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Abstract 

 

Mycofactocin is a putative peptide-derived redox cofactor in Mycobacterium 

family. Its putative biosynthetic pathway is encoded by the operon mftABCDEF. The 

initial step of this pathway is a posttranslational modification of a peptide precursor 

MftA, which is catalyzed by MftC enzyme. This modification only occurs in the presence 

of chaperone MftB. Here, we demonstrate that MftC is a radical S-adenosyl L-methionine 

(SAM) enzyme and we examine its catalytic mechanism. We show that the modification 

of MftA requires two equivalents of SAM and is implemented in two steps: (i) the 

decarboxylation of a C-terminal tyrosine, resulting in formation of an intermediate with a 

carbon-carbon double bond, and (ii) the cross-linking of the tyrosine with the penultimate 

valine, leading to formation of a cyclized product. We also show that MftC is able to 

modify unnatural peptide substrates, resulting in formation of specific and non-specific 

products.  
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CHAPTER ONE: INTRODUCTION 

Peptide-derived redox quinocofactors and their biosynthetic pathways 

Redox cofactors are a class of low-molecular weight compounds that serve as 

electron carriers in cell metabolism. Based on the composition, they can be divided into 

two groups: organic and inorganic cofactors. Within the organic category, quinone 

cofactors are the most notable. Some of these quinocofactors are formed via specific 

biosynthetic pathways that catalyze consecutive post-translational modifications of 

ribosomally synthesized peptide precursors that occur on side chains of tryptophan [1] or 

tyrosine [2]. Currently, five peptide-derived quinocofactors have been identified: PQQ, 

TTQ, CTQ, TPQ, and LTQ [3] (Figure 1). Except for PQQ, these cofactors are 

synthesized in situ of their respective enzymes. The biochemical role of the 

quinocofactors is to serve as assistants of enzymes which oxidize alcohols [4] or primary 

amines [5] into corresponding aldehydes. 

 

Figure 1. Structures of the identified peptide-derived quinocofactors. 
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PQQ Biosynthesis 

PQQ, or pyrroloquinoline quinone, was discovered as a prosthetic group of 

glucose dehydrogenase in Bacterium anitratum, in 1964 [6]. In general, PQQ serves as a 

prokaryotic cofactor in more than 125 bacterial species [7]. In bacteria, PQQ mainly 

functions as a catalytic cofactor of alcohol and glucose dehydrogenases operating in the 

periplasm of Gram-negative bacteria [8]. The reduced form of PQQ, PQQH2, is formed 

during catalysis of these enzymes. PQQH2 is then oxidized back to PQQ by a cytochrome 

in two sequential steps [4]. The formation of reduced cytochrome indirectly triggers ATP 

synthesis, and therefore, energy storage by cell [4]. 

The biosynthetic pathway of PQQ consists of the gene products encoded by the 

pqqABCDEF operon (Figure 2) [7]. PqqA is a peptide of 20-30 amino acids length, 

containing conserved residues of glutamate and tyrosine which are the main constituents 

of PQQ. The initial step of the PQQ synthesis is the formation of a carbon-carbon bond 

between side chains of these residues, which is achieved by radical reaction performed by 

PqqE enzyme [9]. PqqE is a radical S-adenosyl L-methionine (SAM) protein that 

catalyzes the reductive cleavage of SAM (discussed below), which initiates a free-radical 

reaction resulting in the carbon-carbon bond formation between glutamate and tyrosine 

[10]. This reaction requires PqqD, a small (90 amino acids) protein that serves as a 

peptide chaperone delivering the peptide PqqA to PqqE [11]. It has been proposed that 

the cross-linked PqqA product is cleaved at the glutamate and the tyrosine into a low-

molecular intermediate by the pathway protease PqqF [12]. In this intermediate, the 

amino-group of the glutamate undergoes spontaneous condensation with hydroxyl group 

of the tyrosine [3, 12]. The resulting species is then oxidized by an unknown enzyme to 
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3a-(2-amino-2-carboxyethyl)-4,5-dioxo-4,5,6,7,8,9-hexahydroquinoline-7,9-dicarboxylic 

acid (AHQQ) which is the substrate of PqqC enzyme [3]. PqqC catalyzes the final step of 

the pathway, which is a multi-step eight-electron oxidation and ring cyclization of AHQQ 

to produce PQQ, with help of O2 as an electron acceptor [13]. It has been suggested that 

produced PQQ is transferred by PqqB to the periplasm [14]. PqqB is also speculated to 

oxidize the tyrosine residue in PqqA prior to the cross-linking with the glutamate [7, 12]. 

 

Figure 2. Biosynthetic pathway of PQQ. 

 

TTQ Biosynthesis 

TTQ, or tryptophan tryptophylquinol, was first identified and confirmed as a 

prosthetic group of methylamine dehydrogenase (MADH) in Methylobacterium 

extorquens AM1, in 1991 [15]. This cofactor is utilized by MADH and aromatic amine 

dehydrogenase (AADH) that are located in periplasmic space in bacteria. In the process 

of the catalysis, TTQ is reduced to TTQH2, which is then reoxidized by the single-

electron transfer copper proteins (cupredoxins) through formation of an o-

semiaminoquinone intermediate [16]. 
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TTQ is synthesized from two tryptophan residues which are posttranslationally 

modified within the polypeptide chain of the enzymes (Figure 3). The first step of its 

biosynthesis is hydroxylation of one of the tryptophan residues at C7 [17]; this process is 

speculated to be autocatalytic [18]. The resulting product (pre-MADH) is a substrate for 

an enzyme MauG, which completes the biosynthesis of TTQ [17]. MauG shares 30% 

sequence similarity with cytochrome c peroxidases and contains two c-type hemes as 

well; nevertheless, it does not act like a typical peroxidase [19]. The entire reaction 

performed by MauG proceeds in three successive two-electron oxidation steps: (i) the 

diradical cross-linking of indole rings of the Trp residues [20]; (ii) the addition of the 

second hydroxyl group at C6 in the hydroxylated Trp residue; (iii) the oxidation of the 

produced o-quinol into o-quinone [21]. The oxidants used in the reaction are O2 (plus 

electron donor) or H2O2, which are carried by the heme groups of MauG, executing the 

whole catalysis [21]. 

 

Figure 3. Biosynthetic pathway of TTQ in MADH. 
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CTQ Biosynthesis 

CTQ, or cysteine tryptophyl quinone, was found in a crystal structure of 

quinohemoprotein amine dehydrogenase (QHNDH) in Paracoccus denitrificans, in 2001 

[22]. Later, this cofactor was also detected in two amino acid oxidases, LodA (L-lysine 

oxidase) [23] and GoxA (glycine oxidase) [24], in Marinomonas mediterranea. During 

the catalysis implemented by all these enzymes, CTQ is reduced to CTQH2 which is 

reoxidized by cytochrome c550 [25] or a blue copper protein azurin [26] which provide 

electron transport for the membrane-associated respiratory chain [25]. 

Although CTQ biosynthesis is similar to the TTQ biosynthesis (Figure 4), it is 

currently not fully understood. In case of LodA and GoxA oxidases, the first step is an 

autocatalytic hydroxylation of an indole ring of a tryptophan residue at C7 position. It has 

recently been shown that copper in high oxidation state is required for this process, and 

several variants of the mechanism have been proposed [18]. The next step includes cross-

linking between Cys residue and the hydroxylated Trp residue, as well as the insertion of 

the second oxygen group into indole ring of the tryptophan at C6 position. This reaction 

is catalyzed by FAD-dependent monooxidases LodB and GoxB that are co-expressed 

with LodA and GoxB, respectively. In case of QHNDH, the enzyme involved in CTQ 

formation has been proposed to be QhpG [27]. This protein is encoded in the 

complementary strand with respect to the qhp operon and it shares sequence homology to 

FAD-dependent monooxygenases. It is speculated that QhpG may catalyze the initial 

hydroxylation of the tryptophan, whereas the subsequent step may be executed in a 

MauG-like fashion, by means of two c-type hemes located in the α-subunit of QHNDH. 
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Figure 4. Biosynthetic pathway of CTQ in LodA/GoxA and QHNDH. 

 

TPQ Biosynthesis 

TPQ, or trihydroxyphenylalanine quinone (topaquinone), was discovered in 

bovine serum copper amine oxidase (CAO), in 1990 [28]. This cofactor is found in 

copper amine oxidases in both prokaryotic and eukaryotic organisms [3, 5]. The 

biosynthesis of TPQ is simple (Figure 5), since it does not involve cross-linking with 

other amino acid residues. The precursor is a tyrosine residue in the conserved Asn-Tyr-

Asp/Glu motif surrounded by hydrophobic amino acids, in the polypeptide chain of CAO 

[29]. Topaquinone is synthesized by hydroxylation of a phenol ring of the tyrosine 

residue at C2- and C5-positions followed by its oxidation into an o-quinone. The entire 

process is fully autocatalytic and requires only a copper(II) ion and molecular oxygen, 

proceeding through formation of ligand-to-metal charge transfer complexes [30]. 

