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Abstract
The heuristic search community traditionally uses A* as the

baseline algorithm for their research methods. Research papers

in the road networks community, however, often build upon Di-

jkstra’s algorithm and use Bidirectional Dijkstra’s algorithm as

their baseline. This thesis investigates the performance of A* and

Bidirectional Dijkstra in road networks to see how they compare

and to see if there is a principled explanation for the different

approaches. Our analysis reveals why Bidirectional Dijkstra can

perform well in this domain, but also shows a simple mistake

that can be made when building test problems that hurts the

performance of A*.
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Chapter 1

Introduction
Shortest path problems are one of the most-studied combinato-

rial optimization problems in the literature [10, 11, 12, 3, 15, 14].

Given a starting point and a destination, the task of point-to-

point shortest path problems is to find the optimal path from the

starting point to the destination. “Optimal” refers to shortest

time, shortest distance, or least total path cost. Shortest path

problems have a wide-range of applications in areas such as com-

munications [14], transportation [10], game development [9] and

AI [15]. Dijkstra’s algorithm [2] is the “classic” solution for this

problem. But querying shortest paths in large problems, such as

road-networks, would result in query-times that are unacceptably

slow in real world applications. For example, if we take a country

sized graph like the USA with tens of millions of vertices, Dijk-

stra’s algorithm on a server takes time in the order of seconds

to answer a point-to-point query. Since servers typically handle

thousands of queries per second, they need to answer in millisec-
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onds, not in seconds. To this end, there has been a considerable

interest in the speed-up techniques to shortest path algorithms.

Two of those techniques are:

1. Goal-directed Search

2. Bidirectional Search

Goal-directed search takes into account the knowledge of goal

and speeds up the search by using heuristics that guide the search

toward the goal instead of exploring regions in all directions. The

A* path finding algorithm is an example of this technique. This

algorithm is an extension of Dijkstra’s algorithm and was intro-

duced in 1968 at Stanford Research Institute [5].

Bidirectional Search, as the name implies, searches in two di-

rections at the same time: one forward from the initial state and

the other backward from the goal. The search stops when searches

from both directions meet and the optimal solution is proven. In

many cases, it makes the search faster. For example, in a search

problem modeled by a tree with branching factor b and solution

depth d, a bidirectional search will expand 2bd/2 states instead of

bd required by unidirectional search. Bidirectional Dijkstra algo-

rithm is an example of this technique.
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The heuristic search community traditionally uses Goal-directed

search techniques to speed up Dijkstra’s algorithm and get A*.

It then uses A* as the baseline algorithm for their research meth-

ods. Research papers in the road networks community, however,

often use Bidirectional Search techniques to speed up Dijkstra’s

algorithm and use Bidirectional Dijkstra’s algorithm as a baseline

algorithm [4, 13]. The purpose of this thesis is to investigate the

performance of A* and Bidirectional Dijkstra in road networks to

see how they compare and to see if there is a principled explana-

tion for the different approaches. We compared and analyzed the

performance of A* and Bidirectional Dijkstra on road networks

of the USA. Our analysis reveals why Bidirectional Dijkstra can

perform well in this domain, but also shows a simple mistake

that can be made when building test problems that can hurt the

performance of A*.
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Chapter 2

Background
In this chapter, we introduce basic terminology used through-

out the thesis and describe existing work in this field.

2.1 Graphs and Paths

Road networks can be represented as a directed graph where

nodes correspond to junctions and edges correspond to roads that

connect two junctions. Edge cost is the distance or time it takes

to travel between two junctions.

The input to a search problem is a directed graph G = (V,E)

with a node set V of size n and an edge set E ⊆ V × V of size

m. A weight function w : E 7→ R+
0 assigns a nonnegative weight

w(u, v) to each edge (u, v).

A path P in G from a node u1 to a node uk is a sequence of

nodes {u1, u2, . . . , uk} such that (ui, ui+1) ∈ E. The length w(P )

of a path P is the sum of the weights of the edges that connect

two consecutive nodes in P . P ∗ = {s, . . . , t} is a shortest path if

there is no path P ′ from s to t such that w(P ′) < w(P ∗). The
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distance d(s, t) from s to t in G is the length of a shortest path

from s to t or ∞ if there is no path from s to t. C∗ is used to

denote the length of shortest path from start to goal.

h(n) is a heuristic function that takes a node n and returns

a non-negative real number that is an estimate of the path cost

from node n to a goal node. A heuristic function is admissible if

it never overestimates the cost of reaching the goal. A heuristic

function is consistent, if for every node n and each successor s of n,

the estimated cost of reaching the goal from n is no greater than

the step cost of getting to s plus the estimated cost of reaching

the goal from s. That is:

h(n) ≤ w(n, s) + h(s) (2.1.1)

A search problem is defined by (G,w, s, t, h) and the goal is to

return a path from s to t with cost w(P ∗).

2.2 Best First Search

Best First Search is a search technique which explores the

graph by expanding the node with the least cost first. A pri-

ority function is used to assign cost to each candidate node. The

algorithm maintains two lists, one containing a list of candidate

nodes yet to explore (Open), and the other containing a list of vis-

ited nodes (Closed). Since all unvisited neighbors of every visited
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node are included in the Open list, the algorithm is not restricted

to only exploring neighbors of the most recently visited node as

it would be in a depth first search. In other words, the algorithm

always chooses the best of all unvisited nodes, rather than being

restricted to only a small subset, such as immediate neighbors.

