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ABSTRACT 

 

Syndesmotic injury, more commonly known as a “high ankle sprain”, accounts 

for over 12% of all ankle sprain incidents in the US; of which, over 25% occur during a 

sporting activity.  Typically, harm to the syndesmosis occurs in sports such as football, 

soccer, lacrosse, and hockey where it is common for an athlete to experience rapid and 

extreme dorsiflexion-external rotations of the foot. Severe syndesmotic sprains have been 

noted by clinicians as the most difficult ankle injury to accurately diagnose and treat, 

require the most recuperation time, and often results in life-long dysfunction. Even more 

problematic, 40% of patients suffering from a high ankle sprain also report joint 

instability 6 months after the initial injury. The distal tibiofibular syndesmosis joint 

consists of a fibrous interosseous membrane and four stabilizing ligaments, allowing for 

only slight movements of the fibula about the tibia. These distal bone surfaces closely 

articulate with the talus to form a stable mortise joint, giving the ankle joint complex its 

hinge-like range of motion (ROM). In the case of severe ankle sprains, excessive external 

rotation, dorsiflexion, and eversion of the foot can cause tearing of these stabilizing 

ligaments, distraction of the bones, or even fracture. A rigid screw fixation method is the 

standard practice for repair in these severe cases, although new dynamic fixation 

techniques using sutures and buttons instead of a screw are thought to allow for a more 
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natural motion of the joint during healing and better post-operative results. However, 

most research of the ankle joint complex has primarily been dedicated to the talocrural 

joint formed between the talus and tibia, where the fibula is treated as single segment 

with the tibia. Very little research has been dedicated towards understanding the unique 

role the fibula plays in dynamic weight-bearing tasks to overall ankle joint strength, 

stability, and mobility. This gap in knowledge of fibular articulation and load bearing, 

lends to the difficulty and inaccuracy in properly reducing the bones during syndesmotic 

fixation. There also lacks a clear and consistent method for syndesmotic fixation with 

minimal validation that dynamic fixation heeds superior post-operative results. Gaining 

insight on healthy syndesmosis joint motion could provide baseline measures for more 

realistic loading conditions of cadaveric testing various fixation devices, serve as design 

parameters for new device design, set a gold standard for normal range of motion (ROM) 

in rehabilitation, and ultimately improve diagnostic and treatment modalities for 

syndesmotic injury.  

The goals of the project were to establish a standard for the six degree of freedom 

(DOF) kinematics in the syndesmosis and talocrural joints in healthy active adults, as 

well as define the normal ROM. This was done using a high speed stereo radiography 

(HSSR) system to capture dual plane in-vivo motion of the bones with sub-millimeter 

and sub-degree accuracy. Changes in bone positioning during static and dynamic weight 

bearing activities were compared to a non-weight bearing neutral pose of the foot. The 

second scope of this work defines average values of medial and lateral clear space 
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widening between the bones.  Both are current clinical measures used to gauge the degree 

of ankle injury and instability present. Knowing the kinematics of the bones primarily 

responsible for stability of the ankle joint complex, along with their expected distraction 

between each other could help bridge the gap in the diagnosis and treatment of severe 

high ankle sprains, as well as reduce the risk of incorrect healing and chronic ankle 

instability. 
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CHAPTER 1. INTRODUCTION 

 

An estimated 2.15 per 1000 persons experiences an ankle injury each year, 

resulting in over 2 million sprains in the United States alone (Waterman et al., 2010). In 

an aged-matched comparison, males 15-24 years old showed higher risk of ankle injury 

when compared to their female counterparts, and women 30 years or older were most at 

risk (Waterman et al., 2010). Injury to the syndesmosis joint specifically has been 

diagnosed in up to 15% of all ankle sprain cases, but in the world of athletics, “high ankle 

sprains” are the most prevalent injury to occur accounting for up to 30% of all athletic 

injuries (Waterman et al., 2011). Collegiate football players are 14 times more 

susceptible to severe syndesmotic ankle injury than any other athlete involved in a 

contact sport (Hunt et al., 2016). Although the incidence of syndesmotic injury to the 

general population is not overwhelming, it’s alarmingly common occurrence among 

young athletes is cause for concern. Of the ankle injuries due to sporting activity, more 

than half resulted in severe fracture of the bones or rupture of the surrounding ankle 

ligaments (Jensen et al., 1998). Waterman et al. (2011) stated that syndesmotic and 

medial ankle sprains require the most recuperation time and result in life-long 

dysfunction, while Hermans et al. (2010) said that 40% of people suffering from severe 

high ankle sprains report joint instability 6 months after the initial injury. However, there 

exists a general lack of understanding for the unique role that the fibula plays in dynamic 
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weight-bearing tasks to overall syndesmosis joint strength, stability, and mobility. This 

gap in knowledge of fibular articulation and load bearing, lends to the difficulty and 

inaccuracy of properly repairing the joint during surgical fixation. 

A comprehensive understanding of the mechanics and mobility of the 

syndesmosis joint could drastically reduce the risk of misdiagnosing injury, undergoing 

unnecessary surgeries, prolonging time missed from competing or suffering from life-

long complications and discomfort for athletes and young active adults.   

The overarching goal of the work was to develop a baseline understanding of 

healthy syndesmosis articulation to improve current treatment modalities for patients 

suffering from severe high ankle sprains and chronic instability. There are two primary 

objectives that define the scope of this work: 

Objective 1: Identify the six DOF kinematics of the syndesmosis and talocrural joints in 

order to define healthy range of motion (ROM) of the ankle joint.  

Objective 2: Define normal limits of medial and lateral clear space widening between the 

bones to describe healthy bone distraction within the ankle joint complex. 

The following chapters illustrate the organization of this document: Chapter 2  

provides an overview of the published literature describing the kinematics, mechanisms 

of injury, modalities for repair, and the clinical impact of syndesmotic joint health and 

ankle stability.  Chapter 3 presents the six DOF kinematics and ROM of the distal 

tibiofibular and talocrural joints to illustrate healthy joint motion. Chapter 4 presents gap 
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distances between the talus and medial malleolus of the tibia, as well as distances 

between the fibula and lateral tibia to define normal limits of clear space widening in the 

ankle. Chapter 5 summarizes the results of this thesis and additional suggestions for 

future work. 
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CHAPTER 2. THE SYNDESMOSIS & ANKLE JOINT COMPLEX 

 

2.1.  Introduction  

This literature review will describe the anatomy and kinematics of the 

syndesmosis joint, mechanisms of injury, modalities for repair, and its clinical 

significance to overall ankle stability. There is a general lack of information currently 

available on tibiofibular mechanics during dynamic weight-bearing activities, particularly 

in activities similar to those experienced in sports which are the main cause of 

syndesmotic injury. Since past research of the foot has primarily focused on the talocrural 

and subtalar joints, the unique role that the fibula plays in the integrity of the ankle is 

poorly understood. Knowing how the fibula contributes to mobility, stability, and load 

transmission in concert with the tibia and talus could shed a light on better management 

of syndesmotic injuries. 

2.2. Anatomy  

The ankle syndesmosis is located on the distal lower limb between the tibia and 

fibula (Figure 2.1). This joint consists of a fibrous interosseous membrane between the 

bones along with four stabilizing ligaments: the anterior tibiofibular ligament (AITFL), 

posterior tibiofibular ligament (PITFL), transverse tibiofibular ligament (TTFL), and 
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interosseous ligament (IOL). These structures maintain the integrity of the gap distance 

between the tibia and fibula bones and allow only slight movements between the two 

bones. In a cadaveric study, Williams et al. (2014) quantified the characteristics of each 

syndesmotic ligament showing that: the superficial bands of the AITFL averaged 7.8 mm 

in length spanning from the tibial plafond to the anteromedial malleolus of the fibula, and 

that the PITFL originates on the medial edge of the fibular peroneal groove spanning 

approximately 11.6 mm to the posterolateral tubercle of the tibia. Both of these ligaments 

are known for their trapezoidal shape and provide a majority of the strength needed in the 

syndesmosis. The IOL originates at the distal end of the interosseous membrane just 

above the talocrural joint line and has a length ranging from 6.3-7.2 mm (Williams et al., 

2014). The fibers of the IOL traverse distolaterally between the medial fibula and lateral 

tibia acting to restrict superior translation of the talus into the distal syndesmosis. The 

deep fibers of the TTFL lie inferior to the PITFL and insert on the distal posterior ridge 

of the fibular malleolus. This ligament acts to restrain posterior translation of the talus. 

The deltoid ligament, although not considered a part of the syndesmosis joint 

architecture, prevents excessive lateral excursion of the talus and contributes significantly 

to the structural support of the ankle joint. The stability of the ankle joint is highly 

dependent on not only these surrounding tissues, but also the distinct osseous relationship 

between the distal bones (Hunt et al., 2015b). 
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Figure 2.1. Anatomy of the distal tibiofibular syndesmosis joint: (a) anterior and (b) 

posterior views (Norkus and Floyd, 2001). 

 

The unique anatomical geometry of the distal tibia and fibula are such that the 

bones align perfectly with one another creating a secure fit and limited range of motion 

within the joint (Figure 2.2). The convex medial surface of the distal fibula sits within the 

concave lateral surface of the tibia between its anteriorlateral (Chaput’s tubercle) and 

posterolateral (Volkmann’s tubercle) aspects.  The incisura fibularis of the tibia forms the 

apex of this pocket and has varying depths between 1-7.5 mm (Rammelt et al., 2008). 

The shallowness of the incisura has been thought to influence the risk of repeated severe 

syndesmotic injuries, where a flatter incisure has a potentially higher predisposition of 

fibular dislocation outside of the tibial pocket causing ankle sprains (Sora et al., 2004). 

Women have been shown to have flatter incisura than men (Yildirim et al., 2003). The 

synovial recess of the distal joint encompasses multiple articulating surfaces between the 

tibia and fibula. These areas of bone that come into direct contact are covered in hyaline 
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cartilage approximately 0.5-1.0 mm thick (Hermans et al., 2010). The facets of cartilage 

are found on the most anterior ridge of the tibia and fibula, but are not always necessarily 

present in the foot anatomy (Bartonicek, 2003). Surgeons use these easily identifiable 

landmarks of the bones to aid in their proper alignment while placing fixation devices. 

Thus, having a clear understanding of the bone geometries and their influence on the 

articulation of the joint is crucial for accurate repair of syndesmotic injuries. As stated by 

Williams et al. (2014), familiarity of the boney prominences can “optimize current 

surgical fixation techniques, improve anatomic restoration, and reduce the risk of 

iatrogenic injury from malreduction or misplaced implants.”  

 

Figure 2.2. The boney anatomy of the distal tibiofibular syndesmosis with the foot in a 

neutral position. An anterolateral view of osseous contact areas and ligament footprints 

(Williams et al., 2014). 
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2.3. Injury  

In contact sports such as football, soccer, basketball, or lacrosse, rapid and high-

impact motions place large shear stresses on the ankle joint, causing the mortise to widen 

and become at risk for tearing ligaments, distraction of the bones or even fracture. 

Typically, damage to the syndesmosis occurs with excessive supination-eversion, 

external rotation, and dorsiflexion of the foot (Bauer et al., 1985; Michelsen et al., 1996). 

In this case, when the foot is flexed and subjected to an external torque, the wider anterior 

portion of the talus pushes the fibula laterally, externally rotating it, and separating from 

the tibia. The AITFL is the first ligament to rupture due to this excessive fibular rotation. 

Commonly, an athlete will plant their foot in a slightly externally rotated  position to 

perform a cutting motion, then after colliding with another player, fall forward to 

dorsiflex and further externally rotate the foot, leading to injury of the syndesmosis joint 

(Nussbaum et al., 2001). Skiers and hockey players run the risk of syndesmotic rupture 

from catching a toe edge and powerfully jerking their foot outward in external rotation. 

Other mechanisms of injury include any sort of extreme weight-bearing motion such as 

plantarflexion, inversion, or twisting that places the ligaments of the ankle under 

maximum tension (Thormeyer et al., 2012). To further understand the mechanisms of 

syndesmotic injury, researchers have aimed to describe the mechanical properties of the 

stabilizing ligaments and biomechanics of the ankle joint. 

