective)</td>
<td>.03</td>
<td>.06</td>
</tr>
<tr>
<td>Number of Years Enrolled (Affective)</td>
<td>.12</td>
<td><.001</td>
</tr>
<tr>
<td>Math Total Time hrs (Behavior)</td>
<td>.20</td>
<td><.001</td>
</tr>
<tr>
<td>Metric</td>
<td>Estimate</td>
<td>p-value</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>ELA Total Time hrs (Behavior)</td>
<td>.09</td>
<td><.001</td>
</tr>
<tr>
<td>Total Time hrs (Behavior)</td>
<td>.15</td>
<td><.001</td>
</tr>
<tr>
<td>Math Logins (Behavior)</td>
<td>.15</td>
<td><.001</td>
</tr>
<tr>
<td>ELA Logins (Behavior)</td>
<td>.02</td>
<td>.13</td>
</tr>
<tr>
<td>Total Logins (Behavior)</td>
<td>.05</td>
<td><.001</td>
</tr>
<tr>
<td>Math Percent Complete (Behavior)</td>
<td>.21</td>
<td><.001</td>
</tr>
<tr>
<td>ELA Percent Complete (Behavior)</td>
<td>.05</td>
<td>.03</td>
</tr>
<tr>
<td>Average Percent Complete (Behavior)</td>
<td>.16</td>
<td><.001</td>
</tr>
<tr>
<td>Math Practice Sessions (Behavior)</td>
<td>.30</td>
<td><.001</td>
</tr>
<tr>
<td>ELA Practice Sessions (Behavior)</td>
<td>.32</td>
<td><.001</td>
</tr>
<tr>
<td>Average Practice Sessions (Behavior)</td>
<td>.32</td>
<td><.001</td>
</tr>
<tr>
<td>Math Formative Total Mastered (Cognitive)</td>
<td>.29</td>
<td><.001</td>
</tr>
<tr>
<td>ELA Formative Total Mastered (Cognitive)</td>
<td>.11</td>
<td><.001</td>
</tr>
<tr>
<td>Total Formative Mastered (Cognitive)</td>
<td>.25</td>
<td><.001</td>
</tr>
<tr>
<td>Math Summative Total Mastered (Cognitive)</td>
<td>.28</td>
<td><.001</td>
</tr>
<tr>
<td>ELA Summative Total Mastered (Cognitive)</td>
<td>.30</td>
<td><.001</td>
</tr>
<tr>
<td>Total Summative Mastered (Cognitive)</td>
<td>.31</td>
<td><.001</td>
</tr>
<tr>
<td>Math Internal Assessment Score (Cognitive)</td>
<td>.20</td>
<td><.001</td>
</tr>
<tr>
<td>Reading Internal Assessment Score (Cognitive)</td>
<td>.19</td>
<td><.001</td>
</tr>
<tr>
<td>Average Internal Assessment Scores (Cognitive)</td>
<td>.21</td>
<td><.001</td>
</tr>
<tr>
<td>Online Student Behavior Item</td>
<td>13-14SY Math Normalized State Test Score</td>
<td>Pearson Coefficient</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Month of Enrollment (Affective)</td>
<td>.02</td>
<td>.17</td>
</tr>
<tr>
<td>Number of Years Enrolled (Affective)</td>
<td>.02</td>
<td>.10</td>
</tr>
<tr>
<td>Math Total Time hrs (Behavior)</td>
<td>.19</td>
<td><.001</td>
</tr>
<tr>
<td>ELA Total Time hrs (Behavior)</td>
<td>.19</td>
<td><.001</td>
</tr>
<tr>
<td>Total Time hrs (Behavior)</td>
<td>.20</td>
<td><.001</td>
</tr>
<tr>
<td>Math Logins (Behavior)</td>
<td>.17</td>
<td><.001</td>
</tr>
<tr>
<td>ELA Logins (Behavior)</td>
<td>.12</td>
<td><.001</td>
</tr>
<tr>
<td>Total Logins (Behavior)</td>
<td>.14</td>
<td><.001</td>
</tr>
<tr>
<td>Math Percent Complete (Behavior)</td>
<td>.37</td>
<td><.001</td>
</tr>
<tr>
<td>ELA Percent Complete (Behavior)</td>
<td>.24</td>
<td><.001</td>
</tr>
<tr>
<td>Average Percent Complete (Behavior)</td>
<td>.37</td>
<td><.001</td>
</tr>
<tr>
<td>Math Practice Sessions (Behavior)</td>
<td>.28</td>
<td><.001</td>
</tr>
<tr>
<td>ELA Practice Sessions (Behavior)</td>
<td>.27</td>
<td><.001</td>
</tr>
<tr>
<td>Measure</td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>Average Practice Sessions (Behavior)</td>
<td>.29</td>
<td><.001</td>
</tr>
<tr>
<td>Math Formative Total Mastered (Cognitive)</td>
<td>.41</td>
<td><.001</td>
</tr>
<tr>
<td>ELA Formative Total Mastered (Cognitive)</td>
<td>.35</td>
<td><.001</td>
</tr>
<tr>
<td>Math Summative Total Mastered (Cognitive)</td>
<td>.37</td>
<td><.001</td>
</tr>
<tr>
<td>ELA Summative Total Mastered (Cognitive)</td>
<td>.33</td>
<td><.001</td>
</tr>
<tr>
<td>Total Summative Mastered (Cognitive)</td>
<td>.37</td>
<td><.001</td>
</tr>
<tr>
<td>Math Internal Assessment Score (Cognitive)</td>
<td>.43</td>
<td><.001</td>
</tr>
<tr>
<td>Math Ratio (Behavior)</td>
<td>.14</td>
<td><.001</td>
</tr>
<tr>
<td>ELA Ratio (Behavior)</td>
<td>.10</td>
<td><.001</td>
</tr>
<tr>
<td>Ratio of Total Time and Average Progress (Behavior)</td>
<td>.14</td>
<td><.001</td>
</tr>
<tr>
<td>Reading Internal Assessment Score (Cognitive)</td>
<td>.28</td>
<td><.001</td>
</tr>
<tr>
<td>Average Internal Assessment Scores (Cognitive)</td>
<td>.39</td>
<td><.001</td>
</tr>
</tbody>
</table>

Although most of the online student behavior items had statistically significant correlations with one or both outcome variables they did not have a correlation coefficient over 0.5. Thus, none of the items were identified as strong indicators of online student engagement.

Measure Development

Since there were no identified strong indicators of online student engagement the measure development procedure began with all items being entered together and item
categorization being done until a measurement core was identified. This process was iterative and required many passes through the data. Decisions made related to (a) deciding on the number of categories that were optimal for items, (b) achieving reasonable unidimensionality, (c) achieving item fit, (d) seeking and failing to find a measure that was invariant across grades, (e) resorting to creating a measure separately for each grade and revisiting all the prior steps, and (f) deciding on the best potential measure for each grade while allowing items and categorization to vary across grades. Specifics of this process that detail the decisions made at various points in the analysis are provided in Appendix B.

To begin the measure development process for each grade level the behavioral and cognitive items were all included in each grade level dimensionality review. Then the dimensionality for all grade level measures that included both the cognitive and behavioral items were evaluated, in particular the contrasts that appear to be potential dimensions (Table 14). See Appendix B for more detail on the measure development process undertaken in this study.
<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Number of Contrasts</th>
<th>Dimensionality</th>
<th>Variance Explained</th>
<th>Variance 1st Contrast (eigenvalue)</th>
<th>Variance 1st Contrast (%)</th>
<th>Mean Person Fit</th>
<th>Person Separation (Real/Model)</th>
<th>Person Reliability (Real/Model)</th>
<th>Mean Item Fit</th>
<th>Item Separation (Real/Model)</th>
<th>Item Reliability (Real/Model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3 Only</td>
<td>5</td>
<td>37%</td>
<td>2.69</td>
<td>10.6%</td>
<td>0.9</td>
<td>1.01</td>
<td>1.80/1.99</td>
<td>0.76/0.80</td>
<td>0.9</td>
<td>1.02</td>
<td>8.77/8.85</td>
</tr>
<tr>
<td>Grade 4 Only</td>
<td>5</td>
<td>40.7%</td>
<td>3.42</td>
<td>12.7%</td>
<td>0.9</td>
<td>0.99</td>
<td>2.27/2.43</td>
<td>0.84/0.86</td>
<td>1.0</td>
<td>0.99</td>
<td>8.09/8.42</td>
</tr>
<tr>
<td>Grade 5 Only</td>
<td>2</td>
<td>36.7%</td>
<td>3.14</td>
<td>12.4%</td>
<td>0.9</td>
<td>0.99</td>
<td>2.10/2.26</td>
<td>0.82/0.84</td>
<td>0.9</td>
<td>0.99</td>
<td>10.35/10.69</td>
</tr>
<tr>
<td>Grade 6 Only</td>
<td>5</td>
<td>47.2%</td>
<td>3.93</td>
<td>13.8%</td>
<td>0.9</td>
<td>0.99</td>
<td>2.36/2.56</td>
<td>0.85/0.87</td>
<td>1.0</td>
<td>1.06</td>
<td>7.74/8.31</td>
</tr>
<tr>
<td>Grade 7 Only</td>
<td>5</td>
<td>50.1%</td>
<td>3.34</td>
<td>11.1%</td>
<td>0.9</td>
<td>0.98</td>
<td>2.40/2.58</td>
<td>0.85/0.87</td>
<td>1.0</td>
<td>1.07</td>
<td>9.24/9.92</td>
</tr>
<tr>
<td>Grade 8 Only</td>
<td>5</td>
<td>44.5%</td>
<td>3.40</td>
<td>12.6%</td>
<td>0.9</td>
<td>0.98</td>
<td>2.07/2.24</td>
<td>0.81/0.83</td>
<td>1.0</td>
<td>1.04</td>
<td>11.18/11.77</td>
</tr>
</tbody>
</table>
As seen in Table 14, Grade 5 had the smallest number of potential dimensions (number of contrasts) and fit most closely to the measurement structure theorized to include the three components of student engagement--behavioral, cognitive, and affective. For these reasons grade 5 was selected to identify measure core items, establish items related to the multiple dimensions representing the three student engagement components, and be used as a foundation for the other grade level measures of online student engagement.

The first step in identifying measurement core items using the grade 5 dataset was to remove all items that had an infit value over 1.2. Boone, Staver, and Yale (2014) reiterate the suggestion of Wright and Linacre (1994) to use outfit MNSQ values to identify measurement core items. Yet while Bond and Fox suggest a range of 0.6 to 1.4 for infit/outfit MNSQ, Wright and Linacre found Item infit/outfit MNSQ values between 0.5 and 1.5 are productive of measurement. Item infit/outfit MNSQ is a chi-square statistic that gets closer to a value of 1.0 as the sample size increases. A conservative choice of using 1.2 instead of higher values (1.4 or 1.5) was made to account for the large sample size. Eight items were removed in groups of two or three that had an infit value over 1.2 and eight items remained. Tables 15 and 16 display the item categorization steps taken to identify the measurement core items for the 1st and 2nd dimensions of Grade 5 Online Student Engagement measure.
Table 15
Grade 5 Measure Development and Item Categorization Process

<table>
<thead>
<tr>
<th>Step</th>
<th>What was done</th>
<th>Why important</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grade 5 Only</td>
<td>Both cognitive and behavioral items, together</td>
<td>Measurement foundation identification</td>
</tr>
<tr>
<td>2</td>
<td>1st Dimension Items</td>
<td>All items with an Infit value over 1.2 removed</td>
<td>Identify items in each of the two dimensions and begin to establish measurement core</td>
</tr>
<tr>
<td>3</td>
<td>Math Practice and ELA Practice and ELA Formative Assessments Mastered</td>
<td>Turned into 3 category items instead of 4 category items</td>
<td>Ensure categories for both items are balanced without overlapping categories</td>
</tr>
<tr>
<td>4</td>
<td>Average Percent Complete Removed</td>
<td>Average Percent Complete Removed</td>
<td>Average percent complete identified as a misfitting item so removed</td>
</tr>
<tr>
<td>5</td>
<td>2nd Dimension Items</td>
<td></td>
<td>Begin to establish measurement core for 2nd dimension items</td>
</tr>
<tr>
<td>6</td>
<td>Number of Years Removed</td>
<td>Number of Years Removed</td>
<td>Identified as misfitting item</td>
</tr>
<tr>
<td>7</td>
<td>Math Internal Assessment and ELA Internal Assessment Removed</td>
<td>Math Internal Assessment and ELA Internal Assessment Removed</td>
<td>Identified as a misfitting item</td>
</tr>
<tr>
<td>Measure Description</td>
<td>Dimensionality Variance Explained</td>
<td>Dimensionality Variance 1<sup>st</sup> Contrast (eigenv value)</td>
<td>Dimensionality Variance 1<sup>st</sup> Contrast (%)</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Grade 5 Only</td>
<td>36.7%</td>
<td>3.14</td>
<td>12.4%</td>
</tr>
<tr>
<td>1<sup>st</sup> Dimension Items (cog)</td>
<td>56.6%</td>
<td>1.92</td>
<td>10.4%</td>
</tr>
<tr>
<td>Math Practice, ELA Practice and ELA Formative Assessments Mastered</td>
<td>54.5%</td>
<td>1.92</td>
<td>10.9%</td>
</tr>
<tr>
<td>Category</td>
<td>Average Percent Complete Removed</td>
<td>2nd Dimension Items (behavioral)</td>
<td>Number of Years Removed</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Average Percent Complete Removed 55.4% 34.5% 37.6% 54.5% 66.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Dimension Items (behavioral) 12.2% 21.7% 22.1% 22.8% 22.4%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Years Removed 1.91 2.64 2.48 2.51 2.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Internal Assessment and ELA Internal Assessment Removed 0.98 0.99 0.99 0.99 0.94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Logins and Math Logins Removed 1.73/1.92 1.41/1.57 1.32/1.49 1.53/1.75 1.49/1.79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Internal Assessment and ELA Internal Assessment Removed 0.75/0.79 0.67/0.71 0.64/0.69 0.70/0.75 0.69/0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Logins and Math Logins Removed 1.02 0.92 0.99 0.99 0.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Internal Assessment and ELA Internal Assessment Removed 12.12/12.5 9.16/9.51 8.14/8.53 10.85/11.0 4.18/4.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Logins and Math Logins Removed 0.94 0.99 1.0 1.0 0.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Internal Assessment and ELA Internal Assessment Removed 0.99 0.99 0.99 0.99 0.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Logins and Math Logins Removed 0.99 0.99 0.99 0.99 0.95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The eight items remaining for the cognitive dimension were: ELA formative assessments mastered, average percent complete, ELA practice, math summative assessments mastered, math formative assessments mastered, math practice, math percent complete, and ELA summative assessments mastered. After evaluation of the scale use ELA practice, math practice, and ELA formative assessment mastered were made into three category items by collapsing two categories. This resulted in a measure that explained 54.5% of the variance and had an eigenvalue for unexplained variance of 1.92. With further examination it was presumed that average percent complete and math percent complete were most likely causing multicollinearity problems so average percent complete with an infit value of 1.25 was removed from the grade 5 measure. This resulted in 55.4% of the variance being explained by the first contrast and the eigenvalue of the unexplained variance for the first contrast of 1.91. This first dimension then contained seven items, all of which were part of the cognitive engagement component. The grade 5 cognitive engagement subscale was made up of seven items in its measurement core: math percent complete, math practice, ELA practice, math formative assessments mastered, math summative assessments mastered, ELA formative assessments mastered, and ELA summative assessments mastered. Figure 7 displays the change in the measure with each Grade 5 cognitive engagement item categorization step. The fourth Item-Person Map is the final Grade 5 Cognitive Engagement measure.
Figure 7: Person-Item Maps for Grade 5 Cognitive Engagement Item Categorization
Figure 8 show the response category probability curves and the item categorization changes in the curves of the Grade 5 Cognitive Engagement items. Only the items retained at the conclusion of the item categorization process are displayed.
<table>
<thead>
<tr>
<th>Item</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math Percent Complete</td>
<td></td>
</tr>
<tr>
<td>ELA Formative Assessments</td>
<td></td>
</tr>
<tr>
<td>Mastered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Formative Assessments</td>
<td></td>
</tr>
<tr>
<td>Mastered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELA Summative Assessments</td>
<td></td>
</tr>
<tr>
<td>Mastered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Summative Assessments</td>
<td></td>
</tr>
<tr>
<td>Mastered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 8: 1st Dimension- Cognitive Engagement
Once the measurement core items were identified as the cognitive engagement subscale the original eight items that were removed for being underfit with infit values over 1.2 were evaluated for an additional dimension/factor.