The advantage of this strategy is that if the algorithm reaches

a dead-end node, it will continue to try other nodes. A priority

function pr(n) is used to find the “best” (usually the least-cost)

node to expand next in the search. The priority function used

for each algorithm is described later. Algorithm 1 contains pseu-

docode for Best First Search.

2.2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm solves the single-source shortest-path prob-

lem on a weighted, directed graph G = (V,E) for the case in

which all edge weights are nonnegative. It was conceived by com-

puter scientist Edsger W. Dijkstra in 1956 and published three

years later [2] .

Dijkstra’s algorithm uses the best-first search approach to solve

the single source shortest path problem. It uses the following

priority function:

6



Algorithm 1 Best First Search(G,w, s, t, h)

spr ← pr(s)
Open← {s}
for all n ∈ V − {s} do

npr ←∞
end for
while Open 6= ∅ do

n← delete-min(Open)
if n = t then

return Path(s, n)
end if
Closed← Closed ∪ {n}
for all succ ∈ nsuccessors do

if succ ∈ Closed then
continue

else
priority ← pr(succ)
if succ ∈ Open then

if succpr > priority then
succpr = priority

end if
else

succpr = priority
Open← Open ∪ {succ}

end if
end if

end for
end while
return failure

7



pr(x) = g(x) (2.2.1)

Here, g(x) is the path cost from start node to x.

2.2.2 A*

A* is an extension of Dijkstra’s algorithm [5]. When goal-

directed search techniques are applied to Dijkstra’s algorithm,

we get A*. A* also uses the best-first search approach. It uses

the following priority function:

pr(x) = f(x) (2.2.2)

f(x) = g(x) + h(x) (2.2.3)

Here, h(x) is the path cost estimate from x to the goal node.

h is a heuristic function used to approximate distances from

the current location to the goal state. For A* to guarantee cor-

rectness, i.e., always find the optimal path, the heuristic function

must be admissible. For A* to guarantee that it never expands a

node more than once, the heuristic function must be consistent.

2.3 Bidirectional Search

A bidirectional search does simultaneous forward and back-

ward searches. The backward search is done from the goal to

the start, using the reverse of the standard operators. In a prob-

lem space without invertible operators, the reverse operators for

8



a state s are those which generate s when applied to some other

state. Both search directions have a frontier of the nodes gen-

erated so far. Any time the frontiers intersect — meaning the

same node has been generated in both directions — a path has

been found from the start to the goal. The first path is not neces-

sarily the cheapest, so search continues until a solution is proven

optimal.

Bidirectional search is faster than unidirectional search in many

cases. For example, in a search problem modeled by a tree where

both search directions have a branching factor b, and the distance

from start to goal is d, each of the two searches have complexity

O(bd/2) (assuming the search meets in the middle) and the sum

of these two search times is asymptotically much less than O(bd)

that would result from unidirectional search.

A bidirectional search algorithm maintains an open and a closed

list for each direction of the search. OpenF refers to the open list

for forward search and OpenB refers to the open list for backward

search. ClosedF and ClosedB are defined analogously. prminF

and prminB are used for the minimum priority on OpenF and

OpenB. Different bidirectional search algorithms can use differ-

ent priority functions for nodes on the open list. They can also

9



use different strategies for alternating between forward and back-

ward search. Also, different termination conditions can be used as

long as the solution is proven optimal with the given termination

condition.

2.3.1 Bidirectional Dijkstra

Bidirectional Dijkstra runs Dijkstra’s algorithm in both direc-

tions. The priority of node n on OpenF is defined to be:

prF (n) = gF (n) (2.3.1)

prB(n) is defined analogously. There are many strategies of al-

ternating between forward and backward search. Different strate-

gies can yield different performance. The strategies we used in

the experiments are discussed in next chapter. In each itera-

tion, Bidirectional Dijkstra expands a node either from forward

or backward frontier. p is the cost of the least cost path found

so far. ε is the least cost edge in the state space. Initially ∞,

p is updated whenever a better solution is found. Bidirectional

Dijkstra stops when

p ≤ prminF + prminB + ε (2.3.2)

Algorithm 2 contains the pseudocode for Bidirectional Dijkstra.
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Algorithm 2 Bidirectional Dijkstra(G, w, s, t, h)

spr ← g(s)
tpr ← g(t)
OpenF ← {s}
OpenB ← {t}
for all n ∈ V − {s, t} do

npr ←∞
end for
p←∞
while OpenF 6= ∅ AND OpenB 6= ∅ do

prminF = get-min(OpenF )
prminB = get-min(OpenB)
if prminF + prminB + ε ≥ p then

return path for p
end if
if Forward frontier is expanded then

n = delete-min(OpenF )
ClosedF = ClosedF ∪ n
for all succ ∈ nsuccessors do

if succ ∈ ClosedF then
continue

else
priority ← pr(succ)
if succ ∈ OpenF then

if succpr > priority then
succpr = priority

end if
else

succpr = priority
OpenF ← OpenF ∪ {succ}

end if
end if
if succ ∈ OpenB AND gF (succ) + gB(succ) < p then

p← gF (succ) + gB(succ)
end if

end for
else

//Expand backward frontier analogously
end if

end while
return failure
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2.3.2 MM

MM is the first bidirectional heuristic search algorithm whose

forward and backward searches are guaranteed to“meet in the

middle” i.e., never expand a node beyond the solution midpoint

[6].

