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Abstract 

 

Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), 

Alzheimer’s and Parkinson’s disease are caused by a progressive and aberrant destruction 

of neurons in the brain and spinal cord. These disorders lack effective long term 

treatments, and existing options focus primarily on either delaying disease onset or 

alleviating symptomology. Dysregulated programmed cell death, known as apoptosis, is 

one of the most significant contributors to neurodegeneration, and is controlled by a 

number of different factors. Rho GTPases are a protein class with recognized importance 

in proper neuronal development and migration, and have more recently emerged as 

regulators of apoptosis and neuronal survival. Here, we investigated the role of Rho 

GTPase family member Cdc42 and its downstream effectors in neuronal survival and 

apoptosis. Our goal was to determine whether a Cdc42 signaling pathway contributes to 

the survival of neurons subjected to arduous growth conditions, simulating 

pathophysiological stress endured during neurodegeneration. We initially induced 

apoptosis in rat cerebellar granule neurons (CGNs) by removing both growth factor- 

containing serum and depolarizing potassium from the cell media. We then utilized both 

chemical inhibitors and adenoviral Cdc42 shRNA to block the function of Cdc42 or its 

downstream effectors in this stressful growth environment. Our in vitro studies 

demonstrate that functional inhibition of Cdc42 or two of its downstream targets (ACK-1 

and PAK) did significantly sensitize neurons to cell death under duress. Our results 
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advocate a pro-survival role for Cdc42 in neurons, and propose that it could be a potential 

therapeutic target for decelerating the advancement of neurodegenerative disease. 
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Chapter One: Introduction 

 

1.1 Neurodegenerative Disease and Cell Death 

 

Cell death is a natural and necessary event in the life cycle of a cell that ensures 

proper development and maintains organismal homeostasis. During development of the 

nervous system, approximately half of all newly formed neurons will die by the early 

postnatal period in order to ensure proper neural connection formation and function 

(Oppenheim, 1991). Cell death can transpire through various distinct mechanisms, and it 

is a requirement of normal cells in order to replace aged or damaged cells with healthy, 

optimally functional ones. These death mechanisms can be the result of pre-programmed 

instructions as a response to intracellular signaling (i.e., apoptosis, autophagy, 

necroptosis, anoikis), or a consequence of cellular infection or injury (i.e., necrosis, 

oncosis, mitotic catastrophe) (Duprez et al. 2009, Krysko et al. 2009, Vakifahmetoglu et 

al. 2008). While cell death is considered an essential phase in the cellular life cycle, it 

must also be a tightly controlled process, as its dysregulation has several pathological 

repercussions. 

Neurodegeneration is described as the loss of structure and/or function in nerve 

cells, eventually leading to neuronal death. In neurodegenerative disease, cell death 

mechanisms are hyperactivated due to pathophysiological culprits such as oxidative 

stress, mitochondrial dysfunction or excitotoxicity (Martin et al. 1998, Beal, M.F. 1998, 

Chen et al. 2012), and neurons in the brain and spinal cord are subsequently aberrantly 
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and prematurely destroyed. Because neurons cannot divide and reproduce, they cannot 

replenish themselves once they are lost. The progressive loss of neuronal populations in 

diseases such as Alzheimer’s, Parkinson’s and amyotrophic lateral sclerosis (ALS) then 

leads to deterioration of cognitive and motor function in those afflicted. Additionally, 

treatments for these disorders are limited both in number and in efficacy, typically aiming 

to alleviate symptoms or delay disease onset or progression. The current economic cost 

associated with health care of these patients and their families is well within the billions, 

and due to the obscure pathogenesis of neurodegenerative diseases, it is not likely to 

decrease anytime soon (Brown et al. 2005). The detrimental and incurable nature of 

neurodegenerative disease has guided research to focus either on more accurately 

delineating causative factors in these disorders, or in identifying therapeutic agents or 

targets that could improve patient quality of life. 

 

1.2 Cancer and Cell Survival 

 

Opposite to neurodegeneration on the disease spectrum is cancer. Prior to the 

demise of a cell, it must respond to survival promoting biological signals, which are also 

highly regulated in order to keep it healthy and functional. Bcl-2 anti-apoptotic protein 

family members (i.e., Bcl-2, Bcl-XL), growth factors, inhibitor of apoptosis proteins 

(IAPs), and other mitogenic proteins that activate pro-survival pathways (i.e., PI3K/Akt, 

MEK/ERK) are some examples of key players in the cell survival signaling (Portt et al. 

2011). Like cell death, there are also pathological consequences if survival is not 

controlled appropriately. 
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Cancer is often viewed as a profusion of uncontrolled cell growth and atypical 

cell migration. It can further be described as a summative consequence of cell cycle 

malfunctions that allow abnormal cells to progress through the cell cycle instead of being 

destroyed, causing a build-up of mutations and abnormal cell proliferation (Foster, 2006). 

Mutations in healthy cells can be the result of a genetic predisposition, exposure to 

carcinogenic materials, or otherwise DNA-damaging factors. Cancerous cells are able to 

evolve in a way that prevents their destruction, and they possess several unique 

characteristics that normal cells do not, including adhesion-independent growth ability, 

unscheduled proliferation, insensitivity to apoptotic signals and metastatic capability. 

These erratic transformations make it exceedingly difficult to isolate therapeutic targets 

in cancer treatment.  

The prevalence of cancer in the U.S., as well as in most other countries, is on the 

rise due to unhealthy lifestyle choices, environmental changes (i.e., pollution, ozone 

depletion) and an increase in the elderly population as a whole. Also, screening and 

diagnosis techniques for cancer are much improved. Consequently, both cancer research 

and treatment have become substantial economic financial burdens, and much of current 

cancer research focuses on prevention and improvement of existing treatment options 

(i.e., chemotherapy, radiation, etc.) (Yabroff et al. 2011). Because cellular and 

organismal homeostasis depend on the delicate balance between cell survival and death, 

it is not surprising that both pathways share many common signaling components.



4  

 

1.3 Introduction to Rho Family GTPases: Structure, Function and Regulation 

 

The Rho GTPase subfamily is a class of proteins belonging to the Ras 

superfamily of low molecular weight (~21 kDa) guanosine triphosphatases. While they 

are best known for their role in regulation of actin cytoskeletal dynamics, these 

monomeric proteins have also been implicated in many other functional areas, such as the 

regulation of various transcription factors (Hall, 2005), development and maintenance of 

cell polarity (Nobes et al. 1999) and cell cycle progression (Olson et al. 1995). Rho 

GTPases can be activated by many extracellular signals, including growth factor 

receptors, receptor tyrosine kinases, cytokine receptors, G-protein coupled receptors 

(GPCRs) and integrins (Sinha and Yang, 2008). Once activated, they signal downstream 

to various effectors to promote biological responses. 

All Rho GTPases contain a common G-domain region, which mediates the 

binding of guanine nucleotides, as well as a Rho insert region that mediates isoform 

specific effector binding, and a hypervariable C-terminal region that assists in membrane 

binding (Schaefer et al. 2014). The cyclic activation of Rho GTPases relies on their 

guanine nucleotide binding status, becoming active when GTP bound and inactive when 

GDP bound (Figure 1). Rho GTPases are often referred to as molecular “switches”, due 

to conformational changes that arise when they are activated. These conformational 

changes take place mainly in two notable regions, referred to as switch I and switch II, 

wherein the γ -phosphate of GTP will bind and relay activation information. Once GTP 

hydrolysis occurs, and the γ-phosphate is lost, the switch regions will relax again 

(Schaefer et al. 2014). While the guanine nucleotide binding domain of Rho GTPases is 
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important for determination of switch region conformation, and subsequent effector 

activation, Mg2+ binding is also imperative in controlling the initial affinity of the 

GTPase for nucleotide binding (Rossman et al. 2005). 

There are three general classes of proteins that regulate Rho GTPase activation, 

including guanine nucleotide exchange factors (GEFs), GTPase activating proteins 

(GAPs) and guanine nucleotide dissociation inhibitors (GDIs). GEFs are the activating 

proteins of GTPases that facilitate the exchange of GDP for GTP, while GAPs promote 

GTPase inactivation by stimulating their intrinsic ability to hydrolyze GTP to GDP. 

GDIs are responsible for the sequestration of inactive (GDP-bound) GTPases in the 

cytosol, and it is their dissociation that controls membrane localization and subsequent 

activation of the Rho GTPase family (Hakoshima et al. 2003). Rho GTPase activity is 

also regulated by other factors, such as membrane localization and specificity of 

GEF/GAP or effector interactions. There are currently over 70 GEFs, 60 GAPs and 3 

GDIs known to interact with Rho GTPases (Valdés-Mora et al. 2009). 
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Figure 1: Cyclic activation/inactivation of Rho family GTPases. Rho family 

GTPases cycle between an inactive (GDP-bound) state and an active (GTP-bound) 

state. This is facilitated by activators known as guanine nucleotide exchange factors 

(GEFs) that catalyze the exchange of GDP for GTP, and inactivators known as 

GTPase activating proteins (GAPs) that stimulate the intrinsic ability of GTPases to 

hydrolyze GTP to GDP. Additionally, guanine nucleotide dissociation inhibitors 

(GDIs) sequester GTPases in an inactive state in the cytosol to regulate their activity. 

Both Clostridial toxins and dominant negative GTPase mutants have been used in 

prior experiments to block the activity of Rho GTPases in order to delineate their 

biological functions.
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1.3.1 The Role of Rho GTPases in Regulating Actin Cytoskeletal Dynamics 

 

Rho GTPases are well known for their role in regulating dendritic spine 

morphogenesis, growth cone motility and axonal migration (Linseman and Loucks, 

2007). Although there are seven subfamilies of Rho GTPase members (Rho, Rac, Cdc42, 

Rnd, RhoD, RhoBTB, RhoH), the most extensively studied members to date are RhoA, 

Rac1 and Cdc42. Previous fibroblast based research has demonstrated that specifically, 

RhoA promotes development of actin stress fibers, Rac1 propagates lamellipodia and 

membrane ruffle development, and Cdc42 mainly contributes to the development of actin 

microspikes and filopodia (Govek et al. 2005). It is also understood that these Rho 

GTPase family members tend to antagonize each other in cytoskeletal regulation. Rac1 

tends to promote growth cone development and neuronal branching, as demonstrated in 

dominant negative Caenorhabditis elegans Rac1 mutants that display neuronal branching 

defects (Lundquist, 2003). Cdc42 stimulates growth cone rearrangement and axonal 

guidance, as seen in studies of dominant negative Cdc42 mutants expressed in chick 

retinal ganglion cells that were defective in those abilities (Rosdahl et al. 2003). 

Alternatively, RhoA has been found to induce neurite retraction and growth cone 

collapse, as seen in studies of a mouse neuroblastoma cell line (N1E-115) where RhoA 

was activated using the GPCR agonist lysophosphatidic acid (LPA) (Kranenburg et al. 

1999). A delicate balance between the function of each GTPase must be maintained for 

proper neuronal development and plasticity. 

Although Rac generally plays a growth promoting role and Rho antagonizes this 

in most cell lines, a few notable exceptions have been discovered. In sympathetic, dorsal 
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root ganglion (DRG) cells, a dominant negative mutant Rac1 caused neurite extension 

(Fournier et al. 2003), while constitutively active Rac1 mutant expression enhanced DRG 

growth cone collapse and a decrease in neurite length in mouse cortical neurons (Jin and 

Strittmatter, 1997, Vastrik et al. 1999, Kubo et al. 2002). Similarly, another study found 

that in mouse hippocampal neuron cultures, dominant negative RhoA expression 

inhibited axonal growth (Ahnert-Hilger et al. 2004). These examples of differences 

observed in GTPase function might be due to discrepancies between cell and organism 

type, or in experimental approaches. 

 
 

1.3.2 The Role of Rho GTPases in Neuronal Survival and Apoptosis 

 

Due to their intimate relationship with actin cytoskeletal regulation, it is not 

surprising that roles in neuronal survival and death have emerged for Rho GTPase family 

members. Neurite initiation, axonal guidance and growth, neuronal migration, dendritic 

morphology, and synapse formation all rely on Rho GTPase activity (Luo, 2000, Govek 

et al. 2005). More recently, a role in neuronal survival has also been ascribed to two of 

the three well-known Rho family members. It has been reported that Rac1 and RhoA 

functionally antagonize each other in a survival context, where Rac1 primarily plays a 

pro-survival role and causes neurite extension, while RhoA displays pro-apoptotic 

qualities, and induces neurite retraction (Linseman and Loucks, 2007, Govek et al. 2005, 

Stankiewicz and Linseman, 2014). Studies in primary cortical neurons have also 

demonstrated the importance of Rho GTPases in neuronal survival, as statin inhibitors 
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were shown to decrease GTPase membrane association through a reduction in 

mevalonate synthesis, and thus induce apoptosis (Chuang et al. 1997). 

