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ABSTRACT 

The fit of the humeral prosthesis to the intramedullary canal and the replication of 

the anatomic humeral head center are important factors in Total Shoulder Arthroplasty 

(TSA). The objective of this thesis was to develop a Statistical Shape Model (SSM) of the 

cortical and cancellous bone regions of the proximal humerus, and to assess potential shape 

differences with gender and ethnicity, with a goal of informing implant design. An SSM 

was used and Principal Component Analysis (PCA) was applied to data that represented 

both the cancellous and cortical humeral bone of 63 healthy subjects and cadavers.  

Anatomical measurements and PC scores were analyzed by gender and ethnicity.   Scaling 

accounted for 75% of the variation in the training set. Differences between males and 

females were primarily in size. Ethnicity differences were observed in the relationship 

between medial and posterior offset. Differences in ethnicity and/or gender were observed 

in the relationship between posterior offset and the head inclination angle. These are 

differences that should be considered when designing implants for a global population or 

subpopulation. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation and Project Objectives 

                   Statistical shape models (SSM) have been used widely in a variety of fields to 

characterize variation within a data set and predict a new instance from, and among, the 

data set. In the field of orthopedic implant design, sizing for a broad population has 

historically been based on two-dimensional analysis from medical imaging (Hertel et al., 

2002; Boileau and Walch, 1997; Humphrey et al., 2016). 

 While total shoulder arthroplasty (TSA) is an effective solution for many shoulder 

conditions, complications can arise from TSA. A percentage of these complications may 

result from improper sizing of the implant to the bone of the humerus. When using a 

shoulder prosthesis, replication of the anatomic humeral head center and the appropriate 

mating of a humeral stem in the intramedullary canal are important factors, both of which 

should be determined by the geometry of the native bone.  Additionally, quality bone may 

need to be removed to accommodate an implant that doesn’t properly match the patient 

anatomy. Better understanding of the differences in the geometry of the proximal humerus 

across a population could inform the design of future shoulder implants and surgical 

instruments. This in turn could drive better replication of the original anatomy for better 
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load transfer, and joint stability and mechanics, thereby leading to faster recoveries and 

better patient outcomes. 

             Using an SSM to create three-dimensional bone shapes for larger populations with 

a relatively small number of samples can be a cost effective method of ensuring the size 

extremes of the wider population are considered. Accordingly, the objective of this thesis 

was to develop a SSM of the cortical and cancellous bone regions of the proximal humerus, 

and to assess potential shape differences with gender and ethnicity, with the goal of 

informing humeral implant design and sizing. 

1.2 Organization 

The organization of this document is as follows: 

 Chapter 2 consists of literature review, which provides information about basic 

anatomy of the human shoulder joint as well as common conditions of the shoulder. 

Further, this chapter describes treatment options for these conditions and complications that 

may arise from some of these treatments. This chapter also discusses anatomical 

considerations when designing stem prostheses for the proximal humerus. Finally, an 

overview of statistical shape modeling is given. 

 Chapter 3 provides a description of how the information was processed, including a 

description of the training set, which software was used, methods used to develop the 

training set data, and the method used to develop the statistical shape model. 

 Chapter 4 is a presentation of the results including Leave-One-Out analysis, 

principal components, and anatomical measurement correlations.  
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            Finally, Chapter 5 includes discussions of those results, their significance, 

limitations of the study, as well as potential future work.  
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CHAPTER 2: A REVIEW OF LITERATURE 

This chapter will cover the anatomy of the shoulder joint, conditions that affect the 

shoulder, treatments for shoulder conditions, reasons for primary shoulder replacement 

surgery, reasons for revision shoulder surgery, and considerations when designing a 

shoulder stem prosthesis. Finally, this chapter will cover the some prior use of Statistical 

Shape Modeling (SSM) and the use of SSM in this thesis. 

2.1 Anatomy of the Shoulder 

The shoulder consists of three bones (Fig. 2.1): the humerus (upper arm bone), the 

scapula (shoulder blade), and the clavicle (collar bone). The shoulder consists of four 

joints: the sternoclavicular joint, the scapulothoracic joint , the acromioclavicular joint, and 

the glenohumeral joint.  Of these, the acromioclavicular joint and the glenohumeral joint 

are the two main joints that help the shoulder move. The acromioclavicular joint is located 

between the clavicle and a bony process on the scapula, called the acromion. The 

glenohumeral joint, commonly called the shoulder joint, is between the socket of the 

scapula, also called the glenoid, and the “ball” or “head” at the top of the humerus (Fig. 

2.2).  
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        The surface area contact relationship between these two bones of the glenohumeral 

joint is similar to a golf ball sitting on a golf tee.  A sophisticated arrangement of muscles, 

tendons and ligaments support these bones to constrain and control movement in the 

shoulder, making it one of the more complex joints in the body.  These soft tissues include 

the labrum, the rotator cuff, and the bursa. The labrum is a ring of cartilage surrounding the 

glenoid which forms a cup in which the humeral head can ride. It helps provide shoulder 

stability.  The rotator cuff is a collection of muscles and tendons that surround the shoulder. 

The four muscles of the rotator cuff are the supraspinatus, infraspinatus, subscapularis, and 

teres minor. The rotator cuff provides support to the shoulder and upper arm while 

providing a wide range of motion. Finally, the bursa is a small synovial membrane 

containing synovial fluid that helps protect the tendons of the rotator cuff and reduce 

 

Figure 2.1:  Bones of the 
shoulder (DePuy Synthes 0612-81-510). 

Figure 2.2:  Glenohumeral joint – 
between the glenoid and humeral head, 
and   acromioclavicular joint – between 
the clavicle and acromion (DePuy Synthes 
0612-81-510). 

  

Glenohumeral 
Joint 
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friction. This relatively loose fit and complex arrangement of soft tissue results in the 

shoulder having the largest range of motion of all of the joints in the human body (Fig. 2.3). 

  

 

2.2 Shoulder Conditions 

             Most shoulder problems involve the muscles, tendons, or ligaments of the shoulder, 

but the bones can also be affected. These include arthritis, torn rotator cuff, dislocation, 

instability, frozen shoulder (adhesive capsulitis), sports injuries, synovitis, tendinitis, 

bursitis, impingement syndrome, and fractures.  

             According to the Centers for Disease Control and Prevention, the number one 

cause of disability in the United States is arthritis. Approximately one in every three 

Americans suffers from some form of arthritis (CDC, 2009). Arthritis is the loss of hyaline 

cartilage, which is the smooth, shiny surface that covers the articulating surface of 

epiphyses to reduce friction during joint movement (Fig. 2.4). In healthy bones there is 

smooth and painless motion when bones articulate together. However, when cartilage 

Figure 2.3: Soft tissues of the shoulder (DePuy 
Synthes 0612-81-510). 
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degenerates, pain often follows and the supporting soft tissues can become weak resulting 

in reduced motion.  

 

 

 

           

 

  

 

 

 

 

 

 

  

Three main types of arthritis generally affect the shoulder: osteoarthritis, 

rheumatoid arthritis, and arthritis related to trauma. Other forms of less common arthritis 

that can affect the shoulder include septic arthritis resulting from infection, and avascular 

necrosis resulting from a disrupted blood supply. 

 

 

Figure 2.4:  Example of an arthritic shoulder (DePuy Synthes 0612-81-510).  
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2.2.1 Arthritis 

            Osteoarthritis occurs when the hyaline cartilage protecting the articulating surface 

deteriorates over time and loses the ability to repair itself. When this occurs, cartilage loss, 

bone damage, the formation of bone spurs, and soft tissue inflammation can occur. 

Rheumatoid arthritis destroys the hyaline cartilage and the synovial lining covering the 

joint capsule through severe inflammation. Rheumatoid arthritis affects all ages and more 

females than males. It can also affect all joints in the body. Arthritis that results from 

damage caused by a previous injury to the joint is called trauma-related arthritis. Like the 

other types of arthritis, trauma-related arthritis can result in pain, damage to the joint, and 

the loss of joint mobility.  

