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ABSTRACT 

Plant ecology as a discipline has increasingly acknowledged the importance of fine-scale 

spatial patterns in developing our understanding of community/population dynamics. These 

spatial patterns are largely determined by direct and indirect interactions between plants and 

their immediate neighbors. Such interactions thus play an important role in the structure and 

function of plant communities. Study of these types of local interactions has greatly benefitted 

from simulation based approaches. one such simulation method, agent-based modeling, has 

increasingly been identified as a useful tool for simulating these fine-scale interactions, and for 

investigating theoretical descriptions of underlying processes. Similarly, statistical techniques 

aimed at quantifying and comparing spatial patterns across a range of spatial scales are an 

active area of research, and have served to greatly increase our understanding of plant 

communities. 

Typically underlying these statistical and simulation methods, is a simplified 

representation of individuals as grid cells, points or circles. Recent work has illustrated that fine-

scale spatial patterns may be misrepresented when such assumptions are made, and 

researchers are increasingly developing methods that do not rely on such geometric 

simplifications. The work presented in this dissertation shows that important inter-annual 

changes in spatial pattern occur in Bouteloua gracilis populations at multiple, sub-meter scales, 

reinforcing the belief that local interactions are important factors in community structure 

(Chapter 1). It further illustrates that the very notion of ‘local’ is markedly influenced by the 
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particular data type chosen to represent individuals, and that geometric simplifications change 

how neighborhood composition is described (Chapter 2). The dissertation presents an extension 

to traditional point-pattern analysis techniques that allows for more complex geometries in 

describing randomness, clustering and/or regularity in spatial patterns down to the scale of 

individual plants (Chapter 3). The proposed method extends a recent advance in the literature 

for quantifying spatial patterns in polygon data consisting of irregularly shaped objects by 

considering the physical space occupied by competing individuals, rather than simply the density 

of neighbors. This provides a useful metric of competition intensity experienced by individuals 

within a population. Finally, this dissertation presents a proof-of-concept agent-based model 

that extends previous models by allowing individual plants to respond to local conditions by 

dynamically changing size and shape (Chapter 4).  

SUMMARY 

The work presented here provides a valuable set of techniques for addressing the 

challenges of quantifying and simulating fine-scale spatial patterns in systems where individuals 

vary in size and shape. Results suggest that important shifts in spatial pattern occur across a 

range of spatial scales from multi-plant groupings down to the scale of the smallest individuals, 

and that a multi-scale approach to quantifying pattern shifts is able to detect large scale changes 

in cover while remaining sensitive to changes at very fine-scales (Chapter 1). Neighborhood 

composition was found to vary markedly depending on the data type used to represent 

individuals (Chapter 2). The final two chapters of this dissertation present novel extensions to 

current methods for quantifying local spatial patterns when individuals are mapped as irregular 
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polygons (Chapter 3), and for agent-based modeling of interacting individuals that vary in size 

and shape while responding to local competitive interactions (Chapter 4). 
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CHAPTER 1: HIERARCHICAL DECOMPOSITION METHODS FOR FINE-
SCALE SPATIAL PATTERN ANALYSIS OF A Bouteloua gracilis 
POPULATION 
 

ABSTRACT 

External environmental effects and local biotic interactions play important roles in 

determining the growth, survival, and reproduction of individual plants. The varying influence of 

these factors result in observable differences in spatial patterns within plant communities 

through time and at different spatial resolutions. Observed patterns serve as tools to increase 

our understanding of the relative contributions of these effects. Quantifying spatial pattern at a 

single resolution may not adequately capture the varying importance of external and internal 

drivers as their effects manifest at different scales. Recently developed hierarchical 

decomposition methods for quantifying spatial pattern across multiple scales have been 

developed to address this issue, and allow for the comparison of nested thematic and spatial 

patterns between multiple data sets. To date, however, these methods have only been applied 

at the region or landscape scales. This chapter explores the utility of hierarchical decomposition 

methods at fine spatial resolutions in a system where plant-plant interactions are known to be 

important drivers of community structure. This is accomplished by applying a hierarchical 

decomposition model developed for the analysis of gridded data, to quantify inter-annual 

variation in spatial pattern for a dominant grass in the short-grass steppe of Colorado. Results 
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suggest that important shifts in spatial pattern between years occur across a range of spatial 

scales. 

INTRODUCTION 

Interactions between plants and their immediate neighbors play an important role in 

the growth, survival, and reproduction of individuals. These interactions along with larger scale 

environmental factors directly and indirectly influence the spatial distribution of individuals 

throughout a population and/or community. While external drivers tend to influence spatial 

pattern at a community-wide scale or beyond, those at finer spatial resolutions are additionally 

a result of interactions between individuals with their immediate neighbors (Silvertown et al. 

1992). Changes in spatial pattern at one scale do not necessarily translate linearly to those at 

another, and as a result, it is valuable to consider spatial pattern across a hierarchy of scales, 

and not at a single, fixed resolution (Levin 1992; Wu and David 2002; Dale and Fortin 2014).  

Spatial data sets from sources such as satellite imagery and aerial photography are 

increasingly available for ecological research, and serve as valuable tools to address questions 

regarding patterns in vegetation across multiple scales. Generally, these questions pertain to the 

proportions of various vegetation types or classes (composition) and their spatial distribution 

(configuration) (Boots 2003). Multiple techniques for comparing composition/configuration 

patterns between two data sets (e.g., maps or images) at multiple scales have been developed 

in landscape ecology and the analysis of remotely sensed data. Differences in proportional cover 

of mapped categories (such as vegetation versus bare ground) can be compared among maps to 

determine compositional shifts at the map scale, while changes in category values at specific 

locations (pixels or cells), through techniques such as map differencing, identify variability at 
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finer resolutions (Csillag and Boots 2005). Similarly, summaries of measures such as patch size, 

fragmentation and shape complexity describe differences in spatial configuration at the map 

scale (Boots and Csillag 2006), while quantifying change in spatial qualities of individual patches 

(e.g., expansion, shrinking and division) provides information about spatial configuration at a 

finer-scale (Dale and Fortin 2014).  

In semi-arid grasslands, measures of spatial pattern have informed hypotheses 

regarding disturbance intensities, competition for limiting resources, and facilitation via 

microclimate amelioration (Herben et al. 2000; Adler, Raff, and Lauenroth 2001; Berger et al. 

2008). Plants interact with their immediate neighbors, and studying patterns at relatively fine 

spatial scales provides information regarding the type and strength of those interactions. 

However, external drivers can override these local interactions and lead to pattern shifts at 

coarser spatial resolutions (Aguilera and Lauenroth 1993). Rarely do patterns observed at one 

spatial resolution directly relate to those at more coarse or fine scales even under the 

assumption of stationarity (Legendre and Fortin 1989; Purves and Law 2002; Wagner and Fortin 

2005).  

Work described here, focuses on categorical maps of Bouteloua gracilis basal areas from 

a fourteen-year study in the short-grass steppe of Colorado, USA. To investigate shifts in spatial 

pattern within a range of relatively fine spatial scales, a hierarchical decomposition approach 

was used to quantify pattern changes between map pairs. Specifically, sequential pair-wise map 

comparisons were performed for five permanent plots in which the basal areas of individual 

plants were mapped annually. The degree of similarity between spatial patterns for each plot in 

sequential years was quantified, as well as the scales at which observable shifts in spatial 
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pattern took place. The chapter concludes with a discussion of interpreting pattern change 

across a range of fine-scale spatial partitions.  

INFORMATION-BASED APPROACHES 

Claude Shannon introduced the concept of entropy as a measure of the amount of 

information in a message (Shannon 1948). Considering a string of English letters, Shannon 

entropy refers to the uncertainty in being able to predict what the next letter in the string will 

be. Messages with a larger number of letters, that are equally represented, make such 

predictions more uncertain, and thus have higher entropy. Entropy, as a measure of species 

diversity (i.e., Shannon-Wiener Diversity; 𝐻𝐻′), has long been an important tool for ecologists in 

describing community composition at various scales and among different locations (Legendre 

and Fortin 1989; Legendre, Borcard, and Peres-Neto 2005; Roe et al. 2012). Given an individual 

sampled from a community, species diversity indices such as 𝐻𝐻′ describe the relative uncertainty 

in being able to identify the species of the sampled individual (Jost 2006). The larger the number 

of species (species richness), and the more evenly represented they are (evenness), the higher 

the entropy. For this reason, measures of information such as Shannon entropy are viewed as 

indices of species diversity (Jost 2006).  

The application of information-based, or entropy measures has also played a major role 

in the field of image analysis and spatially explicit simulations. Images or maps containing 

categorical values directly lend themselves to measures such as Shannon entropy to classify the 

degree of spatial (or spatio-temporal) complexity or heterogeneity (Parrott 2005). These 

concepts have been extended to allow for comparisons between maps (or images) and are often 

employed for tasks such as medical image registration (Pluim, Maintz, and Viergever 2003). 
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Central to these applications is the concept of mutual information between images, which 

serves as a general measure of how related two data sets are to each other (Song, Langfelder, 

and Horvath 2012). Mutual information has been applied in image/map analysis to understand 

the similarity or difference between areas and/or the same area across time intervals (Remmel 

and Csillag 2006). In effect, mutual information describes the degree to which knowledge of one 

pattern can predict another (Pluim, Maintz, and Viergever 2003; Remmel and Csillag 2006). As 

such, mutual information between a map and itself is maximized.  

HIERARCHICAL DECOMPOSITION 

While useful for general comparisons between maps, mutual information only describes 

compositional similarity, and not configuration. The concept has been extended to allow for 

comparisons of compositional similarity across multiple, nested, scales as a proxy for 

configuration (Remmel and Csillag 2006). By comparing mutual information between 

hierarchically nested regions of maps, one can assess not only compositional differences 

between maps, but also the spatial scales at which significant shifts in composition occur. Such 

methods are common in image analysis for tasks such as image registration (Pluim, Maintz, and 

Viergever 2003) and feature detection (Pennekamp and Schtickzelle 2013) and provide a logical 

and mathematical framework for partitioning space into hierarchically nested areas.  

This dissertation applies the hierarchical decomposition model proposed by Remmel & 

Csillag (2006) for assessing pattern shifts at landscape scales, to test its ability to discern shifts at 

fine-spatial scales. Remmel & Csillag (2006) developed a flexible model able to incorporate 

multiple levels of hierarchical structure for each variable. Information across all levels of spatial 

partitioning provide vectors of values (i.e., spectra) describing changes in categorical 
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heterogeneity between subsequent partitions or between data sets (Csillag and Boots 2005; 

Remmel and Csillag 2006). Following their structure, I employed a complete quad-tree method 

of spatial partitioning in which a map was partitioned into four equal area quadrants, and each 

quadrant was recursively partitioned down to the level of individual pixels or cells. This method 

resulted a completely nested hierarchy, represented as a multidimensional array. 

A simplified form of the Remmel & Csillag (2006) model was developed in which the 

only variable with a hierarchical nature referred to the nested spatial partitions. Derivation of 

mutual information makes use of its close relationship with joint entropy (Russakoff et al. 2004). 

Joint entropy of two maps A and B across all spatial partitions (Y) is defined as: 

 𝐻𝐻(𝑔𝑔,𝐵𝐵,𝑌𝑌) = −��
1

4𝑘𝑘
𝑝𝑝𝐴𝐴𝐴𝐴(𝑔𝑔, 𝑏𝑏,𝑦𝑦𝑖𝑖) log2 �

1
4𝑘𝑘
𝑝𝑝𝐴𝐴𝐴𝐴(𝑔𝑔, 𝑏𝑏,𝑦𝑦𝑖𝑖)�

𝑎𝑎,𝑏𝑏

4𝑘𝑘

𝑖𝑖=1

 (1) 

 

where 𝑦𝑦𝑖𝑖 ∈ {1, 2, 3, … , 4𝑘𝑘} and 𝑝𝑝𝐴𝐴𝐴𝐴 is the joint probability distribution of pixel values for the two 

maps (𝑔𝑔 representing pixel values for map 𝑔𝑔, and 𝑏𝑏 for pixel values in map 𝐵𝐵). For the case of 

exactly equivalent maps, joint entropy is minimized, and increases as the pixel values begin to 

differ between maps (Russakoff et al. 2004).  

Mutual information considers joint entropy 𝐻𝐻(𝑔𝑔,𝐵𝐵,𝑌𝑌) and the individual map 

(marginal) entropies 𝐻𝐻(𝑔𝑔,𝑌𝑌) and 𝐻𝐻(𝐵𝐵,𝑌𝑌). Mutual information is thus defined as: 

 𝐼𝐼(𝑔𝑔,𝐵𝐵,𝑌𝑌) = 𝐻𝐻(𝑔𝑔,𝑌𝑌) + 𝐻𝐻(𝐵𝐵,𝑌𝑌) −𝐻𝐻(𝑔𝑔,𝐵𝐵,𝑌𝑌) (2) 
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Equation (2) demonstrates the intuition that mutual information increases as the joint entropy is 

minimized.  

The 𝐺𝐺2 test statistic (likelihood-ratio chi-square test) was used to test for significant 

differences in mutual information between maps (Csillag and Boots 2005; Remmel and Csillag 

2006). Such a model construction and statistical test, allow for comparisons between maps 

across the entire spectra of measured values (i.e., across all levels of spatial partitioning).  

MUTUAL INFORMATION AND UNCERTAINTY COEFFICIENT 

Mutual information between two maps can be thought of as the extent to which 

information about one pattern describes the other. The concept is analogous to the intersection 

between two events in set theory (Pluim, Maintz, and Viergever 2003), and a simple case can be 

visualized with a Venn diagram (Figure 1). For two events (i.e., maps) A and B, mutual 

information 𝐼𝐼(𝑔𝑔,𝐵𝐵) is represented by the region of overlap between marginal entropies 𝐻𝐻(𝑔𝑔) 

and 𝐻𝐻(𝐵𝐵). This illustrates that 𝐼𝐼 is symmetric (𝐼𝐼(𝑔𝑔,𝐵𝐵) = 𝐼𝐼(𝐵𝐵,𝑔𝑔)), and that the more similar a 

pair of images, the greater the overlap between 𝐻𝐻(𝑔𝑔) and 𝐻𝐻(𝐵𝐵), and thus, the greater the 

mutual information. Mutual information thereby relates to the amount of information 𝑔𝑔 

contains about 𝐵𝐵, and vice-versa. Quantifying mutual information at nested spatial scales allows 

for the investigation of resolutions at which the similarity between images shifts.  
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Mutual information spectra monotonically increase, and represent absolute gain in information 

(Remmel and Csillag 2006). The rate of increase (slope) of the spectra describes the relative 

similarity / difference between categorical distributions (composition) in the pair of maps 

between partition steps.  