Several cadaveric studies have been performed in an attempt to identify ligament 

behavior during different loading conditions and their correlation to injury. In a study 
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performed by Xenos et al. (1995), it was found that increased diastasis and rotation of the 

fibula was directly related to the degree of ligamentous injury present. After complete 

rupture of the AITFL, IOL, and PITFL, a 7.3 mm and 10.2 degree change from an 

unloaded to loaded state was observed (Xenos et al., 1995). This work also highlighted a 

slight widening of the ankle mortise and posterior excursion of the fibula. Similarly, Hunt 

et al. (2015) observed a posterior shift of the fibula, but no widening of the syndesmosis 

after loading a cadaveric limb under 700N compression and 20 Nm torque while 

sequentially dissecting the ligaments simulating increasing severities of ankle injury. In a 

quantitative analysis of each ligament’s contribution to overall ankle stability, Ogilvie-

Harris et al. (1994) determined that the AITFL provides most resistance to lateral joint 

diastasis (35%), then the PITFL (33%), followed by the IOL (22%) when subjected to 

cyclic lateral loading conditions. Clanton et al. (2017) performed a study in which 

sequential sectioning of the individual syndesmotic ligaments showed the AITFL 

providing the highest resistance to external rotation and posterior translation of the fibula, 

while the PITFL predominantly resisted internal rotation. It was also noted that resistance 

to external rotation drastically decreased after each additional ligament was cut (Clanton 

et al., 2017). Hunt et al.'s (2015) work simulating progressive injury also illustrated a 

significant increase in tibiotalar contact pressure that could help explain the lingering 

discomfort and change in ankle biomechanics associated with moderate to severe injuries. 

Ankle injuries are graded into three types (A, B, and C) according to the Danis-

Weber classification system or into class I, II, III as damage and instability increases. 

Weber types B and C (or class II and III) describe the degree of syndesmotic injury to the 
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joint in which 14-47% of all injuries classified as Weber C include ankle fracture 

(Hughes et al., 1979). In addition to a fibular break, Weber C injuries consist of complete 

rupture of the syndesmosis, widening of the intermalleolar space with a lateral shift of the 

talus due to tearing of the deltoid ligament, fracture of the medial malleolus, and inherent 

instability at the joint (Peter et al., 1994). When displacement of the lateral malleolus is 

greater than 5mm or there exists a tibiofibular clear space of 6mm or greater, open 

reduction and internal fixation (ORIF) is required (Metzler and Johnson, 2013).  

When diagnosing syndesmotic injury, clinicians may ask patients to perform 

maneuvers such as a toe-rise, walking, or a single-leg hop to assess functional disability. 

Provocative tests such as the squeeze, external rotation, Cotton, fibular translation, or 

cross-leg are also commonly used to evaluate pain and the integrity of the syndesmosis 

(Hunt et al., 2015). A positive indication of syndesmotic rupture during a squeeze test, for 

example, is distal pain of the limb as the tibia is compressed with the fibula at mid-calf 

level. The external rotation test has been reported to be the most reliable clinical measure, 

having the lowest rate of false positives and inter-tester variability. A positive test for this 

is indicated by localized syndesmotic and medial pain when the foot is forced into a 

dorsiflexed position and externally rotated. Localized swelling on the anterior 

syndesmosis is another notable measure of injury.   

In an attempt to standardized a procedure to classify the severity of syndesmotic 

injury, Nussbaum et al. (2001) stated that the length of tenderness present along the 

interosseous membrane was significantly correlated to the number of days missed from 
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competition for their cohort of 60 collegiate athletes with acute ankle sprains. The 

management protocol described by this work consists of three phases of treatment which 

ends once the athlete can successfully complete 15 single-leg hops and passes functional 

testing. Functional disability, defined as the inability to perform 10 single-leg hops 

without gross pain also helps identify potential damage to the primary stabilizing AITFL 

(Nussbaum et al., 2001). According to Nussbaum et al. (2001), the four criteria to be used 

for accurately diagnosing syndesmotic damage includes: the length of interosseous 

membrane tenderness, functional disability, the external rotation test, and palpable 

tenderness of the AITFL. Although useful for classifying minor high ankle sprains, the 

need for a consistent diagnostic and rehabilitation protocol for more severe class II and 

class III cases continues to be a pressing issue. Moderate class II sprains prove to be the 

most difficult to identify and properly gauge the necessity for surgical stabilization. As 

stated by Williams et al. (2014), none of the tests previously mentioned clearly indicate 

the need for surgical fixation, which only becomes apparent in the case of class III 

injuries where frank diastasis of the bones is easily diagnosed via x-ray, magnetic 

resonance imaging (MRI), or computed tomography (CT). Radiographic measurements 

of a tibiofibular (syndesmosis) clear space >6mm or a medial clear space >4mm are 

indicative of severe ankle injury and need for surgical fixation (Hunt et al., 2015) (Figure 

2.3). The medial clear space is defined as the distance between the medial talar dome and 

lateral face of the medial malleolus. Stress films indicating diastasis of greater than 2mm 

when compared to the un-injured limb provide additional clues for inherent severe 

syndesmotic instability requiring internal fixation (Rammelt et al., 2008).  
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Figure 2.3. Radiographic measurements of tibiofibular and medial clear space (Wuest, 

1997). 

 

2.4. Repair 

Implantation of rigid screws is the standard method for surgical fixation, although 

new dynamic fixation techniques are thought to allow for more natural and beneficial 

motion of the syndesmosis during healing.  

2.4.1. Screw Fixation  

Depending on the degree of injury and syndesmotic instability, surgical 

reattachment of the ligaments or realignment of the bones using implantable fixation 

devices may be necessary. Open reduction internal screw fixation is the most common 

method for repairing the distal tibiofibular syndesmosis (Figure 2.4). Even so, every 
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repair is variable in terms of the number and size of screws to use, location and 

orientation of their placement, amount of bone cortices to include, and post-operative 

care (Hunt et al., 2015). Screws are aligned parallel to the line of the mortise joint, 2-5 

cm proximal to that line, and oriented anteriorly (Hunt et al., 2015). Cortical screw sizes 

used for repair are either 3.5mm or 4.5mm in diameter (Figure 2.5). Some argue that 

patients of a larger stature should be fitted with 4.5mm screws to reduce the risk breaking 

and provide more fixation strength, but there has been no evidence showing a 

biomechanical advantage of the larger screw size over the smaller (Thompson and 

Gesink, 2000). Hansen et al. (2006) suggested that 4.5mm screws provide greater 

protection against shear stress than 3.5mm screws. Screw size and the number of cortices 

incorporated during fixation were also found to have little influence on the mechanical 

strength or stability of the distal joint when subjected to loading (Markolf et al., 2013). 

Huber et al. (2012) also found this limited effect, but additionally concluded that the use 

of two quadricortical screws provided stronger fixation than a single quadri- or tricortical 

screw. Since this method inhibits normal physiological range in motion of the ankle, 

removal of the screws prior to weight-bearing or gait activities is recommended. Additive 

risks, such as infection, broken hardware, or joint diastasis, are inherent with routine 

screw removal, and have been reported to be up to 22.4% (Schepers et al., 2011). 

However, there are new dynamic fixation devices emerging that are thought to allow 

more natural motion in the joint during healing and eliminate the risks associated with 

additional surgeries for syndesmotic screw removal. 
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Figure 2.4. Proper alignment of cortical screws (Thormeyer et al., 2012). 

 

 

Figure 2.5. Varying approaches of internal screw fixation of the distal tibiofibular 

syndesmosis (Peter et al., 1994). 
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2.4.2. Dynamic Fixation 

Due to the normal physiological motion of the syndesmosis joint, leaving rigid 

screws in place permanently can increase post-operative risks such as loosening or 

fracture of the hardware, stiffness of the ankle, and long-term discomfort. New 

alternative fixation devices using a suture-button system, have recently been designed 

and adopted to allow for  more natural movement of the joint, while still resisting harmful 

distraction between the bones and eliminating the need for post-operative removal (Hunt 

et al., 2015) (Figure 2.6). This is believed to provide clinical benefits over the rigid 

fixation, but there is no universal consensus on which approach is superior.  

 

Figure 2.6. Arthrex Knotless Tightrope dynamic fixation device (Arthrex Inc., Naples, 

FL). 
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 The Arthrex Tightrope system (Figure 2.6) stabilizes the distal tibia and fibula 

with a strong #5 UHMWPE suture tensioned between two metallic buttons, to closely 

mimic the natural articulation of the joint. The buttons are secured atop the outer tibial 

cortex and a fibular plate. The tautness of the suture between the buttons mimics a 

tightrope wire and replicates the mechanical stability that would naturally be provided by 

the surrounding syndesmotic ligaments (Thornes et al., 2005). This dynamic device has 

been shown to produce equivalent strength in resisting joint diastasis when compared to 

screw implantation. In a cadaveric study performed by Thornes et al. (2003), there were 

no significant differences in mean failure rates between screw or suture-button devices 

when the foot was subjected to an externally rotating torque. It was also concluded that 

suture-buttons performed more consistently under the loading conditions, indicating 

reliability in cortical anchoring of the buttons. Others claimed that dynamic fixation is 

easier to implement, thus improving the accuracy of bone reduction and reducing the risk 

of malalignment (Naqvi et al., 2009). The simple and less invasive approach for 

implanting suture-button devices promotes earlier weight-bearing and a faster recovery 

time when compared to screw fixation. It has been shown that suture-button patients 

require an average of 2.8 months to return to normal work activities, while those with 

screw implants took 4.6 months to fully recover (Thornes et al., 2005). New knotless 

designs may also reduce the risk of skin and wound complications that  have been 

associated with subcutaneous knots or screw implants  (Hunt et al., 2015). Adequate 

information regarding the optimal placement and orientation of the dynamic device is still 

needed. 
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Alternative repair methods such as using both a screw and suture-button have 

been suggested (Figure 2.7). In this case, a rigid screw is initially implanted to stabilize 

the joint along with a proximal suture-button. After proper bone reduction has taken 

place, the screw is removed and replaced with a second suture-button. Although there 

lacks sufficient data describing the effectiveness of this approach, Hunt et al. (2015) 

recommended this technique for athletes weighing more than 250lbs requiring an early 

return to their high-impact sport. 

 

Figure 2.7. Collegiate football player treated with (a) screw and suture-button, then later 

(b) replaced the screw with a second suture-button (Hunt et al., 2015). 

 

Accurately and properly fixing the bones during syndesmotic repair can be 

difficult. Malreduction and poor alignment of the tibia or fibula can lead to improper 
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healing and long-term dysfunction including tibiofibular diastasis, instability, and 

osteoarthritis (Mukhopadhyay et al., 2011). Current implantable devices aim to restrict 

the motions known to cause syndesmotic injury, primarily lateral dislocation and rotation 

of the fibula relative to the tibia. Limiting distraction of the fibula, as well as not over 

compressing the joint poses some difficulties for surgeons when implanting screws. 

Clinicians also aim to maintain the foot in a neutral position during fixation such that the 

fibula rests in its natural anatomical alignment within the incisura fibularis of the tibia. 

Immobilization and non-weight bearing of the foot are required for up to 6 weeks post-

repair. Rehabilitation should focus on gradual weight bearing, strengthening, as well as 

restoring maximum ROM and stability of the ankle. Press et al. (2009) also 

recommended proprioceptive tests, balance exercises, and practicing specific sport-

related maneuvers as important components to rehabilitation and injury management. 

2.5. Biomechanics of the Ankle Joint Complex (AJC) 

There is limited research highlighting the unique role that the fibula plays in the 

mechanics of the ankle during rapid high-loading maneuvers. Knowing how the 

ligamentous and osseous structures of the fibula work in concert with the tibia and talus 

in ankle biomechanics could shed a light on better management of syndesmotic injuries 

in athletics. 

Motivation for better understanding ankle stability first ignited when Ramsey and 

Hamilton (1976) published results indicating that just 1-mm of lateral talus translation 

reduced tibiotalar contact area by an astounding 42%. Additionally, it was noted that as 
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the talus moved incrementally farther the tibiotalar contact area continued to decrease. 

Areas of bone in direct contact become exposed to higher stresses and contact pressure. 

Reducing the total base of support in the ankle reduces overall stability. These findings 

were indicative of how even the slightest bone displacement could have a powerful 

influence on ankle kinematics, joint kinetics, and whole-body balance. This research also 

brought clinical awareness to Weber B (class II) injuries involving an intact deltoid 

ligament. As long as the deltoid ligament continues to provide stability at the joint and 

prevent the talus from migrating, surgical intervention with this type of injury may be 

unnecessary. These conclusions encouraged a wave of investigations into ankle injuries, 

calling into question when invasive surgery becomes a necessity for proper recovery or 

when it needlessly extends recovery time for patients who may heal with simple bracing.  