2.2.2 Other Shoulder Conditions 

             Gout is another form of arthritis in which crystals form in the joint. While gout can 

occur in the shoulder, causing inflammation and pain, it is more common in other joints of 

the body. Frozen shoulder develops as the movement becomes severely limited due to pain 

and stiffness caused by inflammation. If the acromion interferes with the rotator cuff when 

the arm is lifted this is referred to as shoulder impingement. This can be painful if 

inflammation is present. Exercises to strengthen the rotator cuff can sometimes help reduce 

shoulder impingement.  A rotator cuff tear is a tear in one of the rotator cuff muscles or 

tendons that may result from a sudden injury, such as a fall, or from steady overuse, such as 

throwing a ball. Shoulder tendonitis occurs when a tendon of the rotator cuff becomes 

inflamed but is not torn.  A labral tear is a tear in the ring of cartilage that surrounds the 
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glenoid, called the labrum. It can be caused by a sudden injury or by overuse. Shoulder 

bursitis occurs when the bursa becomes inflamed, causing pressure on the upper arm and 

pain with overhead activities.  Finally, a shoulder dislocation occurs when the humeral 

heads slips out of position in the glenoid fossa. In younger people this is often caused by a 

sports related incident. Unlike shoulder dislocation, which affects the glenohumeral joint, 

shoulder separation involves the acromioclavicular joint. A separation can damage the 

joint, the cartilage inside, and the ligaments that maintain stability. 

2.3 Shoulder Treatments 

            There are a number of options for the treatment of shoulder issues. These range 

from home treatments such as RICE - a combination of rest, ice, compression, and 

elevation - and over the counter pain relievers anti-inflammatories, to treatments that 

require medical direction such as prescription pain relievers, corticosteroids, and physical 

therapy, to more invasive treatments such as arthroscopic surgery, fracture repair surgery, 

and shoulder replacement option. If pain and stiffness continue after home treatments are 

tried, or if pain is severe, then a physician is often consulted. 

2.3.1 RICE 

             RICE is often the first treatment steps for shoulder pain.  RICE can often improve 

the pain and swelling for many shoulder injuries. Rest means to simply stop using the 

injured area for a couple of days. Ice includes using a cold pack wrapped in a towel on the 

affected area several times a day for short periods. Compression may help reduce any 

swelling by compressing the affected area with elastic bandages. Compression is often not 
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necessary. Finally, Elevation refers to keeping the affected area raised above the level of 

the heart. 

2.3.2 Medication 

             Shoulder pain is a reminder that there is an issue with the shoulder and over-the-

counter or prescription pain medication may help with this symptom. Non-steroidal anti-

inflammatory drugs (NSAIDS) are medications that combine pain relievers with anti-

inflammatories and can be purchased through a prescription or over-the-counter, such as 

ibuprofen. Non-NSAIDs, such as acetaminophen, do not reduce inflammation and are over 

the counter medications. Corticosteroids are prescription anti-inflammatory medications 

that block the production of prostaglandins that trigger pain and inflammation. These come 

in medication form or can be injected directly into the shoulder by a healthcare 

professional. 

2.3.3 Physical Therapy 

              Physical therapy involves a series of mobility and strengthening exercises 

designed to reduce pain and restore flexibility in the shoulder. It can be used as a primary 

treatment option or for post-surgery rehabilitation and will be recommended and/or 

supervised by a doctor or physical therapist. 

2.3.4 Surgery 

            Surgery is generally performed to make the shoulder more stable or when severe 

shoulder pain starts interfering with daily activities. Different surgical treatment options 

include arthroscopic surgery, shoulder resurfacing, rotator cuff-tear arthropathy (CTA) 
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surgery, reverse shoulder replacement, shoulder fracture repair and total shoulder 

replacement. 

2.3.4.1 Arthroscopic Surgery 

            In arthroscopic surgery, or arthroscopy, a surgeon makes small incisions in the 

shoulder and performs surgery through a flexible tube with a camera and tools on its end 

called an endoscope. It can be used to diagnose and treat shoulder problems such as a torn 

rotator cuff, shoulder impingement, shoulder instability, arthritis, tendonitis and bursitis.  

Arthroscopic surgery is minimally invasive in nature and requires less recovery time than 

open surgery. 

2.3.4.2 Partial and Total Shoulder Replacement  

            The first anatomic design of a vitallium humeral head was introduced by Krueger in 

1951, thus beginning the era of shoulder arthroplasty as a treatment option (McPherson et 

al., 1997; Krueger et al., 1951). It may be time to consider shoulder replacement if 

medications, physical therapy and other methods of treatment no longer relieve pain.  The 

intent of shoulder joint replacement is to reduce pain and improve joint mobility. 

According to the Agency for Healthcare Research and Quality (AHRQ), joint replacement 

will become the most common elective surgery by the year 2030 (AHRQ, 2016).  

During total shoulder replacement surgery, or total shoulder arthropathy (TSA),  the 

worn  or affected portions of the shoulder are replaced with  components designed to 

function with the human anatomy and function as close to natural human movement as 

possible. The main components of a TSA surgery are the humeral head, the stem, and the 
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glenoid component. The head of the humerus is replaced by metal head of similar size and 

radius. This component is often made of a biocompatible cobalt chrome alloy because this 

surface will articulate with the glenoid component and this material has superior wear 

properties. A metal stem is often made of a titanium alloy because of this material’s 

strength to weight ratio, and is fit into the canal of the humerus to give the implant 

sufficient stability. The humeral head is often attached to the humeral stem by a locking 

taper or threaded connection. Finally, the glenoid component is often made of high-strength 

polyethylene and the geometry of the articulating surface is selected based on the size of 

the humeral head. The glenoid component is attached to the scapula using bone cement 

and/or bone screws (Fig. 2.5).  

 

 

 

 

 

 

 

 

 

  
 

Figure 2.5: Example of a total shoulder replacement (DePuy Synthes 0612-76-510).  
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The surgeon will often determine which implant components and which sizes might 

be needed with preoperative planning using patient x-rays. During surgery, the surgeon will 

determine final sizing of the implant based on fit into the bone and “trialing” where the 

stability and range of motion of the joint are checked. The sizes of each component may 

vary to best match the anatomy of the patient. If all three of the main components are used 

it is considered a total shoulder replacement. If only the humeral head and/or the glenoid 

component are used then it is considered a partial shoulder replacement.   

Joint registries have been established in some countries to collect information on 

joint replacement surgeries with a goal of maintaining or improving outcomes for patients. 

These registries are generally ran or funded by the government of the country and track the 

surgeries that take place within their country. Two well established national registries are 

the National Joint Registry (NJR) in the United Kingdom, and the Australian Orthopaedic 

Association National Joint Replacement Registry (AOANJRR). Variations in data between 

registries can sometimes be seen due to numerous contributors, including variations in care 

practices between geographic regions. 

When a patient has a joint replacement surgery for the first time it is categorized as 

a “primary” surgery. Any subsequent surgeries due to complications from the primary 

surgery are classified as “revision” surgeries. According to the AOANJRR 2016 Annual 

Report, 94.1% of primary total shoulder replacement surgeries were due to osteoarthritis 

(Table 2.1). 
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2.3.4.3 Shoulder Resurfacing 

Shoulder resurfacing is considered a more conservative alternative to traditional 

shoulder replacement surgery. In a resurfacing procedure only the diseased surfaces of the 

effected joint are removed. This results in retention of more natural bone. The removed 

surface of the humeral head is replaced with a metal implant that covers the articulating 

surface (Fig. 2.6).  If needed, this less invasive approach may allow a patient to have a total 

replacement later.   

 

 

 

 

 

 

 

 

Table 2.1: Reasons for primary total shoulder replacement (AOANJRR 2016 Annual Report, 292).  

 

Figure 2.6: Example of shoulder 
resurfacing (DePuy Synthes 0612-77-510).  
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A fourteen year study by Levy and Copeland looked at 94 patients who had 

shoulder resurfacing surgery for treatment of the following: osteoarthritis, rheumatoid 

arthritis, avascular necrosis, instability arthropathy, post-traumatic arthropathy, and cuff 

arthropathy. Of the 94 patients, 93.9% felt that the shoulder was much improved or 

improved after the surgery, with the best results coming from those who had been treated 

for primary osteoarthritis, and the poorest results were seen in patients with cuff 

arthropathy and post-traumatic arthropathy (Levy et al., 2001).  

A more recent study published in 2008 assessed pain, function, and patient 

satisfaction, as well as implant loosening, in resurfacing patients under the age of 55.  Of 

the 36 patients, thirty-five patients were satisfied with the outcome and had returned to 

their desired activity level (Bailie et al., 2008).  

Osteoarthritis is the primary diagnosis leading to resurfacing. According to the 

AOANJRR 2016 Annual Report, 94.9% of primary shoulder resurfacing surgeries were 

due to osteoarthritis (Table 2.2). 