When all eight items were part of one measure, 34.5% of the variance was explained with an eigenvalue for unexplained variance in the first contrast of 2.64. Next, all items with an infit value over 1.2? were removed. This step removed three items and retained five items that explained 54.5% of the variance and had an eigenvalue for the unexplained variance of 2.51. The remaining five items were total logins, ELA ratio of time and progress, math total time, ELA total time, and math logins. Through single elimination re-evaluation of items, it was found that total logins and math logins only fit in the measure when both were included in the measure, potentially causing multicollinearity problems. For this reason both total logins and math logins were removed from the measure, resulting in a three item measure made up of math total time, ELA total time, and ELA ratio of time and progress. This three item measure accounted for 66.4% of the variance explained and had an eigenvalue for the unexplained variance of 2.01. These three items were all behavioral engagement items, so this dimension/factor was considered the behavioral engagement subscale.

Figure 9 displays the measure continuum changes for each Grade 5 behavioral engagement item categorization step. The fifth Item-Person Map represents the final Grade 5 Behavioral engagement measure made up of three items. Figure 10 displays the final Grade 5 behavioral engagement items’ category probability curves after each item categorization process step.
<table>
<thead>
<tr>
<th>Grade 5 Only</th>
<th>2nd Dimension Items</th>
<th>Number of Years Removed</th>
<th>Math Internal Assessment and ELA Internal Assessment Removed</th>
<th>Total Logins and Math Logins Removed</th>
</tr>
</thead>
</table>

Figure 9: Measure Continuum Changes for Grade 5 Behavioral Engagement
<table>
<thead>
<tr>
<th>Item</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
<th>Step 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELA Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 10: 2nd Dimension- Behavioral Engagement
Both the grade 5 cognitive engagement subscale and the grade 5 behavioral engagement subscale were then used as a foundation to construct similar measures in other grades (Table 16). Figures 11 to 15 show the initial item-person maps side-by-side with the final item-person maps for grades 3, 4, 6, 7, and 8. Each grade’s initial measure contained all items while final measures were separated between the cognitive engagement measure and the behavioral engagement measure.
Figure 11: Grade 3 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
Figure 12: Grade 4 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
Figure 13: Grade 6 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
Figure 14: Grade 7 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
Figure 15: Grade 8 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
While an attempt was made to keep item categories and item definition constant
across grades, doing so resulted in either a suggestion of an additional dimension or
misfitting items or disordered probability curves. Thus categories and items were
adapted for each grade as follows. For grade 3, ELA formative assessments mastered and
math summative assessments mastered were removed from the cognitive engagement
subscale, along with math summative assessments mastered being changed from a four
category item to a three category item. This resulted in 51.4% of the variance being
explained by the measure with a 2.42 eigenvalue for the first contrast (Table 20). No
changes were made to the cognitive engagement subscale for grade 4, which resulted in
54.1% of the variance being explained by the first contrast with a 1.98 eigenvalue for
unexplained variance in the first contrast (Table 20). The cognitive engagement subscale
for grades 6, 7 and 8 used average practice instead of math practice and ELA practice as
individual items. For the grade 6 cognitive engagement subscale, math percent complete,
average practice and ELA formative assessments mastered were removed from the
measure. This resulted in 70.7% of the variance being explained by the first contrast with
a 1.70 eigenvalue for variance unexplained by the first contrast (Table 20). The grade 7
cognitive engagement subscale had math percent complete and average practice removed
from the measure. This resulted in 69.7% of the variance being explained by the measure
with an eigenvalue for the first contrast of 1.67 (Table 20).

Math percent complete and average practice were removed from the grade 8
cognitive engagement subscale resulting in 58% of the variance being explained by the
first contrast with a 1.83 eigenvalue for the variance unexplained by the first contrast (Table 20).
Table 17
Cognitive Engagement Subscale Results for All Grades

<table>
<thead>
<tr>
<th>Grade</th>
<th>Specific Item Changes</th>
<th>Variance explained by measure</th>
<th>Variance 1st Contrast (Eigenvalue)</th>
<th>Variance to first contrast (%)</th>
<th>Mean Person Infit/Outfit</th>
<th>Person Separation (Model/Real)</th>
<th>Person Reliability (Model/Real)</th>
<th>Cronbach’s Alpha</th>
<th>Mean Item Infit/Outfit</th>
<th>Item Separation (Model/Real)</th>
<th>DIF SPED Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th Grade</td>
<td>None</td>
<td>55.4%</td>
<td>1.91</td>
<td>12.2%</td>
<td>.98/.98</td>
<td>1.73/1.92</td>
<td>.75/.79</td>
<td>.95</td>
<td>1.02/1.00</td>
<td>12.12/12.54</td>
<td>Math Formative (.80; <.001) ELA Summative (-.99; <.001)</td>
</tr>
<tr>
<td>3rd Grade</td>
<td>Removed: ELA Formative ELA Summative Category Changes: Math Summative (3)</td>
<td>51.4%</td>
<td>2.4155</td>
<td>23.5%</td>
<td>.95/.96</td>
<td>1.13/1.34</td>
<td>.56/.64</td>
<td>.96</td>
<td>1.01/1.09</td>
<td>9.55/9.67</td>
<td>Invariance met for all items</td>
</tr>
<tr>
<td>Grade</td>
<td>Action</td>
<td>Math % Complete</td>
<td>Average Practice</td>
<td>Formative</td>
<td>Summative</td>
<td>Variance</td>
<td>ELA Summative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td>None</td>
<td>54.1%</td>
<td>13.0%</td>
<td>.96/.96</td>
<td>1.60/1.76</td>
<td>.72/.76</td>
<td>.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.97</td>
<td>1.03/.99</td>
<td></td>
<td>8.14/8.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6th</td>
<td>Removed: Math % Complete Average Practice ELA Formative</td>
<td>70.7%</td>
<td>16.6%</td>
<td>.97/.98</td>
<td>2.00/2.34</td>
<td>.80/.85</td>
<td>.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.92</td>
<td>.98/.98</td>
<td></td>
<td>4.45/4.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th</td>
<td>Removed: Math % Complete Average Practice</td>
<td>69.7%</td>
<td>12.6%</td>
<td>.95/.92</td>
<td>1.86/2.22</td>
<td>.78/.83</td>
<td>.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.82</td>
<td>1.00/1.02</td>
<td></td>
<td>13.56/13.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8th</td>
<td>Removed: Math % Complete Average Practice</td>
<td>58.0%</td>
<td>19.2%</td>
<td>.97/.97</td>
<td>1.21/1.47</td>
<td>.60/.68</td>
<td>.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.68</td>
<td>1.00/.98</td>
<td></td>
<td>8.09/8.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Invariance met for all items.
The grade 3 behavioral engagement subscale had the ELA ratio of time and progress item changed from a four category item to a three category item, resulting in 52.9% of the variance being explained by the first contrast with a 2.22 eigenvalue for the variance unexplained by the first contrast (Table 18).

No changes from the grade 5 behavioral engagement subscale were needed for the grade 4 behavioral engagement subscale. The grade 4 behavioral engagement subscale accounted for 63.9% of the variance with an eigenvalue of 2.01 for variance to the first contrast (Table 18).

No changes in the grade 5 behavioral engagement subscale were made for grades 6, 7, or 8 behavioral subscales. The grade 6 behavioral engagement subscale accounted for 71.2% of the variance explained with an eigenvalue of 1.85 for the variance to the first contrast (Table 8). The grade 7 behavioral engagement subscale accounted for 74.8% of the variance explained by the measure with an eigenvalue of 1.85 for the variance to the first contrast (Table 18). The grade 8 behavioral engagement subscale accounted for 76.9% of the variance explained with an eigenvalue of 1.84 for the variance to the first contrast (Table 18).
Table 18
Behavioral Engagement Subscale Results for all Grades

<table>
<thead>
<tr>
<th>Grade</th>
<th>Category Changes:</th>
<th>Specified Item Changes</th>
<th>2nd Dimension (3 items): Behavioral Engagement</th>
<th>ELA Ratio between Time (4) and Progress, ELA Total Time (4), and Math Total Time (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Variance explained by measure</td>
<td>Variance 1st Contrast (Eigenvalue)</td>
</tr>
<tr>
<td>5th</td>
<td>None</td>
<td></td>
<td>66.4%</td>
<td>2.0054</td>
</tr>
</tbody>
</table>

<p>| 3rd | Category Changes: | Specified Item Changes | 52.9% | 2.2169 | 34.8% | .93/.93 | .84/1.11 | .41/.55 | .67 | .95/.90 | 3.83/3.97 | Math Total Time (-1.21; <.001) ELA Ratio (1.16; <.001) |</p>
<table>
<thead>
<tr>
<th>Grade</th>
<th>Category</th>
<th>Percentage</th>
<th>Proportion</th>
<th>Value</th>
<th>Standard Error</th>
<th>ELA Ratio</th>
<th>ELA Ratio (1.05; .009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4th</td>
<td>None</td>
<td>63.9%</td>
<td>24.2%</td>
<td>.97/.98</td>
<td>.64/.74</td>
<td>.84</td>
<td>.96/.95</td>
</tr>
<tr>
<td>6th</td>
<td>None</td>
<td>71.2%</td>
<td>17.8%</td>
<td>.91/.93</td>
<td>.75/.81</td>
<td>.84</td>
<td>.98/.98</td>
</tr>
<tr>
<td>7th</td>
<td>None</td>
<td>74.8%</td>
<td>15.6%</td>
<td>.84/.86</td>
<td>.73/.80</td>
<td>.81</td>
<td>1.02/1.00</td>
</tr>
<tr>
<td>8th</td>
<td>None</td>
<td>76.9%</td>
<td>14.2%</td>
<td>.83/.85</td>
<td>.73/.80</td>
<td>.80</td>
<td>1.04/1.20</td>
</tr>
</tbody>
</table>
Reliability and Validity

Split Sample

The original dataset containing approximately 20,000 online students in grades three through 8 was the source for the two random samples, each with 5,000 students. The second of these random samples was separated by grade then used to test the structure of each measure developed.

Since grade 5 was used to develop the measures for online cognitive engagement and online behavioral engagement, it was the first measure to be retested with the second sample. For online cognitive engagement the second sample confirmed the grade 5 measure, including the invariance problem of Math Formative assessments mastered and ELA Summative assessments mastered for students receiving special education services. For online behavioral engagement the second sample confirmed the grade 5 measure, yet the second sample was invariant for all items while the first sample was not invariant for Math Total Time for students receiving special education services.

All of the other grade level measures (grades 3, 4, 6, 7, and 8), both for online cognitive engagement and for online behavioral engagement were retested using the second random sample. Table 19 shows the results validating all of the measures for online cognitive engagement and online behavioral engagement for all grade levels. Yet while the first random sample for grade 8 online cognitive engagement had a person separation of 1.04, the grade 8 online cognitive engagement measure for the second random sample did not meet the expectations for separation, not even after the removal of
the Math Formative assessments mastered item that was found to be misfitting. This low person separation could imply that the measure of online cognitive engagement for grade 8 may not be sensitive enough to separate person ability (engagement level) into high and low groupings (Linacre, 2012).

For all grades, for both the first random sample and the second random sample, the measures for online cognitive engagement and online behavioral engagement had low person separation values (< 2) (Boone, Staver, & Yale). This indicates that all the measures have low sensitivity for separation of online student engagement levels and more items need to be added to both the measure of online cognitive engagement and the measure of online behavioral engagement.
<table>
<thead>
<tr>
<th>Grade</th>
<th>Specific Item Changes</th>
<th>1<sup>st</sup> Dimension (7 items): Cognitive Engagement</th>
<th>Math Percent Complete (4), Math Practice (3), ELA Practice (3), Math Formative Assessments (4), Math Summative Assessments (4), ELA Formative Assessments (4), and ELA Summative Assessments (3)</th>
<th>Variance explained by measure</th>
<th>Variance 1<sup>st</sup> Contrast (Eigenvalue)</th>
<th>Variance to first contrast (%)</th>
<th>Mean Person Infit/Outfit</th>
<th>Person Separation (Model/Real?)</th>
<th>Person Reliability (Model/Real)</th>
<th>Cronbach’s Alpha</th>
<th>Mean Item Infit/Outfit</th>
<th>Item Separation (Model/Real)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th Grade</td>
<td>None</td>
<td>55.4%</td>
<td>1.91</td>
<td>12.2%</td>
<td>.98/.98</td>
<td>.75/.79</td>
<td>1.73/1.92</td>
<td>.75/.79</td>
<td>.95</td>
<td>.98/.98</td>
<td>1.02/1.0</td>
<td>12.5/12.4</td>
</tr>
<tr>
<td>5th Grade 2<sup>nd</sup> Sample</td>
<td>None</td>
<td>57.3%</td>
<td>1.89</td>
<td>11.6%</td>
<td>.98/.98</td>
<td>.75/.79</td>
<td>1.72/1.93</td>
<td>.75/.79</td>
<td>.96</td>
<td>.98/.98</td>
<td>1.02/1.0</td>
<td>16.9/16.7</td>
</tr>
<tr>
<td>3<sup>rd</sup> Grade</td>
<td>Removed: ELA Formative ELA Summative Category Changes: Math Summative (3)</td>
<td>51.4%</td>
<td>2.42</td>
<td>23.5%</td>
<td>.95/.96</td>
<td>1.13/1.34</td>
<td>.56/.64</td>
<td>.96</td>
<td>1.01/.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>Sample</td>
<td>Removed:</td>
<td>ELAFormative</td>
<td>ELASummat</td>
<td>Changes:</td>
<td>Math Summative (3)</td>
<td>Changes:</td>
<td>Math % Complete</td>
<td>Average Practice ELA Formative Removed:</td>
<td>Math % Complete</td>
<td>Average Practice ELA Formative Removed:</td>
<td>Math % Complete</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>----------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>3rd</td>
<td>2nd</td>
<td>Removed:</td>
<td>ELAFormative</td>
<td>ELASummat</td>
<td>Changes:</td>
<td>Math Summative (3)</td>
<td>Changes:</td>
<td>Math % Complete</td>
<td>Average Practice ELA Formative Removed:</td>
<td>Math % Complete</td>
<td>Average Practice ELA Formative Removed:</td>
<td>Math % Complete</td>
</tr>
<tr>
<td>4th</td>
<td>4th</td>
<td>None</td>
<td>53.0%</td>
<td>2.30</td>
<td>21.6%</td>
<td>.94/.93</td>
<td>1.08/1.30</td>
<td>.54/.63</td>
<td>.97</td>
<td>1.02/.98</td>
<td>None</td>
<td>54.1%</td>
</tr>
<tr>
<td>4th</td>
<td>4th</td>
<td>None</td>
<td>55.6%</td>
<td>2.00</td>
<td>12.7%</td>
<td>.96/.96</td>
<td>1.66/1.84</td>
<td>.73/.77</td>
<td>.97</td>
<td>1.02/1.00</td>
<td>None</td>
<td>55.6%</td>
</tr>
<tr>
<td>6th</td>
<td>6th</td>
<td>Removed:</td>
<td>ELAFormative</td>
<td>ELASummat</td>
<td>Changes:</td>
<td>Math Summative (3)</td>
<td>Changes:</td>
<td>Math % Complete</td>
<td>Average Practice ELA Formative Removed:</td>
<td>Math % Complete</td>
<td>Average Practice ELA Formative Removed:</td>
<td>Math % Complete</td>
</tr>
<tr>
<td>6th</td>
<td>2nd</td>
<td>Removed:</td>
<td>ELAFormative</td>
<td>ELASummat</td>
<td>Changes:</td>
<td>Math Summative (3)</td>
<td>Changes:</td>
<td>Math % Complete</td>
<td>Average Practice ELA Formative Removed:</td>
<td>Math % Complete</td>
<td>Average Practice ELA Formative Removed:</td>
<td>Math % Complete</td>
</tr>
<tr>
<td>7th</td>
<td>6th</td>
<td>69.7%</td>
<td>1.71</td>
<td>17.5%</td>
<td>.98/.98</td>
<td>1.89/2.22</td>
<td>.78/.83</td>
<td>.92</td>
<td>.99</td>
<td>.98/98</td>
<td>None</td>
<td>69.3%</td>
</tr>
<tr>
<td>7th</td>
<td>6th</td>
<td>69.7%</td>
<td>1.67</td>
<td>12.6%</td>
<td>.95/.92</td>
<td>1.86/2.22</td>
<td>.78/.83</td>
<td>.82</td>
<td>1.00</td>
<td>1.00/1.02</td>
<td>None</td>
<td>69.7%</td>
</tr>
<tr>
<td>Grade 2nd Sample</td>
<td>Removed: Math % Complete Average Practice</td>
<td>Removed: Math % Complete Average Practice</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>7th Grade</td>
<td>70.7% 1.72 12.6% .97/.72 2.09/2.82 .81/.86 .85 1.00/.99</td>
<td>58.0% 1.83 19.2% .97/.77 1.21/1.47 .60/.68 .68 1.00/.98</td>
<td></td>
</tr>
<tr>
<td>8th Grade</td>
<td>60.6% 1.73 17.0% .97/.77 1.39/1.65 .66/.73 .71 1.00/1.00</td>
<td>60.8% 1.73 22.6% .97/.77 1.37/1.64 .65/.73 .96 .99/.98</td>
<td></td>
</tr>
<tr>
<td>Math Formative</td>
<td>Math % Complete Average Practice</td>
<td>Math % Complete Average Practice</td>
<td></td>
</tr>
<tr>
<td>Removed:</td>
<td>Math % Complete Average Practice</td>
<td>Math % Complete Average Practice</td>
<td></td>
</tr>
</tbody>
</table>

