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Abstract

We construct new Banach spaces using barriers in high dimensional Ellentuck

spaces [9] following the classical framework under which a Tsirelson type norm is

defined from a barrier in Ellentuck space [3]. It is shown that these spaces contain

arbitrary large copies of `n∞ and specific block subspaces isomorphic to `p. We also

prove that they are `p-saturated and not isomorphic to each other. Finally, a study of

alternative norms for our spaces is presented.
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Introduction

Several natural questions about the linear structure of infinite-dimensional Banach

spaces, that were asked since the early days of the theory, remained without answer

for many years:

1. Does every Banach space contain a subspace isomorphic to some `p or c0?

2. Does every Banach space contain an infinite unconditional basic sequence?

3. Is `p, with 1 < p < ∞, distortable?

4. Is it true that every Banach space is isomorphic to its closed hyperplanes?

5. If a Banach space X is isomorphic to every infinite-dimensional closed sub-

space of itself, does it follow that X is isomorphic to `2?

6. Is it possible to decompose every Banach space as a topological direct sum of

two infinite-dimensional closed subspaces?

All these questions were answered during the period from 1990 to 2005, with

the exception of the first question. That question was settled negatively in 1974 by

the famous example of Tsirelson [17], who constructed a reflexive Banach space T

that does not contain any `p or c0. Nowadays, it is obvious when we look back that

the first giant step in the direction of all solutions to the questions above was done

by Tsirelson. His space was the first example of a Banach space where the norm is

defined implicitly as opposed to explicitly.
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Almost 20 years later, Schlumprecht introduced his space S as a descendant of

T and as the first example of an arbitrarily distortable Banach space [15]. It turned

out that S provided the necessary framework for the fundamental Gowers-Maurey

construction [12] that led to the solutions to questions 2-6 [14].

The idea of Tsirelson’s construction became apparent after Figiel and Johnson

[11] showed that the norm of the dual space of Tsirelson space satisfies the following

equation:

∥∥∥∥∥∑
n

anen

∥∥∥∥∥ = max

{
sup
n

|an| ,
1

2
sup

m∑
i=1

∥∥∥∥∥Ei

(∑
n

anen

)∥∥∥∥∥
}
,

where the sequences (Ei)
m
i=1 considered above consist of successive finite sub-

sets of positive integers with the property that m ≤ min(E1) and Ei (
∑

n anen)

=
∑

n∈Ei
anen. Interestingly, this dual space is what nowadays is understood in

Banach space theory as Tsirelson space.

Banach space theory offers many applications of fronts and barriers within the

framework of Ellentuck space (the set of infinite subsets of N endowed with the

exponential topology); see [8], [14] and Part B of [3]. However, experts in this area

prefer to think about them as compact (under the topology of pointwise convergence)

families of finite subsets of N by considering in fact not fronts or barriers themselves

but their downwards closures.

The first systematic abstract study of Tsirelson’s construction was given by

Argyros and Deliyanni [1]. Their construction starts with a real number 0 < θ < 1

and an arbitrary family F of finite subsets of N that is the downwards closure of a

barrier in Ellentuck space. Then, one defines the Tsirelson type space T (F , θ) as the

completion of c00(N) with the implicitly given norm above replacing 1/2 by θ and
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using sequences (Ei)
m
i=1 of finite subsets of positive integers which areF -admissible,

i.e., there is some {k1, k2, . . . , km} ∈ F such that

k1 ≤ min(E1) ≤ max(E1) < k2 ≤ · · · < km ≤ min(Em) ≤ max(Em).

In this notation, Tsirelson space is denoted by T (S, 1/2), where

S = {F ⊂ N : |F | ≤ min(F )}

is the so called Schreier family. Besides S, among all compact families, the low

complexity hierarchy {Ad}∞d=1 with

Ad := {F ⊂ N : |F | ≤ d}

is of utmost importance in the realm of Tsirelson type spaces. In fact, Bellenot proved

in [4] the following remarkable theorem:

Theorem (Bellenot [4]). If dθ > 1, then for every x ∈ T (Ad, θ),

1

2d
‖x‖p ≤ ‖x‖T (Ad,θ)

≤ ‖x‖p ,

where dθ = d1/p and ‖·‖p denotes the `p-norm.

Infinite-dimensional Ramsey theory is a branch of Ramsey Theory initiated by

Nash-Williams in the course of developing his theory of better-quasi-ordered sets in

the early 60’s. This theory introduced the notions of fronts and barriers that turned

out to be very important in the context of Tsirelson type norms. During the 70’s,

3



Nash-Williams’ theory was reformulated and strengthened by the work of Galvin,

Prikry, Silver, and specially Ellentuck by introducing the topological Ramsey theory.

Recently, Todorcevic has distilled the key properties of Ellentuck space into four

axioms that determine a topological Ramsey space (Chapter 5 of [16]). He has shown

that the theory of fronts and barriers in the case of Ellentuck space allows extension

to the context of general topological Ramsey spaces. Judging on the basis of the

applicability of the original theory, it is reasonable to expect that this extension will

find interesting applications.

In this dissertation we define new Banach spaces using barriers in high dimen-

sional Ellentuck spaces (a hierarchy of topological Ramsey spaces which generalize

the Ellentuck space [9]). The motivation for our construction and many ideas behind

our results came from the Tsirelson type spaces T (Ad, θ). It is shown that these

spaces contain arbitrary large copies of `n∞ and specific block subspaces isomorphic

to `p. We also prove that they are `p-saturated and not isomorphic to each other.

Finally, a study of alternative norms for our spaces is presented.
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Chapter 1

Banach Space Theory

1.1 Fundamental Notions

A normed space (X, ‖·‖) is a vector space X endowed with a nonnegative

function ‖·‖ : X → R called norm satisfying for all x, y ∈ X and c ∈ R:

1. ‖x‖ = 0 if and only if x = 0.

2. ‖cx‖ = |c| ‖x‖.

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A Banach space is a normed space (X, ‖·‖) that is complete in the metric defined

by d(x, y) = ‖x− y‖.

A vector subspace Y of a Banach space (X, ‖·‖) is closed in X if and only if

(Y, ‖·‖Y ) is a Banach space, where ‖·‖Y denotes the restriction of ‖·‖ to Y . If Y is a

subspace of X , so is its closure Y .

5



Two norms ‖·‖ and ‖·‖0 on a vector spaceX are equivalent if there exist positive

constants c and C such that for all x ∈ X we have

c ‖x‖0 ≤ ‖x‖ ≤ C ‖x‖0 .

Let T : X → Y be a linear map between two Banach spaces X and Y . The

continuity of T with respect to the norm topologies ofX and Y can be characterized

by the following condition: there is a constant C > 0 such that ‖Tx‖ ≤ C ‖x‖ for

all x ∈ X . We say that T is bounded whenever it satisfies the preceding condition.

Therefore, T is continuous if and only if T is bounded.

T is called an isomorphism if T is a continuous bijection whose inverse T−1

is also continuous. That is, an isomorphism between normed spaces is a linear

homeomorphism. Equivalently, T is an isomorphism if and only if T is onto and

there exist positive constants c and C so that

c ‖x‖ ≤ ‖Tx‖ ≤ C ‖x‖

for all x ∈ X . In such a case the spaces X and Y are said to be isomorphic and we

write X ≈ Y . T is an isometric isomorphism when ‖Tx‖ = ‖x‖ for all x ∈ X .

T is an embedding of X into Y if T is an isomorphism onto its image T (X). In

this case we say that X embeds in Y or that Y contains an isomorphic copy of X .

The dual X∗ of a Banach space X is the space of all linear maps f : X → R

which are continuous, or equivalently bounded. The elements of X∗ are called

functionals. X∗ is a Banach space under the norm

‖f‖ = sup {|f(x)| : ‖x‖ ≤ 1} .

6



1.2 The Sequence Spaces `p and c0

Arguably the first infinite-dimensional Banach spaces to be studied were the

sequence spaces `p and c0. In this section we introduce these spaces. Define s to be

the vector space of all real sequences x = (xn)
∞
n=1.

For each 1 ≤ p < ∞, we define

‖x‖p =

(
∞∑
n=1

|xn|p
)1/p

,

and take `p to be the collection of those x ∈ s for which ‖x‖p < ∞. Applying

Hölder’s and Minkowski’s inequalities we obtain that `p is a normed space; from

there is not difficult to see that `p is actually a Banach space.

It is important to point out that the space `p is defined exactly in the same way

for 0 < p < 1, but in such a case ‖·‖p defines a complete quasi-norm.

For p = ∞, we define `∞ to be the collection of all bounded sequences; that is,

`∞ consist of those x ∈ s for which

‖x‖∞ = sup
n

|xn| < ∞.

Since convergence in `∞ is the same as uniform convergence on N, we conclude

that `∞ is complete. There are two very natural closed subspaces of `∞:

1. c, the space consisting of all convergent sequences.

2. c0, the space consisting of all sequences converging to 0.

As subsets of s we have

`1 ⊂ `p ⊂ `q ⊂ c0 ⊂ c ⊂ `∞

7



for any 1 < p < q < ∞. Moreover, each of this inclusions is of norm one:

‖x‖1 ≥ ‖x‖p ≥ ‖x‖q ≥ ‖x‖∞ .

On the other hand, we will also consider the finite-dimensional versions of the

`p spaces. We write `np to denote Rn under the `p norm. That is, `np is the space of all

sequences x = (x1, . . . , xn) supplied with the norm

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

,

for 1 ≤ p < ∞, and

‖x‖∞ = max
1≤i≤n

|xi|

for p = ∞.

Recall that all norms on Rn are equivalent. In particular, given any norm ‖·‖ on

Rn, we can find a positive constant C such that

C−1 ‖x‖1 ≤ ‖x‖ ≤ C ‖x‖1 .

for all x = (x1, . . . , xn) in Rn.

1.3 Bases in Banach Spaces

In this section we present the fundamental notion of a Schauder basis of a Banach

space and the correspoding notion of a basic sequence. One of the key ideas in

the isomorphic theory of Banach spaces is to use the properties of bases and basic

sequences as a tool to understanding the differences and similarities between spaces.

8



Definition 1.3.1. Let (xn)
∞
n=1 be a sequence in a Banach space X . Then:

1. (xn)
∞
n=1 is normalized if ‖xn‖ = 1 for every n.

2. The linear span of (xn)
∞
n=1 is the subspace

span{xn} :=

{
k∑

i=1

aixi : a1, . . . , ak ∈ R, k ∈ N

}

consisting of all finite linear combinations of elements of (xn)
∞
n=1. The closed

linear span of (xn)
∞
n=1 is denoted by [xn] or span{xn}.

3. (xn)
∞
n=1 is a Schauder basis or just a basis of X if for every x ∈ X there is a

unique sequence of scalaras (an)
∞
n=1 so that x =

∑∞
n=1 anxn.

4. If (xn)
∞
n=1 is a basis of [xn], then (xn)

∞
n=1 is called a basic sequence.

Definition 1.3.2. Let X be a Banach space with basis (en)
∞
n=1. The elements of the

sequence (e∗n)
∞
n=1 in X

∗ defined by

1. e∗i (ej) = 1 if i = j, and e∗i (ej) = 0 otherwise, and

2. x =
∑∞

n=1 e
∗
n(x)en for each x ∈ X ,

are called the biorthogonal functionals associated with (en)
∞
n=1.

For x =
∑∞

n=1 e
∗
n(x)en, the support of x is the set of all positive integers n such

that e∗n(x) 6= 0. We denote it by supp (x). If |supp (x)| < ∞ we say that x is finitely

supported.

If we have a basis (en)
∞
n=1 of a Banach space X , then we can specify x ∈ X by

its coordinates (e∗n(x))
∞
n=1. Clearly, not every scalar sequence (an)

∞
n=1 defines an

element ofX . Therefore,X is coordinatized by a particular sequence space, a vector

subspace of the vector space of all sequences s. Consequently, this leads naturally to

the following definition.

9



Definition 1.3.3. Two bases (basic sequences) (xn)
∞
n=1 and (yn)

∞
n=1 in respective

Banach spaces X and Y are equivalent if whenever we take a sequence of scalars

(an)
∞
n=1, then

∑∞
n=1 anxn converges if and only if

∑∞
n=1 anxn converges.

Hence, if the bases (xn)
∞
n=1 and (yn)

∞
n=1 are equivalent, then the corresponding

sequence spaces associated to X by (xn)
∞
n=1 and to Y by (yn)

∞
n=1 coincide. Thus,

applying the Closed Graph Theorem, we have:

Theorem 1.3.4. Two bases (basic sequences) (xn)
∞
n=1 and (yn)

∞
n=1 are equivalent if

and only if there is an isomorphism T : [xn] → [yn] such that Txn = yn for each n.

Corollary 1.3.5. Let (xn)
∞
n=1 and (yn)

∞
n=1 be two bases for Banach spaces X and

Y , respectively. Then, (xn)
∞
n=1 and (yn)

∞
n=1 are equivalent if and only if there exists

a constant C > 0 such that for all finitely nonzero sequences of scalars (an)
∞
n=1 we

have

C−1

∥∥∥∥∥
∞∑
n=1

anyn

∥∥∥∥∥ ≤

∥∥∥∥∥
∞∑
n=1

anxn

∥∥∥∥∥ ≤ C

∥∥∥∥∥
∞∑
n=1

anyn

∥∥∥∥∥ . (1.3.1)

Definition 1.3.6. Whenever equation (1.3.1) holds, we say that (xn)
∞
n=1 and (yn)

∞
n=1

are C-equivalent.

We now introduce a very special type of basic sequence:

Definition 1.3.7. Let (en)
∞
n=1 be a basis for a Banach spaceX . Suppose that (pn)

∞
n=1

is a strictly increasing sequence of integers with p0 = 0 and that (an)
∞
n=1 are scalars.

Then, a sequence of nonzero vectors (xn)
∞
n=1 in X of the form

xn =

pn∑
i=pn−1+1

aiei

10



is called a block basic sequence or briefly a block basis of (en)
∞
n=1. A subspace of

X generated by a block basis is called a block subspace.

The following stability result dates back to 1940. Roughly speaking, it says that

if (xn)
∞
n=1 is a basic sequence in a Banach space X and (yn)

∞
n=1 is another sequence

in X so that ‖xn − yn‖ → 0 fast enough, then (xn)
∞
n=1 and (yn)

∞
n=1 are equivalent.

Theorem 1.3.8 (Principle of Small Perturbations [13]). Let (xn)
∞
n=1 be a basic

sequence in a Banach spaceX with corresponding biorthogonal functionals (x∗
n)

∞
n=1.

Suppose that (yn)
∞
n=1 is a sequence in X with

∑∞
n=1 ‖x∗

n‖ ‖xn − yn‖ = δ. If δ < 1,

then (yn)
∞
n=1 is a basic sequence equivalent to (xn)

∞
n=1.

An application of the Principle of Small Perturbations provides us with the

following very useful result known as the Bessaga-Pelczynski Selection Principle. It

allows us to restrict our attention to block bases and block subspaces when studying

the differences and similarities between Banach spaces.

Theorem 1.3.9 (Bessaga-Pelczynski Selection Principle [6]). Let X be a Banach

space with basis (en)
∞
n=1, let Y be a subspace of X , and let ε > 0. Then, Y has

a subspace Z generated by a basis which is (1 + ε)-equivalent to a block basis of

(en)
∞
n=1.

In fact, much more is true. For every sequence (δ)∞n=1 of positive real numbers,

we can find a subspace Z with a basis (zn)
∞
n=1 such that there is a normalized block

basis (xn)
∞
n=1 of (en)

∞
n=1 with ‖xn − zn‖ ≤ δ for every n. In other words, Z can be

chosen to be an arbitrarily small perturbation of a block subspace of X . Moreover,

given any basic sequence in Y , we can choose Z to be spanned by a subsequence.

Finally, we present a special class of bases: unconditional bases. This important

concept was developed by R. C. James in the early 1950s.

11



Definition 1.3.10. A basis (en)
∞
n=1 of a Banach space X is called unconditional if

for each x ∈ X the series
∑∞

n=1 e
∗
n(x)en converges unconditionally.

Obviously, (en)
∞
n=1 is an unconditional basis of X if and only if (eπ(n))

∞
n=1 is a

basis of X for all permutations π of the positive integers. The canonical bases of c0

and `p with 1 ≤ p < ∞ are unconditional.