 

 

 

 

 

Table 2.2: Reasons for shoulder resurfacing (AOANJRR 2016 Annual Report, 287). 
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2.3.4.4 Cuff-Tear Arthropathy Repair 

            Rotator Cuff-Tear Arthropathy (CTA) is an arthritic condition that occurs due to 

thinning of the bone, or osteoporosis, or when there is a large rotator cuff tear over an 

extended period of time (Fig. 2.7). With CTA the rotator cuff muscles have become weak 

or non-functional and there is typically severe pain and very limited movement.  

Sometimes this can be alleviated by surgically repairing the tear in the muscle 

arthroscopically and in some cases a joint replacement is used.  

 

 

 

 

 

 

 

2.3.4.5 Reverse Shoulder Replacement 

            When all other treatment options have been exhausted for CTA, a reverse shoulder 

joint replacement can be successful. During a reverse shoulder replacement surgery the 

anatomy of the shoulder is reversed, allowing the deltoid muscle to do the majority of 

 

Figure 2.7: Example of cuff-
tear arthropathy (DePuy Synthes 
0612-79-510).  
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lifting of the arm. Rather than the ball of the joint being at the end of the humerus it is 

instead placed on the glenoid area of the scapula.  The cup is then instead placed at the 

proximal end of the humerus (Fig. 2.8). The joint of the shoulder is held together by altered 

mechanics and the damaged rotor cuff is not needed for lifting the arm.  

 

 

 

 

 

 

 

            

 

           According to the AOANJRR 2016 Annual Report, 79.7% of primary reverse 

shoulder replacement surgeries were due to osteoarthritis or rotator cuff arthropathy. 

Fracture also leads to 14.6% of reverse shoulder replacements (Table 2.3). 

 

Figure 2.8: Example of a reverse shoulder replacement  (DePuy Synthes 0612-79-510).  
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2.3.4.6 Fracture Surgery 

 Fracture surgery may be needed when a shoulder fracture occurs, or if the fracture 

does not heal properly. Shoulder fractures often occur when the hand is extended to stop a 

fall, resulting in a transferred force to the shoulder. This often results in a predictable 

fracture pattern in the proximal humerus (Fig. 2.9).  

 

 

 

 

 

 

Figure 2.9: Example of a shoulder 
fracture (DePuy Synthes 0612-81-510).  

 

Table 2.3: Causes of primary reverse shoulder replacement (AOANJRR 2016 Annual Report, 307). 
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The surgeon may decide to place the bone fragments in their natural position and 

allow them to repair, or the surgeon may suggest shoulder replacement surgery, especially 

if the proximal humerus is severely broken or crushed. Fracture shoulder prostheses are 

designed with features that allow for repair and healing of the broken bone, to help restore 

motion and reduce pain. 

             The AOANJRR classifies a surgery which involves a resection of the humeral head 

and a replacement with a stemmed humeral prosthesis and a humeral head prosthesis as a 

“hemi stemmed” surgery. Hemi stemmed surgeries account for 74.8% of all partial 

shoulder replacements (AOANJRR 2016, 260). According to the 2016 AOANJRR Annual 

Report, 46.6% of partial shoulder replacement surgeries were due to fracture (Table 2.4). 

 

 

 

 

 

 

 

 

 

 

Table 2.4: Reasons for primary partial shoulder replacement (AOANJRR 2016 Annual Report, 
262). 
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2.4 Complications with Shoulder Arthroplasty 

While many thousands of patients have experienced an improved quality of life 

after primary shoulder joint replacement surgery, including less pain, improved motion and 

strength, and better function, occasional complications can occur from shoulder joint 

replacement. Some risks can include infection, implant loosening, pain, implant wear,  

dislocation, and nerve damage (AAOS, 2017). Occasionally the surgeon will treat the more 

severe cases with complications through a revision surgery in which an attempt will be 

made to alleviate the unwanted condition or replace the prosthesis. Revisions surgeries can 

be more complicated than primary surgeries as bone and soft tissue conditions have often 

deteriorated. 

A failed shoulder arthroplasty can be defined as a complication, the need for a 

revision surgery, or by patient dissatisfaction. Characteristics of this dissatisfaction include 

stiffness, impaired function, and instability, related to loose or malpositioned components, 

glenoid erosion, and non-union of fractured tubersosities (Hasan et al., 2002).  

According to the AOANJRR 2016 Annual Report the main type of revision 

shoulder surgery is when the humeral head components is replaced. In 82.1% of procedures 

the humeral stem is not revised (AOANJRR 2016, 294). 

The majority (63.6%) of shoulder replacement revision surgeries were due to 

instability or dislocation, rotator cuff insufficiency, and loosening or lysis. Lesser occurring 

reasons for revision shoulder surgeries with causes associated with the prosthesis include 

implant breakage, implant sizing, malposition, and implant wear (Table 2.5).  
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To help determine if these revisions associated with the devices are due to 

something inherent in the design, the registries track revision surgeries by the product. This 

way it can be seen if a product has a higher revision rate than the other products that are 

within the same classification (Table 2.6).  For example, table 2.6 shows that at one year 

after surgery the SMR shoulder prosthesis has a higher revision rate at 6.2% than other 

products in this class (0% to 4.4%), and this gap widens over time. At seven years after 

implantation the SMR product has a 19.0% revision rate, while the revision rate for the 

remainder of the class ranges from 3.3% to 6.2%.  

Table 2.5: Reasons for revision shoulder surgery (AOANJRR 2016 Annual Report, 296). 
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To reduce product issues, regulatory bodies require extensive proof of robust 

testing or proof of equivalency to devices that already demonstrate clinical success. In 

some cases clinical trialing is required before the product is allowed to be released to 

market. Regulatory bodies also require companies that produce medical devices to execute 

a post-market surveillance plan to monitor complaints received and take corrective actions 

if needed. These governing bodies can also require products be removed from the market 

and not be sold if they feel there is an issue with the device that is not being resolved. Even 

with this published registry data, it can be challenging based off of this data alone to 

determine if the product design is causing this higher revision rate, or if some other cause 

or causes are driving this correlation. Further breakdown of the data can be requested from 

the joint registry to assist in these investigations.  

Table 2.6: Shoulder revision rates by brand of prosthesis (AOANJRR 2016 Annual 
Report, 205). 
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2.5 Anatomical Considerations When Designing A Stem Prosthesis for the Proximal 

Humerus 

When designing a shoulder stem prosthesis to fit in the proximal humerus 

consideration should be given to the changing anatomical features of the bone. During 

shoulder replacement surgery, size of the stem prosthesis is based off of fit within the 

cortices of the humerus, among other considerations, and resections are made from 

references to boney anatomic landmarks (Fig. 2.10).  

As the size of the humerus and the size and location of these landmarks may change 

from patient to patient, designing a device or family of devices that function properly, meet 

the size range of the wider population, and are still cost effective to manufacture, can be 

challenging.  

 

 

 

 

 

 

 
Figure 2.10: Anatomy of the proximal humerus (DePuy Synthes 0612-81-510).  

Greater Tuberosity  
Head of Humerus  

Crest of Lesser Tuberosity 

Intertubercular Groove 

Lesser Tuberosity  
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Crest of Greater Tuberosity  

 23 



 
 

Challenges of designing a robust implant and surgical procedure with regards to 

interaction with the patient are numerous. Some of these include maintaining sterility, the 

biocompatibility of the device, fitting the device to the patient anatomy, and designing 

prosthesis components to mate and work together. 

If the implant is not properly adapted to the patient’s anatomy, or improperly fits 

with the bone, this can result in pain, loosening of the prosthesis, poor joint mechanics, or 

damage to the bone. Similarly, if there is inadequate implant fixation from a lack of press 

fit between the stem and epiphyseal body, or if the device does not properly adhere to the 

bone, this can result in pain or loosening of the device. Conversely if there is too much 

press fit into the bone between the stem and epiphyseal body this can lead to bone fracture 

or an improper sizing of the implant which can result in pain, user dissatisfaction, soft 

tissue irritation or poor joint mechanics. And while not directly related to bone anatomy 

and implant fit, a non-sterile device can lead to infection and using materials which aren’t 

biocompatible can lead to an adverse tissue reaction. Any of these complications can lead 

to user dissatisfactions or, if very severe, can result in a revision surgery. 