The table shows the removed data for Math % Complete Average Practice for different grades.
Table 20
Behavioral Engagement Subscale Results for All Grades Using Second Random Sample

<table>
<thead>
<tr>
<th>Grade</th>
<th>Specific Item Changes</th>
<th>2nd Dimension (3 items): Behavioral Engagement</th>
<th>1st Contrast (Eigenvalue)</th>
<th>Variance explained by measure</th>
<th>Variance to first contrast (%)</th>
<th>Mean Person Infit/Outfit</th>
<th>Person Separation (Model/Real?)</th>
<th>Person Reliability (Model/Real)</th>
<th>Cronbach’s Alpha</th>
<th>Mean Item Infit/Outfit</th>
<th>Item Separation (Model/Real?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th Grade</td>
<td>None</td>
<td>ELA Ratio between Time (4) and Progress, ELA Total Time (4), and Math Total Time (4)</td>
<td>2.01</td>
<td>66.4%</td>
<td>22.4%</td>
<td>.93/.94</td>
<td>1.49/1.79</td>
<td>.69/.76</td>
<td>.74</td>
<td>.97/.95</td>
<td>4.18/4.29</td>
</tr>
<tr>
<td>5th Grade</td>
<td>None</td>
<td>ELA Ratio between Time (4) and Progress, ELA Total Time (4), and Math Total Time (4)</td>
<td>2.06</td>
<td>64.6%</td>
<td>24.3%</td>
<td>.95/.93</td>
<td>1.38/1.69</td>
<td>.66/.74</td>
<td>.81</td>
<td>.96/.92</td>
<td>13.38/13.67</td>
</tr>
<tr>
<td>3rd Grade</td>
<td>Category Changes: ELA Ratio (3)</td>
<td>ELA Ratio between Time (4) and Progress, ELA Total Time (4), and Math Total Time (4)</td>
<td>2.22</td>
<td>52.9%</td>
<td>34.8%</td>
<td>.93/.93</td>
<td>.84/1.11</td>
<td>.41/.55</td>
<td>.67</td>
<td>.96/.90</td>
<td></td>
</tr>
<tr>
<td>3rd Grade</td>
<td>Category Changes: ELA Ratio (3)</td>
<td>ELA Ratio between Time (4) and Progress, ELA Total Time (4), and Math Total Time (4)</td>
<td>2.21</td>
<td>54.0%</td>
<td>33.8%</td>
<td>.95/.95</td>
<td>.88/1.15</td>
<td>.44/.57</td>
<td>.69</td>
<td>.94/.91</td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>4th Grade</td>
<td>4th Grade 2nd Sample</td>
<td>6th Grade</td>
<td>6th Grade 2nd Sample</td>
<td>7th Grade</td>
<td>7th Grade 2nd Sample</td>
<td>8th Grade</td>
<td>8th Grade 2nd Sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>----------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>63.9% 2.01 24.2% .97/.98 1.32/1.69 .64/.74 .84 1.96/.95</td>
<td>None</td>
<td>62.3% 2.00 25.1% .96/.95 1.28/1.61 .62/.72 .80 1.96/.94</td>
<td>None</td>
<td>71.2% 1.85 17.8% .91/.93 1.71/2.07 .75/.81 .84 1.98/.98</td>
<td>None</td>
<td>68.7% 1.92 20.1% .93/.93 1.58/1.94 .71/.79 .85 1.99/.98</td>
<td>None</td>
<td>74.8% 1.85 15.6% .84/.86 1.65/2.02 .73/.80 .81 1.02/1.00</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>63.9% 2.01 24.2% .97/.98 1.32/1.69 .64/.74 .84 1.96/.95</td>
<td>None</td>
<td>62.3% 2.00 25.1% .96/.95 1.28/1.61 .62/.72 .80 1.96/.94</td>
<td>None</td>
<td>71.2% 1.85 17.8% .91/.93 1.71/2.07 .75/.81 .84 1.98/.98</td>
<td>None</td>
<td>68.7% 1.92 20.1% .93/.93 1.58/1.94 .71/.79 .85 1.99/.98</td>
<td>None</td>
<td>74.8% 1.85 15.6% .84/.86 1.65/2.02 .73/.80 .81 1.02/1.00</td>
<td>None</td>
</tr>
<tr>
<td>Grade</td>
<td>Sample</td>
<td>None</td>
<td>76.7%</td>
<td>1.83</td>
<td>14.2%</td>
<td>.85/.85</td>
<td>1.72/2.11</td>
<td>.75/.82</td>
<td>.79</td>
<td>1.03/1.13</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----------</td>
<td></td>
</tr>
</tbody>
</table>

8^{th}
Confirmatory Factor Analysis

Confirmatory factor analyses were used to examine the dimensional structure for the developed measures of online student engagement for each grade level. Both the CFA model with all items measuring online student engagement and the CFA model with two lower-order factors of online cognitive engagement and online behavioral engagement directly measuring the higher-order factor of online student engagement were examined for all grade levels. Each CFA model was examined for model fit using the chi-square goodness-of-fit index, root mean error of approximation (RMSEA), comparative fit index (CFI), and Akaike Information Criterion (AIC). In addition, a chi-square difference test was used to compare the model fit between models, even though the chi-square statistic is sensitive to the large sample sizes used to develop the measures to be tested. Yet finding that a model has a good fit only implies that the model is plausible, not necessarily correct or true (Kline, 2011). With the understanding that none of the fit indices alone can clearly dictate whether a model should be accepted or rejected, all the evidence of model fit was used together with theoretical specification information to determine model fit.

A confirmatory factor analysis was used to check the model structure of each measure developed for each grade level. Since the original theoretical model of online student engagement was multifaceted, it was expected that each grade level measure would have an online cognitive engagement factor and an online behavioral engagement factor, potentially coming together to form a higher order factor of online student engagement.
The original theoretical model for online student engagement had online student engagement as a second-order factor that was measured indirectly through the online student behavior items of the first-order factors of online cognitive engagement, online affective engagement, and online behavioral engagement.

While the first-order factors of online cognitive engagement and online behavioral engagement had more than two indicators each, there were only two first-order factors, so a second-order factor of online student engagement could not be identified. With only two first-order factors the disturbance terms, representing the factor variance not explained by the second-order factor, are underidentified and factor loadings are underidentified (Kline, 2011).

Specification errors commonly occur when items/variables/predictors of the latent construct are missing from the model, especially when the missing items/variables/predictors are statistically significant predictors of variance in the latent factor/construct. These missing items/variables would be included in the error terms of the observed variables in the CFA model, yet these error terms also include systematic error or score unreliability. These multiple sources of error variance or unique variance cannot be separated between the possible sources of error.

Figures 16 to 21 provide the CFA results for the one- and two-factor models by grade and Table 24 summarizes the conclusions of the grade level CFA models. Two-factor CFA models were best fit for grades 3, 6, 7, and 8, while the parsimonious one-factor CFA model was found to be the best fit for grade 5. Grade 4 CFA models did not
converge and so grade 4 online student engagement measure was not able to be fully validated. Recommended future research should include the addition of items, potential mediators/moderators impacts and affective engagement subscale. With these additions the grade level models could change further and become more reliable.
Fit Statistics

Chi-Square
\(\chi^2 = 2706.86 \)
\(\text{Df} = 14 \)
\(p < .001 \)

RMSEA = .34
CFI = .49
AIC = 2734.86

• Conclusion: Two Factor Model a better fit than the Parsimonious Model.
 - Two Factor AIC < Parsimonious AIC
 - Two Factor CFI > Parsimonious CFI
 - Two Factor RMSEA < Parsimonious RMSEA

Fit Indices

Chi-Square
\(\chi^2 = 2430.53 \)
\(\text{Df} = 13 \)
\(p < .001 \)

RMSEA = .33
CFI = .55
AIC = 2460.53
• Conclusion: Only the Parsimonious Model would converge for the data
• Evaluation of measure changes and additions will need to occur in the future
Figure 18: Grade 5 CFA Models

![Diagram of Grade 5 CFA Models]

Fit Indices

Chi-Square
\[\chi^2 = 7997.93 \]
Df = 35
p < .001
RMSEA = .34
CFI = .45
AIC = 8037.93

- Conclusion: Parsimonious Model a better fit
- Two Factor Model did not converge when Math Formative and Math Time were used as scaling items

Fit Indices

Chi-Square
\[\chi^2 = \]
Df =
RMSEA =
CFI =
AIC = 111383.74
Fit Indices

<table>
<thead>
<tr>
<th>Chi-Square</th>
<th>(\chi^2 = 2268.18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>9</td>
</tr>
<tr>
<td>p</td>
<td>< .001</td>
</tr>
<tr>
<td>RMSEA</td>
<td>.52</td>
</tr>
<tr>
<td>CFI</td>
<td>.569</td>
</tr>
<tr>
<td>AIC</td>
<td>2292.18</td>
</tr>
</tbody>
</table>

Conclusion: Two Factor Model a better fit than the Parsimonious Model
- Two Factor AIC < Parsimonious AIC
- Two Factor CFI > Parsimonious CFI
- Two Factor RMSEA < Parsimonious RMSEA

Fit Indices

<table>
<thead>
<tr>
<th>Chi-Square</th>
<th>(\chi^2 = 509.14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>8</td>
</tr>
<tr>
<td>p</td>
<td>< .001</td>
</tr>
<tr>
<td>RMSEA</td>
<td>.26</td>
</tr>
<tr>
<td>CFI</td>
<td>.90</td>
</tr>
<tr>
<td>AIC</td>
<td>535.14</td>
</tr>
</tbody>
</table>
Figure 20: Grade 7 CFA Models

Fit Indices

<table>
<thead>
<tr>
<th>Chi-Square</th>
<th>(\chi^2 = 1334.41)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Df</td>
<td>14</td>
</tr>
<tr>
<td>p</td>
<td>< .001</td>
</tr>
<tr>
<td>RMSEA</td>
<td>.27</td>
</tr>
<tr>
<td>CFI</td>
<td>.78</td>
</tr>
<tr>
<td>AIC</td>
<td>1362.49</td>
</tr>
</tbody>
</table>

Conclusion: Two Factor Model a better fit than the Parsimonious Model
- Two Factor AIC < Parsimonious AIC
- Two Factor CFI > Parsimonious CFI
- Two Factor RMSEA < Parsimonious RMSEA

Fit Indices

<table>
<thead>
<tr>
<th>Chi-Square</th>
<th>(\chi^2 = 827.31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Df</td>
<td>13</td>
</tr>
<tr>
<td>p</td>
<td>< .001</td>
</tr>
<tr>
<td>RMSEA</td>
<td>.26</td>
</tr>
<tr>
<td>CFI</td>
<td>.88</td>
</tr>
<tr>
<td>AIC</td>
<td>857.31</td>
</tr>
</tbody>
</table>
Figure 21: Grade 8 CFA Models

Fit Indices
- **Chi-Square**
 \[\chi^2 = 5344.33 \]
 \[\text{Df} = 14 \]
 \[p < .001 \]
- **RMSEA** = .37
- **CFI** = .61
- **AIC** = 5372.33

Conclusion: Two Factor Model a better fit than the Parsimonious Model
- Two Factor AIC < Parsimonious AIC
- Two Factor CFI > Parsimonious CFI
- Two Factor RMSEA < Parsimonious RMSEA

Fit Indices
- **Chi-Square**
 \[\chi^2 = 2881.66 \]
 \[\text{Df} = 13 \]
 \[p < .001 \]
- **RMSEA** = .284
- **CFI** = .790
- **AIC** = 2911.66
Table 21
Grade Level CFA One-Factor and Two-Factor Sample Moments, Parameters to be Estimated and Conclusions