Building upon Ramsey and Hamilton’s work on talar contact pressure and 

excursion due to injury, several other studies have been performed to better understand 

the effects of syndesmotic injuries and repairs on talar articulation, ankle biomechanics, 

and overall joint health. Michelsen et al., (1996) performed a cadaveric study to first 

identify healthy intact ankle range of motion (ROM) for the talus, then illustrate the 

changes in talar articulation after injury of the deltoid ligament. Mean values of 1.9 ± 

4.12 degrees and 7.2 ± 3.88 degrees internal and external rotation were defined for the 

talus when the foot was passively moved from maximum dorsiflexion through maximum 

plantarflexion (Michelsen et al., 1996). Once the deltoid ligament was compromised, the 

talus dislocated significantly during plantarflexion and showed significantly increased 

ER. Further injury by fibular osteotomy and repair with a talocalcaneal screw illustrated 
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no other significant effects on ankle kinematics. There were also no significant changes 

noted in varus (inversion) or valgus (eversion) angulation with any combination of 

ligament resection or fibular osteotomy. This work further supported the belief that the 

primary source of ankle stability came from an intact deltoid ligament in which the talus 

is unable to displace and rotate excessively (Michelsen et al., 1996). Additionally, the 

data suggested that lateral reconstruction of the fibula in a complete ankle injury partially 

restored the mechanical integrity of the joint; indicating that class II injuries involving an 

intact deltoid ligament are still stable and justifies non-operative treatment of fibular 

malleolus fractures. Since the talus directly articulates with the distal tibia and fibula, 

understanding the biomechanics of the syndesmosis joint could better explain overall 

ankle motion.  

The ligamentous tissues surrounding the syndesmosis are the primary sources of 

structural support for the joint. Previous literature has identified the mechanical role of 

the ligaments when intact. In a neutral static stance, the ankle experiences minimal shear 

stresses that are typically caused by quick twisting of the body. Therefore, the ligaments 

stabilizing the syndesmosis are minimally tensioned in this static pose. During dynamic 

weight-bearing tasks, the ankle is subjected to forces up to 6 times body weight and these 

ligamentous tissues provide the structural support and elasticity needed to withstand such 

conditions (Thormeyer et al., 2012). For example, the AITFL experiences maximum 

tension during plantarflexion whereas the PITFL is maximally tensioned during 

dorsiflexion,  both maintaining the integrity of the mortise joint formed between the tibia, 

fibula, and  talus (Rammelt et al., 2008). The IOL provides most of the mechanical 
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elasticity to the distal joint by buffering and distributing the forces experienced during 

high impact landings. 

There have been several studies conducted to identify the structural function of 

the fibula during weight bearing, as well as the resulting changes in load acceptance and 

joint articulation due to injury. Beumer et al. (2003) found no universal kinematic pattern 

of the fibula with respect to the tibia when comparing non-weight bearing to weight 

bearing neutral poses, as well as little and variable superior/inferior dislocations. In a 

biomechanical analysis to define the normal range of motion of the intact syndesmosis 

when subjected to a 750N axial load and 15 degrees of external rotation, Clanton et al. 

(2017) revealed that the fibula externally rotates 2.8 degrees and posteriorly translates 

2.6mm. When the torque was reversed to cause internal rotation of the foot, the fibula 

internally rotated 1.5 degrees and shifted anteriorly 0.7mm. Similarly, Beumer et al. 

(2003) found that external rotation of the ankle caused  posterior fibular translation of 1-

3.1mm and external rotation of 2-5 degrees. In a maximal dorsiflexed position, 

distraction from the tibia ranges from 1-1.5mm and fibular external rotation approximates 

2 degrees (Close, 1956; Peter et al., 1994). During a full gait cycle, the distal fibula has 

been shown to translate inferiorly 2.4mm and anteroposteriorly 0.2-0.4mm (Rammelt et 

al., 2008). In a different study, the fibula was found to account for approximately 6.4-

7.12% of the load transmitted while in the neutral position and reached maximal load 

bearing in a fully dorsiflexed and everted position (Goh et al., 1992). Resection of the 

fibula followed by rigid screw fixation decreased load transmission to just 1.71-5.14%, 

highlighting one of the major shortcomings of this surgical technique. Ogilvie-Harris et 
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al. (1994) reported a peak lateral displacement of 2mm for an intact syndesmosis under a 

cyclic 87N lateral force was applied. Complete tearing of the syndesmosis indicated 

diastasis of up to 7.3mm  (Xenos et al., 1995). Although small, these dynamic motions of 

the fibula relative to the tibia are what give the syndesmosis joint the elasticity and 

structural integrity it needs to support ankle motion and torque production. Some claim 

that the unique muscle characteristics and anatomical variability among people leads to a 

wide range in fibular articulation during weight bearing, which has made defining a 

common kinematic pattern for the micro motions of the syndesmosis joint very difficult 

(Beumer et al., 2003). Unfortunately, measurement of in-vivo ankle joint motion has 

proven to be tough and imprecise with traditional motion capture and radiography 

methods because articulation is typically very small and dynamic. These challenges have 

explained the slow progression of research in the field, although new imaging technology 

has recently encouraged a wave of accurate in-vivo bone tracking measures. 

The use of fluoroscopy to track bone motion gave way into in-vivo analysis of the 

6 DOF kinematics of the healthy ankle joint complex (AJC). De Asla et al. (2006) used 

dual plane fluoroscopy and MRI to image 5 healthy ankles in 4 non-weight bearing poses 

reflecting maximum  passive range of motion in the sagittal and frontal planes. 

Additionally,  De Asla et al. (2006) captured 3 weight bearing poses meant to simulate  

heel-strike, mid-stance, and toe-off phases of gait. The data illustrated the individual 

contribution of the subtalar and talocrural joints to in-vivo ankle motion, suggesting that 

the talocrural joint is primarily responsible for plantar/dorsiflexion while the subtalar 

joint provides in/eversion and internal/external rotational motions. Other studies using 
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dual plane fluoroscopy have focused on measuring the individual joint kinematics of the 

tibiotalar (talocrural) and subtalar joints during dynamic tasks such as slow or fast 

walking, and balanced single-leg calf raise. Roach et al. (2016) established that the 

talocrural joint was mostly responsible for allowing dorsiflexion and plantarflexion 

(DF/PF) of the hindfoot, whereas the subtalar joint primarily contributed to 

inversion/eversion (IV/EV) and internal/external rotations (IR/ER). Slow walking 

illustrated significantly greater anterior/posterior (A/P) excursions of the subtalar joint 

than the talocrural joint, while heel-rise showed significant differences in DF/PF and 

IV/EV ranges of motion between the joints (Roach et al., 2016). Again, notable variation 

in joint angles and ROM across subjects was observed and hypothesized to be the result 

of subject-specific bone geometry and muscle activation. Despite the growing use of in-

vivo ankle research using dual-plane fluoroscopy, most studies have solely focused on 

the subtalar and talocrural joints (Figure 2.7). Additionally, the weight-bearing tasks 

captured in these previous studies do not entirely represent of the rapid and high-impact 

activities performed by athletes, nor the extreme motions known to cause syndesmotic 

injury. The sub-millimeter and sub-degree accuracy of dual-plane fluoroscopy provides a 

means to accurate measure dynamic micro motions of the syndesmosis joint while 

performing forceful and quick movements.  

To date, very limited data have been published using bi-plane fluoroscopy to 

measure three-dimensional motion of the distal tibiofibular syndesmosis. Wang et al., 

(2015) used dual fluoroscopy to quantify normal range of motion of the joint during the 

stance phase of slow walking. The study demonstrated that IR/ER and S/I degrees of 
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freedom showed the most ROM. There was 1.69 degrees of dorsiflexion, 3.61 degrees 

eversion, and 3.95 degrees external rotation about the tibia from heel strike to mid-stance, 

whereas 1.04 degrees of plantarflexion, 4.95 degrees inversion, and 5.13 degrees internal 

rotation occurred from mid-stance to heel-off (Wang et al., 2015). Measurement during 

stance phase also demonstrated 2.63mm medial/lateral, 3.86 mm anterior/posterior, and 

4.12 mm superior/inferior translations. As demonstrated by the study, fluoroscopy offers 

accurate and effective means for non-invasive measurement of the tibiofibular 

articulation during dynamic weight bearing activities. Application of this technology to 

capture fast and demanding motions, such as those seen in sports, would provide a more 

physiological representation of syndesmotic kinematics leading to potential injury. 

 

Figure 2.8. Reproduction of in-vivo AJC positions using dual plane fluoroscopy (de Asla 

et al., 2006). 
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CHAPTER 3. SIX DEGREES OF FREEDOM KINEMATICS OF THE HEALTHY 

ANKLE SYNDESMOSIS JOINT 

 

3.1. Introduction 

An estimated 2.15 per 1000 persons experiences an ankle injury each year, 

resulting in over 2 million sprains in the United States alone (Waterman et al., 2010). In 

an aged-matched comparison, males 15-24 years old showed higher risk of ankle injury 

when compared to their female counterparts, while women 30 years or older were at most 

risk (Waterman et al., 2010). Injury to the syndesmosis joint specifically has been 

diagnosed in up to 15% of all ankle sprain cases, but in the world of athletics, “high ankle 

sprains” are the most prevalent injury to occur accounting for up to 30% of all athletic 

injuries (Waterman et al., 2011). Collegiate football players are 14 times more 

susceptible to severe syndesmotic ankle injury than any other athlete involved in a 

contact sport (Hunt et al., 2016). Of the ankle injuries due to sporting activity, more than 

half resulted in severe fracture of the bones or rupture of the surrounding ankle ligaments 

(Jensen et al., 1998). Waterman et al. (2011) stated that syndesmotic and medial ankle 

sprains require the most recuperation time and result in life-long dysfunction, while 

Hermans et al. (2010) said that 40% of people suffering from severe high ankle sprains 

report joint instability 6 months after the initial injury. Although the incidence of 
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syndesmotic injury to the general population is not overwhelming, its alarmingly high 

occurrence rate is a concern for better understanding of the joint and its proper treatment. 

The distal tibiofibular syndesmosis joint consists of a fibrous interosseous 

membrane and four stabilizing ligaments that allow for only slight movements of the 

fibula relative to the tibia. In the case of severe ankle sprains, excessive external rotation 

and dorsiflexion of the foot can cause tearing of these stabilizing ligaments, distraction of 

the bones, or even fracture to the fibula. Unfortunately there exists a gap in knowledge of 

fibular articulation and load bearing, lending to the difficulty in accurately and properly 

repairing the joint during surgical fixation. In addition, clear and consistent metrics for 

evaluation of syndesmotic fixation to optimize rehabilitation and patient satisfaction are 

also lacking.  

A comprehensive understanding of the motion occurring at the syndesmosis joint 

could drastically reduce the risk of misdiagnosing injury, set a gold standard of normal 

range of motion (ROM) for clinicians to aim to recover during rehabilitation, prevent 

prolonged time missed from leisure activity or sports competition, and limit life-long 

complications and discomfort for athletes and young active adults. Additionally, gaining 

insight on joint biomechanics could define baseline measures for more physiological 

loading conditions in cadaveric testing of current rigid and dynamic devices or serve as 

design parameters for new fixation devices.   

The overall goal of the work was to provide a descriptive analysis of healthy 

syndesmosis articulation by identifying six DOF kinematics of the syndesmosis and 
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talocrural joints and defining healthy range of motion (ROM) of the ankle joint. These 

data may improve diagnosis and treatment severe high ankle sprains.  

3.2. Methods 

3.2.1. Participants 

Six volunteers (Table 3.1) with no prior history of lower limb injury were 

recruited locally and provided consent, in full accordance with the University of Denver 

Institutional Review Board, to participate in the study. The average anthropometric data 

for all participants were 29.3 ± 2.5 years, 174.3 ± 6.9 cm height, 158.1 ± 24.4 lbs body 

weight, 23.3 ± 3.8 kg/m
2
 body mass index (BMI ). All subjects fell within a normal 

healthy BMI range and reported leading active lifestyles of regular moderate-level 

exercise (Table 3.1). Measurements of foot length, width, and height of various boney 

landmarks were taken of the dominant foot using a goniometer and according to McPoil 

et al.’s (2005 & 2013) methodologies. These values were used to describe the 

longitudinal arch angle (LAA) of each participant for the purpose of classifying foot 

structure and type: pronated, neutral, or supinated (McPoil and Cornwall, 2005). The 

average LAA measured was 152.0 ± 9.9 degrees.  