Ensuring that the components of a prosthesis mate with each other or work properly 

together is often easily verified, but validating how the device interacts with the patient 

anatomy can be more challenging to confirm. For example, a tolerance analysis or drawing 

review might be used to confirm the proper mating conditions between components, and 

laboratory testing can easily confirm the pull-off strength of a locking taper junction. But 

confirming that a device fits properly within a patient’s anatomy, such as determining 
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whether a screw will engage with cortical or cancellous bone when the implant is properly 

fit, or whether a drill or reamer will perforate the cortex of the bone, is often validated in 

cadaveric specimens and these are limited to sizes of specimens that are available. So 

validating that a device system fits a wider, global population could be time consuming and 

cost prohibitive. Knowing if and how the boney landmarks, anatomic neck and the size and 

shape of the intramedullary canal change across a patient population can be helpful in 

designing a humeral stem prosthesis that will meet the needs of a broader population, or in 

designing a system specific to a subset of a population or a specific ethnic group. 

Historically this has been done collecting numerous two-dimensional x-rays or CT scans 

and taking measurements to predict the span of sizes of implants that might be needed. 

Therefore the use of SSM to create a three-dimensional bone construct by which to design 

a prosthesis for a broad or specific patient population can be very efficient and robust. 

2.6 Statistical Shape Modeling 

Statistical shape modeling (SSM) is a method of using point distribution model to 

establish point correspondence between a training data set and a subject data set, and then 

make a statistical analysis of the variation between the sets (Cootes et al., 1995). One of the 

main steps used in SSM is principal component analysis (PCA). After nodes of subject 

models are registered, PCA is a method in which the variability in data is characterized 

using common modes of variation to define the inconsistencies in a set of corresponding 

points (Jolliffe, 2002). In addition to principal component analysis, other algorithms used in 

SSM include iterative closet point, coherent point drift, and leave one out analysis.  
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Iterative Closest Point (ICP) algorithms have been used to calculate the differences 

between two sets of data points by estimating the difference between a point and another 

nearby point, then calculating the rotation and translation to achieve the consolidation of 

the point location, and then performing the transformation while minimizing root mean 

square distance between the surfaces (Besl, 1992; Zhang, 1994). This has previously been 

used to align to align and register bone models (Zheng et al., 2009).  

Coherent Point Drift (CPD) is a probabilistic method to estimate complex non-

linear non-rigid transformations, and can be used the registration of point sets. The CPD 

method simultaneously finds both the non-rigid transformation and the correspondence 

between two point sets. When tested using outlying data points or having data points 

removed, CPD has been shown to be robust and accurate on both 2D and 3D examples 

(Myronenko, 2010). 

Leave One Out (LOO) is a method of cross-validation, sometimes called rotation 

estimation (Geisser, 1993), that is used to assess the accuracy of a statistical shape model – 

the ability to describe a new or left out subject. This technique is used to estimate how 

accurately the predictive model will perform when there is not enough data available to 

partition it into separate training and test sets without losing significant modelling or testing 

capability (Grossman et al., 2010). One data sample is left out while computation is done 

on the remaining samples. LOO has been used previously to assess the robustness of 

statistical shape-function models of the knee joint (Fitzpatrick et al., 2011.) 
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Statistical shape models have been used widely in a variety of fields to characterize 

variation within a data set and predict a new instance from, and among, the data set. In the 

field of orthopedic implant design, sizing for a broad population has historically been based 

on two-dimensional analysis from medical imaging to drive clinical decision making 

(Hertel et al., 2002; Boileau and Walch, 1997; Humphrey et al., 2016).  In human anatomy 

SSMs have been used to describe the changes variability in the bone morphology for 

training sets of subjects representing a wider population (Rao, 2013). Meller and Kalendar 

(2004) created an SSM for the pelvis, Bryan et al. (2010) and Bredbenner et al. (2008) for 

the knee, and Kamer et al. (2016) and Yang et al. (2008) for the shoulder.  

In the area of the shoulder joint, Yang et al. presented a technique to derive the 

morphological relationship between the scapula and humerus bones and a method to 

predict one bone shape efficiently from the other using partial least squares regression 

(2008). Mutsvangwa et al. have developed methods to assess the shape of the cortical bone 

regions of the humerus and scapula. The cancellous bone regions were not considered. 

(2015). Drew et al. used SSM of the humerus to look at variability of the both the humerus 

endosteal and periosteal surfaces for rapid endoprosthetic stem design iteration (2014).  

Kamer et al. utilized a large number of subjects (58) and analyzed variation in size and 

shape, as well as bone density distributions. However, this study did not investigate 

differences in ethnicity or gender (2016). 

The objective of this study was to develop a SSM of the cortical and cancellous 

bone regions of the proximal humerus, and to assess potential shape differences with 
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gender and ethnicity. The goal would then be utilize this information in the design of 

humeral implants and surgical instrumentation.   
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CHAPTER 3: METHODS 

3.1 Population Selection: Training set 

The present analysis uses a statistical shape model to describe the anatomical 

variation in cortical and cancellous bone geometry for a training set of selected CT scans. 

The training set included sixty-three cadavers or living subjects (Appendix A), which 

included twenty-nine females and thirty- four males. Ethnic groups included two African-

American subjects, thirty Caucasian subjects, twenty Japanese subjects and eleven 

Taiwanese subjects. A bone with a median humeral head size was chosen as the template 

subject. 

Age for the entire population of subjects ranged from thirty years to ninety-six 

years. Female subjects ranged from age thirty years to ninety-six years, while male subjects 

ranged from ages forty-four to ninety-two (Table 3.1). 

 

 

 

 

 

 

Subject 
Age 
Data 

Caucasians Asians African 
Americans Males Females Caucasian 

Females 
Asian 

Females 
Caucasian 

Males 
Asian 
Males 

Average 
Age 75.6 70.1 73.0 72.7 76.7 80.7 70.1 77.0 70.2 

Std Dev - 
Age 12.7 14.1 0.0 13.1 13.7 9.8 16.9 14.1 12.8 
# of 

Subjects 30 31 2 35 28 17 11 13 20 
 

Table 3.1: Subject age data.   
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Height, weight, and Body Mass Index (BMI) were collected for the Caucasian 

subjects only. Height of Caucasian subjects varied from 60” to 77” while weight ranged 

from seventy pounds to two hundred and fifty pounds. BMI for the Caucasian subjects 

ranged from 11.62 to 34.86% (Table 3.2). 

 

 

 

 

 

 

 

 

 

 
 
 
 
3.2 Data Processing 

3.2.1 Segmentation 

            Segmentation was performed on each humerus by first loading the raw CT DICOM 

data into Mimics (Materialise, Leuven, Belgium). A region grow operation was used to 

separate the humerus and scapula into two masks. Next cortical bone was separated from 

cancellous bone using a series of steps.   A cortical mask was created and thresholding was 

 

  

Caucasians 

Average Age (Years) 79.2 
Std Dev - Age 11.6 

Average Height (Inches) 66.2 
Std Dev - Height 4.4 

Average Weight (Pounds) 134.6 
Std Dev - Weight 36.3 

BMI 21.0 
Std Dev - BMI 6.9 
# of Subjects 30 

 

Table 3.2: Caucasian subject data.   
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initiated. The erase and draw operations were used and initial threshold values were set to 

initiate the separation of cortical bone. Next polylines were calculated and cavity fill was 

executed using the polylines to encompass the boundaries of the cortical humerus. The 

erase, draw and threshold commands were then executed again on the separated cortical 

bone to complete the cortical mask. Finally, the calculate 3D command was executed to 

create a 3D construct of the cortical bone.  

               For the cancellous bone, the corresponding cortical model was eroded and a new 

mask was created using specified upper and lower Hounsfield Units (HU) limits. Boolean 

intersect was then executed on the new cancellous mask and the eroded cortical mask. 

Polylines were calculated and again cavity fill was executed from the polylines.  The 

calculate 3D command was executed to create a 3D construct of the cancellous bone, and 

finally the construct was smoothed using the wrap 3D and smooth 3D operations.  The 

construct was now ready for pre-processing (Fig. 3.1).  