MM runs an A*-like search in both directions, except that MM

orders the Open list in a novel way. The priority of node n on

OpenF , prF (n) is defined to be:

prF (n) = max(fF (n), 2gF (n)) (2.3.3)

prB(n) is defined analogously. c = min(prminF , prminB). On

each iteration, MM expands a node with priority c. p is the cost

of the cheapest solution found so far. Initially ∞, p is updated

whenever a better solution is found. ε is the cost of least cost

edge in the state space. MM stops when [6]

p ≤ max(c, fminF , fminB, gminF + gminB + ε) (2.3.4)

MM has the following properties:

• P1. MM’s forward(backward) search never expands a state

with gF > C∗/2 (gB > C∗/2), i.e., its forward and backward

searches meet in the middle.

• P2. MM never expands a node whose f-value exceeds C*.

12



• P3. MM returns a path of cost C*.

• P4. If there exists a path from start to goal and MM’s

heuristics are consistent, MM never expands a state twice.

Algorithm 3 contains pseudocode for MM.

Algorithm 3 MM(G, w, s, t, h)

gF (start)← 0
gB(goal)← 0
OpenF ← {start}
OpenB ← {goal}
p←∞
while OpenF 6= ∅ AND OpenB 6= ∅ do

c← min(prminF , prminB)
if p ≤ max(c, fminF , fminB, gminF + gminB + ε) then

return path for p
end if
if c = prminF then

//Expand in forward direction
choose n ∈ OpenF for which prF (n) = prminF and gF (n) is minimum
move n from OpenF to ClosedF
for all successors succ of n do

if succ ∈ OpenF ∪ ClosedF AND gF (succ) ≤ gF (n) + cost(n, succ)
then

continue
end if
if succ ∈ OpenF ∪ ClosedF then

remove succ from OpenF ∪ ClosedF
end if
gF (succ)← gF (n) + cost(n, succ)
add succ to OpenF
if succ ∈ OpenB then

p← min(p, gF (succ) + gB(succ))
end if

end for
else

//Expand in backward direction analogously
end if

end while

13



MM Region Analysis

Holte et al. [6] provides a framework that can be used to

compare algorithms by doing region analysis. It divides the state-

space into 9 disjoint regions. These regions are denoted by two

letter acronyms. The first letter indicates the distance from the

start(N=near, F=far, R=remote) and the second letter indicates

the distance from the goal(N=near, F=far, R=remote). A state

s is defined to be “near to the start” if d(start, s) ≤ C∗/2, “far

from the start” if C∗/2 < d(start, s) ≤ C∗, and “remote” if

d(start, s) > C∗. Classification with respect to distance from

the goal is made analogously.

14



Chapter 3

Experimental Setup

3.1 Algorithms used

We used the following two algorithms in our experiments.

• A*: We used the A* algorithm for unidirectional heuristic

search. Since in our problem sets, we have two different sets

of edge costs (distance-based and time-based), we used dif-

ferent heuristics for each. Searches with distance-based edge

costs used the Euclidean distance heuristic and searches with

time-based edge costs used Euclidean distances weighted by

the maximum speed possible on any edge in the state space.

These heuristics are described below:

– Distance-based edge costs: Searches with distance-based

edge costs used the Euclidean distance as the heuristic.

Euclidean distance is the straight-line distance between

two points in Euclidean space.

15



In cartesian coordinates, if p = (p1, p2, ....pn) and q =

(q1, q2, ...., qn) are two points in Euclidean n-space, then

the euclidean distance e from p to q is given by the

Pythagorean formula:

e(p, q) =
√

(q1 − p1)2 + (q2 − p2)2 + .......(qn − pn)2

Euclidean distance is admissible and consistent.

– Time-based edge costs: For searches with time-based

edge costs, dividing the distance by speed gives the time

estimate to travel to the goal. To ensure admissibility, we

divide Euclidean distances by the maximum speed possi-

ble over all edges in the state space to get the heuristic.

• Bidirectional Dijkstra

We studied three variants of Bidirectional Dijkstra. The dif-

ference comes from the way we alternate between forward

and backward search.

– Variant 1: This variant expands the side with the lowest

g-cost as suggested by [7] - also called MM0 [6]. This

ensures that the searches meet in the middle. Nodes

that are less than or equal to C*/2 distance away from

the start are expanded by forward search and nodes that

are less than or equal to C*/2 distance away from the

16



goal are expanded by backward search. We refer this

variant as BD1 for short.

– Variant 2: This variant strictly alternates between for-

ward and backward search as suggested by [1]. This

ensures that the number of nodes expanded by forward

search is equal to the number of nodes expanded by back-

ward search. In this variant, the two searches need not

meet at the solution midpoint. This variant performs

better than variant 1 because it balances the amount the

work done in each direction. However, if the branching

factor is not equal in both directions, giving priority to

the direction with lower branching factor should give bet-

ter performance than expanding equal number of nodes

in each direction. This is because lower branching factor

implies lesser density of nodes. Thus giving preference

to the direction with lower branching factor makes the

search explore sparse regions quickly and make the two

searches meet in the middle of densest regions. This re-

duces node expansions in dense regions. To that end, we

studied variant 3.