<table>
<thead>
<tr>
<th>Model</th>
<th>Model Number</th>
<th>Number of Observed Variables</th>
<th>Latent Factors</th>
<th>Number of Sample Moments</th>
<th>Parameters to be Estimated</th>
<th>Degrees of Freedom</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 3</td>
<td>Figure 16</td>
<td>7 (1 scaling item)</td>
<td>Grade 3 Online Student Engagement</td>
<td>28</td>
<td>14</td>
<td>14</td>
<td>Two Factor Model a better fit based on AIC fit indices (Parsimonious AIC = 2734.86) (Two Factor AIC = 2460.53)</td>
</tr>
<tr>
<td>parsimonious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3</td>
<td>Figure 16</td>
<td>7 (2 scaling items)</td>
<td>Cognitive Engagement Behavioral</td>
<td>28</td>
<td>15</td>
<td>13</td>
<td>Two Factor Model was not able to be constructed and</td>
</tr>
<tr>
<td>two factor</td>
<td></td>
<td></td>
<td>Engagement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4</td>
<td>Figure 17</td>
<td>7 (1 scaling item)</td>
<td>Grade 4 Online Student Engagement</td>
<td>55</td>
<td>20</td>
<td>20</td>
<td>Two Factor Model was not able to be constructed and</td>
</tr>
<tr>
<td>parsimonious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4 Two Factor</td>
<td>Figure 17</td>
<td>7 (2 scaling items)</td>
<td>Cognitive Engagement</td>
<td>Model not Possible</td>
<td>Behavioral Engagement</td>
<td>Model not Possible</td>
<td>Model not Possible</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>-----------------------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Grade 5 Parsimonious</td>
<td>Figure 18</td>
<td>7 (1 scaling item)</td>
<td>Grade 5 Online Student Engagement</td>
<td>55</td>
<td>20</td>
<td>-9 regression loadings</td>
<td>-10 error variances</td>
</tr>
<tr>
<td>Grade 5 Two Factor</td>
<td>Figure 18</td>
<td>7 (2 scaling items)</td>
<td>Cognitive Engagement</td>
<td>55</td>
<td>21</td>
<td>-8 regression loadings</td>
<td>-10 error variances</td>
</tr>
<tr>
<td>Grade 6 Parsimonious</td>
<td>Figure 19</td>
<td>7 (1 scaling item)</td>
<td>Grade 6 Online Student Engagement</td>
<td>21</td>
<td>12</td>
<td>-5 regression loadings</td>
<td>-6 error variances</td>
</tr>
<tr>
<td>Grade</td>
<td>Two Factor</td>
<td>Figure</td>
<td>Items</td>
<td>Cognitive Engagement</td>
<td>Behavioral Engagement</td>
<td>Regression Loadings</td>
<td>Error Variances</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>--------</td>
<td>-------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>2 (scaling items)</td>
<td>7</td>
<td>13</td>
<td>8</td>
<td>indices. (Parsimonious AIC = 2292.18) (Two Factor AIC = 535.14)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>1 (scaling item)</td>
<td>7</td>
<td>14</td>
<td>14</td>
<td>Two Factor Model a better fit based on AIC fit indices (Parsimonious AIC = 1362.41) (Two Factor AIC = 836.93)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>2 (scaling items)</td>
<td>7</td>
<td>15</td>
<td>13</td>
<td>Two Factor Model a better fit based on AIC fit indices (Parsimonious AIC = 1362.41) (Two Factor AIC = 836.93)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>1 (scaling item)</td>
<td>7</td>
<td>14</td>
<td>14</td>
<td>Two Factor Model a better fit based on AIC fit indices (Parsimonious AIC = 5372.33) (Two Factor AIC = 2911.66)</td>
<td></td>
</tr>
</tbody>
</table>
Confirmatory factor analyses were used to identify if a two factor model or parsimonious model of online student engagement was a better fit. All the grade level measures of online student engagement were validated based on the CFA results. Yet while for four grade levels- grades 3, 6, 7, and 8- two factor models as determined by the AIC fit indices (Table X) were the better fitting, for grades 4 and 5 the parsimonious model fit best as determined by the AIC fit indices. Grades 4 and 5 had the most online student behavior items included in their measures, with 55 sample moments in each model. This could suggest that as more items are added to the measures of online student engagement there were more poorly defined boundaries of measurement between the components of student engagement--behavioral and cognitive.

The parsimonious models for grades 4 and 5 had 55 sample moments while the two factor models of grades 3, 4, 6, 7, and 8 had 21 to 28 sample moments. This is the result of more online student behaviors being included in the models for grade 4 and 5. While these additional observed variables expand the measure continuum they also cause the theoretical multidimensionality of online student engagement to not be as clear. As additional items are added to these grade level measures in future research it will be pertinent to observe if the two factor models remain multidimensional measures or become more stable as a parsimonious model. For this research study the measures of cognitive engagement and behavioral engagement established using IRT were used for grades 4 and 5, keeping in mind that CFA validation will need to be conducted as the measures are expanded.
Additional CFA Results

Regardless of model type, it was found that the observed variables of Math Formative Assessments and/or ELA Ratio had the highest regression unstandardized loading for each of the models. Math Formative Assessment was the most impactful on level of online student engagement for grades 3, 4, 5, and 6; ELA Time was the second most impactful on these grades. For grades 3, 4, 5, and 6 the cognitive engagement item of Math Formative Assessments contributed most to their level of online student engagement, followed by the behavioral engagement item of ELA Time. For grades 7 and 8, ELA Ratio had the highest regression unstandardized loading, therefore was the most impactful on the measure of online student engagement. Also for grade 7 and 8 ELA Time was the second most impactful item followed by Math Formative Assessments and ELA Formative Assessments. This reveals that for grades 7 and 8 the behavioral engagement items of ELA Ratio and ELA Time have more weight in the measure of online student engagement than the cognitive engagement item of Math Formative Assessments.

The behavioral engagement items seemed to be the most unstable since they had the highest error variances for all grade level models. Two to three behavioral engagement items (Math Time, ELA Time, and ELA Ratio) were included in each of the grade level measures and when modeled using CFA had error variances over 1000. For all grade levels, except grade 4, regardless of whether the parsimonious model is a better fit, the covariance between cognitive engagement and behavioral engagement was
statistically significant. When correlations were evaluated, all correlations between cognitive engagement and behavioral engagement for all grade levels were statistically significant, yet low (coefficient < 0.5) (Table 25)

Relationships with Outcome Variables

The person ability logits for online cognitive engagement (1st dimension), online behavioral engagement (2nd dimension) and the parsimonious measure including both cognitive engagement and behavioral engagement items were extracted from WinSteps for all cases at all grade levels. All three of these logit scores were correlated with math and reading outcome variables (academic achievement). Table 22 shows the results for each grade level measure.

Table 22
Correlations between Person Logit Position for Online Cognitive Engagement and Online Behavioral Engagement and Academic Achievement

<table>
<thead>
<tr>
<th>Grade</th>
<th>Academic Achievement</th>
<th>Normalized Math State Test Score</th>
<th>Normalized Reading State Test Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd Grade</td>
<td>Online Cognitive Engagement</td>
<td>.36**</td>
<td>.13**</td>
</tr>
<tr>
<td></td>
<td>Online Behavioral Engagement</td>
<td>.14**</td>
<td>.021</td>
</tr>
<tr>
<td></td>
<td>Parsimonious Measure of Engagement</td>
<td>.33**</td>
<td>.05**</td>
</tr>
<tr>
<td>4th Grade</td>
<td>Online Cognitive Engagement</td>
<td>.39**</td>
<td>.33**</td>
</tr>
<tr>
<td></td>
<td>Online Behavioral Engagement</td>
<td>.17**</td>
<td>.18**</td>
</tr>
<tr>
<td></td>
<td>Parsimonious Measure of Engagement</td>
<td>.33**</td>
<td>.30**</td>
</tr>
<tr>
<td>Grade</td>
<td>Measure of Engagement</td>
<td>5th Grade</td>
<td>6th Grade</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>Online Cognitive Engagement</td>
<td>.31**</td>
<td>.35**</td>
</tr>
<tr>
<td></td>
<td>Online Behavioral Engagement</td>
<td>.14**</td>
<td>.24**</td>
</tr>
<tr>
<td></td>
<td>Parsimonious Measure of Engagement</td>
<td>.24**</td>
<td>.35**</td>
</tr>
</tbody>
</table>

**p < .01

While for all grade levels academic achievement outcome variables had statistically significant positive correlations with all measures and subscales of online student engagement, the correlation coefficients are all considered low with values under 0.5. These results can indicate both that the measures are indeed measuring online student engagement rather than academic achievement but also that additional items may be required to increase the accuracy of the measure of online student engagement so it relates more strongly to academic achievement.
Since the logit scores for online cognitive engagement and online behavioral engagement were found to have statistically significant relationships/correlations with both math and reading outcomes (except Grade 3 Reading), the logit scores were also used as predictors for both math and reading outcomes in a standard multiple regression analysis. Table 23 displays the regression results. A goal of examining the relationships between online cognitive engagement, online behavioral engagement, and academic achievement outcomes is to identify best practices that can impact the increase in online student engagement and or academic achievement.

Table 23
Regressions Predicting Academic Achievement from Online Cognitive Engagement and Online Behavioral Engagement

<table>
<thead>
<tr>
<th>Grade</th>
<th>Academic Achievement Normalized Math State Test Score</th>
<th>Normalized Reading State Test Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adjusted R Square</td>
<td>R Square Change</td>
</tr>
<tr>
<td>3rd Grade</td>
<td>Online Cognitive Engagement</td>
<td>.13</td>
</tr>
<tr>
<td></td>
<td>Online Behavioral Engagement</td>
<td><.001</td>
</tr>
<tr>
<td>4th Grade</td>
<td>Online Cognitive Engagement</td>
<td>.15</td>
</tr>
<tr>
<td></td>
<td>Online Behavioral Engagement</td>
<td><.001</td>
</tr>
<tr>
<td>5th Grade</td>
<td>Online Cognitive Engagement</td>
<td>.10</td>
</tr>
<tr>
<td></td>
<td>Online Behavioral Engagement</td>
<td><.001</td>
</tr>
<tr>
<td>Grade</td>
<td>Online Cognitive Engagement</td>
<td>Online Behavioral Engagement</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>6th</td>
<td>0.13</td>
<td>0.12</td>
</tr>
<tr>
<td>7th</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>8th</td>
<td>0.07</td>
<td>0.07</td>
</tr>
</tbody>
</table>

For all grade levels, the online cognitive measure was the best predictor of academic achievement in both math and reading. This result was expected, since cognitive engagement has been found to be a better predictor of academic achievement than behavioral engagement and affective engagement.

The correlations and regressions between the cognitive engagement measures, behavioral engagement measures, and parsimonious engagement measures supports the established relationship between student engagement and academic achievement. In addition, future research can use these established relationships to investigate factors that act as mediators and or moderators to the relationship between online student engagement and academic achievement.
Chapter 4: Discussion

Summary of Findings

Research Question:

Does a measure of online student engagement from grade 3 through 8 comprised of continuous online student behavior items scaled using a polytomous Rasch partial credit model meet the expectations of dimensionality, model fit, item fit, construct reliability, and construct validity?

It was found that online student behaviors were useful in creating a measure of online cognitive engagement and online behavioral engagement but not a fully comprehensive measure of online student engagement. When measures were developed for each grade level (grades 3, 4, 5, 6, 7, and 8), dimensionality, model fit, person fit, and item fit expectations were met. Through reliability assessment at each grade level, reliability of measures of online cognitive engagement and online behavioral engagement was supported. Lastly, through the use of confirmatory factor analysis models the measures were validated as two factor measures of online student engagement.

In the future, other models--such as the continuous response model--and item categorization processes, such as starting all items with 100 splits regardless of indicator
status, -could be used to re-evaluate the possibilities of using continuous online student behaviors as items in the measure of online student engagement.

Hypothesis 1:

The online student engagement measure for grades 3 through 8 encompasses three dimensions of student engagement- behavioral, affective, and cognitive- displaying fit statistics that support a three-factor model over a one-factor model for the overall measure of online student engagement for grades 3 through 8.

Using a partial credit Rasch model, grade level measures of online cognitive engagement and online behavioral engagement were established. These measures met dimensionality, person fit, and item fit expectations, as well as were validated through using a second random sample. Yet a three factor model was not able to be established for any of the grade level measures.

A three-factor model was not possible for the online student engagement measure for grades 3 through 8 since the majority of the affective engagement items were not included in the measure development process. Future research on how to measure affective engagement for students in an online learning environment is needed in order to eventually develop a full three-factor model of student engagement for online students. A two factor model was established for grades 3, 5, 6, 7, and 8 that was made up of an online cognitive engagement factor and an online behavioral engagement factor. All of the loadings/regression weights for the items on each of the latent factors were statistically significant and the variances of both latent factors were statistically
significant for all grades, except for grade 4. These CFA results validate the construct validity of the measures of online cognitive engagement and online behavioral engagement for grades 3, 5, 6, 7, and 8. Future research will be necessary in order to determine the adjustments needed for the measure of grade 4 online student engagement and to identify additional items that would make the measure continuum more robust for all measures.

Hypothesis 2:

The online student engagement measure for grades 3 through 8 is invariant across student special education status and grade level.

To ensure the measure of online student engagement as invariant for grades 3 to 8, two measures were developed for each grade level, an online cognitive engagement measure and an online behavioral engagement measure. These measures developed in this research study will require future development as they are made up of weak indicators. The identification of additional online student engagement items is a part of a future research plan.

Since each grade level has grade level specific online curricula, academic standards, and online behavior expectations, these differences may have led to the variations in the online student behaviors that required measures to be developed for each individual grade level. In addition, after examining the nesting effect analyses done for the outcomes at each grade level it may be that the nesting effect of schools and/or teachers is having more of an effect on online student behaviors and or differences in
online student behaviors than originally anticipated. It was assumed that since each grade level was using the same curriculum and online platform that the online student behaviors would be similar enough across schools to be assumed to be equivalent; this may not be the case. Future research is needed.

The invariance across student online behavior items used in the developed measures was also evaluated for students receiving special education services. It was found that for many of the grade level measures there was one or more items that were found to not be invariant (DIF Contrast > |.64| and p < .05) for students receiving special education services. This may indicate that there are so many differences in the academic expectations and curriculum alterations for students receiving special education services that the online student behavior patterns are not the same as for students receiving general education services. Future research is needed around the development of measures of online student engagement, specifically for students receiving special education services. A separate measure of engagement for students receiving special education services may be indicated.

Hypothesis 3:

The online student engagement measure for grades 3 through 8 displays statistically significant positive correlations with academic achievement for any subscales that make up the measure.

Once the grade-level specific subscale measures for online cognitive engagement and online behavioral engagement were established, the person ability (online student
engagement level) logits were exported from Winsteps and combined with the outcomes data set. Correlations and regressions were used to examine the relationships between the logit scores from the new measures and the normalized math and reading outcome variables. It was found that while all the grade level measures had statistically significant positive correlations with both outcome variables, these correlations were weak with Pearson correlation coefficients of less than .5. For all grades, the online cognitive engagement measures had a higher correlation coefficient with the math and reading outcomes than the online behavioral engagement measures.

For all grade levels, adjusted r square values were between 0.07 to 0.15 for math and between .02 and 0.11 for reading. However, the online cognitive engagement scores (r square change values ranging from 0.02 to 0.11) were more predictive of both math and reading academic achievement than the online behavioral engagement scores (r square change values ranging from <.001 to 0.02). The online cognitive engagement scores were statistically significant predictors for all grade level academic achievement in both math and reading, while the online behavioral engagement scores were statistically significant predictors for only grades 5, 6, and 8 in math and reading. Lastly, the math outcome had stronger relationships (correlations) with and was predicted more strongly by the online cognitive engagement measure and the online behavioral engagement measure than the reading outcome for all grade levels.
Limitations

The limitations of this study both affected the results and illuminated additional future research that is necessary in the field of K-12 online learning. Some of the limitations are embedded within an overarching limitation of assuming learning in an online learning environment is the same as learning in a brick-and-mortar learning environment. This assumption has been and continues to be the greatest limitation for online learning researchers. Within this main assumption are the limitations of:

1. Assuming student behaviors in the online learning environment equate in the same way as in the brick-and-mortar learning environment
2. Assuming the school nesting effect for academic achievement (measured by state assessments) of students in schools does not have a significant effect on the measure development results
3. Assuming relationships between online student behaviors and academic achievement are linear

It has been assumed that a student behavior such as brick-and-mortar school attendance is the same as the online student behavior of number of online course logins. This type of parallel equating has not been empirically tested and may be a source of error for research results related to online learning environments. For this research study, the online student behaviors were selected using empirical and theoretical evidence of similar variables being related to student engagement in brick-and-mortar environments but the measure of the online student behaviors was not related to the associated brick-
and-mortar variables. This limitation of online student behaviors not equating similarly to brick-and-mortar student behaviors should be the source of future research.