 

 

 

 

 

 

 

 

Figure 3.1: Example of a segmented 
proximal humerus.  
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3.2.2 Pre-Processing 

The segmented stereolithography (STL) files containing the mesh with nodes and 

elements were pre-processed using HyperMesh (Altair, Troy, Michigan, USA).  STL files 

representing both the cancellous and cortical components were imported into HyperMesh 

and given a new 2D automesh of the outer surface using 1mm trias elements. This replaced 

the mesh that was already on the STL file with a more uniform mesh. Next a surface was 

created using the new 2D elements for both the cancellous and cortical components for the 

purpose of cutting the humeri to a specified proportional length. This was done for 

consistency in the models since not all of the CT scans captured the full length of the 

humerus. Once the surfaces were created, the 2D mesh was deleted. A sphere was created 

with the center located at the head center of the humerus. The trim surface command was 

then used to cut both the cancellous and cortical components to the determined length, 

using the sphere as the cutting guide (Fig. 3.2).  

 

 

 

 

 

 

 

 
 

Figure 3.2: Trimming the humerus.  
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The radius of the sphere was 5.6 times the radius of the cortical head. This ratio was 

chosen to allow the humeri lengths to accept the full length of a standard shoulder stem 

prosthesis, and to still allow usage of a large population of the CT scans. 

After the length of the humeri were set, all elements were converted to R3D3 using 

a Bolean option to make ready for exporting. For right-sided humeri, the Reflect command 

was used to change it to a left-sided humerus. This was needed so all humeri in the training 

set were of the same relative geometry in order to execute SSM. In doing this, an 

assumption of symmetry between left and right humeri of the same subject was assumed. 

All nodes and elements for both the cortical and cancellous bone were then renumbered 

and exported into folders. 

            The alignment of the subject model was compared to the template model and values 

for angle of rotation and translation to bring them into rough alignment were determined. 

These values were recorded to be used in the processing step.  

3.2.3 Processing 

Processing of the meshed input files using SSM was performed with a custom 

Matlab (Mathworks, Natick, Massachusetts, USA) script (Appendix C). Principal 

Component Analysis (PCA) was applied to data that represented both the cancellous and 

cortical humeral bone.  Principal Components (PC) scores were used to represent the 

modes of variation that described the anatomic disparity present in the population data. A 

leave-one-out (LOO) analysis was utilized to evaluate the robustness of the SSM. Further 

details of these steps are described below. 
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After the cortical and cancellous bone models were manually rotated and translated 

in HyperMesh to have them roughly aligned with the training model, the template 

geometry was loaded into Matlab and all nodes and elements were renumbered and written 

to output files. The subject geometries were imported from HyperMesh as well, and nodes 

and elements were renumbered and written to output files. 

An iterative Closest Point (ICP) algorithm was then used to minimize root mean 

square distance between the surfaces while performing a rigid body transformation to fully 

align the subject bones with the templates bones. 

            A Coherent Point Drift (CPD) algorithm was then used to apply a non-rigid 

transformation of each subject bone to the template bone. By morphing each subject to the 

template, it was determined which node of the template each node of the subject 

corresponds. This nodal correspondence from the non-rigid CPD was captured for subject 

registration, as was the correct position and orientation with respect to the template, 

creating a rigid body transformation matrix from the ICP. The cancellous bone was then re-

aligned to the corresponding cortical bone.  

A register was created to organize the subject data into columns, with each column 

representing a subject and each row representing x-y-z nodal coordinates. The values from 

the transformation matrices were added to the end of the nodal coordinate data in the 

register. The registered node coordinates from the rigid CPD matched total number of 

nodes as the template. 
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Prior to running the PCA, a model was created of each subject in the register using 

the nodal coordinate data to verify that the register contained the correct information. PCA 

was then executed and parallel analysis was used to understand which modes to retain. A 

mean model was created and new geometry was created and written to output files to 

visualize the modes of variation.  

Anatomical measurements were calculated, and modes and anatomical 

measurements were analyzed by gender and ethnicity using Pearson's correlation 

coefficients. Measurements included head radius, medullary canal diameter, head 

sphericity, anatomical neck angle, greater tuberosity offset, articular surface thickness, 

inclination angle of the head, medial offset, anterior-posterior (AP) offset, and cortical 

thickness. Descriptions of how these measurements were made can be found in Appendix 

B. 

Finally, a leave-one-out (LOO) analysis was performed to assess the accuracy of 

the SSM. The root mean square (RMS) error was determined by calculating distances from 

predicted nodes to the original nodes and then calculating the mean and standard deviation 

of the RMS errors. 
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CHAPTER 4: RESULTS  

 The SSM describes the anatomical variation with a series of modes of variation.  In 

this chapter these modes of variation will be presented, as well as LOO analysis error. 

Further, the common mesh established by registration/correspondence enables anatomical 

measurements for all of the subjects.  These measurements are relevant clinically and for 

implant design, and correlations between them will be included.  

4.1 Modes of Variation 

A series of modes of variation was used to describe variation in the humeral 

anatomy. The first three principal components accounted for 88% of the variation: PC1 

explained 75% of variation, PC2 explained 10% of the variation, and PC3 accounted for 

3% of the variation. Ninety-two percent of the variation was captured by the first five 

modes, with PC4 and PC5 each accounting for 2% of the variation (Fig. 4.1). 

 

 

 

LOO Analysis 

 

 

Figure 4.1: Principal 
components - % of variation.  
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The majority of the variability in the training set, or mode 1, was described by 

scaling of the bone. Changes near the lesser tubercle were described by mode 2. The radius 

of curvature of the medial side of the surgical neck, as well as changes in the greater 

tubercle, captured mode 3 (Fig. 4.2). 

 

 

 

 

4.2 Leave-One-Out Analysis 

LOO analysis resulted in a root mean squared (RMS) error averaged across all 

nodes and all subjects of 0.89 mm with a standard deviation of 0.34 mm.   

Figure 4.2: Principal components showing mean +/- 2 standard deviations.  
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4.3 PC Correlations 

Correlations help identify interactions between variables, and are a measure of 

sensitivity (Laz and Browne, 2009). Mode 1 was strongly correlated with humeral head 

radius (R=-0.96, Fig. 4.3), articular surface thickness (R=-0.90, Fig. 4.4), and greater 

tuberosity offset (R=-.82, Fig. 4.5). Mode 1 was also weakly correlated with canal diameter 

(R=-0.45, Fig. 4.6).  While the correlations with size are expected, the strength of the 

correlation with thickness near the articular surface and the lack of a stronger correlation 

with diameter are notable.  The latter is a significant consideration in implant design, 

supporting the need for modularity including varying head offsets to reproduce head center 

independent of stem diameter. 

 

  

 

 

 

 

 

 

Figure 4.3: Mode 1 vs. head radius.  

  

Figure 4.4: Mode 1 vs. articular surface thickness.  

  
Figure 4.5: Mode 1 vs. greater tuberosity offset.  Figure 4.6: Mode 1 vs. canal diameter.  
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Mode 2 did not result in a correlation with any of the anatomic measurements 

assessed where R was greater than or equal to 0.30. This is because mode 2 captured 

changes near the lesser tuberosity (Fig. 4.2) and common clinical and anatomical 

measurements do not typically consider this area.  Mode 3 was strongly correlated with 

inclination (R=-0.94, Fig. 4.7), neck angle (R=0.88, Fig. 4.8), and medial offset (R=0.74, 

Fig. 4.9). 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.7: Mode 3 vs. inclination.  Figure 4.8: Mode 3 vs. neck angle.  

Figure 4.9: Mode 3 vs. medial offset.  
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             Mode 4 was moderately correlated with canal diameter (R=0.59, Fig. 4.10), and 

weakly correlated with AP offset (R=-0.32, Fig. 4.11). 

 

 

 

 

4.4 Anatomical Measurement Correlations  

             All anatomical measurements were analyzed for correlation when compared to 

each other, with consideration given when R was greater than or equal to 0.30 (Table 4.1). 

 

 

 

 

 

 

 

  
Figure 4.10: Mode 4 vs. canal diameter.  Figure 4.11: Mode 4 vs. AP offset.  

 

All Subjects 
head 

radius neck angle 

greater 
tuberosity 

offset 
medial 
offset 

AP 
offset 

articular 
surface 

thickness 
canal 

diameter inclination sphericity 
head radius 1 X 0.83 X X 0.86 0.43 X X 
neck angle   1 X 0.56 X X X 0.94 X 

greater 
tuberosity 

offset 
    1 X X 0.83 X X X 

medial 
offset       1 0.3 X X -0.76 X 

AP offset         1 X X 0.31 X 
articular 
surface 

thickness 
          1 X X X 

canal 
diameter             1 X X 

inclination               1 X 
sphericity                 1 

  
                  

Correlation strong moderate weak X <0.30 
      

Table 4.1: Anatomical measurement correlations.  
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             When looking at correlations between anatomic measurements, head radius was 

strongly correlated with articular surface thickness (R=0.86, Fig. 4.12), and greater 

tuberosity offset (R=0.83, Fig. 4.13), and weakly correlated with canal diameter (R=0.43, 

Fig. 4.14). 