The hierarchical decomposition model output also contains the uncertainty coefficient. 

Uncertainty coefficient values are also a measure of information, but quantify relative 

information gain rather than absolute information gain (Pluim, Maintz, and Viergever 2003; 

Remmel and Csillag 2006). It is expressed as a percentage, and defined to be (Csillag and Boots 

2005): 

𝑈𝑈𝑈𝑈 =
𝐼𝐼(𝑔𝑔,𝐵𝐵)
𝐻𝐻(𝐵𝐵)

∗ 100 

The uncertainty coefficient describes the relative reduction in uncertainty (as a percentage) at 

each given partition level. As an example, mutual information will always increase between a 

coarse partition level and the subsequent finer one. Uncertainty coefficient spectra may closely 

resemble that of mutual information, however, if variation in class composition is high 

(heterogeneous) at a coarse level and decreases substantially at the subsequent finer level, the 

H(B) H(A) 

I(A,B) 

Figure 1: Venn diagram of mutual information interpretation. 



9 
 

uncertainty coefficient will be relatively large at the finer partition. If they occur, local maxima in 

the uncertainty coefficient spectra indicate important spatial scales when comparing maps. 

Depending on the mapped data and the range of partitions used, multiple local maxima are 

possible, indicating important pattern changes at multiple scales.  

METHODS 

STUDY AREA AND DATA DESCRIPTION 

Data used in this analysis consisted of shapefiles in which polygons represent the 

mapped basal areas of individual plants. Data were collected at the Shortgrass Steppe Long-

Term Ecological Research (SGS-LTER) site in Northern Colorado (40°49’N latitude, 107°47’W 

longitude) from 1997 through 2010 (Chu et al. 2013) as a part of a long-term grazing 

experiment. The study consisted of four blocks each with a different grazing treatment, 

however, for the work described here, only the block which was ungrazed prior to, and 

throughout the entire study period was considered. Within this treatment, five permanent 12m 

plots were established, and the basal areas of all plants within each plot were mapped annually 

in July (Figure 2). Field data were collected with a pantograph (Chu et al. 2013), and digitized 

maps are publicly available as shapefiles through the LTER data portal (LTER, 2009).  
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The dominant vegetation in the shortgrass steppe are long-lived C4 grasses (Lauenroth 

and Burke 2008). Bouteloua gracilis and Buchloe dactyloides, both perennial caespitose (i.e., 

growing in clumps or tufts) grasses, constitute the majority of basal coverage in the data set. 

Due to its marked dominance within the data set, only B. gracilis was considered for this study.  

DATA PROCESSING AND ANALYSIS 

Hierarchical decomposition was performed on the five plots within the ungrazed 

treatment. For some of these plots, field data for 2000 were not available, and between-map 

comparisons skip from a 1998-1999 comparison to a 2001-2002 comparison. All shapefiles were 

filtered to retain only Bouteloua gracilis polygons and converted to raster format in QGIS (QGIS 

2016) with a grid resolution of 256 X 256 cells. Quadrat boundaries varied slightly between 

Figure 2: Example of mapped Bouteloua gracilis plants. Plot 
dimensions 1m x 1m. 
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individual shapefiles, thus standardized extents of (0,1) for both 𝑥𝑥 and 𝑦𝑦 dimensions (in meters) 

were imposed. 

Comparisons between maps were performed in the hdeco package (Remmel et al. 2015) 

in R (R Development Core Team 2016). The current release of hdeco requires that images be of 

the same resolution, and the complete quadtree method further requires that the total cell 

count for a map be 2𝐿𝐿, with 𝐿𝐿 being a positive integer. To ensure that the smallest individual 

plants were retained in the rasterization process, and polygon sizes changed as little as possible, 

we set 𝐿𝐿 equal to 8, creating raster maps of dimension 256 x 256. Raster maps were converted 

to numeric matrices in R. Mutual information and uncertainty coefficient spectra were derived 

for all sequential between-map comparisons for individual quadrats throughout the study 

period (e.g., Map 1 = plot 𝑔𝑔𝑡𝑡−1, Map 2 = plot 𝑔𝑔𝑡𝑡, where 𝑡𝑡 ∈ {2, 3, 4, … ,𝑇𝑇} and 𝑇𝑇 =

𝑛𝑛𝑛𝑛𝑛𝑛𝑏𝑏𝑔𝑔𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑛𝑛𝑟𝑟𝑠𝑠𝑔𝑔𝑦𝑦𝑔𝑔𝑠𝑠 𝑦𝑦𝑔𝑔𝑔𝑔𝑟𝑟𝑠𝑠).  

PATTERN SIMULATION 

Before analyzing the mutual information and uncertainty coefficient spectra in the field 

data, it is useful to consider hierarchical decomposition results from simulated data to 

demonstrate several descriptive patterns. Mutual information and uncertainty coefficient values 

for simulated random patterns and patterns exhibiting spatial autocorrelation illustrate several 

characteristic behaviors of the two spectra (i.e., mutual information and uncertainty coefficient 

spectra), and serve as a reference for understanding the spectra obtained from the mapped 

basal areas data set. A first-order conditional autoregressive model was used to simulate a 

series of 500 binary maps with random spatial distribution of classes, and a separate series of 

500 binary maps exhibiting clustering within classes. All simulated maps had a resolution of 
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256x256 pixels, and were defined to have approximately equal representation for both classes. 

Fifteen maps were randomly sampled from the simulations for each pattern type to illustrate 

spectra behaviors for between-map comparisons. 

RESULTS 

RANDOM PATTERNS 

Between map comparisons for simulated random patterns exhibited no spatial 

autocorrelation between the two classes. At coarse partition levels, mutual information and 

uncertainty coefficient values were low, and remained relatively low until fine partition levels 

were reached (Figure 3). At the finer resolutions, both spectra began to increasing 

exponentially. Between-step differences in either metric were rarely significant at coarser 

partition levels, typically becoming so at the third or fourth step (Figure 3).  
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Variation in mutual information (Figure 4) and uncertainty coefficient values (not shown) 

remained low throughout all partition levels.   

Figure 3: Mutual information and uncertainty coefficient spectra for 
a two-map comparison of simulated random patterns. Black dots 
indicate no significant difference between maps at the given 
partition level, while grey dots indicate significant differences (𝑃𝑃 ≤
0.05). 
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AUTOCORRELATION IN PATTERNS 

Simulated patterns exhibiting autocorrelation produced maps with increased clustering 

among classes relative to simulated random patterns. Within-class autocorrelation led to the 

development of relatively homogenous patches at varying spatial scales in all maps (Figure 5). 

Autocorrelation was limited to North-South and East-West directions (no diagonal 

autocorrelation between cell values) and equally weighted between directions. As a result, 

patches that developed were randomly distributed throughout the maps, and exhibited no 

directional trend. Mutual information spectra increased at earlier (coarser) partition steps than 

those for random patterns, and tended towards more linear forms (Figure 6). Uncertainty 

coefficient spectra also displayed greater increases at coarser partition steps relative to random 

pattern comparisons. Greater increases between steps were observed at coarse and fine levels, 

Figure 4: Mutual information box plot for 14 between-map comparisons of random patterns. 
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while more moderate shifts occurred at intermediate steps (Figure 5). Within partition variation 

in both metrics at all but the coarsest and finest partition levels increased relative to that 

observed in the random pattern comparisons (Figure 6).  

  

 

Figure 6: Mutual information and uncertainty coefficient box plots for 14 between-map comparisons of spatial 
autocorrelation simulations. 

Figure 5: Mutual information and uncertainty coefficient spectra for two examples of between-map 
comparisons of spatially autocorrelated maps. Black dots indicate non-significant difference between maps 
at the given partition level. Grey dots indicate significant differences (𝑃𝑃 ≤ 0.05) . 
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PATTERNS IN Bouteloua gracilis BASAL AREA 

Mutual information for sequential between-map comparisons in the LTER data set 

suggested a general trend of significant differences between partition levels at most (typically 

all) steps with large shifts in mutual information between subsequent steps generally occurring 

at intermediate partition levels (Figure 7).  

 

Mutual information spectra tended toward a sigmoidal form for map comparisons in 

which the two maps did not differ largely in either composition (proportional representation of 

bare ground / B. gracilis cells) or configuration. The maps contain information about discrete 

objects (plants) and thus exhibit a high degree of autocorrelation in a gridded representation. 

Relatively large variation in mutual information and uncertainty coefficient values were 

observed at most partition levels for all quadrats in the data set (Figure 8, Figure 9).   

Figure 7: Mutual information and uncertainty coefficient spectra for between-map comparisons of B. gracilis 
basal area. Plots represent a single plot comparison between 1997- 1998 (left) and 1998-1999 (right). Point 
colors are the same as those for previous figures. 
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Figure 8: Mutual information boxplots for B. gracilis data by quadrat. 

Figure 9: Uncertainty coefficient boxplots for B. gracilis data by quadrat. 
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When composition, configuration, or both markedly varied between maps, uncertainty 

coefficient spectra diverged from sigmoidal form. In cases where substantial changes in 

composition occurred between images, uncertainty coefficient values were large at the coarsest 

partition level, dropped immediately at the following step, and increased throughout the 

remaining steps (Figure 10). In several comparisons, additional local maxima occurred at fine 

partition levels.  

 

 

DISCUSSION 

Fine-scale spatial patterns in semi-arid grasslands inform us about the underlying 

processes of mortality, competition, facilitation, and recruitment. The spatial distribution of 

individuals can vary dramatically through time with mortality and recruitment, and the space 

which individuals themselves occupy changes as they grow and respond to their immediate 

environment. This leads to quantifiable changes in spatial pattern from the scale of the smallest 

Figure 10: Examples of large composition changes between years for two quadrats (unun_5b 2001-2002 (left) 
and unun_5b 2004-2005 (right)), and local maxima in uncertainty coefficient spectra at fine partition levels 
(right). Note, y-axis scales for uncertainty coefficient plots differ. 
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individuals to populations (Silvertown et al. 1992). Results from a hierarchical analysis of spatial 

pattern on a long-term field study illustrate significant interannual shifts in spatial pattern across 

a range of fine-scale partitions, and provide a valuable method for quantifying multi-scale 

phenomena in plant ecology. 

Hierarchical decomposition methods allow for measurement of pattern change across a 

range of spatial scales by quantifying composition within fully nested subareas as a proxy for 

spatial configuration. Information-based metrics allow for comparison between patterns in 

multiple maps or images by defining a common unit of measurement (bits) (Remmel and Csillag 

2006). This can provide useful information regarding changes in spatial pattern among different 

areas, or for the same area at different times by comparing sequential maps for a given area. 

Simulated patterns that conditionally control the degree of spatial autocorrelation among 

classes provide intuition into characteristic patterns in mutual information and uncertainty 

coefficient spectra and serve as a useful reference when interpreting patterns observed in the 

environment.  

RANDOM PATTERNS 

Map comparisons of random patterns display several common behaviors regarding 

mutual information and uncertainty coefficient spectra (Figure 3, Figure 4). As the patterns 

represent random configurations of pixel values (classes) with approximately equal 

representation (i.e., 50% class 1, 50% class 2), mutual information remains relatively low until 

very fine spatial partitions are considered. At increasingly finer partition levels, varying 

distributions of composition emerge. This result is illustrated by the exponential form of both 

mutual information and uncertainty coefficient spectra (Figure 3). Such forms are common 
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when comparing random patterns and suggest that the compared maps are not significantly 

different until fine spatial scales are considered (Remmel and Csillag 2006). As partitions 

consider increasingly finer areas, local clustering of classes emerges, and significant differences 

between the maps are observed. Similarly, variation in either metric at individual partition levels 

is low (Figure 4).  

AUTOCORRELATION IN PATTERNS 

As class values exhibit autocorrelation, and depart from randomness, mutual 

information and uncertainty coefficient values increase at coarser partition levels (Figure 5). 

Mutual information spectra become less exponential, and generally tend toward more linear 

forms. Uncertainty coefficient spectra begin to illustrate that relative information gain increases 

at coarser partition levels, and varies in magnitude throughout the full range of partition levels. 

This is a result of homogenous patches developing due to within class autocorrelation. Variation 

in both metrics at each partition level increases relative to that of random patterns as 

heterogeneity among nested quadrats varies due to local aggregation of pixel values (Figure 6).  

PATTERNS IN Bouteloua gracilis BASAL AREA 

Patterns observed in mapped basal areas of Bouteloua gracilis represent a higher 

degree of autocorrelation within categories (bare ground and B. gracilis) than seen in the 

simulated patterns primarily due to two reasons. First, groups of pixels refer to individual 

objects (plants) and form distinct clusters thus exhibiting a high degree of spatial 

autocorrelation in class values. Second, the simulated patterns with autocorrelation were 

constructed with approximately equal representation of classes. In the B. gracilis data, the two 

classes are rarely represented equally at the global (plot) level, and the composition changes (at 
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times substantially) from one year to the next. For map pairs with relatively small differences in 

composition, mutual information and uncertainty coefficient spectra tended toward a sigmoidal 

form (Figure 7). Such a form for uncertainty coefficient spectra describe the relative similarity 

between maps at coarse partition levels, and increasing differences at finer scales. This behavior 

depicts the lack of coarser scale changes between images, while capturing the shifts in 

composition at finer partition levels. This is a common behavior as recruitment of new (small) 

individuals occurs between years. 

Within each of the five plots, a relatively high degree of variation in mutual information 

and uncertainty coefficient values was observed at most partition levels (Figure 8, Figure 9). A 

portion of this variation was due to changes in class proportions and the autocorrelated nature 

of the mapped data as described earlier. For several mapped quadrats, many individuals 

disappeared from one year to the next. Disturbance events at or beyond the quadrat extent 

such as drought or fire, or the establishment of a competitive species, could result in such shifts. 

Their effects are twofold. First, the drastic change in composition from the first map to the 

second map result in large uncertainty coefficient values at the coarsest partition level (Figure 

10), demonstrating the coarse scale differences between maps. Second, for several years 

following the shift, classes (bare ground and B. gracilis) were disproportionately represented 

(i.e., there are far more bare ground pixels). Disproportionate representation of classes restricts 

the range of the uncertainty coefficient to lower values (Figure 11). If B. gracilis recruitment was 

low in the following years, composition remained disproportionate. This effect can be seen in 

lower values for uncertainty coefficient spectra for plots where this is the case relative to plots 

where no large-scale shifts in composition occurred or B. gracilis reestablished (Figure 9). 
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CONCLUSIONS 

Hierarchical decomposition methods provide a useful tool for detecting important shifts 

in composition and configuration at relatively fine spatial scales. Such a technique may prove 

useful for testing hypotheses concerning global and local processes driving observed spatial 

patterns in plant populations. The methods described here can readily be extended to multi-

species assemblages, comparisons of more than two maps, and a hierarchy of external factors 

defining groups of maps.  