 

Figure 5. Biosynthesis of TPQ in CAO. 
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LTQ Biosynthesis 

LTQ, or lysyl tyrosine quinone, was identified in lysyl oxidase from bovine aorta, 

in 1996 [31]. This enzyme is the only protein where LTQ has been found. The function of 

this enzyme is to oxidize lysine residues in collagen and elastin fibrous proteins, which 

triggers spontaneous condensation of formed peptidyl aldehydes with ε-amino groups of 

unmodified lysine residues or with vicinal peptidyl aldehydes [32]. 

LTQ biosynthesis is proposed to be similar to and as simple as TPQ (Figure 6). 

Autocatalytic hydroxylation of tyrosine precursor by molecular oxygen is copper(II)-

dependent and results in formation of an o-dopaquinone (DPQ) intermediate [33]. The 

successive steps include cross-linking between ε-amino group of lysine residue and 

tyrosine ring at C-6 position, followed by the oxidation of formed o-quinol into o-

quinone, oxidized by molecular oxygen. 

 

Figure 6. Biosynthesis of LTQ in lysyl oxidase. 
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Radical SAM enzymes with a SPASM domain 

As mentioned above, one of the enzymes involved in PQQ biosynthesis is a 

radical S-adenosyl L-methionine (SAM) enzyme, PqqE. Enzymes of this type may be 

used to catalyze chemically difficult transformations, such as carbon-carbon [9] and 

thioether [34] bond formation, methylthiolation [35], oxidative decarboxylation [36] etc. 

This can be achieved through a radical mechanism that involves activation of a C-H bond 

in a substrate. 

Radical SAM enzymes are a superfamily of enzymes that catalyze reductive 

cleavage of S-adenosyl L-methionine (SAM) into L-methionine and a 5′-deoxyadenosine 

radical (5′-dA•) in an uncoupled reaction. The hemolytic cleavage of SAM is initiated by 

[4Fe-4S]1+ cluster (Figure 7). Upon exposure to substrate, the 5′-dA• radical abstracts a 

hydrogen, generally from a C-H bond, thus triggering the specific catalysis. 

 

Figure 7. Reductive cleavage of S-adenosyl L-methionine (SAM) performed by 

[4Fe-4S]1+ cluster within radical SAM enzyme, yielding the 5′-dA• radical. 
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Most radical SAM proteins contain a specific SAM-binding domain which 

represented by a partial (β/α)6 triose-phosphate isomerase (TIM) barrel fold [37, 38] 

(Figure 8). Within this domain, there are several motifs responsible for coordinating 

SAM. The most important among them is a highly conservative three-cysteine 

CX3CXФC (Ф is for an aromatic residue) motif located in a loop following β1 strand. 

Cysteine residues from this motif ligate three irons from [4Fe-4S] cluster [39]; the fourth, 

“unique” iron is ligated to carboxylate and amino groups of L-methionine in SAM 

molecule [40]. Another notable conservative motif is Gly-Gly-Glu (“GGE”) from β2 

strand which forms hydrogen bonds with amino group of L-methionine in SAM, thus 

supporting ligation of SAM to the “unique” iron of the cluster [41]. Lastly, GXIXGXXE-

motif (named after the corresponding sequence in BioB) located in β5 strand and non-

conservative β6 structural motif provide hydrophobic stacking to adenine in SAM 

molecule [41]; also, β6 structural motif and the aromatic residue from the CX3CXФC 

motif form hydrogen bonds with N1 and N6 of the adenine [37]. Residues responsible for 

coordinating ribose moiety in SAM molecule are in β4 and β5 strands [38]. 
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Figure 8. Crystal structure of a radical SAM enzyme anSME from Clostridium 

perfringens (PDB: 4K36). Radical SAM TIM-barrel domain is colored pink, SPASM 

domain (discussed below) is in green, elements that are not part of either domain are in 

light blue. Within radical SAM domain, CX3CXФC motif is in orange, “GGE” motif is in 

purple, “GXIXGXXE” motif is in dark-blue, and the β6 motif is colored cyan. Within 

[4Fe-4S] clusters, Fe atoms are in orange and S atoms are in yellow. Cysteine residues 

ligating [4Fe-4S] clusters, and SAM molecule are represented as sticks. 

 

Among radical SAM enzymes, there is a subfamily of enzymes shown to share a 

specific structure motif, called SPASM domain as a C-terminal extension to the basic 

radical SAM core. This domain contains two auxiliary [4Fe-4S] clusters ligated by a 

seven-cysteine CX9-15GX4C-gap-CX2CX5CX3C-gap-C motif [42]. Although, the function 

of these clusters remains elusive, it is speculated that they may play a structural role or 
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might be involved in electron transfer, providing a sequential transport of an electron to 

the radical SAM cluster or an intermediate electron acceptor [43]. 

Enzymes of the SPASM subfamily (designated as TIGR08045) have been 

associated with posttranslational modifications of peptides [44, 45]. The name SPASM 

came as abbreviation from the biochemically characterized enzymes (Figure 9) that are 

involved in maturation of Subtilosin A (AlbA), PQQ (PqqE), Anaerobic Sulfatase 

(anSME) and Mycofactocin (MftC). AlbA catalyzes formation of three thioether bridges 

between sulfur atoms in cysteines and α-carbons in one threonine and two phenylalanines 

in Subtilosin precursor SboA [46, 47, 48]. PqqE, as discussed above, catalyzes the C-C 

bond formation between glutamate and tyrosine residues in PQQ precursor PqqA [9, 11]. 

AnSME (AtsB) catalyzes formation of formylglycine, an in situ arylsulfatase cofactor of 

anaerobic sulfatase AtsA, via two-step electron oxidation of corresponded cysteine or 

serine residue located in a conserved C(S)XPXR motif [49]. MftC catalyzes 

decarboxylation of the C-terminal tyrosine in mycofactocin precursor MftA [50, 51]. 

Currently, there are about 17000 sequences belonging to RS-SPASM protein subfamily, 

found in the InterPro database (designated as IPR023885). 
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Figure 9. Reactions catalyzed by the characterized radical SAM enzymes from SPASM 

subfamily. For AlbA, formation of only one of three thioether bonds is shown. R is for 

side chain of Thr or Phe residue. 

 

The only radical SAM protein with SPASM domain that has its structure 

characterized by X-ray crystallography at the moment is anSME from Clostridium 

perfringens [52] (Figure 8, PDB: 4K36). The solved structure confirmed the existence of 

two domains: parallel (β/α)6 partial TIM-barrel fold (radical SAM domain) at N-terminus 

(residues 3-234) and C-terminal SPASM domain with terminal α6′ helix which is not 

related to any domain; both domains are linked via α6a-helix. 

Within the SAM-binding domain, it was shown that each of Cys15, Cys19 and 

Cys22 residues ligate one corresponding iron in one [4Fe-4S] cluster (RS-cluster) as part 
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of the conserved CX3CXФC motif, and the “unique” iron is bound to the SAM molecule. 

In addition, Tyr21 residue was shown to form hydrogen bond with the SAM molecule. 

All the other motifs (GGE, GXIXGXXE, β6, and ribose motif) with expected interactions 

(discussed above) have also been found (Figure 10). 

 

Figure 10. SAM-binding site of anSME from C. perfringens, represented in stick model. 

This includes [4Fe-4S] cluster-binding CX3CXФC motif (C15, C19 and C22, orange, 

Y21, orange-red), “GGE” motif (G65, G66 and E67, purple), ribose motif (S122 and 

D124, pink) interacting with the ribose hydroxyl groups, “GXIXGXXE” motif (residues 

163-170, blue), and the β6 motif (residues 192-195, cyan). Hydrogen bonds are shown as 

black dashed lines. Within [4Fe-4S] clusters, Fe atoms are in orange and S atoms are in 

yellow. Bound water molecules participating in hydrogen-bonding are shown as red 

spheres. 

 

The C-terminal SPASM domain in anSME was shown to contain three secondary-

structure elements: two anti-parallel β1′ and β2′ hairpins, conserved among TIGR04085 

family, and a variable α2′ helix (Figure 11). Two auxiliary [4Fe-4S] clusters are 

coordinated by the seven-cysteine motif plus one upstream cysteine, all located in the 



14 

loops outside of the secondary-structure elements. The Aux I cluster is ligated by Cys255 

(upstream residue, outside of the SPASM domain), Cys261, Cys276 (both from CX9-

15GX4C-part) and Cys330 (the last cysteine from CX2CX5CX3C-part); the α2′ helix 

shields the cluster from solvent. On the other hand, the Aux II cluster is bound to Cys317, 

Cys320, Cys326 (first three cysteines from CX2CX5CX3C) and Cys348 (the final cysteine 

of the whole motif). The distances between the [4Fe-4S] clusters are the following: 12.9 

Å between Aux I and Aux II, 16.9 Å between Aux I and RS and 26.7 Å between Aux II 

and RS [52]. 