The pro-survival characteristics of Rac1 have been in part attributed to signaling 

its downstream effector p21-activated kinase (PAK), which promotes survival through 

activation of a mitogen activated protein kinase (MAPK) MEK1/2/ERK1/2 pathway. 

This pathway induces degradation of pro-apoptotic BH3-only family member Bim, and 

suppresses pro-apoptotic JAK/STAT signaling (Loucks et al. 2006). Stankiewicz et al. 

(2012) also demonstrated that CGN apoptosis following exposure to Clostridial Toxin B 

is also due to a JAK/STAT5 pathway specifically. Finally, Rac1 also phosphorylates 

phosphoinositide-3-kinase (PI3K), which stimulates cell survival via Akt phosphorylation 

of pro-apoptotic protein Bad (Datta et al. 1997). Alternatively, RhoA propagates neuronal 

death by activating its major downstream pathway, Rho-associated protein 

kinase/phosphatase and tensin homolog (ROCK/PTEN), which dephosphorylates 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to phosphatidylinositol 4,5-bisphosphate 

(PIP2) to terminate Rac activation of Akt (Lai et al. 2014). Although these oppositional 

roles have been elucidated for several neuronal cell types, there are also exceptions to the 

generally accepted notion that Rac is pro-survival and Rho is pro-apoptotic. For example, 

deletion of Rac1/Cdc42 function in sympathetic neurons has been shown to inhibit a 

cJun/JNK-dependent apoptotic pathway, and to protect them from apoptosis caused by 

removal of nerve growth factor (Linseman et al. 2001), which is an in vitro survival 

requirement of for them. 
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Although a role in neuronal survival and apoptosis has been described for both 

RhoA and Rac1, the role of Cdc42 has not been as clearly defined. Le et al. (2005) have 

previously proven that inhibition of Rac function with either dominant negative mutants 

or Clostridial toxin B (a broad Rho GTPase family inhibitor) will induce neuronal death, 

but a dominant negative Cdc42 did not cause the same induction of apoptosis. This 

suggests that Rac is the main Rho GTPase contributor in neuronal survival. Cdc42 

function has consistently demonstrated promotion of cellular growth and survival in a 

number of other cell types, so it is not unlikely that it plays a part in neuronal survival as 

well. Additionally, cross-talk between Rho GTPase family members, sequence homology 

between Rac and Cdc42 (~70%) (Hakoshima et al. 2003), and pathologically related 

findings of Rho family members and/or their effectors all advocate a possible role for 

Cdc42 in neuronal survival. 

Understanding of the role Rho GTPases play in neuronal survival and 

development has led to the discovery of dysfunctional Rho GTPase signaling in various 

nervous system disorders. Diminished Rac1 activity and/or hyperactive RhoA signaling 

have been implicated in neurodegenerative diseases such as Huntington’s, Alzheimer’s 

and Parkinson’s disease (Stankiewicz and Linseman, 2014). Deregulated Rho GTPase 

signaling components aside from the GTPase itself have also been pathologically linked. 

For example, mutations in a Rac specific GEF known as alsin have been causally 

connected to the development of juvenile onset ALS (Hadano et al. 2007). Additionally, 

Rac and Rho have also been implicated in regulating cellular survival and recovery after 

nervous system damage. For example, decreased Rho signaling and increased Rac 
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signaling have demonstrated importance in axonal regeneration following spinal cord 

injury, as well as prevention of neuronal death after ischemic injuries such as stroke 

(Stankiewicz and Linseman, 2014). Cdc42 and its many effectors have also been 

pathologically implicated in neurodegenerative disease. For example, genetic mutations 

in mental X-linked retardation (MRX) have been found to induce malfunctions in a 

protein that serves as a Cdc42 GAP (i.e., Oligophrenin-1), as well as in downstream 

Cdc42 effector protein, PAK (Schmidt and Hall, 2002). Defective Cdc42 signaling has 

also been linked to ailments of other bodily systems such as immune disorders (i.e., 

Wiskott-Aldrich syndrome), faciogenital dysplasia and cardiovascular disorders (Tu and 

Cerione, 2001, Schmidt and Hall, 2002). 

 
 

1.4 Cell Division Control Protein 42 (Cdc42) 

 

Cell division control protein 42 (Cdc42) was originally studied in Saccharomyces 

cerevisiae (yeast) as a regulator of polarity and bud growth (Zheng et al. 1996). It is a 

~21 kDa, ubiquitously expressed protein with homologs in several species, and has two 

known alternatively spliced isoforms, including placental Cdc42 and a brain isoform 

(Shinjo et al. 1990). The human homolog (often referred to as G25K) shares 

approximately 50% sequence homology with mammalian Rho and 70% with Rac 

(Munemitsu et al. 1990). Cdc42 is localized to many intracellular membranes, including 

the plasma membrane, Golgi apparatus and vesicular membranes (Shinjo et al. 1990). It 

interacts with cellular membranes via post-translational geranylgeranylation of its C- 
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terminus, or it can exist freely in the cytosol when its geranylgeranyl moiety is bound to a 

GDI (Resh, 2013). 

Cdc42 has two known families of GEFs: the Diffuse B-cell lymphoma (Dbl) 

family, which contain conserved Dbl homology (DH)/Pleckstrin homology (PH) domains 

in tandem, and the Dedicator of Cytokinesis (DOCK) atypical family, which lacks the 

aforementioned DH domain and instead contain Dock180 homology domains DHR1 and 

DHR2 (Sinha and Yang, 2008). The DH domain of Dbl family GEFs directly binds 

Cdc42 to cause GDP dissociation and GTP exchange, and thus is critical for GEF 

activity. The PH domain of these GEFs is equally important for GEF activity, and is 

responsible for binding Cdc42 target proteins, phosphoinositide interaction and 

membrane targeting (Sinha and Yang, 2008). DOCK GEFs specific to Cdc42 include 

Zizimin1 (DOCK9) and ACG (Zizimin2/DOCK11) (Meller et al. 2005). While the PH 

domain in DOCK GEFs has a function analogous to that in Dbl GEfs, it is the DHR2 

domain in these GEFs that catalyzes the GDP-GTP exchange (Côté and Vuori, 2006). 

Cdc42 is a homodimer which, in addition to the structural elements of GTPases 

described earlier, also sequentially includes a GTP-binding protein domain and a 

phosphate-binding loop (P-loop) containing nucleoside triphosphate hydrolase, which 

functions in its intrinsic GTP hydrolysis activity (Protein Data Bank in Europe). It 

transduces information from various different extracellular signals, including cytokines, 

growth factors, GPCR ligands, proteoglycans and integrins in order to exert a number of 

physiological effects (Symons and Settleman, 2000). The most well characterized duty of 

Cdc42 is its actin polymerizing role critical to the formation of filopodia, which extend 
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from the leading edges of cells to environmental probing and the formation cell-cell 

contacts (Gupton and Gertler, 2007). Other functions of Cdc42 include G1/S phase 

progression in the cell cycle and mitotic development (Stengel and Zheng, 2011), 

regulation of cell polarity, cellular migration and chemotaxis, cell fate determination, 

transcriptional control and intracellular trafficking (Valdés-Mora et al. 2009). Most of 

what is known about Cdc42 in relation to mammalian physiology comes from dominant 

negative or constitutively active mutational studies, though more recent genetic studies in 

mice have provided insight into other cell-type and tissue-type biological functions of 

Cdc42 (Melendez et al. 2011). 

 
 

1.4.1 Cdc42 in Pathology 

 

One research area of great current interest is the involvement of Cdc42 in cancer. 

Because it has well-described roles in cellular migration, filopodia development, and cell 

cycle regulation, it is not surprising that Cdc42 and its downstream targets have been 

consistently linked to tumorigenesis, cancer progression and metastasis. Increased levels 

of Cdc42 expression have been reported in a diversity of cancer types, including 

colorectal adenocarcinoma, non-small cell lung carcinoma, melanoma, breast and 

testicular cancer. Furthermore, increased activity of Cdc42 downstream target ACK-1 has 

also been implicated in the progression of both prostate and breast cancer (Mahajan and 

Mahajan, 2010). Although no mutations in the human Cdc42 gene itself have been 

detected thus far in cancer, it is the overexpression of the Cdc42 protein, or aberrant 
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downstream pathway signaling that appear to be correlated with both poor patient 

prognosis and increased metastatic potential (Stengel and Zheng, 2011). 

The oncogenic potential of Cdc42 has been extensively defined, and its 

contribution to cellular transformation includes interplay with Ras (Qiu et al. 1997), 

prevention of appropriate epidermal growth factor receptor (EGFR) degradation (Wu et 

al. 2003), and cooperation with dysfunctional activity in tumor suppressors such as p53 

and p19ARF to promote tumor growth (Guo and Zheng, 2004). A study performed by 

Lin et al. (1997) described how mutational disruption of the Cdc42 activation cycle, 

wherein it was able to spontaneously bind GTP while GTP hydrolysis rates remained 

static, caused reduced dependency on culture serum and anchorage-independent growth 

capability in a fibroblast cell line. Another study by Ye et al. (2015) detailed how 

increased Cdc42 protein levels contributed to the migration of HeLa cervical cancer cells, 

likely through enhanced filopodia formation. Additionally, Cdc42 has exhibited ability to 

positively regulate transcription at survival and proliferation stimulating NF𝛋B 

promoters, which allows deleteriously transformed cells to escape apoptotic destruction 
 

(Boettner and Van Aelst, 2002). Interestingly, in few instances, Cdc42 has also been 

reported to exert inhibitory effects on cell growth (Valdés-Mora et al. 2009). For 

example, a functional knockout study done by Vega and Ridley (2008) of Cdc42 in liver 

cells actually caused an increase in liver cancer progression, and Cdc42 knockout in 

Jurkat T lymphocytes has been found to cause JNK pathway-dependent caspase 

activation and apoptosis (Chuang et al. 1997), which would indicate a lack of pro- 

survival acivity in these circumstances. Although exceptions exist, they appear to be 
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tissue type and cell type specific, and Cdc42 is generally recognized as a growth 

promotional protein. 

Although cancer consumes the largest investigational area in Cdc42-linked 

disease research, it is not alone. As mentioned previously, dysregulation of Cdc42 and its 

interacting proteins has been connected to a wide range of disorders, such as faciogenital 

dysplasia (Zheng et al. 1996), Fanconi anemia (Zhang et al. 2008), Huntington’s disease 

(Holbert et al. 2003) and immune disorder Wiskott-Aldrich syndrome (Kirchhausen and 

Rosen, 1996). Downstream signaling pathways involved in some of these disorders will 

be more thoroughly discussed later. 

 
 

1.5 Downstream Effectors of Cdc42 

 

There are many known target proteins of Cdc42, but for our study we chose to 

focus on three: activated cdc42 kinase-1 (ACK-1), p21 activated kinase (PAK) and 

neuronal Wiskott-Aldrich syndrome protein (N-WASp). Each of these effector proteins 

chosen contains a highly conserved Cdc42/Rac-interactive binding (CRIB) motif within 

their GTPase binding domain (GBD) (Burbelo et al. 1995). As the name would suggest, 

this domain dictates effector binding to Cdc42. It was discovered using nuclear magnetic 

resonance (NMR) studies of active Cdc42 bound to downstream effectors containing the 

motif, and is cited as necessary, but not sufficient for tight Cdc42 binding (Hoffman and 

Cerione, 2000). Because these three downstream target proteins share a common GTPase 

CRIB binding domain and have similar Cdc42 binding affinity, determination of which 
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Cdc42-effector pathway is triggered upon Cdc42 activation is believed to be guided by 

which specific upstream signal and/or GEF interacts with Cdc42 (Sinha and Yang, 2008). 