Figure 11: Example of continued disproportionate composition in 
maps for a single plot between 2003 and 2004. Note the reduced 
range in the y-axis for the uncertainty coefficient plot. 
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CHAPTER 2: POINTS, CIRCLES AND POLYGONS: THE INFLUENCE OF 
DATA TYPE ON DEFINING INDIVIDUAL PLANTS AND 
NEIGHBORHOODS  
 

ABSTRACT 

Fine-scale spatial patterns in plant communities are often largely a result of interactions 

between individuals and their immediate neighbors. When studying these patterns, the type of 

data used to represent individuals can have considerable impact on our definition of local 

neighborhoods and resulting interpretations of plant-plant interactions. In areas where the size 

and shape of individuals varies to a large degree, data types that reduce the spatial extent of 

individuals to point locations or simplified geometries (e.g., circles) influence interplant 

distances, and may misrepresent the number of individuals with which a focal plant interacts. 

This chapter discusses several possible vector-based data types common in spatial data sets and 

illustrates the effect of defining individuals as points, circles, and complex polygons on 

neighborhood representation. Data from a long-term study mapping basal areas of individual 

plants in the shortgrass steppe of Colorado, USA are presented as a case study to demonstrate 

scenarios in which the choice of data type can have varying influence when quantifying 

neighborhood structure.  
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INTRODUCTION 

Interactions between herbaceous plants and their immediate neighbors play an 

important role in the growth, survival, and reproductive success of individuals. These 

interactions, at the spatial scale of several centimeters, have been shown to be important 

drivers of overall population / community patterns (Purves and Law 2002; Benot et al. 2013).  A 

‘plant’s-eye view’ approach (Turkington and Harper 1979) posits that plants respond more to 

biotic and abiotic conditions within relatively short distances than community-wide general 

conditions as described by a mean-field assumption (Purves and Law 2002; Bolker, Pacala, and 

Neuhauser 2003). These interactions with, and responses to, local conditions may lead to 

markedly different spatial patterns at fine versus coarse spatial resolutions. When studying 

spatial patterns down to the scale of individuals, the type of data used to represent individuals 

can be a particularly important decision.  

Neighborhood composition (i.e., the frequency and density of individuals a plant may 

interact with) and the spatial arrangement of neighboring individuals have been shown to be 

equally important in determining outcomes of interactions such as competition (Silvertown et 

al. 1992). The spatial extent of this neighborhood strongly depends on the size and shape of 

individuals. Proxies such as point locations, circles, or explicitly mapped basal area may be used 

to define the region from which an individual may extract resources and would thus compete 

with other individuals. However, the choice of proxy can have important effects on measures of 

spatial pattern. 

As the size of an individual plant increases, so too does the number of expected 

neighbors within a given search distance 𝑟𝑟 (Aguilera and Lauenroth 1993), and the same 
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expectation holds for individuals of a fixed area but increasingly irregular shapes. Consider the 

case where individuals are mapped as polygons. Numerous measures exist for quantifying the 

regularity / irregularity of shapes (Brinkhoff et al. 1995) with the simplest shape for an individual 

being a circle. Many such measures used in landscape ecology and forestry are based on some 

form of a perimeter-to-area ratio (McGarigal and Marks 1995; Perry et al. 2002) with lower 

values associated with simple geometries (i.e., circles). One such measure, the Gap Shape 

Complexity Index (referred to here as SCI) defined as 

𝑆𝑆𝑈𝑈𝐼𝐼 = 𝑃𝑃𝑔𝑔𝑟𝑟𝑃𝑃𝑛𝑛𝑔𝑔𝑡𝑡𝑔𝑔𝑟𝑟/√4𝜋𝜋 ∗ 𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔  

assigns a complexity value of 1 for circular shapes and increases as the shape becomes 

increasingly irregular (Getzin, Nuske, and Wiegand 2014).  
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The SCI illustrates the impact that shape irregularity can have on defining the 

neighborhood of a polygon. For a polygon of fixed area, as the shape becomes more irregular, 

the perimeter increases (Figure 12), thus increasing the likelihood of encountering a neighbor at 

distance 𝑟𝑟 from the focal plant (though this effect is reduced as size continues to increase) 

(Nuske, Sprauer, and Saborowski 2009).  

If individuals are known to interact with each other over short distances, it is important to 

choose an appropriate data type (e.g., points, circles, polygons) for representing both the 

individuals themselves and distances between them prior to quantifying a neighborhood 

(Wiegand et al. 2006; Nuske, Sprauer, and Saborowski 2009; Getzin, Nuske, and Wiegand 2014). 

When individuals are represented as polygons, distances are commonly measured between 

polygon centroids (Nuske, Sprauer, and Saborowski 2009). When shapes exhibit a range of size 

Figure 12: Illustration of relationship between polygon area, shape irregularity 
(Shape Complexity Index) and perimeter from mapped basal areas of Bouteloua 
gracilis plants in the shortgrass steppe of Colorado, USA (Data source: Chu et al. 
2013). For a given polygon size (area), as the shape becomes increasingly irregular 
(increasing Shape Complexity Index values), perimeters increase. 
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and shape variation, this may have undesirable effects. Several methods exist for defining the 

‘center’ of a polygon. Depending on the chosen method and the shape of a polygon, the result 

may not be as intended. An example can be seen for polygons with a ‘C’ shape (Figure 13) where 

the centroid is placed outside the intended polygon, or when polygons have ‘holes’ and the 

centroid is placed within a hole (i.e., at a location not occupied by the plant).  

 

A more desirable distance measure would be the shortest distance between two 

polygons (edge-to-edge distance). Due to the computational difficulty in calculating such a 

measure, centroid-to-centroid distance has served as the predominant method for calculating 

distances between polygons. Recently however, several software programs allow for the 

calculation of edge-to-edge distances. This presents an opportunity to more accurately define 

local neighborhoods for data consisting of irregular polygons. To illustrate the disparity between 

Figure 13: Illustration of polygon centroids (blue crosshatches) and a 
centroid appearing outside of the intended polygon due to its shape 
(red crosshatch). Data represent mapped basal areas of Bouteloua 
gracilis plants. (Data source: Chu et al. 2013). 
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spatial data choice (points, circles and polygons) and distance measures on neighborhood 

calculations, we present a brief case study using field data from a long-term field study in the 

shortgrass steppe of Colorado, USA. The case study shows that the choice of data type used to 

represent individuals can have profound implications for the perceived extent and intensity of 

interaction between individuals in a particular study. 

The following specific questions are addressed in this chapter; 1) Will the measured 

intensity of competition differ depending on whether individuals are represented as points, 

circles or polygons? and 2) does the degree of shape irregularity impact these differences? Data 

type choice can represent the physical space occupied by an individual differently, and it is 

expected that these differences will have an influence on distances between individuals, and 

thus intensity of competition. It is further expected that these differences will vary depending 

on the degree of distortion introduced with different representations. 

METHODS 

STUDY AREA AND DATA DESCRIPTION 

Case study data come from a 14-year study in Northern Colorado (40°49’N latitude, 

107°47’W longitude) and consist of mapped basal areas of individual plants. The data set was 

collected between 1997 and 2010 as a part of a long-term grazing exclusion study (Chu et al. 

2013) at the Shortgrass Steppe Long-Term Ecological Research site (SGS-LTER). Basal areas of 

individual plants were mapped annually (typically in early July) with a pantograph in permanent 

1m2 quadrats, and the entire data set was digitized and made publicly available in shapefile 

format through the LTER data portal (LTER, 2009).  
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In this region, C4 grasses represent the dominant plant species, with the perennial grasses 

Bouteloua gracilis and Buchloe dactyloides constituting the majority of individuals within the 

data set. For each sampled quadrat at each time period, two shapefiles were created with 

individuals represented as either points or polygons depending on their growth form (Chu et al. 

2013). The original polygons as drawn in the field were highly variable in size and shape both 

within and between quadrats, thus providing an opportunity to explore the effects of different 

data types on defining neighborhood structure. 

DATA PROCESSING 

Intensity of competition was measured in terms of the mean distance to the 𝑘𝑘𝑡𝑡ℎnearest 

neighbor, that is, the number of cm to the first, second, third nearest neighbors and so forth. 

The shorter the distance, the greater the competition intensity. Greater rates of increase in the 

distances with neighbor index shows larger distances between individuals and their neighbors. 

To determine whether the degree of shape irregularity affects this relationship, data from two 

quadrats were selected; one that demonstrated a wide range of size and shape variability, and 

another (in the same grazing treatment) that provided an example of relatively minor variation 

in shapes among mapped individuals (Figure 14).  
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As data for each plot consisted of two shapefiles (a point shapefile and a polygon 

shapefile) we combined them into a single data file. To do so, we created 0.5cm buffers around 

each individual point in the point shapefile and combined the results with the polygon shapefile 

into a single data object (a spatialPolygonsDataFrame in R). Three versions of the data for each 

quadrat were created, with the first being the original polygon data (with points converted to 

circle polygons). The second version converted all polygons to circles centered on their 

respective polygon centroid locations, with areas equivalent to those in the original (polygon) 

data, while the third version contained only the centroid locations for each polygon (Figure 15).  

 

 

 

 

Figure 14: Polygon data for a quadrat exhibiting A) a high degree of size/shape variability, and B) a low degree of 
size/shape variability.  Polygons represent mapped basal areas of individual plants. Quadrat dimensions: 1m x 
1m. 

A) B) 
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When considering distances between individuals, regardless of model, neighborhood 

estimates will be biased for objects close to quadrat boundaries as the spatial extent of 

individuals extending beyond the quadrat boundaries is truncated, and the presence of plants 

beyond the quadrat boundaries is unknown. To address this, an inner buffer of 20cm was 

constructed from the quadrat bounding box. Objects (polygons, circles, or points) that were 

entirely outside the inner buffer did not have their neighborhoods calculated, but remained as 

potential neighbors for polygons that were within the inner buffer (including those that 

intersected the inner buffer). For each object (polygon, circle or point), distances were 

calculated to their first 20 neighbors. Distances for the polygon and circle data sets were 

calculated as shortest edge-to-edge distances, with point-to-point distances being calculated for 

the points data set. The process of calculating distances for the point data set is equivalent to 

what would result from calculating centroid-to-centroid distances for the polygon data set. 

Distributions of distances to the 𝑘𝑘𝑡𝑡ℎ nearest neighbors were compared between data types for 

each quadrat. All data processing and analyses were performed in the R statistical package 

version 3.3.1 (R Core Team, 2016). 

Figure 15: Examples of the three versions of spatial data created for the high size/shape variability quadrat. 
Quadrat dimensions: 1m x 1m. 
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RESULTS 

The two quadrats exhibited similarly skewed distributions for the Shape Complexity 

Index (SCI) (Figure 16) with median values of approximately 1.13 for both, meaning that many 

individuals were slightly irregular in shape, but not extremely so. Quantile regression with 

boostrapped estimation of standard errors, revealed no significant difference in median values 

(p = 0.887), however variance in SCI was significantly different between quadrats (Levene test 

for homogeneity of variance (median centered), Df = (1, 308), F = 9.802, p = 0.002).  

 

    

Defining objects as either points, circles or irregular polygons had a marked effect on 

estimates of the mean distance to the 𝑘𝑘𝑡𝑡ℎ nearest neighbor.  For each quadrat, the mean 

distance to the 𝑘𝑘𝑡𝑡ℎ  nearest neighbor was estimated with a Local Polynomial Regression Fit 

(loess). Differences between data types were evident in both quadrats, with larger differences 

occurring in the quadrat with greater size/shape variance than in the quadrat with less variance 

(Figure 17). In both quadrats, the distance to the 𝑘𝑘𝑡𝑡ℎ nearest neighbor was greater (i.e., 

Figure 16: Histograms of Shape Complexity Index (SCI) for the high size/shape variance quadrat (left), and the low 
size/shape variance quadrat (right). Vertical and horizontal scales are equivalent between figures. 

Shape Complexity Index Values 
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perceived competition intensity was less) for the point representation than it was for either the 

polygon or circle data types. Similarly, for the quadrat with high size/shape variance, the circle 

representation had larger mean distances to the neighbors for 𝑘𝑘 > 3.  The low size/shape 

variance quadrat had no significant differences between polygon and circle data (Figure 17). 

 

 

DISCUSSION 

A comparison between multiple strategies for constructing a spatial data set from 

mapped basal areas provides insight into when data type choice may influence how 

neighborhood composition is defined. For objects of varying size and shape irregularity, point 

approximations influence measures of distance between individuals by artificially increasing 

interplant distances relative to the actual shortest distance between pairs of individuals. Results 

showed that a greater competition intensity was detected when individuals were represented as 

polygons or circles, versus when they were represented as points.  It is intuitive that polygon (or 

circle) edge-to-edge distances are shorter than centroid-to centroid differences, as was 

Figure 17: Estimate of the mean distance to the kth nearest neighbor for (left) the high size/shape variance 
quadrat, and (right) the low size/shape variance quadrat. Solid lines represent the Local Polynomial Regression 
Fit (loess). Grey bands indicate 95% CI for estimates of the means. 

Mean Distance to 𝑘𝑘𝑡𝑡ℎ Nearest Neighbor 
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observed in both quadrats. However, it is useful to note that for polygons and circles (of 

equivalent area), these interplant distances were influenced by the degree of shape irregularity 

in mapped individuals. 

Due to the relatively limited spatial extent of quadrats within the data set, 

neighborhood analysis beyond approximately 20cm should not be considered meaningful. A 

further potential confounding influence of point approximations can be seen when methods of 

assigning point locations to irregularly shaped objects such as centroid approximations, leads to 

locations being set outside the actual extent of an individual (Figure 13). In extreme situations, a 

point location may be assigned to an individual when that location lies outside of the region in 

which the plant would be acquiring resources or being influenced by neighboring individuals. 