17



– Variant 3: This variant uses the cardinality criterion

from [8], giving preference to the frontier with the smaller

open list. If the branching factor is same in both direc-

tions, this variant works similar to variant 2. But in other

cases, it gives preference to the frontier with smaller open

list (lower branching factor). In this variant also, the two

searches need not meet at the solution midpoint.

Among the three variants, variant 3 performs the best and

we use this variant for our analysis. We refer this variant as

BD3 for short.

3.2 Data structures

Open and Closed List: Deciding the data structures de-

pends mainly on the operations that need to be performed on the

data and the number of times each operation will be performed.

In our algorithms, we need to perform the following operations

on Open and Closed Lists.

1. Get and Remove the best node (minimum f cost) from open

list. A binary heap can be used to store nodes in the open

list. Getting and removing the node with minimum f-cost in

a binary heap takes O(log n) time.

18



2. Check if a node is present in open or closed list: Using a set

or hash map as open and closed list, we can perform this

operation in O(1) time.

3. Update the cost of a node in the open list if a better path is

found. Using a binary heap with update-key operations, we

can perform this operation in O(log n) time.

To best combine all the three requirements, we used a special-

ized data structure. A hash table is created that maps the hash of

a node to the node-id. An indexed array is created that maps the

node id to the node. The binary heap stores the node id for all

the nodes in the open or closed list . It does comparisons based

on a comparison key (which is f cost of a node in most cases).

With the above data structure, the asymptotic running time

of the primary operations on it are:

1. Get and Remove best node(minimum f cost) from open list

takes O(logn) time, where n is the number of nodes in open

and closed list combined.

2. Check if a node is present in open or closed list takes O(1)

time. The hash table is checked for membership of hash value

of the node in the table.
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3. Update the cost of a node in the open list if a better path is

found takes O(logn) time. First the location of the node

needs to be found in the heap. This operation can be done

in O(1) time. The indexed array gives reference to the node

object and the node object stores the location of the node

in the heap. The node at this location can be moved to the

correct position in the heap using heapify-up or heapify-down

operation in O(logn) time.

3.3 Metrics

Different metrics can be used to compare the performance of

different algorithms. Three of them are: number of nodes ex-

panded, number of nodes generated, and time.

1. Nodes Expanded: This metric compares the number of nodes

expanded by each algorithm. A node is called ‘expanded’

when it is removed from the open list and its neighbors are

added to the open list. The lesser the number of nodes ex-

panded, the better the algorithm. This metric is generic. It

is not influenced by implementation details, and is machine

and language independent. However, not being influenced by

implementation details ignores some important factors. For

example, A* has one very large open list and Bidirectional
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Dijkstra has two small open lists. This does affect the perfor-

mance of operations on Open and Closed list. But with this

metric, that performance difference is not considered. This

is a standard metric in the research community and so we

have used this metric in our experiments.

2. Nodes Generated: This metric compares the number of nodes

generated by each algorithm. A node is called ‘generated’

when it is added to the open list. This metric is generic too.

We have not used this metric because it is correlated with

nodes expanded.

3. Time: This refers to measuring and comparing the time

taken by each algorithm to solve the same problems. Since

time taken to solve a problem depends on factors like im-

plementation details (the data structures used etc.), it is not

machine and language independent. So we have not used this

metric to compare and analyze the performance of different

algorithms.

3.4 Dataset and Problem Selection

3.4.1 Dataset

We used four maps of USA road networks from DIMACS 9th

challenge core instances. These maps are listed in Table 3.1. Each
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map comes in two versions: physical distance and travel time arc

lengths. Physical distance arc lengths correspond to the distance

between two nodes. Travel time arc lengths correspond to the

time it takes to travel between two nodes. These maps range

from 264k to 1.5M nodes and 733k to 3.8M edges.

Map # of nodes # of edges # of problems

FLA state 1,070,376 2,712,798 4,851

CO state 435,666 1,057,066 9,900

San Francisco Bay area 321,270 800,172 9,200

NY city 264,346 733,846 9,200

Table 3.1: Dataset

3.4.2 Problem selection

As mentioned in chapter 2, a search problem is defined by

(G,w, s, t, h) and the goal is to return a path with cost w(P ∗).

For each map, the graph G, weight function w, and heuristic

function h stay constant for all test problems. The start node s

and goal node t needs to be selected for each test problem. We

aim to select start and goal nodes from all regions of the map and

to cover variety of path costs between them (small, medium, and

long). To that end, we have two problem sets:
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Problem Set 1: To create this data set we begin by overlaying

a 10x10 grid of equal-sized rectangles on the map, dividing it into

100 slots, as shown in Figure 3.1. We then estimate the longest

path in the graph (maxDistance) via Dijkstra search from points

near the edge of the map. Given this, we use the pseudo-code in

Algorithm 4 to build the problem set. We select a random node at

various distances from random points in each slot by performing

a Dijkstra search until we reach a node at that distance. This

produces at most 10,000 test pairs, but due to limits on path

lengths, it creates fewer problems on some maps.

Problem Set 2: After extensive experimentation with Prob-

lem Set 1, we found that the approach was biased, which we will

describe shortly. As a result, we created a second data set. This

set is identical to Problem Set 1 except that for each (s, t) pair

in the data set, we also include (t, s).