 
 

1.5.1 Activated Cdc42 Kinase-1 (ACK-1) 

 

Activated Cdc42 kinase 1 (ACK-1) is a ~120 kDa non-receptor tyrosine kinase 

that is a downstream effector specific to Cdc42. There are two isoforms (ACK-1 and 

ACK-2), both of which are expressed throughout the body, but are especially enriched in 

the brain (Hoffman and Cerione, 2000). Its structure consists of an amino-terminal sterile 

α motif (SAM) domain responsible for membrane targeting, an N-terminal tyrosine 

kinase domain, an EGFR binding domain (EBD) and a C terminus containing both a 

GBD with a CRIB motif, as well as a ubiquitination (UBA) domain involved in ACK-1 

protein turnover (Lougheed et al. 2004, Mahajan and Mahajan, 2010). The exact 

mechanism of ACK-1 activation is still relatively unclear, although most report it to exist 

in an autoinhibitory state (Figure 2A), wherein interaction between the EBD and kinase 

domain prevents its kinase activity (Mahajan and Mahajan, 2015) until GTPase binding 

or activation by ligand binding of tyrosine kinase receptors (Figure 2B). 
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Figure 2: Inactive and active conformations of Cdc42 effector ACK-1. A. Schematic 

representation of autoinhibited ACK-1. Interaction between the EGFR binding domain 

(EBD) and N-terminal kinase domain prevent its function. B. Functionally active, GTP- 

Cdc42 bound conformation of ACK-1. Cdc42 binding to the GBD releases the kinase 

domain, so that ACK-1 may phosphorylate its substrates. 

 

Upon Cdc42 activation, ACK-1 stimulates a plethora of signaling cascades 

(Figure 3), such as the PI3K/Akt pathway and the androgen receptor (AR) to incite the 

survival and proliferation of cells (Mahajan and Mahajan, 2010). It is also involved in 

regulation of actin cytoskeletal arrangement and cell migration via signaling proteins 

such as the p130Cas adaptor molecule, a critical component of integrin-mediated cell 

motility, and formation of a complex with p130Cas and Crk proteins (Modzelewska et al. 

2006). Additionally, ACK-1 has demonstrated ability to phosphorylate and activate 

Wiskott-Aldrich syndrome protein (WASp) in order to regulate actin dynamics 

(Yokoyama et al. 2005). In a neuronal context, Linseman et al. (2008) described how 

ACK-1 contributes to neurite outgrowth after muscarinic cholinergic receptor (mAChR) 

activation in a human neuroblastoma cell line, attributable to ACK-1 phosphorylation by 

Fyn kinase downstream of Rho kinase signals. Finally, ACK-1 has demonstrated anti- 
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apoptotic qualities in the Drosophila eye, wherein it interacts with a Grb2 homolog and a 

transcriptional co-activator to promote proliferative and anti-apoptotic gene transcription 

(Schoenherr et al. 2012). 

ACK-1 is pathologically relevant, and elevated levels of the ACK-1 gene in 

tumors has been positively correlated with poor prognosis and increased cancer cell 

invasiveness (Schoenherr et al. 2012). Increased levels of ACK-1 mRNA have also been 

identified in various cancer types, including cervical, breast, prostate, ovarian, lung, 

gastric, and cancers of the head and neck (Mahajan and Mahajan, 2010, Mahajan et al. 

2007, Mahajan and Mahajan, 2015). The contribution of ACK-1 to cancer progression 

stems from its ability to upregulate both AR and Akt, and simultaneously cause the 

phosphorylation and degradation of tumor suppressor WW domain-containing 

oxioreductase (Wwox) (Mahajan and Mahajan, 2010) (Figure 3). Mahajan et al. (2005) 

have described in vivo studies of nude mice wherein ACK-1 upregulation was found to 

assist in the development of anchorage-independent growth and tumorigenesis. 

ACK-1 signaling is also crucial in central nervous system development, and has 

shown elevated levels in the cerebellum, hippocampus and neocortex (Ureña et al. 2005), 

with even greater increases in areas of proliferation and migration during development in 

the rat brain (La Torre et al. 2006). In terms of neural disorders, ACK-1 has been 

implicated in infantile onset epilepsy, due to a genetic mutation that upregulated protein 

levels (Ureña et al. 2005), as well as autism spectrum disorder and attention 

deficit/hyperactivity disorder through its effects on dopamine transporter plasma 

membrane stabilization (Wu et al. 2015). We chose to focus mainly on ACK-1 out of the 
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three effectors investigated, as it is targeted only by Cdc42 GTPase and has explicitly 

demonstrated importance in cellular survival in previous studies. 
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Figure 3. ACK-1 signaling pathways involved in actin cytoskeletal regulation and 

cell survival. ACK-1 activation by GTP-Cdc42 has several actin regulatory and cell 
migratory effects, including aiding in the development of filopodia. This occurs both 

through ACK-1 phosphorylation of neuronal Wiskott-Aldrich syndrome protein (N- 

WASp), as well as ACK-1 phosphorylation of docking protein p130Cas , which forms a 
complex with adaptor protein Crk that is critical in integrin-mediated cell migration. 

ACK-1 activation also supports cellular survival through activation of the pro-survival 

PI3K/Akt pathway, which negatively regulates pro-apoptotic Bcl-2 family members, 

phosphorylation/degradation of the tumor suppressor protein Wwox, and upregulation of 

androgen receptors. 
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1.5.2 p21 Activated Kinase (PAK) 

 

p-21 activated kinase (PAK) proteins are a serine/threonine kinase family targeted 

by both Cdc42 and Rac (Hanna and El-Sibai, 2013). There are six known PAK isoforms, 

organized into Group I (PAKs 1-3) and Group II (PAKs 4-6) (Itakura et al. 2013), 

although PAK1, PAK2 and PAK3 are the most well characterized and have explicitly 

demonstrated kinase activity upon Rac/Cdc42 interaction (Wells and Jones, 2010). Figure 

4A shows the structure of PAK proteins, with a regulatory N-terminal domain containing 

the GBD and the CRIB motif that is overlapped by an autoinhibitory domain (AID) 

(Dummler et al. 2009). Once Cdc42 binds and activates PAK, it results in its 

autophosphorylation, and subsequent disruption of the autoinhibitory relationship 

between the N-terminus and the catalytic C-terminal kinase domain (Figure 4B) (Lei et 

al. 2000, Buchwald et al. 2001). There are various GTPase-independent activating 

mechanisms for PAK proteins, including cyclin-dependent kinase 5, adaptor proteins Nck 

and Grb2, and sphingolipids (Dummler et al. 2009), but these will not be discussed here. 

Once activated, PAK proteins then proceed to phosphorylate other proteins and exert 

biological functions. 
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Figure 4: Inactive and active conformations of Cdc42 effector PAK. A. Schematic 

representation of the autoinhibited conformation of PAK protein. Interaction between the 

autoinhibitory domain (AID) and kinase domain prevents its activity. B. Functionally 

active, GTP-Cdc42 bound conformation of PAK protein. Binding of active Cdc42 

releases the C-terminal kinase domain so that PAK may phosphorylate its substrates. 

 
 

One well-studied biological function of PAK is its role in the formation of 

lamellipodia, membrane ruffles and actin polymerization (Figure 5). Once activated, 

PAK will inhibit myosin light chain kinase (MLCK) phosphorylation of myosin II 

regulatory light chain (MLC), which aids in the formation of lamellipodia and the 

disassembly of actin stress fibers and focal adhesions (Bokoch, 2003). PAK also 

phosphorylates LIM kinase (LIMK), which allows it to inhibit an actin capping protein 

known as cofilin (Sumi et al. 1999). Because cofilin binds and destabilizes actin 

filaments, its phosphorylation by PAK and subsequent inhibition of its function increases 

actin polymerization, and the formation of lamellipodia and membrane ruffles (Yang et 
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al. 1998, Edwards and Gill, 1999). PAK proteins have also been linked to cell survival 

through pathways such as phosphorylation of the PI3K/Akt pathway, which negatively 

regulates pro-apoptotic members of the Bcl-2 family, and inhibition of pro-apoptotic 

transcription factors such as Forkhead box protein (FKHR) (Radu et al. 2014, Dummler 

et al. 2009). 

PAK protein dysregulation has proven to be pathologically relevant as well. 

 

Mutations in PAK have been observed in cognitive disorders such as MRX, and reduced 

PAK activity has been reported in severe Alzheimer’s disease (Zhao et al. 2006). Also, 

aberrant PAK activity has been found to contribute to huntingtin aggregation in 

Huntington’s disease, and in the development of fragile X syndrome in a mouse model 

(Ma et al. 2012). Many of these pathological findings have been attributed to Rac-PAK 

signaling, and as PAK is an overlapping target of both Rac and Cdc42, we chose to 

dedicate less focus to this signaling pathway. 
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Figure 5. PAK signaling pathways involved in actin cytoskeletal regulation and cell 

survival. PAK activation has several actin regulatory effects, including the formation of 

lamellipodia and membrane ruffles. This occurs both through PAK phosphorylation of 

myosin light chain kinase (MLCK) and LIM kinase (LIMK), which blocks its 

phosphorylation of the myosin II regulatory light chain (MLC) and inhibits actin 

destabilizing cofilin proteins, respectively. PAK activation also supports cellular survival 

through inhibition of the pro-apoptotic transcription factors Forkhead box protein 

(FKHR) and Bad, as well as activation of the pro-survival PI3K/Akt pathway, which 

negatively regulates pro-apoptotic Bcl-2 family members. 
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1.5.3 Neuronal Wiskott-Aldrich Syndrome Protein (N-WASp) 

 

Neuronal Wiskott-Aldrich syndrome protein (N-WASp) is the more ubiquitously 

expressed form of the hematopoietic protein Wiskott-Aldrich syndrome protein (WASp), 

both of which are dependent on direct Cdc42 binding for activation and subsequent 

transmission of signals to the actin cytoskeleton (Kim et al. 2000). These proteins consist 

of several important conserved regions (Figure 6), including a PH domain that binds 

PIP2, an N-terminal GBD that contains the CRIB motif, and a C-terminal VCA (verprolin 

homology, cofilin homology, acidic) domain for the binding of actin monomers (V 

region) and association with the Arp2/3 complex (CA region) (Rohatgi et al. 1999). N- 

WASp also contains a basic domain (BD) which binds PIP2, as it has been reported that 

signals from both Cdc42 and PIP2 are required to adequately activate N-WASp (Prehoda 

et al. 2000). Finally, WASp proteins have an N-terminal domain known as WASp- 

homology 1 (WH1), which mediates the binding of WASp-interacting protein (WIP), 

which helps control cellular localization, protein stability, and protects N-WASp from 

degradation by ubiquitination (Fried et al. 2014, Suetsugu et al. 2002). Similar to the two 

aforementioned Cdc42 target proteins, inactive N-WASp also exists in an autoinhibited 

conformation, wherein the overlapping of the GBD and VCA domain prevents interaction 

with actin related proteins (Figure 6A). Upon Cdc42 binding, affinity between the GBD 

and VCA domains in N-WASp is reduced, and this autoinhibition is relieved (Figure 6B) 

(Rohatgi et al. 2000). Members of the WASp protein family can also interact with and be 

activated by other proteins, such as Src tyrosine kinases and adaptor proteins Nck and 

Grb2 (Higgs and Pollard, 1999), but these will not be further discussed here. 
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Figure 6: Inactive and active conformations of Cdc42 effector N-WASp. A. 

Schematic representation of autoinhibited N-WASp. Interaction between the GBD and 
VCA domain prevent its activity. B. Functionally active, GTP-Cdc42 bound 

conformation of N-WASp can recruit machinery to make new actin filaments. 

 
 

WASp was originally identified as the protein product of a mutated gene in an 

immunodeficiency disorder known as Wiskott-Aldrich syndrome (WAS). The majority of 

mutations involved in WAS onset have been localized to the WIP-binding region, 

causing aberrant degradation of the protein (Fried et al. 2014). N-WASp has since been 

linked to this disease as a critical factor in autoimmunity development, due to its 

regulation of B lymphocyte signaling (Volpi et al. 2016). Figure 7 depicts a well 

characterized signaling pathway of N-WASp. N-WASp stimulates actin nucleation and 

polymerization via induction of actin related protein 2/3 (Arp 2/3) that promotes 

formation of actin filaments (Carlier et al. 1999, Machesky and Gould, 1999). A 

contribution to cell survival has not yet been described for the Cdc42-N-WASp pathway, 

and it is thought to serve mainly in the regulation of actin dynamics. As it is a target only 
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of Cdc42 GTPase, we sought to focus more on the Cdc42-N-WASp signaling pathway in 

possible relation to neuronal survival. 

 

 

 

 
 

 
Figure 7. N-WASp signaling pathways involved in actin cytoskeletal dynamics. 