These observations suggest that in systems where individuals vary in size and shape, and 

the distances at which they interact with neighboring individuals are small relative to their size, 

geometric simplifications should be cautiously applied, and their influence on defining spatial 

patterns carefully considered. Similarly, when attempting to model plant-plant interactions 

through spatially explicit simulations (e.g., agent-based modeling) models that fail to account for 

shape irregularity may fail to adequately capture the processes they seek to represent. Multiple 

studies have pointed towards the importance of considering several spatial statistics when 

quantifying spatial pattern (Perry et al. 2002; Wiegand, He, and Hubbell 2013; Dale and Fortin 

2014). For particular study systems, it may also be important to consider multiple 

representations of individuals and the influence those choices have on measures of spatial 

pattern. 

 



36 
 

ACKNOWLEDGEMENTS 

Data sets were provided by the Shortgrass Steppe Long Term Ecological Research group, 

a partnership between Colorado State University, United States Department of Agriculture, 

Agricultural Research Service, and the U.S. Forest Service Pawnee National Grassland. Significant 

funding for these data was provided by the National Science Foundation Long Term Ecological 

Research program (NSF Grant Number DEB-1027319 and 0823405).  

 

 

 

  



37 
 

 

 

 

CHAPTER 3: AN AREA-BASED EXTENSION TO THE PAIR-
CORRELATION FUNCTION FOR POLYGON DATA 
 

ABSTRACT 

Fine-scale spatial patterns in semi-arid plant communities provide important 

information regarding underlying biotic and abiotic processes and may also act as drivers of such 

processes at local scales. Individual plant growth, survival and reproduction are governed more 

so by local interactions with immediate neighbors than overall population densities. Further, the 

net effect of these local interactions is largely influenced by the area (or volume) of space 

occupied by other individuals, for which neighborhood density may not always be an adequate 

proxy.   

Point pattern analysis techniques have been successfully used to study local 

interactions, however, when large variation in size and shape exists among individuals, 

alternative methods may be more appropriate. An extension to traditional point pattern analysis 

techniques that accounts for size and shape variation has recently been proposed in which inter-

plant distances are measured as polygon edge-to-edge distances rather than centroid-to-

centroid distances. This method has advantages over traditional point pattern analysis 

techniques when size/shape variation exists, but still relies on quantifying local densities, and 

not the proportion of space occupied by neighboring plants.  
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This chapter proposes an extension to the polygon-based pair correlation function that 

provides estimates of departure from randomness in terms of occupied space rather than 

number of individuals. The approach builds on previous methods by calculating proportional 

overlap between sequential buffers and neighboring objects. The process is demonstrated on 

data from a long-term field study in which the basal areas of individual grass plants were 

mapped and the results are compared with traditional point pattern analysis measures of spatial 

pattern. 

 

INTRODUCTION 

Quantifying fine-scale spatial patterns in plant communities can provide valuable 

information regarding underlying ecological processes, however, modeling approaches that 

represent individuals as simplified geometries (e.g., points or circles) may misrepresent those 

patterns (Nuske, Sprauer, and Saborowski 2009). Second-order point pattern analysis 

techniques, wherein individuals are modeled as point locations, serve to investigate variation in 

local neighborhood densities and test hypotheses of plant-plant interactions at fine-scale spatial 

resolutions (Law et al. 2009). While representing individuals as points is appropriate in certain 

cases, recent research suggests that doing so may misrepresent spatial patterns when 

substantial variation in individual size and shape exists (Wiegand et al. 2006; Nuske, Sprauer, 

and Saborowski 2009). Reducing irregularly shaped objects to circles or point locations can 

result in inaccurate descriptions of locations and extents of individuals and distort the distances 

between them. When fine-scale inter-plant interactions are of interest, the bias introduced by 

geometric simplifications may have undesirable effects on how neighborhoods are defined.  
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A recent extension of point pattern analysis techniques, considers object-to-object 

distances between irregular polygons, and does not rely on representing individuals with 

centroid (point) approximations (Nuske, Sprauer, and Saborowski 2009; Getzin, Nuske, and 

Wiegand 2014). By explicitly considering size and shape variation, this approach more accurately 

captures the shortest distance between objects, and the density of individuals around irregularly 

shaped objects.  

Distortions of inter-plant distances can be particularly important when interactions are 

limited to local neighborhoods. Grasses interact with their neighbors over relatively short 

distances, often only several centimeters (Benot et al. 2013). The competitive pressure 

experienced by a plant is a function of not only the number of neighboring individuals, but also 

the proportion of the target plants’ neighborhood they occupy. When the area (or volume) from 

which an individual may extract resources extends beyond their mapped representation (e.g., 

horizontal root distributions extending beyond the mapped basal area) and these areas are 

known to overlap with those of neighboring individuals, local density measures may not 

adequately describe the neighborhood structure with respect to competitive pressures 

experienced by an individual. As a simple example, one may envision two spatial arrangements 

in which individuals competing for a common resource are at a given (edge-to-edge) distance 

from each other (Figure 18). The competitive pressure experienced by a target individual results 

not only from the local neighborhood density (the number of neighbors within a given distance), 

but also the proportion of space occupied by neighbors. 
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Here, a novel process for quantifying the proportion of neighborhood occupied across a range of 

distances is described. The method combines the concepts of edge-to-edge distances and 

sequential buffering of polygon data, to provide an areal analogue to the traditional pair-

correlation function in point pattern analysis. 

REPRESENTING INDIVIDUALS AND DISTANCES 

Representing individuals with point locations allows for the use of a number of well-

developed statistical software programs / packages for point pattern analysis (e.g., (Baddeley 

and Turner 2005)). When simple geometries (e.g., circles) serve as adequate representations of 

the actual space occupied by an individual, centroid approximations may serve as an 

appropriate abstraction. However, centroid approximations exaggerate inter-plant distances 

when size and shape irregularity varies substantially (Nuske, Sprauer, and Saborowski 2009). 

Similarly, representing irregular shapes with circle geometries may result in overlapping objects, 

which if not present in the original data, can produce artificial pattern characteristics.   

Figure 18: Two potential scenarios for the level of competition 
experienced by an individual. Both scenarios illustrate individuals at 
equivalent edge-to-edge distance from each other but with varying 
degrees of space occupancy and therefore intensity of competition. 
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Recently proposed polygon-based approaches consider shortest edge-to-edge distances 

between polygons, rather than centroid-to-centroid distances, and thus provide a more 

accurate measure of the distances between neighboring objects (Nuske, Sprauer, and 

Saborowski 2009; Whigham 2013; Getzin, Nuske, and Wiegand 2014). Doing so has several 

advantages. First, the true size and shapes of individuals (as accurately as can be mapped) are 

explicitly retained in the data, rather than being relegated to attributes of point data as in the 

study of marked point patterns (Penttinen, Stoyan, and Henttonen 1992; Illian et al. 2008; Law 

et al. 2009; Chang et al. 2013). Second, the degree to which interplant distances are distorted by 

centroid approximations is not always clear, and varies depending on the shapes of individuals. 

Indeed, for extreme cases, the centroid approximation may fall outside of the actual polygon 

extent. 

 

QUANTIFYING FINE-SCALE SPATIAL PATTERN 

In traditional point pattern analysis, first-order statistics relate to the intensity λ (the 

number of objects within a given region, i.e., density) of a given point pattern and describe the 

variation in λ within the study area. Second-order statistics, such as Ripley’s K function and more 

recently the pair-correlation function, describe local variation in point densities and have 

become increasingly popular measures of spatial pattern in plant ecology (Wiegand, He, and 

Hubbell 2013).  

Nuske et al. (2009) proposed a polygon-based extension to the pair-correlation function 

that quantifies the local densities of neighboring objects within increasing search radii of a 

target objects’ perimeter. The approach is applied in quantifying spatial patterns in forest 
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canopy gaps to address questions regarding competition for space and light within the study 

system. 

This dissertation proposes a novel extension to the polygon-based pair-correlation 

function that accounts for the proportional overlap between sequential buffer ‘rings’ around 

individuals and neighboring polygons, rather than the density of neighbors. Results describe the 

relative departure from Complete Spatial Randomness (CSR) by comparing field data with 

simulated random polygon patterns. Further, quantified patterns for polygon data are compared 

with measures from the traditional (point-pattern) pair-correlation function. In study systems 

where interactions are at least partially governed by occupied space, the proposed method 

retains the benefits of point pattern analysis techniques, while providing a description of the 

observed patterns in terms of areal overlap. 

METHODS 

STUDY AREA AND DATA DESCRIPTION 

The field data were collected by researchers at the Shortgrass Steppe Long-Term 

Ecological Research (SGS-LTER) site in Northern Colorado (40°49’N latitude, 107°47’W 

longitude) from 1997 through 2010 (Chu et al. 2013) as a part of a long-term grazing 

experiment. Basal areas of individual plants were mapped annually in permanent, 1m x 1m plots 

using a pentagraph. Field data were digitized and provided as shapefiles through the LTER Data 

Portal (LTER 2009). Long-lived C4 grasses compose the dominant vegetation in the shortgrass-

steppe, of which the perennial caespitose grasses, Bouteloua gracilis and Buchloe dactyloides, 

constitute the majority (Lauenroth and Burke 2008).  
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The intent of the work described here is to illustrate the application of an area-based 

approach for quantifying spatial pattern. The method is demonstrated on data from a single plot 

collected in 1998 (Figure 19). Bouteloua gracilis individuals accounted for approximately 82% of 

mapped individuals within the shapefile. Due to its dominance within the shortgrass steppe, 

intraspecific competition (typically via inhibition of seedling recruitment (Manuel O. Aguilera 

and Lauenroth 1993; M. O. Aguilera and Lauenroth 1993)) is the main form of competition 

experienced by B. gracilis individuals. Thus, to the demonstration presented here is limited to B. 

gracilis individuals. All data processing and analysis steps were performed in R (R Development 

Core Team 2016). 

 

 

Figure 19: Mapped basal areas (solid outlines) and centroids (blue 
crosses) of Bouteloua gracilis individuals from an ungrazed plot in 
1998. Plot dimensions: 1m x 1m.  
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PAIR-CORRELATION FUNCTION EXTENSION 

For traditional point pattern analysis, the estimated pair correlation function 𝑔𝑔�(𝑟𝑟) is 

defined as 

 𝑔𝑔�(𝑟𝑟) = � �
𝜔𝜔�𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑟𝑟�

λ�22𝜋𝜋𝑟𝑟𝑠𝑠(𝑟𝑟)

𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ,    𝑟𝑟 > 0 (3) 

(Penttinen, Stoyan, and Henttonen 1992) where λ ̂is the estimated intensity (mean number of 

individuals per unit area),  𝑟𝑟 the search radius, and 𝑟𝑟𝑖𝑖𝑖𝑖 is the distance between points 𝑃𝑃 and 𝑗𝑗 in 

the pattern. A kernel function, 𝜔𝜔(∙) weights points within a given distance of 𝑟𝑟 to account for 

points approximately at distance 𝑟𝑟 from the focal point, and 𝑠𝑠(𝑟𝑟) serves as an edge correction 

factor (Nuske, Sprauer, and Saborowski 2009). For a given distance 𝑟𝑟 from a target point, 𝑔𝑔�(𝑟𝑟) 

provides an estimate of the number of points within a small region around 𝑟𝑟 (defined by the 

kernel function 𝜔𝜔(∙)) relative to the expected number of points within that region for a 

homogeneous Poisson process of intensity λ. Values of  𝑔𝑔�(𝑟𝑟) = 1 suggest complete spatial 

randomness (CSR), with 𝑔𝑔�(𝑟𝑟) > 1 and 𝑔𝑔�(𝑟𝑟) < 1 suggesting clustering and regularity respectively 

(Penttinen, Stoyan, and Henttonen 1992).  

Application of the pair correlation function to polygon edge-to-edge distances produces 

a biased estimator of 𝑔𝑔�(𝑟𝑟) due to the challenges posed in estimating the expected number of 

polygons at a given distance 𝑟𝑟. Nuske et al. (2009) proposed a bias correction factor 𝑐𝑐(𝑟𝑟) for 

polygon data as the mean biased estimator of a Monte Carlo simulation of the null model. The 

bias corrected estimate for polygon data is thus  
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 𝑔𝑔�(𝑟𝑟) = 𝑐𝑐−1� �
𝜔𝜔𝐸𝐸�𝑟𝑟𝑖𝑖𝑖𝑖 − 𝑟𝑟�

λ�22𝜋𝜋𝑟𝑟 𝑝𝑝𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ,    𝑟𝑟 > 0 (4) 

where 𝜔𝜔𝐸𝐸(𝑥𝑥) represents the commonly applied Epanechnikov kernel (Silverman 1986; Stoyan 

and Stoyan 1994), and 𝑝𝑝𝑖𝑖𝑖𝑖  the proportion of the perimeter of a buffer centered at point 𝑃𝑃 within 

the study region. Polygon 𝑗𝑗 is thus weighted by the inverse of 𝑝𝑝𝑖𝑖𝑖𝑖  assigning more weight to 

points at distance 𝑟𝑟 from polygons close to an edge (i.e., the number of points at distance 𝑟𝑟 

cannot be determined as the area searched extends beyond the study region) (Ripley 2004).  

To account for area overlap rather than polygon counts, we extended the work of Nuske 

et al. (2009) by considering a series of sequential buffers 𝛾𝛾𝑖𝑖(𝑟𝑟) constructed around polygon 𝑃𝑃 at 

distance 𝑟𝑟, and 𝛼𝛼(𝑟𝑟)𝑖𝑖𝑖𝑖 as the area of overlap between 𝛾𝛾𝑖𝑖(𝑟𝑟) and polygon 𝑗𝑗. Eq. (4) is initially 

modified to be 

 �̂�𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎(𝑟𝑟) = 𝑐𝑐−1� �
𝛼𝛼(𝑟𝑟)𝑖𝑖𝑖𝑖

�̂�𝜆𝛼𝛼2 𝜐𝜐𝛼𝛼(𝛾𝛾𝑖𝑖(𝑟𝑟)) 𝑝𝑝𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 ,    𝑟𝑟 > 0 . (5) 

Implicit in this definition is an analogue of the simple rectangular kernel function in point 

pattern analysis 

 𝜔𝜔(𝑥𝑥) = �
1

2Δ
, 𝑃𝑃𝑜𝑜 − Δ ≤ 𝑥𝑥 ≤ ∆

0, 𝑜𝑜𝑡𝑡ℎ𝑔𝑔𝑟𝑟𝑒𝑒𝑃𝑃𝑠𝑠𝑔𝑔
 (6) 

which weights all points equally if they fall within the region defined by 𝑟𝑟 ± ∆. The term is 

removed from Eq. (5) as overlap between buffer rings and neighboring polygons is directly 

calculated when it exists, and by definition, 0 otherwise. In the denominator of Eq. (5) the area 

based intensity, 𝜆𝜆̂𝛼𝛼 is defined as the proportion of the study area occupied by all 
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polygons. 𝜐𝜐𝛼𝛼(𝛾𝛾𝑖𝑖(𝑟𝑟)) represents the area of the buffer ring 𝛾𝛾𝑖𝑖(𝑟𝑟) and  𝑝𝑝𝑖𝑖𝑖𝑖 the proportion of  𝛾𝛾𝑖𝑖(𝑟𝑟) 

that overlaps the study area. The bias correction factor 𝑐𝑐(𝑟𝑟) remains as defined previously.   