Algorithm 4 Problem Selection

1: problems ← {}
2: for i ∈ {1, 2, ..., 100} do
3: for j ∈ {1, 2, ..., 100} do
4: s←random node in sloti
5: t←nearest node at dist. ≥ j

100 ∗maxDistance from s
6: Add (s, t) to problems
7: end for
8: end for
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Figure 3.1: Grid overlay on CO map
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Chapter 4

Experiments

4.1 Hypothesis

As seen in [4, 13], research papers in the road networks commu-

nity often build upon Dijkstra’s algorithm and use Bidirectional

Dijkstra as their baseline algorithm in contrast to the heuristic

search community which uses A* as their baseline algorithm. We

run experiments on standard road networks from the USA to gain

a deeper understanding of the performance of Bidirectional Di-

jkstra and A* on road networks and see if there is a principled

explanation for different approaches. We look for the charac-

teristics of road networks that can make one algorithm perform

better than the other. Road networks are usually not equally

dense throughout the map. There are regions of higher and lower

density corresponding to cities and countryside. Our hypothe-

sis is that density difference in different regions of a road map

gives some advantage to Bidirectional Search over Unidirectional
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Search. We also suspect that problem selection approach on road

networks influences the performance of unidirectional search in

comparison to bidirectional search. We ran experiments to test

these hypotheses. They are explained in the next section.

4.2 Results

We ran A* and Bidirectional Dijkstra on the four maps found

in Table 3.1. For each of the listed maps, we have distance and

travel time graphs. Distance graphs have edge costs that corre-

spond to the distance between two nodes. Travel time graphs

have edge costs that correspond to the travel time between two

nodes. We run experiments on both kinds of graphs for each map.

We plot the work distribution for a single map in Figure 4.1. BD3

has the same performance on both problem sets; for now we look

at the performance of A* on problem set 1. From this figure we

can see that A* has better performance on the shorter problems

and BD3 has better performance on the longer problems. This

raises the question of why A* does worse (or BD3 does better)

on these longer problems. To better understand and explain the

difference in the behavior of the algorithms, we used the region

analysis introduced by Holte et al [6]. The region analysis is ex-

plained in next section.
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Figure 4.1: A* vs Bidirectional Dijkstra

4.3 Analysis

4.3.1 Regions

The region analysis introduced by Holte et al. in [6] divides

the state space into 9 regions based on how far a state is from

start and goal. If the distance between start and goal is C∗, the

9 regions are found in Table 4.1. These regions are illustrated

in Figure 4.2. The regions are denoted by two letter acronyms.

The first letter indicates the distance from start(N=near, F=far,

R=remote) and the second letter indicates the distance from

goal(N=near, F=far, R=remote). A state s is said “near to start”

if d(start, s) ≤ C∗/2, “far from start” if C∗/2 < d(start, s) ≤ C∗,

and “remote” if d(start, s) > C∗.
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Region Distance from Start Distance from Goal
NN d≤ C∗/2 d≤ C∗/2
NF d≤ C∗/2 C∗/2 <d≤ C∗

NR d≤ C∗/2 C∗ <d
FN C∗/2 <d≤ C∗ d≤ C∗/2
FF C∗/2 <d≤ C∗ C∗/2 <d≤ C∗

FR C∗/2 <d≤ C∗ C∗ <d
RN C∗ <d d≤ C∗/2
RF C∗ <d C∗/2 <d≤ C∗

RR C∗ <d C∗ <d

Table 4.1: The definition of the regions used for our analysis.

start goal

RR
FR RF

NR RN

FF

NF FN

Figure 4.2: .
The NN region is not shown.

Classification with respect to distance from goal is made anal-

ogously.

We call the regions that are near to the start (NN, NF, and

NR) as N* and regions that are near to the goal (NN, FN, and

RN) as *N.

As long as an admissible heuristic is used, we expect A* to

only expand nodes in NN, NF, NR, FN, FF, and FR because A*

never expands a node with f -cost > C∗, where C∗ is the optimal

path cost.
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Bidirectional Dijkstra (variant 1) only expand nodes in N* and

*N. This is because forward and backward search never expand

a node greater than C*/2 distance away from start and goal re-

spectively. This causes them to meet exactly in the middle. And

thus no expansions are done in FF, FR, RF, and RR regions.

Bidirectional Dijkstra (variant 2 and variant 3) may do more

work than variant 1 in FF, FR, and RF regions because the two

searches need not meet exactly in the middle but they tend to

perform better in NF or FN than variant 1 and overall they per-

form better than variant 1.

Our experiments studied the performance of A* and BD3 in

each of these regions. We found that there were not significant

node expansions in NN, FR, RF, and RR by both algorithms. So,

the regions of interest are: NF, NR, FN, FF, and RN.