Table 3. 1. Participant anthropometric data. 
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Figure 3. 1. Measurement of longitudinal arch angle (Mcpoil et al., 2013). 

 

3.2.2. Experimental Protocol 

At the University of Denver’s Human Dynamics Laboratory (HDL), participants 

were asked to perform four dynamic weight-bearing activities similar to movements seen 

in collision sports such as football, soccer, or lacrosse. All of these dynamic motions 

were weight-bearing and performed on a single-leg: heel rise (calf raise), squat, torso 

twist, and box jump. Additionally, participants posed in a non-weight bearing and 

weight-bearing neutral stance, maximum plantarflexion, and maximum dorsiflexion. 

These activities were chosen to stress the syndesmosis similarly to what occurs in 

competitive sport high ankle sprain injuries and closely correlate to clinical tests used to 

diagnose syndesmotic instability.  
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3.2.3. Instrumentation 

All volunteers were instrumented with 29 reflective markers along their dominant 

leg in order to record the 3D spatial motions of the foot, limb, and pelvis segments via 8 

Vicon T-Series near-infrared cameras surrounding the lab space (Vicon, Centennial, CO). 

A modified oxford-foot model was used to place 14 of these reflective markers 

solely on the foot (Figure 3.2). Four floor-embedded force plates collected ground 

reaction force data in sync with the optical motion capture system (Bertec, Columbus, 

OH). 

 

Figure 3. 2. Modified Oxford model for Vicon marker placement (Stebbins et al., 2006). 
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In addition to 3D motion capture and bi-plane fluoroscopy, 9 electromyography 

(EMG) surface electrodes were placed over the primary stabilizing, flexor, and extensor 

muscles of the lower limb in order to measure changes in muscle activation (Figure 3.3).  

 

Figure 3. 3. EMG placement on lower limb muscles. 

 

Past work in the Human Dynamics Laboratory at the University of Denver has 

shown that the use of a dual-plane high-speed stereo radiography (HSSR) enables 

accurate 3-dimensional measurement of bone motion during dynamic activities to sub-

millimeter and sub-degree accuracy (Ivester et al., 2015). Rotational and translational 

errors associated with the system measurements include 0.4 ± 0.3 degrees and 0.2 ± 

0.1mm (Ivester et al., 2015). This image acquisition technique has previously been 

performed to measure knee kinematics during gait, step-down, and seated knee extension 

tasks (Kefala et al., 2017). The system consists of two high-definition (1080x1080) high-
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speed digital cameras and two opposing 16-inch image intensifiers (Figure 3.4). The 

gantries housing the x-ray emitters and image-intensifiers were positioned 65 degrees 

relative to one another in order to capture slightly off-sagittal views of the foot. All 

activities were captured at a frame rate of 50fps excluding the box jump, which was 

captured at an increased frequency of 100fps. Pulsed radiography settings were fixed at 

75kV, 100mA, with a pulse width of 1250μs. In this setting, x-ray was only released at 

the moment of image capture to significantly reduce unnecessary exposure to radiation 

(Kefala et al., 2017).  

 

Figure 3. 4. HSSR configuration and capture volume (Ivester et al., 2015). 

 

Undistortion and calibration of the raw fluoroscopy images was done using a 

custom built radio opaque mesh and calibration cube of known dimensions (Ivester et al., 
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2015; Kefala et al., 2017). Open-source software was then used to adjust the relative 

positioning and orientation of the subject’s talus, fibula, and tibial bones, reconstructed 

from CT, to the images using direct linear transformation (DLT) algorithms (XROMM, 

Brown University, RI). Each volunteer had computed tomography (CT) scans taken from 

the base of their neutral foot up proximally 10cm from the ankle joint. One millimeter 

thick CT slices of the bone were used to reconstruct 3-dimensional subject-specific 

geometries of the tibia, fibula, and talus (ScanIP, Simpleware Inc.). Tracking bone 

motion was done via a 3D/2D image overlay matching process of the reconstructed bone 

to the fluoroscopic x-ray images in order to quantify translations and rotations at each 

pose (Autoscoper, Brown University). Acquiring HSSR imaging in synchrony with 

whole-body measurements (e.g. 3D motion capture and electromyography) establishes a 

connection between joint-level and whole-body biomechanics. 

 

Figure 3. 5. Single-leg torso twist activity showing off-sagittal alignment of the foot with 

respect to the HSSR (a) image intensifiers. Also pictured: (b) Vicon cameras and (c) 

floor-embedded force plates. 
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Figure 3. 6. Dual plane high-speed stereo radiography images of a foot in the static 

weight-bearing poses: (a) neutral, (b) dorsiflexion, (c) plantar flexion. 
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Figure 3. 7. Sequence of HSSR images showing single-leg: (a) heel rise and (b) squat 

exercises. 
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Figure 3. 8. Various phases of the box jump activity: (a) flight, (b) toe-strike, (c) heel 

strike, (d) stabilization. 
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3.2.4. Post Processing 

Prior to bone tracking and kinematic analysis, local coordinate systems (LCS) 

built directly from easily identifiable landmarks of the bone were created using modified 

methods outlined by Grood and Suntay (1983) and the international society of 

biomechanics (ISB) (2002). All six DOF kinematics of the fibula and talus could be 

calculated relative to the tibia and normalized to each subjects’ non-weight bearing 

neutral pose. Positive translations for the fibula coincide with lateral (L), anterior (A), 

and superior (S) directions. Rotations were deemed positive according to the right-hand 

rule and correlated to forward flexion (FF), inversion (IN), and internal rotation (IR) of 

the distal fibula. Forward and backward flexions were used to describe sagittal plane 

rotation of the distal fibula and differentiate from the common nomenclature of 

dorsiflexion/plantarflexion used to describe whole foot and talocrural joint motions. The 

same positive coordinate system was assigned to the talus, although dorsiflexion and 

plantarflexion (DF/PF) were used to describe sagittal plane motion (Figure 3.9). All other 

annotations for rotation and translation correspond to terminology commonly seen in 

literature. Appendix A provides an in-depth description of each LCS construction. 
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Figure 3. 9. Local coordinate system assignments for the (a) tibia and fibula of the 

syndesmosis and (b) talus and tibia of the talocrural joint. Medial/Lateral = M/L, 

anterior/posterior = A/P, superior/inferior = S/I, forward/backward flexion = FF/BF, 

dorsiflexion/plantarflexion = DF/PF, inversion/eversion = IN/EV, internal/external 

rotation = IR/ER. 

 

3.2.5. Data Analysis 

Three-dimensional translational and rotational motions were expressed relative to 

the positioning of the bones during a non-weight-bearing neutral pose of the foot and 

calculated using methods described by Grood and Suntay (1983). The six DOF 

kinematics and overall range of motion (ROM) within in the joints were dependent 

variables in this case. Small values for these variables were indicative of minimal 

excursion between the bones from their initial non-weight bearing neutral position. 

Articulation of the fibula and talus about the tibia were compared across various time 

points of the dynamic activities. For heel rise and squat, percent completion from the 

initial weight-bearing neutral stance (0% task completion) to the point of maximum 

plantarflexion or dorsiflexion (100% task completion) defined the limits of the activity 
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analyzed. Torso twist was examined at the initial neutral stance, maximum external 

rotation, second neutral pose, and then maximum internal rotation. The box jump activity 

was analyzed at the frames in which the foot was in flight and nearly neutral (Pre), instant 

of initial contact typically seen as a toe strike (TS), heel strike (HS), instant when the 

maximum ground reaction force (GRF) occurs, then immediately after maximum GRF to 

represent a “stabilization” period (Post). Kinematics and ROM were expressed as mean ± 

standard deviation (SD). Statistical analysis showed no gender differences in kinematics 

or ROM values. 

3.3.  Results 

Maximum ground reaction forces were measured throughout all static and 

dynamic tasks. Box jump showed the largest values of GRF at the instant of landing 

(Table 3.2).  

Table 3. 2. Mean maximum ground reaction force components measured from the 

force plates. 

 

3.3.1. Tibiofibular & Talocrural ROM 

Changes in fibular and talar positioning about the tibia relative to their initial non-

weight bearing neutral locations are illustrated in Figure 3.10.  
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(a)   

(b)   

Figure 3. 10. Mean ± SD changes in weight-bearing static poses when compared to non-

weight bearing neutral pose kinematics for (a) syndesmosis and (b) talocrural joints. 
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Table 3.3. Mean ± SD kinematics from static weight-bearing poses for (a) 

syndesmosis (b) talocrural joints. 

(a)   

(b)   

There were no significant differences noted between degrees of freedom across 

static poses for the fibula (P = 0.432) or talus (P = 0.211). In general, static weight 

bearing caused minimal motion of the fibula. The greatest movements were seen in the 

dorsiflexed pose where the fibula externally rotated 1.1 ± 6.3 degrees and translated 

posteriorly 1.8 ± 2.7 mm. The talus showed notable ranges of motion in DF/PF, IR/ER, 

and A/P degrees of freedom. During dorsiflexion, the talus flexed 27.5 ± 8.6 degrees, 

externally rotated 12.1 ± 10.1 degrees, and shifted posteriorly 11.9 ± 3.7 mm. While 

plantarflexed, the talus exhibited 21.9 ± 9.9 degrees of extension, 9.5 ± 11.6 degrees of 

internal rotation, and 8.3 ± 4.7 mm of anterior translation. 

The mean tibiofibular kinematics for each dynamic task are reported in Figure 

3.11.  
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(a)  

(b)  
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(c)  

(d)  

Figure 3. 11. Mean ± SD six DOF kinematics of the distal tibiofibular joint (mean = solid 

black line, individual subjects = grey dashed lines, SD = shaded region). All performed as 

single-leg weight-bearing activities: (a) heel rise, (b) squat, (c) torso twist, and (d) box 
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jump and referenced to a non-weight bearing neutral pose. Phases of box jump analyzed: 

Pre = flight, TS = toe-strike, HS = heel-strike, Max = maximum GRF, Post = 

stabilization. 

During calf raise, the fibula initially rested externally rotated (2.2 ± 6.6 degrees) 

while the foot was in neutral stance, then ended internally rotated (1.9 ± 3.9 degrees) at 

maximum plantarflexion. A slight medial, posterior, and inferior excursion was also 

observed as the foot progressed through heel-rise. Surprisingly, deep squatting did not 

show a distinct opposite pattern in IR/ER when compared to heel-rise and only a minimal 

posterior translation was recorded at maximum dorsiflexion (0.9 ± 2.8 mm). The results 

of torso twist indicated a clear anterior shift of the fibula from neutral to the maximum 

internally rotated point of the upper body (1.4 ± 2.7 mm). Maximal internal rotation of 

the upper body also left the fibula externally rotated (2.1 ± 7.1 degrees) and superior (0.4 

± 0.6 mm) from when the body was positioned neutrally. External rotation of the torso 

did not result in correspondingly large rotational motions, although the fibula was slightly 

internally rotated (0.5 ± 4.1 degrees) and posterior (0.3 ± 0.9 mm). The box jump activity 

provided an interesting span of results since the full task essentially encompassed non-

weight-bearing neutral, plantarflexion, dorsiflexion, and high loading scenarios. In the 

initial phase of the box jump during flight, the fibula was 1.1 ± 8.7 degrees internally 

rotated, 0.9 ± 4.0 mm posterior, and 0.5 ± 1.7 mm lateral. Toe-strike indicated additional 

internal rotation (4.3 ± 5.7 degrees) of the fibula, as well as posterior (0.9 ± 2.3 mm) and 

medial (0.5 ± 1.7 mm) translations. Heel-strike marked a drastic external rotation of the 

fibula and continued through stabilization where it ended oriented only 0.2 ± 5.5 degrees 

internally rotated with respect to the tibia. At the moment when maximum ground 
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reaction force (GRF) occurred, the fibula was jolted anterior and superiorly 

approximately 0.5 and 0.7mm, respectively. The instant after maximum GRF, considered 

the stabilization phase (Post), the fibula maximally externally rotated, and translated 

laterally, posteriorly, and inferiorly. Heel-strike also marked the point in which the fibula 

shifted from medial to lateral translation.  

The average six DOF kinematics of the talus with respect to the tibia are shown in 

Figure 3.12.  