The following is a useful characterization of unconditional bases:

Proposition 1.3.11. A basis (en)
∞
n=1 of a Banach spaceX is unconditional if and only

if there is a constantK ≥ 1 such that for allN ∈ N, whenever a1, . . . , aN , b1, . . . , bN

are scalars satisfying |an| ≤ |bn| for n = 1, . . . , N , then the following inequality

holds: ∥∥∥∥∥
N∑

n=1

anen

∥∥∥∥∥ ≤ K

∥∥∥∥∥
N∑

n=1

bnen

∥∥∥∥∥ . (1.3.2)

Definition 1.3.12. Let (en)
∞
n=1 be an unconditional basis of a Banach space X . The

unconditional basis constant Ku of (en)
∞
n=1 is the least constantK so that equation

(1.3.2) holds. We then say that (en)
∞
n=1 is K-unconditional whenever K ≥ Ku.
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Chapter 2

Infinite Dimensional Ramsey Theory

2.1 Topological Ramsey Theory

We provide an overview of topological Ramsey spaces. Building on earlier work

of Carlson and Simpson [7], Todorcevic distilled the key properties of the Ellentuck

space into four axioms which guarantee that a space is a topological Ramsey space.

For further background, we refer the reader to Chapter 5 of [16].

The axioms A.1 - A.4 are defined for triples (R,≤, r) of objects with the follow-

ing properties. R is a nonempty set,≤ is a quasi-ordering onR, and r : R×ω → AR

is a mapping giving us the sequence (rn(·) = r(·, n)) of approximation mappings,

where AR is the collection of all finite approximations to members of R. For

a ∈ AR and B ∈ R, set

[a,B] = {A ∈ R : A ≤ B and (∃n) rn(A) = a}.

13



For a ∈ AR, let |a| denote the length of the sequence a. Thus, |a| equals the

integer k for which a = rk(A) for some A ∈ R. For a, b ∈ AR, a v b if and only if

a = rm(b) for somem ≤ |b|. a < b if and only if a = rm(b) for somem < |b|. For

each n < ω, ARn = {rn(A) : A ∈ R}.

A.1 For each A,B ∈ R,

(a) r0(A) = ∅.

(b) A 6= B implies rn(A) 6= rn(B) for some n.

(c) rn(A) = rm(B) implies n = m and rk(A) = rk(B) for all k < n.

A.2 There is a quasi-ordering ≤fin on AR such that

(a) {a ∈ AR : a ≤fin b} is finite for all b ∈ AR,

(b) A ≤ B iff (∀n)(∃m) rn(A) ≤fin rm(B),

(c) ∀a, b, c ∈ AR[a v b ∧ b ≤fin c → ∃d v c a ≤fin d].

For a ∈ AR and B ∈ R, depthB(a) is the least n, if it exists, such that a ≤fin

rn(B). If such an n does not exist, then we write depthB(a) = ∞. If depthB(a) =

n < ∞, then [depthB(a), B] denotes [rn(a), B].

A.3 For each A,B ∈ R and each a ∈ AR,

(a) If depthB(a) < ∞ then [a,A] 6= ∅ for all A ∈ [depthB(a), B].

(b) A ≤ B and [a,A] 6= ∅ imply that there is an A′ ∈ [depthB(a), B] such

that ∅ 6= [a,A′] ⊆ [a,A].

If n > |a|, then rn[a,A] denotes the collection of all b ∈ ARn such that a < b

and b ≤fin A.

14



A.4 For each B ∈ R and each a ∈ AR, if depthB(a) < ∞ and O ⊆ AR|a|+1,

then there is A ∈ [depthB(a), B] such that

r|a|+1[a,A] ⊆ O or r|a|+1[a,A] ⊆ Oc.

The Ellentuck topology on R is the topology generated by the basic open sets

[a,B]; it extends the usual metrizable topology on R when we consider R as a

subspace of the Tychonoff cube ARN. Given the Ellentuck topology on R, the

notions of nowhere dense, and hence of meager are defined in the natural way. We

say that a subsetX ofR has the property of Baire iffX = O∩M for some Ellentuck

open set O ⊆ R and Ellentuck meager setM ⊆ R.

Definition 2.1.1 ([16]). A subset X of R is Ramsey if for every ∅ 6= [a,A], there is

a B ∈ [a,A] such that [a,B] ⊆ X or [a,B] ∩ X = ∅. X ⊆ R is Ramsey null if for

every ∅ 6= [a,A], there is a B ∈ [a,A] such that [a,B] ∩ X = ∅.

A triple (R,≤, r) is a topological Ramsey space if every subset of R with the

property of Baire is Ramsey and if every meager subset ofR is Ramsey null.

The following result can be found as Theorem 5.4 in [16]:

Theorem 2.1.2 (Abstract Ellentuck Theorem). If (R,≤, r) is closed (as a subspace

of ARN) and satisfies axioms A.1, A.2, A.3, and A.4, then every subset of R with

the property of Baire is Ramsey, and every meager subset is Ramsey null; in other

words, the triple (R,≤, r) forms a topological Ramsey space.

Infinite-dimensional Ramsey theory introduced the notions of front and barrier

that turned out to be very important in the context of Tsirelson type norms. Barriers,

in particular, play a key role in the work presented in this dissertation.
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Definition 2.1.3 ([16]). A family F ⊆ AR of finite approximations is

(1) Nash-Williams if a 6v b for all a 6= b ∈ F ;

(2) Sperner if a 6≤fin b for all a 6= b ∈ F .

Definition 2.1.4 ([16]). Suppose (R,≤, r) is a closed subspace ofARω and satisfies

A.1, A.2, A.3 and A.4. A family F ⊆ AR is a barrier (front) on [∅, X] if

(1) For each Y ∈ [∅, X], there is an a ∈ F such that a < Y , and

(2) F is Sperner (Nash-Williams).

2.2 Ellentuck Space

A prototype example of a triple (R,≤, r) satisfying axioms A.1 - A.4 is the

Ellentuck Space ([ω]ω,⊆, r), where

[ω]ω = {M ⊆ ω : M is infinite}

is the family of all infinite subsets of ω, rn(A) is the initial segment of A formed by

taking the first n elements of A, and the relation ⊆fin is defined on the family of all

finite subsets ω as follows:

a ⊆fin b iff a = b = 0 or a ⊆ b and max(a) = max(b).

Note that the topology of the prototype example is equal to the topology that

[ω]ω gets as a subset of the exponential space exp(ω).

Banach space theory offers many applications of fronts and barriers within the

framework of Ellentuck space (see [8], [14] and Part B of [3]). However, experts
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in this area prefer to think about them as compact (under the topology of pointwise

convergence) families of finite subsets of N by considering in fact not fronts or barri-

ers themselves but their downwards closures. The following are concrete examples

of barriers that are important in the realm of Tsirelson type spaces:

S ′ = {F ⊂ N : |F | = min(F )} and A′
d := {F ⊂ N : |F | = d} .

S ′ is the so called Schreier barrier, and for each positive integer d,A′
d is the

barrier used to define the d-th member of the low complexity hierarchy.

The motivation for the construction of the Banach spaces explored in the follow-

ing chapters and many ideas behind our results came from the Tsirelson type spaces

defined from the downward closure of each A′
d.
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Chapter 3

High Dimensional Ellentuck Spaces

Recently, Dobrinen introduced a new hierarchy (Ek)k<ω of topological Ramsey

spaces which generalize the Ellentuck space in a natural manner [9]. We shall let E1

denote the Ellentuck space.

3.1 Construction Framework

We now begin the process of defining the new class of spaces Ek. The definition

presented here is slightly different than the one in [9]. We have chosen to do so in order

to simplify the construction of the Banach spaces presented in the following chapter.

We start by defining a well-ordering on non-decreasing sequences of members of ω

which forms the backbone for the structure of the members in the spaces.

Definition 3.1.1. For k ≥ 2, denote by ω6 ↓≤k the collection of all non-decreasing

sequences of members of ω of length less than or equal to k.
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Definition 3.1.2 (Thewell-order<lex). Let (s1, . . . , si) and (t1, . . . , tj), with i, j ≥ 1,

be in ω6 ↓≤k. We say that (s1, . . . , si) is lexicographically below (t1, . . . , tj), written

(s1, . . . , si) <lex (t1, . . . , tj), if and only if there is a non-negative integerm with the

following properties:

(i) m ≤ i andm ≤ j;

(ii) for every positive integer n ≤ m, sn = tn; and

(iii) either sm+1 < tm+1, orm = i andm < j.

This is just a generalization of the way the alphabetical order of words is based

on the alphabetical order of their component letters.

Example 3.1.3. Consider the sequences (1, 2), (2), and (2, 2) in ω6 ↓≤2. Following the

preceding definition we have (1, 2) <lex (2) <lex (2, 2). Let us look at this carefully:

we conclude that (1, 2) <lex (2) by setting m = 0 in Definition 3.1.2; similarly,

(2) <lex (2, 2) follows by settingm = 1 (notice that any proper initial segment of a

sequence is lexicographically below that sequence).

Definition 3.1.4 (The well-ordered set (ω6 ↓≤k,≺)). Set the empty sequence () to be

the≺-minimum element of ω6 ↓≤k; so, for all nonempty sequences s in ω6 ↓≤k, we have

() ≺ s. In general, given (s1, . . . , si) and (t1, . . . , tj) in ω6 ↓≤k with i, j ≥ 1, define

(s1, . . . , si) ≺ (t1, . . . , tj) if and only if either

(i) si < tj , or

(ii) si = tj and (s1, . . . , si) <lex (t1, . . . , tj).

Notation. Since ≺ well-orders ω6 ↓≤k in order-type ω, we fix the notation of letting

~sm denote them-th member of (ω6 ↓≤k,≺). Let ω6 ↓k denote the collection of all non-

decreasing sequences of length k of members of ω. Note that ≺ also well-orders ω6 ↓k

in order type ω. Fix the notation of letting ~un denote the n-th member of (ω6 ↓k,≺).
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Definition 3.1.5 (The spaces (Ek,≤, r), k ≥ 2). Let s, t ∈ ω6 ↓≤k and denote by |s|

the length of the sequence s. We say that X̂ is an Ek-tree if X̂ is a function from

ω6 ↓≤k into ω6 ↓≤k such that

(i)

∣∣∣X̂(s)
∣∣∣ = |s|.

(ii) s ≺ t ⇒ X̂(s) ≺ X̂(t).

(iii) s < t ⇔ X̂(s) < X̂(t).

For X̂ an Ek-tree, let X denote the restricition of X̂ to ω6 ↓k. Define the space Ek

to be the collection of all X such that X̂ is an Ek-tree. Thus, Ek is the space of all

functions X from ω6 ↓k into ω6 ↓k which induce an Ek-tree.

Notation. We identify X with its range and write X = {v1, v2, . . .}, where v1 =

X(~u1) ≺ v2 = X(~u2) ≺ · · · . Notice then that we identify the identity function with

ω6 ↓k. We think of ω6 ↓k as the prototype for all members of Ek in the sense that every

member of Ek will be a subset of ω6 ↓k which has the same structure as ω6 ↓k (Definition

3.1.5 simply generalizes the key points about the structure of the identity function

on ω6 ↓≤k). For each n < ω, define rn(X) = {v1, v2, . . . , vn} to be the n-th finite

approximation of X . As usual, we set

ARk := {rn(X) : n < ω,X ∈ Ek} and ARk
n := {rn(X) : X ∈ Ek}.

The family of all non-empty finite subsets of ω6 ↓k will be denoted by FIN(ω6 ↓k).

Clearly, ARk ⊂ FIN(ω6 ↓k). If E ∈ FIN(ω6 ↓k), then we denote the minimal and

maximal elements of E with respect to ≺ by min≺(E) and max≺(E), respectively.

Example 3.1.6 (The space E2). The members of E2 look like ω many copies of the

Ellentuck space; that is, each member has order-type ω × ω, under the lexicographic
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order. The well-order (ω6 ↓≤2,≺) begins as follows:

() ≺ (0) ≺ (0, 0) ≺ (0, 1) ≺ (1) ≺ (1, 1) ≺ (0, 2) ≺ (1, 2) ≺ (2) ≺ (2, 2) ≺ · · ·

The tree structure of ω6 ↓≤2, under lexicographic order, looks like ω copies of

ω, and has order type the countable ordinal ω2. Here, we picture the finite tree

{~sm : 1 ≤ m ≤ 21}, which indicates how the rest of the tree ω6 ↓≤2 is formed. This is

the same as the tree formed by taking all initial segments of the set {~un : 1 ≤ n ≤ 15}.

()
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(4
,4
)

(3)

(3
,4
)

(3
,3
)

(2)

(2
,4
)

(2
,3
)

(2
,2
)

(1)

(1
,4
)

(1
,3
)

(1
,2
)

(1
,1
)

(0)

(0
,4
)

(0
,3
)

(0
,2
)

(0
,1
)

(0
,0
)

Figure 3.1: Initial structure of ω6 ↓≤2.

Next we present the specifics of the structure of the space E3.

Example 3.1.7 (The space E3). The well-order (ω6 ↓≤3,≺) begins as follows:

() ≺ (0) ≺ (0, 0) ≺ (0, 0, 0) ≺ (0, 0, 1) ≺ (0, 1) ≺ (0, 1, 1) ≺ (1)

≺ (1, 1) ≺ (1, 1, 1) ≺ (0, 0, 2) ≺ (0, 1, 2) ≺ (0, 2) ≺ (0, 2, 2)

≺ (1, 1, 2) ≺ (1, 2) ≺ (1, 2, 2) ≺ (2) ≺ (2, 2) ≺ (2, 2, 2) ≺ (0, 0, 3) ≺ · · ·

The set ω6 ↓≤3 is a tree of height three with each non-maximal node branching into

ω many nodes. The maximal nodes in the following figure are technically the set

{~un : 1 ≤ n ≤ 20}, which indicates the structure of ω6 ↓≤3.
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Figure 3.2: Initial structure of ω6 ↓≤3.

3.2 Upper Triangular Representation

We now present an alternative and very useful way to visualize elements of E2.

This turned out to be fundamental to develop some intuition and to understand the

Banach spaces that we have constructed. We refer to it as the upper triangular

representation of ω6 ↓2:

Figure 3.3: Upper triangular representation of ω6 ↓2.

The well-order (ω6 ↓2,≺) begins as follows: (0, 0) ≺ (0, 1) ≺ (1, 1) ≺ (0, 2) ≺

(1, 2) ≺ (2, 2) ≺ · · · . In comparison with the tree representation shown in Figure

3.1, the upper triangular representation makes it simpler to visualize this well-order:
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starting at (0, 0) we move from top to bottom throughout each column, and then to

the right to the next column.

The following figure shows the initial part of an E2-tree X̂ . The highlighted

pieces represent the restriction of X̂ to ω6 ↓2.

Figure 3.4: Initial part of an E2-tree.

Under the identification discussed after Definition 3.1.5, we have that

X = {(2, 4), (2, 6), (6, 6), (2, 8), (6, 8), (9, 9), (2, 10), . . .}

is an element of E2. Using the upper triangular representation of ω6 ↓2 we can visualize

r10(X):

Figure 3.5: r10(X) for a typical X ∈ E2.
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Observe that when we map (0, 0) to (2, 4) we are forcing the first row of X to

be a subset of the third row of ω6 ↓2; similarly, when we map (1, 1) to (6, 6) we are

forcing the second row of X to be a subset of the seventh row of ω6 ↓2. In general,

mapping (n, n) to (l,m) forces the (n+1)-th row ofX to be a subset of the (l+1)-th

row of ω6 ↓2.

Next figure clearly shows us how ω6 ↓2 is the prototype for all members of E2 in

the sense that every member of E2 is a subset of ω6 ↓2 which has the same structure as

ω6 ↓2.

Figure 3.6: r28(X) for a typical X ∈ E2.

3.3 Special Maximal Elements

There are special elements in Ek that are useful to describe the structure of some

subspaces of the Banach spaces that we study in the following chapter. Given v ∈ ω6 ↓k

we want to construct a special Xmax
v ∈ Ek that has v as its first element and that is as

large as possible (with respect to ⊆).
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For example, if v = (0, 4) ∈ ω6 ↓2, then a finite approximation ofXmax
v ∈ E2 looks

like this:

Figure 3.7: A finite approximation of Xmax
(0,4) ∈ E2.