 

 

 

 

 

 

         

  

 

 

 

  

Figure 4.12: head radius vs. 
articular surface thickness.  

Figure 4.13: head radius vs. 
greater tuberosity offset.  

 

Figure 4.14: head radius vs. canal diameter.  
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As expected, neck angle was strongly correlated with inclination (R=0.94, Fig. 

4.15), as the anatomic neck angle is relational to the head inclination angle. It was also 

moderately correlated with medial offset (R=0.56, Fig. 4.16).  

 

 

 

 

 

Greater tuberosity offset was strongly correlated with articular surface thickness 

(R=0.83, Fig. 4.17), and there was a weak correlation between AP offset and inclination 

(R=0.31, Fig. 4.18). 

 

 

 

 

 

  

Figure 4.16: neck angle vs. medial offset.  Figure 4.15: neck angle vs. inclination.  

 

Figure 4.18: AP offset vs. inclination.  Figure 4.17: greater tuberosity offset 
vs. articular surface thickness.  
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Finally, medial offset was strongly correlated with inclination (R=-0.76, Fig. 4.19) 

and weakly correlated with AP offset (R=-0.30, Fig. 4.20). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Many of these anatomical measurement correlations can be attributed to the normal 

scaling or size change of the bone that was captured in mode 1 (Fig. 4.2) such as head 

radius versus greater tuberosity offset, articular surface thickness, or canal diameter, as well 

as greater tuberosity offset versus articular surface thickness. As previously mentioned 

neck angle and inclination are complimentary measurements so this correlation would be 

expected.  

Other measurements were not inherently expected and drove further investigation. 

These included: medial offset versus inclination, medial offset versus neck angle, AP offset 

versus inclination, and medial offset versus AP offset. These correlations were analyzed at 

Figure 4.20: medial offset vs. AP 
offset.  

Figure 4.19: medial offset vs. 
inclination.  
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the subpopulation level to determine if a specific ethnicity or gender were driving the 

relationship. 

Medial offset versus inclination showed a strong correlation of R=-0.76 (Fig. 4.19). 

When looking at subpopulations for this group, the correlations remained relatively 

consistent, with Caucasian females having a slightly higher correlation (R=-0.90) than the 

other subgroups (Table 4.2). 

 

 

  

 

The relationship between medial offset and neck angle (R=0.56, Fig. 4.16) showed 

similar results with Caucasian females having the highest correlation (R=0.81, Table 4.3). 

This similarity was to be expected since medial offset was being compared to 

complimentary measurements (inclination and neck angle) in these two analyses.  

 

 

 

 
medial offset vs. inclination 

Population All Caucasians Asians Males Females 
Caucasian 
Females 

Asian 
Females 

Caucasian 
Males 

Asian 
Males 

R value -0.76  -0.84 -0.72  -0.69   -0.84  -0.90 -0.77 -0.77 -0.61 

# Subjects 63 30 31 35 28 17 11 13 20 
 

medial offset vs. neck angle 

Population All Caucasians Asians Males Females 
Caucasian 
Females 

Asian 
Females 

Caucasian 
Males 

Asian 
Males 

R value 0.56 0.7 0.41 0.52 0.7 0.81 0.54 0.63 0.33 
# Subjects 63 30 31 35 28 17 11 13 20 

 

Table 4.2: Subgroup correlations for medial offset vs. inclination. 

Table 4.3: Subgroup correlations for medial offset vs. neck angle. 
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AP offset versus inclination showed varying results among the subgroups with 

several having no correlation (Table 4.4). The weak correlation for the entire subject pool 

(R=0.31, Fig. 4.18) was likely driven by the moderate correlation for Caucasian males (Fig. 

4.21), which in turn was driven by ethnicity and/or gender, as Caucasians showed a weak 

correlation while Asians showed none, and males showed a weak correlation and females 

did not.  

 

 

 

 

 

 

 

 

Medial offset was weakly correlated (R = 0.3) with AP offset for the entire subject 

population (Fig. 4.20). While AP offset is defined as the distance from the axis of the 

medullary canal to the center of the humeral head in the anterior-posterior direction, no 

Figure 4.21: AP offset vs. inclination. 

 

 
AP offset vs. inclination 

Population All Caucasians Asians Males Females 
Caucasian 
Females 

Asian 
Females 

Caucasian 
Males 

Asian 
Males 

R value 0.31 0.46 <0.3 0.35 <0.3 0.35 <0.3 0.66 <0.3 
# Subjects 63 30 31 35 28 17 11 13 20 

 

Table 4.4: Subgroup correlations for AP offset vs. inclination. 
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subjects exhibited anterior offset. AP offset ranged from 0.11 to 6.16 mm in the posterior 

direction only. Subpopulations showed varying results for the medial offset versus AP 

offset correlation with three subgroups exhibiting a moderate correlation, two showing a 

weak correlation, and three with no correlation (Table 4.5). 

 

 

           

             The weak correlation for all subjects was driven by a moderate correlation in the 

Caucasian population (R=0.57, Fig. 4.22). There was no correlation in the full Asian 

population ((R<0.30, Fig. 4.23).  

 

 

 

 

 

There was no correlation for males for medial offset versus AP offset when looking 

at the entire male population (R<0.30, Fig. 4.24). For females there was a weak correlation 

(R=-0.41, Fig. 4.25). 

Table 4.5: Subgroup correlations for medial offset vs. AP offset. 

 

Figure 4.22: medial offset vs. AP 
offset – Caucasians. 

 

  
medial offset vs. AP offset 

Population All Caucasians Asians Males Females 
Caucasian 
Females 

Asian 
Females 

Caucasian 
Males 

Asian 
Males 

R value -0.3 -0.57 <0.3 <0.3 -0.41 -0.59 <0.3 -0.65 0.46 
# Subjects 63 30 31 35 28 17 11 13 20 

 

Figure 4.23: medial offset vs. AP 
offset – Asians. 
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Caucasian females had a moderate correlation between medial and posterior offsets 

(R=-0.59, Fig. 4.26). Asian females did not have a correlation (R<0.30, Fig. 4.27). As 

medial offset increased, so did posterior offset for Caucasian females. 

 

 

 

 

 

Caucasian males exhibited a moderate correlation between medial and AP offsets 

(R=-0.65, Fig. 4.28). Asian males had a weaker correlation (R=0.46) than Caucasian males. 

Figure 4.26: medial offset vs. AP 
offset – Caucasian females.  

  

Figure 4.27: medial offset vs. AP 
offset – Asian females. 

  

Figure 4.25: medial offset vs. AP 
offset – females. 

Figure 4.24: medial offset vs. AP 
offset – males. 
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For Caucasian males, as medial offset increased, so did posterior offset. However, the 

opposite was true for Asian males: as the medial offset increased, the posterior offset 

decreased (Fig. 4.29). 

 

 

 

 

  

  

Figure 4.29: medial offset vs. AP 
offset – Asian males. 

Figure 4.28: medial offset vs. AP 
offset – Caucasian males. 
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CHAPTER 5: DISCUSSION 

A statistical shape model was developed and used to quantify variation in the cortical and 

cancellous bone or the proximal humerus for 63 subjects. Anatomical measurements were 

made related to regions of the humeral head and intramedullary canal and their 

relationships were analyzed. This chapter will discuss the results and their importance, 

limitations of this study, and potential future work. 

5.1 Significance 

The LOO analysis resulted in a root mean squared (RMS) error averaged across all 

nodes and all subjects of 0.89 mm with a standard deviation of 0.34 mm. This error 

assessed the statistical model’s ability to describe variability in the training set and was 

small compared to prior studies (Table 5.1), suggesting that SSM methodology and 

execution continue to be refined. 

 

 

 

 

 

 

Study Year RMS 

this study 2017 0.89 

Rao et al. 2013 1.64 

Fitzpatrick et al. 2011 2.5 and below 

Yang et al. 2008 1.39 and above 
 

Table 5.1: RMS error results for SSM studies. 
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For both this study and Kamer et al. (2016), the majority of the variability in the 

training set, or PC1, was described by scaling of the bone. However, changes near the 

lesser tubercle were described by PC2 for this study, while the Kamer study reported 

variation in head inclination and the shaft. For this study, the first two principal 

components accounted for 85% of the variation: PC1 explained 75% of variation, and PC2 

explained 10% of the variation.  For the Kamer study, these first two principal components 

accounted for 65% of the variation. 