 

Figure 11. SPASM domain of anSME. α2′-helix is colored blue, β-hairpins are in light 

brown. Within Aux I and Aux II clusters, Fe atoms are in orange and S atoms are in 

yellow. Cysteine residues ligating [4Fe-4S] clusters are represented as sticks. 

 

Mycofactocin biosynthetic pathway 

As mentioned above, MftC is a radical SAM protein that belongs to the SPASM 

subfamily and catalyzes one of the steps of mycofactocin maturation. 

The mycofactocin pathway was discovered in Mycobacterium family using Partial 

Phylogenetic Profiling method, in 2011 [44, 45]. The name “mycofactocin” has been 
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assigned because of the similarity of the novel gene cluster in Mycobacterium family to 

the biosynthetic clusters of PQQ redox cofactor and bacteriocin. Currently, the structure 

of mycofactocin has not been identified. It is speculated to be a small molecule with 

redox properties, serving as an electron carrier for short chain NAD-dependent 

dehydrogenases encoded upstream to the mycofactocin gene cluster [44, 53]. 

 

Figure 12. Mycofactocin gene cluster with near gene context from Mycobacterium 

tuberculosis (strain H37Rv). 

 

The putative biosynthetic pathway of mycofactocin is suggested to be performed 

by gene products of the mftABCDEF operon (Figure 12), and these genes can only be 

found together. MftA is a short (30-78 amino acids) peptide precursor of mycofactocin, 

with a highly conserved C-terminal IDGXCGVY sequence. The initial step of the 

pathway is decarboxylation of MftA at a C-terminal tyrosine by MftC [50, 51]. This 

reaction occurs in presence of MftB, a small protein (about 100 amino acids) with no 

homologs. It was shown that MftB binds MftA precursor with nanomolar KD and MftC 

enzyme with micromolar KD [50], so it likely functions as a chaperone for the peptide 

precursor, acting similarly to PqqD chaperone towards PqqA [9, 11]. The product of this 

modification is shown to undergo amide bond cleavage by creatininase MftE, resulting in 

formation of a dipeptide product VY**, where Y** is a decarboxylated tyrosine residue 

that contains a double carbon-carbon bond [54]. The further steps of the pathway are not 
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known at the moment. The genes mftD (Rv0694 locus) and mftF (Rv0696 locus) encode 

for heme/flavin dehydrogenase (PF01070 Pfam superfamily) and glycosyltransferase 

(PF00535 Pfam superfamily), respectively [44, 53]. One can suggest that MftD acts after 

MftE, oxidizing the VY**, then MftF adds a glycosyl group to the resulting hydrophobic 

molecule, probably to facilitate its transport by any further enzymes on demand. 

Mycofactocin biosynthetic pathway is critical for M. tuberculosis growth in 

cholesterol as a main carbon source: mftC-F (Rv0693-0696 loci) [55] and a gene 

encoding one of the upstream short chain dehydrogenases (Rv0687 locus) [56, 57] were 

shown to be essential for the cholesterol catabolism by Mtb. This fact can assure that the 

putative mycofactocin plays an important role in vital activity of Mycobacterium species. 

Therefore, investigations of this pathway may lead to the development of new drugs 

against tuberculosis, targeting the participants of the pathway. 
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CHAPTER TWO: MATERIALS AND METHODS 

Expression and purification of MftC 

The mftC gene (Uniprot: A0PM49) from Mycobacterium ulcerans Agy99 was 

cloned into the pET28a vector, using NdeI and XhoI restriction sites. The mftC/pET28 

plasmid construct was transformed into BL21(DE3) competent cell line, with pPH151 

vector already transformed, carrying the sufABCDSE operon, and grown overnight. An 

overnight culture was used to inoculate 1 L of TB medium. The cells were grown at 37°C 

and 200 RPM until OD600 ~ 0.8-1.0, then were induced with sodium fumarate (0.75 g/L), 

FeCl3 (50 μM) and 1 mM IPTG (isopropyl-β-thiogalactopyranoside). The cells were 

incubated anaerobically at 21°C overnight. The cell culture was centrifuged at 5500 g for 

10 min and the pellet was transferred into the anaerobic chamber. The cells were 

suspended in 5-fold cell weight lysis buffer (50 mM Tris, 200 mM NaCl, 25 mM 

Imidazole, pH 7.6). CHAPS (1%), lysozyme (0.1%) and DNase (0.05 mg/g cell paste) 

were added to the suspension and stirred for 30 min at room temperature. The suspension 

was centrifuged at 30000 g for 15 min and transferred back into the anaerobic chamber. 

The supernatant was loaded onto a 5 mL His-Trap column (GE Life Sciences) in an 

ÄKTA Start FPLC system. The column was washed with 5 column volumes of lysis 

buffer (50 mM Tris, 200 mM NaCl, 25 mM Imidazole, pH 7.6), followed by elution 

buffer (50 mM Tris, 200 mM NaCl, 300 mM Imidazole, pH 7.6). The protein fraction 

was collected and buffer-exchanged to the storage buffer (50 mM HEPES, 100 mM 
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NaCl, pH 7.5) using PD-10 column. The solution was concentrated using Pall 30 kDa 

spin columns. 

 

Reconstitution of MftC 

All the operations were performed inside the anaerobic chamber. All reagents 

were transferred dry into the anaerobic chamber and dissolved in anaerobic water. 

Dithiothreitol (DTT) was added to a solution of the purified protein to final concentration 

of 10 mM. The solution was stirred for 30 min at 4°C.  FeCl3 was added to a 12-fold 

protein concentration, then the solution was stirred for 30 min at 4°C. Following the 

incubation, Na2S was added to a 12-fold protein concentration, and solution incubated for 

1 h at 4°C. The solution was then centrifuged at 16000 g for 2 min and the supernatant 

was buffer-exchanged into storage buffer (50 mM HEPES, 100 mM NaCl, pH 7.5) using 

PD-10 column. The final solution was concentrated using Pall 30 kDa spin columns, 

aliquoted, and stored at -80°C. 

 

Determining concentration of MftC 

Procedure for determining concentration of MftC was based on the previously 

published protocol [58]. To the 100 μL of MftC solution of unknown concentration, 

trichloroacetic acid (TCA) was added to final concentration of 10% (w/v). The mixture 

was incubated at -20°C for 30 min and centrifuged at 14000 g for 12 min. The pellet was 

washed two times with 500 μL of acetone, cooled at -20°C. The pellet was dried in air 

and dissolved in 500 μL of 8 M urea. Concentration of MftC was determined by 
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recording absorbance of the final solution at 280 nm, using molar extinction coefficient 

39420 M-1•cm-1 (assuming all cysteine residues were reduced). Value of molar extinction 

coefficient of polypeptide chain of MftC was calculated in ExPASy ProtParam web tool. 

Absorbance measurements were performed in Cary Bio 100 UV-visible 

spectrophotometer. 

 

Quantification of iron and sulfide in MftC 

Previously published protocols were used for quantification of iron and sulfide in 

MftC [59]. For iron quantification, 100 μL solution of ~25 μM MftC were prepared, and 

10 μL of 3 M TCA were added to the solution. The mix was centrifuged at 14000 g for 

12 min, and 330 μL of deionized water were added to the supernatant. Subsequently, 20 

μL of 75 mM L-ascorbic acid, 20 μL of 10 mM 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-

p,p′-disulfonic acid monosodium salt (ferrozine), and 20 μL of saturated sodium acetate 

were added to the solution. Concentration of iron was determined by recording 

absorbance of the final solution at 562 nm, using molar extinction coefficient 27900      

M-1•cm-1. For sulfide quantification, 200 μL solution of ~12 μM MftC were prepared, and 

600 μL of 1% (w/v) zinc acetate and 50 μL of 7% (w/v) sodium hydroxide were added 

subsequently to the solution. The mixture was inverted for several times and incubated 

for 15 min at room temperature. Subsequently, 150 μL of 0.1% (w/v) N,N-

dimethylbenzene-1,4-diamine (DMPD) solution in 5 M HCl and 150 μL of 10 mM FeCl3 

solution in 1 M HCl were added to the mixture. The mixture was vortexed and incubated 

for 20 min at room temperature. Concentration of sulfide was determined by recording 
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absorbance of the final solution at 670 nm, using molar extinction coefficient 34500      

M-1•cm-1. Corresponding reaction mixes with deionized water instead of MftC were used 

as blanks in both procedures. Absorbance measurements were performed using Cary Bio 

100 UV-visible spectrophotometer. 

 

SAM cleavage reactions 

Reactions were performed in anaerobic chamber. All proteins were purified 

anaerobically. All the other reagents were transferred dry to the anaerobic chamber and 

dissolved in anaerobic deionized water. The reagents were mixed in the following order: 

reaction buffer (50 mM HEPES, 100 mM NaCl, pH 7.5), 1 mM sodium dithionite (DTH), 

0,5, 1, 3, 5, 8 or 10 mM DTT, 1 mM SAM, 25 μM as-purified or reconstituted MftC. 