Now let us illustrate this with k = 3 and v = (0, 2, 7). Since we want v as

the first element of Xmax
v , we identify it with (0, 0, 0) and then we choose the next

elements as small as possible following Definition 3.1.5:

() ≺ (0) ≺ (0, 2) ≺ (0, 2, 7) ≺ (0, 2, 8) ≺ (0, 8) ≺ (0, 8, 8) ≺ (8)

≺ (8, 8) ≺ (8, 8, 8) ≺ (0, 2, 9) ≺ (0, 8, 9) ≺ (0, 9) ≺ (0, 9, 9)

≺ (8, 8, 9) ≺ (8, 9) ≺ (8, 9, 9) ≺ (9) ≺ (9, 9) ≺ (9, 9, 9) ≺ (0, 2, 10) ≺ · · ·

Therefore, under the identification discussed after Definition 3.1.5, we have

Xmax
v = {(0, 2, 7), (0, 2, 8), (0, 8, 8), (8, 8, 8), (0, 2, 9), . . .}.
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In general, Xmax
v is constructed as follows. Suppose v = (n1, n2, . . . , nk). First

we define the Ek-tree X̂v that will determine Xmax
v . X̂v must be a function from

ω6 ↓≤k to ω6 ↓≤k satisfying Definition 3.1.5 and such that X̂v(0, 0, . . . , 0) = v. So,

for m, j ∈ Z+, j ≤ k define the following auxiliary functions: fj(0) := nj

and fj(m) := nk + m. Then, for t = (m1,m2, . . . ,ml) ∈ ω6 ↓≤k set X̂v(t) :=

(f1(m1), f2(m2), . . . , fl(ml)). Finally, define Xmax
v to be the restriction of X̂v to

ω6 ↓k.

Lemma 3.3.1. Let v, w ∈ ω6 ↓k be such that v 6= w, v = (n1, n2, . . . , nk) and w =

(m1,m2, . . . ,mk). Then, w ∈ Xmax
v if and only if either m1 > nk, or there is

1 ≤ l < k such that (m1,m2, . . . ,ml) = (n1, n2, . . . , nl) and ml+1 > nk.

Proof. Suppose w ∈ Xmax
v . Then, by definition of Xmax

v , there is t = (j1, j2, . . . , jk)

in ω6 ↓≤k such thatm1 = f1(j1),m2 = f2(j2), . . . ,mk = fk(jk). Now, by definition

of the auxiliary functions f1, f2, . . . , fk, eitherm1 > nk, or there is 1 ≤ l < k such

that (m1,m2, . . . ,ml) = (n1, n2, . . . , nl) andml+1 > nk.

On the other hand, suppose first that m1 > nk. For i = 1, 2, . . . , k, set ji :=

mi − nk and t = (j1, j2, . . . , jk). Sincem1 ≤ m2 ≤ . . . ≤ mk, we have that ji > 0

and t ∈ ω6 ↓k. Moreover, X̂v(t) := (f1(j1), f2(j2), . . . , fk(mk)) = w. Therefore,

w ∈ Xmax
v .

Assume now that there is 1 ≤ l < k such that (m1,m2, . . . ,ml) = (n1, n2, . . . , nl)

and ml+1 > nk. Set j1 := 0, . . . , jl := 0, jl+1 := ml+1 − nl, . . . , jk := mk − nl,

and t = (j1, . . . , jl, jl+1, . . . , jk). Once again, X̂v(t) = w, and consequently

w ∈ Xmax
v .
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We easily check that:

Corollary 3.3.2. If w ∈ Xmax
v , then Xmax

w ⊆ Xmax
v . Particularly, if E ∈ ARk and

min≺(E) ∈ Xmax
v , then E ⊂ Xmax

v .

Since the only elements in the range of X̂v that are≺-smaller than v are the initial

segments of v, we conclude that:

Corollary 3.3.3. If s ≺ v and s < v, then s ∈ ran(X̂v).
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Chapter 4

The Banach Spaces T (Ak
d, θ)

We begin this chapter with the construction of new Banach spaces using barriers

in high dimensional Ellentuck spaces [9]. The motivation for our construction and

many ideas behind our results came from the Tsirelson type spaces T (Ad, θ). Then,

we show that these spaces contain arbitrary large copies of `n∞ and specific block

subspaces isomorphic to `p. Moreover, we prove that they are `p-saturated and not

isomorphic to each other.

4.1 Construction Framework

4.1.1 Preliminary Notation

SetN := {0, 1, . . .} and Z+ := N\{0}. For the rest of this chapter, fix d, k ∈ Z+

with d, k ≥ 2 and θ ∈ R with 0 < θ < 1. Given E,F ∈ FIN(ω6 ↓k), we write E < F

(resp. E ≤ F ) to denote that max≺(E) ≺ min≺(F ) (resp. max≺(E) � min≺(F )),

and in this case we say that E and F are successive. Similarly, for v ∈ ω6 ↓k, we write

v < E (resp. v ≤ E) whenever {v} < E (resp. {v} ≤ E).
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By c00(ω
6 ↓k) we denote the vector space of all functions x : ω6 ↓k → R such that

the set supp (x) := {v ∈ ω6 ↓k : x(v) 6= 0} is finite. Usually we write xv instead of

x(v). We can extend the orders defined above to vectors x, y ∈ c00(ω
6 ↓k): x < y

(resp. x ≤ y) iff supp (x) < supp (y) (resp. supp (x) ≤ supp (y)).

Remember that ω6 ↓k = {~u1, ~u2, . . .}. Denote by (e~un)
∞
n=1 the canonical basis

of c00(ω
6 ↓k). To simplify notation, we will usually write en instead of e~un . So, if

x ∈ c00(ω
6 ↓k), then x =

∑∞
n=1 x~une~un =

∑m
n=1 x~une~un for somem ∈ Z+. Using the

above convention, we will write x =
∑∞

n=1 xnen =
∑m

n=1 xnen. If E ∈ ARk, we

put Ex :=
∑

v∈E xvev.

4.1.2 Definition of T (Ak
d, θ)

The Banach spaces that we introduce in this section have their roots (as all

subsequent constructions [4], [15], [1], [12], [2]) in Tsirelson’s fundamental discovery

of a reflexive Banach space T with an unconditional basis not containing c0 or `p

with 1 ≤ p < ∞ [17]. Based on these constructions, we present the following

definitions.

Definition 4.1.1. Set Ak
d :=

⋃d
i=1ARk

i and let m ∈ {1, 2, . . . , d}. We say that

(Ei)
m
i=1 ⊂ ARk is Ak

d-admissible, or simply admissible, if and only if there exists

{v1, v2, . . . , vm} ∈ Ak
d such that v1 ≤ E1 < v2 ≤ E2 < · · · < vm ≤ Em.

Notice that A1
d can be identified with the member Ad of the classical low com-

plexity hierarchy. In general, Ak
d is the downward closure of the barrier ARk

d on

ω6 ↓k ∈ Ek.

Before proceeding with the definition of the Banach space T (Ak
d, θ), we provide

an example of an A2
7-admissible sequence:
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Figure 4.1: An A2
7-admissible sequence.

For x =
∑∞

n=1 xnen ∈ c00(ω
6 ↓k) and j ∈ N, we define a non-decreasing sequence

of norms on c00(ω
6 ↓k) as follows:

• |x|0 := max
n∈Z+

|xn| ,

• |x|j+1 := max

{
|x|j , θmax

{
m∑
i=1

|Eix|j : 1 ≤ m ≤ d, (Ei)
m
i=1 Ak

d-admissible

}}
.

For fixed x ∈ c00(ω
6 ↓k), the sequence (|x|j)j∈N is bounded above by the `1(ω

6 ↓k)-

norm of x. Therefore, we can set

‖x‖(Ak
d ,θ)

:= sup
j∈N

|x|j .

Clearly, ‖·‖(Ak
d ,θ)

is a norm on c00(ω
6 ↓k).
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Definition 4.1.2. The completion of c00(ω
6 ↓k) with respect to the norm ‖·‖(Ak

d ,θ)
is

denoted by (T (Ak
d, θ), ‖·‖).

Notice that T (A1
d, θ) denotes the Tsirelson type space T (Ad, θ). For v ∈ ω6 ↓k

and x ∈ T (Ak
d, θ) we also write v < x whenever v < supp (x). From the preceding

definition we have the following:

Proposition 4.1.3. If x ∈ c00(ω
6 ↓k) and |supp (x)| = n, then |x|n = |x|n+1 = · · · .

Therefore, we conclude that for every x ∈ c00(ω
6 ↓k) we have

‖x‖(Ak
d ,θ)

= max
j∈N

|x|j .

The following propositions follow by standard arguments (see Proposition 2 in

[15]):

Proposition 4.1.4. (en)
∞
n=1 is a 1-unconditional basis of T (Ak

d, θ).

Proposition 4.1.5. For x =
∑∞

n=1 xnen ∈ T (Ak
d, θ) it follows that

‖x‖ = max

{
‖x‖∞ , θ sup

{
m∑
i=1

‖Eix‖ : 1 ≤ m ≤ d, (Ei)
m
i=1 Ak

d-admissible

}}
,

where ‖x‖∞ := supn∈Z+ |xn|.

On Part A, Chapter 1 of [3] the Tsirelson type space T (Ad, θ) is defined, where

Ad := {F ⊂ Z+ : |F | ≤ d} is a member of the low complexity hierarchy. Moreover,

the following remarkable theorem is presented:
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Theorem 4.1.6 (Bellenot [4]). If dθ > 1, then for every x ∈ T (Ad, θ),

1

2d
‖x‖p ≤ ‖x‖T (Ad,θ)

≤ ‖x‖p ,

where dθ = d1/p and ‖·‖p denotes the `p-norm.

4.2 Subspaces of T (Ak
d, θ) isomorphic to `N∞

Let s ∈ ω6 ↓≤k. The tree generated by s and the Banach space associated to it are

given by

τ k[s] :=
{
v ∈ ω6 ↓k : s v v

}
and T k[s] := span{ev : v ∈ τ k[s]},

respectively. Along this section, let N ∈ Z+ and s1, . . . , sN ∈ ω6 ↓≤k be such that

|s1| = · · · = |sN | < k and s1 ≺ · · · ≺ sN . The following is a straightforward

consequence of Corollary 3.3.3

Corollary 4.2.1. If v ∈ ω6 ↓k satisfies sN ≺ v, then there is at most one i ≤ N such

that Xmax
v ∩ τ k[si] 6= ∅.

Proof. Since |s1| = · · · = |sN |, at most one si can be an initial segment of v.

It is useful to have an analogous result to the preceding corollary but related to

approximations E ∈ ARk instead of special maximal elements of Ek:

Lemma 4.2.2. Suppose E ∈ ARk and set v := min≺(E). If s ≺ v and s < v, then

E ∩ τ k[s] 6= ∅.
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We will study the Banach space structure of the subspaces of T (Ak
d, θ) of the

form Z := T k[s1]⊕ T k[s2]⊕ · · · ⊕ T k[sN ]. Since (e~un)
∞
n=1 is 1-unconditional, we

can decompose Z as F ⊕ C, where

F = span{ev ∈ Z : v ∈ ω6 ↓k, v � sN} and C = span{ev ∈ Z : v ∈ ω6 ↓k, sN ≺ v}.

By setting k = 2, N = 4, s1 = (4), s2 = (6), s3 = (8), and s4 = (10), the

following figure shows the elements of ω6 ↓2 used to generate the subspaces F (blue,

dashed outline) and C (green, thicker outline) in which we decompose the subspace

T 2[(4)]⊕ T 2[(6)]⊕ T 2[(8)]⊕ T 2[(10)]:

Figure 4.2: Elements of ω6 ↓2 used to generate T 2[(4)]⊕ T 2[(6)]⊕ T 2[(8)]⊕ T 2[(10)].

Applying Corollary 4.2.1 and Lemma 4.2.2 we have:

Lemma 4.2.3. Let E ∈ ARk be such that sN ≺ min≺(E). If E[T (Ak
d, θ)] :=

span{ew : w ∈ E}, then either E[T (Ak
d, θ)] ∩ C = ∅, or there is exactly one i ≤ N

such that E[T (Ak
d, θ)] ∩ C ⊂ T k[si].
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Proof. Suppose thatE[T (Ak
d, θ)]∩C 6= ∅ and set v := min≺(E). Then, by Corollary

4.2.1, there is exactly one i ∈ {1, . . . , N} such thatXmax
v ∩ τ k[si] 6= ∅; consequently,

si < v andE∩τ k[sj] = ∅ for any j ∈ {1, . . . , N} , j 6= i. By hypothesis, si � sN ≺

v. Applying Lemma 4.2.2 we conclude that E ∩ τ k[si] 6= ∅. Hence, E[T (Ak
d, θ)] ∩

C ⊂ T k[si].

This lemma helps us establish the presence of arbitrary large copies of `N∞ inside

T (Ak
d, θ):

Theorem 4.2.4. Suppose that s1 ≺ s2 ≺ · · · ≺ sN belong to ω6 ↓<k and that |s1| =

· · · = |sN | < k. Let v ∈ ω6 ↓k with sN ≺ v and suppose that x ∈
∑N

i=1⊕T k[si]

satifies v < x. If we decompose x as x1 + · · ·+ xN with xi ∈ T k[si], then

max
1≤i≤N

‖xi‖ ≤ ‖x‖ ≤ θ(d− 1)

1− θ
max
1≤i≤N

‖xi‖ .

In particular, if ‖x1‖ = · · · = ‖xN‖ = 1, span{x1, . . . , xN} is isomorphic to `N∞ in

a canonical way and the isomorphism constant is independent of N and of the xi’s.

Proof. Suppose x ∈ C is finitely supported. Since the basis of T (Ak
d, θ) is uncon-

ditional, we have the lower bound max1≤i≤N ‖xi‖ ≤ ‖x‖. We will check the upper

bound. Let m ∈ {1, . . . , d} and (Ei)
m
i=1 ⊂ ARk be an admissible sequence such

that ‖x‖ = θ
∑m

i=1 ‖Eix‖.

Without loss of generality we assume that E1x 6= 0, so that sN ≺ min≺(E2). By

Lemma 4.2.3, when j ≥ 2, we have Ejx = Ejxi for some i ∈ {1, . . . , N}. Then it

follows that ‖Ejx‖ ≤ max1≤i≤N ‖xi‖. Consequently,

‖x‖ ≤ θ ‖E1x‖+ θ(d− 1) max
1≤i≤N

‖xi‖
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Repeat the argument for E1x. Find m′ ∈ {1, . . . , d} and an admissible se-

quence (Fi)
m′
i=1 ⊂ ARk such that ‖E1x‖ = θ

∑m′

i=1 ‖Fi(E1x)‖. We can assume

that F1(E1x) 6= 0, and applying Lemma 4.2.3 once again we conclude that for

j ≥ 2, ‖Fj(E1x)‖ ≤ max1≤i≤N ‖xi‖. Then,

‖x‖ ≤ θ

(
θ ‖F1(E1x)‖+ θ(d− 1) max

1≤i≤N
‖xi‖

)
+ θ(d− 1) max

1≤i≤N
‖xi‖ .

Iterating this process we conclude that

‖x‖ ≤
∞∑
n=1

θn(d− 1) max
1≤i≤N

‖xi‖ ≤ θ(d− 1)

1− θ
max
1≤i≤N

‖xi‖ .

4.3 Block Subspaces of T (Ak
d, θ) isomorphic to `p

For the rest of this chapter suppose that dθ > 1 and let p ∈ (1,∞) be determined

by the equation dθ = d1/p. Bellenot proved that T (A1
d, θ) is isomorphic to `p (see

Theorem 4.1.6). The same result was then proved by Argyros and Deliyanni in [1]

with different arguments which can be extended to more general cases like ours. In

this section we show that we can find many copies of `p spaces inside T (Ak
d, θ) for

k ≥ 2:

Theorem 4.3.1. Suppose that (xi)
∞
i=1 is a normalized block sequence in T (Ak

d, θ)

and that we can find a sequence (vi)
∞
i=1 ⊂ ω6 ↓k such that:

(1) supp (xi) ⊂ Xmax
vi

and vi+1 ∈ Xmax
vi

.

(2) vi ≤ xi < vi+1.
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(3) If ui = max≺(supp (xi)), then max(ui) < max(vi+1).