Given this definition, �̂�𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎(𝑟𝑟) can be interpreted as estimating the ratio of observed 

areal overlap between buffer rings at distance 𝑟𝑟 around polygons 𝑃𝑃 and neighboring polygons 𝑗𝑗 

to that expected under the null hypothesis of a Poisson process with edge correction. A Monte 

Carlo method for simulating a Poisson process was used to determine the bias correction factor 

and estimate confidence intervals for the null hypothesis. 

 

MONTE CARLO METHOD 

A Monte Carlo simulation was developed to evaluate the significance of departure from 

the null model of CSR. Previous studies involving gridded approximation of plants (Wiegand et 

al. 2006) and polygon representations (Nuske, Sprauer, and Saborowski 2009; Whigham 2013) 

simulated patterns by randomly rotating and relocating all polygons within the study area 

boundary. Within the LTER data set, polygons representing plants that extended beyond the 

plot boundary were clipped to the bounding box edge. As a result, the true spatial extent of 

those individual plants is unknown, and their rotation and relocation required a customized 

process.  

For each simulated pattern, a set of random points were generated within the plot 

boundaries to serve as potential locations for a polygon. Overlap between polygons was not 

present in the original data set, and thus not allowed in the simulated patterns. As a result, not 

every random point was guaranteed to successfully serve as a location for a reassigned polygon. 
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To address this, 2𝑛𝑛 random points were generated (where 𝑛𝑛 is the number of polygons in the 

original data). For polygons completely within the plot boundary (i.e., not intersecting an edge), 

a random rotation angle between 0 and 359 was selected. The rotated polygon was shifted to 

the location of one of the randomly generated points (i.e., the centroid coordinates of the 

polygon were reassigned as the coordinates of the random point). Conditions were checked for 

overlap (allowing for intersection) with the plot boundaries, and any previously placed polygons. 

If no overlap was found, the rotation and reassigned location were accepted. If overlap was 

present, a new random rotation angle and location were selected and overlap checks 

performed. If a new location was not accepted within 1,000 attempts, the simulation was 

abandoned. Polygons were selected by decreasing size to limit failed randomizations. 

Polygons that intersected the plot boundaries (and were thus clipped to the plot edges 

in the original data) were treated in a similar manner, though the rotation and location 

reassignment was performed such that rotated and reassigned polygons would remain along an 

edge of the bounding box. Specifically, the index of the intersecting bounding box edge was 

determined (the bounding box was a square with edge indices from 1 to 4 defined clockwise 

from the left most vertical edge), and the polygon was rotated by a randomly selected 

increment of 90°. Depending on the chosen rotation angle and the initial bounding box edge 

index, the rotated polygon was reassigned to a random location on the appropriate bounding 

box edge. As an example, if the polygon was initially intersecting the first bounding box edge 

(i.e., the left most vertical edge) and the random rotation angle was 180°, the polygon was 

moved to a random location along the third bounding box edge. Random locations along a 

bounding box edge were restricted to prevent the polygon from being placed too close to a 

corner of the bounding box and thus extending beyond the study area, or intersecting more 
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than one bounding box edge. The new location was accepted conditional on non-overlap with 

any previously placed polygons.  

Approximate confidence envelopes at a given significance level α were estimated as the 

(𝑘𝑘 + 1)𝛼𝛼/2 and 𝑘𝑘 − ((𝑘𝑘 + 1)𝛼𝛼)/2) + 1 lowest values of �̂�𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎(𝑟𝑟) from the 𝑘𝑘 simulations 

(Besag and Diggle 1977; Stoyan and Stoyan 1994; Nuske, Sprauer, and Saborowski 2009). The 

upper and lower limits for the estimated envelope (𝛼𝛼 = 0.05) were derived from the 12th largest 

and smallest values of �̂�𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎(𝑟𝑟) for each value of 𝑟𝑟 from 500 randomized patterns. Five hundred 

randomizations have been suggested as adequate to estimate significance envelopes for 𝛼𝛼 =

0.01 (Diggle 2003; Perry, Miller, and Enright 2006). 

The traditional point pattern pair correlation analysis was performed using the spatstat 

package in R (Baddeley and Turner 2005), also with 500 randomizations. To perform the point 

pattern analysis, point locations for individual plants were estimated with their respective 

centroids (i.e., center of mass) (Figure 20).  



49 
 

 

 

This is a common approach when converting polygon data to point locations, however, 

when polygons are irregularly shaped, their center of mass is not guaranteed to be within the 

given polygon. This occurred for a single polygon in the data set (Figure 20 red box). Although 

methods exist for approximating polygons with point locations with the explicit requirement 

that the point be within the polygon boundaries (e.g., geodesic center) (Pollack, Sharir, and Rote 

1989), the single occurrence was not addressed and no correction was performed in this 

analysis.  

 

Figure 20: Point approximation for polygons by centroids (blue 
crosses). The red box identifies a polygon for which the center of 
mass was outside the polygon boundary. Green box identifies a multi-
part polygon with an outer and inner ring. 
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RESULTS 

Field data contained polygons for 215 Bouteloua gracilis individuals (𝑛𝑛 = 215). 

Exploratory analysis of polygon centroid locations suggested variation in local densities within 

the study area (Figure 21).  

 

 

 

 

Quantitative descriptions of local spatial patterns were obtained for both the point 

approximation and polygon data with their respective pair correlation function estimates. 

Estimates of the pair correlation function for both the point and the polygon data exhibited 

clustering, randomness and regularity at multiple distances. Both approaches suggested 

Figure 21: 3D density plot for point densities of B. gracilis individuals. 

Point Density Surface 
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regularity at shorter distances, with clustering at short to intermediate distances, though the 

distances at which these trends were observed differed.  

The estimated pair correlation function for the point pattern 𝑔𝑔�(𝑟𝑟) derived from 500 

random simulations suggested significant regularity at approximately 𝑟𝑟 ≤ 0.04𝑛𝑛 (Figure 22). 

Significant clustering was observed at values of 𝑟𝑟 ≈ 0.06𝑛𝑛. No significant departures from CSR 

were detected for values of 𝑟𝑟 ≥ 0.07𝑛𝑛. The range of 𝑟𝑟 was automatically set to approximately 

¼ the vertical and/or horizontal dimension of the observation window by default in spatstat 

(Baddeley and Turner 2005).  

 

 

Figure 22: Estimated Pair Correlation Function 𝑔𝑔�(𝑟𝑟) for point pattern data. Confidence envelope (dark grey) 
generated from 500 randomizations of the point pattern. Point locations were derived from polygon centroids. 
Red line indicates 𝑔𝑔�(𝑟𝑟) under the null hypothesis of CSR. Black line indicates 𝑔𝑔�(𝑟𝑟) for the observed field data. Note 
the y axis is truncated for better visualization. 

Pair Correlation Function – Point Data 
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Estimates for the area-based polygon pair correlation function �̂�𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎(𝑟𝑟) suggest 

significant clustering at the shortest distance considered (𝑟𝑟 = 0.005𝑛𝑛), and again at larger 

distances (0.08𝑛𝑛 ≤ 𝑟𝑟 ≤ 0.095𝑛𝑛) (Figure 23). Significant regularity was detected at distances of 

approximately 0.015 𝑛𝑛 ≤ 𝑟𝑟 ≤ 0.025𝑛𝑛. An upper limit to 𝑟𝑟 for the polygon approach was set to 

0.20𝑛𝑛 to cover a similar range as in the point pattern analysis approach, while taking into 

consideration the fact that buffer rings would encounter an edge earlier for the polygon data 

than would be the case when only point locations were considered. Additional clustering was 

detected towards the upper buffer distance limit (𝑟𝑟 > 0.18𝑛𝑛), however this was likely 

influenced by the size of polygons relative to the study area, and the choice of edge correction 

(see Discussion).  

Figure 23: Estimated area-based polygon pair correlation function. Dark grey bands indicate 95% CI generated 
from 500 randomizations of the original polygon data set for the null hypothesis of CSR. Black horizontal line 
derived from the mean of 500 simulations and represents 𝑔𝑔�𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎(𝑟𝑟) = 1.  

Area-based Pair Correlation Function – Polygon Data 



53 
 

DISCUSSION 

The model presented here demonstrates a method for extending the traditional pair-

correlation function to polygon data and how measures of spatial pattern (clustered, regular, 

random) vary depending on the type of data used to represent individuals. Measures of fine-

scale spatial patterns can serve as useful tools for inference regarding underlying ecological 

processes. The choice of measure should be informed by shape characteristics of the 

organism(s) under study and the scale at which interactions with neighboring individuals takes 

place. The strength of those interactions varies depending on interplant distances and local 

neighborhood structure (Law and Dieckmann 2000), and incorporating areal overlap into a 

metric of fine-scale spatial pattern may serve as an ecologically meaningful extension to 

commonly used point pattern metrics.  

The common functional form between the method described here and the traditional 

pair correlation function allows for a similar description of spatial pattern (clustering, regularity, 

randomness) with the added benefit of accounting for areal overlap rather than simply local 

density. As applied in this study, both measures illustrated clustering, regularity, and 

randomness in spatial pattern at varying distances, however the area-based extension 

suggested clustering at the shortest inter-plant distance measured (Figure 23).  

This can be understood by considering the alternative representations of objects in the 

two estimates (points versus polygons). The effect of approximating areal data with point 

locations (e.g., centroid coordinates) on estimates of neighborhood structure is well 

documented, and can be seen in a simple example in which objects are represented as non-

overlapping circles. It has been noted that in such a case, estimates of local densities are 
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inherently biased and may falsely suggest regularity at short distances (Nuske, Sprauer, and 

Saborowski 2009; Cressie 2015). Strict assumptions of non-overlapping individuals constrain the 

minimum distance at which a neighbor can exist to twice the radius of the smallest individual 

circle and suggest a soft or hard-core process when in fact it is not present (Cressie 2015). In 

many cases, similar behavior can be seen when considering point estimates of non-overlapping, 

irregular polygons in that the shortest distance between individuals is constrained to twice the 

shortest centroid to (self) polygon edge distance observed in the data. (It is interesting to note 

however that, as described earlier, depending on the degree of irregularity of polygons, centroid 

locations (i.e., center of mass) are not guaranteed to be within the target polygon boundaries 

and thus complicate the relationship.) In studies where such behavior is not preferred, polygon 

edge-to-edge distances, either calculated directly, or approximated with sequential buffering, 

may provide more accurate measures of spatial pattern at the smallest distances considered.  

Computationally efficient ways for calculating edge-to-edge distances for irregular 

polygons have recently become available in modern statistical packages (e.g., rgeos package in 

R), though in cases where polygons contain holes (Figure 20 green box), such distances are 

typically only considered from the bounding polygon. Sequential buffering, though more 

computationally intensive and by definition a discrete approximation of inter-plant distances, 

may be of particular use in situations where objects may develop holes and it is possible for 

other individuals to occupy that space. The ability to apply both outer and inner buffer rings has 

the benefit of describing spatial pattern within polygon holes. Sequential buffering also provides 

an intuitive way to calculate overlapping areas directly or as a proportion of a given buffer ring 

area.  



55 
 

The research described here presents an initial attempt to extend traditional measures 

of fine-scale spatial pattern by incorporating areal information and explicitly considering size 

and shape variation. Several assumptions of this approach should receive attention when 

applying it in practice. As with all measures of local spatial pattern relying on discretized 

distance measurements, the buffer ring width should be appropriately defined for the system 

under study. Buffer distances that are too large or small may misrepresent the actual spatial 

pattern present in the data.  

Further, due to the increased perimeter to area ratio for irregular polygons (relative to a 

circle of the same area), a polygon buffer is accounting for a greater proportion of the 

observation area (Nuske, Sprauer, and Saborowski 2009), and as a result, some form of bias 

correction is necessary to interpret the results in a similar fashion as those derived from point 

patterns. Similarly, and potentially of greater importance, the method of edge correction for 

sequential buffers of irregular polygons should be carefully considered. As in traditional point 

pattern analysis, edge correction that weights the area of overlap between a buffer ring and 

neighboring polygons (or the count of neighbors in the density approach) by the proportion of 

the ring within the study area, may have undesirable consequences when a large number of 

objects are distributed close to the boundaries of the study area (Perry, Miller, and Enright 

2006; Dale and Fortin 2014). At larger buffer distance values, such an edge correction approach 

will likely overestimate clustering. This is thought to at least partially explain the significant 

clustering observed in the analysis presented here (Figure 23).  

It is not immediately clear how size and shape irregularity of objects will affect the 

measure of spatial pattern, and the sensitivity of the given measure should be determined for 

multiple edge correction approaches. The use of a guard area in which an extended area is 
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sampled and objects within a fixed distance (inner-buffer) of the survey area boundary are 

excluded from the set of objects considered as target individuals (though retained to count as 

neighbors) is one possible approach to reduce the bias of edge correction choice (Perry, Miller, 

and Enright 2006). However, this results in a loss of data (potentially even more so when objects 

are large and irregular polygons) and may limit the potential for analysis on existing data sets, or 

the collection of additional data may be cost prohibitive.  
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CHAPTER 4: A DYNAMIC VECTOR AGENT MODEL OF PLANT-PLANT 
AND PLANT-ENVIRONMENT INTERACTIONS: A PROOF OF CONCEPT 
MODEL 
 

ABSTRACT 

This chapter describes an agent-based modeling approach that attempts to capture size 

and shape dynamics of individuals responding to local conditions. We outline a generic agent 

construction that builds on the recently proposed Dynamic Vector Agents (DVA) approach by 

incorporating interaction with a grid-based environment. The proposed model allows for the 

simulation of polygon agents, that can change their geometry (shape) by two general methods; 

1) by selecting from a set of rules governing how growth takes place (node displacement, edge 

displacement, point displacement), and 2) by changing the responsiveness to local 

environmental conditions (directional growth). Simulation results suggest that such an approach 

is capable of generating polygon agents varying in shape complexity, and serves as a proof of 

concept model for incorporating size/shape dynamics into models of plant 

competition/facilitation. 