Aliquots of reaction mixes were taken at 0 min, 15 min, 30 min, 1 h, 2 h, 4 h, 6 h, 8 h, 

and 24 h, and trifluoroacetic acid (TFA) was added to final concentration of 1%. The 

mixes were centrifuged to remove precipitated MftC. The supernatant was diluted 10-fold 

and analyzed by reverse-phase chromatography on the Shimadzu Prominence-i LC-

2030C HPLC using 4.6 × 50 mm C18 5 μm column (Restek, Bellefonte, PA, USA) and 5 

mM sodium phosphate (pH 7.5, buffer A) and 0.1% TFA in water and acetonitrile as 

solvents. SAM and 5′-dA were tracked on the chromatogram monitoring absorbance at 

254 nm. Concentrations of SAM and 5′-dA were calculated from integrations of the peak 

areas on the chromatogram. Initial rates of the reactions were determined from 

coefficients of trendlines fitting initial linear sections of 5′-dA accumulation curves. kcat 

values were obtained by dividing the values of the reaction rates by MftC concentration. 
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Expression and purification of MftA 

The undesignated mftA gene sequence from Mycobacterium ulcerans Agy99 was 

cloned into pET28HST vector using NdeI and XhoI restriction sites. The plasmid 

pET28HST was designed with His6-tag added to the SUMO protein at N-terminus, and 

TEV protease cleavage site.  When cloned into the NdeI restriction site, a Gly and His 

were added to the protein on the N-terminus after TEV cleavage.  The mftA/pET28HST 

plasmid DNA was transformed into BL21 Star(DE3) (Invitrogen) competent cell line and 

grown overnight. The overnight culture was grown aerobically at 37°C in 4 mL of LB 

and then was used to inoculate LB medium. The cells were grown at 37°C and 200 RPM 

until OD600 ~ 0.6, then were induced with 1 mM IPTG (isopropyl-β-

thiogalactopyranoside) and incubated at 21°C overnight. The cell culture centrifuged at 

5500 g for 10 min, and the resulting pellet was suspended in 5-fold cell weight lysis 

buffer (50 mM Tris, 200 mM NaCl, 25 mM Imidazole, pH 7.6). The suspension was 

sonicated and centrifuged at 30000 g for 15 min. The supernatant was loaded onto a 5 mL 

HisTrap column (GE Life Sciences) using an ÄKTA FPLC system. The column was 

washed with 5 column volumes of lysis buffer (50 mM Tris, 200 mM NaCl, 25 mM 

Imidazole, pH 7.6), followed by elution buffer (50 mM Tris, 200 mM NaCl, 300 mM 

Imidazole, pH 7.6). The purified SUMO-MftA protein fraction was collected and buffer-

exchanged to the sodium phosphate buffer (5 mM Na2HPO4, 1 mM TCEP, pH 7.5) using 

HiPrep 26/10 Desalting column (GE Life Sciences) and concentrated using Pall 10 kDa 

spin column. The TEV protease was added, and the solution was incubated at 4°C 

overnight, then centrifuged at 18000 g for 5 min. The supernatant was loaded onto semi-
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prep 10 × 250 mm C4 5 μm reverse-phase column (Phenomenex) using Shimadzu 

Prominence-i LC-2030C HPLC using 5 mM sodium phosphate (pH 7.5, buffer A) and 5 

mM sodium phosphate in 70% acetonitrile (pH 7.5, buffer B) as solvents. The MftA 

peptide fraction was collected and lyophilized overnight. The dry substance was 

transferred into the anaerobic chamber, dissolved in anaerobic deionized water, aliquoted, 

and stored at -80°C. 

 

Expression and purification of GST-MftB 

The mftB gene (Uniprot: A0PM48) from Mycobacterium ulcerans Agy99 was 

cloned into pGEX6p-1 vector (GE Life Sciences), using BamHI and XhoI restriction sites 

to obtain the GST-MftB fused protein. The mftB/pGEX6p-1 plasmid construct was then 

transformed into BL21 Star(DE3) (Invitrogen) competent cell line and grown overnight. 

The overnight culture was grown aerobically at 37°C in 4 mL of LB and then was used to 

inoculate 1 L LB medium. The cells were grown at 37°C and 200 RPM until OD600 ~ 0.6, 

then were induced with 1 mM IPTG (isopropyl-β-thiogalactopyranoside) and incubated at 

21°C overnight. The cell culture was centrifuged at 5500 g for 10 min and the resulting 

cell pellet was suspended in 5-fold cell weight lysis buffer (50 mM HEPES, 100 mM 

NaCl, 10% glycerol, pH 7.5). Lysozyme (0.1%) and DNase (0.05 mg/g cell paste) were 

added to the suspension and stirred for 10 min at room temperature. The suspension was 

sonicated and centrifuged at 30000 g for 15 min and transferred into the anaerobic 

chamber. The supernatant was loaded onto a 5 mL GSTrap column (GE Life Sciences) 

using an ÄKTA start FPLC system. The resin was washed with 5 volumes of lysis buffer, 
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followed by elution buffer (50 mM HEPES, 100 mM NaCl, 10% glycerol, 30 mM 

glutathione, pH 7.5). The protein fraction was collected, concentrated using Pall 10 kDa 

spin column and buffer-exchanged to the lysis buffer (50 mM HEPES, 100 mM NaCl, 

10% glycerol, pH 7.5) using PD-10 column. The final solution was concentrated using 

Pall 10 kDa spin column, aliquoted, and stored at -80°C. 

 

Labeling MftA with deuterium-labeled tyrosine 

To obtain tyrosine deuterium-labeled variants of MftA, an overnight BL21 

Star(DE3) culture containing the mftA/pET28HST plasmid was used to inoculate M9 

minimal medium, containing all natural amino acids, and the deuterium-labeled tyrosine 

instead of natural tyrosine (each at 100 mg/L), glycerol (4 mL/L), Na2HPO4 (25 mM), 

KH2PO4 (25 mM), NH4Cl (50 mM), Na2SO4 (5 mM), MgSO4 (1 mM), CaCl2 (100 μM), 

FeCl3 (50 μM), pH 7.4. The growth and purification steps were performed as described 

above. 

 

Labeling MftA with 13C-labeled tyrosine 

To obtain 13C-labeled variants of MftA, an overnight E. coli RF4 culture 

containing the mftA/pET28HST construct was used to inoculate M9 minimal medium 

described above except with 13C-labeled tyrosine instead of natural tyrosine (each at 100 

mg/L).  The growth and purification steps were performed as described above. 
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Deuterium-labeled MftA assay 

Reactions were performed in anaerobic chamber. All the reagents were prepared 

as described above. The reagents were mixed in the following order: reaction buffer (50 

mM HEPES, 100 mM NaCl, pH 7.5), 2 mM DTH, 8 mM DTT, 200 μM MftA, 200 μM 

GST-MftB, 400 μM SAM, 100 μM MftC. All the following steps were carried out as 

described above. The products of the reactions were tracked on the chromatogram 

monitoring absorbance at 260 nm and the corresponding fraction of 5′-dA was collected, 

lyophilized and dissolved in deionized water. The samples were analyzed by high 

resolution LC/MS. 

 

MftA product purification assay 

Reactions were performed in anaerobic chamber. All the reagents were prepared 

as described above. The reagents were mixed in the following order: reaction buffer (50 

mM HEPES, 100 mM NaCl, pH 7.5), 2 mM DTH, 8 mM DTT, 300 μM MftA, 300 μM 

GST-MftB, 1 mM SAM, 300 μM MftC. Reactions were carried out at room temperature 

for 4 h. All the following steps were performed as described above. The products of the 

reactions were tracked on the chromatogram monitoring absorbance at 280 nm and the 

corresponding fraction of modified MftA was collected, lyophilized and dissolved in 

D2O. 
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Nuclear Magnetic Resonance assay 

All NMR spectra were recorded on a Bruker UltraShield 500/54 Plus 

spectrometer. Spectra were processed and analyzed in TopSpin 2.1 program (Bruker). All 

peptide NMR samples were prepared in D2O. Suppression of H2O signal was applied at a 

frequency of 2353.37 Hz. Signals were integrated and coupling constants were calculated 

in MestReNova 10.0.1 program (Mestrelab Research). 

 

Site-directed mutagenesis 

All the mutants were prepared using QuikChange protocol (Stratagene) with the 

Phusion polymerase. The mftA/pET28HST plasmids both with and without N-terminal 

methionine codon replaced to tryptophan (M1W) were used as template for PCR. The 

primers used for constructing the corresponding mutants are described in table 1. The 

mutants were sequence-verified and transformed into BL21 Star(DE3) competent cells. 