It was found that there were statistically significant school nesting effects for math achievement (grades 6 and 7) and reading achievement (grades 3 and 6). This means that 10% or more of the variance explained was due to the school enrollment of a student. While these statistically significant school nesting effects can highlight areas of future exploration, they should be accounted for and adjusted for in inferential research that includes multiple schools or multiple states.

There have been research studies that have examined academic achievement in online learning environments and research studies that have compared academic achievement in online learning environments to brick-and-mortar learning environments but none of these studies have mentioned the school nesting effect that could be skewing their results. For this research study when a school nesting effect was examined for the whole sample and by grade segments (grades 3 to 5 and grades 6 to 8), the school nesting effect seemed minimal with less than 10% of the variance in academic achievement (math and reading) being explained by which school students attended. Yet, examination by grade, showed that school nesting effect explained more than 10% of the variance in math achievement for grade 6 and grade 7 and 98% of the variance in 3rd grade reading. This is concerning when the distribution of the students within the sample plays an important role in the establishment of the measure continuum. Although having a large school nesting effect does not indicate that there is a large nesting effect for other variables, it does highlight the possibility of clustering affecting results. Hedges (2007) demonstrated the use of “a
multiplicative factor depending on the total sample size, the cluster size, and the intraclass correlation” (p. 151) to account for clustering and or nesting effects. This adjustment or a similar adjustment for a nesting effect should be applied in future research studies once more is understood about the school level factors contributing to the school nesting effects.

Although it was found that none of the online student behavior items met all three requirements of inverted U relationships for math or reading achievement, the fact that most of the online student behavior items met two of the three inverted U requirements leads to the question of the possibility of non-linear relationships. Both item response theory and structural equation modeling assume that the distributions of the online student behaviors as well as that the online student behavior items have linear relationships with latent factors and academic achievement. Linearity is a major assumption/requirement that must be met for both univariate and multivariate statistical analyses. According to Tabachnick and Fidell (2013) “Pearson’s r only captures the linear relationships among variables” (p.83) while non-linear relationships are ignored. When relationships between variables are non-linear, correlation and regression (foundations for higher statistical models) results are either inflated or deflated and are always flawed. Inverted U relationships are one of several potential curvilinear relationships amongst variables. When bivariate scatterplots are examined for (variable; time or progress) and academic achievement it is clear why it was theorized that some of the relationships between online student behaviors and academic achievement were actually non-linear. Yet a main source of non-linear relationships between variables is
one or both variables not being normally distributed. A variable that does not have a normal distribution can have degraded statistical solutions. When future research is conducted to identify and examine non-linear relationships among online student behaviors and academic achievement, normality will need to also be extensively evaluated. Additional research should explore the distribution patterns and relationship patterns of online student behaviors and academic achievement, then adjustments should be used before inferential research using these variables is conducted.

In addition to the limitations embedded in the assumption that online learning environments mimics brick-and-mortar learning environments, there were also limitations within the process of converting the continuous student behaviors to nominal items for measure development. When a continuous variable is converted to a nominal (categorical) variable there is inherently a loss of information. The loss of information could have led to the shrinking of the measure continuum or focused the measure in order to find the measurement core of online student engagement for grades 3 through 8. The identification of only weak indicators (correlation coefficients under .5 with academic achievement) suggests that more categories or use of the full continuous items would not have yielded additional separation between persons’ ability. Future research will include the use of alternative response models, such as the continuous response model, to compare with the measures developed in this research study.

Coupled with the loss of information from the conversion of continuous variables to categorical variables is the large amount of missing data. Examination of missing data found that 88.24% of cases included in the first random sample had at least one missing
value and that students who were missing one online student behavior were most likely missing multiple online student behaviors. Missing data was not removed because it was assumed that the more online student behaviors that a student lacked the less engaged they were, leaving students with no online student behaviors as the lowest level of online student engagement. This assumption leads to the large amount of students with missing data remaining in the dataset and patterns of missing data not at random. The missing data not only limited the analyses that were able to be conducted but also introduced multiple sources of Type I error. If the limitation of missing data only affected one or two online student behaviors then multiple imputation or other imputation techniques could be used but in this case all of the online student behavior variables are affected by missing data making imputation not feasible. For future research, a new engagement minimum should be established so students who are missing all student behaviors can be removed from measurement/analyses.

For all grades, for both the first random sample and the second random sample, the measures of online cognitive engagement and online behavioral engagement had low person separation values (< 2) (Boone, Staver, & Yale). This indicates that all the measures had low sensitivity for separation of online student engagement levels and more items need to be added to both the measure of online cognitive engagement and the measure of online behavioral engagement.
Implications

The research study concentrated on the development of measures of online student engagement for grades 3 through 8 using tracked online student behaviors as items. Even with the removal of several items, online student engagement was found to be multifaceted with a cognitive engagement component and a behavioral engagement component, although missing the third hypothesized component of affective engagement. The measures of online student engagement for grades 3 through 8 developed in this research study have extended the understanding of student engagement in an online learning environment. The online student engagement measures for grades 3 through 8 are expected to be expanded and solidified then used to support online school decision making, student intervention developments, and overall improvement of academic success in an online learning environment. This research could also be used to foster the identification of student characteristics and behaviors that lead to successful online academic performance; allowing students to be grouped by potential success online at the time of enrollment. Utilizing the measures to establish student engagement levels will provide vital information for schools and teachers on how to make focused improvements for students (Appleton et al., 2008; Carter, Reschly, Lovlace, Appleton, & Thompson, 2012). In addition, rolling up student engagement levels to get the average student engagement of a particular grade, student group, or entire school will provide essential information on how to focus strategies/methods on the improvement in student retention and academic success (Ett, 2008; Casper, DeLuca, & Estacion, 2012). This research supports the motivated improvement of the online learning environment.
Future Research

This research study has led to the following questions that can be the emphasis of future research:

1. Would the identification and addition of items to the online cognitive engagement measure, for all grades, make it more robust, increasing the person separation?

2. Would the identification and addition of items to the online behavioral engagement measure, for all grades, make it more robust, increasing the person separation?

3. Would the use of the continuous response model produce a similar measure? How would this measure differ from the one produced using the polytomous partial credit Rasch model?

4. Can online affective engagement be measured using data that is already being collected from the learning management system? Could new online data sources provide the data needed to measure online affective engagement without the use of surveys/questionnaires?

5. Do the data generated by students attending synchronous sessions produce online student behaviors that could be added to the measures of online student engagement?

6. Do click data generated by students’ navigations through their online courses produce online student behaviors that could be added to the measures of online student engagement?
7. Do the data generated by students’ online communication with teachers and classmates produce online student behaviors that could be added to the measures of online student engagement, in particular representing the factor of affective engagement?

8. Would establishing a new lowest level of online student engagement other than students with no online student behavior activity, relieve the limitation due to missing data? How can amounts of missing data be better accounted for in the measures of online student engagement?

9. How does cognitive engagement differ in an online learning environment from a brick-and-mortar learning environment?

10. Could the variability in the normalized/standardized state test scores be statistically significant and contributing to the weak correlations between online student engagement and academic achievement?

11. How does behavioral engagement differ in an online learning environment from a brick-and-mortar learning environment?

12. Can a measure for online student engagement be developed specifically for students receiving special education services using tracked online student behaviors as items?

13. What can be learned from school nesting effects in an online learning environment? How can school nesting effect be accounted for in online learning empirical research using inferential statistics?

14. In the K-12 online learning environment, what are the strong indicators of academic achievement when measured using normalized state test scores?
15. Can the online student engagement measures developed for grades 3 through 8 be expanded to kindergarten to grade 2?

16. Can the online student engagement measures developed for grades 3 through 8 be expanded to high school grades 9 through 12?

17. How does online student engagement relate to student retention?

Value to Practitioners

Every year new strategies, techniques, and resources are developed and released to practitioners in an effort to grow schools into meeting accountability requirements. Yet most of these strategies, techniques, and resources were developed in and for brick-and-mortar learning environments. This research study contributes to the tactics made specifically for the schools operating in the online learning environment, yet still aligning with state and federal accountability policy requirements.

Since the second G.W. Bush administration states, districts, schools, and teachers have been trying to adhere to the No Child Left Behind (NCLB) policy requirements. In 2015, the second Obama administration enhanced NCLB with the Every Student Succeeds Act (ESSA). While NCLB focused solely on academic achievement, ESSA attempts to take more of a “whole student” approach to accountability by requiring states to use both an academic achievement measure (state test scores) and at least one measure of non-academic accountability. Student engagement is one of the recommendations of a measure of non-academic accountability. Online K-12 schools are expected to adhere to and be judged by these policies as well.
The online student engagement measures developed in this research study could assist online schools to meet the non-academic accountability measurement of ESSA, as well as fit into student support frameworks designed to support students academically and behaviorally. One example of this type of framework is the Multi-tiered System of Supports (MTSS). MTSS combines the academic intervention framework of response to intervention (RtI) with the positive behavioral interventions and supports (PBIS) framework.

“Successful implementation of MTSS requires schools to implement a continuum of systematic, coordinated, evidence-based practices targeted to being responsive to the varying intensity of needs students have related to their academic and social emotional/behavioral development” (Utley & Oralar, 2015, p. 1).

While the developed measures of online cognitive engagement and online behavioral engagement can be used as a non-academic indicator for ESSA and help to identify academic needs as well as contribute malleable items to improve academic achievement, the future development of a measure for online affective engagement could potentially support the social emotional/behavioral component of MTSS.

MTSS is made up of five essential components:

1. Team-Driven Shared Leadership
2. Data-Driven Problem Solving and Decision-Making
3. Family, School, and Community Partnering
4. Layered Continuum of Supports
5. Evidence-Based Practices
The essential component of Data-Driven Problem Solving and Decision-Making is where the measure of online student engagement could be the most useful. Online student engagement levels could be used with academic factors and non-academic factors to identify problems in student achievement and make decisions to remedy identified problems. Online student engagement levels could also be used with the other essential components as an identifier for student grouping for interventions. For example, a student identified as having a low cognitive engagement level but a high behavioral engagement level would have a different set of interventions than a student with a high cognitive engagement level but low behavioral engagement level. Figure 22 shows an example of a dashboard for identifying grade 8 students who are eligible for free lunch (low socioeconomic status) and are new to the online learning environment. The graph shows how many students and which students have high/low cognitive engagement versus high/low behavioral engagement.
Figure 22: Example of Dashboard: Online Cognitive Engagement vs Online Behavioral Engagement for Free lunch Eligible Grade 8 New Students
References

Ett, J. A. (2008). A study of an outperforming urban high school and the factors which contribute to its increased academic achievement with attention to the contribution of student engagement. (3311164 Ed.D.), University of Southern California, Ann Arbor. ProQuest Central; ProQuest Dissertations & Theses Global database.

http://search.proquest.com/docview/1509085346?accountid=14608

Hamane, A. C. (2014). Student engagement in an online course and its impact on student
success. (3615910 Ed.D.), Pepperdine University, Ann Arbor. ProQuest
Dissertations & Theses Global database.

Learning Environment and Student Engagement in Learning 2: A Structural
Equation Modelling Approach. Retrieved from
http://search.proquest.com/docview/1361838513?accountid=14608

Engagement in Grade 9 Applied Mathematics Classrooms. (NR96099 Ph.D.),
University of Toronto (Canada), Ann Arbor. ProQuest Dissertations & Theses
Global database.

to understand how educational leadership students solve problems on the fly.
Journal of Educational Administration, 52(3), 379-403.
doi:http://dx.doi.org/10.1108/JEA-12-2012-0135

doi:10.1177/0146621612436599

Appendix A: Glossary of Terms

Ability
The level of successful performance of the objects of measurement (persons) on the latent variable. Each person's location on the unidimensional variable measured in "additive Rasch units", usually logits

Ability estimate
The location of a person on a variable, inferred by using the collected observations (Bond & Fox, 2007)

Additive scale
Scale of measurement in which the units have the properties of simple addition, so that "one more unit = the same amount extra regardless of the amount you already have". Typical measuring devices such as tape measures and thermometers have additive scales. Rasch additive scales are usually delineated in logits

Bias
A change in logit values based on the particular agents or objects measured

BOTTOM
The value shown in the Results Table for an agent on which all objects were successful, (so it was of bottom difficulty), or for an object which had no success on any agent (so it was of bottom ability)

Bottom Category
the response category at which no level of successful performance has been manifested

Calibration
a difficulty measure in logits used to position the agents of measurement (usually test items) along the latent variable

Cell
Location of data in the spreadsheet, given by a column letter designation and row number designation e.g. B7

Classical Test Theory
Item analysis in which the raw scores are treated as additive numbers

Common person equating
The procedure that allows the difficulty estimates of two different groups of items to be plotted on a single scale when the two tests have been used on a common group of persons. (Bond & Fox, 2007)
Common test equating
The procedure that allows the ability estimates of two different groups of people to be plotted on a single scale when the two tests have been used on a common group of persons. (Bond & Fox, 2007)

Complete data
Data in which every person responds to every item. It makes a completely-filled rectangular data matrix. There are no missing data.

Construct validity
The correlation between the item difficulties and the latent trait as intended by the test constructor. "Is the test measuring what it is intended to measure?"

Continuation line
A separate line of text which Winsteps analyses as appended to the end of the previous line. These are shown with "+".

Contrast component
In the principal components analysis of residuals, a principal component (factor) which is interpreted by contrasting the items (or persons) with opposite loadings (correlations) on the component.

Control file
A DOS-text file on your disk drive containing the Winsteps control variables.

Convergence
The point at which further improvement of the item and person estimates makes no useful difference in the results. Rasch calculation ends at this point.

CTT
Classical Test Theory

Deterministic
Exactly predictable without any uncertainty. This contrasts with Probabilistic.

Dichotomous Response
A response format of two categories such as correct-incorrect, yes-no, agree-disagree.

DIF Differential item functioning
Change of item difficulty depending on which person classification-group is responding to the item, also called "item bias"
Difficulty
The level of resistance to successful performance of the agents of measurement on the latent variable. An item with high difficulty has a low marginal score. The Rasch item difficulty is the location on the unidimensional latent variable, measured in additive Rasch units, usually logits. Item difficulty measures are the locations on the latent variable (Rasch dimension) where the highest and lowest categories of the item are equally probable, regardless of the number of categories the item has.

Dimension
A latent variable which is influencing the data values.

Disturbance
One or more unexpected responses.

Diverging
The estimated calibrations at the end of an iteration are further from convergence than at the end of the previous iteration.

Easiness
The level of susceptibility to successful performance of the agents of measurement on the latent variable. An item with high easiness has a high marginal score.

Eigenvalue
The value of a characteristic root of a matrix, the numerical "size" of the matrix

Element
Individual in a facet, e.g., a person, an item, a judge, a task, which participates in producing an observation.

Equating
Putting the measures from two tests in the same frame of reference

Error
The difference between an observation and a prediction or estimation; the deviation score (Bond & Fox, 2007)

Error estimate
The difference between the observed and the expected response associated with item difficulty or person ability. (Bond & Fox, 2007)
Estimate
A value obtained from the data. It is intended to approximate the exactly true, but unknowable value.

Expected value
Value predicted for this situation based on the measures

Expected Response
The predicted response by an object to an agent, according to the Rasch model analysis.

Extreme item
An item with an extreme score. Either everyone in the sample scored in the top category on the item, or everyone scored in the bottom category. An extreme measure is estimated for this item, and it fits the Rasch model perfectly, so it is omitted from fit reports.

Extreme person
A person with an extreme score. This person scored in the top category on the every item, or in the bottom category on every item. An extreme measure is estimated for this person, who fits the Rasch model perfectly, so is omitted from fit reports.