Table 4.2 and Table 4.3 show the average nodes expanded by

both algorithms in each of these regions:

State A∗
Total BD3Total A∗

NF BD3NF A∗
NR BD3NR A∗

FN BD3FN A∗
FF BD3FF A∗

RN BD3RN

CO dist 128,846 141,760 59,217 46,141 14,230 16,386 37,487 44,617 17,879 14,916 0 15,965

NY dist 93,004 94,667 44,731 35,622 12,081 12,212 21,445 28,581 14,199 8,710 0 8,923

FLA dist 508,912 531,785 234,781 191,607 72,540 81,537 161,307 60,739 40,264 30,851 0 50,561

BAY dist 78,334 97,654 33,265 28,408 11,356 13,873 23,281 29,453 10,333 8,305 0 15,180

Table 4.2: Problem Set 1: Average node expansions on graphs with edge costs
representing distance.
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State A∗
Total BD3Total A∗

NF BD3NF A∗
NR BD3NR A∗

FN BD3FN A∗
FF BD3FF A∗

RN BD3RN

CO time 174,335 128,117 78,856 49,194 21,212 12,358 36,960 37,053 36,195 16,740 0 9,959

NY time 106,611 77,939 47,073 30,989 16,699 9,168 16,969 19,925 23,525 11,425 0 5,855

FLA time 465,797 498,913 221,600 179,177 54,768 73,797 139,786 159,719 49,445 37,913 0 43,961

BAY time 106,894 91,420 46,906 31,744 15,314 10,827 22,922 26,878 21,039 11,012 0 9,327

Table 4.3: Problem Set 1: Average node expansions on graphs with edge costs
representing travel time.

Considering the averages in the table above, Bidirectional Di-

jkstra performs better than A* in NF and FF regions and A*

performs better than Bidirectional Dijkstra in NR, FN, and RN

region.

Region Stronger Algorithm

NF Bidirectional Dijkstra (8 of 8 maps)

NR A* (5 of 8 maps)

FN A* (7 of 8 maps)

FF Bidirectional Dijkstra (8 of 8 maps)

RN A∗ (8 of 8 maps)

Table 4.4: Region Comparison: Bidirectional Dijkstra and A*

4.3.2 Example Problem

Figure 4.3 shows a problem instance on NY city map. Points S

and G represent start and goal respectively. Figure 4.4(a) shows

the nodes expanded by A* for finding the path from start to

goal. It expands about 96% of the total nodes and the majority

of the nodes in N* and FF. This trend is found in all experimen-
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tal results. In the majority of the experimental results, it gets

significant pruning in the regions near the goal (*N). But for this

problem instance, the Euclidian distance heuristic is very weak,

so it does not get significant pruning in *N. Figure 4.4(b) shows

the nodes expanded by A* in the reverse search. It expands about

60% of the total nodes and the majority of the nodes in N* (*N

of forward search). Since the heuristic is more accurate in the

reverse direction, it gets about 30% pruning in *N (N* of forward

search).

The reasons that A* performs better in the reverse direction

are: 1) The heuristic is stronger in the reverse direction, and

2) The size of N* is one-third of the size of *N in the reverse

direction. We see that A* can give different performance for the

same problem instance based on the direction of search. But, A*

does not have the ability to switch directions. It must choose a

direction and then only search in that one direction. Thus, it

cannot use the knowledge of N* and *N region sizes that would

indicate which search direction is better.

Bidirectional search, however, will discover this during search

and can focus its search in the smaller region. Figure 4.4(c) shows

the nodes expanded by BD1. It expands about 60% of the to-
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tal nodes. It does not expand any node in the FF region while

A* expands majority of the nodes in that region. The nodes

pruned between (a) and (c) are primarily in FF. (FF region is

near where the two searches meet). Since N* is much bigger than

*N for this problem instance, BD1 does much more work in the

forward direction than in the backward direction increasing the

total number of node expansions. We can get significant per-

formance improvement by expanding more nodes in the smaller

frontier to maximize savings in the larger frontier. BD3 does that.

Figure 4.4(d) shows the nodes expanded by BD3. It expands

about 50% of the total nodes. This variant gives preference to the

frontier with a smaller open list and thus does some more work

in the backward direction and saves a lot of work in the forward

direction. It trades-off extra work of about 20% in FF region

to get savings of about 40% in N* regions. Another reason why

BD3 does well is that the problem we are studying has unbalanced

regions. If the region sizes were all equal, the balancing wouldn’t

matter.
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Figure 4.4: Example problem: Node Expansions
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4.3.3 Analysis

Now we analyze the aggregate results over all problems.

1. Region Performance

1. NF : We expect A* to expand many nodes in NF. These

nodes have gF (n) ≤ C∗/2. So A* would prune them

only if the condition hF (n) > C∗/2 is true for a node

n. With Euclidian distance as a heuristic, we indeed

found that A* expands the majority of nodes in NF. One

might expect BD3 to expand more nodes in NF than A*

because A* prunes NF with a heuristic while BD3 does

not use a heuristic. However, BD3 does some pruning

based on other factors:

∗ We use the termination condition gminF +gminB + ε

in Bidirectional Dijkstra. So the forward search does

not need to expand all nodes in NF before it meets the

backward search. The use of ε will prevent expansion

of some nodes in NF.

∗ If the density of nodes in FN and RN is less than the

density of nodes in NF and NR or the edge costs of

nodes in FN and RN are greater than the edge costs
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of nodes in NF and NR on average, then the backward

search will move faster than the forward search and

thus the two searches will not meet exactly in the

middle. Instead, they will meet in the region NF and

thus the forward search does not expand all nodes in

NF before it meets the backward search.

We found that BD3 performs better than A* in NF on

average on all maps.