 

Mutation Oligonucleotides 

M1W Forward: TACTTCCAAGGCCATTGGGACCGTGAGACC 

Reverse: GGTCTCACGGTCCCAATGGCCTTGGAAGTA 

Y30S Forward: GCATGTGCGGCGTTTCCTAACTCGAGCAC 

Reverse: GTGCTCGAGTTAGGAAACGCCGCACATGC 

Y30F Forward: GCATGTGCGGCGTTTTCTAACTCGAG 

Reverse: CTCGAGTTAGAAAACGCCGCACATGC 

Y30W Forward: GCATGTGCGGCGTTTGGTAACTCGAG 

Reverse: CTCGAGTTACCAAACGCCGCACATGC 

V29A Forward: GCATGTGCGGCGCGTACTAACTCGAG 

Reverse: CTCGAGTTAGTACGCGCCGCACATGC 

 

Table 1. Primers used to construct the mutants 
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MftA mutant reactions 

Reactions were performed in anaerobic chamber. All proteins were purified 

anaerobically or buffer-exchanged to anaerobic buffer. All the other reagents were 

transferred dry to the anaerobic chamber and dissolved in anaerobic deionized water. The 

reagents were mixed in the following order: reaction buffer (50 mM HEPES, 100 mM 

NaCl, pH 7.5), 2 mM DTH, 8 mM DTT, 100 μM MftA, 100 μM GST-MftB, 1 mM 

SAM, 50 μM MftC. Reactions were carried out at room temperature for 18 h, then were 

centrifuged to remove any precipitated reagents and the supernatant was analyzed by 

reverse-phase chromatography on the Shimadzu Prominence-i LC-2030C HPLC using 

4.6 × 250 mm C18 5 μm column (Phenomenex) and 5 mM sodium phosphate (pH 7.5, 

buffer A) and 5 mM sodium phosphate in 70% acetonitrile (pH 7.5, buffer B) as solvents. 

The products of the reactions were tracked on the chromatogram monitoring absorbance 

at 280 nm. The reaction mixture and starting MftA material samples were analyzed by 

high resolution LC/MS at the University of Colorado Anschutz Medical Campus Mass 

Spectrometry Facility. 
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CHAPTER THREE: RESULTS 

MftC contains at least two [4Fe-4S] clusters 

The mftC gene from Mycobacterium ulcerans was cloned and expressed in 

Escherichia coli. MftC protein was purified in anaerobic conditions to prevent unwanted 

oxidation of iron-sulfur clusters from by molecular oxygen. A fraction of the protein was 

used as it is (denoted “as-purified”) while the other part was reconstituted with excess of 

iron and sulfur before usage (assigned “reconstituted”). The quality of the purification 

was monitored by SDS-PAGE (Figure 13A). The protein was estimated to be in a mass 

range of 40-42 kDa, which is consistent with the calculated molar mass of MftC. The 

UV-visible absorption spectrum of as-purified and reconstituted MftC (Figure 13B) 

shows a characteristic peak at 280 nm, and a specific “shoulder” at ~410 nm, which is 

characteristic for [4Fe-4S] cluster [60]. This “shoulder” is relatively larger in the case of 

reconstituted protein, consistent with the reconstituted MftC containing more [4Fe-4S] 

clusters per protein. The exact number of iron-sulfur clusters per polypeptide chain of 

MftC was determined through iron and sulfide quantification assays. From the analysis, 

we found that as-purified MftC contained 4.1 ± 0.1 equivalents of iron and 4.1 ± 0.1 

equivalents of sulfide, which indicates presence of at least one [4Fe-4S] cluster. 

Reconstituted MftC was shown to have 10.0 ± 0.2 equivalents of iron and 8.1 ± 0.3 

equivalents of sulfide, which indicates presence of at least two [4Fe-4S] clusters. 
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Figure 13. (A) Quality control of MftC purification by SDS-PAGE. Protein ladder (lane 

1), as-purified MftC (lane 2), reconstituted MftC (lane 3); (B) UV-visible absorbance 

spectra of as-purified (orange) and reconstituted (brown) MftC. 

 

For further confirmation of the presence of [4Fe-4S] clusters within the MftC, 

EPR analysis of the MftC was performed. MftC was treated with an excess of DTH in 

order to have all [4Fe-4S] clusters within MftC at +1 oxidation state. The local maximum 

in the CW spectrum is at g = 2.05, and the intensity goes through zero value at g = 1.93 

(Figure 14). These values are consistent with the corresponding g-values of another RS-

SPASM enzyme, PqqE (2.05 and 1.94, respectively) [61]. 
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Figure 14. EPR spectra of reconstituted MftC. Background corrected spectrum at 25 K 

(solid black line), first derivative of the field-swept echo-detected spectrum at 10 K 

(dashed red line), simulation calculated in the Monmer program (dashed blue line) [50]. 

 

MftC can perform SAM cleavage in the presence of DTT as a reductant 

MftC has been proposed to be a radical SAM protein [44] which means that this 

protein should catalyze the reductive cleavage of SAM. Cleavage of SAM requires DTH, 

because, as mentioned above, it reduces [4Fe-4S] cluster to +1 oxidation state, at which 

the cluster is able to perform the catalysis. We tested the ability of as-purified and 

reconstituted MftC to cleave SAM in the presence of DTH by monitoring formation of 5′-

dA using reverse-phase HPLC. HPLC is often used to separate SAM and 5′-dA from 

each other [41]. In addition to DTH, MftC requires DTT to cleave SAM (Figure 15A). 

DTT is likely needed to reduce and reincorporate an iron cation into the radical SAM 

[4Fe-4S] cluster [62]. To determine the conditions under which MftC performs the 

cleavage with maximum efficiency, we varied the concentration of DTT from 0.5 to 10 
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mM in the reaction. The dependence of the reaction rate on DTT concentration fits 

Michaelis-Menten curve (Figure 15B). The optimal concentration of DTT appeared to be 

8 mM, so it was used in further experiments. In addition, it was found that reconstituted 

MftC catalyzes SAM cleavage more efficiently (with kcat = 0.058 min-1 for reconstituted 

versus 0.044 min-1 for as-purified MftC), probably because of full presence of radical 

SAM [4Fe-4S] clusters in the protein. 

 

Figure 15. SAM cleavage performed by MftC depends on the presence of DTT. (A) 

HPLC chromatograms representing formation of 5′-dA during the reaction in the 

presence or absence of different reagents. Reconstituted MftC, SAM, DTH, and DTT 

(red), a mix with no DTT (blue), no MftC (cyan); SAM control (black), 5′-dA control 

(light green). [50] (B) Michaelis-Menten graph of SAM cleavage dependence on the DTT 

concentration, performed by as-purified (orange) and reconstituted (brown) MftC. 

 

MftC catalyzes decarboxylation of the C-terminal tyrosine of MftA 

It was proposed that MftA peptide is likely a potential substrate for MftC, and 

MftB, which is a small protein, likely participates in MftA modification [44]. To 

investigate the conditions of MftA modification by MftC, we used reverse phase HPLC. 

MftA starting material and a possible product of the modification might probably be 

separated in an HPLC column due to possible differences in their properties, such as 

mass and hydrophobicity. Mutant M1W MftA was constructed to increase intensity of the 
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absorbance at 280 nm, which helped to obtain a better signal on HPLC, because the 

molar extinction coefficient of wild-type MftA is 1490 M-1•cm-1, and incorporation of 

tryptophan increases it up to 6990 M-1•cm-1 (calculated in ExPASy ProtParam web tool). 

HPLC analysis showed the appearance of a new peak at ~7.7 min when all the reagents 

including MftA, MftB, MftC, SAM, DTH and DTT were in the reaction mix, whereas in 

the controls where one of the reagents was lacking (ΔMftC, ΔSAM or ΔMftB) this peak 

did not appear (Figure 16). Formation of a new species represented by the new peak is 

consistent with the notion that MftC is modifying MftA. Notably, MftB was shown to be 

necessary for the reaction to proceed. As a small protein, it likely acts like a chaperone 

for MftA in the same manner as a small protein PqqD operates towards PqqA peptide 

during the modification by a radical SAM enzyme PqqE in PQQ biosynthetic pathway [9, 

11]. We concluded that MftC catalyzes a certain modification of MftA in the presence of 

MftB. In all further experiments the reactions were performed with the following 

reagents: MftA variant substrate, MftB, reconstituted MftC, SAM, DTH and DTT, 

varying the concentrations of the reagents when needed. 
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Figure 16. MftA modification by MftC depends on the presence of MftB. HPLC 

chromatograms showing appearance of a new peak at ~7.7 min during the reaction in the 

presence or absence of different reagents. M1W MftA, MftB, reconstituted MftC, SAM, 

DTH and DTT (black), a mix with no MftC (red), no SAM (blue), no MftC (cyan); 5′-dA 

control (purple), M1W MftA control (pink) [50]. 