(a)  
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(b)  

(c)  
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(d)  

Figure 3. 12. Mean ± SD six DOF kinematics of the talocrural joint (mean = solid black 

line, individual subjects = grey dashed lines, SD = shaded region). All performed as 

single-leg weight-bearing activities: (a) heel rise, (b) squat, (c) torso twist, and (d) box 

jump and referenced to a non-weight bearing neutral pose. Phases of box jump analyzed: 

Pre = flight, TS = toe-strike, HS = heel-strike, Max = maximum GRF, Post = 

stabilization. 

 

Heel-rise caused distinct plantarflexion, internal rotation, and anterior translation 

of the talus as the task progressed. An opposing trend was then seen during single-leg 

squat: dorsiflexion, external rotation, and posterior translation. Twisting of the torso did 

not demonstrate significant or distinct talar motion when compared to the other dynamic 

activities. As was the case for the fibula, the box jump maneuver illustrated unique 

patterns for talar articulation. Clear plantarflexion, internal rotation, and anterior 

movements were observed from flight to toe-strike phases. Heel-strike through 
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stabilization displayed a rapid opposition in motion to dorsiflexion, external rotation, and 

posterior translation. 

3.3.2. Range of Motion 

Total ranges of motion in the syndesmosis and talocrural joints were defined for 

each dynamic task (Figures 3.13 & 3.14). For this study, range of motion was calculated 

as the difference between maximum and minimum kinematic values reported for a given 

activity. ROM expresses the absolute upper and lower limits of rotational and translation 

changes measured from the non-weight bearing neutral, as well as general positioning of 

the bone relative to the tibia.  

 

Figure 3. 13. Mean ± SD syndesmosis joint ROM for heel rise, squat, torso twist, and 

box jump tasks. 
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Figure 3. 14. Mean ± SD talocrural joint ROM for heel rise, squat, torso twist, and box 

jump tasks. 

 

Table 3. 4. Mean ROM for all dynamic activities for (a) syndesmosis (b) talocrural 

joints.  

(a)  

(b)  

 

For the syndesmosis joint, squatting imposed the least amount of overall 

excursion in the bone causing 0.8 ± 0.2 degrees, 1.0 ± 0.2 degrees, 4.7 ± 2.8 degrees in 

FF/BF, IN/EV, and IR/ER orientations, respectively. Total translational motions were 1.2 
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± 0.6 mm, 2.2 ± 1.2 mm, 2.1 ± 0.8 mm along the M/L, A/P, and S/I planes. Total motions 

for the calf raise showed 1.3 ± 0.3 degrees, 1.7 ± 1.0 degrees, 8.1 ± 3.3 degrees in FF/BF, 

IN/EV, and IR/ER  as well as 1.7 ± 0.9 mm, 2.8 ± 1.4 mm, 1.9 ± 0.8 mm in M/L, A/P, 

and S/I directions, respectively. Torso twist and box jump activities caused the most 

change in IR/ER with 8.8 ± 2.5 degrees and 9.3 ± 3.5 degrees, as well as the greatest 

ranges in A/P showing 3.3 ± 2.2 mm and 3.2 ± 1.0 mm. The box jump activity also 

displayed the largest ranges in motion overall in FF/BF (1.7 ± 0.7 degrees) and S/I (2.5 ± 

0.9 mm).  

As expected, the ROM values measured for the talocrural joint were far greater 

than those for the syndesmosis. Maximum FF/BF were measured for calf raise (34.7 ± 

12.9 degrees), while torso twist showed a mere 6.6 ± 3.9 degree change. Torso twist did 

however exhibit the most ranges in IR/ER (15.0 ± 3.4 degrees) and squat the least (6.5 ± 

3.8 degrees). Calf raise and box jump had slightly less values in IR/ER than torso twist. 

Anterior-posterior ROM were highest for the calf raise exercise (16.3 ± 7.1 mm) and 

minimal during torso twist (3.5 ± 1.5 mm). Generally there were minimal variation and 

similar magnitudes of ROM in IN/EV, M/L, and S/I across all activities. 

3.4. Discussion 

Six DOF kinematic analyses of the syndesmosis and talocrural joints showed vast 

differences in overall bone articulation and highlighted the very small yet highly dynamic 

motions of the fibula during rapid weight-bearing maneuvers.  
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Generally, the kinematics of the fibula measured stereo radiography coincided 

with motions previously collected through cadaveric or other in-vivo testing methods. 

The fibula showed a constant forward flexed and everted orientation with respect to the 

tibia across all activities. This is indicative of its natural and congruent positioning within 

the incisura of the tibia to maintain stability at the joint. Static neutral standing caused 

minimal changes in motion in comparison to the dynamic tasks. In a neutral stance, the 

ankle experiences minimal shear stresses and the ligaments stabilizing the syndesmosis 

are minimally tensioned, thus explaining the lack of bone motion measured. When 

evaluating across all static weight-bearing poses, maximum dorsiflexion induced the 

greatest amount of excursion, which was in external rotation and posterior translation 

directions. This is consistent with the defined mechanism of injury for the syndesmosis 

joint. Dynamic exercises caused the greatest amount of motion in IR/ER, A/P, and S/I 

degrees of freedom especially during torso twist and box jump. This is in agreeance with 

Wang et al.'s, (2015) findings. Shear stresses on the distal joint that cause bone 

distraction are typically the result of quick twisting in the upper body while the foot 

remains planted. The effects of this were particularly apparent with internal rotation of 

the torso because an external rotating moment was applied to the foot causing the distal 

bones to externally rotate as well as translate anterior-superiorly.  
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Figure 3. 15. Visual representation of fibular motion during torso twist. The transparent 

fibula with the black axis represents the fixed non-weighting neutral position. The solid 

bone with red (M/L), green (A/P), blue (S/I) axis represents the new spatial location of 

the fibula relative to the non-weight bearing neutral pose. 

 

The box jump activity showed distinct kinematic patterns in fibular articulation as 

the foot progressed from flight phase to toe-strike (internal rotation, posterior and medial 

translations), then a rapid opposition in motions upon heel-strike to stabilization. The 

moment in which the maximum ground reaction force (GRF) occurs, marks an anterior 

and superior jolt of the fibula. The instance after GRF was considered a stabilization 

phase in which the fibula reaches maximum external rotation, and translates lateral, 

posterior, and inferior. During box jump, the ankle was subjected to forces up to 2.6 

times body weight which is grossly larger than what has been used in any cadaveric 

testing and could explain this “jolting” reaction of the bone. Heel-strike also marks the 
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point in which the fibula transitions from shifting medially to laterally. The values 

presented in this study are similar in magnitude to Wang et al.'s, (2015) dual-plane 

fluoroscopy measurements, although our calculations for IR/ER are higher. This 

discrepancy could be due to the high-demand tasks examined that would exert higher 

forces on the joint as compared to slow walking which was measured by Wang et al., 

(2015).  

The tibiotalar kinematics provided a complimentary insight into the more distal 

responses in bone motion to these high-impact activities. Clear kinematic patterns of 

plantarflexion, internal rotation, and anterior translation were seen during heel-rise, while 

the reverse occurred with squatting. This supports past research indicating that talocrural 

joint is primarily responsible for plantar/dorsiflexion of the hind foot (Figures 3.16 and 

3.17).  

 

Figure 3. 16. Visual representation of talar motion during heel rise: (a) neutral weight 

bearing (0% activity), (b) maximum plantarflexion (100% activity), (c) 0% and 100% 

activity position comparison. The transparent bone with the black axis represents the 

fixed non-weighting neutral position. The solid bone with red (M/L), green (A/P), blue 



 

53 

(S/I) axis represents the new spatial location relative to its non-weight bearing neutral 

pose.  

 

 

Figure 3. 17. Visual representation of talar motion during single-leg squat: (a) neutral 

weight bearing (0% activity), (b) maximum dorsiflexion (100% activity), (c) 0% and 

100% activity position comparison. The transparent bone with the black axis represents 

the fixed non-weighting neutral position. The solid bone with red (M/L), green (A/P), 

blue (S/I) axis represents the new spatial location relative to its non-weight bearing 

neutral pose. 

 

The lack of articulation during the torso twist indicates that the talus acts more of 

a sturdy base of support for the tibia and fibula to directly articulate on. The box jump 

maneuver also illustrated clear unique patterns of talar articulation from flight to toe-

strike phases, then a rapid reversal in motion from heel-strike and through stabilization. 

All activities showed minimal magnitudes or changes in IN/EV kinematics which were 

indicative of the subtalar joint providing a majority of this movement for the hind foot.  

ROM could be used as a metric to illustrate joint laxity along each anatomical 

plane. These measures could potentially optimize medical device design by clearly pin 
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pointing specific degrees of freedom in which large and problematic motions occur 

within the joint that may require more robust constraining. Additional measures were 

defined in this study to be considered as potential tools for quantifying joint laxity: distal 

fibula path length and 3D excursion volume (Figures 3.18 and 3.19). A trajectory of the 

most distal prominence on the fibula was traced as its spatial positioning changed each 

dynamic task, while the sum of the distance travelled by that point defined its total path 

length. The 3D excursion volume combined all subject point trajectories into a single 

point cloud to illustrate total possible space spanned by the distal bone. Point tracing 

provides a map and quantifiable measures for the 3D micro motions of a specific point of 

interest on the bone. Clinically, this could be used to track the movement of the metallic 

buttons or screws implanted for syndesmotic repair. 

 

Figure 3. 18. Point tracing of the most distal prominence on the fibula and calculated 

path length from the traced trajectory (spatial units are in mm). 
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Figure 3. 19. Comparison of excursion point cloud volume for the distal fibula across 

dynamic activities (DS01-DS06 represent all subjects). 

 

3.4.1. Limitations 

Certain limitations should be noted for the study. First, the sample size (n = 6) 

could be considered relatively small compared to other studies with published kinematic 

data. A larger sample size could have provided statistical significance in some measures 

reported, although given time and cost constraints as well as the high accuracy of the 

HSSR system and similar anthropometric data among the subject cohort, it seemed 

unnecessary to expand the healthy participant population. Additionally, internal and 

external rotation proved to be the most variable measure. In order to minimize standard 



 

56 

deviations, tracking was performed by a single person to limit inter-tracker variability. 

The activities reported, such as box jump and torso twisting, have never been measured 

using fluoroscopy. Not having previous data sets to compare the results of these activities 

to heed another limitation to the study, although illustrates the innovation this work 

contributes to healthy baseline data sets. 

3.4.2. Conclusions 

Currently, syndesmosis fixation devices are designed to primarily prevent lateral 

distraction of the fibula. The data presented in this work indicates a potential paradigm 

shift in how implantable devices are designed and that medial-lateral dislocation may be 

a secondary effect to larger alternate motions within the joint such as IR/ER, A/P, and 

S/I. Additionally, notable variation in individual joint angles and ROM across subjects 

was observed and speculated to be the result of distinctive bone geometry and muscle 

activation. Therefore, pairing in-vivo kinematics with EMG data to drive subject-specific 

muscle simulations in open-source software such as OpenSim could better describe 

individual joint kinetics, stability mechanisms such as muscular co-contraction, and the 

biomechanical effects of these implantable medical devices. 
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CHAPTER 4. MEDIAL AND LATERAL CLEAR SPACE OF THE ANKLE JOINT 

 

4.1. Introduction 

In the world of athletics the incidence of lower limb injuries, specifically to the 

ankle and foot, has been growing substantially among collegiate and professional athletes 

resulting in increased time away from practice and competition.  In a study performed by 

Hunt et al. (2016) evaluating the incidence of foot/ankle injuries across 37 collegiate 

sports, it was found that female athletes sustained injury at a substantially higher rate of 

53% compared to an injury rate of 47% for male athletes. This suggests that there may be 

important anatomical, physiological, and functional differences between female and male 

athletes that could contribute to higher biomechanical risk factors for ankle injuries. 

Additionally, lower limb injuries resulting in missed time were far more common in 

sports such women’s soccer, women’s cross-country, women’s gymnastics, and men’s 

cross-country where repetitive jumping or running is present (Hunt et al., 2016).  