Cdc42 binding and activation of N-WASp has several regulatory effects on actin 

dynamics, including assisting in the development of filopodia, actin microspikes, and 

actin nucleation. This occurs through N-WASp phosphorylation of the actin related 

protein 2/3 (Arp2/3) complex, which regulates the formation of new actin nucleation 

cores. 
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1.6 Cerebellar Granule Neurons (CGNs) as a Model System 

 

Due to their relatively simple isolation process and high level of culture 

homogeneity (~95%), primary rat cerebellar granule neurons (CGNs) are widely used as 

a model system to study neuronal apoptosis (Linseman et al., 2001). Relevant to the 

current study, Cdc42, Rac and Rho have demonstrated strong genetic expression in 

various areas of the rat brain, including the hippocampus, cerebellum, thalamus and 

neocortex (Olenik et al. 1997). Our healthy growth medium for CGNs contained 25 mM 

potassium chloride (KCl), as it has been shown that this neuronal population requires 

high levels of extracellular calcium in vitro, beyond what is considered physiologically 

normal (D’Mello et al., 1993). This high potassium supplementation, and subsequent 

membrane depolarization, allows a large influx of Ca2+ into the cells, which is important 

in Ca2+/Calmodulin protein kinase phosphorylation of various transcription factors and 

survival pathway factors (i.e., ERK, CREB). High levels of intracellular Ca2+ have 

proven important in many neuronal cell lines, including sympathetic neurons, ciliary 

ganglia, dorsal root ganglia and cerebellar granule neurons (Galli et al. 1995). 

To induce cell stress in our model system, we chose to use 5K- media, which 

lacks both fetal bovine serum (FBS) and has greatly reduced potassium levels (5 mM). 

This reduced potassium causes membrane re-polarization, and a subsequent drop in 

intracellular Ca2+ levels. Thus, it is believed that CGNs in 5K- media culture die due to a 

lack of Ca2+  influx, and subsequent decrease in the transcription of survival proteins. 

CGNs exposed to low potassium containing media have been shown to undergo apoptosis 

through an increase in Fas death receptor binding, and the release of executioner caspase- 
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3 (Ginham et al, 2001), which can be visually distinguished by the presence of 

fragmented nuclei (D’Mello et al., 1993). This provides our experimental basis for using 

CGNs and 5K- media as an in vitro model for the involvement of Cdc42 in neuronal 

survival signaling pathways. 

 
 

1.7 Hypothesis and Rationale 

 

To date, most studies of the Rho GTPase family have focused on their roles in 

regulation of actin dynamics, which are now quite well defined. Additionally, most 

research has been conducted in non-neuronal cell populations. This study aimed to 

delineate more clearly a role for small Rho GTPase family member Cdc42 in neuronal 

survival and apoptosis. While previous work in healthy cell growth conditions has 

suggested that Cdc42 is not necessary for neuronal survival, as Rac is, to our knowledge 

it has not been ascertained if Cdc42 has a role in survival under cellular duress. Our study 

sought to determine whether or not Cdc42 contributes to neuronal survival under stressful 

growth conditions. 

Previous studies have shown that the knockdown of Cdc42 activity using either 

dominant negative expression mutants, or Clostridium difficile Toxin B does not induce 

cell death under normalized conditions (Le et al. 2005). With this in mind, we aimed to 

determine whether functional inhibition of Cdc42 would further sensitize cells to 

apoptosis after the removal of both depolarizing potassium and growth factor serum with 

the use of 5K- media. We also studied Cdc42 downstream target proteins ACK-1, PAK 
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and N-WASp, in order to resolve the relative contribution of each pathway to the 

maintenance of cellular survival under duress. 

 
 

1.8 Summary of Major Findings 

 

Using our 5K- media stressor, which lacked both depolarizing potassium and 

growth factor serum, we were able to induce significant cell death compared to healthy 

CGNs incubated in 25K+ media. We were also able to decrease the function of Cdc42 

through both pharmacological inhibition and genetic obstruction in order to explore its 

role in neuronal survival in arduous growth conditions. Our results indicate that the broad 

inhibition of Cdc42 under strenuous growth conditions does indeed further sensitize 

neurons to this death induced by 5K- media. Additionally, this study has provided 

evidence that the ACK-1 and PAK pathways are likely more relevant to neuronal survival 

than the N-WASp pathway. Here, we propose that dissimilar to Rac1, Cdc42 is not 

absolutely necessary for neuronal survival, but that it is likely an additional protective 

protein that could possess neuroprotective properties in stressful cellular circumstances. 

Our findings could introduce Cdc42 as a potential therapeutic target in slowing the 

advance of neurodegenerative disease, wherein neurons endure increasing levels of stress 

as the disease progresses. 
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Chapter Two: Materials and Methods 

 

2.1 Reagents 

 

2-(4-Bromo-2-chlorophenoxy)-N-[[[4-[[(4,6-dimethyl-2- 

pyrimidinyl)amino]sulfonyl]phenyl]amino]thioxomethyl]acetamide (ZCL278), 5,6- 

Diphenyl-N-[[(2S)-tetrahydro-2-furanyl]methyl]furo[2,3-d]pyrimidin-4-amine (AIM100), 

6-(2,4-Dichlorophenyl)-8-ethyl-2-[[3-fluoro-4-(1-piperazinyl)phenyl]amino]pyrido[2,3- 

d]pyrimidin-7(8H)-one (FRAX486), 2-[(2,3,4,9-Tetrahydro-6-phenyl-1H-carbazol-1- 

yl)amino]ethanol (Casin), 3,6-Dibromo-α-[(dimethylamino)methyl]-9H-cabazole-9- 

ethanol (Wiskostatin) and 4-[4,5-Dihydro-5-(4-methoxyphenyl)-3-phenyl-1H-pyrazol-1- 

yl]benzenesulfonamide (ML141) were purchased from Tocris Bioscience (Minneapolis, 

MN). N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2- 

methylpyrimidin-4- ylamino)thiazole-5-carboxamide (Dasatinib) was purchased from 

Selleck Chemicals LLC (Houston, TX). Cyclo(Lys-D-Phe-D-Pro-D-Phe-Phe-D-Pro- 

Gln)2 (187-1) was purchased from Calbiochem (San Diego, CA). Basal Medium Eagle’s 

solution, L-glutamine solution, penicillin/streptomycin solution, and fetal bovine serum 

(FBS) were purchased from Invitrogen (Grand Island, NY). A BCA protein assay kit was 

purchased from Thermo Scientific (Rockford, IL). Anti-ACK1 (phospho Y284) primary 

antibody, anti-Cdc42 primary antibody and anti-ACK1 primary antibody were purchased 

from Abcam (Cambridge, MA). Anti-active caspase 3 primary antibody was purchased 

from Promega Corporation (Madison, WI). Anti-β-tubulin primary antibody, Hoechst 
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33258, bovine serum albumin (BSA), p-Phenylenediamine, paraformaldehyde (PFM), 

leupeptin, aprotinin and thiazolyl blue tetrazolium bromide (MTT) were purchased from 

Sigma-Aldrich (St. Louis, MO). Fluorescein isothiocyanate (FITC) and indocarbocyanine 

(Cy3) conjugated secondary antibodies were purchased from Jackson ImmunoResearch 

Laboratories, Inc. (West Grove, PA). Secondary donkey anti-mouse and donkey anti- 

rabbit antibodies conjugated to horseradish peroxidase (HRP) were purchased from Bio- 

Rad Laboratories (Hercules, CA). Polyvinylidene difluoride (PVDF) membranes, ECL 

reagents and a molecular weight standard were purchased from Amersham Biosciences 

(Pittsburg, PA). A GTP-Cdc42 GTPase-linked immunosorbent assay (G-LISA) kit was 

ordered from Cytoskeleton Inc. (Denver, CO). Adenoviral constructs of Cdc42 short- 

hairpin RNA (shRNA) co-expressing green fluorescence protein (GFP), as well as a GFP 

co-expressing scrambled shRNA control adenoviral construct were purchased from 

Vector Biolabs (Malvern, PA). 

2.2 CGN Culture and Treatment 

 

Rat cerebellar granule neurons (CGNs) were isolated and cultured from seven- 

day-old Sprague-Dawley rat pups of both sexes as described previously (Linseman et al., 

2001). CGNs were plated on 35-mm-diameter, six-well plastic dishes coated with poly-L- 

lysine, at a density of 4.0 × 106 cells/well in Basal Medium Eagle’s containing 10% FBS, 

25 mM potassium chloride (KCl), 2 mM L-glutamine, and penicillin-streptomycin (100 

U/mL/100 µg/mL). Cytosine arabinoside (10 µM) was added to culture medium twenty- 

four hours after plating to limit the growth of non-neuronal cells. The CGNs were 

incubated in 10% CO2 at 37℃ in culture medium for 6 to 7 days prior to 
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experimentation. With this protocol, cultures were approximately 95% pure for granule 

neurons. 

CGNs undergoing treatment in “healthy” medium conditions remained in high 

potassium (25 mM KCl) culture medium containing 10% FBS. The medium for CGNs 

undergoing treatment in “stressful” conditions was replaced with serum-free Basal 

Medium Eagle’s containing low-potassium (5 mM KCl). Cells were then treated with 

either a chemical inhibitor to Cdc42 or to one of its downstream effectors in in vitro 

concentrations derived from literature regarding previous experimentation (see 

Results). The in vitro concentrations of each inhibitor used are as follows: 50 µM 

ZCL278, 5 µM Casin, 10 µM ML141, 10 µM Wiskostatin, 10 µM 187-1, 10 µM 

AIM100, 1 µM Dasatinib and 10 µM FRAX486. For all experiments, an untreated 

25K+ control and a 5K- control were used to compare cell death. 

 

2.3 Hoechst Staining and Apoptotic Quantification 

 

CGNs in either 25K+ or 5K- media were treated with chemical inhibitors for 24 

hours as described previously prior to fixation and staining. Subsequently, the media was 

aspirated, CGNs were incubated for approximately 45 minutes at room temperature in 

4% PFM, then washed twice with phosphate-buffered saline (PBS; pH=7.4), and finally 

stained with Hoechst 33258 (1 µg/mL) for visualization of DNA. Prior to imaging, the 

stain was removed, and PBS was added to each well. All cells were imaged using a Zeiss 

Axiovert-200M epifluorescence microscope. 5 DAPI images per well (in duplicate) were 

captured for each experiment to assay apoptosis. Cells were determined to be apoptotic 

based on nuclear condensation and/or fragmentation. 
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2.4 Immunocytochemistry and Microscopic Imaging 

 

CGNs were co-treated in 25K+ or 5K- media for 24 hours as described 

previously, with or without one of the aforementioned chemical inhibitors. The cells were 

then washed once with PBS and fixed in 4% PFM prior to a 1 hour incubation in 

blocking buffer (5% BSA in 0.2% triton-X in PBS) at room temperature. This was 

followed by overnight incubation at 4℃ with either primary antibody against β-tubulin or 

primary antibody against active caspase 3, prepared in a 1:250 dilution and 1:500 dilution 
 

in 2% BSA in 0.2% triton-X in PBS, respectively. The following day, the cells were washed 

5 times with PBS, and secondary antibodies were then applied for 1 hour to each well. 

FITC-conjugated secondary antibody was used for β-tubulin stained cells, and Cy3- 

conjugated secondary antibody was used for active caspase stained cells (both prepared in 

a 1:250 dilution in 2% BSA in 0.2% triton-X in PBS with Hoechst stain at 10 mg/mL). 

CGNs were then washed once more with PBS, and finally placed in p-Phenylenediamine 

solution to prevent photo-bleaching prior to microscopic imaging. All cells were imaged 

using a Zeiss Axiovert-200M epifluorescence microscope, with a minimum of 5 images 

captured per well (in duplicate for each treatment). 

 

2.5 MTT Cell Viability Assay 

 

An MTT assay was used to determine cell viability after treatment with either 

ZCL278 or AIM100 in both 25K+ and 5K- media conditions. CGNs were treated as 

described previously for 12 hours, with or without ZCL278 or AIM100. 12 mM MTT 

reagent was then added directly to each well (100 µL/mL), and the cells were incubated 
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at 37℃ CO2 for 4 hours. After incubation, 4 mL of dimethyl sulfoxide (DMSO) was 

added to each well to solubilize any purple formazan precipitate, and the CGNs were 
 

gently rocked for approximately 1 hour at room temperature until all solid product had 

dissolved. 300 µL samples were then taken from each well after solubilization and re- 

plated (in duplicate) in a 96-well clear-bottom plate for colorimetric detection at 570 nm 

using Gen5 Microplate Reader spectrophotometer software. Absorbance was expressed 

as a percentage of the untreated control.  