Scaling accounted for 75% of the variation in the training set. Differences between 

males and females were primarily in size. While most shoulder implants are offered in a 

range of sizes to accommodate a range of patients, other changes in anatomy that could be 

important are often not accommodated for in implant design. For example, Mode 3 

described changes in the medial curve of the neck (Fig. 5.1) and many implant designs 

 

 

 

 

 

 

 

 

 
 

Figure 5.1: Mode 3 captured changes in 
medial curve. 
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offer a constant radius of curvature in this area regardless of the implant size. Fit of implant 

to bone is especially important along the medial curve during fracture surgery when this 

area of medial calcar is often the only solid bone left by which to align the implant.  

Differences in ethnicity and/or gender were observed in the relationship between 

posterior offset and the head inclination angle. There was a moderate correlation for 

Caucasian males showing that as the head inclination angle increases, the posterior offset 

decreases. This was not evident for Asian males or Asian females, and there was only a 

weak correlation for Caucasian females.   

Ethnicity differences were observed in the relationship between medial and 

posterior offset, with Caucasians showing a moderate correlation while Asians did not. 

More specifically, Caucasian males showed a moderate to strong correlation while Asian 

males showed a moderate negative correlation. Or, as the medial offset grew by 1mm, the 

posterior offset became larger in Caucasian males by 0.26 mm, but smaller in Asian males 

by 0.34mm. 

Looking only at medial offset and AP offset for the entire population would show 

that to recreate the anatomic head center and utilize the intramedullary canal for stability, 

the implant design would need to be able to accommodate offsets ranging from 0 to 6mm 

posteriorly and 2 to 17mm medially. Figure 5.2 shows that a standard set of six humeral 

stem implants, used with a set of 4mm offset eccentric heads will cover offsets ranging 

from 4mm anterior to 4mm posterior, and from 1.1 to 14.7mm medially. This suggests that  
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much of the population would be covered for these offsets, except for higher medial and 

posterior offsets. To recreate the head center of the highest offset patients with these 

implants the stem would need to rotated in canal. Based on this data, implant designs could 

incorporate a modest posterior offset in the stem and/or greater offset (eccentricity) in the 

head to better replicate anatomic offsets in a greater number of patients while maintaining 

 

Ellipses show the 
coverage of a standard 
set of 6 (sizes 6, 8 10, 
12, 14 and 16) 
humeral stems with 
eccentric heads (with 
4mm offset). 

 
 
 
 
P
o
s
t
e
r
i
o
r 

Figure 5.2: Medial offset vs. AP offset with implant offset ranges. 
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the original axis of the canal. However, a posterior offset stem would create left and right 

side stems, thereby doubling the needed stem inventory. Also, increasing the eccentricity of 

the humeral head would increase the moment arm being applied to the feature that connects 

with the stem, and this would need to be tested accordingly. 

           Within the training set, it should be noted that several outliers were present.  

Subjects with extremely high medial offsets (approximately 17mm, Figure 5.2) exhibited 

rotated (varus) humeral heads. Additionally, it has been shown that to replicate anatomic 

head center, medial osteophytes should be removed (Boileau and Walch, 1997; 1999). 

Therefore, offsets could actually be smaller if osteophytes were present.  

 

5.2 Limitations  

           The entire humeral bone was not included in the scans for all 63 subjects. Therefore 

only the proximal portion of the humerus was included in the SSM. For consistency, the 

shaft of the humerus was resected at length relational to the head size. While this 

constrained the length of the bone to the size of the humeral head, it did not allow for 

alignment or geometry selection based off of the distal geometry of the humerus. Since 

retroversion is constructed off of the transepicondylar axis, it was not able to be calculated.  

The anatomical coordinate system and anatomical measurements were based off of 

manually selected points. Measurements were done by manually selecting spots on 

anatomical landmarks and then placed on the template geometries. Based on corresponding 

node numbers, these were then automatically placed on each registered subject.   
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While the current training set of 63 subjects is larger than prior SSM studies of the 

shoulder (Kamer, 2016; Mustvanga, 2015; Drew, 2014), the majority (61) of the subject 

population was comprised of Asian and Caucasian subjects. Only 2 African-American 

subjects were in the study and the study population was therefore not fully representative of 

the global population. Breaking the population down for further analysis based on ethnicity 

and gender led to subgroups as small as 11 subjects, thereby decreasing confidence in the 

accuracy of the correlation results. For correlations, the terms strong (R>0.7), moderate 

(0.5<R<0.7), and weak (0.3<R<0.5) were used to characterize the strength of the 

correlations but do not show the true delineations of the R values.  

Future work could include 2 sample t-tests to determine if differences between the 

subgroups are statistically relevant. Further analysis of the relationships between 

anatomical measurements by subgroups could be done as well. Additionally, more subjects 

could be added and more ethnicities could be added, and/or the subjects could be replaced 

with full size bones for potentially improved anatomic alignment.  

5.3 Conclusion 

This study used a methodological approach for statistical shape modeling to 

quantify variation in geometry of the proximal humerus. Sixty-three subject bones were 

processed and the data sets described relative to a training data set. The variations were 

statistically analyzed.  
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  Differences in relationships between anatomical measurements relevant to 

shoulder arthroplasty were observed with ethnicity, while gender differences were mainly 

captured within the size variation. 

Better understanding of the ethnic and gender differences in the geometry of the 

proximal humerus could inform the design of future shoulder implants and surgical 

instruments. This in turn could drive better replication of the original anatomy for better 

load transfer, and joint stability and mechanics, thereby leading to faster recoveries and 

better patient outcomes. 
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APPENDIX A – TRAINING SET TABLE 

Subject Age Sex 
Ethnic 
group/race 

Height 
(in) 

Weight 
(lbs) BMI R/L 

Humerus 
Length 

Cortical 
Head 

Radius 
S0 

(Template) 82 M Caucasian 68 185 28 L Partial 24.4 

S1 96 F Caucasian 63 127 22 R Partial 20.8774 

S2 84 M Caucasian 72 113 15 L Partial 26.7349 

S3 73 F Thailand       R Full 17.779 

S4 96 F Caucasian 63 127 22 R Partial 21.5719 

S5 56 M Caucasian 75 126 16 R Full 17.779 

S6 69 F Caucasian 66 126 20.33 L Partial 24.1237 

S7 73 M Caucasian 67 119 18.64 L Full 24.1903 

S8 86 F Caucasian 65 145   L Full 19.4944 

S9 87 F Caucasian 63 110 19.48 R Full 21.1596 

S10 89 M Caucasian 69 138 20.38 R Full 25.3624 

S11 78 F Caucasian 60 130 25.39 L Full 20.7231 

S12 77 M Caucasian 77 145 22.04 R Full 23.7834 

S13 89 F Caucasian 64 160 27.46 L Full 22.0715 

S14 73 M Japan       L Full 22.3853 

S15 69 M Japan       L Full 24.2924 

S16 89 F Japan       L Full 19.6347 

S17 78 M Japan       L Full 21.7023 

S18 62 M Japan       L Full 20.949 

S19 57 F Japan       L Full 19.6295 

S20 50 M Japan       L Full 22.5073 

S21 92 M Japan       L Full 21.4165 

S22 88 M Japan       L Full 21.4553 

S23 70 F Japan       L Full 18.14 

S24 66 M Japan       L Full 21.7804 

S25 83 M Japan       L Full 21.1529 

S26 79 F Japan       L Full 22.7163 

S27 86 F Japan       L Full 19.5443 

S28 69 M Japan       L Full 20.4339 

S29 85 M Japan       L Full 22.7341 

S30 69 M Japan       R Full 23.2621 

S31 30 F Japan       L Full 19.6058 

S32 86 F Japan       L Full 19.1226 

S33 73 F Japan       L Full 21.7811 

S34 72 F Caucasian 63 188 33.3 L Full 21.1192 

S35 80 M Thailand       R Full 24.5321 
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S36 60 M Thailand       R Full 22.7315 