Injury to the syndesmotic joint specifically is more commonly referred to as a 

“high ankle sprain”, and is the most prevalent ankle injury to occur among the athletic 

population. Damage to this fibrous joint accounts for up to 30% of all foot/ankle injuries 

reported during sporting activities (Waterman et al., 2011). Typically, harm to the 

syndesmosis occurs in sports such as football, soccer, lacrosse, and hockey where it is 
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common for an athlete to experience rapid and extreme dorsiflexion-external rotations of 

the foot. This mechanism of injury is often seen when a player plants their foot in 

preparation for a cutting maneuver then collides with another player causing them to fall 

forward, as well as in ice skating or skiing when an athlete catches their toe edge and 

their body continues with forward momentum. Many have claimed that in these particular 

sports the incidence of injury rises drastically of upwards to 75% (Nussbaum et al., 2001; 

Wright et al., 2004). Another study concluded that collegiate football players are 14 times 

more susceptible to severe syndesmotic ankle injury than any other athlete involved in a 

contact sport (Hunt et al., 2016).  

Severe syndesmotic sprains have been noted by clinicians as the most difficult 

ankle injury to accurately diagnose and treat, require the most recuperation time, and 

often results in life-long dysfunction (Waterman et al., 2011). Hermans et al. (2010) 

found that 40% of people suffering from severe high ankle sprains report instability 6 

months after their initial injury. Additionally, of all ankle injuries reported during a 

sporting activity, more than half result in severe fracture of the bones or complete rupture 

of the surrounding ligaments (Jensen et al., 1998). When diagnosing syndesmotic injury, 

clinicians may ask patients to perform maneuvers such as a toe-rise, walking, or a series 

of single-leg hops to assess functional disability. Provocative tests such as the squeeze, 

external rotation, Cotton, fibular translation, or cross-leg are also commonly used to 

evaluate pain and integrity of the syndesmosis (Hunt et al., 2015). However, none of 

these tests clearly indicate the need for surgical fixation, which only becomes apparent in 

the case of class III injuries where frank diastasis of the bones is easily diagnosed via x-
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ray, magnetic resonance imaging (MRI), or computed tomography (CT) (Williams et al., 

2014). Radiographic measurements of a tibiofibular (lateral) clear space >6mm or a 

tibiotalar (medial) clear space >4mm are indicative of severe injury and need for surgical 

fixation (Hunt et al., 2015). The clinical measure of medial clear space is defined as the 

distance between the medial talar dome and lateral face of the tibial malleolus. Lateral 

clear space measures the gap within the syndesmosis from the lateral posterior incisura of 

the tibia to the medial border of the fibula taken 1 cm proximal to the joint line. 

Radiographs are taken in mortise and A/P views. Stress films indicating diastasis of 

greater than 2mm when compared to the un-injured limb provide additional clues for 

inherent syndesmotic instability requiring internal fixation (Rammelt et al., 2008). For 

competitive athletes, misdiagnosis or improper treatment of high ankle sprains could 

result in unnecessary surgery for less severe class II injuries, malreduction of the bones 

during surgical fixation, prolonged time missed from competition, or life-long 

complications and discomfort. The alarmingly high occurrence rate of syndesmotic injury 

among young athletes and its inherent risk for chronic disability raises a cause for 

concern to better understand the injury and improve treatment methodologies. 

Healthy six degrees of freedom (DOF) kinematics for the syndesmosis and 

talocrural joints were previously established and used to define normal ROM of the fibula 

and talus relative to the tibia during static weight-bearing and high-impact dynamic 

activities (Chapter 3). This baseline data allowed for further analysis of the medial and 

lateral clear space widening that occurs during these high-stress and sport-like 

maneuvers. Defining limits for healthy joint distraction could potentially improve 
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diagnostic measures of syndesmotic injury and shed light on alternative approaches to 

treatment. 

4.2. Methods 

Chapter 3 of this document describes in detail how high-speed stereo radiography 

(HSSR) was used to capture in-vivo motion of the distal tibia, fibula, and talus with sub-

millimeter and sub-degree accuracy. Participant information, experimental protocol, and 

all instrumentation used previously in chapter 3 remained the same. 

Calculations of the medial and lateral clear space distances were done via a 

custom MATLAB code. First, subject-specific bone geometries were converted into a 

point cloud which then had tracking data applied to drive the spatial change of the bone 

throughout the activity. The tibial point cloud was sectioned (Figure 4.1) such that only 

the medial malleolus and some of the distal plafond were used for calculating tibiotalar 

clear space, whereas the full distal tibia point cloud was used for lateral clear space 

calculations. Fifty centimeters of the distal fibula point cloud was extracted in order to 

focus clear space calculations solely on the syndesmotic portion of the bone. No 

sectioning of the talus was necessary since the medial malleolus had already been 

separated. Minimum distances were then calculated from one object (fibula or talus) 

point cloud to the nearest neighbor’s point cloud defining the second object (tibia). This 

brute-force method returned gap distance values between the tibia-fibula and tibia-talar 

faces for every point-point combination in the bone cloud geometry. Sectioning of the 

bone not only defined the distinct medial and lateral clear space windows to be measured, 
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but also drastically decreased computational time. A nearest neighbor path was drawn 

between the bones to illustrate the exact location of the minimum gap distance (Figure 

4.2). A contour plot displaying all clear space distances <5mm were mapped along the 

fibula and talus geometries to visually illustrate changes in anatomical spacing between 

the bones (Figure 4.2). 

 

 Figure 4. 1. (a) Bone sectioning and (b) point cloud extraction for lateral and medial 

clear space measurements. Blue points indicate original bone, while red points are the 

sectioned bone to be used for the point cloud. 
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Figure 4. 2. Anatomical contour plot of bone spacing and identification of minimum (a) 

lateral and (b) medial clear spaces, as indicated by the black line connecting the bones. 

 

4.2.1. Data Analysis 

All data were expressed in terms relative to the positioning of the bones during a 

non-weight bearing neutral pose of the foot. Small values in clear space indicate a 

minimal gap distance between the bones. The scaling for the contour plots range from 0-5 

mm of clear space distances. Since these are healthy subjects, it was anticipated that 

values would not exceed 5mm that would otherwise indicate severe injury. Dark blue on 

the contour represents the absolute minimum separation (0mm) between the bones, 

whereas red illustrates the upper limit of bone separation (5mm). Articulation of the 
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fibula and talus about the tibia was compared across consistent time points in the 

dynamic task. For heel rise and squat, percent completion from initial weight-bearing 

neutral stance (0% task completion) to the point of maximum plantarflexion or 

dorsiflexion (100% task completion) defined the limits of the activity analyzed. Torso 

twist was examined at the initial neutral stance, maximum external rotation, second 

neutral pose, and then maximum internal rotation. The box jump activity was analyzed at 

the frames in which the foot was in flight and nearly neutral, initial instant of contact 

(typically a toe strike), heel strike, the instant of maximum ground reaction force (GRF), 

and then immediately after max GRF to represent a “stabilization” period. Differences in 

mean clear space throughout the dynamic activities were examined using one-way 

ANOVA and Tukey’s HSD post-hoc. Linear regression was done to compare the effect 

percent task completion on joint clear space distances for heel rise and squatting tasks. 

The level of significance was set to α = 0.05. No significant differences were found 

between genders. 

4.3.  Results 

4.3.1. Lateral Clear Space 

Syndesmotic gap distance measurements of the statics poses illustrated distinct 

effects of weight-bearing and foot positioning on fibular distraction from the tibia.  
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Table 4. 1. Mean lateral clear space distances for poses. 

 

Joint distraction in the neutral stance increased 0.3mm with weight-bearing. 

Dorsiflexion displayed the greatest amount of syndesmotic gap space (1.8 ± 1.2 mm), 

whereas plantarflexion compressed the joint to absolute its minimum gap distance (0.7 ± 

0.5 mm).  

Changes in mean lateral clear spaces between the tibia and fibula are presented 

below for all dynamic activities (Figure 4.3).  
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Figure 4. 3. Mean ± SD lateral clear space of the syndesmosis joint for calf raise, squat, 

torso twist and box jump. Phases of box jump: Pre = flight, TS = toe-strike, HS = heel-

strike, Max = maximum GRF, Post = stabilization. 
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Figure 4. 4. Direct comparison of minimum syndesmotic gap distance vs percent task 

completed for single-leg calf raise (heel rise) and squat. Analysis shows significant linear 

regression for calf raise (P=0.001) and squat (P=0.045). 

 

Table 4. 2. Mean lateral clear space distances for throughout heel-rise. 
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Table 4. 3. Mean lateral clear space distances for throughout squat. 

 

Calf raise and squat indicated significant and opposing linear regressions for 

mean clear space values vs percent activity completion. From neutral stance (0% 

completion) to maximum plantarflexion (100% completion) of the calf raise, there was a 

significant decrease (P=0.001) in clear space distance of 2.0 ± 0.6 mm to 1.1 ± 0.6 mm. 

Single-leg squat showed a significant increase (P=0.045) in syndesmotic gap space from 

neutral (1.3 ± 0.8 mm) to maximum dorsiflexion (2.3 ± 0.9 mm).   

 

Figure 4. 5. Mean minimum and maximum clear space distances from external or 

internal twisting of the torso. Analysis shows a significant difference between min and 

max values (P=0.012). 
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Table 4. 4. Mean lateral clear space distances for extreme torso twist, neutral, and 

twisting to the opposite extreme. 

 

At either direction of torso rotation, absolute minimum (0.9 ± 0.3 mm) or 

maximum (2.2 ± 0.7 mm) clear space distances were observed (Figure 4.5). A 

comparison between the mean maximum and minimum gap distances showed 

significance (P = 0.012). The neutral stance during this activity averaged 1.6 ± 0.6 mm in 

tibiofibular separation. 

Lateral clear space measurements throughout box jump correlated nicely to 

flexion/extension motions of the foot known to cause either distraction or compression of 

the joint (Figure 4.6).  
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Figure 4. 6. Mean lateral clear space distances throughout box jump activity (P = 0.254). 

 

Table 4. 5. Mean lateral clear space distances for various phases of box jump. 

 

 

Previously it was shown that plantarflexion of the foot is associated with medial 

translation of the fibula, thus causing a decrease in syndesmotic clear space. This was 

observed when the foot began in a near neutral position during flight phase (Pre) then 

plantarflexed in preparation for initial contact with the surface to mark the toe-strike 

phase. Upon landing when heel-strike occurs, the ankle rapidly dorsiflexed and instant 

distraction of the joint was seen. The additional loading from GRF’s did not cause further 
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distraction, although the stabilization phase that followed showed the greatest amount of 

clear space widening between the tibia and fibula. This maximum distraction between the 

bones was likely due to deeper squatting of the volunteer in order to balance. Increased 

dorsiflexion at the ankle pushed the fibula farther away from the tibia. These values 

measured were not significantly different between phases of the box jump (P=0.254). 

4.3.2. Medial Clear Space 

Gap distances between the tibial malleolus and talar dome for each of the statics 

poses were far less telling than the tibia-fibula measurements.  

Table 4. 6. Mean medial clear space distances for static poses. 

 

 

Joint distraction in the neutral stance decreased 0.3mm with weight-bearing, 

indicating compression of the talus to support loading. Dorsiflexion did not show a 

change in clear space (1.8 ± 1.5 mm) from weight-bearing, and plantarflexion caused 

slight distraction of the joint (2.1 ± 1.3 mm). Again, there were no significant differences 

between these measurements.  



 

71 

Changes in mean medial clear spaces between the malleolus of the tibia and talar 

dome are shown below for all dynamic activities (Figure 4.7).  

 

Figure 4. 7. Mean ± SD medial clear space of the talocrural joint for calf raise, squat, 

torso twist, and box jump. Phases of box jump: Pre = flight, TS = toe-strike, HS = heel-

strike, Max = maximum GRF, Post = stabilization. 

 

Table 4. 7. Mean medial clear space distances for throughout heel-rise. 
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Table 4. 8. Mean medial clear space distances for throughout squat. 

 

 

Minimum medial clear spacing is seen at maximum heel-rise (1.8 ± 1.25 mm), 

although there was no distinctive trend in clear space distraction as the activity 

progresses. Single-leg squatting showed a general pattern of decreasing clear space from 

neutral standing to maximum dorsiflexion. The minimum tibiotalar gap distance occurred 

at the deepest point in the squat (1.3 ± 1.6 mm). The overall change in medial clear space 

distance was 0.4 mm. There were no significant differences between percent of activity 

completion. 

Table 4. 9. Mean medial clear space distances for extreme torso twist, neutral, and 

twisting to the opposite extreme. 

 

Similar to the behavior of the fibula, extreme torso twisting caused both 

maximum and minimum joint displacements. However, the difference in these joint space 
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values between both twisting directions and neutral stance were not significant (P = 

0.405). An overall change of 0.8 mm in medial clear space widening was measured 

throughout the task. 