 

2.6 Cell Lysis and Protein Assays 

 

Cell lysates were prepared and protein assays were performed prior to both 

Western blotting and the use of a GTPase-linked immunosorbent assay (G-LISA) kit, 

which will be described later on. CGNs were treated with chemical inhibitors in either 

25K+ or 5K- medium as described previously for a period of 12 or 24 hours, depending 

on the following experiment. CGN whole cell lysates were prepared essentially as 

described previously (Loucks et al., 2006). Briefly, after aspiration of the media, cells 

were washed once with ice-cold PBS, and then incubated for 10-15 minutes in lysis 

buffer (Wahl buffer, leupeptin and aprotinin) prior to harvesting and a 2 minute 

centrifugation at 13,000 RPM. The supernatant was then taken and used to determine 

sample protein concentrations. Protein concentrations (µg/µL) were determined using a 

commercially available, colorimetric protein assay kit (BCA) and Gen5 Microplate 

Reader spectrophotometer software detecting at 562 nm. 
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2.7 GTPase-Linked Immunosorbent Assay (G-LISA) 

 

CGNs were treated in triplicate wells with 25K+ or 5K- media for 24 hours 

with either ZCL278, Casin or ML141 (inhibitors to Cdc42) as described previously. 

Whole cell lysates were then prepared, and a protein assay was performed using the 

BCA colorimetric protein assay kit. All CGN lysate concentrations were equalized 

using ice- cold lysis buffer, and then 50 µL of either equalized lysate, buffer blank or 

Cdc42 positive control protein was added to replicate wells of a 96-well plate. The 

plate was then placed on an orbital microplate shaker at 400 RPM at 4℃ for exactly 

15 minutes prior to washing and a 2 minute incubation in antigen presenting buffer 

for at room temperature. Another set of washes was then performed, followed by the 

addition of anti- Cdc42 primary antibody (diluted 1:20 in antibody dilution buffer) 

and a 30 minute shaking period at room temperature. After washing again, secondary 

antibody conjugated to HRP (diluted 1:62.5 in antibody dilution buffer) was added to 

each well of the plate on the orbital microplate shaker at room temperature for 

another 30 minutes. After a final set of washes, an HRP detection reagent mixture 

was added to each well, and the plate was then incubated at 37℃ for 15 minutes 

before adding HRP stop buffer to each well. Sample absorbance was then 

immediately measured at 490 nm using Gen5 Microplate Reader spectrophotometer 

software. 
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2.8 Western Blotting 

 

CGNs were treated in triplicate wells of 25K+ or 5K- media for 12 hours with 

either ZCL278 or AIM100, whole cell lysates were prepared and a protein assay was 

conducted, as described previously. Lysate concentrations were then equalized to the 

same total protein concentration (30 µg) using MilliQ water. 5X Laemmli buffer (SDS, 

glycerol, Tris, beta-mercaptoethanol and bromophenol blue) was then added to each 

sample prior to boiling in water in order to break disulfide bonds. Samples were 

centrifuged for 2 minutes at 13,000 RPM and kept on ice until gel loading. A 7.5% 

polyacrylamide gel was prepared, and each of 10 wells was filled with 1X running buffer 

(SDS, Tris, glycine and MilliQ water). The wells were then loaded with 125 µL of either 

1X Laemmli buffer (to serve as a loading control) or equalized lysate, with one well also 

containing 20 µL of a molecular weight standard. The proteins were then quickly 

separated by electrophoresis for approximately 1 hour at 35 mA, and then more slowly 

overnight at 7.5 mA. The following day, a PVDF membrane was activated with methanol 

and rinsed with 1X transfer buffer (SDS, Tris, glycine, MilliQ water and methanol) prior 

to preparing the transfer stack. The proteins were then transferred to the PVDF membrane 

for approximately 1.5 hours before disassembling the stack and discarding the 

polyacrylamide gel. The membrane was then placed in blocking buffer (BSA, sodium 

azide and PBS-T) for 1 hour at room temperature to prevent nonspecific binding, after 

which a primary antibody against ACK1 (phospho Y284) was diluted 1:1000 in blocking 

buffer, and applied to the membrane to be incubated at 4℃ overnight. After removal of 

the primary antibody, the membrane was washed 3 times (15 minutes each) in phosphate- 
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buffered saline with Tween 20 (PBS-T), and a secondary antibody conjugated to HRP 

(rabbit, polyclonal) was diluted 1:5000 in PBS-T. The membrane was shaken in 

secondary antibody for approximately 2 hours, and another set of 3 PBS-T washes was 

performed. The membrane was then soaked in ECL reagent on a shaker at room 

temperature for approximately 10 minutes for luminol based detection. Hyperfilm was 

then exposed to the membrane for approximately 30 seconds, and the film was developed 

using a film processor. 

 

2.9 Adenoviral shRNA Infection and Immunocytochemistry 

 

CGNs were infected for 72 hours at a multiplicity of infection (MOI) of 1000 

(400 x 107 viral particles/well) with either scrambled or Cdc42-targeted adenoviral 

shRNA. The virus also co-expressed green fluorescence protein (GFP), which was used 

to gauge the amount of cellular infection. After 48 hours of infection in 25K+ plating 

medium, there was a 5K- medium exchange in half of the plates treated. 24 hours later, 

the CGNs were fixed to the plate using 4% PFM, washed twice with PBS, and incubated 

in blocking buffer (triton-X and 5% BSA in PBS) for 1 hour. Afterwards, primary 

antibody against Cdc42 (diluted 1:200 in blocking buffer) was applied to the plates for 

overnight incubation at 4℃. The following day, the CGNs were washed 3 times with 

PBS, and a secondary antibody conjugated to Cy3 (diluted 1:250 in PBS) was applied to 
 

each well for approximately 2 hours at 4℃. After removal of the secondary antibody, the 

wells were washed 3 more times with PBS and placed in p-Phenylenediamine solution to 

prevent photo-bleaching prior to microscopic imaging. All cells were imaged using a 
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Zeiss Axiovert-200M epifluorescence microscope, with a minimum of 15 images 

captured per well (in duplicate for each treatment). 

 

2.10 Data Analysis 

 

Each experiment was performed either in duplicate or triplicate wells per 

treatment. Cell treatment and apoptotic quantification data were analyzed using a one- 

way analysis of variance (ANOVA) with a post hoc Tukey’s test. MTT assay and 

adenoviral shRNA infection and apoptotic quantification data were analyzed using an 

unpaired t-test. A p-value <0.05 was considered statistically significant. Data represent 

the means ∓ standard error of the mean (SEM) for the total number (n) of experiments 

performed. G-LISA data were analyzed as the mean ∓ the range of 2 sample wells
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Chapter Three: Results 

 

3.1 Cdc42 Inhibitors ZCL278, Casin and ML141, and Their Distinct Mechanisms of 

Action 

Three pharmacologically distinct Cdc42 specific inhibitors, ZCL278, Casin and 

ML141, were chosen based on dissimilarities in their molecular structures (Figure 8). 

Experimentally used in vitro concentrations were derived from literature detailing 

preceding studies. ZCL278 directly targets the binding site for Cdc42 GEF intersectin, as 

well as GTP/GDP binding to inhibit Cdc42. At a concentration of 50 µM in vitro, 

ZCL278 was able to disrupt various Cdc42 directed activities (i.e.,microspike formation, 

neuronal branching, etc.) in both metastatic prostate PC-3 cancer cells and Swiss 3T3 

fibroblasts (Friesland et al. 2013). Casin specifically inhibits PIP2-dependent actin 

assembly (Peterson et al. 2006), and was found to reduce the amount of active Cdc42 in 

aged hematopoietic stem cells at a concentration of 5 µM in vitro (Florian et al. 2012). 

ML141 is a Cdc42 specific inhibitor with low affinity for other Rho GTPase family 

members (Surviladze et al. 2010). It was shown to inhibit the migratory phenotype of 

ovarian carcinoma cell lines OVCA429 and SKOV3ip, often attributed to Cdc42 

activation, in a Boyden chamber assay at a concentration of 10 µM in vitro (Hong et al. 
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2013, Ip et al. 2011). Based on these studies, we chose to use the following in vitro 

 

concentrations of each inhibitor: 50 µM ZCL278, 5 µM Casin and 10 µM ML141. 
 

 

 

 

 

 

 
 

Figure 8: Distinct molecular structures of Cdc42 pharmacological inhibitors 

ZCL278, Casin, and ML141. 



42  

 

3.2 Chemical Inhibition of Cdc42 Sensitizes CGNs to Cell Death under Stress 

 

CGNs were treated for 24 hours with one of the three aforementioned Cdc42 

inhibitors in either 25K+ or 5K- media, and then microscopically inspected for nuclear 

condensation, nuclear fragmentation, and for the disruption of tubulin networking to 

detect apoptotic changes. By this method, it was determined that inhibition of Cdc42 

activity did not significantly increase apoptosis in healthy growth medium (25K+), but 

did cause a substantial sensitization to apoptotic cell death upon removal of depolarizing 

potassium and growth factor serum (5K-). In all 25K+ treatment conditions, irrespective 

of inhibitor addition, apoptosis remained between 5-12%. A 5K- media exchange alone 

caused a significant increase in apoptosis to approximately 45-50%. Addition of Cdc42 

inhibitors consistently induced an even larger increase in apoptotic cell death than in the 

5K- stressful media alone. 

Apoptosis in 5K- conditions increased to ~80% with the addition of ZCL278 

(Figure 9), ~85% with Casin (Figure 10), and ~60% with ML141 (Figure 11). Panel A in 

Figures 9 and 10 depicts a negligible difference in microtubule networking amongst the 

cells in 25K+ media regardless of the presence of an inhibitor, and the sharp increase in 

damage that occurs with a 5K- media exchange accompanied by the addition of either 

ZCL278 or Casin. Figure 11 panel A also shows intact cellular processes, but there is no 

β-tubulin staining. Panel B in all 3 figures shows the changes in nuclear morphology with 

the addition of an inhibitor, with increasing nuclear condensation visible in the 5K- media 
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conditions. These results are quantitatively represented in panel C of each figure, and 

collectively considered with the differences in chemical structure between each inhibitor, 

suggest that Cdc42 likely does contribute to neuronal survival under cellular duress. 
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Figure 9: Apoptotic sensitization of CGNs treated with Cdc42 specific inhibitor 

ZCL278. A. Representative immunocytochemistry micrographs showing CGNs with or 

without ZCL278 treatment. Leftmost panels show ZCL278 treatment in 25K+ conditions. 

Rightmost panels show ZCL278 treatment in 5K- conditions. Green indicates β-tubulin. 

Blue indicates Hoechst staining. B. Representative DAPI micrographs of CGNs with or 

without ZCL278 treatment, showing decolorized Hoechst fluorescence to visualize 

nuclear morphology. Leftmost panels show ZCL278 treatment in 25K+ conditions. 

Rightmost panels show ZCL278 treatment in 5K- conditions. Images show 8 different 

fields. Scale = 10 µm C. Quantitative assessment of cellular apoptosis in CGNs treated 

with ZCL278 in both 25K+ and 5K- media conditions. Cells were counted and scored as 

apoptotic based on nuclear condensation and/or fragmentation, and a percentage for this 

group of cells was calculated. Apoptosis in the 25K+ control and 25K + ZCL278 

conditions was approximately 5-10%. Apoptosis in the 5K- control increased to ~50%, 

and further increased in the 5K + ZCL278 condition to ~80%. Data were analyzed using 

one-way ANOVA and Tukey’s post-hoc test. *** indicates p<0.001 compared to an 

untreated, 25K+ control. ### indicates p<0.001 compared to 5K- insult alone. Data are 

represented as the mean ± SEM, n=8. 



 

 

 
 

Figure 10: Apoptotic sensitization of CGNs treated with Cdc42 specific inhibitor 

Casin. A. Representative immunocytochemistry micrographs showing CGNs with or 

without Casin treatment. Leftmost panels show Casin treatment in 25K+ conditions. 

Rightmost panels show Casin treatment in 5K- conditions. Green indicates β-tubulin. 