Then, (xi) is equivalent to the basis of `p.

Corollary 4.3.2. If s ∈ ω6 ↓≤k and |s| = k − 1, then T k[s] is isomorphic to `p.

The proof of Theorem 4.3.1 is established in the following subsections. Through-

out these subsections, we introduce additional definitions and prove some auxiliary

results that will be used beyond this section.

Before doing so, we illustrate the restrictions that hypotheses (1)-(3) in Theorem

4.3.1 are imposing on the block sequence (xi)
∞
i=1. The figure shows, in the case

k = 2, the support of the first three elements of such a block sequence (thicker

outline) together with possible v1, v2, v3 (dashed outline) and their corresponding

special maximal elements. Informally, these hypotheses are forcing the support of

each xi to be inside nested special maximal elements and to be nicely separated from

one another.

Figure 4.3: Hypotheses (1)-(3) in Theorem 4.3.1.
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4.3.1 Lower Bound for Theorem 4.3.1

The following lemmas are essential to establish a lower `p-estimate.

Lemma 4.3.3. Suppose that (qi)
∞
i=1 ⊂ N is such that q1 < q2 < · · · . Then, there

exists X = {w1, w2, . . .} ∈ Ek such that for every i ∈ Z+,max(wi) = qi and all the

terms of wi are in (qi)
∞
i=1.

Proof. Following Definition 3.1.5 we will construct inductively an Ek-tree X̂ that

determines X . First, set X̂((0)) := (q1). Next, having defined X̂(~sm), we define

X̂(~sm+1) based on the following cases:

Case 1: |~sm+1| = |~sm| + 1 and |~sm+1| < k. If X̂(~sm) = (n1, . . . , n|~sm|), set

X̂(~sm+1) := (n1, . . . , n|~sm|, n|~sm|).

Case 2: |~sm+1| = |~sm|+ 1 and |~sm+1| = k. If X̂(~sm) = (n1, . . . , nk−2, qj) for some

j ∈ Z+, set X̂(~sm+1) := (n1, . . . , nk−2, qj, qj+1).

Case 3: |sm+1| = |sm| = k. If X̂(~sm) = (n1, . . . , nk−1, qj) for some j ∈ Z+, and

~sm+1 = (l1, . . . , lk−1, lk), then set X̂(~sm+1) := X̂((l1, . . . , lk−1))a (qj+1).

Case 4: |~sm+1| < |~sm|. This case only happens when |~sm| = k. Find the common

initial segment s of ~sm and ~sm+1 (might be the empty sequence). Notice that |s| ≤

|~sm+1| − 1 by definition of ≺. Then, if X̂(~sm) = (n1, . . . , nk), set X̂(~sm+1) :=

X̂(s)a (nk).

Lemma 4.3.4. Assume that all the hypotheses of Theorem 4.3.1 are satisfied. If

m ∈ {1, . . . , d} and E1 < E2 < · · · < Em are finite subsets of Z+, then there exists

an Ak
d-admissible sequence (Fi)

m
i=1 ⊂ ARk such that

Ei ⊂
{
j ∈ Z+ : supp (x2j) ⊆ Fi

}
.
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Proof. For i ∈ {1, . . . ,m}, set ni := min(Ei) and nm+1 := max(Em) + 1. It is

helpful to keep the following picture in mind throughout this proof:

· · · ≤ x2(ni−1) < v2ni−1 ≤ x2ni−1 < v2ni
≤ x2ni

< · · · ≤ x2(ni+1−1) < · · · .

Set qi := max(v2ni−1). By hypothesis (3) in Theorem 4.3.1 it is the case that

q1 < q2 < · · · < qm. Then, applying Lemma 4.3.3, we can find {w1, w2, . . . , wm}

in ARk
d such that max(wi) = qi and all the terms of wi are in {q1, q2, . . . , qm}.

Consequently,

· · · ≤ x2(ni−1) < wi ≺ v2ni
≤ x2ni

< · · · . (4.3.1)

Now, from hypotheses (1) and (2) in Theorem 4.3.1, we know thatXmax
v2ni

contains

the support of xj for any j ≥ 2ni. Therefore, define Fi as the initial segment of

Xmax
v2ni

for which

max≺(Fi) = max≺
(
supp

(
x2(ni+1−1)

))
. (4.3.2)

By construction, Fi ∈ ARk and min≺(Fi) = v2ni
. Moreover, Fi also contains

the supports of x2ni
, x2(ni+1), x2(ni+2), . . . , x2(ni+1−1). Thus, from equations (4.3.1)

and (4.3.2), we have:

w1 ≺ v2n1 ≤ F1 < w2 ≺ v2n2 ≤ F2 < · · · ≤ Fm−1 < wm ≺ v2nm ≤ Fm.

Hence, F1, F2, . . . , Fm ∈ ARk is the desired admissible sequence.
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The following proposition provides a lower `p-estimate for Theorem 4.3.1.

Proposition 4.3.5. Under the same hypotheses of Theorem 4.3.1, we have:

1

2d

(∑
i
|ai|p

)1/p
≤
∥∥∥∑

i
aixi

∥∥∥ .
Proof. Denote by (ti) the canonical basis of T (A1

d, θ). In order to avoid confusion,

we will write ‖·‖1 to denote the norm on T (A1
d, θ).

We will prove a lower `p-estimate for the sequences (x2n) and (x2n−1). Since the

closed span of (x2n) and (x2n+1) are complemented in the closed span of (xn), the

general result follows. We will obtain the estimate for (x2n). The other case is similar.

The goal is to show that ‖
∑

i aiti‖1 ≤ ‖
∑

i aix2i‖ for any sequence (ai) ⊂ R with

finitely many non-zero elements.

Let x =
∑

i aiti. Following Bellenot [4], either ‖x‖1 = maxi |ai|, or there exist

m ∈ {1, . . . , d} and E1 < E2 < · · · < Em such that ‖x‖1 =
∑m

j=1 θ ‖Ejx‖1.

For each j ∈ {1, . . . ,m}, either ‖Ejx‖1 = maxi{|ai| : i ∈ Ej}, or there exist

m′ ∈ {1, . . . , d} and Ej1 < Ej2 < · · · < Ejm′ subsets of Ej such that ‖Ejx‖1 =∑m′

l=1 θ ‖Ejlx‖1. Since the sequence (ai) has only finitely many non-zero terms, this

process ends and x is normed by a tree.

Wewill prove the result by induction on the height of the tree. If ‖x‖1 = maxi |ai|,

the height of the norming tree is zero, and since (x2n) is unconditional, maxi |ai| ≤

‖
∑

i aix2i‖.

Suppose that the result is proved for elements of T (A1
d, θ) that are normed by

trees of height less than or equal to h and that x is normed by a tree of height

h + 1. Then, there exist m ∈ {1, . . . , d} and E1 < E2 < · · · < Em such that

‖x‖1 =
∑m

j=1 θ ‖Ejx‖1 and eachEjx is normed by a tree of height less than or equal

to h.
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Now, for each j ∈ {1, . . . ,m}, set nj := min(Ej) and nm+1 := max(Em) + 1.

Then, apply Lemma 4.3.4 to find an Ak
d-admissible sequence (Fj)

m
j=1 such that each

Fj contains the supports of x2nj
, x2(nj+1), x2(nj+2), . . . , x2(nj+1−1).

By the induction hypothesis,

‖Ejx‖1 =
∥∥∥∥∑l∈Ej

altl

∥∥∥∥
1

≤
∥∥∥∥∑l∈Ej

alx2l

∥∥∥∥ .
Since Ej ⊆ {nj, nj + 1, . . . , nj+1 − 1}, it follows that

‖Ejx‖1 ≤
∥∥∥∥∑nj+1−1

l=nj

alx2l

∥∥∥∥ = ‖Fjz‖ ,

where z =
∑

i aix2i. Therefore,

∥∥∥∑
i
aiti

∥∥∥
1
=

m∑
j=1

θ ‖Ejx‖1 ≤
m∑
j=1

θ ‖Fjz‖ ≤ ‖z‖ =
∥∥∥∑

i
aix2i

∥∥∥ .
The result follows now applying Theorem 4.1.6.

4.3.2 Dual Norm

To establish a upper `p-estimate wewill adapt an alternative and useful description

of the norm on T (A1
d, θ) introduced by Argyros and Deliyanni [1] to our spaces. In

that regard, the following definition plays a key role.

Definition 4.3.6. Let m ∈ {1, . . . , d}. A sequence (Fi)
m
i=1 ⊂ FIN(ω6 ↓k) is called

almost admissible if there exists an Ak
d-admissible sequence (En)

d
n=1 such that

Fi ⊆ Eni
, where n1, . . . , nm ∈ {1, . . . , d} are such that n1 < n2 < · · · < nm.
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A standard alternative description of the norm of the space T (Ak
d, θ), closer to the

spirit of Tsirelson space, is as follows. Let K0 := {±e∗i : i ∈ Z+}, and for n ∈ N,

Kn+1 := Kn

⋃
{θ(f1 + · · ·+ fm) : m ≤ d, (fi)

m
i=1 ⊂ Kn} ,

where (supp (fi))
m
i=1 is almost admissible. Then, set K :=

⋃
n∈N Kn. Now, for each

n ∈ N and fixed x ∈ c00(ω
6 ↓k), define the following non-decreasing sequence of

norms:

|x|∗n := max {f(x) : f ∈ Kn} .

Lemma 4.3.7. For every n ∈ N and x ∈ c00(ω
6 ↓k) we have |x|n = |x|∗n.

Proof. Clearly, |x|0 = |x|∗0 for every x ∈ c00(ω
6 ↓k). So, let n ∈ Z+ and suppose that

|y|j = |y|∗j for every j ∈ N, j < n and y ∈ c00(ω
6 ↓k).

If |x|n = |x|n−1, then |x|n = |x|∗n−1 ≤ |x|∗n. Suppose |x|n 6= |x|n−1. Let

m ∈ {1, . . . , d} and (Ei)
m
i=1 ⊂ ARk be an admissible sequence such that |x|n =

θ
∑m

i=1 |Eix|n−1. Then, |x|n = θ
∑m

i=1 |Eix|∗n−1 = θ
∑m

i=1 fi(Eix) for some (fi)
m
i=1 ⊂

Kn−1. Define, for each i ∈ {1, . . . ,m}, a new functional f ′
i satisfying f ′

i(y) =

fi(Eiy) for every y ∈ c00(ω
6 ↓k). This implies that supp (f ′

i) = supp (fi) ∩ Ei. Then,

(f ′
i)

m
i=1 ⊂ Kn−1 with (supp (f

′
i))

m
i=1 almost admissible and f ′

i(Eix) = fi(Eix). So,

θ
m∑
i=1

fi(Eix) = θ
m∑
i=1

f ′
i(Eix) ≤ |Eix|∗n ≤ |x|∗n ;

therefore, |x|n ≤ |x|∗n.

Now, let f = θ(f1 + · · · + fm) for some m ∈ {1, . . . , d} and (fi)
m
i=1 ⊂ Kn−1

with (supp (fi))
m
i=1 almost admissible. Then,
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f(x) = θ
m∑
i=1

fi(x) ≤ θ
m∑
i=1

|supp (fi)x|∗n−1 = θ
m∑
i=1

|supp (fi)x|n−1 .

Since (supp (fi))
m
i=1 is almost admissible, there exists an admissible sequence

(Ei)
d
i=1 ⊂ ARk such that supp (fi) ⊆ Eni

, where n1, . . . , nm ∈ {1, . . . ,m} and

n1 < · · · < nm. So,

θ
m∑
i=1

|supp (fi)x|n−1 ≤ θ
m∑
i=1

|Eni
x|n−1 ≤ |x|n ;

hence, by definition of |·|∗n, we conclude that |x|
∗
n ≤ |x|n.

Consequently, an alternative description of the norm on T (Ak
d, θ) is:

Proposition 4.3.8. For every x ∈ T (Ak
d, θ),

‖x‖ = sup {f(x) : f ∈ K} .

4.3.3 Upper Bound for Theorem 4.3.1

For m ∈ {1, . . . , d} we say that f1, . . . , fm ∈ K are successive if supp (f1) <

supp (f2) < · · · < supp (fm).

If f ∈ K, then there exists n ∈ N such that f ∈ Kn. The “complexity” of f

increases as n increases. That is to say, for example, that the complexity of f ∈ K1

is less than that of g ∈ K10. This is captured in the following definition.

Definition 4.3.9. Let n ∈ Z+ and φ ∈ Kn \Kn−1. An analysis of φ is a sequence

(Kl(φ))
n
l=0 of subsets of K such that:

1. Kl(φ) consists of successive elements ofKl and
⋃

f∈Kl(φ)
supp (f) = supp (φ).
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2. If f ∈ Kl+1(φ), then either f ∈ Kl(φ) or there exist m ∈ {1, . . . , d} and

successive f1, . . . , fm ∈ Kl(φ) with (supp (fi))
m
i=1 almost admissible and

f = θ(f1 + · · ·+ fm).

3. Kn(φ) = {φ}.

Note that, by definition of the sets Kn, each φ ∈ K has an analysis. Moreover,

if f1 ∈ Kl(φ) and f2 ∈ Kl+1(φ), then either supp (f1) ⊆ supp (f2) or supp (f1) ∩

supp (f2) = ∅.

Let φ ∈ Kn \Kn−1 and let (Kl(φ))
n
l=0 be a fixed analysis of φ. Suppose (xj)

N
j=1

is a finite block sequence on T (Ak
d, θ).

Following [1], for each j ∈ {1, . . . , N}, set lj ∈ {0, . . . , n− 1} as the smallest

integer with the property that there exists at most one g ∈ Klj+1(φ) with supp (xj)∩

supp (g) 6= ∅.

Then, define the initial part and final part of xj with respect to (Kl(φ))
n
l=0, and

denote them respectively by x′
j and x

′′
j , as follows. Let

{
f ∈ Klj(φ) : supp (f) ∩ supp (xj) 6= ∅

}
= {f1, . . . , fm} ,

where f1, . . . , fm are successive. Set

x′
j = (supp (f1))xj and x′′

j = (∪m
i=2 supp (fi))xj.

The following is an useful property of the sequence (x′
j)

N
j=1 (see [5]). The

analogous property is true for (x′′
j )

N
j=1.
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Proposition 4.3.10. For l ∈ {1, . . . , n} and j ∈ {1, . . . , N}, set

Al(x
′
j) :=

{
f ∈ Kl(φ) : supp (f) ∩ supp

(
x′
j

)
6= ∅
}
.

Then, there exists at most one f ∈ Al(x
′
j) such that supp (f) ∩ supp (x′

i) 6= ∅ for

some i 6= j.

Proof. Let Al(x
′
j) = {f1, . . . , fm}, where m ≥ 2 and f1, . . . , fm are successive.

Obviously, only supp (f1) and supp (fm) could intersect supp (x′
i) for some i 6= j.

We will prove that it is not possible for fm.

Suppose, towards a contradiction, that supp (fm) ∩ supp (x′
i) 6= ∅ for some

i > j. Given that m ≥ 2, we must have l ≤ lj . Consequently, there exists

g ∈ Klj(φ) such that supp (fm) ⊆ supp (g). Since supp (g) ∩ supp (xj) 6= ∅ and

supp (g)∩ supp (xi) 6= ∅ for some i > j, the definition of x′′
j implies that supp (g)∩

supp (xj) ⊆ supp
(
x′′
j

)
. Therefore, supp (fm) ∩ supp

(
x′
j

)
= ∅, a contradiction.

Following [3] and [5] we now provide an upper `p-estimate:

Proposition 4.3.11. Let (xj)
N
j=1 be a finite normalized block basis on T (Ak

d, θ).

Denote by (tn)
∞
n=1 the canonical basis of T (A1

d, θ). Then, for any (aj)
N
j=1 ⊂ R, we

have: ∥∥∥∥∥
N∑
j=1

ajxj

∥∥∥∥∥ ≤ 2

θ

(
N∑
j=1

|aj|p
)1/p

.

Proof. In order to avoid confusion, we will write ‖·‖1 to denote the norm on T (A1
d, θ).