 

To confirm that the new chemical reaction takes place, we analyzed the reaction 

mixes by high resolution LC/MS. By using LC/MS, we expected to detect a mass change 

on MftA, as a result of the reaction. Analysis of M1W MftA starting material showed a 

mass m/z = 1185.54 ([M + 3H]3+, predicted 1185.54, Figure 17A). Analysis of the 

reaction mix showed a new species with a mass m/z = 1170.20 ([M + 3H]3+, Figure 17B), 

which was never observed in control reaction mixes lacking any of the reagents. The 

difference between the starting material and the product appeared to be 46 Da, which was 

suggested to be a loss of 1C, 2O and 2H (with a possible new bond formation). 

Simulation of a mass spectrum data for M1W MftA without 1C, 2O and 2H is in good 

agreement with the obtained result. 
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Figure 17. High-Resolution MS analysis of MftA modification. (A) Starting MftA 

material, (B) modified MftA material. Collected data for MS measurements are in black, 

simulated spectra for the corresponded [M + 3H]3+ ions are in red. 

 

To determine the location where the modification likely occurs, the [M + 3H]3+ 

ions of both M1W MftA starting material and product were analyzed by tandem MS/MS. 

The b- and y-ions (N- and C-terminal polypeptide leftovers of an amide bound break, 

respectively) obtained from tandem MS/MS were used as a map to determine the position 

where the change occurred. We were unable to find b31-ion and any y-ions in the product, 

(Figure 18B) that would be related to starting material (Figure 18A), whereas all the other 

b-ions that were also found in the starting material were presented, including b30. 

 

Figure 18. Tandem MS/MS analysis. (A) Starting MftA material, (B) Modified MftA 

material. Found b-fragments are in red, found y-fragments are in blue. Predicted 

fragments that were not found are in black [50]. 
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From all this data, we concluded that modification of MftA is the decarboxylation 

at C-terminal tyrosine residue, with subtraction of two hydrogen atoms. Our first 

hypothesis was that this loss of 2H occurs due to the formation of Cα-Cβ double bond at 

the C-terminal residue (Figure 19). 

 

Figure 19. Initially proposed mechanism of the MftA modification by MftC. 

 

5′-dA• radical abstracts hydrogen from Cβ-position of C-terminal tyrosine 

We proposed that 5′-dA• radical abstracts hydrogen from Cα- or Cβ- position of 

tyrosine. To test this hypothesis and determine which hydrogen is abstracted, we labeled 

MftA peptide with tyrosine deuterated at Cα- and Cβ- position, isolated 5′-dA formed in 

the process of reaction and analyzed by high-resolution LC/MS. We expected that 5′-dA 

would have a mass larger by 1 Da in case of a deuterium abstraction (5′-dA-D) instead of 

a natural hydrogen. M1W MftA peptide was labeled with ring-2,6-D2, 2-D (at Cα) or 3,3-

D2 L-tyrosine (at Cβ). According to the high-resolution LC/MS data (Figure S1A, S1B), 

the level of deuterated tyrosine incorporation into the peptide was ~40% in case of Cα and 

~100% in Cβ. The concentrations of all the reagents were set to minimize the amount of 

SAM consumed in order to increase the ratio of a deuterated 5′-dA presented versus 

natural 5′-dA, expecting 1:1 ratio. The HPLC fractions of 5′-dA were collected and 

analyzed by high resolution LC/MS. Analysis of a commercially produced 5′-dA (Sigma 
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Aldrich), serving as a negative control, showed a mass of m/z = 252.1098 ([M + H]+, 

predicted 252.1091, Figure 20A), and simulation of 5′-dA-D spectrum predicts 

appearance of a mass m/z = 253.1154 ([M + H]+, Figure 20B). After the reaction with Cα-

deuterated tyrosine, 5′-dA had a signal of m/z = 252.1095 ([M + H]+, Figure 20C), 

consistent with the negative 5′-dA control, whereas in case of Cβ-deuterated tyrosine we 

were able to find ~30% of 5′-dA-D (m/z = 253.1158, [M + H]+) in addition to the 

unlabeled 5′-dA (m/z = 252.1095, [M + H]+, Figure 20D). From our findings, we can 

propose that it is the Cβ-hydrogen of the C-terminal tyrosine that is abstracted by 5′-dA• 

radical as an initial step in the mechanism of MftA modification. 

 

Figure 20. High-Resolution MS data of 5′-dA fractions purified by HPLC from reactions 

with deuterated labeled MftA variants. (A) 5′-dA control, (B) simulated spectra for 5′-dA 

with incorporation of one deuterium, (C) 5′-dA from the reaction with Cα-deuterated 

Tyr30 MftA, (D) with Cβ-deuterated Tyr30 MftA, (E) with Cβ-deuterated Val29 MftA 

variant. 
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MftA modification by MftC results in formation of two distinct products 

To increase the quality of HPLC analysis, we changed analytical C18 HPLC 

column to a special C4 HPLC column constructed for peptide analysis. We noticed that 

in this case there are two peaks that appear on HPLC chromatogram during the reaction, 

found at ~14.3 (designated as “Product 1”) and ~14.6 min (designated as “Product 2”), 

also the starting material was found at ~13 min (Figure 21A). From ~95% conversion of 

MftA starting material into the products, we observed ~90% of Product 1 and 10% 

Product 2. These peaks represent two different species with different UV-visible 

absorbance spectra patterns (Figure 21B): Product 1 has an absorbance maximum at ~278 

nm, similarly to the starting material, whereas Product 2 has an absorbance maximum 

shifted to ~283 nm, with a specific “shoulder” at ~305 nm. Product 1 and product 2 were 

separated from each other by HPLC and analyzed by high-resolution LC/MS. Both 

products were found to have the same mass m/z = 1170.20 ([M + 3H]3+, Figure S2), 

which indicates the loss of 1C, 2O and 2H in both cases. Considering this, we assumed 

that MftC catalyzed decarboxylation of MftA with formation of Product 1 and Product 2 

as isomeric species. 
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Figure 21. MftA modification by MftC results in formation of two distinct products, with 

the predominance of Product 1. (A) HPLC chromatograms of the reactions representing 

M1W MftA starting material (black) and its conversion into M1W Product 1 and M1W 

Product 2 (red). (B) UV-visible absorbance spectra of M1W MftA starting material 

(black), M1W Product 1 (red) and M1W Product 2 (blue). 

 

MftA Product 1 does not contain an unsaturated carbon-carbon bond 

To determine the exact structures of MftA modification products, we used 1H 

NMR. M1W MftA starting material contains only three aromatic residues: C-terminal 

tyrosine, tryptophan (due to the M1W mutation), and histidine (purification leftover), 

therefore we anticipated that appearance of a carbon-carbon double bond would be 

detected in the corresponding region (δ ~ 4.50 to 7.00 ppm). 1H NMR spectrum of M1W 

MftA starting material showed 11 signals of hydrogens in the aromatic region (δ ~ 5.50 

to 8.50 ppm). Two doublets at δ ~ 6.70 and ~ 7.00 ppm belong to the tyrosine hydrogens, 

the tryptophan hydrogens are represented by two doublets at δ ~ 7.40 and 7.47 ppm, two 

triplets at δ ~ 7.05 and 7.15 and a singlet at δ ~ 6.65 ppm, and the last two singlets at δ ~ 

7.11 and ~ 7.84 ppm represent the histidine hydrogens (Figure 22A). After the reaction, 

M1W MftA Product 1, as a predominant product, was purified by HPLC and analyzed by 

1H NMR. If the initially assumed mechanism is true, the substance after modification 
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would have a carbon-carbon double bond, so we expected to see a formation of two new 

doublets in the δ ~ 5.50 to 7.50 ppm region. Instead, we observed the appearance of two 

new singlets in this region, one at ~7.27 ppm and the other one at ~8.33 ppm, but no new 

doublets (Figure 22B). These results indicate that a carbon-carbon double bond is not 

formed. Moreover, it is likely that the new singlets are protected hydrogens from amide 

bonds on the peptide. 

 

Figure 22. Aromatic region of 1H NMR spectra of M1W MftA starting material (A), 

M1W Product 1 (B). 

 

To validate this finding, we analyzed the structure of the Product 1 by 13C NMR. 