S37 68 F Thailand       R Full 21.8801 

S38 44 M Thailand       R Full 21.943 

S39 85 M Thailand       R Full 22.3352 

S40 64 M Thailand       R Full 22.5743 

S41 60 F Thailand       R Full 19.8733 

S42 92 F Caucasian 61 138 26 L Partial 19.98 

S43 60 M Thailand       R Full 20.5203 

S44 60 M Thailand       R Full 22.8775 

S45 66 M Thailand       R Full 20.5 

S46 78 F Caucasian 61 150 28.34 L Full 19.805 

S47 87 M Caucasian 70 190 27.26 L Full 25.5609 

S48 59 M Caucasian 74 134 17.2 L Full 23.4611 

S49 90 M Caucasian 62 135 24.69 L Full 24.523 

S50 70 F Caucasian 64 150 25.74 R Full 20.749 

S51 68 F Caucasian 62 110 20.12 L Full 21.8528 

S52 83 M Caucasian 65 140 23.29 L Full 20.9881 

S53 87 F Caucasian 65 90 14.98 L Partial 20.0162 

S54 51 M Caucasian 71 250 34.86 R Partial 22.7637 

S55 89 M Caucasian 68 150 22.8 R Partial 24.9776 

S56 73 M 
African 
American 74 150 19.26 L Partial 24.4964 

S57 75 F Caucasian 67 100 15.66 L Partial 20.6464 

S58 73 F Caucasian 60 70 13.67 R Partial 19.5063 

S59 79 F Caucasian 67 120 18.79 L Partial 22.4908 

S60 73 M 
African 
American 74 150 19.26 L Partial 24.1237 

S61 67 F Caucasian 67 100 15.66 L Partial 25.532 

S62 86 M Caucasian 69 185 27.32 R  Full 24.2196 

S63 90 F Caucasian 66 72 11.62 L  Full 21.0328 
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             APPENDIX B – DEFINITIONS OF ANATOMICAL MEASUREMENTS 

          Definitions of Anatomical Measurements for Proximal Humerus 

            Developed by: Irene Sintini 

 

 

            Anatomical coordinate systems 

 

Each bone was represented in the template anatomical coordinate system, defined   

similarly                 to [1]. For the humerus, the origin was placed in the glenohumeral 

rotational center, estimated as the center of the best-fitting sphere for the humeral head; 

the mediolateral axis was defined by the direction of the segment connecting the two 

epicondyles, pointing medially; the anterior-posterior axis was defined as the 

perpendicular to the plane of the glenohumeral rotational center and the epicondyles, 

pointing anteriorly; the superior-inferior axis was defined consequently to form a right-

hand coordinate system (Fig. 1).  

 

 

63 



 
 

Figure 1. Humerus (above) and scapula (below) templates anatomical 

coordinate systems. 

Anatomical landmarks 

Anatomical landmarks were manually placed on the template geometries and 

then automatically selected on each registered subject, based on node 

numbers. They were used to automatically compute anatomical measurements 

on each registered subject and also to build the anatomical coordinate systems. 

• Humerus 

1. Greater tuberosity (GT) 

2. Most anterior point of the anatomic neck (MA) 

3. Most posterior point of the anatomic neck (MP) 

4. Most lateral point of the anatomic neck (ML) 

5. Most medial point of the anatomic neck (MM) 

6. Superior apex of the head (SA) 

 

 
 

Figure 2. Humerus (left) anatomical landmarks.  
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Anatomical measurements 

• Humerus 

1. Head radius 

The head radius was computed as the radius of the sphere that best 

fits the humeral head (Figure 3), i.e. the epiphyseal sphere (Boileau 

and Walch, 1997). The nodes used to find the best-fitting sphere 

are selected manually on the cortical shell of the template and then 

used for all the subjects in the register. 

2. Canal diameter 

The canal diameter was computed as the diameter of the cylinder 

that best fits the most inferior half of the cancellous shaft (Figure 

3), i.e. the metaphyseal cylinder (Boileau and Walch, 1997). The 

axis of this cylinder is the canal axis (orthopaedic axis). This 

method gives an estimate that does not take into account how the 

canal diameter may vary along the shaft. If it is of interest to 

compute the diameter at specific sections of the shaft, this can be 

measured as the minimum distance between the most anterior and 

the most posterior point and the most medial and the most lateral 

point, or as the diameter of the best-fitting circle. 

3. Head sphericity 

Head sphericity was computed as the ratio between the radii of the 

best-fitting circles in the X (mediolateral) - Z (superior-inferior) 

plane and Y (anterior-posterior) - Z (superior-inferior) plane 

(Figure 4). X-Z is the frontal plane; Y-Z is the sagittal plane. The 

points used to find the best-fitting circles come from the 

projections of the points used to find the best-fitting sphere on the 

fontal and sagittal plane; to make the code more robust, only the 

points above the origin are selected. 
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4. Anatomical neck angle 

The anatomic neck angle was computed as the angle that the vector 

connecting the most medial point of the anatomic neck and the 

most lateral point of the anatomic neck forms with the Z-axis 

(Figure 5). 

5. Greater tuberosity offset (or critical distance) 

As defined in (Hertel et al., 2002), the greater tuberosity offset (or 

critical distance) is the distance between the most medial point of 

the anatomical neck and the canal axis in the X (mediolateral) - Z 

(superior-inferior) plane (Figure 5).  

6. Articular surface thickness 

As defined in (Boileau and Walch, 1997), the articular surface 

thickness is the distance between the articular margin plane and the 

superior apex of the head, in the X (mediolateral) - Z (superior-

inferior) plane (Figure 5). 

7. Inclination angle of the head 

As defined in (Boileau and Walch, 1997), the inclination angle of 

the head is the angle between the canal axis and the perpendicular 

to the articular margin plane, in the X (mediolateral) - Z (superior-

inferior) plane (Figure 5).  

8. Medial offset 

As defined in (Boileau and Walch, 1997), the medial offset is the 

distance between the head center (i.e. the center of the best-fitting 

sphere) and the canal axis in the X (mediolateral) - Z (superior-

inferior) plane (Figure 6).  

9. Anterior-posterior offset 

As defined in (Boileau and Walch, 1997), the anterior-posterior 

offset is the distance between the head center (i.e. the center of the 
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best-fitting sphere) and the canal axis in the Y (anterior-posterior) - 

Z (superior-inferior) plane (Figure 6). 

10. Cortical thickness 

The cortical thickness was computed as the distance between the 

cortical and the cancellous profile, at a specific section of the shaft, 

and at various angles (Figure 7). The distance was calculated both 

along the radial direction and along a direction normal to the 

cortical profile. An alternative, quicker method could be to 

calculate the difference between the diameter of the best-fitting 

cylinder in the cancellous bone and the best-fitting cylinder in the 

cortical bone. However, this method would not take into account 

how the thickness may vary with the superior-inferior and angular 

position. 

 

Only the proximal portion of the humerus was included in the SSM. The 

humerus shaft was resected at the intersection with a sphere whose center 

was placed coincident with the head center and whose radius was 

proportional to the head radius (5.6 times). This constrained the length of 

the bone to the size of the humeral head. It was done because the entire 

bone was not available for all the 63 subjects. Given that the SSM was 

developed only on the proximal portion of the humerus, it was not possible 

to calculate the retroversion angle, since it is based on the transepicondylar 

axis. Only for the template, the center of the best-fitting sphere is actually 

the origin of the anatomical coordinate system. For all the other 

geometries, this is not exactly true. An alternative way to rigidly align the 

geometries would be to bring each one of them in its own anatomical 

coordinate system: in this way, the origin would always be the actual head 

center. 
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Figure 3. Best-fitting cylinder for the metaphyseal cylinder (left) and the 

best-fitting sphere for the humeral head (right). The nodes on the cortical 

shell used to find the bets-fitting geometries are represented as yellow 

scatter points; the analytical surfaces are represented in shaded yellow. 
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Figure 4. Best-fitting circles for the humeral head in the sagittal (left) and 

frontal (right) plane. The scatter points in yellow are the nodes used to find 

the bets-fitting circles (see Figure 3). 
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Figure 5. The humerus is represented in the X-Z plane to show the 

anatomical neck angle, the greater tuberosity offset or critical distance, the 

head inclination angle and the articular surface thickness. 
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Figure 6. The humeral head is represented in the Y-Z plane (left) and the 

X-Z plane (right) to show respectively the anterior-posterior offset and the 

medial offset. 
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Figure 7. Cortical thickness was measured as the distance between cortical 

and cancellous profile at a specific section of the shaft (80 mm below the 

origin, for the case showed here), at various angles. 
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