Tibiotalar clear space throughout the box jump showed a general decreasing trend 

in which the absolute minimum occurred at maximum GRF. The large force produced 

from the foot impacting the ground could have caused the talus to be wedged even deeper 

into the ankle resulting in further compression of the joint space. 

Table 4. 10. Mean medial clear space distances for various phases of box jump. 

 

 

Overall, joint gap spaces did not exceed 2.3 ± 0.9 mm and 2.7 ± 1.2 mm for the 

syndesmosis and talocrural joints. These values fall well within the normal range of 

lateral and medial clear spacing for a healthy ankle joint as identified by clinicians via x-

ray image measurements. The absolute minimum values calculated for the syndesmosis 

and talocrural joints were 0.9 ± 0.3 mm and 1.0 ± 1.0 mm respectively (Table 4.11). 
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4.4. Discussion 

Previous analysis of six DOF kinematics for the syndesmosis and talocrural joints 

(Chapter 3) showed vast differences in overall bone articulation, and highlighted the very 

small yet very dynamic motions of the fibula during rapid weight-bearing maneuvers. 

Generally, the static poses caused minimal bone motion when compared to dynamic 

tasks. This can be explained by the lack of shear stresses present at the joint that are 

otherwise seen during fast awkward twisting motions of the body.  

From chapter 3 it was concluded that maximum dorsiflexion induced the greatest 

amount of fibular excursion among all static poses, with external rotation and posterior 

translation being the predominant motions. This is consistent with the defined mechanism 

of injury for the syndesmosis joint. The dynamic exercises on the other hand, displayed 

the greatest amount of movement in IR/ER, A/P, and S/I degrees of freedom, which was 

especially notable during torso twist and box jump. The data presented in chapter 3 

indicated a potential paradigm shift on how lateral dislocation of the fibula may be a 

secondary movement in response to other motions predominantly occurring in the joint 

that could lead to syndesmotic rupture. This claim seems to be further supported by the 

findings in this chapter on lateral and medial clear space widening. 

Although kinematic behaviors between the syndesmosis and talocrural joints 

varied greatly, the overall distraction within each were relatively the same; both having 

exhibited consistent gap width measurements and minimal changes in bone dislocation 

(Table 4.11). The small values of clear space widening illustrate the invaluable stability 
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that the surrounding ligaments provide by limiting excessive separation of the bones and 

maintaining the integrity of the ankle joint.  

Table 4. 11. Absolute maximum and minimum clear space distances of all 

dynamic activities for syndesmosis and talocrural joints. 

 

 

Syndesmotic gap distance measurements of the static poses provided a clear 

snapshot into expected fibular dislocation due to foot positioning: distraction from non-

weight-bearing to weight-bearing neutral, maximum widening while dorsiflexed and 

minimum gap distance in plantarflexion. Calf raise and squat illustrated significant and 

opposing linear regression with mean clear space and advancement through the activity. 

Syndesmotic gap spaces significantly decreased with increasing plantarflexion, whereas 

gap distances significantly increased as dorsiflexion increased.  
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Traditionally it has been thought that internal rotation of the torso placed an 

externally rotating moment on the planted foot, and thus resulted in fibular dislocation 

from the tibia. In this study however, it was observed that both maximum internal or 

external rotation of the torso caused either absolute maximum or minimum distractions of 

the joint. For some subjects, IR of the torso created maximum dislocations while others 

experienced maximum dislocations with ER of the torso. This could be an effect of each 

subjects’ individual biomechanical response to balance, where some may have 

inadvertently supinated or pronated their foot during twisting, rather than keeping it flatly 

planted. Doing so would surely change the biomechanical response at the joint. In either 

case, it is clear that maximally twisting the torso while single-leg weight bearing can 

impose awkward moments and stressed on the ankle in a manner that can be considered a 

major mechanism of injury to the syndesmosis. 

Lateral clear space measurements throughout the box jump activity clearly 

illustrated joint compression from flight phase (Pre) to toe-strike (TS) as the foot 

plantarflexes, and immediate joint separation with continuous dorsiflexion during the last 

three phases of landing and balancing was also observed. The stabilization phase showed 

the greatest amount of foot dorsiflexion and thus the largest clear space widening 

between the tibia and fibula.  

Medial clear space distances between the tibia and the talus did not show as 

significant of differences in comparison to the fibula, but still provided valuable insight 

on distal joint motion. Static weight-bearing imposed minimal and non-significant 
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changes in joint distractions. Minimal and indistinct trends were seen in medial clear 

space changes for heel-rise or squat. Similar to the behavior of the fibula, extreme torso 

twisting caused both maximum and minimum joint displacements of the talus. However, 

the difference in these joint space values between both twisting directions and the neutral 

stance was not significant. It was established previously that forces up to 2.6 times body 

weight were experienced during box jump landing. Tibiotalar clear spaces reached an all-

time minimum at the point of maximum GRF, most likely due to the talus being wedged 

further into the proximal ankle joint causing compression. 

4.4.1. Limitations 

Certain limitations were inherent in this study. As mentioned before, the sample 

size (n = 6) could be considered relatively small compared to other studies with published 

kinematic data. Although given time and cost constraints as well as the high accuracy of 

the HSSR system and closeness in anthropometric data among the subject cohort, it 

seemed unnecessary to expand the healthy participant population. Internal and external 

rotations proved to be the most variable measure in the kinematic data. Errors associated 

with the kinematic data would unavoidably carry over into the calculations of medial-

lateral clear space. To minimize these standard deviations, tracking was performed by a 

single person to limit inter-tracker variability and tracking files were routinely tuned if 

gap distance values seemed physiologically unrealistic.  
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4.4.2. Conclusions 

This work has defined normal limits of medial and lateral clear space widening to 

describe healthy bone distractions within the ankle joint complex. The consistent gap 

width measurements and minimal changes in bone dislocations suggest that lateral 

separation of the bones during high-stress and high-impact activities may be an after 

effect to other larger excursions occurring within the joint. If this is indeed the case, then 

a shift in treating and rehabilitating syndesmotic injuries should focus on protecting 

IR/ER, A/P, and S/I movements of the fibula, not solely M/L translation. Currently, 

surgical fixation focuses on preventing lateral distraction of the fibula and given the 

results of this study, this does not seem to be the primary degree of freedom needing 

constraint. Additionally, locating the point at which the minimum and maximum gap 

distance occurs between the bones, then tracing its migration throughout a dynamic task 

could provide insight into how damaging joint separation progresses (Figure 4.12).  

Combining these clinical measures with in-vivo kinematic and EMG data could better 

describe individual joint kinetics, stability techniques such as muscular co-contraction, 

mechanisms of injury, and biomechanical effects of implantable device design. 
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Figure 4. 8. Migration of absolute minimum distance point during calf raise (a) neutral 

stance and (b) maximum plantarflexion. 
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CHAPTER 5. CONCLUSIONS AND FUTURE RECOMMENDATIONS 

 

The objective of this research was to develop a baseline understanding of healthy 

syndesmotic articulation and define normal limits of joint distraction during stressful 

dynamic activities. A general lack of understanding for the unique role that the fibula 

plays during high-impact tasks in overall ankle strength, stability, and mobility 

contributes to the difficulty and inaccuracy of properly treating syndesmotic injuries. The 

data presented establishes a definition for healthy range of motion (ROM) in the 

syndesmosis and talocrural joints as well as bringing to light the need for alternative 

approaches in treatment of severe high ankle sprain injuries. 

5.1. Six Degree of Freedom Kinematics and Range of Motion 

In-vivo six DOF kinematics were measured for the syndesmosis and talocrural 

joints using dual-plane high-speed stereoradiography in order to define healthy range of 

motion (ROM) of the ankle joint. Kinematic analyses showed vast differences in overall 

ROM between the two joints. The very small yet highly dynamic micro motions of the 

fibula highlighted the elastic behavior of syndesmosis crucial for enduring rapid high-

impact loading such as those seen in collision sports. The dynamic activities tested 



 

81 

caused the greatest amount of motions in IR/ER, A/P, and S/I degrees of freedom, 

especially with torso twist and box jump. The effects of shear stress on the distal joint 

known to cause bone distraction are typically the result of quick twisting in the upper 

body while the foot remains planted. This reaction was particularly apparent with internal 

rotation of the torso causing an external rotating moment to the foot and distal bones. 

Static neutral standing caused minimal change in motion in comparison to the dynamic 

tasks, although static dorsiflexion did induce the greatest amount of bone excursion with 

external rotation and posterior translation being the predominate movements observed. 

This is consistent with the accepted mechanism of injury for the syndesmosis joint.   

The tibiotalar joint showed clear kinematic patterns of plantarflexion, internal 

rotation, and anterior translation during heel-rise, while the reverse motions occurred 

upon squatting. This suggests that the talocrural joint is primarily responsible for 

plantar/dorsiflexion of the hind foot. There was also a distinct lack of motion during the 

torso twist indicating that the talus serves more as a sturdy base of support for the tibia 

and fibula to directly articulate on. All activities showed minimal magnitudes and 

changes in IN/EV kinematics which are indicative of the subtalar joint primarily 

providing these movements for the hind foot. 

5.2. Lateral and Medial Clear Space 

Limits of medial and lateral clear space widening between the fibula, talus, and 

tibia were measured to describe healthy bone distraction within the ankle joint complex. 
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It was found that total distractions within each joint were relatively small and equal in 

magnitude. The small values of clear space widening illustrate the instrumental stability 

provided by the surrounding ligaments to limit excessive separation of the bones and 

maintain the integrity of the ankle joint.  

Syndesmotic gap space significantly decreased with increasing plantarflexion, 

whereas gap distance significantly increased as dorsiflexion increased. Both maximum 

internal and external rotation of the torso caused maximum distraction of the syndesmosis 

which could be an effect of individual biomechanical responses to maintain balance, such 

as slight supination or pronation the foot. Ultimately, it was made clear that twisting the 

upper body while single-leg standing can impose awkward moments and stresses on the 

ankle in a manner to evoke injury to the syndesmosis. 

Tibiotalar distances showed minimal and non-significant changes for almost all 

activities, except for twisting and box jump. Similar to the behavior of the fibula, extreme 

torso twisting caused maximum displacement of the talus. Tibiotalar clear space reached 

an all-time minimum at the point of maximum GRF during box jump landing, which is 

most likely due to the talus being wedged further into the proximal joint causing 

compression. 

5.3. Future Work 

Future experimental work could include comparison of injured and post-injury 

repair athletes in order to examine differences in functional ROM relative to the healthy 

baseline data set presented in this work. Cadaveric testing of various fixation methods 
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using the ground reaction forces measured from the embedded force plates could provide 

more realistic loading conditions to better represent stresses athletes experience during 

competition. Examination of foot type potentially having an influence on kinematics, and 

possibly an impact on risk to syndesmosis injury would be another valuable study. 

Comparison between alternative rehabilitation regimes in restoring functional and 

anatomical ROM could be beneficial for trainers and physical therapists. 

ROM measurements could be used as metrics to illustrate joint laxity along each 

anatomical plane. This measure could help optimize medical device design by clearly pin 

pointing specific degrees of freedom in which large and problematic motions occur 

within the joint and that may require more robust constraints. Additional measures 

defined in this study to be considered as tools for quantifying joint laxity include distal 

fibula path length and 3D excursion volume. These metrics provide a map and 

quantifiable measures for the 3D micro motions of specific points of interest on the bone. 

Clinically, this could be used to track the movement of the metallic buttons or screws 

implanted for syndesmotic repair. Furthermore, locating the point at which the minimum 

and maximum gap distance occurs between the bones, then tracing its migration 

throughout a dynamic task could provide insight into how damaging joint distraction 

progresses. Combining these metrics with in-vivo kinematic and EMG data could better 

describe individual joint kinetics, stability techniques such as muscular co-contraction, 

mechanisms of joint injury, and the biomechanical effects of implantable device design. 
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These data presented indicate a potential paradigm shift in how syndesmosis 

motion is viewed and how injuries are treated. The design of implantable devices should 

potentially focus on larger motions that occur within the joint (IR/ER, A/P, and S/I) in 

addition to medial-lateral dislocations of the bone. 
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APPENDIX A. ANATOMICAL COORDINATE SYSTEMS 

 

The local coordinate systems assigned to the tibia, fibula, and talus were built by 

forming orthogonal planes between easily located anatomical landmarks of the bones. 