Facet
The components conceptualized to combine to produce the data, e.g., persons, items, judges, tasks.

Fit
The degree of match between the pattern of observed responses and the modeled expectations. This can express either the pattern of responses observed for a candidate on each item (person fit) or the pattern for each item on all persons (item fit). (Bond & Fox, 2007)

Fit Statistic
A summary of the discrepancies between what is observed and what we expect to observe.

Frame of reference
The measurement system within which measures are directly comparable

Hypothesis test
Fit statistics report on a hypothesis test. Usually the null hypothesis to be tested is something like "the data fit the model", "the means are the same", "these is no DIF". The null hypothesis is rejected if the results of the fit test are significant
(p≤.05) or highly significant (p≤.01). The opposite of the null hypothesis is the alternate hypothesis.

Imputed data
Data generated by the analyst or assumed by the analytical process instead of being observed.

Independent
Not dependent on which particular agents and objects are included in the analysis. Rasch analysis is independent of agent or object population as long as the measures are used to compare objects or agents which are of a reasonably similar nature.

Infit
An information-weighted or inlier-sensitive fit statistic that focuses on the overall performance of an item or person, i.e., the information-weighted average of the squared standardized deviation of observed performance from expected performance. The statistic plotted and tabled by Rasch is this mean square normalized.

Infit mean square
One of the two alternative measures that indicate the degree of fit of an item or a person (the other being standardized infit). Infit mean square is a transformation of the residuals, the difference between the predicted and the observed, for easy interpretation. Its expected value is 1. As a rule of thumb, values between 0.70 and 1.30 are generally regarded as acceptable. Values greater than 1.30 are termed misfitting, and those less than 0.70 as overfitting. (Bond & Fox, 2007)

Interval scale
Scale of measurement on which equal intervals represent equal amounts of the variable being measured. Rasch analysis constructs interval scales with additive properties.

Invariance
The maintenance of the identity of a variable from one occasion to the next. For example, item estimates remain stable across suitable samples; person estimates remain stable across suitable tests.

Item
Agent of measurement (prompt, probe, "rating scale"), not necessarily a test question, e.g., a product rating. The items define the intended latent trait.

Item characteristic curve (ICC)
An ogive-shaped plot of the probabilities of a correct response on an item for any value of the underlying trait in a respondent. (Bond & Fox, 2007)
Item difficulty
An estimate of an item’s underlying difficulty calculated from the total number of persons in an appropriate sample who succeeded on that item. (Bond & Fox, 2007)

Item fit statistics
Indices that show the extent to which each item performance matches the Rasch-modeled expectations. Fitting items imply a unidimensional variable. (Bond & Fox, 2007)

Item reliability index
The estimate of the replicability of item placement within a hierarchy of items along the measured variable if these same items were to be given to another sample of comparable ability. Analogous to Cronbach’s alpha, it is bounded by 0 and 1. (Bond & Fox, 2007)

Item separation index
An estimate of the spread or separation of items on the measured variable. It is expressed in standard error units, that is, the adjusted item standard deviation divided by the average measurement error. (Bond & Fox, 2007)

Iteration
One run through the data by the Rasch calculation program, done to improve estimates by minimizing residuals.

Latent Trait
The idea of what we want to measure. A latent trait is defined by the items or agents of measurement used to elicit its manifestations or responses.

Local independence
The items of a test are statistically independent of each sub-population of examinees whose members are homogenous with respect to the latent trait measured. (Bond & Fox, 2007)

Local origin
Zero point we have selected for measurement, such as sea-level for measuring mountains, or freezing-point for Celsius temperature. The zero point is chosen for convenience (similarly to a "setting-out point"). In Rasch measurement, it is often the average difficulty of the items.

Logit
"Log-odds unit": the unit of measure used by Rasch for calibrating items and measuring persons on the latent variable. A logarithmic transformation of the ratio
of the probabilities of a correct and incorrect response, or of the probabilities of adjacent categories on a rating scale.

Logistic curve-fitting
An estimation method in which the improved value of an estimate is obtained by incrementing along a logistic ogive from its current value, based on the size of the current raw-score residual.

Logistic ogive
The relationship between additive measures and the probabilities of dichotomous outcomes.

Logit-linear
The Rasch model written in terms of log-odds, so that the measures are seen to form a linear, additive combination.

Map
A bar chart showing the frequency and spread of agents and objects along the latent variable.

Mean-square
Also called the relative chi-square and the normed chi-square. A mean-square fit statistic is a chi-square statistic divided by its degrees of freedom (d.f.). Its expectation is 1.0. Values below 1.0 indicate that the data are too predictable = overly predictable = overfit of the data to the model. Values above 1.0 indicate the data too unpredictable = underfit of the data to the model.

Measure/Measurement
The location (usually in logits) on the latent variable. The Rasch measure for persons is the person ability. The Rasch measure for items is the item difficulty.

Misfit
Any difference between the data the model predictions. Misfit usually refers to "underfit". The data are too unpredictable.

Missing data
Data which are not responses to the items. They can be items which the examinees did not answer (usually score as "wrong") or items which were not administered to the examinee (usually ignored in the analysis).

Model
Mathematical conceptualization of a relationship.
Muted
Overfit to the Rasch model. The data are too predictable. The opposite is underfit, excessive noise.

Noise
1. Randomness in the data predicted by the Rasch model.
2. Underfit: excessive unpredictability in the data, perhaps due to excessive randomness or multidimensionality.

Normalized
1. The transformation of the actual statistics obtained so that they are theoretically part of a unit-normal distribution. "Normalized" means "transformed into a unit-normal distribution". We do this so we can interpret the values as "unit-normal deviates", the x-values of the normal distribution. Important ones are ±1.96, the points on the x-axis for which 5% of the distribution is outside the points, and 95% of the distribution is between the points.
2. Linearly adjusting the values so they sum to a predetermined amount. For instance, probabilities always sum to 1.0.

Odds ratio
Ratio of two probabilities, e.g., "odds against" is the ratio of the probability of losing (or not happening) to the probability of winning (or happening).

Outfit
An outlier-sensitive fit statistic that picks up rare events that have occurred in an unexpected way. It is the average of the squared standardized deviations of the observed performance from the expected performance. Rasch plots and tables use the normalized unweighted mean squares so that the graphs are symmetrically centered on zero.

Outliers
Unexpected responses usually produced by agents and objects far from one another in location along the latent variable.

Overfit
The data are too predictable. There is not enough randomness in the data. This may be caused by dependency or other constraints.

Perfect score
Every response "correct" or the maximum possible score. Every observed response in the highest category.

Person
The object of measurement, not necessarily human, e.g., a product.
Person fit statistics
Indices that estimate the extent to which the responses of any person conform to the Rasch model expectation. (Bond & Fox, 2007)

Person measure/Person ability
An estimate of a person’s underlying ability based on that person’s performance on a set of items that measure a single trait. It is calculated from the total number of items to which the person responses successfully in an appropriate test. (Bond & Fox, 2007)

Person reliability index
The estimate of the reliability of person placement that can be expected if this sample of persons were to be given another set of items measuring the same construct. Analogous to Chronbach’s alpha, it is bounded by 0 and 1. (Bond & Fox, 2007)

Person separation index
An estimate of the spread or separation of persons on the measured variable. It is expressed in standard error units, that is, the adjusted person standard deviation divided by the average measurement error. (Bond & Fox, 2007)

Point-measure correlation (PT-MEASURE, PTMEA)
The correlation between the observations in the data and the measures of the items or persons producing them.

Polarity
The direction of the responses on the latent variable. If higher responses correspond to more of the latent variable, then the polarity is positive. Otherwise the polarity is negative.

Polytomous response
Responses in more than two ordered categories, such as Likert rating-scales.

Predictive validity
This is the amount of agreement between results obtained by the evaluated instrument and results obtained from more directly, e.g., the correlation between success level on a test of carpentry skill and success level making furniture for customers. "Do the person measures correspond to more and less of what we are looking for?"

Probabilistic
Predictable to some level of probability, not exactly. This contrasts with Deterministic.
Rasch measure
linear, additive value on an additive scale representing the latent variable

Rasch Model
A mathematical formula for the relationship between the probability of success (P) and the difference between an individual's ability (B) and an item's difficulty (D). \(P = \frac{\exp(B-D)}{1+\exp(B-D)} \) or \(\log \left[\frac{P}{1-P} \right] = B - D \)

Rasch-Andrich Threshold
Step calibration. Location on the latent variable (relative to the center of the rating scale) where adjacent categories are equally probable.

Rating Scale
A format for observing responses wherein the categories increase in the level of the variable they define, and this increase is uniform for all agents of measurement.

Raw score
The marginal score; the sum of the scored observations for a person, item or other element.

Reliability
Reliability (reproducibility) = True Variance / Observed Variance (Spearman, 1904, etc.). It is the ratio of sample or test variance, corrected for estimation error, to the total variance observed.

Residuals
The difference between data observed and values expected.

Response
The value of an observation or data-point indicating the degree of success by an object (person) on an agent (item)

Rigidity
When agents, objects and steps are all anchored, this is the logit inconsistency between the anchoring values, and is reported on the Iteration Screen and Results Table. 0 represents no inconsistency.

Rule-of-thumb
A tentative suggestion that is not a requirement nor a scientific formula, but is based on experience and inference from similar situations. Originally, the use of the thumb as a unit of measurement.

Sample
the persons (or items) included in this analysis
Scale
The quantitative representation of a latent variable.

Scree plot
Plot showing the fraction of total variance in the data in each variance component.

Segmentation
When tests with items at different developmental levels are submitted to Rasch analysis, items representing different stages should be contained in different segments of the scale with a nonzero distance between segments. The items should be mapped in the order predicted by the theory. (Bond & Fox, 2007)

Separation
The ratio of sample or test standard deviation, corrected for estimation error, to the average estimation error. This is the number of statistically different levels of performance that can be distinguished in a normal distribution with the same "true" S.D. as the current sample. Separation = 2: high measures are statistically different from low measures.

Standard Deviation: P.SD, S.SD
The root mean square of the differences between the sample of values and their mean value. In Winsteps, all standard deviations are "population standard deviations" (the sample is the entire population) = P.SD. For the larger "sample standard deviation" (the sample is a random selection from the population) = S.SD, please multiply the Winsteps standard deviation by square-root (sample-size / (sample size - 1)).

Standard Error
An estimated quantity which, when added to and subtracted from a logit measure or calibration, gives the least distance required before a difference becomes meaningful.

Step difficulty
Rasch-Andrich threshold. Location on the latent variable (relative to the center of the rating scale) where adjacent categories are equally probable.

Steps
The transitions between adjacent categories as ordered by the definition of the latent variable.
Strata
\[= \frac{(4 \times \text{Separation} + 1)}{3} \]
This is the number of statistically different levels of performance that can be distinguished in a normal distribution with the same "true" S.D. as the current sample, when the tales of the normal distribution are due to "true" measures, not measurement error. Strata=3: very high, middle, and very low measures can be statistically distinguished.

Targeted
When the item difficulty is close to the person ability, so that the probability of success on a dichotomous item is near to 50%, or the expected rating is near to the center of the rating scale.

Targeting
Choosing items with difficulty equal to the person ability.

Test reliability
The reliability (reproducibility) of the measure (or raw score) hierarchy of sample like this sample for this test. The reported reliability is an estimate of (true variance)/(observed variance), as also are Cronbach Alpha and KR-20.

TOP
The value shown in the Results Table for an agent on which no objects were successful, (so it was of top difficulty), or for an object which succeeded on every agent (so it was of top ability)

Top Category
The response category at which maximum performance is manifested.

Threshold
The level at which the likelihood of failure to agree with or endorse a given response category (below the threshold) turns to the likelihood of agreeing with or endorsing category (above the threshold). (Bond & Fox, 2007)

True score model
The model indicates that any observed test score could be envisioned as the composite of two hypothetical components: a true score and a random error component. (Bond & Fox, 2007)

Underfit
The data are too unpredictable. The data underfit the model. This may be because of excessive guessing, or contradictory dimensions in the data.

Unidimensionality
A basic concept in scientific measurement that one attributes of an object (e.g., length, width, weight, temperature, etc.) be measured at a time. The Rasch model
requires a single construct to be underlying the items that form a hierarchical continuum. (Bond & Fox, 2007)

Unweighted
The situation in which all residuals are given equal significance in fit analysis, regardless of the amount of the information contained in them.

Weighted
The adjustment of a residual for fit analysis, according to the amount of information contained in it.

Zero score
Every response "incorrect" or the minimum possible score. Every observed response in the lowest category.

ZSTD
Probability of a mean-square statistic expressed as a z-statistic, i.e., a unit-normal deviate. For $p \leq 0.05$ (double-sided), $ZSTD > |1.96|$.
Appendix B: Measure Development and Item Categorization for All Grades and Grade Segments

As recommended by Linacre, because all items were considered to be weak indicators, they were split into two categories using the item mean as the splitting point. This made all items into dichotomous items. When all the dichotomous items were reviewed in Winsteps the dimensionality looked appropriate. Yet the majority of persons were considered to be misfit with infit values over 4.0 and the majority of the items also misfit, with mean square fit values over 1.4. Examining the item person map showed that the distribution of person ability and the distribution of item difficulty did not align at all. This explains why the majority of persons and items were misfitting.

All items were then split into four categories using the mean values of the two dichotomous categories as splitting points. Dimensionality still looked adequate yet displayed the possibility of multiple dimensions and minimal underfit occurred in person fit. In addition, the person separation and reliability had improved, and there were fewer persons identified as misfitting. When examining item separation, however, there was excessive noise or inconsistent results, even though item separation improved from the first iteration using dichotomous items. Month of enrollment and ELA percent complete were found to be misfitting. The item person map shows that person ability and item difficulty were more appropriately targeted but not enough to ensure fewer persons were misfitting. Items were converted to be eight category items to examine if the spread of items across the measurement continuum improved. It was found that eight category items had too much category overlap to function appropriately. Figure 6 shows an
example of an item, Math Total Time, as a dichotomous item, a four category item and an eight category item. The four category scale was selected for all items for their spread of responses and limited overlap of categories. The item categorization process yielded minor adjustments to these categories for each item found to be part of the measurement core.
Figure 23: Category Probability Curves for Math Total Time as a Dichotomous Item, Four Category Item and Eight Category Item
For the next iteration month of enrollment was allowed to have 12 categories representing each month of the year. When scale use for month of enrollment was examined, the categories were disordered, signifying that categories need an adjustment for key months of enrollment. Most students enrolled in the months of August and September; these students would be considered most affectively engaged in their school. This would mean that categories eight and nine should in fact be the top categories for the measurement of student engagement. Future research must be done to identify how this item should be categorized but for this study month of enrollment was removed.

Number of years enrolled, the other affective engagement item, was kept with four categories. All categories were ordered appropriately with all categories being most probable at some point on the scale.