By Proposition 4.3.8 and Theorem 4.1.6 it suffices to show that for every φ ∈ K,

∣∣∣∣∣φ
(

N∑
j=1

ajxj

)∣∣∣∣∣ ≤ 2

θ

∥∥∥∥∥
N∑
j=1

ajtj

∥∥∥∥∥
1

.
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By unconditionality we can assume that x1, . . . , xN and φ are positive. Suppose

φ ∈ Kn \ Kn−1 for some n ∈ Z+, and let (Kl(φ))
n
l=0 be an analysis of φ (see

Definition 4.3.9). Next, split each xj into its initial and final part, x
′
j and x′′

j , with

respect to (Kl(φ))
n
l=0.

We will show by induction on l ∈ {0, 1, . . . , n} that for all J ⊆ {1, . . . , N} and

all f ∈ Kl(φ) we have

∣∣∣∣∣f
(∑

j∈J

ajx
′
j

)∣∣∣∣∣ ≤ 1

θ

∥∥∥∥∥∑
j∈J

ajtj

∥∥∥∥∥
1

and

∣∣∣∣∣f
(∑

j∈J

ajx
′′
j

)∣∣∣∣∣ ≤ 1

θ

∥∥∥∥∥∑
j∈J

ajtj

∥∥∥∥∥
1

.

We prove the first inequality given that the other one is analogous. Let J ⊆

{1, . . . , N} and set y =
∑

j∈J ajx
′
j .

If f ∈ K0(φ), then f = e∗i for some i ∈ Z+. We want to prove that

|e∗i (y)| ≤
1

θ

∥∥∥∑
j∈J

ajtj

∥∥∥
1
.

Suppose that e∗i (y) 6= 0. So, there exists exactly one ji ∈ J such that e∗i (x
′
ji
) 6= 0.

Applying Proposition 4.3.8 we have

|e∗i (y)| =
∣∣e∗i (ajix′

ji
)
∣∣ ≤ ∥∥ajix′

ji

∥∥ ≤ |aji | ‖xji‖ ≤
∥∥∥∑

j∈J
ajtj

∥∥∥
1

since the basis of T (Ak
d, θ) is unconditional, ‖xji‖ = 1, and by definition

max
j∈J

|aj| ≤
∥∥∥∑

j∈J
ajtj

∥∥∥
1
.

Now suppose that the desired inequality holds for any g ∈ Kl(φ). We will

prove it for Kl+1(φ). Let f ∈ Kl+1(φ) be such that f = θ(f1 + · · · + fm), where
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f1, . . . , fm are successive elements in Kl(φ) with (supp (fi))
m
i=1 almost admissible.

Then, 1 ≤ m ≤ d. Without loss of generality assume that fi(y) 6= 0 for each

i ∈ {1, . . . ,m}. Define the following sets:

I ′ :=
{
i ∈ {1, . . . ,m} : ∃j ∈ J with fi(x

′
j) 6= 0 and supp (f) ∩ supp

(
x′j
)
⊆ supp (fi)

}

and

J ′ :=
{
j ∈ J : ∃i ∈ {1, . . . ,m− 1} such that fi(x

′
j) 6= 0 and fi+1(x

′
j) 6= 0

}
.

We claim that |I ′|+ |J ′| ≤ m. Indeed, if j ∈ J ′, there exists i ∈ {1, . . . ,m− 1}

such that fi(x
′
j) 6= 0, fi+1(x

′
j) 6= 0. From the proof of Proposition 4.3.10 it follows

that fi+1(x
′
h) = 0 for every h 6= j, which implies that i+1 /∈ I ′. Hence, we can define

an injective map from J ′ to {1, . . . ,m} \ I ′ and we conclude that |I ′|+ |J ′| ≤ m.

Finally, for each i ∈ I ′, set Di :=
{
j ∈ J : supp (f) ∩ supp

(
x′
j

)
⊆ supp (fi)

}
.

Notice that for all i ∈ I ′ we have Di ∩ J ′ = ∅. Then,

f(y) = θ
[∑

i∈I′
fi

(∑
j∈Di

ajx
′
j

)
+
∑

j∈J ′
f(ajx

′
j)
]
,

and consequently

|f(y)| ≤ θ
[∑

i∈I′

∣∣∣fi (∑
j∈Di

ajx
′
j

)∣∣∣+∑
j∈J ′

∣∣f(ajx′
j)
∣∣] .

However, by induction hypothesis,

∣∣∣fi (∑
j∈Di

ajx
′
j

)∣∣∣ ≤ 1

θ

∥∥∥∑
j∈Di

ajtj

∥∥∥
1
.
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Moreover, for each j ∈ J ′, we have
∣∣f(ajx′

j)
∣∣ ≤ ∥∥ajx′

j

∥∥ ≤ ‖ajxj‖ = |aj| =

‖ajtj‖1. Hence,

|f(y)| ≤ θ

[
1

θ

∑
i∈I′

∥∥∥∑
j∈Di

ajtj

∥∥∥
1
+

1

θ

∑
j∈J ′

‖ajtj‖1

]
= θ

[
1

θ

∑
i∈I′

∥∥∥Di

(∑
j∈J

ajtj

)∥∥∥
1
+

1

θ

∑
j∈J ′

‖ajtj‖1

]
.

Given that for every i ∈ I ′, Di ∩ J ′ = ∅ and |I ′| + |J ′| ≤ m ≤ d, the family

{Di}i∈I′ ∪ {{j}}j∈J ′ is Ad-admissible. So, by definition of ‖·‖1, we have

|f(y)| ≤ θ

[
1

θ

∑
i∈I′

∥∥∥Di

(∑
j∈J

ajtj

)∥∥∥
1
+

1

θ

∑
j∈J ′

‖ajtj‖1

]
≤ 1

θ

∥∥∥∑
j∈J

ajtj

∥∥∥
1
.

4.4 T (Ak
d, θ) is `p-saturated

In this section we prove that every infinite dimensional subspace of T (Ak
d, θ) has

a subspace isomorphic to `p.

Recall that the subspaces T k[s] for s ∈ ω6 ↓≤k with |s| < k decompose naturally

into countable sums. Namely, if s = (a1, a2, . . . , al) ∈ ω6 ↓≤k and l < k, then

τ k[s] =
⋃∞

j=al
τ k[sa j], and therefore T k[s] =

∑∞
j=al

⊕T k[sa j].

The next lemma tells us that we can find elements v ∈ τ k[s] such that Xmax
v

contains arbitrary tails of the decomposition of τ k[s]. Its proof follows from the

definition of the Ek-tree X̂v that determines Xmax
v (see paragraph preceding Lemma

3.3.1).
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Lemma 4.4.1. Let s = (a1, a2, . . . , al) ∈ ω6 ↓≤k with l < k. If m ∈ N with m ≥ al

and v = sa (m,m, . . . ,m) ∈ ω6 ↓k, then Xmax
v ∩ τ k[s] =

⋃∞
j=m τ k[sa j].

We now present the main result of this section:

Theorem 4.4.2. Suppose that Z is an infinite dimensional subspace of T (Ak
d, θ).

Then, there exists Y ⊆ Z isomorphic to `p.

Proof. Let Z be an infinite dimensional subspace of T (Ak
d, θ). After a standard

perturbation argument, we can assume that Z has a normalized block basic sequence

(xn).

We will show that a subsequence of (xn) is isomorphic to `p. From Proposition

4.3.11 we have that

∥∥∥∑
n
anxn

∥∥∥ ≤ 2

θ

(∑
n
|an|p

)1/p
.

To obtain the lower bound we will find a subsequence and a projection Q onto a

subspace of the form T k[s] such that
(
Q
(
xnj

))
has a lower `p-estimate.

To this end, assume that Z ⊂ T k[s] for some s ∈ ω6 ↓≤k with |s| < k. Decompose

T k[s] =
∑∞

j=1⊕T k[sj], where for each j ∈ Z+, s < sj, |sj| = |s|+1, and sj ≺ sj+1.

For each j ∈ Z+ let Qj : T
k[s] → T k[sj] be the projection onto T k[sj]. Then we

have the two cases:

Case 1: ∀j ∈ Z+, Qjxn → 0.

Case 2: ∃j0 ∈ Z+ such that Qj0xn 6→ 0.

Let us look at Case 1 first. Let v1 be the first element of τ k[s]. Since there exists

p1 such that supp (x1) ⊂
⋃p1

j=1 τ
k[sj], applying Lemma 4.4.1 we can find q1 > p1

and v2 ∈ τ k[s] such that v1 ≤ x1 < v2 and Xmax
v2

∩ τ k[s] =
⋃∞

j=q1
τ k[sj]. Since
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Qjxn → 0 for 1 ≤ j ≤ q1 we can find n2 > 1 and y2 ∈ T k[s] such that y2 ≈ xn2

and Qjy2 = 0 for 1 ≤ j ≤ q1. Then we have

v1 ≤ x1 < v2 < y2 and supp (y2) ⊂ Xmax
v2

.

We now repeat the argument. Since there exists p2 such that supp (y2) ⊂⋃p2
j=1 τ

k[sj], applying Lemma 4.4.1 we can find q2 > p2 and v3 ∈ τ k[s] such that

v2 < y2 < v3 andX
max
v3

∩ τ k[s] =
⋃∞

j=q2
τ k[sj]. SinceQjxn → 0 for 1 ≤ j ≤ q2, we

can find n3 > n2 and y3 ∈ T k[s] such that y3 ≈ xn3 and Qjy3 = 0 for 1 ≤ j ≤ q2.

Then we have

v1 ≤ x1 < v2 < y2 < v3 < y3 and supp (y2) ⊂ Xmax
v2

, supp (y3) ⊂ Xmax
v3

.

Proceeding this way we find a subsequence (xni
) and a sequence (yi) such that

yi is close enough to xni
. Consequently, span{yi} ≈ span{xni

} and

v1 ≤ x1 < v2 < y2 < v3 < y3 < · · · and supp (yi) ⊂ Xmax
vi

for i > 1.

By Proposition 4.3.5, there exist C1, C2 ∈ R such that

∥∥∥∑
i
aixni

∥∥∥ ≥ C1

∥∥∥∑
i
aiyni

∥∥∥ ≥ C2

(∑
i
|ai|p

)1/p
.

Let us look at Case 2 now. Find a subsequence (ni) and δ > 0 such that

δ ≤ ‖Qj0xni
‖ ≤ 1.

Let W = span{Qj0xni
}. We now apply the argument in Case 1 to the se-

quence Qj0xn1 < Qj0xn2 < Qj0xn3 < · · · . That is, first decompose T k[sj0 ] =
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∑∞
j=1 ⊕T k[tj], where for every j ∈ Z+, sj0 < tj, |tj| = |sj0| + 1, tj ≺ tj+1. Then,

look at the two cases for the sequence (Qj0xni
). If Case 1 is true, (Qj0xni

) has a

subsequence with a lower `p estimate, and therefore (xni
) has a subsequence with a

lower `p estimate; and if Case 2 is true, we can repeat the argument for some tj that

has length strictly larger than the length of sj0 . If Case 1 continues to be false, after

a finite number of iterations of the same argument, the length of tj will be equal to

k − 1, and therefore, applying Corollary 4.3.2, T k[tj] would be isomorphic to `p.

The result follows.

4.5 The spaces T (Ak
d, θ) are not isomorphic to each

other

In what follows, we establish that the Banach spaces that we have defined are

not isomorphic to each other:

Theorem 4.5.1. If k1 6= k2, then T (Ak1
d , θ) is not isomorphic to T (Ak2

d , θ).

We will prove by induction that when k1 > k2, T (Ak1
d , θ) does not embed in

T (Ak2
d , θ). The idea behind our argument is that if we had an isomorphic embedding,

we would map an `N∞-sequence into an `Np -sequence for arbitrarily large N . Proposi-

tion 4.5.4 below is a stronger and more technical statement from which Theorem

4.5.1 follows. The following lemmas are needed to establish this proposition.

Lemma 4.5.2. If s ∈ ω6 ↓≤k, and |s| < k, there exist s1 ≺ s2 ≺ s3 ≺ · · · such

that |si| = |s| + 1 and τ k[s] =
⋃∞

i=1 τ
k[si]. Consequently, we decompose T

k[s] =∑∞
i=1⊕T k[si] and for m ∈ Z+, there is a canonical projection Pm : T k[s] →∑m
i=1⊕T k[si].
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Proof. If s = (a1, . . . , al), then s1 = (a1, . . . , al, al), s2 = (a1, . . . , al, al +1), s3 =

(a1, . . . , al, al + 2), · · · .

Lemma 4.5.3. Let s ∈ ω6 ↓≤k with |s| < k. Let v = min τ k[s]. Then τ k[s] ⊂ Xmax
v .

Proof. If s = (a1, . . . , al), then we have that v = (a1, . . . , al, al, . . . , al) and the

result follows from Lemma 3.3.1.

We are ready to state and prove the main proposition.

Proposition 4.5.4. Let s ∈ ω6 ↓≤k1 with |s| < k1 and decomposeT
k1 [s] =

∑∞
i=1⊕T k1 [si]

according to Lemma 4.5.2. Let M ∈ Z+ and t1, . . . , tM ∈ ω6 ↓≤k2 such that |t1| =

· · · = |tM | < k2.

If k1 − |s| > k2 − |t1|, then for every n ∈ Z+,
∑∞

i=n⊕T k1 [si] does not embed

into T k2 [t1]⊕ · · · ⊕ T k2 [tM ].

Proof. We proceed by induction. First assume that k2 − |t1| = 1 < k1 − |s|. By

Corollary 4.3.2, T k2 [ti] is isomorphic to `p, and consequently so is T
k2 [t1]⊕ · · · ⊕

T k2 [tM ]. On the other hand, Theorem 4.2.4 guarantees that T k1 [s] has arbitrarily

large copies of `N∞. Hence, for every n ∈ Z+, there cannot be an embedding from∑∞
i=n⊕T k1 [si] into T

k2 [t1]⊕ · · · ⊕ T k2 [tM ].

Suppose now that the result is true form ∈ Z+ and let k2−|t1| = m+1 < k1−|s|.

We will show a simpler case first, whenM = 1. Suppose, towards a contradiction,

that there exists n ∈ Z+ and an isomorphism

Φ :
∞∑
i=n

⊕T k1 [si] → T k2 [t1].

Decompose T k2 [t1] =
∑∞

j=1⊕T k2 [rj] according to Lemma 4.5.2. Find N large

enough and v ∈ ω6 ↓k1 such that sn ≺ sn+1 ≺ · · · ≺ sn+N−1 ≺ v. We will find
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normalized x1 ∈ T k1 [sn], x2 ∈ T k1 [sn+1], . . . , xN ∈ T k1 [sn+N−1] such that v < xi

for i ≤ N . Under this conditions Theorem 4.2.4 implies that span{x1, . . . , x} ≈ `N∞,

with the isomorphism constant independent of N and of the xi’s.

Let v1 be the first element of τ k2 [t1], and let x1 ∈ T k1 [sn] be such that ‖x1‖ = 1

and v < x1. Find a finitely supported y1 ∈ T k2 [t1] such that y1 ≈ Φ(x1). Applying

Lemma 4.4.1 we can find v2 ∈ τ k2 [t1] such that v1 ≤ y1 < v2 and X
max
v2

∩ τ k2 [t1] =⋃∞
j=m1+1 τ

k2 [rj] for somem1 ∈ N.

Since k1 − |sn+1| > k2 − |r1| = m we can apply the induction hypothesis. In

particular, the map

Pm1Φ|Tk1 [sn+1] : T
k1 [sn+1] → T k2 [r1]⊕ · · · ⊕ T k2 [rm1 ].

is not an isomorphism. As a result, there exists x2 ∈ T k1 [sn+1] such that ‖x2‖ = 1

and Pm1Φ(x2) ≈ 0. To add the property v < x2, we decompose T k1 [sn+1] =∑∞
i=1⊕T k1 [ui] as in Lemma 4.5.2 and apply the induction hypothesis to

∑∞
i=p⊕T k1 [ui]

for p large enough.

Now that we have a normalized x2 ∈ T k1 [sn+1] that satisfies v < x2 and

PmΦ(x2) ≈ 0, we find a finitely supported y2 ∈ T k2 [t1] such that y2 ≈ Φ(x2)

and Pm1y2 = 0. Notice that v1 ≤ y1 < v2 < y2 and that Lemma 4.5.3 gives that

supp (y2) ⊂ Xmax
v2

.