INTRODUCTION 

Agent-based models (ABMs) have seen increasing use in plant ecology since the mid 

1970’s (DeAngelis and Grimm 2014). Such models attempt to simulate system dynamics from a 

‘bottom-up’ perspective by defining sets of relatively simple rules that govern the behaviors of 
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individuals (i.e., agents). From these simple rules, complex phenomena at the 

population/community level may emerge without a deterministic model framework being 

imposed. Spatial representation of agents within simulations is often simplified to either a grid 

or point data type. Such simplifications are advantageous in terms of computing resources when 

running simulations involving large numbers of interacting agents. However, for systems in 

which interactions between individuals take place at fine-spatial scales (relative to the sizes of 

individuals), incorporating the ability to simulate increasingly complex shapes may be 

advantageous. In this work, we describe a generic agent based model that defines agents as 

polygons that change size and shape in response to local availability of a simulated resource. 

PLANT COMPETITION MODELS 

Cellular Automata (CA) models in which individuals (or collections of individuals) were 

modeled as individual grid cells in a matrix environment (Silvertown et al. 1992; Balzter, Braun, 

and Köhler 1998; Matsinos and Troumbis 2002; Wang et al. 2003) were among the earlier 

spatially explicit simulations to gain popularity in ecology. Individual responses to states of 

adjacent grid cells were governed by sets of rules that allowed for efficient simulation of the 

complex interactions between numerous individuals, and the quantification of 

community/population wide, emergent patterns. While useful in generating and/or exploring 

hypotheses, CA models are limited to discretized representations of space and a fixed spatial 

resolution (Berger et al. 2008). Agent-based models (or Individual-based models) allow for the 

location and extent of individuals to be modeled in continuous space, and further allow for 

interactions between agents defined in continuous space and discrete space.  
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More recently, ABMs of plant populations/communities typically represent individuals 

as two-dimensional circular objects and interactions between individuals 

(competition/facilitation) take place when the areas of individuals overlap (Berger et al. 2008). 

In such models, the circular area attributed to an individual plant is often referred to as a Zone 

Of Influence (ZOI) (Berger et al. 2008; C.-J. Chu et al. 2008; Railsback and Grimm 2011) and 

represents the area from which the plant may acquire resources (e.g., light, water, nutrients). 

This concept has been further extended with the Field of Neighborhood (FON) approach which 

allows for the zone around an individual to be represented with a decay function such that the 

competitive effect of an individual decreases with greater distance from its central location 

(Bauer et al. 2004; Berger et al. 2008). 

Circular geometries most often serves as an abstraction of either basal area in grassland 

systems or canopy cover in forest systems. Such a representation is certainly appropriate in 

many situations, however, when a high degree of variability in size and shape exists among 

individuals, simplified geometries may misrepresent the actual distances at which individuals 

interact (Wiegand et al. 2006; Whigham 2013). Such a misrepresentation is particularly 

concerning when fine-spatial scale interactions between neighboring plants are of interest and 

modeling plants with simplified geometries does not accurately represent distances between 

plants, or the area from which they may attain resources. As a result, it is reasonable to expect 

that simulations constructed with such simplifications may fail to capture a potentially 

important spatial quality of plant communities/populations. 



60 
 

DYNAMIC VECTOR AGENTS 

Hammam et al. proposed a method for incorporating shape change into agent behavior 

with their concept of Dynamic Vector Agents (DVA) (Hammam, Moore, and Whigham 2007). 

This construct allows for agents to increase in size not simply by incremental increases in area of 

circular objects (e.g., by a defined allometric relationship between stem diameter and canopy 

area for a tree species), but by probabilistically selecting from multiple growth strategies. The 

three strategies discussed here (adapted from the DVA approach) include (Figure 24); 1) node 

displacement; in which one of the nodes in a polygon representing an agent  is moved, 2) point 

displacement; whereby an individual edge is split at its midpoint and the point resulting from 

the split is placed some distance away from the edge. The new point is then connected to the 

two nodes of the original edge, and the original edge is removed, and 3) edge displacement; in 

which an edge of the polygon is moved.  

 

 

Figure 24: Illustration of shape dynamics methods. 
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The DVA approach demonstrates the ability to generate polygons of a wide range of 

shape complexity ranging from simple expansion of an initial shape (e.g., expanding square) to 

highly complex fractal-like shapes (Hammam, Moore, and Whigham 2007). Here, we extend the 

DVA approach by incorporating interaction between agents directly through checks for spatial 

overlap, and indirectly through their respective influences on local availability of a simulated 

resource. This approach allows for the simulation of fine-scale interactions between organisms 

which may vary in size and shape complexity and extends the ZOI and FON concepts to objects 

of irregular shape. 

ODD DESCRIPTION 

In what follows, we adhere to the ODD protocol for reporting agent-based models 

(Grimm et al. 2006; Grimm et al. 2010), and organize the model description into the following 

sections: 1) Purpose; 2) Entities & State Variables; 3) Process Overview & Scheduling; 4) Design 

Concepts; 5) Initialization; 6) Input data; and 7) Sub-models. 

PURPOSE 

The model described in this work has two specific aims; 1) to describe the Dynamic 

Vector Agents approach to an ecology audience, and illustrate its application in modeling 

irregularly shaped plant agents, and 2) to extend the concept by incorporating plant-

environment interaction in a fashion analogous to the Zone of Influence and Field of 

Neighborhood approaches. As such, the model allows for direct interactions between polygon 

agents (plants) and a grid environment simulating an abstract level of resource availability, as 

well as indirect interactions between polygon agents via their local influence on the grid 

environment.  
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The model is intended to serve as a proof-of-concept model, and not necessarily to 

explicitly model a particular plant community or population. However, the motivation for 

developing such a model came from a unique, long-term dataset from the Long Term Ecological 

Research (LTER) station in the shortgrass steppe of Northern Colorado, USA. Between 1997 and 

2010, researchers mapped the basal areas of individual plants using a pantograph in a series of 

1x1m permanent plots, as a part of a larger grazing exclusion study (C. Chu et al. 2013). Hand-

drawn data were digitized and made publicly available via the LTER Data Portal (LTER 2009) in 

shapefile format. Data from these plots demonstrate a wide range of basal area shape 

complexity for a number of species, in particular the dominant grass Bouteloua gracilis (Figure 

25).  

 

Plants in this system are interacting with other individuals within their immediate 

neighborhoods (M. O. Aguilera and Lauenroth 1993), and as a result, these local interactions are 

Figure 25: Example of mapped basal areas from LTER data set. 
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important in determining growth, reproduction, seedling establishment, and mortality (Manuel 

O. Aguilera and Lauenroth 1993). The majority (approximately 75%) of the roots of a typical B. 

gracilis individual occur within 5cm horizontally of the plant, and approximately 10cm vertically 

(Coffin and Lauenroth 1991). As such, basal area should serve as a reasonable proxy for 

horizontal distribution of roots for B. gracilis individuals. However, it also makes it clear that the 

area within which an individual can impact local resource levels, extends beyond the mapped 

basal area. Given that B. gracilis roots tend to remain fairly close to the basal ‘footprint’ of an 

individual, it is reasonable to suggest that plants with markedly different basal area shapes 

would differ in root distribution, and potentially have different levels of interaction with 

neighboring plants.    

We present the proof-of-concept model here, inspired by this long-term study, to 

illustrate a method for simulating shape irregularity among individuals, and the ability of 

individuals to impact resource availability locally beyond their mapped representation. The aim 

is not to explicitly reproduce observed patterns as resource levels were not monitored within 

the plots, and thus the incorporation of plant-environment interaction is generic in nature. We 

demonstrate the range of shape dynamics the model is able to produce, and discuss different 

parameterizations, however we do not undertake an extensive Pattern Oriented Modeling 

(POM) approach (Thiele, Kurth, and Grimm 2014) to learn parameter values, as no data exist for 

environmental conditions which largely drive shape dynamics within the model. However, the 

described model should serve as a robust base on which to build more complex models for 

systems where appropriate field data exist. The current version of the model was constructed in 

the GAMA modeling and simulation platform version 1.7 (Taillandier et al. 2010). 



64 
 

ENTITIES & STATE VARIABLES 

Three primary types of entities exist in the model; 1) the global agent in which global 

variables and actions are defined, 2) grid agents representing the background environment 

(habitat cells), and 3) polygon agents representing individual plants. GAMA requires that 

dimensions be provided for the global environment. For the model described here, the global 

environment was defined as a toroidal world with dimensions 100x100 units, and represents the 

extent of the simulation and thus the bounds on all agents (whether point, polygon, or grid 

agents). The toroidal construction allows for plant agents that grow across the edge of the 

simulation environment to continue on the opposite side, effectively creating a world that 

wraps around on itself.  

The grid agent was defined relative to the global extent by specifying the number of 

cells horizontally and vertically to be created. For the model demonstrated here, we set the grid 

agent to be 50x50 cells. Polygon agents were initialized as circular polygons with a radius of 0.5 

units and 10 nodes along their perimeter. Polygon agents are initialized with random locations 

throughout the global environment. State variables are quantities which can vary for individual 

entities throughout a model run though in some cases they are treated as constants. Each agent 

type (global, grid, polygon) contained a set of state variables that defined important quantities 

for actions they perform during the simulations. Here we describe some of the most important 

variables that determine agent behaviors or initialization, and provide a complete list of all state 

variables (Table 1) as well as the model code (APPENDIX A).  
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Table 1: State variables and parameters for the model. 

Variable  Initial value Description 
Global Agent   
worldDimension 100 Variable for global dimensions  
shape square(worldDimension) Defines the shape of the world 
simStep 20 Number of steps until a polygon shape is simplified 
rNodeProb Varied Probability of shape change by displacing a polygon 

node 
rEdgeProb Varied Probability of shape change by displacing a polygon 

edge 
randInt Varied Controls the influence of resource dependent growth 

direction for polygon agents 
Grid Agent   
maxResource 100 Maximum resource level for grid cells 
inputResource Random integer < 10  Level of resource input at each time step 
resourceLoss Random integer < 10 Level of resource loss at each time step 
availableResource Random integer < 100 Level of resource available in a grid cell (derived value 

after first step) 
Polygon Agent   
pointsOnShape  List of polygon nodes 
randomNode  Index of polygon node to reference for shape changes 
previousRandNode  Additional node index in the event that the last point 

in the polygon point list is chosen 
nextRandNode  For edge displacement. This is the index of the node 

after randomNode  
segmentAngle  Used for defining angle of displacement 
outSegmentAngle  Similar use to segmentAngle 
angleToDisplace  Angle by which to displace a node or edge 
randAngle 90 Defined to displace node or edge orthogonally 
polyNeighbors  List of neighboring polygon agents (used to reduce the 

number of polygons an agent needs to check for 
overlap) 

offsetScale  Scale for the distance of node or edge offset at each 
step 

polyNodes  List of polygon nodes (updated after shape 
simplification and/or displacement) 

nodeToDisplace  Node that is to be displaced 
translateAngle  Angle by which to translate a node or edge 
angleCos  For angle displacement calculations 
angleSin  For angle displacement calculations 
tempShape  Used when checking for intersections 
randomPointTest  Stores new point location (after translation) 
randomLineTest  Used when translating polygon edge 
crossedTest  Tests for crosses with self and other polygons 
sci  Shape Complexity Index 
bufferNeighbors  List of grid cells that are within a given buffer distance 

of a polygon agent 
growthNodes  List of nodes that could be translated 
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Grid agents: state variables 

The grid agent consists of cells each of which has a level of resource availability. The 

maxResource variable defines the maximum amount of a resource a given cell may hold (set to 

100) while the inputResource and resourceLoss variables control the resource fluctuations 

independent of interaction with polygon (plant) agents. Each time step, these two variables are 

random integer values between 0 and 10. Resource dynamics are encapsulated in the 

availableResource variable which updates each time step.  

Polygon agents: state variables 

The version of the model described here is focused primarily on implementing shape 

dynamics for polygon agents, and interactions between polygon and grid agents to determine 

the strategy for shape change. Thus, the current model does not attempt to model growth with 

allometric or similar equations as is common in plant ABMs (C.-J. Chu et al. 2009; C.-J. Chu et al. 

2010; Lin et al. 2013; Lin et al. 2014). Growth equations could be implemented within this 

framework, however the particular method of shape change chosen and degree of shape 

irregularity of a polygon would require special consideration when constructing allometric rules 

for growth. Currently, the distance at which a point, node or edge (depending on shape change 

choice) is offset is one unit, scaled by a, randomly selected factor of 1, 1 2� , 1
3� , or 1 4� .  

Polygon agents interact directly with overlapping grid cells and those within a specified 

distance. Each node of a polygon agent identifies the grid cell it overlaps and stores its 

availableResource value. At each time step, a given polygon will create a sorted list of these 

node values. The degree to which underlying grid values influence directional growth is 

determined by selecting from among the first 𝑛𝑛 elements of the sorted list. This behavior is 
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controlled with the randInt parameter which in effect, governs directional growth. As an 

example, for randInt = 1, the node with the highest associated grid resource level is chosen as 

the node to displace (i.e., the location along the polygon perimeter that will move outward 

expanding its shape). For a randInt value of 10, one of the first ten nodes in the sorted list is 

randomly chosen for displacement. 

At each time step, upon selecting a node, point, or edge for displacement, a polygon 

agent undergoes a series of checks to ensure that the new shape (regardless of displacement 

method) remains topologically correct (e.g., that it does not cross itself). Polygon agents have 

multiple state variables that prevent self-crossing and crossing neighboring polygon agents.   

 

PROCESS OVERVIEW & SCHEDULING 

Upon beginning a simulation run, the global agent is initialized first, and defines general 

properties of the simulation and global variables for agents. The grid agent is initialized next, 

with any explicitly defined initial values for its variables. Lastly, the polygon agents are 

initialized. Agent actions are performed first for grid agents, and then for polygon agents. 

Though customizable scheduling is possible in GAMA, the current implementation of this model 

uses the default scheduling in which agents are called in the order in which they were created. 

Time in the simulation is modeled in discrete steps, but no explicit relationship to time units 

(e.g., daily or monthly time steps) is implied. If for a given time step, a topological exception is 

encountered (e.g., if a polygon crosses itself when performing a displacement) the agent does 

not undergo any shape change during that time step. This has important ramifications on the 

simulation. A variety of sizes and shape irregularity results during simulation runs, however, 
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agents that remain small or constant for a number of steps are doing so because of topological 

exceptions, and not explicitly due to simulated energy reserves. Incorporating reserves that 

would inhibit growth is a logical candidate for an extension to this model. 