Table 24 provides an overview of the iterations in the measure development process, and the effects on dimensionality, fit, separation, and reliability at each step.
Table 24
General Dimensionality and Fit Indices for Steps in Measure Development

<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Dimensionality</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variance Explained</td>
<td>Variance 1st contrast (eigenvalue)</td>
<td>Variance 1st contrast (%)</td>
<td>Mean Person Fit Infit</td>
<td>Mean Person Fit Outfit</td>
<td>Person Separation (Real/Model)</td>
<td>Person Reliability (Real/Model)</td>
<td>Mean Item Fit Infit</td>
<td>Mean Item Fit Outfit</td>
<td>Item Separation (Real/Model)</td>
<td>Item Reliability (Real/Model)</td>
</tr>
<tr>
<td>1 Initial measure with all items dichotomous</td>
<td>90.0</td>
<td>2.70</td>
<td>1.2%</td>
<td>1.0</td>
<td>0.95</td>
<td>1.54/1.67</td>
<td>.70/.74</td>
<td>0.</td>
<td>95</td>
<td>47.64/48.3</td>
<td>.99/.99</td>
</tr>
<tr>
<td>2 Initial measure with all four category items</td>
<td>72.9</td>
<td>3.12</td>
<td>3.8%</td>
<td>1.0</td>
<td>0.96</td>
<td>2.44/2.74</td>
<td>.86/.88</td>
<td>0.</td>
<td>89</td>
<td>20.25/20.2</td>
<td>.99/.99</td>
</tr>
<tr>
<td>3 Full measure after item categorization</td>
<td>43.4</td>
<td>3.73</td>
<td>8.1%</td>
<td>1.0</td>
<td>1.01</td>
<td>2.38/2.58</td>
<td>.85/.87</td>
<td>1.</td>
<td>01</td>
<td>18.60/19.1</td>
<td>.99/.99</td>
</tr>
<tr>
<td>4 Full measure- Grades 3 to 5 Only</td>
<td>41.4</td>
<td>2.85</td>
<td>9.8%</td>
<td>1.0</td>
<td>1.01</td>
<td>2.22/2.42</td>
<td>.83/.85</td>
<td>1.</td>
<td>00</td>
<td>20.47/20.7</td>
<td>.99/.99</td>
</tr>
<tr>
<td></td>
<td>Full measure-</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Grades 6 to 8</td>
<td>45.2</td>
<td>3.84</td>
<td>11.1%</td>
<td>1.0</td>
<td>1.00</td>
<td>2.48/2.68</td>
<td>.86/.88</td>
<td>0.99</td>
<td>1.00</td>
<td>10.44/10.7</td>
</tr>
<tr>
<td>5</td>
<td>only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Behavioral</td>
<td>42.1</td>
<td>2.43</td>
<td>14.1%</td>
<td>0.9</td>
<td>0.98</td>
<td>1.47/1.67</td>
<td>.68/.73</td>
<td>1.00</td>
<td>1.01</td>
<td>15.69/16.1</td>
</tr>
<tr>
<td>6</td>
<td>Items with</td>
<td></td>
</tr>
<tr>
<td></td>
<td>one Affective</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Item</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Behavioral</td>
<td>47.7</td>
<td>2.38</td>
<td>13.8%</td>
<td>0.9</td>
<td>0.98</td>
<td>1.40/1.60</td>
<td>.66/.72</td>
<td>1.00</td>
<td>1.11</td>
<td>14.19/15.3</td>
</tr>
<tr>
<td>8</td>
<td>Items Only</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cognitive</td>
<td>46.0</td>
<td>2.77</td>
<td>10%</td>
<td>1.0</td>
<td>0.98</td>
<td>1.60/1.78</td>
<td>.72/.76</td>
<td>0.99</td>
<td>0.98</td>
<td>16.50/16.9</td>
</tr>
<tr>
<td></td>
<td>Items with</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>one Affective</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Item</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Cognitive</td>
<td>49.9</td>
<td>2.49</td>
<td>8.9%</td>
<td>1.0</td>
<td>1.01</td>
<td>1.49/1.67</td>
<td>.69/.74</td>
<td>0.99</td>
<td>1.00</td>
<td>18.16/18.7</td>
</tr>
<tr>
<td>10</td>
<td>Items Only</td>
<td></td>
</tr>
</tbody>
</table>
As the measure development process continued, several items (ELA time, math logins, math ratio, ELA ratio, ELA formative assessments mastered, and reading internal assessment) were made into three category items by collapsing two of their categories, in most cases categories 3 and 4 (the high end of the measure continuum). Further, the practice items for both math and ELA were converted back to dichotomous items, measuring whether or not a student practices enough.

Next, the invariance by grade was examined for the initial measure to examine if the inclusion of different grade segments (grades 3 to 5 and grades 6 to 8) could be part of the cause for not meeting the unidimensionality requirements. It was found that all items, except for ELA practice, had statistically significant DIF comparisons between grade segments. Eight items (Math percent complete, ELA percent complete, math formative assessments mastered, ELA formative assessments mastered, math summative assessments mastered, ELA summative assessments mastered, math practice and ELA practice) had DIF contrast values over |.64|, which confirms that they were not invariant (Table 25). The eight items that had DIF contrast values over |.64| and were statistically significant were split by grade segment into two items, one for grades 3 to 5 and a second item for grades 6 to 8. It was anticipated that by making these splits all grades could remain within the same measure and measure continuum.
The items split by grade segment were kept as either four category or three category items-as previously established- and then scale use was examined with these new items to determine next steps. The categories of the split items were still based on the means of the items when all grades were combined. As a result, some additional item categorization needed to occur, specifically for the split items.

Table 26 shows the item categorization steps taken to attempt to develop items and a measure that allowed grade segments to remain intact.

Table 25
Invariance Examination for Grade Segments

| Sample | Item | DIF Contrast (> |.64|) | Probability (< .05) |
|---------|---------------------------|----------------|---------------------|
| Random 1| ELA % Complete | -.75 | <.001 |
| Random 1| Math Formative | -1.21 | <.001 |
| Random 1| ELA Formative | 1.99 | <.001 |
| Random 1| Math Summative | .77 | <.001 |
| Random 1| ELA Summative | -1.75 | <.001 |
| Random 1| Math Practice | 1.42 | <.001 |
| Random 1| Reading Practice | 1.38 | <.001 |
Table 26
Item Categorization Steps for Grade Segments, Grades 3 to 5 and Grade 6 to 8

<table>
<thead>
<tr>
<th>Step</th>
<th>What was done</th>
<th>Why important</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Math Percent Complete</td>
<td>Changed from a 3 category item to a 4 category item</td>
</tr>
<tr>
<td>2</td>
<td>ELA Formative Assessments</td>
<td>Changed from a 3 category item to a 5 category item</td>
</tr>
<tr>
<td>1</td>
<td>Math Percent Complete</td>
<td>Changed from a 3 category item to a 4 category item</td>
</tr>
<tr>
<td>2</td>
<td>Math Formative Assessments</td>
<td>Changed from a 4 category item to a 3 category item</td>
</tr>
<tr>
<td>3</td>
<td>ELA Formative Assessments</td>
<td>Changed from a 3 category item to a 5 category item</td>
</tr>
</tbody>
</table>

After each of these item categorization changes were made dimensionality, person fit, item fit, and scale use were again assessed (Table 14). Although the variance explained by the measure went up to above 40% and remained between 41% and 43%, the eigenvalue of the unexplained variance in the first contrast never went below 2.9. Even though by some standards this would be considered an unidimensional measure it was too close to the expectation of >40% variance explained by the measure and a first contrast eigenvalue below 3.0 for measure development to stop at this point.

When the measure containing some items for grades 3 to 5 items and some for grades 6 to 8 was assessed for invariance across special education students, it was found that reading internal assessment for grades 6 to 8 was not invariant. The reading internal assessment for grades 6 to 8 was split into two items, one for special education students
and one for general education students. Even with this change, the measure still did not explain more than 42% of the variance and had a first contrast eigenvalue of 2.9.

The decision was made to split the first random sample dataset into two datasets; one for grades 3 to 5 and the other for grades 6 to 8. At this point, the total and average variables that were found not to be multicollinear were added back into the datasets to give more options for items that could potentially be part of the measurement core. Multicollinearity, clustering, nesting effects and inverted U relationships were reassessed before continuing with measure development.

The grades 3 to 5 dataset was then evaluated with all dichotomous items, all four-category items, and all eight-category items. When only the dichotomous items were used, 23% of the variance was explained by the measure and the eigenvalue of the unexplained variance was 2.3 for the first contrast. When all four category items were used 35.3% of the variance was explained by the measure and there was a 2.95 eigenvalue for the variance for the first contrast. Lastly, when all eight category items were used, 40.3% of the variance was explained by the measure with a first contrast eigenvalue of 3.12. As the number of categories increased, the variance explained by the measure also increased, but unfortunately the eigenvalue of the first contrast also increased. The decision was made to start with all four category items and use the item categorization process to increase the amount of variance explained by the measure and keep the eigenvalue of the variance in the first contrast under 3.0.
The grades 6 to 8 dataset was also evaluated with all dichotomous items, all four-category items, and all eight-category items. Similar to the grades 3 to 5 dataset, when only dichotomous items were used, only 28% of the variance was explained by the measure with a first contrast eigenvalue of 2.69. When all four category items were used, 46.3% of the variance was explained by the measure, yet the eigenvalue for the first contrast increased to 3.5. It was observed that as the number of categories increased, both the variance explained and the eigenvalue of the first contrast increased. Once it was established that the four-category items worked well for most of the items the eight category items were not assessed. For the grades 6 to 8 dataset, all items started with four categories and item categorization efforts were made to decrease the eigenvalue of the variance unexplained by the first contrast to under 3.0.

Before item categorization was concluded, grade segment datasets were split between behavioral engagement items and cognitive engagement items. These two datasets were assessed for dimensionality and fit (Table 14).

When the grades 3 to 5 dataset was split between behavioral engagement items and cognitive engagement items, it was found that although the requirements for dimensionality and fit were met, there were still problems with invariance across grades. The behavioral engagement subscale for grades 3 to 5 explained 52.4% of the variance and its unexplained variance eigenvalue was 2.04. Math logins and total logins did not have invariance for grade 3. This led to the decision to evaluate the behavioral engagement subscale without grade 3 students. The behavioral engagement subscale for grades four and five was able to explain 54.4% of the variance with an eigenvalue of 2.25.
for unexplained variance. The cognitive engagement subscale for grades 3 to 5 explained 47.8% of the variance and had an eigenvalue of 2.02 for the unexplained variance, yet items on the cognitive engagement subscale for grades 3 to 5 were found not to have been invariant for grade 3. When grade 3 was removed from the sample 57.8% of the variance was explained with a first contrast eigenvalue of 2.02, but it was math formative assessments mastered and math internal assessment that were found to fail invariance for grades 4 and 5. In addition, the ELA ratio of time and progress was found to misfit for the cognitive engagement subscale. Based on these results, it was decided that both the behavioral and cognitive subscales should be re-evaluated for each grade individually.

The grades 6 to 8 dataset was split between behavioral engagement items and cognitive engagement items. It was found that the requirements for dimensionality and fit were met but there were problems with invariance across grades. The behavioral engagement subscale for grades 6 to 8 explained 60.8% of the variance and had a first contrast eigenvalue of 2.36. Math logins did not have invariance for grades 6 and 8. When grade 6 was removed from the behavioral engagement subscale the measure was able to explain 60.6% of the variance with an eigenvalue for unexplained variance of 2.40. There were no problems with invariance between grades 7 and 8. The cognitive engagement subscale for grades 6 to 8 explained 48.4% of the variance with an eigenvalue of 2.35 for unexplained variance. Yet five items were found not to be invariant for grades 6 and 8. When grade 6 was removed the cognitive engagement subscale was able to explain 47.1% of the variance with the unexplained eigenvalue of 2.27. For grades six and seven ELA ratio between time and progress was not invariant
and ELA ratio between time and progress along with math ratio between time and progress were found to be misfitting. Since the cognitive engagement subscale needed to be separated by grade both the behavioral and the cognitive engagement subscale for grades 6 to 8 were separated by grade and re-evaluated.
Appendix C: Measure Development and Item Categorization by Grade

Table 27
Grade 3 Measure Development and Item Categorization Process

<table>
<thead>
<tr>
<th>Step</th>
<th>What was done</th>
<th>Why important</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grade 5 1<sup>st</sup> Dimension measurement foundation</td>
<td>7 final items in cognitive engagement measure used to start building Grade 3 measure</td>
<td>Measurement foundation identification</td>
</tr>
<tr>
<td>2</td>
<td>ELA Summative assessments mastered and ELA Formative assessments mastered Removed</td>
<td>Two items removed</td>
<td>Two items identified as misfitting items</td>
</tr>
<tr>
<td>3</td>
<td>Math Summative</td>
<td>Turned into 3 category item instead of 4 category item</td>
<td>Ensure categories for both items are balanced without overlapping categories</td>
</tr>
<tr>
<td>4</td>
<td>Grade 5 2<sup>nd</sup> Dimension measurement foundation</td>
<td>3 final items in behavioral engagement measure used to start building Grade 3 measure</td>
<td>Measure foundation identification</td>
</tr>
<tr>
<td>5</td>
<td>ELA Ratio</td>
<td>Turned into 3 category item instead of 4 category item</td>
<td>Ensure categories for both items are balanced without overlapping categories</td>
</tr>
</tbody>
</table>
Table 28
Dimensionality and Fit for Grade 3 Measure Development and Item Categorization Process

<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Dimensionality</th>
<th>Person Fit Separation (Real/Model)</th>
<th>Person Reliability (Real/Model)</th>
<th>Item Fit Separation (Real/Model)</th>
<th>Item Reliability (Real/Model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 5 1st Dimension measurement foundation ELA Summative assessments mastered and ELA Formative assessment</td>
<td>Variance Explained</td>
<td>Variance Unexplained (eigenvalue)</td>
<td>Variance Unexplained (%)</td>
<td>Person Fit Infit</td>
<td>Person Fit Outfit</td>
</tr>
<tr>
<td>Grade 5 1st Dimension measurement foundation ELA Summative assessments mastered and ELA Formative assessment</td>
<td>50.5%</td>
<td>2.30</td>
<td>16.3%</td>
<td>0.95</td>
<td>0.99</td>
</tr>
<tr>
<td>ELA Summative assessments mastered and ELA Formative assessment</td>
<td>51.6%</td>
<td>2.37</td>
<td>23.0%</td>
<td>0.95</td>
<td>0.98</td>
</tr>
<tr>
<td>Subject</td>
<td>Grade 5</td>
<td>2nd Dimension</td>
<td>Math Summative</td>
<td>ELA Ratio</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Mastery Level</td>
<td>51.4%</td>
<td>2.42</td>
<td>23.5%</td>
<td>51.4%</td>
<td></td>
</tr>
<tr>
<td>Summative Average</td>
<td>2.42</td>
<td>23.5%</td>
<td>5</td>
<td>2.42</td>
<td></td>
</tr>
<tr>
<td>Grade 5</td>
<td>57.8%</td>
<td>2.15</td>
<td>30.3%</td>
<td>57.8%</td>
<td></td>
</tr>
<tr>
<td>2nd Dimension Measurement</td>
<td>2.15</td>
<td>30.3%</td>
<td>2</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>Foundation</td>
<td>0.9</td>
<td>0.96</td>
<td>1.13/1.34</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>0.96</td>
<td>0.96</td>
<td>1.13/1.34</td>
<td>0.56/0.64</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td>1.01</td>
<td>0.96/1.34</td>
<td>0.99</td>
<td>0.96/1.34</td>
<td></td>
</tr>
<tr>
<td>9.55/9.67</td>
<td>9.55/9.67</td>
<td>0.99/0.99</td>
<td>0.99/0.99</td>
<td>0.99/0.99</td>
<td></td>
</tr>
<tr>
<td>12.24/12.71</td>
<td>12.24/12.71</td>
<td>0.99/0.99</td>
<td>0.99/0.99</td>
<td>0.99/0.99</td>
<td></td>
</tr>
<tr>
<td>52.9%</td>
<td>2.22</td>
<td>34.8%</td>
<td>0.93</td>
<td>52.9%</td>
<td></td>
</tr>
<tr>
<td>0.93</td>
<td>0.93</td>
<td>0.84/1.11</td>
<td>0.41/0.55</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>3.83/3.97</td>
<td>3.83/3.97</td>
<td>0.90/0.94</td>
<td>0.90/0.94</td>
<td>0.90/0.94</td>
<td></td>
</tr>
</tbody>
</table>
Figure 24: Grade 3 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
Table 29
Grade 4 Measure Development and Item Categorization Process