2. NR: We expect A* to expand fewer nodes in NR than

in NF. Nodes in NR region have gF (n) ≤ C∗/2. So A*

would prune them if the condition hF (n) > C∗/2 is true

for a node n. However, the real distance from a node

in these regions to the goal node lies between C∗ and

3C∗/2. Even if the heuristic underestimates the cost by

2 to 3 times, it will still prune nodes in NR. BD3 also

prunes nodes in this region if forward search intersects

with the backward search before expanding all nodes in

NR. The trade-off between how accurate the heuristic is

in A* and how quickly the two frontiers meet in BD3

determines which algorithm performs better in NR.
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In 62% of our maps, on average A* performs better than

BD3 in this region.

3. FN : We expect A* to expand far fewer nodes than BD3

in FN. These nodes have gF (n) > C∗/2 and being rela-

tively close to the goal, we expect the heuristic values for

those nodes to be very accurate. BD3 also prunes some

nodes in FN by the analogous reasoning as for the re-

gion NF. However, because of a relatively more accurate

heuristic in FN, it cannot quite offset the pruning done

by A* in this region.

4. FF: BD3 trades a small amount of work in FF to save

work in NF and FN (most of the savings are in NF). The

trade-off between accuracy of a heuristic and how many

nodes BD3 expands in FF determines which algorithm

performs better in this region. In all of our maps, on

average BD3 performs better than A* in this region.

5. RN: We expect A* to perform better than BD3 in this

region because A* does not expand any node in this re-

gion while Bidirectional Dijkstra expands some nodes in

this region.
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2. Performance Difference

Here we combine strong and weak regions for each algorithm

to see if there is a correlation between the size of these regions

and the performance comparison of both algorithms.

– NF+FF: BD3 is stronger than A* in NF+FF. This is

shown in Table 4.5

– NR+FN+RN: A* is stronger than BD3 in NR+FN+RN.

This is shown in Table 4.5

State A∗
NF+FF BD3NF+FF A∗

NR+FN+RN BD3NR+FN+RN

CO Dist 77,096 61,058 51,717 76,970

NY Dist 58,930 44,332 33,527 49,717

FLA Dist 275,046 222,458 233,848 305,122

BAY Dist 43,598 36,713 34,638 58,454

CO Time 115,052 65,935 58,173 59,371

NY Time 70,598 42,414 33,668 34,949

FLA Time 271,045 217,091 194,555 277,478

BAY Time 67,946 42,757 38,236 47,033

Table 4.5: Problem Set 1: Average node expansions in regions

– ∆(∆(NF + FF ),∆(NR + FN +RN)) : ∆(NF + FF )

is the difference in nodes expanded by A* and Bidirec-

tional Dijkstra in (NF +FF ) region and ∆(NR+FN +

RN) is the difference in nodes expanded by A* and Bidi-
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rectional Dijkstra in (NR+ FN +RN) region. The dif-

ference between ∆(NF + FF ) and ∆(NR+ FN +RN)

is directly correlated with the difference in total perfor-

mance of A* and Bidirectional Dijkstra. We plotted a

scatter plot to confirm this observation. The greater

the value of ∆(NF + FF ) and the smaller the value of

∆(NR + FN + RN), the better Bidirectional Dijkstra

performs against A∗. Figure 4.5 shows this observation

on a single map. X-axis in the chart represents the dif-

ference in ∆(NF +FF ) and ∆(NR+FN+RN). Y-axis

represents the difference in total nodes expanded by A*

and Bidirectional Dijkstra.

Figure 4.5: Performance Predictor
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3. Map-Based Explanation

– There is a crossover point between the size of NF+FF and

NR+FN+RN regions. In Figure 4.6 we plot the size of

each of these regions as the problem length increases. We

find that NR+FN+RN starts shrinking after a certain

point, while NF+FF keeps growing. That is, on harder

problems the region sizes become more unbalanced.

Figure 4.6: Problem Set 1: Region Distribution

– The density of nodes around the goal node decreases for

large distances. This is because, for majority of the test

problems for large distances, starting point is selected

uniformly across the map but because of longer path

lengths goal tends to be pushed toward the edges of the

map and the density of nodes near the edges of a map is

less than the density of nodes in the center of the map.
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– A* does less pruning in sparse regions than it does in

dense regions. We know that density of nodes around

goal decreases for large distances. We define node ex-

pansion percentage as the fraction of nodes expanded

in a region. We calculated node expansion percentage

by both algorithms in NR+FN+RN region. Figure 4.7

shows this on a single map. We see that A*’s node expan-

sion percentage increases with path cost (and low den-

sity) and it eventually crosses over Bidirectional Dijk-

stra’s node expansion percentage (which stays relatively

constant throughout the density difference).

Figure 4.7: Node expansion percentage

– The crossover point for total nodes expanded is close to

the crossover point for ∆(NF +FF ) and ∆(NR+FN +

RN). This is shown in Figure 4.8
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Figure 4.8: Crossover points for ∆(NF + FF ) and ∆(NR+ FN +RN)

4.3.4 Explanation

The analysis indicate that ∆(NF + FF ) and ∆(NR + FN +

RN) can predict which algorithm will perform better. The analy-

sis also show that there is a relation between the density of nodes

or size of the region NR+FN+RN and the strength of A*. We

see that Bidirectional Dijkstra performs better than A* in the

NF+FF region. A* performs better than Bidirectional Dijkstra

in the NR+FN+RN region. The overall performance depends on

the size of these two regions and the pruning each algorithm does

in these regions.