We now repeat the argument. Use Lemma 4.4.1 to find v3 ∈ τ k2 [t1] such

that y2 < v3 and Xmax
v3

∩ τ k2 [t1] =
⋃∞

j=m2+1 τ
k2 [rj]. Then we find a normalized

x3 ∈ T k1 [sn+2] such that v < x3 and Pm2Φ(x3) is essentially zero. Finally, we find

a finitely supported y3 ∈ T k2 [t1] such that y3 ≈ Φ(x3) and Pm2y3 = 0.
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Proceeding this way, for every i ≤ N , we find normalized xi ∈ T k1 [sn+i−1] with

v < xi, vi ∈ ω6 ↓k2 , and yi ∈ T k2 [t1] such that yi ≈ Φ(xi) and

v1 ≤ y1 < v2 < y2 < · · · < vN < yN and vi+1, supp (yi) ⊂ Xmax
vi

.

By Theorem 4.3.1, (yi)
N
i=1 is isomorphic to the canonical basis of `Np . Hence,

Φ maps `N∞ isomorphically into `Np . Since N is arbitrary, this contradicts that Φ

is continuous (see equation (4.5.1) below). This concludes the proof for the case

M = 1.

Now letM > 1 and suppose, towards a contradiction, that there exists n ∈ Z+

and an isomorphism

Φ :
∞∑
i=n

⊕T k1 [si] → T k2 [t1]⊕ T k2 [t2]⊕ · · · ⊕ T k2 [tM ].

For each j ∈ Z+ let Qj :
∑M

i=1 T
k2 [ti] → T k2 [tj] be the canonical projection.

Decompose T k2 [tj] =
∑∞

i=1 T
k2 [rji ] as in Lemma 4.5.2 and for each m ∈ Z+, let

P j
m : T k2 [tj] →

∑m
i=1 T

k2 [rji ] be the canonical projection onto the firstm blocks.

The proof is similar to the case M = 1. Find N large enough and v ∈ ω6 ↓k1

such that sn ≺ sn+1 ≺ · · · ≺ sn+N−1 ≺ v. Find x1 ∈ T k1 [sn] such that ‖x1‖ = 1

and v < x1 and find a finitely supported y1 ∈ T k2 [t1] ⊕ · · · ⊕ T k2 [tM ] such that

y1 ≈ Φ(x1).

For each j ≤ M , let vj1 = min≺(τ
k2 [tj]). Use Lemma 4.4.1 to find vj2 ∈ τ k2 [tj]

such that Qj(y1) < vj2 and X
max
v2

∩ τ k2 [tj] =
⋃∞

i=mj
1+1 τ

k2 [rji ] for somemj
1 ∈ N. Let

P1 =
∑M

j=1 P
j

mj
1

be the projection onto the first blocks of each of the T k2 [tj]’s.
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Since k1 − |sn+1| > k2 − |r1| = m we can apply the induction hypothesis.

In particular, the map P1Φ|Tk1 [sn+1] is not an isomorphism and we can find x2 ∈

T k2 [sn+1] such that ‖x2‖ = 1 and P1Φ(x2) ≈ 0. Arguing as in the caseM = 1, we

can also assume that v < x2. We then find a finitely supported y2 ∈
∑M

j=1⊕T k2 [tj]

such that y2 ≈ Φ(x2) and P1y2 = 0.

Proceeding this way, for every i ≤ N , we find normalized xi ∈ T k1 [sn+i−1] with

v < xi and yi ∈
∑M

j=1⊕T k2 [tj] such that yi ≈ Φ(xi). Moreover, for every j ≤ M ,

we can find vji ∈ ω6 ↓k2 such that

vj1 ≤ Qj(y1) < vj2 < Qj(y2) < · · · < vjN < Qj(yN) and v
j
i+1, supp (Qj(yi)) ⊂ Xmax

vji
.

By Theorem 4.3.1, there exists C1 > 0 independent of N such that for every

j ≤ M ,

1

C1

(
N∑
i=1

‖Qj(yi)‖p
) 1

p

≤

∥∥∥∥∥
N∑
i=1

Qj(yi)

∥∥∥∥∥ ≤ C1

(
N∑
i=1

‖Qj(yi)‖p
) 1

p

.

Using the triangle inequality for yi =
∑M

j=1 Qj(yi), Holder’s inequality

(∑N
i=1 |ai| ≤

N1/q

(∑N
i=1 |ai|p

)1/p

, 1
p
+ 1

q
= 1

)
, Theorem 4.3.1, and the fact that the projections

Qj are contractive, we get

N∑
i=1

‖yi‖ ≤
N∑
i=1

M∑
j=1

‖Qj(yi)‖ ≤ N1/q

M∑
j=1

(
N∑
i=1

‖Qj(yi)‖p
)1/p

≤ C1N
1/q

M∑
j=1

∥∥∥∥∥
N∑
i=1

Qj(yi)

∥∥∥∥∥ ≤ C1N
1/q

M∑
j=1

∥∥∥∥∥
N∑
i=1

yi

∥∥∥∥∥
= C1N

1/qM

∥∥∥∥∥
N∑
i=1

yi

∥∥∥∥∥ ≈ C1N
1/qM

∥∥∥∥∥Φ
(

N∑
i=1

xi

)∥∥∥∥∥
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≤ C1N
1/qM‖Φ‖

∥∥∥∥∥
N∑
i=1

xi

∥∥∥∥∥ . (4.5.1)

SinceN is arbitrary,
∑N

i=1 ‖yi‖ is of orderN , and ‖
∑N

i=1 xi‖ stays bounded, we

see that Φ cannot be bounded, contradicting our assumption.
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Chapter 5

Alternative Norms

We explore here the consequences of alternative definitions of the norm presented

in Chapter 4. Throughout the sections of this chapter the notation used may overlap

with the one previously used. Moreover, the definition of admissible sequence will

be different in each section, even though we always use phrases like “admissible” or

“admissible sequence”. We have done so in order to simplify as much as possible

the exposition and discussion of the Banach spaces constructed. Therefore, we warn

the reader that the notation and the definition of admissible sequence are relative to

each section.

In this chapter we always assume d, k ∈ Z+ are such that d, k ≥ 2, and θ ∈ R

is such that 0 < θ ≤ 1. Unless specified otherwise, we will denote the basis of the

Banach spaces defined here by (ei)
∞
i=1. Remember that we write ei instead of e~ui

.

Also, ‖·‖′ will denote the norm studied in the preceding chapter. For each n ∈ Z+,

the following subspaces will be studied:
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The subspace

R[n] := span{ev : v = (n− 1,m) ∈ ω6 ↓2}

is generated by all the basis elements whose support lies on the n-th row of the upper

triangular representation of ω6 ↓2; we refer to R[n] simply as the n-th row subspace.

Similarly, the subspace

C[n] := span{ev : v = (m,n− 1) ∈ ω6 ↓2}

is generated by all the basis elements whose support lies on the n-th column of the

upper triangular representation of ω6 ↓2; we refer to C[n] simply as the n-th column

subspace. Finally, the subspace

D := span{ev : ∃m ∈ N such that v = (m,m)}

is generated by all the basis elements whose support lies on the main diagonal of

the upper triangular representation of ω6 ↓2; we refer to D simply as the diagonal

subspace.

Finally, we say that (vi)
n
i=1 ⊂ ω6 ↓2, with vi = (li,mi), is a generalized column of

ω6 ↓2 whenever l1 < · · · < ln < m1 < · · · < mn. The subspace

GC[(vi)
n
i=1] := span{evi}

is called the generalized column subspace generated by (vi)
n
i=1.
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5.1 Case I

Definition 5.1.1. LetM ⊂ ARk be a family of finite approximations. We say that

M is compact if the set {χE : E ∈ M} is a compact subset of the set {0, 1}ω
6 ↓k

endowed with the product topology. Moreover, M is hereditary if E ∈ M and

F = rn(E) for some n ∈ Z+ implies that F ∈ M.

In the preceding definition, {0, 1}ω
6 ↓k

is identified with the space of all functions

f : ω6 ↓k → {0, 1} and χ
E is the characteristic function of E. In {0, 1}ω

6 ↓k
, the

convergence under the product topology is the pointwise convergence. Consequently,

if E ∈ ARk and χ
En converges to χ

E pointwise, there exists N ∈ Z+ such that

E ⊆ En for all n ≥ N .

Notice thatAk
d, the downward closure of the barrierARk

d on ω
6 ↓k ∈ Ek, is compact

and hereditary.

Definition 5.1.2. Let M ⊂ ARk be compact hereditary. We say that a sequence

(Ei)
m
i=1 of finite subsets of ω

6 ↓k isM-admissible if and only if there exists {v1, v2, . . . ,

vm} ∈ M such that v1 ≤ E1 < v2 ≤ E2 < · · · < vm ≤ Em.

Definition 5.1.3. Let M ⊂ ARk be compact hereditary. We denote by T (M, θ)

the completion of c00(ω
6 ↓k) with respect to the norm defined by

‖x‖ = max

{
‖x‖∞ , θ sup

{
m∑
i=1

‖Eix‖ : (Ei)
m
i=1 M-admissible

}}
,

where x =
∑∞

n=1 xnen and ‖x‖∞ := supn∈Z+ |xn|. We call T (M, θ) the high

dimensional Tsirelson type space defined by (M, θ).
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The following proposition follows by standard arguments:

Proposition 5.1.4. (en)
∞
n=1 is a 1-unconditional basis of T (M, θ).

In this section, we will explore the case θ = 1. We will see that the space `1

plays an important role.

Proposition 5.1.5. If M ⊂ ARk is a compact hereditary family of finite approxi-

mations with the property that there is v ∈ ω6 ↓k for which there are infinitely many

w ∈ ω6 ↓k such that {v, w} ∈ M, then T (M, 1) is `1-saturated.

Proof. By the Bessaga-Pelczynski Selection Principle [6], it suffices to prove that

every block subspace contains a further subspace isomorphic to `1. Let (xn) be

a normalized block basic sequence. We will extract a subsequence (xni
) of (xn)

equivalent to the `1 basis.

Since there is {v} ∈ M, we can choose xn1 such that v < xn1 (remember

that this means that v < supp (xn1)). By hypothesis, there exists w1 ∈ ω6 ↓k such

that xn1 < w1 and {v, w1} ∈ M. Then, we can choose xn2 such that w1 < xn2 .

Repeating this process, we can extract a subsequence (xni
) of (xn) with the property

that for each i ∈ Z+ there exists wi ∈ ω6 ↓k such that v < xni
< wi < xni+1

and

{v, wi} ∈ M.

Now, for each M ∈ Z+, let us estimate

∥∥∥∑M
i=1 aixni

∥∥∥ for any (ai) ⊂ R. By

definition,

∥∥∥∑M
i=1 aixni

∥∥∥ ≤
∥∥∥∑M

i=1 aixni

∥∥∥
1
(remember that ‖·‖p denotes the `p-

norm).

Given that there are j, j1 ∈ Z+ such that v = ~uj and w1 = ~uj1 , we can set E1 :=

{v, ~uj+1, . . . , ~uj1−1} and E2 := {w1, ~uj1+1, . . . , wM}. By construction, (E1, E2) is

anM-admissible sequence, and consequently
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∥∥∥∥∥
M∑
i=1

aixni

∥∥∥∥∥ ≥

∥∥∥∥∥E1

(
M∑
i=1

aixni

)∥∥∥∥∥+
∥∥∥∥∥E2

(
M∑
i=1

aixni

)∥∥∥∥∥
= ‖a1xn1‖+

∥∥∥∥∥
M∑
i=2

aixni

∥∥∥∥∥
= |a1|+

∥∥∥∥∥
M∑
i=2

aixni

∥∥∥∥∥ .
Next, let j1 be such thatw2 = ~uj1 and setE21 := {v, ~uj+1, . . . , ~uj1−1} andE22 :=

{w2, ~uj1+1, . . . , wM}. By construction, (E21, E22) is anM-admissible sequence, and

consequently

∥∥∥∥∥
M∑
i=2

aixni

∥∥∥∥∥ ≥

∥∥∥∥∥E21

(
M∑
i=2

aixni

)∥∥∥∥∥+
∥∥∥∥∥E22

(
M∑
i=2

aixni

)∥∥∥∥∥
= ‖a2xn2‖+

∥∥∥∥∥
M∑
i=3

aixni

∥∥∥∥∥
= |a2|+

∥∥∥∥∥
M∑
i=2

aixni

∥∥∥∥∥ .
Therefore, ∥∥∥∥∥

M∑
i=1

aixni

∥∥∥∥∥ ≥ |a1|+ |a2|+

∥∥∥∥∥
M∑
i=3

aixni

∥∥∥∥∥ .
Continuing in this way we conclude that

∥∥∥∥∥
M∑
i=1

aixni

∥∥∥∥∥ ≥ |a1|+ |a2|+ · · ·+ |aM | .
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Corollary 5.1.6. T (Ak
d, 1) is `1-saturated.

Proof. We already know that Ak
d is compact hereditary. Moreover, Ak

d satisfies the

other hypotheses of Proposition 5.1.5 by setting v = ~u1 and noticing that there are

infinitely many E ∈ Ak
d of length 2 with v as their first element.

The following two results allow us to see that spaces satisfying the hypotheses

of Proposition 5.1.5 can have different structure.

Proposition 5.1.7. If d > 2, then T (A2
d, 1) is isomorphic to `1.

Proof. We will prove that the basis (ei)
∞
i=1 of T (A2

d, 1) is equivalent to the standard

basis of `1. Let x :=
∑∞

i=1 aiei, where (ai)
∞
i=1 ⊂ R. By definition, ‖x‖ ≤ ‖x‖1.

On the other hand, given that {~u1, ~u2} ∈ A2
d and d > 2, we know that for

every N ∈ Z+ it is the case that E1 := {~u1} and E2 := {~u2, ~u3, . . . , ~uN} define an

A2
d-admissible sequence. Therefore,

‖x‖ ≥ ‖E1x‖+ ‖E2x‖ = |a1|+

∥∥∥∥∥
N∑
i=2

aiei

∥∥∥∥∥ .
We now proceed to prove that if y :=

∥∥∥∑N
i=M aiei

∥∥∥ with M < N , then ‖y‖ ≥

|aM |+
∥∥∥∑N

i=M+1 aiei

∥∥∥. There are three mutually exclusive cases for ~uM : for some

h, l ∈ Z+, ~uM = (h − 1, h) or ~uM = (h, h) or ~uM = (h, l) with l − h > 1. We

construct a suitable A2
d-admissible sequence for each of these cases as follows:

Case ~uM = (h−1, h). Set v := (h−1, h−1). Then, since d > 2, {v, ~uM , ~uM+1} ∈

A2
d and consequently E1 := {v} , E2 := {~uM} , E3 := {~uM+1, ~uM+2, . . . , ~uN}

define an A2
d-admissible sequence.
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Case ~uM = (h, h). Notice that ~uM+1 = (0, h + 1). Then, {~u1, ~uM+1} ∈ A2
d and

consequently E1 := {~uM} , E2 := {~uM+1, ~uM+2, . . . , ~uN} define an A2
d-admissible

sequence.

Case ~uM = (h, l) with l − h > 1. Set v := (h + 1, h + 1) and notice that

~uM+1 = (h + 1, l). Then, {v, ~uM+1} ∈ A2
d and consequently E1 := {~uM} , E2 :=

{~uM+1, ~uM+2, . . . , ~uN} define an A2
d-admissible sequence.

Therefore, given ~uM , we can construct an A2
d-admissible sequence which guar-

antees that

‖y‖ ≥ |aM |+

∥∥∥∥∥
N∑

i=M+1

aiei

∥∥∥∥∥ .
Hence, for every N ∈ Z+ and (ai)

N
i=1 ⊂ R, it is the case that

‖x‖ ≥ |a1|+ |a2|+ · · ·+ |aN | .

Proposition 5.1.8. There is a high dimensional Tsirelson type space that is `1-

saturated but not isomorphic to `1.

Proof. Let n ∈ Z+. If ~u2n = (l′, l), set wn := (0, l). Under this notation, let

M :=
{
E ∈ AR2 : E = {~u1} or ∃n ∈ Z+ such that E = {~u1, wn}

}
.

Then, T (M, 1) is `1-saturated but not isomorphic to `1. Indeed, T (M, 1) is

`1-saturated by Proposition 5.1.5. So, suppose that T (M, 1) is isomorphic to `1.