Each time step, grid agents update their availableResource attributes by drawing 

random values for the inputResource and resourceLoss variables, as well as accounting for their 

resource reduction due to polygon agent actions. Polygon agents reduce the amount of the 

availableResource variable each time step for those grid cells they overlap, and to a lesser 

degree, those within a defined buffer distance (stored in the bufferNeighbors variable of 

polygon agents). This process may take the form of a decay function reducing the resource 

levels by decreasing amounts relative to their distance from the polygons, though doing so 

requires the storage of a large number of cells for each polygon agent, and may lead to 

dramatically increased run times. In the case described here, the grid cell resolution is such that 

plants were only modeled as impacting grid cells within 5 units of their location (recall that the 

global environment is 100x100 units).   

Polygon agents undergo a grow action each time step which consists of the following 

processes. The polygon creates the sorted list of resource values for each of its nodes, and 

selects one of the nodes depending on the definition of the randInt variable which controls how 

many nodes will be considered as candidates to displace. With a node selected, the polygon 

selects one of the three growth strategies (random point displacement, random node 

displacement, or random edge displacement). Each strategy is assigned a value between 0 and 1 

and the choice is made based on the normalized distribution of those values. These parameters 

can be manually adjusted during simulation runs, or set within GAMA as parameters to be 

explored in batch runs.   
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DESIGN CONCEPTS 

Basic Principles 

The model described here aims to incorporate the principles of Dynamic Vector Agents 

with interaction between agents and a grid-based environment. This combination allows for 

Zone of Influence type modeling scenarios to be applied in simulations in which agents 

dynamically change geometries based on those interactions, and (indirectly) through 

interactions with other polygon agents. While the current representation is aimed at applying 

these principles in a proof-of-concept context, and not at reproducing observed patterns per-se, 

it serves as a base on which to build more biologically / ecologically realistic simulations in the 

future.  

Emergence 

The primary form of emergent phenomena in the current model is in the form of shape 

complexity dynamics of polygon agents in response to interactions with other agents and their 

environment. Depending on the selection of simple growth rules a range of shape irregularity is 

possible. The growth actions are probabilistic in nature, and the observed size/shape 

distributions for polygon agents are a result of both ‘built-in’ rule assignments (topological 

checks) as well as interactions with neighbors and local conditions.  

Adaptation, Objectives, Learning & Prediction 

In the current basic implementation of the model, no processes of adaptation, objective 

based actions, learning or prediction occurs within polygon or grid agents. While several recent 

ABMs dealing with changes in aboveground/belowground biomass allocation have been 
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developed (Lin et al. 2014), it is rare in plant based ABMs to implement learning or strategy 

based behaviors within agents during a simulation.  

Sensing 

Polygon agents are able to access the grid values for cells they directly overlap, as well 

as those within a user-defined buffer. While functionally, there is no reason that an individual 

plant cannot access all grid values, the decision regarding the spatial extent of their access 

should be based on knowledge of the species being modeled (e.g., based on known spatial 

distribution of root systems). The querying of grid cell values is explicitly coded in the polygon 

agents behaviors, and can be refined to provide a higher degree of biological realism.  

Interaction 

Polygon agents directly interact with grid agents they overlap, and those are within the 

defined buffer distance. Polygon agents interact both directly (by checking for collision with 

other polygons) and indirectly (by effects on underlying grid resource values) with other polygon 

agents.  

Stochasticity 

Currently, initial locations of plant individuals are randomly assigned. Likewise, grid 

values for the resource level are randomly assigned to create heterogeneity within the grid 

environment. Growth strategies are probabilistic in nature, but the probabilities are fixed within 

a simulation run, and are not considered truly random in this context.  

Collectives 

No form of collective behavior or information sharing exists in the current version of this 

model. 
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Observation 

Data can be collected or followed about any variable or attribute for individual polygon 

agents. In this model version, reporting on individual Shape Complexity Index values (SCI) was 

coded in the model, and can be written to files for further analysis. The SCI was defined as 

𝑆𝑆𝑈𝑈𝐼𝐼 = 𝑃𝑃𝑔𝑔𝑟𝑟𝑃𝑃𝑛𝑛𝑔𝑔𝑡𝑡𝑔𝑔𝑟𝑟/√4𝜋𝜋 ∗ 𝑔𝑔𝑟𝑟𝑔𝑔𝑔𝑔, taking a value of 1 for circles, and larger values with increasing 

shape irregularity (Nuske, Sprauer, and Saborowski 2009). As the purpose of this current version 

of the model was to incorporate dynamically changing shapes of polygon agents, no measures 

of mortality, reproduction or other variables were observed or reported on, though if defined 

within the model, GAMA allows for reporting on all variables of interest. 

INITIALIZATION 

All global agent properties were constant through multiple simulation runs. Grid agent 

values were randomly assigned at initiation and take values between 0 and 1 for resource levels. 

Polygon agents were randomly located upon initialization, and subsequent simulation runs have 

different random positions selected for polygon agents.  

INPUT DATA 

No input data were utilized in the current version of the model, though GAMA does 

allow for GIS data to be provided to models. A useful extension to this model could be seen in 

providing shapefiles with actual measured objects as the initial configuration of polygon agents, 

or raster files containing data about soil properties. 
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SUBMODELS 

Polygon Growth 

GAMA refers to an action performed every time step as a ‘reflex’. The grow reflex in this 

model consists of several submodels/routines depending on the method of displacement 

chosen. The reflex begins with a node being selected for a given polygon agent. This choice is 

influenced by the randInt variable and the underlying grid values as described in the PROCESS 

OVERVIEW & SCHEDULING section. Once a node is selected, a polygon may grow by either 

displacing that node, displacing the edge between the selected node and the subsequent node 

in the polygon, or finding the midpoint of that edge and displacing that point while 

simultaneously adding the new point as a node in the polygon. For the current version of the 

model, displacement occurs orthogonally with respect to adjacent polygon edges. 

Depending on the probabilities associated with the various growth strategies, artificially 

complex or ‘jagged’ shapes may result. This may not be an issue in some systems, but a method 

was defined to simplify polygon geometries to moderate this phenomenon. The simShape 

parameter allows the user to define the number of time steps to allow before shape 

simplification is performed. This process involves reducing the number of nodes in a given 

polygon to a user defined number (which can also be variable depending on the number of 

nodes in the current polygon). Reducing the number of nodes in general tends to limit extremes 

in jagged edges. This is left as a parameter, as it further influences shape dynamics, and its value 

should be informed by the target organisms being simulated.   

As described earlier, displacement actions that result in a polygon edge crossing itself, 

are not allowed in the model. Likewise, crosses with neighboring polygons are not allowed. This 
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has important implications on the development of size variance among polygon agents, as no 

growth occurs at time steps where crosses occur for a polygon. While this is not biologically 

motivated, it is necessary to maintain the correct definition of polygons as a set of closed line 

segments. Further model development should address this by allowing polygons to continue 

selecting nodes for displacement until a successful change occurs or an allowable amount of size 

increase occurs for a given step. This is not a trivial matter, as agents may need to be 

constructed such that they are allowed multiple actions in a given time step, and area 

calculations will need to be repeatedly performed by each agent to ensure the proper growth 

amount at a given step. Despite these challenges, these are important additions to be made to 

better simulate observed systems. 

METHODS 

To demonstrate the ability of the model to simulate observed shape dynamics, we 

estimated parameter values in relation to their ability to reproduce patterns in the Shortgrass 

Steppe LTER data set. This is not meant to serve as a rigorous example of parameter estimation, 

rather to illustrate that the model is capable of producing shape irregularities similar to those 

observed in the field data.  

In the LTER data set, polygons representing the smallest B. gracilis individuals were 

arbitrarily assigned square shapes with side-length of 0.25cm during digitization (C. Chu et al. 

2013). There were multiple years in which large numbers of small individuals dominated the 

data. As the purpose of this demonstration is to illustrate the models ability to reproduce 

irregular shapes, and the simulated individuals start from a circular rather than square shape, 

we excluded those individuals when defining metrics used for parameter estimation. The 
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shapefiles were further subset to include only those polygons that were completely within the 

plot boundaries (i.e., those that were not truncated by the bounding box), as the full extent and 

shape of polygons intersecting the plot boundaries were unknown, and thus SCI calculations for 

those polygons would not be useful. Due to the toroidal structure of the simulations, this is not 

an issue in the ABM output.  

To estimate parameter values that result in similar SCI values in ABM runs, we used the 

squared difference between ABM median SCI values and the LTER median SCI value as a value to 

minimize. For each set of parameter combinations, simulations of 10 polygons were run for 100 

time steps, after which SCI values were recorded. Each parameter set was run five times, and 

the median SCI value was calculated for that given set of parameter values. Options for 

parameter values were initially selected from a coarse-level subset of possible values that 

spanned the full range of values a parameter could take. If they existed, subranges for each 

parameter that performed better in approximating the field data were identified and complete 

enumeration of parameter values within their given subranges was performed.   

RESULTS  

Shape Complexity Index values for polygons in the LTER data set exhibited a right-

skewed distribution with a median SCI value of approximately 1.165 and standard deviation of 

0.194 (Figure 26). In general, this suggests that many polygons were slightly irregular in shape, 

with some having greater shape complexity. It should be noted that very large (and typically 

among the more complex) polygons often intersected plot boundaries, and were thus not 

represented in this distribution.  
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It is likely that the median would shift to a larger value if the shape of those individuals 

were known, however, the aim of this stage of model development is more concerned with 

developing the mechanism for irregular shape development, rather than reproducing the 

observed patterns with a high degree of accuracy. Sampling parameter values at coarse-scales 

quickly identified that only the lowest values of random edge and random point displacement 

parameters (0.0-0.2) should be subsampled, while the full random node displacement 

parameter range was considered in the final round of parameter estimation. The shape 

simplification parameter was sampled from 1 to 50 in increments of 10 for the final round. 

Figure 26: Density plot of LTER data set Shape Complexity Index values (excluding the smallest square 
polygons as described in the text). 
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Median SCI values for the second round of parameter estimation exhibited a bimodal 

distribution (Figure 27).  

 

 

In its current form, minimizing the squared error between the modeled SCI values and 

the LTER values suggests that both the random edge and random point displacement strategies 

were not important in generating similar shapes to those observed in the field data. Random 

edge displacement was not used at all in any of the top ten performing parameter sets. Random 

point displacement was similar, only being assigned a value (0.1) in any of the top ten 

performing parameter sets. Squared error was minimized (sq. error = 1.6304e-07) with a 

Figure 27: Density plot of the median SCI values from the final round of parameter 
estimation simulation runs. Median SCI was calculated for five runs with the same 
parameter values. 
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parameter set of; Shape simplification = 20 steps, random node displacement = 0.3, and the 

remaining parameters = 0.0 (Figure 28).                  

 

 

DISCUSSION 

The model presented here illustrates a method for constructing agent-based models in 

which agents change size and shape dynamically in response to local conditions. This approach 

potentially benefits modeling efforts where these dynamics are thought to be of ecological 

importance, such as plant-plant interactions in grasslands. We described a modeling framework 

that combined aspects of the Dynamic Vector Agents and Zone of Influence concepts to allow 

for indirect interactions between agents via their effects on local conditions. 

While the model was capable of producing similar irregular shapes as those observed in 

a long-term field study of mapped basal areas for Bouteloua gracilis, this should be interpreted 

with caution. The metric used for parameter estimation (median SCI) showed that while 

exhibiting some irregularity, the mapped basal areas in the LTER data were not extremely 

complex (e.g. fractal-like). This likely contributed to the limited to no importance of two of the 

shape dynamics parameters (random edge and random point displacement). Both strategies can 

Figure 28: Examples of simulation runs with final parameter values. 
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quickly result in increasingly fractal-like shapes and within the LTER data, the prominent form of 

irregularity was from elongation of polygons, and not protruding extensions.  

While the focus for this work was primarily on polygon agents, the method of simulating 

resource dynamics in the grid agent played an important role in determining shape dynamics of 

polygon agents. The grid agent was initialized with random levels of resource availability, and 

this immediately led to the lack of importance for the way in which we structured directional 

growth for polygon agents. The importance of this parameter would likely change with 

simulated gradients in resource availability and/or with increasing density of individuals. 

Gradual elongation of polygon agents rarely occurred unless they were in close proximity to 

other polygons, at which point they would stop growth towards each other while continuing 

growth in the remaining directions. While similar behavior appeared to be happening in the 

LTER data, it is likely that the randomization method for grid resources and the low polygon 

density in the simulations obscured the relationship between some of the parameters. 