Blue indicates Hoechst staining. B. Representative DAPI micrographs of CGNs with or 

without Casin treatment, showing decolorized Hoechst fluorescence to visualize nuclear 

morphology. Leftmost panels show Casin treatment in 25K+ conditions. Rightmost 

panels show Casin treatment in 5K- conditions. Images show 8 different fields. Scale = 

10 µm C. Quantitative assessment of cellular apoptosis in CGNs treated with Casin in 

both 25K+ and 5K- media conditions. Cells were counted and scored as apoptotic based 

on nuclear condensation and/or fragmentation, and a percentage for this group of cells 

was calculated. Apoptosis in the 25K+ control and 25K + Casin conditions was 

approximately 7-14%. Apoptosis in the 5K- control increased to ~50%, and further 

increased in the 5K + Casin condition to ~85%. Data were analyzed using one-way 

ANOVA and Tukey’s post-hoc test. *** indicates p<0.001 compared to an untreated, 

25K+ control. ## indicates p<0.01 compared to 5K- insult alone. Data are represented as 

the mean ± SEM, n=4. 
 

45 
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Figure 11: Apoptotic sensitization of CGNs treated with Cdc42 specific inhibitor 

ML141. A. Representative brightfield micrographs showing CGNs with or without 

ML141 treatment. Leftmost panels show ML141 treatment in 25K+ conditions. 

Rightmost panels show ML141 treatment in 5K- conditions. B. Representative DAPI 

micrographs of CGNs with or without ML141 treatment, showing decolorized Hoechst 

fluorescence to visualize nuclear morphology. Leftmost panels show ML141 treatment in 

25K+ conditions. Rightmost panels show ML141 treatment in 5K- conditions. Images 

show 8 different fields. Scale = 10 µm. C. Quantitative assessment of cellular apoptosis 

in CGNs treated with ML141 in both 25K+ and 5K- media conditions. Cells were 

counted and scored as apoptotic based on nuclear condensation and/or fragmentation, and 

a percentage for this group of cells was calculated. Apoptosis in the 25K+ control and 

25K+ ML141 conditions was approximately 8-11%. Apoptosis in the 5K- control 

increased to ~45%, and further increased in the 5K + ML141 condition to ~60%. Data 

were analyzed using one-way ANOVA and Tukey’s post-hoc test. *** indicates p<0.001 

compared to an untreated, 25K+ control. ## indicates p<0.01 compared to 5K- insult 

alone. Data are represented as the mean ± SEM, n=11. 
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3.3 ACK-1 Inhibitors AIM100 and Dasatinib, and their Distinct Mechanisms of 

Action 

Two pharmacologically distinct ACK-1 specific inhibitors, AIM100 and 

Dasatinib, were chosen based on dissimilarities in their molecular structures (Figure 12). 

Experimentally used in vitro concentrations were derived from prior studies. X-ray 

crystallography and high-throughput screening studies characterized the ATP-mimicking 

ability, and thus ATP-site binding, of AIM100 through which it inhibits ACK-1 

(DiMauro et al. 2007). AIM100 has been shown to propagate apoptosis in pancreatic 

cancer cell line Panc-1 at an in vitro concentration of 10 µM (Mahajan et al. 2012). 

AIM100 was also found to cause cell growth suppression in two human prostate cancer 

cell lines (LNCaP and LAPC4) via an increase in the quiescent G0/G1 cell phase 

(Mahajan et al. 2010). Dasatinib, also sold under the commercially available brand name 

Sprycel as an oral treatment for patients suffering from chronic myelogenous leukemia 

(CML), was first noted as an inhibitor of kinases such as Src and Abl (Lombardo et al. 

2004). A previous chemical proteomics study in lung cancer cells demonstrated how 

Dasatinib inhibits ACK-1 kinase activity by decreasing four of its major sites of 

autophosphorylation (Tyr284, Tyr518, Tyr857 and Tyr858) (Li et al. 2010). Dasatinib 

was also able to decrease growth in two human malignant melanoma cell lines (HT144 

and Malme-3M) at an in vitro concentration of 1 µM (Eustace et al. 2008). Based on 

these previous studies, we chose to use the following in vitro concentrations of each 

inhibitor: 10 µM AIM100 and 1 µM Dasatinib. 
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Figure 12: Distinct molecular structures of ACK-1 pharmacological Inhibitors 

AIM100 and Dasatinib. 
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3.4 Chemical Inhibition of Downstream Effector ACK-1 Sensitizes CGNs to Cell 

Death under Stress 

CGNs were treated for 24 hours with one of the two aforementioned ACK-1 

specific inhibitors in either 25K+ or 5K- media, and then microscopically inspected for 

nuclear condensation, nuclear fragmentation, and for the disruption of tubulin networking 

to detect apoptotic changes. ACK-1 inhibition did not significantly increase apoptosis in 

healthy growth medium (25K+), but did cause a substantial sensitization to apoptotic cell 

death upon removal of depolarizing potassium and growth factor serum (5K-). In all 

25K+ treatment conditions, irrespective of inhibitor addition, apoptosis remained 

between 7-12%. In all 5K- conditions without inhibitor treatment, apoptosis significantly 

increased to 50-60%. Inhibition of ACK-1 increased apoptotic cell death even further 

than in the 5K- stressful media alone. 

Cell death in 5K- conditions treated with AIM100 (Figure 13) was ~90% and with 

Dasatinib (Figure 14) was ~80%. Figure 13 panel A shows the increase in damage to the 

tubulin network with the addition of AIM100 in 5K- media, and panel A in Figure 14 

shows the changes in cellular processes in all treatment groups, without β-tubulin 

staining. Panel B in both figures depicts the increase in number of condensed/fragmented 

nuclei with both a 5K- media exchange, and further with the addition of either inhibitor. 

These results are quantitatively represented in panel C of each figure. Given the 

differences in chemical structure between each inhibitor, our results advocate an 

importance of the Cdc42-ACK-1 pathway in neuronal survival under cellular duress. 
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Figure 13: Apoptotic sensitization of CGNs treated with ACK-1 specific inhibitor 

AIM100. A. Representative immunocytochemistry micrographs showing CGNs with or 

without AIM100 treatment. Leftmost panels show AIM100 treatment in 25K+ 

conditions. Rightmost panels show AIM100 treatment in 5K- conditions. Green indicates 

β-tubulin. Blue indicates Hoechst staining. B. Representative DAPI micrographs of 

CGNs with or without AIM100 treatment, showing decolorized Hoechst fluorescence to 

visualize nuclear morphology. Leftmost panels show AIM100 treatment in 25K+ 

conditions. Rightmost panels show AIM100 treatment in 5K- conditions. Images show 8 

different fields. Scale = 10 µm C. Quantitative assessment of cellular apoptosis in CGNs 

treated with AIM100 in both 25K+ and 5K- media conditions. Cells were counted and 

scored as apoptotic based on nuclear condensation and/or fragmentation, and a 

percentage for this group of cells was calculated. Apoptosis in the 25K+ control and 25K 

+ AIM100 conditions was approximately 7-12%. Apoptosis in the 5K- control increased 

to ~60%, and further increased in the 5K + AIM100 condition to ~90%. Data were 

analyzed using one-way ANOVA and Tukey’s post-hoc test. *** indicates p<0.001 

compared to an untreated, 25K+ control. ### indicates p<0.001 compared to 5K- insult 

alone. Data are represented as the mean ± SEM, n=5. 
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Figure 14: Apoptotic sensitization of CGNs treated with ACK-1 specific inhibitor 

Dasatinib. A. Representative brightfield micrographs showing CGNs with or without 

Dasatinib treatment. Leftmost panels show Dasatinib treatment in 25K+ conditions. 

Rightmost panels show Dasatinib treatment in 5K- conditions. B. Representative DAPI 

micrographs of CGNs with or without Dasatinib treatment, showing decolorized Hoechst 

fluorescence to visualize nuclear morphology. Leftmost panels show Dasatinib treatment 

in 25K+ conditions. Rightmost panels show Dasatinib treatment in 5K- conditions. 

Images show 8 different fields. Scale = 10 µm C. Quantitative assessment of cellular 

apoptosis in CGNs treated with Dasatinib in both 25K+ and 5K- media conditions. Cells 

were counted and scored as apoptotic based on nuclear condensation and/or 

fragmentation, and a percentage for this group of cells was calculated. Apoptosis in the 

25K+ control and 25K + Dasatinib conditions was approximately 8-10%. Apoptosis in 

the 5K- control increased to ~50%, and further increased in the 5K + Dasatinib condition 

to ~80%. Data were analyzed using one-way ANOVA and Tukey’s post-hoc test. *** 

indicates p<0.001 compared to an untreated, 25K+ control. ### indicates p<0.001 

compared to 5K- insult alone. Data are represented as the mean ± SEM, n=6. 
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3.5 PAK Inhibitor FRAX486 and its Mechanism of Action 

 

The chemical inhibitor specific to Cdc42 downstream effector PAK chosen was 

FRAX486 (Figure 15), and an experimental in vitro concentration was determined from 

prior studies. FRAX486 was seen to inhibit Group I PAKs (PAKs 1-3) in an in vitro 

kinase assay (Dolan et al. 2013). It was also able to cause actin filament degeneration in a 

concentration dependent manner (1-10 µM) in human prostatic stromal myofibroblast 

cell line WPMY-1 (Wang et al. 2016). As PAK is a common protein target of both Cdc42 

and Rac GTPases, there have been many FRAX486 studies conducted to delineate its 

effects in Rac pathways. For example, one schizophrenia study found that the blocking of 

PAK by FRAX486 actually prevents dendritic spine destruction caused by overactive 

Rac1 and downregulated DISC1, which is a gene that helps regulate cerebral cortex 

neurons (Hayashi-Takagi et al. 2014). Based on these previous studies, we chose to use 

an in vitro concentration of 10 µM FRAX486. 

 

 
Figure 15: Molecular structure of PAK pharmacological inhibitor FRAX486. 
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3.6 Chemical Inhibition of Downstream Effector PAK Sensitizes CGNs to Cell 

Death under Stress 

CGNs were treated for 24 hours with FRAX486 in either 25K+ or 5K- media, and 

then microscopically inspected for nuclear condensation, nuclear fragmentation, and for 

the disruption of tubulin networking to detect apoptotic changes. PAK inhibition did not 

significantly increase apoptosis in healthy growth medium (25K+), but did cause a 

substantial sensitization to apoptotic cell death upon removal of depolarizing potassium 

and growth factor serum (5K-). In all 25K+ treatment conditions, irrespective of inhibitor 

addition, apoptosis remained between 5-10%. In all 5K- conditions without inhibitor 

treatment, apoptosis significantly increased to 40%. Inhibition of PAK increased 

apoptotic cell death even further than in the 5K- stressful media alone. 

PAK specific chemical inhibitor FRAX486 induced apoptosis at ~80% in the 5K- 

media (Figure 16). In this figure, panel A shows the negligible difference in microtubule 

networking amongst the cells incubated in 25K+ media, regardless of PAK inhibition, 

and the harsh destruction of it after a 5K- media exchange and FRAX486 treatment. 

Panel B depicts the increase in cell death seen with a 5K- media exchange alone, and 

even further with the addition of FRAX486 based on the number of condensed or 

fragmented nuclei. These results are quantitatively represented in panel C, and suggest a 

role for the Cdc42-PAK pathway in neuronal survival. However, it is important to note 

that PAK is also a downstream target of Rac, which has well defined roles as a pro- 

survival protein in neurons. Therefore these results were somewhat expected, and this 

pathway was not explored as extensively. 
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Figure 16: Apoptotic sensitization of CGNs treated with PAK specific inhibitor 

FRAX486. A. Representative immunocytochemistry micrographs showing CGNs with or 

without FRAX486 treatment. Leftmost panels show FRAX486 treatment in 25K+ 

conditions. Rightmost panels show FRAX486 treatment in 5K- conditions. Green 

indicates β-tubulin. Blue indicates Hoechst staining. B. Representative DAPI 

micrographs of CGNs with or without FRAX486 treatment, showing decolorized 

Hoechst fluorescence to visualize nuclear morphology. Leftmost panels show FRAX486 

treatment in 25K+ conditions. Rightmost panels show FRAX486 treatment in 5K- 

conditions. Images show 8 different fields. Scale = 10 µm C. Quantitative assessment of 

cellular apoptosis in CGNs treated with FRAX486 in both 25K+ and 5K- media 

conditions. Cells were counted and scored as apoptotic based on nuclear condensation 

and/or fragmentation, and a percentage for this group of cells was calculated. Apoptosis 

in the 25K+ control and 25K + FRAX486 conditions was approximately 5-10%. 