Historically the lower limb has been modeled with the tibia and fibula as a single rigid 

body, where the individual articulation of the fibula is not considered. For this study, a 

modified Grood & Suntay (1983) method was used to construct the distal tibial 

coordinate system since the proximal shaft was not included in the CT scan. The same 

methodology used to construct the tibial coordinate system was translated to the fibula to 

build similar coordinates. The talar coordinate system was also constructed by selecting 

easily identifiable landmarks and modifying past research methods. 

Tibial Coordinate System 

1. Use the reference geometry tool to select a center node on the proximal surface of the 

tibial shaft and an opposing node approximately on the center of the tibial plafond. This 

line should generally run through the center of shaft and is considered the “mechanical 

axis”.  
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2. Select the most distal node on the medial malleolus and create a reference plane (Plane 

1) that intersects this point and is perpendicular to the mechanical axis. 

3. Select a node that marks the most superior prominence of the medial malleolus. Create 

a plane (Plane 2) intersecting this point that is parallel to Plane 1. 

4. Using Plane 1 & Plane 2, create a Mid Plane (Plane 3). 
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5. Select the most anterior node on the medial malleolus to create a plane (Plane 4) that is 

perpendicular to Plane 3. 
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6. Create Plane 5 which is parallel to Plane 4 and intersects the mechanical axis. 

7. Locate the most medial point of the malleolus to create a plane (Plane 6) that is 

perpendicular to Plane 5 and Plane 3. 

8. Use Plane 6 to build a parallel plane (Plane 7) that intersects the mechanical axis. 

 

9. Planes 3, 5, and 7 define your transverse, frontal, and sagittal planes. The intersection 

of all three planes is the origin of your local coordinate system. 
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10. Section the bone at Plane 3 to clearly expose this intersection of planes.  

 

11. Overlay axis in M/L, A/P, and S/I directions by selecting the planes as reference. 

12. Assign a reference coordinate system at the origin aligning x-y-z of the LCS with 

lateral, anterior, and superior directions. 
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Fibular Coordinate System 

1. Use the reference geometry tool to select a center node on the proximal surface of the 

fibular shaft and an opposing node approximately on the center of the most distal 

malleolus. This line should generally run along the length of the shaft and slightly lateral 

from the center. This is the “mechanical axis”.  
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2. Select the most distal node on the malleolus and create a reference plane (Plane 1) that 

intersects this point and is perpendicular to the mechanical axis. 

3. Select a node that marks the most superior prominence of the malleolus. Create a plane 

(Plane 2) intersecting this point that is parallel to Plane 1. 

4. Using Plane 1 & Plane 2, create a Mid Plane (Plane 3). 

 

5. Select the most anterior node on the medial malleolus to create a plane (Plane 4) that is 

perpendicular to Plane 3. 
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6. Create Plane 5 which is parallel to Plane 4 and intersects the mechanical axis. 

 

7. Locate the most lateral point of the malleolus to create a plane (Plane 6) that is 

perpendicular to Plane 5 and Plane 3. 

8. Use Plane 6 to build a parallel plane (Plane 7) that intersects the mechanical axis. 
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9. Planes 3, 5, and 7 define your transverse, frontal, and sagittal planes. The intersection 

of all three planes is the origin of your local coordinate system. 

10. Section the bone at Plane 3 to clearly expose this intersection of planes.  

11. Overlay axis in M/L, A/P, and S/I directions by selecting the planes as reference. 
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12. Assign a reference coordinate system at the origin aligning x-y-z of the LCS with 

lateral, anterior, and superior directions. 
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Talar Coordinate System 

1. Use the reference geometry tool to select a center node on the most anterior surface of 

the talar head and an opposing node approximately on the center of the most posterior 

process.  
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2. Select that same node on the posterior process and create a reference plane (Plane 1) 

that intersects this point and is perpendicular to the mechanical axis. 

3. Select the most anterior node on the talar head and create a plane (Plane 2) intersecting 

this point that is parallel to Plane 1. 

4. Using Plane 1 & Plane 2, create a Mid Plane (Plane 3). 
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5. Form a new axis (Axis 2) that spans the most superior and center nodes of the medial 

and lateral talar dome. 

 

6. Create a plane (Plane 4) that intersects Axis 2 and is perpendicular to Plane 3. 

7. Locate the most posterior and center point of the talar head to create a plane (Plane 5) 

that is parallel to Plane 4. 
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8. Using Plane 4 & Plane 5, create a Mid Plane (Plane 6). 

9. Locate the most lateral point near the center of the talar dome. Create a plane (Plane 7) 

that intersects this point and is perpendicular to Plane 6 and Plane 3. 

10. Form Plane 8 that intersects Axis 1 and is parallel to Plane 7. 
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11. Planes 3, 6, and 8 define your transverse, frontal, and sagittal planes. The intersection 

of all three planes is the origin of your local coordinate system. 

10. Section the bone at Plane 6 to clearly expose this intersection of planes.  

11. Overlay axis in M/L, A/P, and S/I directions by selecting the planes as reference. 

12. Assign a reference coordinate system at the origin aligning x-y-z of the LCS with 

lateral, anterior, and superior directions. 
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APPENDIX B. Experimental Set-Up and Data Collection 

 

Table B1. Modified Oxford model for reflective marker placement 

 

Abbrev. Anatomical 

Landmark 

 Abbrev. Anatomical 

Landmark 

Diam. 

[RMMA] Medial Malleolus  [LMMA] Medial Malleolus *6mm 

[RANK] Lateral Malleolus  [LANK] Lateral Malleolus *6mm 

[RSTL] Sustentaculum 

Tali 

 [LSTL] Sustentaculum Tali 14mm 

[RLCA] Lateral Calcaneus  [LLCA] Lateral Calcaneus 14mm 

[RHEE] Inferior 

Calcaneus 

 [LHEE] Inferior Calcaneus 14mm 

[RPCA] Superior 

Calcaneus (in line 

with HEE 

marker) 

 [LPCA] Superior Calcaneus 

(in line with HEE 

marker) 

14mm 

[RCPG] Wand Marker-

Mid Calcaneus 

 [LCPG] Wand Marker-Mid 

Calcaneus 

 

[RP1M] Dorsal: medial 

aspect of base of 

1
st
 metatarsal 

 [LP1M] Dorsal: medial 

aspect of base of 1
st
 

metatarsal 

14mm 

[RP5M] Base of 5
th

 

metatarsal 

 [LP5M] Base of 5
th

 

metatarsal 

*14m

m 

[RD1M] Medial Aspect: 

head of 1
st
 

metatarsal head 

 [LD1M] Medial Aspect: head 

of 1
st
 metatarsal 

head 

*6mm 

[RD5M] Lateral Aspect-

head of 5
th

 

metatarsal 

 [LD5M] Lateral Aspect-head 

of 5
th

 metatarsal 

*14m

m 

[RHLX] Medial Aspect: 

proximal phalanx 

of Hallux 

 [LHLX] Medial Aspect: 

proximal phalanx of 

Hallux 

14mm 

[RTOE] Dorsal Aspect-

between 2
nd

 and 

3
rd

 metatarsal 

heads 

 [LTOE] Dorsal Aspect-

between 2
nd

 and 3
rd

 

metatarsal heads 

*14m

m 

[RNAV] Navicular 

Tuberosity 

 [LNAV] Navicular 

Tuberosity 

*6mm 

      

   

[RTROC] Trochanter  [LTROC] Trochanter  

[RTHGH] Thigh Shank  [LTHGH] Thigh Shank  
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Table B2.  Electromyography (EMG) surface electrodes applied to the lower limb 

 

 

[RQUAD] Quad Tendon  [LQUAD] Quad Tendon  

[RMedKN

E] 

Medial Femoral 

Condyle 

 [LMedKNE] Medial Femoral 

Condyle 

 

[RLatKNE

] 

Lateral Femoral 

Condyle 

 [LLatKNE] Lateral Femoral 

Condyle 

 

[RTUB] Tibial Tuberosity  [LTUB] Tibial 

Tuberosity 

 

[RHFB] Head of Fibula  [LHFB] Head of Fibula  

[RSHN] 

Anterior Shin (in 

line with RTUB 

“anatomical ankle 

joint center”) 

 

[LSHN] 

Anterior Shin 

(in line with 

RTUB 

“anatomical 

ankle joint 

center”) 

 

[RTIB] Lateral Shank   [LTIB] Lateral Shank  

   

  

[RPSIS] Right Sacral 

Dimple 

 

[LPSIS] Left Sacral 

Dimple 

 

[LILCR] Left Iliac Crest  

[RILCR] Right Iliac Crest  

[LASIS] Left ASIS  

[RASIS] Right ASIS  

Function 

Gluteus Medius (GLUT) 
Stability of hip /  

Internal rotation of thigh  

Biceps Femoris (BF) 
Flexion and lateral rotation of knee / Extension 

and lateral rotation of hip  

Rectus Femoris (RF) Knee extension / Hip flexion 

Peroneus  Longus/Brevis 

(PER) 

Plantarflexion / Eversion of ankle 

Tibialis Anterior (TA) 
Dorsiflexion of ankle /  

Inversion of foot 

Medial Gastrocnemius 

(MG) 

Flexion of ankle /  

Flexion of knee 

Lateral  Gastrocnemius 

(LG) 

Flexion of ankle /  

Flexion of knee 

Soleus (SOL) Plantarflexion of the ankle 

Extensor Digitorum 

Longus (EDL) 

Dorsiflexion  / Eversion of foot 

Extension of toes 
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APPENDIX C. POST PROCESSING WORK FLOW 

 

Fluoroscopy File Preparation 

1. Using Cineviewer software, save the .cine fluoroscopy files from both Camera A and 

Camera A as .tiff stacks (detailed documentation can be found on the DU Center for 

Orthopeadic Biomechanics Server: R:\Research Common\HDL\Personal 

Folders\Hogg\Thesis Appendix Documentation\Convert cine file to sequential tiffs.pdf)   

2. Use XROMM Undistorter Software to undistort images according to the standardized 

mesh (detailed documentation by Kefala et al. (2017))  

3. Using the XROMM Calibration software, calibrate the undistorted images to the 

fluoroscopy volume space by using the imaged calibration cube and known 3D spatial 

locations of the beads on cube (detailed documentation by Kefala et al. (2017)) 

 

Subject Specific Bone Model Preparation 

1. Check the quality of the CT file using any DICOM viewing software (Radiant) to 

ensure a neutral positioning of the foot and a continuous image sequence of bone slices
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2. Use ScanIP to segmentation the bones of interest (detailed documentation found on the 

DU Center for Orthopeadic Biomechanics Server: R:\Research Common\HDL\Personal 

Folders\Hogg\Thesis Appendix Documentation\ScanIP _Bone_Segmentation.pdf)   

3. Utilize MeshLab software to re-mesh bone into a binary .stl file such that it can be 

imported into Solidworks: 

1. Open Meshlab. File -> Import Mesh. Open the femur STL. If asked to 

Unify Duplicated Vertices, check the box and click “OK”.  

2. If the bone appears black (otherwise go to (C)): Filters -> Normals, 

Curvatures and Orientation -> Invert Faces Orientation. Check “Force 

Flip” only, click Apply, then Close. 

3. Filters -> Remeshing, Simplification and Reconstruction -> Quadratic 

Edge Collapse Decimation. Enter 19999 for “Target number of faces”, 

Quality threshold to 1. Leave defaults otherwise. Check the following (in 

addition): Preserve Boundary of the mesh, Preserve Normal, Planar 

Simplification. Click Apply, Click Close. 

4. File -> Export Mesh As. Don’t change the name, just overwrite the 

original. Change Files of type: to *.stl. Click Save. Keep defaults and click 

OK. 

 

 

4. Solidworks is used to build the LCS of each bone described in Appendix A 
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5. A custom written Matlab code re-writes the bone .stl file with the LCS and origin 

assigned 

6. 3D Slicer can then be used to convert the LCS oriented bone into a .tiff stack without 

buffering to be imported into the tracking software (detailed documentation found on the 

DU Center for Orthopeadic Biomechanics Server: R:\Research Common\HDL\Personal 

Folders\Hogg\Thesis Appendix Documentation\3D Slicer_Convert STL to sliced 

images.docx).   
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7. Use XROMM Autoscoper software to image match the subject-specific bone rendering 

to fluoroscopy images. Adjust the filtering in the program as needed (detailed 

documentation found on the DU Center for Orthopeadic Biomechanics Server).  
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8. The .trc files are then used as inputs for the custom written Matlab code to define the 

spatial orientation of the bone at each specified frame in the activity. 
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