For this approach, the sole natural tyrosine within the M1W MftA was substituted with 

13C9, 
15N-labeled tyrosine. The peptide was expressed in E. coli RF4(DE3) cell line to 

avoid degradation of labeled tyrosine, then purified by HPLC. According to the high-

resolution LC/MS data (Figure S3A), the level of the labeled tyrosine incorporation into 
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the peptide was ~100%. NMR spectrum of the 13C9-Tyr30 MftA showed 7 carbon 

signals, the most notable among them are δ ~ 57 and ~ 37 ppm representing Cα and Cβ 

carbons, respectively, and δ ~ 177 ppm that belongs to a carbon from the carboxyl group 

(Figure 23A).  The product of the reaction with the 13C9-Tyr30 MftA was purified by 

HPLC and analyzed by high-resolution LC/MS. LC/MS analysis of the 13C-Product 1 

(Figure S3B) showed a mass lighter by 47 Da compared to the 13C9-Tyr30 MftA, which 

indicated a loss of 113C, 2O and 2H. After the confirmation by LC/MS, the 13C-Product 1 

was analyzed by NMR. Based on the initially assumed mechanism, we expected to see 

the disappearance of a signal at δ ~ 177 ppm due to the decarboxylation at tyrosine. In 

case of an unsaturated bond formation, we would see a shift of the signals at δ ~ 37 and δ 

~ 57 ppm into the δ ~ 100-130 ppm region. The resulting NMR spectrum of the 13C-

Product 1 showed that the signal at δ ~ 177 ppm disappeared, but the signals 

corresponding to Cα and Cβ carbons did not shift significantly (Figure 23B). This data is 

not consistent with the formation of an unsaturated carbon-carbon bond in MftA. We 

could not predict the structure of the predominant product being limited by the original 

hypothesis, and the yield of the other product was too small to be analyzed by NMR. 
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Figure 23. 13C NMR spectra of 13C9-Tyr30 MftA (A) and 13C-Product 1 (B). 

 

New hypothesis: MftC catalyzes cross-linking between Val29 and Tyr30 through an 

intermediate 

Based on the data above, we devised a new hypothesis that the unsaturated bond 

containing species might not be a final product, but rather an intermediate that undergoes 

further cyclization with penultimate valine residue (Figure 24). According to predictions 

of 13C NMR spectra for possible variants of the final product [63], we suggest that the 

cyclization likely occurs at Cα-position of tyrosine. In this case, MftA Product 1, as a 
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predominant product, might be the cyclized species that does not contain unsaturated 

bonds, whereas MftA Product 2, as a minor product, is probably the intermediate leftover 

with an unsaturated carbon-carbon bond.  

 

Figure 24. Possible transformations of the double-bond containing intermediate into 

various cross-linked final product variants. 

 

To test if the penultimate valine was involved, we mutated it to alanine using the 

M1W MftA construct, and carried out reactions with MftC. HPLC analysis of the 

reaction with the V29A construct showed two product peaks, found at ~13.8 and ~14.2 

min, along with the starting material at ~12.8 min (Figure 25A). Interestingly, from ~90% 

conversion of M1W V29A MftA starting material into the products, we observed ~10% 

of Product 1 and 90% Product 2, which is the opposite to the case of the reaction with the 

“natural” MftA peptide, however, this ratio varied from 10:90 to 40:60. UV-visible 

absorbance spectrum patterns of all the species were similar to the corresponding ones in 

case of M1W MftA: M1W V29A Product 1 showed an absorbance maximum at ~278 nm 

similar to the M1W V29A starting material, whereas M1W V29A Product 2 had an 

absorbance maximum at ~283 nm, with the same specific “shoulder” at ~305 nm (Figure 

25B). Moreover, high-resolution LC/MS analysis showed a difference of 46 Da between 
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the M1W V29A starting material with m/z = 1176.18 ([M + 3H]3+, Figure S4A) and 

M1W V29A Product 2 with m/z = 1160.85 ([M + 3H]3+, Figure S4B), which represents a 

loss of 1C, 2O and 2H in a possible case of a decarboxylation with a double carbon-

carbon bond formation, proposed for the intermediate. 

 

Figure 25. M1W V29A MftA modification by MftC leads to the predominance of 

Product 2. (A) HPLC chromatograms of the reactions representing M1W V29A MftA 

starting material (black) and its conversion into M1W V29A Product 1 and M1W V29A 

Product 2 (red). (B) UV-visible absorbance spectra of M1W V29A MftA starting 

material (black), M1W V29A Product 1 (red) and M1W V29A Product 2 (blue). 

 

To determine the exact structure of M1W V29A Product 2, we used 1H NMR. 

The aromatic region of 1H NMR spectrum (δ ~ 5.50 to 8.50 ppm) of the M1W V29A 

starting material is proposed to be the same as the corresponding M1W MftA, because 

valine-to-alanine change has no significant effect on the tyrosine residue within the 

aromatic region. Therefore, we used 1H NMR spectrum of M1W MftA starting material 

as a reference (Figure 26A). After the reaction with MftC, the formed M1W V29A 

Product 2 was purified by HPLC and analyzed by 1H NMR. We noticed the appearance 

of two new doublets at δ ~ 6.27 and 7.25 ppm (Figure 26B) which represented formation 

of a double carbon-carbon bond. The J-coupling constant of the well-resolved doublet at 
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δ ~ 6.27 ppm was 14.7 Hz, which is specific for trans-configuration of the double bond. 

Considering the data obtained, we concluded that V29A mutation within MftA results in 

the accumulation of an intermediate containing a double carbon-carbon bond in a trans-

configuration. 

 

Figure 26. Aromatic region of 1H NMR spectra of M1W MftA starting material (A) and 

M1W V29A Product 2 (B). 

 

Based on the new hypothesis, the MftA Product 1 as a “final” product of MftC 

reaction is proposed to have a cross-linking carbon-carbon bond between Cα carbon of 

the C-terminal tyrosine and a carbon in the penultimate valine side chain. To test this, 

MftA was labeled with deuterated D8-Val29. MftA contains three more valine residues 

within the peptide chain, V13, V18, and V21, therefore they were mutated to isoleucine 

residues as the amino acid with the closest similarity of side chain, in order to label V29 
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only. According to the high-resolution LC/MS data (Figure S5A), the level of D8-valine 

incorporation into the peptide was ~50%. We would expect mass change of 47 Da during 

the reaction because of the deuterium loss instead of natural hydrogen. After the reaction 

with D8-Val29 MftA, the product was 47 Da lighter with m/z = 1168.22 ([M + 3H]3+, 

predicted 1168.22, Figure S5B), which indicated a loss of 1C, 2O, 1H and 1D. From this, 

we can conclude that the penultimate valine is involved in the reaction, possibly involved 

in a cross-linked product. 

To determine which carbon was participating in the formation of a new bond, 

MftA was labeled with specifically deuterated 3-D-Val29. The V13I/V18I/V21I triple 

mutant MftA was used to label V29 only. Again, we would expect that after the reaction 

with MftC mass change of MftA would be 47 Da if the deuterium is abstracted from Cβ-

position, and 46 Da in case of abstraction of a natural hydrogen from Cα- or Cγ-position 

of the penultimate valine. According to the high-resolution LC/MS data (Figure S6A), the 

level of the 3-D labeled valine incorporation into the peptide was ~100%. After the 

reaction with 3-D-Val29 MftA, the product was 47 Da lighter, with m/z = 1165.88 ([M + 

3H]3+, predicted 1165.88, Figure S6B), as in the case of D8-Val29 MftA, which indicated 

a loss of 1C, 2O, 1H and 1D. Based on this, we propose that a possible cross-linking 

occurs between the C-terminal tyrosine and the Cβ-carbon of the penultimate valine. 

The cross-linking is accompanied by an act of abstraction of a hydrogen from 

Val29, which is probably performed by 5′-dA• radical. It should be noted that when the 

penultimate valine was mutated to alanine, the corresponding Product 1 was a minor 

product, which means that the cross-linking may still occurred at a lower efficiency. This 
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is probably due to the relative instability of a primary radical compared to a tertiary one 

formed in the reaction with participation of alanine and valine side chains, respectively. 

To verify this, we collected the HPLC fraction of 5′-dA formed in the reaction with 3-D-

Val29 MftA and analyzed it by high resolution LC/MS, as described above.  We found 

~12% of 5′-dA-D with m/z = 253.1155 ([M + H]+) in addition to the unlabeled 5′-dA with 

m/z = 252.1100 ([M + H]+, Figure 20E). From this finding, we propose that the final 

mechanism of MftA modification by MftC requires two equivalents of 5′-dA• radical to 

perform the whole catalysis proceeding through formation of the decarboxylated 

intermediate, resulting in the Val29-Tyr30 cross-linked final product (Figure 27). 

 

Figure 27. Revised mechanism of the MftA modification by MftC, including 

transformation of the intermediate into the cross-linked final product. 

 

Labile proton at MftA C-terminus is required for the catalysis 

As we proposed initially, the possible mechanism of MftA modification includes 

formation of a benzenone species from an intermediate radical (Figure 19). This step 
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involves a loss of a phenolic proton, which then is taken back during decarboxylation. 

That may be possible only if the proton is labile, e.g. exchanged easily. To test if the 

labile proton is required for the reaction to proceed, we mutated the C-terminal tyrosine 

in M1W MftA peptide to phenylalanine, serine and tryptophan. All the peptide variants 

were verified by high-resolution LC/MS (Figure S7). Reactions with the mutants were 

analyzed by HPLC with further analysis of UV-visible absorbance spectrum within 220-

340 nm region. 

At first, we substituted the C-terminal tyrosine by phenylalanine (Y30F), which is 

lacking the p-hydroxyl group and only contains a relatively inert hydrogen in its place. 