Apoptosis in the 5K- control increased to ~40%, and further increased in the 5K + 

FRAX486 condition to ~80%. Data were analyzed using one-way ANOVA and Tukey’s 

post-hoc test. *** indicates p<0.001 compared to an untreated, 25K+ control. ### 

indicates p<0.001 compared to 5K- insult alone. Data are represented as the mean ± 

SEM, n=7. 
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3.7 N-WASp Inhibitors 187-1 and Wiskostatin, and their Distinct Mechanisms of 

Action 

Two pharmacologically distinct N-WASp specific inhibitors, 187-1 and 

Wiskostatin, were chosen based on dissimilarities in their molecular structures (Figure 

17). Experimentally used in vitro concentrations were determined from prior studies. 

187-1 is a 14-amino acid cyclic peptide that maintains N-WASp in its autoinhibited 

conformation, and was found to reduce cellular migration and invasion in patients with 

rheumatoid arthritis (Connolly et al. 2011, Biro et al. 2014). It was also able to inhibit 

PIP2-induced actin assembly at in vitro concentrations lower than 10 µM (Peterson et al. 

2001, Hofmann et al. 2000). Wiskostatin binds the GBD of N-WASp, stabilizing it in its 

autoinhibited conformation. Consequently, the C-terminal VCA domain can no longer 

bind monomeric actin or the Arp2/3 complex, thus blocking initiation of new actin 

filament formation (Peterson et al. 2004, Guerriero and Weisz, 2007). In one study of 

hippocampal neurons, both RNA interference (RNAi) and the use of Wiskostatin caused 

a similar reduction in dendritic spine density and in the number of excitatory synapses 

(Wegner et al. 2008). Another study of two lung cancer cell lines (A-549 and SK-MES-1) 

demonstrated how Wiskostatin treatment decreased their invasive capacity, as well as the 

overall amount of paxillin rich adhesions in each cell type (Frugtniet et al 2017). At a 

concentration of 10 µM in vitro, Wiskostatin was found to block formation of dorsal 

ruffles in mouse embryonic fibroblasts (MEFs) (Legg et al. 2007). Based on these 
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previous studies, we chose to use an in vitro concentration of 10 µM for both 187-1 and 

Wiskostatin. 

 

 

 

 
 

Figure 17: Distinct molecular structures of N-WASp pharmacological Inhibitors 

187-1 and Wiskostatin.
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3.8 Chemical Inhibition of Downstream Effector N-WASp Does Not Sensitize CGNs 

to Cell Death under Stress 

CGNs were treated for 24 hours with one of the two aforementioned N-WASp 

chemical inhibitors in either 25K+ or 5K- media, and then microscopically inspected for 

nuclear condensation, nuclear fragmentation, and for the disruption of tubulin networking 

to detect apoptotic changes. N-WASp inhibition did not significantly increase apoptosis 

in either 25K+ or 5K- conditions. In all 25K+ treatment conditions, irrespective of 

inhibitor addition, apoptosis remained between 7-12%. In all 5K- conditions without 

inhibitor treatment, apoptosis significantly increased to 45-50%. Addition of either 187-1 

(Figure 18) or Wiskostatin (Figure 19) only increased cell death to ~50% and ~60%, 

respectively. Although slight changes in nuclear morphology and neuronal processes 

were noted, the overall increase in apoptosis was not considered statistically significant, 

as quantitatively represented in panel C of both figures. These results suggest that, 

dissimilar to the other Cdc42 downstream target proteins, N-WASp likely does not play a 

substantial role in neuronal survival. 
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Figure 18: Apoptotic quantification of CGNs treated with N-WASp specific 

inhibitor 187-1. A. Representative brightfield micrographs showing CGNs with or 

without 187-1 treatment. Leftmost panels show 187-1 treatment in 25K+ conditions. 

Rightmost panels show 187-1 treatment in 5K- conditions. B. Representative DAPI 

micrographs of CGNs with or without 187-1 treatment, showing decolorized Hoechst 

fluorescence to visualize nuclear morphology. Leftmost panels show 187-1 treatment in 

25K+ conditions. Rightmost panels show 187-1 treatment in 5K- conditions. Images 

show 8 different fields. Scale = 10 µm C. Quantitative assessment of cellular apoptosis in 

CGNs treated with 187-1 in both 25K+ and 5K- media conditions. Cells were counted 

and scored as apoptotic based on nuclear condensation and/or fragmentation, and a 

percentage for this group of cells was calculated. Apoptosis in the 25K+ control and 25K 

+ 187-1 conditions was approximately 8-12%. Apoptosis in the 5K- control increased to 

~45%, and only slightly increased in the 5K + 187-1 condition to ~50%. Data were 

analyzed using one-way ANOVA and Tukey’s post-hoc test. *** indicates p<0.001 

compared to an untreated, 25K+ control. Data are represented as the mean ± SEM, n=4. 
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Figure 19: Apoptotic quantification of CGNs treated with N-WASp specific 

inhibitor Wiskostatin. A. Representative immunocytochemistry micrographs showing 

CGNs with or without Wiskostatin treatment. Leftmost panels show Wiskostatin 

treatment in 25K+ conditions. Rightmost panels show Wiskostatin treatment in 5K- 

conditions. Green indicates β-tubulin. Blue indicates Hoechst staining. B. Representative 

DAPI micrographs of CGNs with or without Wiskostatin treatment, showing decolorized 

Hoechst fluorescence to visualize nuclear morphology. Leftmost panels show 

Wiskostatin treatment in 25K+ conditions. Rightmost panels show Wiskostatin treatment 

in 5K- conditions. Images show 8 different fields. Scale = 10 µm C. Quantitative 

assessment of cellular apoptosis in CGNs treated with Wiskostatin in both 25K+ and 5K- 

media conditions. Cells were counted and scored as apoptotic based on nuclear 

condensation and/or fragmentation, and a percentage for this group of cells was 

calculated. Apoptosis in the 25K+ control and 25K + Wiskostatin conditions was 

approximately 7-8%. Apoptosis in the 5K- control increased to ~50%, and only slightly 

increased in the 5K + Wiskostatin condition to ~60%. Data were analyzed using one-way 

ANOVA and Tukey’s post-hoc test. *** indicates p<0.001 compared to an untreated, 

25K+ control. Data are represented as the mean ± SEM, n=6.
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3.9 The Efficacy of Cdc42 Inhibitors ZCL278, Casin and ML141, and ACK-1 

Inhibitor AIM100 

Although microscopic imaging and analyses were performed to assess inhibitor 

function, we wanted to confirm the efficacy of our chemical inhibitors using other 

experimental methods. An enzyme-linked immunosorbent assays (ELISA) is a 

colorimetric assay that can be used to detect the amount of a specific protein within a 

sample, by utilizing antibody binding and substrate activity to assess that protein’s 

activity. A GTPase-linked immunosorbent assay (G-LISA) was performed to determine 

the efficacy of inhibitors ZCL278, Casin and ML141 in decreasing the amount of active 

(GTP-bound) Cdc42 in CGN samples. 24-hour treatment with the inhibitors decreased 

GTP-Cdc42 in samples that were incubated in 5K- media. There was no apparent 

difference in the amount of active Cdc42 between the 25K+ and 5K- control samples, 

indicating that the inhibitors were responsible for the decrease in active Cdc42. 
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Figure 20: Detection of active Cdc42 after chemical inhibition. Representative G- 
LISA data of CGNs treated with Cdc42 specific inhibitors ZCL278, Casin and ML141 

for 24 hours in either 25K+ or 5K- media. Data are represented as the mean ∓  the 

range of duplicate samples from a single experiment. 

 
 

In an attempt to conserve both time and experimental materials, we chose to focus 

on two specific inhibitors. ZCL278 and AIM100 were chosen as representative inhibitors 

based on their ability to consistently block Cdc42 and ACK-1 function, respectively. 

Also, ACK-1 was a pathway of intense focus because it is solely a target of Cdc42 

GTPase, and has been implicated in cell survival (see Introduction). As mentioned 

previously, ACK-1 is a non-receptor tyrosine kinase, and thus functions to phosphorylate 

both itself and other substrates. Therefore, we chose to conduct a Western blot for 

phosphorylated and total ACK-1 after a 12 hour incubation with ZCL278 and AIM100 in 

order to observe their inhibitory capacity. Western blots utilize several different qualities 

of proteins (i.e., size, antibody-binding, charge), and can be used to determine if a 
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particular sample contains a protein of interest. Figure 21 shows that the amount of 

phosphorylated ACK-1 decreased in the 5K- samples treated with both ZCL278 and 

AIM100. The amount of total ACK-1, however, did not change between each treatment, 

indicating that each well was loaded with the same amount of total protein. These results 

also suggest that the chemical obstruction of Cdc42 or, more directly of ACK-1 itself, is 

accomplished by decreasing the phosphorylation (activation) of ACK-1, rather than 

causing its degradation or loss. 

 
 

Figure 21: Detection of phosphorylated and total ACK-1 protein after chemical 

inhibition. Representative Western blot for detection of both phosphorylated ACK-1 

(phospho Y284) and total ACK-1 (to serve as a loading control) after 12 hours of 

treatment with either ZCL278 or AIM100. Note the apparent decrease in band density in 

p-ACK-1 for the 5K- media conditions treated with either inhibitor. 
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3.10 Confirmation of Cell Death as a Measure of Metabolic Function and Release of 

Active Caspase-3 

Changes in nuclear morphology are an indicator of apoptotic cell death, however 

they are not alone sufficient to say that death is indisputable. To confirm that CGNs were 

actually dying in the presence of chemical inhibitors ZCL278 and AIM100 both MTT 

assays and active caspase-3 staining were performed. An MTT tetrazolium reduction 

assay measures cell viability as a function of metabolic activity and mitochondrial 

function. When MTT reagent is added to a culture sample, it is initially yellow in color, 

and mitochondrial enzymes in living cells will convert the MTT to a purple formazan 

product (Riss et al. 2015). In the absence of living cells, MTT reagent will remain yellow, 

indicating that cell death has occurred. Mitochondrial function is also pertinent to 

apoptotic pathway induction, as its release of cytochrome C into the cytosol is what 

drives the activation of caspase cascades. Caspase-3, also known as the executioner 

caspase, is what triggers cell death in both intrinsic and extrinsic apoptosis, and thus its 

activation is a clear indicator that cell death is transpiring (Bressenot et al. 2009). 

To perform an MTT assay, we treated CGNs with either ZCL278 or AIM100 for 

approximately 12 hours prior to a 4 hour incubation period with MTT reagent. 

Afterwards, changes in absorbance were detected at 570 nm and expressed as a 

percentage of an untreated 25K+ control (Figure 22). Figure 22A shows the conversion of 

MTT to purple formazan product in all 25K+ conditions, but a decrease in color change 

in the 5K- samples, with virtually no change apparent in either 5K- + ZCL278 or 5K- + 

AIM100.  Figures 22B and 22C quantitatively show that while there was a significant 
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reduction in cell viability with a 5K- media exchange alone (~40% viability), both 

ZCL278 and AIM100 decreased cell viability further to below 10%. This indicates that 

the 5K- media alone could successfully induce significant cell death, and inhibition of 

Cdc42 or ACK-1 using ZCL278 and AIM100, respectively, substantially sensitized the 

CGNs further to apoptosis. 
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Figure 22: Assessment of cell viability as a function of mitochondrial function in 

CGNs treated with ZCL278 and AIM100. Quantification of cell viability as a measure 

of mitochondrial function in cells treated with chemical inhibitors. A, Representative 

MTT assay image of CGNs in either 25K+ or 5K- media that have been treated with 

ZCL278 or AIM100. Note the purple color in 25K+ conditions, and yellow color in 5K- 

conditions. B-C, Quantification of cell viability as a function of MTT assay data. The 

difference in viability between the 25K+ control (~100%) and 25K+ ZCL278 (~80%) or 

25K+ AIM100 (~85) treated cells was not significant. The difference in cell viability 

between the 5K- control (~40%) and 5K- with ZCL278 (~8%) or AIM100 (~2%) treated 

cells was statistically significant. Data was analyzed using an unpaired t-test. ** indicates 

p<0.01 compared to the 5K- insult alone, n=5. 



66  

 

For immunocytochemistry detection of active caspase-3, CGNs were treated for 

24 hours with either ZCL278 or AIM100 prior to staining for active caspase-3 (Figure 

23). Panels A and B illustrate the caspase activation that occurred due to a 5K- media 

alone, and that there was no caspase activity observed in the 25K+ conditions. With the 

addition of either ZCL278 (Figure 23C and 23D) or AIM100 (Figure 23E and 23F), 

caspase activation is also more prominent in the 5K- media than in the 25K+ media 

conditions. White arrows indicate the presence of active caspase-3. These results 

collectively suggest that cell death is evident in the 5K- media conditions, and can be 

further propagated by inhibiting Cdc42 and ACK-1. 
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Figure 23: Active-caspase 3 release in CGNs treated with ZCL278 and AIM100. A. 