• Size of two regions: We see that there is a crossover point

between the size of regions NF+FF and NR+FN+RN. Af-

ter a certain point, the size of NR+FN+RN becomes less
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than NF+FF. Since the region where A* is strong becomes

smaller than the region where A* is weak, it does not get

significant pruning to offset pruning done in regions NF+FF

by Bidirectional Dijkstra.

• Pruning in each region: We see that the pruning done in

NR+FN+RN by A* keeps decreasing as the density of the

region decreases and there is crossover point after which A*

does less pruning in NR+FN+RN than Bidirectional Dijk-

stra. In other words, as the regions around goal get sparser,

A* performs worse. A* does less pruning for sparse graph

than for dense graphs.

Both of the above factors favor Bidirectional Dijkstra over A*

for scenarios where NF+FF becomes much bigger than NR+FN+RN

and the density of nodes around goal becomes low. In such sce-

narios, the bidirectional nature of the search allows it to adapt.

BD3 gives preference to the frontier with lower branching fac-

tor and thus fewer nodes are explored in denser regions of the

state space. A* has to keep exploring the regions in the forward

direction and thus does not have this ability to adapt.

Part of this density difference is from problem selection. We

expect region sizes to be balanced on average, but they are not.
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To offset the bias introduced by density difference, we ran experi-

ments with Problem Set 2. As shown in Tables 4.2 and 4.7 and in

Figure 4.1, the total BD3 numbers are unchanged, however now

the work done in each region is balanced. This is because BD3

now gets the savings described in the last section half the time in

the forward direction and half the time in the backwards direc-

tion. But, A* does significantly better because NF+FF is more

balanced in comparison to NR+FN+RN. This is illustrated in

Figure 4.9. This confirms our explanation that density difference

is making the difference here. However, this change still does not

make A* better than Bidirectional Dijkstra in all graphs. Con-

sider the following example to understand the reason: We run a

test problem from start and goal where density around goal is

much less than density around start. Bidirectional Dijkstra ex-

pands 50% of the total nodes and A* expands 75% of the total

nodes. Now if we run the same test problem from goal to start,

Bidirectional Dijkstra expands 50% of the total nodes and A*

expands 40% of the total nodes. Since we are looking at the av-

erage results, Bidirectional Dijkstra expanded 50% nodes overall

and A* expanded 57% of nodes.
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Figure 4.9: Problem Set 2: Region Distribution

This does make A* stronger than before. However, it was not

able to completely offset the bias.

State A∗
Total BD3Total A∗

NF BD3NF A∗
NR BD3NR A∗

FN BD3FN A∗
FF BD3FF A∗

RN BD3RN

CO dist 126,464 141,138 56,996 45,220 14,341 16,072 38,355 45,220 17,374 14,838 0 16,072

NY dist 85,747 94,721 37,978 32,113 9,571 10,562 25,050 32,113 12,718 8,741 0 10,561

FLA dist 479,827 531,785 212,715 182,315 56,877 66,049 170,099 182,315 40,116 30,851 0 66,049

BAY dist 78,623 97,654 33,814 28,931 12,301 14,500 22,102 28,930 10,310 8,305 0 14,500

Table 4.6: Problem Set 2: Average node expansions on graphs with edge costs
representing distance.

State A∗
Total BD3Total A∗

NF BD3NF A∗
NR BD3NR A∗

FN BD3FN A∗
FF BD3FF A∗

RN BD3RN

CO time 162,438 128,117 64,192 43,124 18,100 11,159 45,369 43,123 33,832 16,740 0 11,159

NY time 92,269 77,939 35,335 25,457 11,624 7,512 23,103 25,457 20,724 11,425 0 7,512

FLA time 434,880 498,913 198,247 169,448 40,978 58,879 148,374 169,448 47,165 37,913 0 58,879

BAY time 98,253 91,420 39,919 29,311 12,950 10,077 25,615 29,311 19,149 11,012 0 10,077

Table 4.7: Problem Set 2 : Average node expansions on graphs with edge costs
representing travel time.

45



Chapter 5

Conclusions
This thesis compares A* and Bidirectional Dijkstra search on

Road Networks. We saw that one algorithm does not always per-

form better than the other. The characteristics of a map and a

test problem play a role in determining which algorithm should be

preferred. We used a region analysis framework to understand the

behavior of both algorithms and found that Bidirectional Dijkstra

performs better than A* in NF and FF regions and A* performs

better than Bidirectional Dijkstra in NR, FN, and RN regions.

We found that Bidirectional Dijkstra performs better than A*

when the (NF +FF ) region is bigger than the (NR+FN+RN)

region. In such scenarios, we show that Bidirectional Dijkstra

has better performance because the bidirectional nature of the

searches allow it adapt – expanding fewer nodes in the denser

regions of the state space. Additionally, we show that a simple

problem selection scheme can be biased against A* at longer path

lengths. These results suggest more broadly where bidirectional
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search is likely to be effective – in state spaces where there is

variable density in the different regions. In such problems Bidi-

rectional Dijkstra is able to adapt and expand fewer states where

A* cannot.
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