HPLC analysis of the reaction mix did not show any possible product with this mutant 

(Figure 28A). High-resolution LC/MS analysis also did not show appearance of any new 

species distinct from the M1W Y30F starting material with a mass m/z = 1180.20 ([M + 

3H]3+, predicted 1180.20). This data suggests that the p-hydroxyl group is an important 

component for MftC catalysis. 

Next, we exchanged the C-terminal tyrosine to serine (Y30S) because it has a 

hydroxyl group similarly to tyrosine. HPLC analysis showed new species formed during 

the reaction with Y30S MftA. The starting material eluted at ~9.6 min, the possible 

product appeared at ~10.1 min, both shared the maximum absorbance at ~278 nm in the 

UV-visible absorbance spectrum (Figure 28B). In the LC/MS data for the reaction mix 

(Figure 28B) we could find the starting material with a mass 1160.19 ([M + 3H]3+) and 

the corresponding decarboxylation product with loss of 46 Da (m/z = 1144.86, [M + 

3H]3+). In addition, we could observe appearance of a new species with m/z = 1150.19 
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([M + 3H]3+), which was not shown by HPLC.  Mass of this species is less by 30 Da than 

that of the Y30S starting material, indicating the loss of 1C, 1O, and 2H, which possibly 

represents transformation of the serine into glycine. We can conclude that MftC can 

perform both specific and even non-specific catalysis towards the peptide with a C-

terminal serine, which is not a natural substrate for this enzyme. 

Finally, we substituted the C-terminal tyrosine by tryptophan (Y30W) because its 

side chain has aromatic properties similar to tyrosine. In addition, a hydrogen bound to 

the indole nitrogen has a similar pKa to tyrosine, as well. HPLC analysis showed 

appearance of two new peaks: one was eluted at ~10 min and the other one showed up at 

~11.8 min (Figure 28C). The first peak eluted before the M1W Y30W starting material 

(at ~10.3 min). UV-visible absorbance spectrum of this species showed maximum 

absorbance at 260 nm and a “shoulder” at ~280 nm. Further analysis of the reaction by 

high-resolution LC/MS showed the starting material with a mass of m/z = 1193.21 ([M + 

3H]3+) and the corresponding decarboxylation product with loss of 46 Da (m/z = 1177.87, 

[M + 3H]3+). Besides those two, a new peptide-based species with a mass of m/z = 

1276.24 ([M + 3H]3+) was found. This species is 249.1 Da heavier than the starting 

material. As we noticed, the mass of 5′-dA (251.1 Da) is close to that difference. This 

compound was likely formed in the process of a covalent binding of one 5′-dA molecule 

by the tryptophan residue, which would explain the loss of 2H to result in the exact mass 

match. In this case, the addition of 5′-dA is likely to be responsible for the appearance of 

the maximum absorbance at 260 nm, which is a characteristic pattern for adenosine. It 

should also be noticed that abundance levels of this species and the starting material in 
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the mass spectrum are almost the same, as well as the areas of the peaks on the HPLC 

chromatogram related to the major product and the starting material. In this case, we can 

match this peak to the corresponding heavy peptide species. Based on the data above, we 

propose that MftC can catalyze not only decarboxylation of a C-terminal tryptophan, 

which is not its natural substrate, but also a covalent addition of 5′-dA to this amino acid. 

However, the exact position of this addition remains unknown. 
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Figure 28. HPLC and high-resolution MS analysis of MftA mutants’ modification by 

MftC. (A) M1W Y30F, (B) M1W Y30S, (C) M1W Y30W mutant. UV-visible 

absorbance spectra of the corresponding species are presented as insets. In all cases, the 

corresponding starting materials are colored in black, and the reacted peptide variants are 

in red. Green line in UV-vis represents spectrum for 5′-dA bound M1W Y30W peptide 

product.
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CHAPTER FOUR: DISCUSSION AND SUMMARY 

MftC is a radical SAM enzyme that contains at least two [4Fe-4S] clusters. Iron-

sulfide quantification analysis of MftC from M. ulcerans Agy99 clearly showed the 

presence of two [4Fe-4S] clusters. The RS-cluster was ligated by the 30-CX3CXФС-37 

motif; the C37A mutation in MftC resulted in loss of the cluster, and this mutant was not 

able to perform SAM cleavage (data not shown). Location of the other cluster was not 

determined precisely; its role in the catalysis remains unclear. Interestingly, the same RS-

SPASM protein from different species can ligate different amounts of [4Fe-4S] clusters, 

two [61] or three [9]. Therefore, one cannot rule out the possibility for MftC to contain 

three [4Fe-4S] clusters. Nevertheless, the exact number of the auxiliary clusters ligated 

by MftC may not be critical for the catalysis. 

Modification of MftA performed by MftC leads to the formation of two distinct 

isomeric products, with a ~90:10 ratio of Product 1 to Product 2. In case of using V29A 

MftA construct instead of the natural MftA, the ratio of the products was inverted. Since 

MftC is unlikely to perform the proper catalysis on the unnatural substrate, the reaction 

with the V29A MftA mutant was likely held at the halfway point of the entire 

modification. Consequently, Product 2 is probably an intermediate and Product 1 is the 

final product of the two-step modification of MftA. The intermediate was shown to 

contain a carbon-carbon double bond at the C-terminal tyrosine leftover. Simultaneous 

abstraction of an H-atom from the penultimate valine and vanishing of the carbon-carbon 
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double bond at the C-terminal tyrosine leftover is likely a result of cross-linking between 

these two residues. There is also a strong evidence that each step of this modification 

requires an equivalent of 5′-dA• radical. 

Since modification of MftA by MftC is only the first step of the mycofactocin 

biosynthetic pathway, the product of this modification will serve as a starting material for 

any subsequent step. It is not known which of the two products may be a natural substrate 

for this. However, it has been shown recently that the creatininase MftE performs the 

second step of the pathway, resulting in formation of VY** species containing a carbon-

carbon double bond [54]. That leads to the possibility that MftE used the intermediate 

Product 2 as its substrate, rather than the final Product 1.  However, this reaction was 

performed in situ with MftC, and the product was never isolated as is. This leaves the 

opportunity to speculate that MftE could cleave both Products 1 and 2, resulting in 

formation of two distinct low molecular weight species. If this assumption is true, then 

the preferred substrate would be considered as a natural intermediate of the mycofactocin 

pathway. The LC/MS data provided in [54] showed presence of some ions derived from 

the double-bond containing variant of VY** which is an indirect evidence that Product 2 

might be a natural product of the reaction performed by MftC. Further investigation of 

the low molecular weight products of MftE, including NMR analysis of their structures, 

would help to determine the natural product of MftC.  

Also, MftC was able to react with Y30S and Y30W MftA constructs, performing 

its specific catalysis. According to the corresponding UV-visible spectroscopy data, it is 

likely that the specific products formed during the catalysis contain a cross-link with the 
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penultimate valine rather than a carbon-carbon double bond. However, the exact 

structures of these products were not determined. In addition to that, MftC implemented 

an unanticipated, non-specific catalysis on Y30S and Y30W, distinct for each construct, 

resulting in formation of non-specific products. Since these constructs are not natural 

substrates for MftC, it is unlikely that any of their corresponding products can undergo 

further modifications of the mycofactocin pathway properly. Therefore, these constructs 

have a potential to be used as possible inhibiting agents for this pathway, which might 

potentially be critical for vital activity of Mycobacterium species. Construction of new 

prospective drugs against M. tuberculosis could be based on these mutant variants of 

MftA peptide. 
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APPENDIX A 

Supplemental Information 

For all the figures below, collected data for MS measurements are in black, 

simulated spectra for corresponded [M + 3H]3+ ions are in red. 

 

 
Figure S1. High-Resolution MS analysis of M1W MftA starting materials, labeled by 

(A) ring-2,6-D2, 2-D tyrosine, (B) 3,3-D2 tyrosine. 

 

 

 
Figure S2. High-Resolution MS analysis of M1W reaction products. (A) M1W Product 

1, (B) M1W Product 2. 
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Figure S3. High-Resolution MS analysis of 13C9-Tyr30 MftA modification. (A) 13C9-

Tyr30 MftA starting material, (B) 13C-Product 1. 

 

 
Figure S4. High-Resolution MS analysis of M1W V29A MftA modification. (A) M1W 

V29A MftA starting material, (B) M1W V29A Product 2. 

 

 
Figure S5. High-Resolution MS analysis of D8-Val29 MftA modification. (A) D8-Val29 

MftA starting material, (B) D8-Val29 Product 1. 
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Figure S6. High-Resolution MS analysis of 3-D-Val29 MftA modification. (A) 3-D-

Val29 MftA starting material, (B) 3-D-Val29 Product 1. 

 

 
Figure S7. High-Resolution MS analysis of MftA C-terminal mutant starting materials. 

(A) M1W Y30F, (B) M1W Y30S, (C) M1W Y30W. 
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