Then, there is C > 1 such that for all n ∈ Z+ and all (ai) ⊂ R,
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1

C

n∑
i=1

|ai| ≤

∥∥∥∥∥
n∑

i=1

aiei

∥∥∥∥∥ ≤ C
n∑

i=1

|ai| . (5.1.1)

Let j ∈ Z+. Consider x :=
∑2j+1

i=2j+1 aiei and remember that we write ei instead

of e~ui
. We know that wj+1 = ~um for somem ∈ Z+. Then, since wj+1 ≺ ~u2j+1 ,

∥∥∥∥∥∥
2j+1∑

i=2j+1

ei

∥∥∥∥∥∥ ≤

∥∥∥∥∥
m−1∑

i=2j+1

ei

∥∥∥∥∥+
∥∥∥∥∥∥
2j+1−1∑
i=m

ei

∥∥∥∥∥∥+ ‖e2j+1‖ .

Letting y =
∑m−1

i=2j+1 ei and z =
∑2j+1−1

i=m ei, we see that wj < supp (y) < wj+1

and wj+1 ≤ supp (z) < wj+2. By definition ofM, it is not possible to split up the

support of y or z, so that we cannot make their norm bigger than their ‖·‖∞-norm.

Therefore, ‖x‖ ≤ ‖y‖+ ‖z‖+ ‖e2j+1‖ = 1 + 1 + 1 = 3.

From (5.1.1) we conclude that 2j/C ≤ 3. Hence, 2j ≤ 3C for every j ∈ Z+, a

contradiction.

5.1.1 n-th Row and Diagonal Subspaces

Notice that Proposition 5.1.7 clearly implies the following:

Corollary 5.1.9. If d > 2, then any n-th row subspace and the diagonal subspace

of T (A2
d, 1) are isomorphic to `1.

However, when 0 < θ < 1 and dθ > 1, the n-th row subspaces and the diagonal

subspace of T (A2
d, θ) have quite a different structure:

Proposition 5.1.10. Suppose that 0 < θ < 1 and dθ > 1. Then, R[n] and D are

isomorphic to `p, where θ = 1
d1/q

and 1
p
+ 1

q
= 1.
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To establish Proposition 5.1.10 we need to present two useful alternative ways to

define the norm of T (A2
d, θ) that are just a slight variation of the ones presented in

the previous chapter:

(i) Given x =
∑∞

j=1 xjej ∈ c00(ω
6 ↓2), define the following non-decreasing sequence

of norms: |x|0 := maxj∈Z+ |xj|, and for n ∈ N,

|x|n+1 := max

{
|x|n , θmax

{
m∑
i=1

|Eix|n : 1 ≤ m ≤ d, (Ei)
m
i=1 A2

d-admissible

}}
.

Then,

‖x‖ := sup
n∈N

|x|n .

(ii) Let K0 := {±e∗i : i ∈ Z+}. For n ∈ N, let

Kn+1 := Kn

⋃
{θ(f1 + · · ·+ fm) : 1 ≤ m ≤ d, (fi)

m
i=1 ⊂ Kn} ,

where (supp (fi))
m
i=1 is an A2

d-admissible sequence. Set K :=
⋃

n∈N Kn. For each

n ∈ N and fixed x ∈ c00(ω
6 ↓2), define the following non-decreasing sequence of

norms:

|x|∗n := max {f(x) : f ∈ Kn} .

As in the previous chapter, for every n ∈ N and x ∈ c00(ω
6 ↓2)we have |x|n = |x|∗n.

Then,

‖x‖ = sup {f(x) : f ∈ K} .

Proposition 5.1.10 follows from the next two lemmas. We will prove the second

one only for R[n] since the proof for D is analogous.
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Lemma 5.1.11. For any finitely supported x ∈ T (A2
d, θ) we have ‖x‖ ≤ ‖x‖p.

Proof. We will prove by induction on m ∈ N that for every f ∈ Km we have

|f(x)| ≤ ‖x‖p. This is trivially the case when m = 0. Suppose that the result holds

form ∈ N and let f = θ(f1 + · · ·+ fj) ∈ Km+1. By definition of Km+1 we know

that j ≤ d and (fi)
j
i=1 ⊂ Km. IfEi := supp (fi), then |fi(x)| = |fi(Eix)| ≤ ‖Eix‖p

by induction hypothesis. Therefore,

|f(x)| ≤ θ

j∑
i=1

|fi(x)| ≤ θ

j∑
i=1

‖Eix‖p =
1

d1/q

j∑
i=1

‖Eix‖p .

Applying Hölder’s inequality and the fact that j/d ≤ 1 we get,

1

d1/q

j∑
i=1

‖Eix‖p ≤
(
j

d

)1/q
(

j∑
i=1

‖Eix‖pp

)1/p

≤ ‖x‖p .

The next lemma give us the necessary lower `p-estimate. Its proof exploits the

fact that the norm of T (A2
d, θ) as defined in this section is always bigger than or

equal to the norm ‖·‖′ of the corresponding Banach space studied in the previous

chapter.

We will use special notation for the basis elements of the n-th row subspace. For

i ∈ Z+, set eni := e(n−1,n+i−2). Then, (e
n
i )

∞
i=1 denotes the canonical basis of R[n].

Lemma 5.1.12. For every x ∈ R[n] we have 1
2d
‖x‖p ≤ ‖x‖.

Proof. Set vi := supp (eni ) , xi := eni for each i ∈ Z+. Then, applying Proposition

4.3.5, we conclude that 1
2d
‖x‖p ≤ ‖x‖′ ≤ ‖x‖ for every x ∈ R[n].
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5.1.2 n-th Column and Generalized Column Subspaces

We analize here the finite dimensional n-th column subspaces of T (A2
d, θ), as

well as its generalized column subspaces. For the rest of this subsection suppose

that 0 < θ < 1, dθ > 1, and let p ∈ (1,∞) be determined by the equation dθ = d1/p

(which is equivalent to θ = 1
d1/q

whenever 1
p
+ 1

q
= 1).

As before, special notation for the basis elements of the n-th column subspace

is needed. For i ∈ {1, 2, . . . , n}, set ei:n := e(i−1,n−1). Then, (ei:n)
n
i=1 denotes the

canonical basis of C[n]. Also, for any n ∈ Z+, set

supp (C[n]) := {(0, n− 1), (1, n− 1), . . . , (n− 1, n− 1)} ;

clearly, supp (x) ⊆ supp (C[n]) for every x ∈ C[n].

In order to study C[n] we need to set up an specific framework. Consider the

approximation X is
d := {~u1, ~u2, . . . , ~ud} in the upper triangular representation of ω6 ↓2.

X is
d is just the initial segment of ω6 ↓2 of length d. Define l to be the length of the

largest column of X is
d ; e.g., when d = 7, we have l = 3. In general, if ~ud = (m′,m),

then l = m ifm′ 6= m, or l = m+ 1 ifm′ = m.

Remark 5.1.13. It is clear that we always have l < d. Moreover, by definition, if

E ∈ A2
d, then |E ∩ supp (C[n])| ≤ l for any n ∈ Z+. Therefore, given any A2

d-

admissible sequence (Fi)
m
i=1, at most l+1 of these Fi’s have non-empty intersection

with supp (C[n]).

Under this framework, we have:

Proposition 5.1.14. If lθ > 1, then C[n] is isomorphic to `np′ , where p
′ is determined

by lθ = l1/p
′
.
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Wewill prove this proposition by establishing that the basis (ei:n)
n
i=1 is equivalent

to the canonical basis of `np′ . The following two lemmas are based on Bellenot’s

original argument for the Tsirelson type space T (Al, θ), where Al is a member of

the low complexity hierarchy introduced in Chapter 2 (see [4]).

Lemma 5.1.15. For every x ∈ C[n] we have ‖x‖ ≤ M ‖x‖p′ for some M ≥ 1.

Proof. Denote the norm of T (Al, θ) by ‖·‖Al
. Bellenot proved that for every y ∈

T (Al, θ), there isM
′ ≥ 1 such that ‖y‖Al

≤ M ′ ‖y‖p′ . His fundamental idea was to

exploit the fact that in T (Al, θ) we can arbitrarily arrange up to l successive subsets

of N to produce an Al-admissible sequence.

We can follow a similar argument inC[n]. SetV := supp (C[n])\{(n− 1, n− 1)}

and let i ∈ {2, 3, . . . , l}. Suppose that E1, E2, . . . , Ei are subsets of V such that

E1 < E2 < · · · < Ei. It is clear that it is always possible to construct an X ∈ A2
d

whose last i− 1 elements are min≺(E2),min≺(E3), . . . ,min≺(Ei) and such that it

makesE1, E2, . . . , Ei anA2
d-admissible sequence. Consequently, following Bellenot,

C ′[n− 1] := span{ev : v ∈ V } has an upper `n−1
p′ -estimate.

Therefore, given that C ′[n− 1] and span{e(n−1,n−1)} are complemented in C[n],

there must beM ≥ 1 such that ‖x‖ ≤ M ‖x‖p′ for all x ∈ C[n].

To prove the next lemma we will use the Tsirelson type space T (Al, θ). Denote

its norm by ‖·‖Al
and by (ti)

∞
i=1 its standard basis. It will also be useful to remember

that the sum of the first l positive integers is equal to 1
2
l(l + 1). Following ideas

developed by Bellenot in [4] we have:
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Lemma 5.1.16. For every x ∈ C[n] we have 1
2l
‖x‖p′ ≤ ‖x‖.

Proof. Let x :=
∑n

i=1 aiei:n and y :=
∑n

i=1 aiti for (ai)
n
i=1 ⊂ R. We will prove that

‖y‖Al
≤ ‖x‖. This inequality will establish the desired result given that Bellenot

proved in [4] that 1
2l
‖y‖p′ ≤ ‖y‖Al

.

We know that either ‖y‖Al
= ‖y‖∞, or there exist l′ ∈ {1, . . . , l} and F1 < · · · <

Fl′ finite subsets of Z+ such that ‖y‖Al
= θ

∑l′

j=1 ‖Fjy‖Al
. For each j ∈ {1, . . . , l′},

either ‖Fjy‖Al
= ‖Fjy‖∞, or there exist l′′ ∈ {1, . . . , l} and Fj1 < · · · < Fjl′′

subsets of Fj such that ‖Fjy‖Al
= θ

∑l′′

s=1 ‖Fjsy‖Al
. Since y has finite support, this

process will end and y is normed by a tree.

We will prove that ‖y‖Al
≤ ‖x‖ by induction on the height h of the tree. If

‖y‖Al
= ‖y‖∞, then h = 0. It is clear that by definition of ‖·‖ we have ‖y‖∞ =

max1≤i≤n |ai| ≤ ‖x‖.

Suppose now that the result is proved for elements of T (Al, θ) that are normed

by trees of height less than or equal to h and that y is normed by a tree of height

h + 1. Then, there exist l′ ∈ {1, . . . , l} and F1 < · · · < Fl′ such that ‖y‖Al
=

θ
∑l′

j=1 ‖Fjy‖Al
and with each Fjy normed by a tree of height less than or equal to

h. By induction hypothesis,

‖Fjy‖Al
=

∥∥∥∥∑m∈Fj

amtm

∥∥∥∥
Al

≤
∥∥∥∥∑m∈Fj

amem:n

∥∥∥∥ . (5.1.2)

For each j ∈ {1, . . . , l′}, set mj := min(Fj) and ml′+1 := n + 1. We will

use m1, . . . ,ml′+1 to construct an A2
d-admissible sequence that would allow us to

overestimate

∥∥∥∑m∈Fj
amem:n

∥∥∥ appropriately.
Suppose thatml′ = n and write wj := (mj − 1, n− 1) for j ∈ {1, . . . , l′}. We

will first construct an X ∈ A2
d whose last l

′ elements are w1, . . . , wl′ .
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The first element v1 of X is determined by w1: set v1 := (m1 − 1,m1 − 1);

the next two elements of X (its second column) are determined by w1 and w2: set

v2 := (m1 − 1,m2 − 1) and v3 := (m2 − 1,m2 − 1); the next three elements of X

(its third column) are determined by w1, w2, w3: set v4 := (m1 − 1,m3 − 1), v5 :=

(m2 − 1,m3 − 1), v6 := (m3 − 1,m3 − 1). We follow this process until the last l′

elements ofX are w1, . . . , wl′ . By construction ofX and definition of l we have that

|X| ≤ 1
2
l(l + 1) < d, and consequently X ∈ A2

d.

Writing s := |X| − l′, let E1 := {v1} , E2 := {v2} , . . . , Es := {vs}. Then, for

j ∈ {1, . . . , l′}, let

Es+j := {wj, (mj, n− 1), . . . , (mj+1 − 2, n− 1)} ;

therefore, E1 < · · · < Es < Es+1 < · · · < Es+l′ is an A2
d-admissible sequence.

Now, going back to equation 5.1.2, notice thatFj ⊆ {mj, . . . ,mj+1 − 1}. Hence,

∥∥∥∥∑m∈Fj

amem:n

∥∥∥∥ ≤
∥∥∥∥∑mj+1−1

r=mj

arer:n

∥∥∥∥ = ‖Es+jx‖ .

Finally,

‖y‖Al
= θ

l′∑
j=1

‖Fjy‖Al
≤ θ

l′∑
j=1

‖Es+jx‖ ≤ ‖x‖ .

When ml′ < n the construction of X is analogous to the one presented above.

We start the construction by defining v1 := (m2 − 1,m2 − 1); that is, using w2

instead of w1. Then we set E1 := {(0, n− 1), (1, n− 1), . . . , (m2 − 2, n− 1)} and

Es+j for j = 2, . . . , l′ as above.

We now turn our attention to the finite dimensional subspaces generated by

generalized columns (vi)
n
i=1 of ω

6 ↓2. Remember that we say that (vi)
n
i=1, with vi =
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(li,mi), is a generalized column of ω6 ↓2 whenever l1 < · · · < ln < m1 < · · · < mn.

Their associated subspace is GC[(vi)
n
i=1] := span{evi}.

It turns out that GC[(vi)
n
i=1] is isomorphic to `np , where p is determined as in

Proposition 5.1.10. Observe that p 6= p′, so that the structure of GC[(vi)
n
i=1] is

different than the one described above for C[n].

Proposition 5.1.17. If dθ > 1, then GC[(vi)
n
i=1] is isomorphic to `np , where p is

determined by dθ = d1/p.

Proof. The upper `p-estimate follows immediately from Lemma 5.1.11. For the

lower `p-estimate we will follow the general idea presented in the proof of Lemma

5.1.16 but this time exploiting the Tsirelson type space T (Ad, θ). Denote the norm

of T (Ad, θ) by ‖·‖Ad
and by (ti)

∞
i=1 its standard basis.

Let (vi)
n
i=1 be a generalized column of ω6 ↓2. For (ai)

n
i=1 ⊂ R, write x :=∑n

i=1 aievi and y :=
∑n

i=1 aiti. Once again, we will prove that ‖y‖Ad
≤ ‖x‖

by induction on the height h of the norming tree of y.

As before, the result is clear when h = 0. Suppose now that the result is proved

for elements of T (Ad, θ) that are normed by trees of height less than or equal to h

and that y is normed by a tree of height h+ 1. Then, there exist d′ ∈ {1, . . . , d} and

F1 < · · · < Fd′ such that ‖y‖Ad
= θ

∑d′

j=1 ‖Fjy‖Ad
and with each Fjy normed by a

tree of height less than or equal to h. By induction hypothesis,

‖Fjy‖Ad
=

∥∥∥∥∑m∈Fj

amtm

∥∥∥∥
Ad

≤
∥∥∥∥∑m∈Fj

amevm

∥∥∥∥ . (5.1.3)

For each j ∈ {1, . . . , d′}, set mj := min(Fj) and md′+1 := n + 1. We will

usem1, . . . ,md′+1 to construct an A2
d-admissible sequence that would allow us to

overestimate

∥∥∥∑m∈Fj
amevm

∥∥∥ appropriately.
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Suppose that vi := (li1, l
i
2) for i ∈ {1, . . . , n}. Setw1 := vm1 . Since by definition

of generalized column we have that lm1
1 < lm2

1 and lm1
2 < lm2−1

2 < lm2
2 , then

w2 := (lm1
1 , lm2

2 ) is such that vm2−1 ≺ w2 ≺ vm2 and {w1, w2} ∈ A2
d. Now, given

that lm2
2 < lm3−1

2 < lm3
2 , then w3 := (lm3−1

2 , lm3−1
2 ) is such that vm3−1 � w3 ≺

vm3 and {w1, w2, w3} ∈ A2
d. In general, for each j ∈ {2, . . . , d′}, the fact that

l
mj−1
2 < l

mj

2 guarantees the existence of wj ∈ ω6 ↓2 such that vmj−1
� wj ≺ vmj

and

{w1, . . . , wj} ∈ A2
d. Therefore, X := {w1, . . . , wd′} ∈ A2

d.