Agent-based modeling has become a useful tool for ecologists studying spatially explicit 

processes and has seen increasing use in recent decades (DeAngelis and Grimm 2014). Our hope 

with the modeling approach presented here is to call attention to a method developed in other 

disciplines for modeling Dynamic Vector Agents and illustrate a proof-of-concept model that 

combines the DVA approach with concepts from recent plant ABMs. The current model 

construction suggests several interesting lines of inquiry for refinement and increasing its 

performance in simulating plant-plant interactions at fine-spatial scales.  
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APPENDIX A 
Complete GAMA model code 

 
/** 
* Name: shape_dyn_test_SQUARES 
* Author:  
* Description:  
* Tags: Tag1, Tag2, TagN 
*/ 
 
model shape_dyn_test_SQUARES 
 
global torus: true { 
   
 // Define world shape and size 
 float worldDimension <- 100#m; 
 geometry shape <- square(worldDimension); 
 int simStep; 
 float rPointProb;  
 float rNodeProb;  
 float rEdgeProb;  
  
 // Initialize an agent of species: poly 
 init { 
  create poly number: 10; 
 } 
  
 // Save sci to csv file at 100 steps and end model run 
 reflex save_sci_vals when: cycle = 100 { 
  ask poly { 

save [name, simStep, rNodeProb, rEdgeProb, rPointProb, sci]     
to:"../sciTEST.csv" type: "csv"; 

  } 
 } 
} 
 
// Grid species definition 
grid habitat width: 25 height: 25 use_regular_agents: false use_individual_shapes: false 
{    
 int maxResource <- 100; 
 int inputResource <- rnd(10); 
 int resourceLoss <- rnd(10); 
 int availableResource <- rnd(100) update: availableResource + inputResource - 
resourceLoss  
  max: maxResource min: 0; 
 rgb color <- rgb((255 * (1-(availableResource*0.01))), 255, (255 * (1-
(availableResource*0.01)))) 
  update: rgb((255 * (1-(availableResource*0.01))), 255, (255 * (1-
(availableResource*0.01)))); 
  
 reflex resourceChange {   
  inputResource <- rnd(10); 
  resourceLoss <- rnd(10); 
  } 
}  
 
// Dynamic polygon species definition 
species poly { 
 geometry shape; 
 list<point> pointsOnShape; 
 geometry polyEdge; 
 int num_sides; 
 int randomNode; 
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 int previousRandNode; 
 int segmentAngle; 
 int outSegmentAngle; 
 int angleToDisplace; 
 list<point> pointsOnLine; 
 point randomPointOnLine; 
 int randAngle <- 90;  
 list<geometry> polyNeighbors; 
  
 //Scale the amount of offset at each step.  
 float offsetScale <- (1/ rnd(1, 4, 1)); 
 list<point> polyNodes; 
 point nodeToDisplace; 
 int translateAngle; 
 float angleCos; 
 float angleSin; 
 geometry tempShape;  
 geometry intersectPolys; 
 geometry intersectingLines; 
 
 point randomPointTest; 
 geometry randomLineTest;  
 bool crossedTest; 
 bool crossedPoly; 
 list listEdgeLengths; 
 float min_edge_length <- 0.0005; // minimum edge length to apply randomPoint or edge 
displacements 
 float sci; 
 list<float> sciList; 
 float medianSCI; 
 
 // Grid interaction variables 
 list<habitat> bufferNeighbors; 
 float maxResource; 
 int maxResourcePointIndex; 
 list<int> growthNodes; 
 
 init { 
  // Initial polygon shapes are circles 
  shape <- circle(0.5); 
 
  // Initially generate points along the circle 
  pointsOnShape <- shape points_on (shape.perimeter/10); 
  shape <- polygon(pointsOnShape); 
  polyNeighbors <- poly at_distance 20;  
 
 } 
//________________________________________________________________________________________________________________ 
// Actions for changing shape 
//________________________________________________________________________________________________________________ 
 
 // Action to get a random edge of a polygon 
 geometry getPolyEdge (point pt1, point pt2) { 
  geometry pEdge <- line([pt1, pt2]); 
  return pEdge;   // Returns an edge of the polygon 
 } 
  
 // Action for calculating random displacement coordinates (point translation) 
 // Input variables:  
 // angle_1: the base angle relative to the x-axis. It takes different meanings in the randomPointDisplace  
 // and nodeDisplace actions, and is calculated there. 
 // splitRange: for randomPointDisplace range does not need to be split since it is relative to the target 
 // polygon edge. For nodeDisplace, it does need to be split since the base angle is 1/2 the external  
 // angle beteween the adjacent edges (relative to the x-axis). 
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 point translatePoint (int angle_1, bool splitRange, point pointToTranslate)
 { 
  if splitRange = true { 
   translateAngle <- 0;  
  } else { 
   translateAngle <- randAngle;  
  } 
 
  angleCos <- cos(angle_1 + translateAngle)*offsetScale; 
  angleSin <- -sin(angle_1 + translateAngle)*offsetScale; // negative since (0, 0) is 
upper left corner of 'world' 
 
  // Scale offset distance by random value  
  point translatedPoint <- point(pointToTranslate translated_by {angleCos, 
angleSin}); 
  return translatedPoint; 
 } 
  
 // Action to calculate coordinates for line translation. 
 // Input variables: 
 // angle_1: the angle of the selected edge relative to the x-axis 
 // lineToTranslate: the polygon edge that will be translated.  
 geometry translateLine (int angle_1, geometry lineToTranslate) { 
  translateAngle <- randAngle; 
  angleCos <- cos(angle_1 + translateAngle)*offsetScale; 
  angleSin <- -sin(angle_1 + translateAngle)*offsetScale; // negative since (0, 0) is 
upper left corner of 'world' 
  geometry trLineTemp <- lineToTranslate translated_by {angleCos, angleSin}; 
  return trLineTemp; 
 } 
 
//_______________Choose Point Action_________________________________________________________________________________ 
 // Action to choose node with highest associated grid resource values 
 // get list of habitat cells that the shape point overlaps and total their values for each point. 
 list<int> choosePoint (list<point> pointOptions) { 
  list<list<habitat>> pointHabitatCells; 
  list<float> pointResources; 
  bufferNeighbors <- (habitat overlapping(self)); 
  
  loop i from: 0 to: length(pointOptions) - 2 { 
   add (bufferNeighbors where ((each distance_to pointOptions[i]) < 
5)) to: pointHabitatCells; 
   add (sum(pointHabitatCells[i] collect each.availableResource)) to: 
pointResources; 
  } 
   
  // Create a map to sort by resource value, but preserve the original index 
  map<int, float> ptResMap; 
 
  loop i from: 0 to: length(pointResources)-2 { 
   ptResMap <+ i::pointResources[i]; 
  }  
 
  // Get index values (keys) for map sorted by value 
  list<int> sortedMap <- ptResMap.keys sort_by ptResMap[each]; 
  sortedMap <- reverse(sortedMap); 
  return sortedMap; 
 } 
  
//_______________Random Point Displacement_________________________________________________________________________ 
 // Action for growing by displacing a random point along a polygon edge. 
 action randomPointDisplace { 
 
  // Create a line object that represents the (randomly) selected edge of the polygon 
  // Using the getPolyEdge action. 
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  polyEdge <- getPolyEdge(shape.points[randomNode], shape.points[randomNode 
+ 1]); 
 
  if (polyEdge.perimeter > min_edge_length) { 
    

// Generate x number of points along the given line segment.  
   pointsOnLine <- polyEdge points_on (polyEdge.perimeter/2); // midpoint 
only 
 
   // Choose one of the points along the line segment  
   randomPointOnLine <- pointsOnLine[1]; // the midpoint in this case 
    
   // Calculate the angle of the polygon edge relative to the x-axis  
   // This is used later to set the angle of displacement for the point 
   segmentAngle <- angle_between({polyEdge.points[0].location.x, 
polyEdge.points[0].location.y},  
    {polyEdge.points[1].location.x, 
polyEdge.points[1].location.y},  
    {polyEdge.points[0].location.x + 10, 
polyEdge.points[0].location.y});   
    
   // Translate the point using translatePoint Action 
   randomPointTest <- translatePoint(segmentAngle, false, 
randomPointOnLine); 
    
   // Create a polyline from the adjacent polygon nodes to the new point to test for 
intersection  
   tempShape <- polyline([{polyEdge.points[0].x, 
polyEdge.points[0].y}, {randomPointTest.x, randomPointTest.y}, 
    {polyEdge.points[1].x, polyEdge.points[1].y}]);  
 
   //Get the intersection of the new triangle, and the original shape. 
   crossedTest <- tempShape crosses shape; 
   list intersectTest <- polyNeighbors overlapping(tempShape); 
   if !(crossedTest) and (length(intersectTest) = 0) { 
    // Update the polygon shape with the new node location 
    // Note: The first / last point in the polygon will not be changed in this action (see 
pointsOnLine section above), so 
    // dealing with the first/last point duplication in the shape.points list is 
not an issue here (see nodeDisplace action 
    // for an example of when it is an issue).   
    polyNodes <- list(shape.points); 
    polyNodes[randomNode + 1] +<- ({randomPointTest.x, 
randomPointTest.y}); 
    shape <- polygon(polyNodes); 
   } 
  } 
 } 
  
//_______________Node Displacement___________________________________________________________________________________ 
 // Action for displacing a node in the polygon 
 action nodeDisplace { 
 
  // Get the point associated with that index  
  nodeToDisplace <- shape.points[randomNode]; 
   
  // Get the external angle between lines adjacent to the node and divide by 2. 
  // This is used later to set the angle of displacement for the node. 
  if (randomNode = 0) { 
   previousRandNode <- length(shape.points)-2; 
   } else { 
    previousRandNode <- randomNode -1; 
   } 
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  segmentAngle <- angle_between({shape.points[randomNode].location.x, 
shape.points[randomNode].location.y},  
   {shape.points[previousRandNode].location.x, 
shape.points[previousRandNode].location.y},  
   {shape.points[randomNode + 1].location.x, shape.points[randomNode + 
1].location.y}); 
  segmentAngle <- int (segmentAngle/2);  
  
  // Get angle of outgoing line relative to the x-axis 
  outSegmentAngle <- angle_between({shape.points[randomNode].location.x, 
shape.points[randomNode].location.y},  
    {shape.points[randomNode + 1].location.x, 
shape.points[randomNode + 1].location.y},  
    {shape.points[randomNode].location.x + 10, 
shape.points[randomNode].location.y});  
   
  // Calculate base offset angle for node. This splits the angle between the adjacent lines and accounts 
for their 
  // angle relative to the x-axis. NOTE: if baseOffsetAngle is > 360 it is corrected automatically (i.e., 
baseOffsetAngle - 360) 
  int baseOffsetAngle <- segmentAngle + outSegmentAngle; 
   
  // Translate the node using translatePoint Action 
  // Note: in this case, splitAngle parameter needs to be set to 'true' 
  randomPointTest <- translatePoint(baseOffsetAngle, true, nodeToDisplace); 
   
  // Create a polyline from the adjacent polygon edges to the new point to test for intersection  
  
  tempShape <- polyline([{shape.points[previousRandNode].location.x, 
shape.points[previousRandNode].location.y},  
   {randomPointTest.location.x, randomPointTest.location.y}, 
   {shape.points[randomNode + 1].location.x, shape.points[randomNode + 
1].location.y}]);    
 
  //Get the intersection of the new triangle, and the original shape.  
  crossedTest <- tempShape crosses shape; 
  list intersectTest <- polyNeighbors overlapping(tempShape); 
  if !(crossedTest) and (length(intersectTest) = 0) {    
   
   // Update the polygon shape with the new node location 
   polyNodes <- list(shape.points); 
   if (randomNode = 0) { 
    polyNodes[randomNode] <- ({randomPointTest.x, 
randomPointTest.y}); 
    polyNodes[length(polyNodes) - 1] <- ({randomPointTest.x, 
randomPointTest.y}); 
   } else { 
    polyNodes[randomNode] <- ({randomPointTest.x, 
randomPointTest.y}); 
   } 
   shape <- polygon(polyNodes);    
  } 
   
 } 
  
//_______________Edge Displacement___________________________________________________________________________________ 
 // Action for displacing an edge of the polygon 
 action edgeDisplace { 
 
  // Create a line object that represents the (randomly) selected edge of the polygon l 
  // Using the getPolyEdge action. 
  int nextRandNode; 
  if (randomNode = length(shape.points) - 2) { 
   nextRandNode <- 0; 
  } else { 
   nextRandNode <- randomNode + 1; 
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  } 
  polyEdge <- getPolyEdge(shape.points[randomNode], 
shape.points[nextRandNode]); 
   
  if (polyEdge.perimeter > min_edge_length) {  
    

// Calculate the angle of the polygon edge relative to the x-axis  
   // This is used later to set the angle of displacement for the edge 
   segmentAngle <- angle_between({polyEdge.points[0].location.x, 
polyEdge.points[0].location.y},  
    {polyEdge.points[1].location.x, 
polyEdge.points[1].location.y},  
    {polyEdge.points[0].location.x + 10, 
polyEdge.points[0].location.y}); 
 
   // Translate the line using translateLine action 
   randomLineTest <- translateLine(segmentAngle, polyEdge); 
   
   // Create a polyline from the adjacent polygon edges to the new point to test for 
intersection   
   tempShape <- polyline([{shape.points[randomNode].location.x, 
shape.points[randomNode].location.y},  
    {randomLineTest.points[0].location.x, 
randomLineTest.points[0].location.y}, 
    {randomLineTest.points[1].location.x, 
randomLineTest.points[1].location.y}, 
    {shape.points[randomNode + 1].location.x, 
shape.points[randomNode + 1].location.y}]);   
    
   bool crosses <- tempShape crosses shape; 
   bool inters <- randomLineTest overlaps shape; 
   list intersectTest <- polyNeighbors overlapping(tempShape); 
   if !(crosses) and !(inters) and (length(intersectTest) = 0) { 
    // Update the polygon shape with the new node location 
    polyNodes <- list(shape.points); 
    polyNodes[randomNode + 1] +<- ({randomLineTest.points[0].x, 
randomLineTest.points[0].y}); 
    polyNodes[randomNode + 2] +<- ({randomLineTest.points[1].x, 
randomLineTest.points[1].y}); 
    shape <- polygon(polyNodes); 
    }  
   }       
  } 
 
//_______________________________________________________________________________________________________________________ 
 reflex grow { 
 
  growthNodes <- choosePoint(shape.points); 
  int randInt <- rnd(0, (length(growthNodes)/4), 1); // random int between 0 and 
(value) 
  randomNode <- growthNodes[randInt];  
  int actionChoice <- rnd_choice([rPointProb, rNodeProb, rEdgeProb]); 
 
//  Compute Shape Complexity Index 
  sci <- shape.perimeter/(2*#pi*(sqrt(shape.area/#pi))); 
 
  if (actionChoice = 0) { 
    
   do randomPointDisplace; 
 
   } else if (actionChoice = 1) { 
    do nodeDisplace; 
 
   } else { 
    do edgeDisplace; 
   } 
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//________________________________________________________________________________________________________________________ 
  
//   Reflex for polygon simplification 
  if every(simStep) {    
   pointsOnShape <- shape points_on 
(shape.perimeter/(length(shape.points) * 1)); 
   shape <- polygon(pointsOnShape); 
  } 
 
  ask (habitat overlapping shape) { 
   availableResource <- availableResource - 30; 
  } 
  
  ask bufferNeighbors { 
   availableResource <- availableResource - 10; 
  } 
 } 
   
 aspect standard_aspect { 
  draw shape empty: false color: #grey; 
 } 
} 
 
//________________________________________________________________________________________________________________________ 
 
// Batch Experiment code 
 
experiment edgeDisplace_experiment type:batch keep_seed: false repeat:5 until: (time = 
101){ 
 parameter "Steps until shape simplification: " var: simStep among: [1, 10, 20, 30, 
40, 50] init: 20; 
 parameter "Random Node Probability: " var: rNodeProb min:0.1 max: 1.0 step:0.2 
init: 0.6; 
 parameter "Random Edge Probability: " var: rEdgeProb min:0.0 max: 0.2 step:0.1 
init: 0.1; 
 parameter "Random Point Probability: " var:rPointProb min:0.0 max:0.2 step:0.1 
init: 0.1; 
 //parameter "Directional Growth Parameter" var:randInt min: 1 max: 18 step: 3 init: 6; 
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