<table>
<thead>
<tr>
<th>Step</th>
<th>What was done</th>
<th>Why important</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grade 5 1st Dimension measurement foundation</td>
<td>7 final items in cognitive engagement measure used to start building Grade 4 measure</td>
<td>Measurement foundation identification</td>
</tr>
<tr>
<td>2</td>
<td>Grade 5 2nd Dimension measurement foundation</td>
<td>3 final items in behavioral engagement measure used to start building Grade 3 measure</td>
<td>Measurement foundation identification</td>
</tr>
</tbody>
</table>
Table 30
Dimensionality and Fit for Grade 4 Measure Development and Item Categorization Process

<table>
<thead>
<tr>
<th>Measur Description</th>
<th>Variance Explained</th>
<th>Variance Unexplained (eigenvalue)</th>
<th>Person Fit</th>
<th>Person Separation (Real/Model)</th>
<th>Person Reliability (Real/Model)</th>
<th>Item Fit</th>
<th>Item Separation (Real/Model)</th>
<th>Item Reliability (Real/Model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 5 1st Dimension measurement foundation</td>
<td>54.1%</td>
<td>1.98</td>
<td>13.0%</td>
<td>0.96</td>
<td>1.60/1.76</td>
<td>0.72/0.76</td>
<td>1.03</td>
<td>0.9</td>
</tr>
<tr>
<td>Grade 5 2nd Dimension measurement foundation</td>
<td>63.9%</td>
<td>2.01</td>
<td>24.2%</td>
<td>0.97</td>
<td>1.32/1.69</td>
<td>0.64/0.74</td>
<td>0.96</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Figure 25: Grade 4 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
Table 31
Grade 5 Measure Development and Item Categorization Process

<table>
<thead>
<tr>
<th>Step</th>
<th>What was done</th>
<th>Why important</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grade 5 Only</td>
<td>Both cognitive and behavioral items, together</td>
<td>Grade 5 selected as the measurement foundation for all grades; had 2 contrasts</td>
</tr>
<tr>
<td>2</td>
<td>1<sup>st</sup> Dimension Items</td>
<td>All items with an Infit value over 1 removed</td>
<td>8 items removed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identify items in each of the two dimensions and begin to establish measurement core</td>
<td>8 items remaining</td>
</tr>
<tr>
<td>3</td>
<td>Math Practice and ELA Formative Assessments Mastered</td>
<td>Turned into 3 category items instead of 4 category items</td>
<td>Both items balanced with no overlapping categories</td>
</tr>
<tr>
<td>4</td>
<td>Average Percent Complete Removed</td>
<td>Average Percent Complete Removed</td>
<td>Final Grade 5 1<sup>st</sup> Dimension measure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average percent complete identified as a misfitting item so removed</td>
<td>Grade 5 Cognitive Engagement measure</td>
</tr>
<tr>
<td>5</td>
<td>2<sup>nd</sup> Dimension Items</td>
<td>Begin to establish measurement core for 2<sup>nd</sup> dimension items</td>
<td>8 items in the 2<sup>nd</sup> dimension to start</td>
</tr>
<tr>
<td>6</td>
<td>Number of Years Removed</td>
<td>Number of Years Removed</td>
<td>Measure strengthened and better dimensionality</td>
</tr>
<tr>
<td>7</td>
<td>Math Internal Assessment and ELA Internal Assessment Removed</td>
<td>Math Internal Assessment and ELA Internal Assessment Removed</td>
<td>Measure strengthened and better dimensionality</td>
</tr>
<tr>
<td>Measure Description</td>
<td>Dimensionality</td>
<td>Person Fit</td>
<td>Person Separation (Real/Model)</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td>Variance Explained</td>
<td>Variance Unexplained (eigenvalue)</td>
<td>Infite</td>
</tr>
<tr>
<td>Grade 5 Only 1st Dimenson Items</td>
<td>36.7%</td>
<td>3.14</td>
<td>12.4%</td>
</tr>
<tr>
<td>Math Practice, ELA Practice and ELA Formative Assessments Mastered</td>
<td>56.6%</td>
<td>1.92</td>
<td>10.4%</td>
</tr>
<tr>
<td>Math Logins Removed</td>
<td>54.5%</td>
<td>1.92</td>
<td>10.9%</td>
</tr>
</tbody>
</table>

Table 32
Dimensionality and Fit for Grade 5 Measure Development and Item Categorization Process
<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Percent Complete Removed</td>
<td>55.4%</td>
<td>1.91</td>
<td>12.2%</td>
<td>0.9</td>
<td>0.98</td>
<td>1.73/1.92</td>
<td>0.75/0.79</td>
<td>1.02</td>
<td>0.99</td>
<td>12.12/12</td>
</tr>
<tr>
<td>2nd Dimension Items</td>
<td>34.5%</td>
<td>2.64</td>
<td>21.7%</td>
<td>0.9</td>
<td>0.99</td>
<td>1.41/1.57</td>
<td>0.67/0.71</td>
<td>0.99</td>
<td>9.16/9.5</td>
<td>0.99/0.99</td>
</tr>
<tr>
<td>Number of Years Removed</td>
<td>37.6%</td>
<td>2.48</td>
<td>22.1%</td>
<td>0.9</td>
<td>0.99</td>
<td>1.32/1.49</td>
<td>0.64/0.69</td>
<td>0.99</td>
<td>8.14/8.5</td>
<td>0.99/0.99</td>
</tr>
<tr>
<td>Math Internal Assessment and ELA Internal Assessment Removed</td>
<td>54.5%</td>
<td>2.51</td>
<td>22.8%</td>
<td>0.9</td>
<td>0.99</td>
<td>1.53/1.75</td>
<td>0.70/0.75</td>
<td>0.99</td>
<td>10.85/11.04</td>
<td>0.99/0.99</td>
</tr>
<tr>
<td>Total Logins and Math Logins Removed</td>
<td>66.4%</td>
<td>2.01</td>
<td>22.4%</td>
<td>0.9</td>
<td>0.94</td>
<td>1.49/1.79</td>
<td>0.69/0.76</td>
<td>0.97</td>
<td>4.18/4.2</td>
<td>0.95/0.95</td>
</tr>
</tbody>
</table>
Figure 26: Grade 5 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
<table>
<thead>
<tr>
<th>Grade 5 Only</th>
<th>1st Dimension Items</th>
<th>Math Practice, ELA Practice, and ELA Formative Assessment Masters</th>
<th>Average Percent Complete Removed</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Practice</th>
<th>Math</th>
<th>ELA</th>
<th>Assessment</th>
<th>Average Percent Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

227
<table>
<thead>
<tr>
<th>Item</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math Percent Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELA Formative Assessments Mastered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Formative Assessments Mastered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELA Summative Assessments Mastered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Summative Assessments Mastered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 5 Only</td>
<td>2<sup>nd</sup> Dimension Items</td>
<td>Number of Years Removed</td>
<td>Math Internal Assessment and ELA INTERNAL ASSESSMENT REMOVED</td>
<td>Total Logins and Math Logins Removed</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
<td>------------------------</td>
<td>--</td>
<td>--------------------------------------</td>
</tr>
</tbody>
</table>

...
<table>
<thead>
<tr>
<th>Item</th>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
<th>Step 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math Total Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELA Ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELA Total Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 33 (continued)
Grade 6 Measure Development and Item Categorization Process

<table>
<thead>
<tr>
<th>Step</th>
<th>What was done</th>
<th>Why important</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grade 5 1st Dimension measurement foundation</td>
<td>Measurement foundation identification</td>
<td>Start with 7 items</td>
</tr>
<tr>
<td></td>
<td>7 final items in cognitive engagement measure used to start building Grade 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>measure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Average Practice and Math Percent Complete Removed</td>
<td>Two items removed</td>
<td>Two items identified as misfitting items</td>
</tr>
<tr>
<td></td>
<td>Two items removed</td>
<td></td>
<td>Measure strengthened and better dimensionality</td>
</tr>
<tr>
<td>3</td>
<td>ELA Formative Assessments Mastered Removed</td>
<td>Item removed</td>
<td>Item identified as misfitting</td>
</tr>
<tr>
<td></td>
<td>Item removed</td>
<td></td>
<td>Final Grade 3 1st Dimension measure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade 4 Cognitive Engagement measure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Final Grade 3 2nd Dimension measure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade 6 Behavioral Engagement measure</td>
</tr>
<tr>
<td>4</td>
<td>Grade 5 2nd Dimension measurement foundation</td>
<td>3 final items in behavioral</td>
<td>Measurement foundation identification</td>
</tr>
<tr>
<td></td>
<td>measure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 34
Dimensionality and Fit for Grade 6 Measure Development and Item Categorization Process

<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Variance Explained</th>
<th>Variance Unexplained (eigenvalue)</th>
<th>Variance Unexplained (%)</th>
<th>Person Fit Infit</th>
<th>Person Fit Outfit</th>
<th>Person Separation (Real/Model)</th>
<th>Person Reliability (Real/Model)</th>
<th>Item Fit Infit</th>
<th>Item Fit Outfit</th>
<th>Item Separation (Real/Model)</th>
<th>Item Reliability (Real/Model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 5 1st Dimension measurement foundation</td>
<td>65.9%</td>
<td>1.73</td>
<td>9.9%</td>
<td>0.9</td>
<td>1.07</td>
<td>1.99/2.20</td>
<td>0.80/0.83</td>
<td>1.06</td>
<td>1.2</td>
<td>10.14/11.5</td>
<td>0.99/0.99</td>
</tr>
<tr>
<td>Average Practice and Math Percent Complete Removed</td>
<td>68.3%</td>
<td>1.84</td>
<td>14.5%</td>
<td>0.9</td>
<td>0.99</td>
<td>2.08/2.36</td>
<td>0.81/0.85</td>
<td>0.98</td>
<td>1.0</td>
<td>13.14/13.2</td>
<td>0.99/0.99</td>
</tr>
<tr>
<td>ELA Formative Assess</td>
<td>70.7%</td>
<td>1.70</td>
<td>16.6%</td>
<td>0.9</td>
<td>0.98</td>
<td>2.00/2.34</td>
<td>0.80/0.85</td>
<td>0.98</td>
<td>0.9</td>
<td>4.45/4.59</td>
<td>0.95/0.95</td>
</tr>
<tr>
<td>Grade 5 2nd Dimension measurement foundation</td>
<td>71.2%</td>
<td>1.85</td>
<td>17.8%</td>
<td>0.9</td>
<td>0.93</td>
<td>1.71/2.07</td>
<td>0.75/0.81</td>
<td>0.98</td>
<td>6.35/6.46</td>
<td>0.98/0.98</td>
<td></td>
</tr>
</tbody>
</table>
Figure 27: Grade 6 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
Table 35
Grade 7 Measure Development and Item Categorization Process

<table>
<thead>
<tr>
<th>Step</th>
<th>What was done</th>
<th>Why important</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grade 5 1<sup>st</sup> Dimension measurement foundation</td>
<td>7 final items in cognitive engagement measure used to start building Grade 4 measure</td>
<td>Measurement foundation identification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Start with 7 items</td>
</tr>
<tr>
<td>2</td>
<td>Average Practice and Math Percent Complete Removed</td>
<td>Two items removed</td>
<td>Two items identified as misfitting items</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Final Grade 3 1<sup>st</sup> Dimension measure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade 4 Cognitive Engagement measure</td>
</tr>
<tr>
<td>3</td>
<td>Grade 5 2<sup>nd</sup> Dimension measurement foundation</td>
<td>3 final items in behavioral engagement measure used to start building Grade 3 measure</td>
<td>Measurement foundation identification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Final Grade 3 2<sup>nd</sup> Dimension measure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grade 4 Behavioral Engagement measure</td>
</tr>
</tbody>
</table>
Table 36
Dimensionality and Fit for Grade 7 Measure Development and Item Categorization Process

<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Dimensionality Person Fit</th>
<th>Person Separation (Real/Model)</th>
<th>Person Reliability (Real/Model)</th>
<th>Item Fit</th>
<th>Item Separation (Real/Model)</th>
<th>Item Reliability (Real/Model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 5 1<sup>st</sup> Dimension measurement foundation</td>
<td>62.5% 1.46 9.1% 0.9 0.97 1.75/2.04 0.75/0.81 1.10 1.0 7.41/8.51</td>
<td>0.98/0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Practice and Math Percent Complete Removed</td>
<td>69.7% 1.67 12.6% 0.9 0.92 1.86/2.22 0.78/0.83 0.99 1.0 13.56/13.7 0.99/0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 5 2<sup>nd</sup></td>
<td>74.8% 1.85 15.6% 0.8 0.86 1.65/2.02 0.73/0.80 1.02 1.0 12.75/13.5 0.99/0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dimension measurement foundation
Figure 28: Grade 7 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)
<table>
<thead>
<tr>
<th>Step</th>
<th>What was done</th>
<th>Why important</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grade 5 1<sup>st</sup> Dimension measurement foundation</td>
<td>7 final items in cognitive engagement measure used to start building Grade 4 measure</td>
<td>Measurement foundation identification</td>
</tr>
<tr>
<td>2</td>
<td>Average Practice and Math Percent Complete Removed</td>
<td>Two items removed</td>
<td>Two items identified as misfitting items</td>
</tr>
<tr>
<td>3</td>
<td>Grade 5 2<sup>nd</sup> Dimension measurement foundation</td>
<td>3 final items in behavioral engagement measure used to start building Grade 3 measure</td>
<td>Measurement foundation identification</td>
</tr>
<tr>
<td>4</td>
<td>ELA Ratio Removed</td>
<td>Item Removed</td>
<td>Item identified as misfitting</td>
</tr>
</tbody>
</table>
Table 38
Grade 8 Measure Development and Item Categorization Process

<table>
<thead>
<tr>
<th>Measure Description</th>
<th>Dimensionality</th>
<th>Person Fit</th>
<th>Person Separation (Real/Model)</th>
<th>Person Reliability (Real/Model)</th>
<th>Item Fit</th>
<th>Item Separation (Real/Model)</th>
<th>Item Reliability (Real/Model)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variance Explained</td>
<td>Variance Unexplained (eigenvalue)</td>
<td>Variance Unexplained (%)</td>
<td>Infit</td>
<td>Outfit</td>
<td>Infit</td>
<td>Outfit</td>
</tr>
<tr>
<td>Grade 5 1st Dimension measurement foundation</td>
<td>54.5%</td>
<td>1.71</td>
<td>13.0%</td>
<td>0.93</td>
<td>0.95</td>
<td>1.29/1.47</td>
<td>0.62/0.68</td>
</tr>
<tr>
<td>Average Practice and Math Percent Complete Removed</td>
<td>58.0%</td>
<td>1.83</td>
<td>19.2%</td>
<td>0.97</td>
<td>0.97</td>
<td>1.21/1.47</td>
<td>0.60/0.68</td>
</tr>
<tr>
<td>Grade 5 2nd Dimension</td>
<td>76.9%</td>
<td>1.84</td>
<td>14.2%</td>
<td>0.83</td>
<td>0.85</td>
<td>1.63/1.99</td>
<td>0.73/0.80</td>
</tr>
<tr>
<td>measurement foundation on ELA Ratio Removed</td>
<td>73.0%</td>
<td>2.00</td>
<td>27.0%</td>
<td>0.7</td>
<td>0.79</td>
<td>1.27/1.62</td>
<td>0.62/0.72</td>
</tr>
</tbody>
</table>
Figure 29: Grade 8 Item-Person Map for Total Scale and by Dimension (Cognitive and Behavioral)