Let Ej be the finite subset of ω
6 ↓2 that contains every w such that vmj

� w �

vmj+1−1. Then, by construction,

w1 ≤ E1 < w2 < E2 ≤ w3 < E3 ≤ w4 < · · · < Ed′−1 ≤ wd′ < Ed′ ;

i.e., (Ej)
d′
j=1 is an A2

d-admissible sequence.

Since Fj ⊆ {mj, . . . ,mj+1 − 1},

∥∥∥∥∑m∈Fj

amevm

∥∥∥∥ ≤
∥∥∥∥∑mj+1−1

r=mj

arevr

∥∥∥∥ = ‖Ejx‖ .

Hence, applying equation 5.1.3, we have that

‖y‖Ad
= θ

d′∑
j=1

‖Fjy‖Ad
≤ θ

d′∑
j=1

‖Ejx‖ ≤ ‖x‖ .
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5.1.3 Thin Approximations

The key property of generalized columns that allowed us to prove Proposition

5.1.17 is that each element of such a column is always at least a column to the right

of the previous one in the upper triangular representation of ω6 ↓2. This property

motivates the concept of thin approximation:

Definition 5.1.18. Any approximation X := {v1, v2, . . .} ∈ A2
d, with vi = (li1, l

i
2),

such that li2 < li+1
2 is called a thin approximation. The subspace span{evi} generated

by X is denoted by T2[X].

Surprisingly, the subspaces generated by thin approximations share the same

structure with the subspaces R[n]:

Proposition 5.1.19. If X ∈ A2
d is a thin approximation, then T2[X] is isomorphic

to `p, where p is determined by dθ = d1/p.

Proof. Let X := {v1, v2, . . .}, with vi = (li1, l
i
2), be a thin approximation. This

proof follows the one presented for Proposition 5.1.17. In this case, to get a lower `p-

estimate, we have to show that ‖
∑∞

i=1 aiti‖Ad
≤ ‖
∑∞

i=1 aievi‖ for any (ai)∞i=1 ⊂ R

with finitely many non-zero elements. We can establish this inequality by following

the same construction of the A2
d-admissible sequence (Ej)

d′
j=1 since it is based only

on the fact that li2 < li+1
2 .

5.2 Case II

Definition 5.2.1. Let m ∈ {1, 2, . . . , d}. We say that (Ei)
m
i=1 ⊂ ARk is admissible

if and only if there exists v1, v2, . . . , vm ∈ ω6 ↓k such that v1 ≤ E1 < v2 ≤ E2 <

· · · < vm ≤ Em.
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For x =
∑∞

n=1 xnen ∈ c00(ω
6 ↓k) and j ∈ N, we define a non-decreasing sequence

of norms on c00(ω
6 ↓k) as follows:

• |x|0 := max
n∈Z+

|xn| ,

• |x|j+1 := max

{
|x|j , θmax

{
m∑
i=1

|Eix|j : 1 ≤ m ≤ d, (Ei)
m
i=1 admissible

}}
.

For fixed x ∈ c00(ω
6 ↓k), the sequence (|x|j)j∈N is bounded above by the `1(ω

6 ↓k)-

norm of x. Therefore, we can set

‖x‖ := sup
j∈N

|x|j .

Clearly, ‖·‖ is a norm on c00(ω
6 ↓k).

Definition 5.2.2. The completion of c00(ω
6 ↓k)with respect to the norm ‖·‖ is denoted

by (Tk(d, θ), ‖·‖).

Under standard arguments we have:

Proposition 5.2.3. (en)
∞
n=1 is a 1-unconditional basis of Tk(d, θ).

Proposition 5.2.4. For x =
∑∞

n=1 xnen ∈ Tk(d, θ) it follows that

‖x‖ = max

{
‖x‖∞ , θ sup

{
m∑
i=1

‖Eix‖ : 1 ≤ m ≤ d, (Ei)
m
i=1 admissible

}}
,

where ‖x‖∞ := supn∈Z+ |xn|.
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5.2.1 n-th Row and Diagonal Subspaces

Surprisingly, as in Case I, when 0 < θ < 1 and dθ > 1, these subspaces remain

isomorphic to `p:

Proposition 5.2.5. Suppose that 0 < θ < 1 and dθ > 1. Then, R[n] and D are

isomorphic to `p, where θ = 1
d1/q

and 1
p
+ 1

q
= 1.

This proposition follows immediately from the next two lemmas. For the first

of these lemmas we will also use an alternative way to define the norm of Tk(d, θ)

using functionals:

Definition 5.2.6. Let m ∈ {1, . . . , d}. A sequence (Fi)
m
i=1 ⊂ FIN(ω6 ↓k) is called

almost admissible if there exists an admissible sequence (En)
d
n=1 such that Fi ⊆ Eni

,

where n1, . . . , nm ∈ {1, . . . , d} are such that n1 < n2 < · · · < nm.

As before, let K0 := {±e∗i : i ∈ Z+}. Then, for n ∈ N, set

Kn+1 := Kn

⋃
{θ(f1 + · · ·+ fm) : 1 ≤ m ≤ d, (fi)

m
i=1 ⊂ Kn} ,

where (supp (fi))
m
i=1 is almost admissible. SetK :=

⋃
n∈N Kn. For each n ∈ N and

fixed x ∈ c00(ω
6 ↓k), define the following non-decreasing sequence of norms:

|x|∗n := max {f(x) : f ∈ Kn} .

As in the previous chapter, for every n ∈ N and x ∈ c00(ω
6 ↓k)we have |x|n = |x|∗n.

Then,

‖x‖ = sup {f(x) : f ∈ K} .
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In contrast with Case I, here we will establish Proposition 5.2.5 only for the

diagonal subspace D (the proof for R[n] is analogous).

Lemma 5.2.7. For any finitely supported x ∈ T2(d, θ) we have ‖x‖ ≤ ‖x‖p.

Proof. It is clear that |f(x)| ≤ ‖x‖p for every f ∈ K0. Suppose that this inequal-

ity holds for some m ∈ N. Let f = θ(f1 + · · · + fj) ∈ Km+1. By definition,

j ≤ d, (fi)
j
i=1 ⊂ Km, and there exists an admissible sequence (En)

d
n=1 such that

supp (fi) ⊆ Eni
, where n1, . . . , nj ∈ {1, . . . , d} and n1 < · · · < nj . Then, since

|fi(x)| = |fi(Eni
x)| ≤ ‖Eni

x‖p by induction hypothesis, we conclude that

|f(x)| ≤ θ

j∑
i=1

|fi(x)| ≤ θ

j∑
i=1

‖Eni
x‖p .

The result now follows by applying Hölder’s inequality as in Lemma 5.1.11.

For each i ∈ Z+, set e′n := e(n−1,n−1). Then, (e
′
n)

n
i=1 denotes the canonical basis

of D. Remember that it is always the case that ‖·‖′ ≤ ‖·‖.

Lemma 5.2.8. For any x ∈ D we have 1
2d
‖x‖p ≤ ‖x‖.

Proof. Setting vi := supp (e′i) , xi := e′i for each i ∈ Z+, and then applying Proposi-

tion 4.3.5 we obtain

1

2d

(
∞∑
i=1

|ai|p
)1/p

≤

∥∥∥∥∥
∞∑
i=1

aie
′
i

∥∥∥∥∥
′

≤

∥∥∥∥∥
∞∑
i=1

aie
′
i

∥∥∥∥∥
for every (ai)

∞
i=1 ⊂ R.
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5.2.2 n-th Column and Generalized Column Subspaces

Here we study the finite dimensional n-th column and generalized column sub-

spaces of T2(d, θ). Remember that (ei:n)
n
i=1 denotes the canonical basis of C[n].

Even thoughR[n] is isomorphic to `p as a subspace of either T (A2
d, θ) or T2(d, θ),

the following results show that columns turn out to have a different structure.

Lemma 5.2.9. Suppose E,F ∈ AR2 and E ∩ supp (C[n]) 6= ∅. If E < F , then

either F ∩ supp (C[n]) = {min≺(F )} or F ∩ supp (C[n]) = ∅.

Proof. If min≺(F ) 6∈ supp (C[n]), then any (m1,m2) ∈ F is such that n− 1 < m2

by definition of approximation. Consequently, F ∩ supp (C[n]) = ∅.

On the other hand, if min≺(F ) ∈ supp (C[n]), any other (m1,m2) ∈ F is such

that n− 1 < m2. Therefore, F ∩ supp (C[n]) = {min≺(F )}.

Proposition 5.2.10. C[n] is isomorphic to `n∞.

Proof. Let x ∈ C[n]. By definition, ‖x‖∞ ≤ ‖x‖. So, suppose that for somem ∈

{1, . . . , d} we have an admissible sequence (Ei)
m
i=1 such that ‖x‖ = θ

∑m
i=1 ‖Eix‖.

Let j ∈ {1, . . . ,m} be the smallest integer such that Ej ∩ supp (x) 6= ∅. By Lemma

5.2.9, for any l = j, j+1, . . . ,m, we have |El ∩ supp (C[n])| ≤ 1, and consequently

‖Elx‖ ≤ ‖x‖∞. Then,

‖x‖ = θ
m∑
i=1

‖Eix‖ = θ (‖Ejx‖+ ‖Ej+1x‖+ · · ·+ ‖Emx‖)

≤ θ (‖Ejx‖+ (m− j) ‖x‖∞)

≤ θ ‖Ejx‖+ dθ ‖x‖∞ .
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Since Ejx ∈ C[n], we can apply the previous argument to Ejx instead of x to

conclude that

‖x‖ ≤ θ2 ‖F (Ejx)‖+ dθ2 ‖x‖∞ + dθ ‖x‖∞

for some F ∈ AR2.

Given that |supp (x)| ≤ n, we have

‖x‖ ≤ d ‖x‖∞
∞∑
i=1

θi =
dθ

1− θ
‖x‖∞ .

Proposition 5.2.11. For any generalized column (vi)
n
i=1 ofω

6 ↓2, we have thatGC[(vi)
n
i=1]

is isomorphic to `n∞.

Proof. Suppose that vi = (li,mi). By definition of generalized column we know

that l1 < · · · < ln. Then, for si := (li), we have s1 ≺ s2 ≺ · · · ≺ sn. Therefore,

under the notation used in Section 4.2 with N = n, it is easy to see that GC[(vi)
n
i=1]

is a subspace of C. Hence, applying Theorem 4.2.4, we conclude that

‖x‖∞ ≤ ‖x‖ ≤ dθ

1− θ
‖x‖∞

for every x ∈ GC[(vi)
n
i=1].

5.2.3 T3(d, θ) is not isomorphic to T2(d, θ)

In this section we shed even more light on the similarities of the spaces Tk(d, θ)

and the spaces T (Ak
d, θ) constructed in the previous chapter whenever 0 < θ < 1

and dθ > 1.
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We begin pointing out a couple of results from Chapter 4 that we can transfer

to our current setting. Notice that Lemma 3.3.1 and its corollaries provide, given

v ∈ ω6 ↓k, a description of the elements of Xmax
v , and are therefore independent of the

definition of the Banach space Tk(d, θ). As a consequence we can transfer Lemma

4.2.3 and Theorem 4.2.4 to establish the presence of arbitrary large copies of `N∞

inside Tk(d, θ).

We will take advantage of the notation developed in Section 4.2. Particularly,

given j ∈ N, we write τ k[j] and T k[j] instead of τ k[(j)] and T k[(j)], respectively.

Lemma 5.2.12. Suppose m ∈ Z+ and j, j1, . . . , jm ∈ N. Then, T 3[j] does not

embed into T 2[j1]⊕ · · · ⊕ T 2[jm].

Proof. Since T 2[n] = R[n + 1] for every n ∈ N, applying Proposition 5.2.5 we

conclude that T 2[n] is isomorphic to `p, and consequently so is T
2[j1]⊕· · ·⊕T 2[jm].

On the other hand, Theorem 4.2.4 guarantees us that T 3[j] has arbitrarily large

copies of `N∞. Hence, there cannot be an embedding from T 3[j] into T 2[j1]⊕ · · · ⊕

T 2[jm].

Proposition 5.2.13. T3(d, θ) does not embed into T2(d, θ).

Proof. Suppose, towards a contradiction, that there exists an isomorphism

Φ : T3(d, θ) → T2(d, θ).

Throughout this proof the following decompositions will be very useful:

Tk(d, θ) =
∞∑
j=0

⊕T k[j] and ω6 ↓k =
∞⋃
j=0

τ k[j].
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Theorem 4.2.4 implies that for everyN ∈ Z+ and any v ∈ ω6 ↓3 with (N −1) ≺ v

we have span{x1, . . . , xN} ≈ `N∞ whenever xi ∈ T 3[i − 1], v < xi, and ‖xi‖ = 1.

Recall that in such a case the isomorphism constant is independent of N and the xi’s.

Fix N ∈ Z+ and set v := (N − 1, N − 1, N − 1).

Let v1 := (0, 0) and pick x1 ∈ T 3[0] such that v < x1 and ‖x1‖ = 1. Find a

finitely supported y1 ∈ T2(d, θ) such that y1 ≈ Φ(x1). Setting u1 := max≺(supp (y1))

it is clear that if u1 = (l11, l
1
2), then v2 := (m1,m1), withm1 := l12 + 1, is such that

y1 < v2. Moreover, Xmax
v2

=
⋃∞

j=m1
τ 2[j] given that v2 is an element on the diagonal

of the upper triangular representation of ω6 ↓2.

Now let Pm : T2(d, θ) → T 2[0] ⊕ · · · ⊕ T 2[m] denote the projection onto the

firstm terms of the decomposition of T2(d, θ). Consider

Pm1Φ|T 3[1] : T
3[1] → T 2[0]⊕ · · · ⊕ T 2[m1].

By Lemma 5.2.12 we know that Pm1Φ|T 3[1] is not an embedding, and therefore

we can find a normalized x2 ∈ T 3[1] such that v < x2 and Pm1Φ(x2) is essentially

zero. Hence, there is a finitely supported y2 ≈ Φ(x2) such that Pm1y2 = 0. Notice

that this last equality implies that τ 2[n] ∩ supp (y2) = ∅ for any n = 0, 1, . . . ,m1,

so that v2 < y2 and supp (y2) ⊂ Xmax
v2

. Thus far we have:

v1 ≤ y1 < v2 < y2 and supp (y2) ⊂ Xmax
v2

.

We now repeat the argument. Setting u2 := max≺(supp (y2)) it is clear that

if u2 = (l21, l
2
2), then v3 := (m2,m2), with m2 := l22 + 1, is such that y2 < v3.

Moreover, Xmax
v3

=
⋃∞

j=m2
τ 2[j] given that v3 is an element on the diagonal of the

upper triangular representation of ω6 ↓2. Then, applying Lemma 5.2.12 once again,
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we proceed to choose x3 ∈ T 3[2] such that v < x3 and Pm2Φ(x3) is essentially zero;

so that there is a finitely supported y3 ≈ Φ(x3) such that Pm2y3 = 0. Now we have

v1 ≤ y1 < v2 < y2 < v3 < y3 and supp (y2) ⊂ Xmax
v2

, supp (y3) ⊂ Xmax
v3

.

Iterating this argument, for each i ∈ {1, 2, . . . , N}, we find a normalized xi ∈

T 3[i− 1] with v < xi and yi ∈ T2(d, θ) with yi ≈ Φ(xi) such that there is (vj)
N
j=1 ⊂

ω6 ↓2 for which

v1 ≤ y1 < v2 < y2 < · · · < vN < yN and supp (yj) ⊂ Xmax
vj

.

As pointed out at the beginning of this proof, we have that span{x1, . . . , xN} ≈

`N∞; and applying Theorem 4.3.1 we conclude that span{y1, . . . , yN} ≈ `Np . Since

N is arbitrary, this is a contradiction.
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