Representative micrograph of untreated, 25K+ control sample CGNs. B. Representative 

micrograph of 5K- insult alone control sample CGNs. C. Representative micrograph of 

caspase activation in 25K+ZCL278 treated CGNs. D. Representative micrograph of 

caspase activation in 5K- sample CGNs treated with ZCL278. E. Representative 

micrograph of caspase activation in 25K+AIM100 treated CGNs. F. Representative 

micrograph of caspase activation in 5K- sample CGNs treated with AIM100. Blue 

fluorescence indicates chromatin, red fluorescence indicates caspase-3 activation. Images 

show 6 separate fields. Scale = 10 µm. White arrows indicate apoptotic cells releasing 

caspase-3. 
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3.11 Genetic Obstruction of Cdc42 Function Propagates Cell Death under Duress 

 

Chemical Inhibition is a useful preliminary tool for defining the function of a 

gene or protein, but more molecular approaches must be conducted for conclusive 

evidence. RNA interference methods are often used to silence the expression of certain 

genes, and thus limit the expression of certain proteins to delineate their function. Short- 

hairpin RNA (shRNA) is an RNA interference technique wherein a small, double- 

stranded RNA molecule is delivered into a cell nucleus and binds its complimentary 

target mRNA sequence to cause its degradation or functional inactivation (O’Keefe, 

2013). Delivery of shRNA to the cell nucleus can be accomplished with the use of 

bacterial or viral expression vectors, and once inside the nucleus, shRNA will integrate 

into the cellular genome and terminate target gene expression through induction of 

endogenous RNA-induced silencing complex (RISC) and endonucleases (Taxman et al. 

2010). To serve as a control, the target shRNA nucleotide sequence will also be 

“scrambled”, or randomly rearranged so that it does not bind the target mRNA, and thus 

will not silence genetic function in the gene of interest. 

In order to definitively determine the role of Cdc42 in neuronal survival under 

stress, we infected CGNs with an adenoviral expression vector of Cdc42 targeting 

shRNA. This viral construct also co-expressed green fluorescence protein (GFP), which 

enabled us to determine whether adequate cellular infection was achieved. CGNs were 

incubated with the adenovirus at a multiplicity of infection (MOI) of 1000 (400 x 107 

viral particles/well) in 25K+ culture media for an initial 48 hour time period, before 

performing a 5K- media exchange. After 24 hours of 5K- media exposure (72 hours total 
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viral infection), the CGNs were fixed and stained for the presence of Cdc42, and 

quantified for apoptosis. Figure 24 shows the efficacy of adenoviral infection after 48 

hours (the time point at which the 5K- media stressor was introduced), and Figure 25 

shows the percentage of GFP-expressing, virally infected cells that were quantified In 

both scrambled and target shRNA infected cell groups. Note the white arrows, which 

indicate cells that were infected with either scrambled or target Cdc42 shRNA. 
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Figure 24: Immunocytochemistry for Cdc42 after 48 hour adenoviral 

infection. Representative micrographs of CGNs in 25K+ media after a 48 hour infection 

period with adenoviral shRNA constructs co-expressing GFP. From left to right, panels 

show virally infected cells (DAPI/GFP), Cdc42 content within cells (DAPI/Cdc42), and a 

merge of both images. Blue fluorescence indicates nuclei. Green fluorescence indicates 

positive GFP expression and viral infection. Red fluorescence indicates Cdc42. White 

arrows indicate virally infected cells. A-B. CGNs infected with scrambled (scrm) shRNA. 

C-D. CGNs infected with target Cdc42 shRNA. Note the lack of red fluorescence in 

GFP-expressing cells. Scale = 10 µm. 
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Figure 25: Quantification of GFP-positive CGNs after 72-hour adenoviral infection. 

Quantitative assessment of CGNs infected with GFP co-expressing, adenoviral constructs 

of either scrambled (SCRM) or Cdc42 target (TAR) shRNA. Approximately 200 GFP- 

expressing CGNs were quantified in duplicate wells per treatment for 3 experiments, and 

a percentage of GFP expressing cells was calculated for this group. There was no 

significant difference in the percentage of GFP-positive cells quantified between the 

scrambled and target conditions. Data were analyzed using an unpaired t-test, and are 

represented as the mean ± SEM, n=3. 

 
 

Approximately 46% of the CGNs exposed to the scrambled shRNA and 40% of 

those exposed to the target shRNA became infected and were able to be quantified 

(Figure 25). With a Cdc42 knockdown efficiency of about 80% (as reported by Vector 

Biolabs), and around 40% of CGNs becoming infected with target shRNA in our 

experiments, we were able to achieve approximately 32% reduction of overall Cdc42 

expression in our cell system. It is clear from Figure 26 that, not only was the target 
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shRNA effective at reducing the amount of Cdc42 (compare panels A-B to C-D), but also 

that in the presence of 5K- stressful media, CGNs were sensitized to apoptotic cell death. 

Quantification of these findings is represented in Figure 27, where it is shown that CGNs 

infected with scrambled shRNA and exposed to 5K- media experienced an approximate 

20 fold increase in apoptosis, and those infected with target Cdc42 shRNA an 

approximate 80 fold increase in apoptosis. Overall there was a 4 fold increase in cell 

death seen with the genetic inhibition of Cdc42 function, suggesting that Cdc42 does 

possess some neuroprotective qualities in cells that are experiencing duress. 
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Figure 26: Immunocytochemistry for Cdc42 after 72 hour adenoviral knockdown 

and a 5K- media exchange.  Representative micrographs of CGNs that were incubated 

in 25K+ media for an initial 48 hour infection period with adenoviral scrambled (scrm) or 

Cdc42 targeting shRNA constructs co-expressing GFP, and then underwent a 5K- media 

exposure for 24 hours. From left to right, panels show virally infected cells (DAPI/GFP), 

Cdc42 content within cells (DAPI/Cdc42), decolorized Hoechst staining alone (DAPI) 

and a merged image. Blue fluorescence indicates Hoechst staining. Green fluorescence 

indicates positive GFP expression and viral infection. Red fluorescence indicates Cdc42. 

White arrows designate virally infected cells. A-B. CGNs infected with scrambled (scrm) 

shRNA. C-D. CGNs infected with target Cdc42 shRNA. Scale = 10 µm. Note the lack of 

red fluorescence in cells expressing GFP. 
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Figure 27: Quantification of apoptosis in CGNs after 72-hour adenoviral shRNA 

infection and a 5K- media exchange. Quantitative assessment of apoptosis (expressed 

as a fold change of 5K-/25K+) in CGNs after a 72-hour adenoviral infection with either 

scrambled (SCRM) or target Cdc42 (TAR) shRNA, and 24 hour exposure to 5K- media. 

5K- media alone caused an approximate 20 fold increase in apoptosis, and target Cdc42 

shRNA caused an approximate 80 fold increase in apoptosis. Data were analyzed using 

an unpaired t-test, and are represented as the mean ± SEM, n=3. ** indicates p<0.01 

compared to scrambled shRNA infection in 5K- media. 
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Chapter Four: Discussion 

 

Considering all of their responsibilities in biological functions such as regulation 

of the actin cytoskeleton, transcription factors, cell cycle progression, etc., it is not 

surprising that new roles for the Rho GTPase family as regulators of neuronal survival 

and apoptosis have emerged. Preceding research has strongly established a pro-survival 

role for Rac, and a pro-apoptotic role for Rho in neurons, and the effects of dysregulated 

Rho GTPase family members have started to become recognized pathological culprits in 

a variety of diseases. Cdc42, the least extensively investigated member of this family, is 

most well-known for its relationship with cancer and the survival of transformed cells, 

but to date, it has been relatively overlooked in terms of a contribution to neuronal 

survival and apoptosis. 

Prior studies utilizing dominant negative mutants and Clostridial toxins to 

knockout the function of Cdc42 were performed under healthy growth conditions, and 

demonstrated a lack of necessity for Cdc42 for survival (Le et al. 2005). These studies 

show that inhibition of Rac activity, regardless of neuronal environment, will cause 

subsequent cell death. However, inhibition of Cdc42 alone did not significantly increase 

apoptosis, although both Rac and Cdc42 share many common target proteins, and have 

demonstrated similar biological function (i.e., neurite extension). Our study also 

confirmed the findings of that study, as our adenoviral shRNA obstruction of Cdc42 

function in 25K+ media did not significantly increase cell death. While these studies 
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have adequately conveyed that Cdc42 is not absolutely essential to neuronal survival 

under normalized conditions, the role of Cdc42 in neuronal survival under arduous 

growth conditions, such as those that neurons experience during the progression of 

neurodegenerative disease, has not to our knowledge yet been explored. Our goal was to 

determine whether or not Cdc42 augments the survival of cerebellar granule neurons 

when they are already enduring stress. 

Initial experiments show that chemical inhibition either broadly of Cdc42 

function, or the function of its downstream effectors PAK and ACK-1, did convey 

additional apoptotic sensitivity to neurons experiencing withdrawal of both growth factor 

serum and depolarizing potassium (5K-). However, because PAK is also a known target 

of Rac, which is presently understood to be essential for neuronal survival, we chose not 

to heavily concentrate on it. In narrowing our focus to the two effectors solely targeted by 

Cdc42, ACK-1 and N-WASp, we discovered that chemical inhibition of N-WASp did not 

appear to significantly sensitize neurons to apoptosis under stressful growth conditions 

(Figures 18 and 19), so we did not further pursue a role for the Cdc42-N-WASp pathway 

in neuronal survival. From these experiment results, we determined that the Cdc42-ACK- 

1 and Cdc42-PAK signaling pathways do likely contribute to neuronal survival in some 

capacity. Also, based on our results using 187-1 and Wiskostatin inhibitosr, is 

conceivable that the N-WASp pathway contributes mainly, if not entirely, to actin 

cytoskeleton regulatory activities, and does not significantly take part in survival related 

tasks. 

Chemical inhibition is a useful preliminary measure of protein function, however 

inhibitors often also have many off-target effects, which could potentially contribute to 
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any experimental results we observed. To rule out this possibility, we chose to use 

inhibitors with very dissimilar molecular structures (see Figures 8, 12, 15 and 17). 

Because the data were consistent within all of the particular inhibitor groups (i.e., all of 

the Cdc42 inhibitors increased apoptosis, but none of the N-WASp inhibitors did), it is 

highly unlikely that the survival effects we observed were due to off-target effects, rather 

than inhibition of the protein of interest. Also, we confirmed that our chemical inhibitors 

were efficacious in blocking their respective proteins with the use of both a G-LISA and 

Western blotting techniques. Cdc42 inhibitors ZCL278, Casin and ML141 were able to 

reduce the amount of active Cdc42 in our 5K- treatment samples, and both ZCL278 and 

AIM100 appeared to lower the amount of phosphorylated ACK-1, suggesting that this is 

how these inhibitors block ACK-1 activation. 

While nuclear fragmentation and condensation are generally good indicators that 

apoptosis is transpiring, we wanted to confirm that it was what we were observing in our 

samples by both measuring metabolic activity and caspase release. Mitochondrial 

function was measured with the use of MTT assays, and we used immunocytochemistry 

techniques to explore the amount of caspase-3 release in our CGN samples. Figure 22 

shows the dramatic reduction in mitochondrial function we observed after inhibition of 

Cdc42 and ACK-1 in 5K- media, indicating that blocking the activity of either protein 

significantly sensitized the neurons to cell death under stress. Also, Figure 23 shows that 

there was substantially more active caspase-3 released in CGN samples with inhibited 

Cdc42 or ACK-1 only under stressful conditions, and that there was little to none 

released in healthy, 25K+ culture media. These measures both confirm that the changes 

we observed in nuclear morphology were due to cell death. 
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To more definitely test any survival-related responsibilities of Cdc42 in strained 

CGNs, we used a genetic approach to block the production of Cdc42 protein, as opposed 

to just inhibiting its activity. Our adenoviral Cdc42 shRNA construct was able to 

successfully reduce Cdc42 levels by approximately 32% overall, and caused a 4 fold 

increase in cell death when cells were incubated with the virus in 5K- media. Also worth 

noting is the general lack of Cdc42 staining observed in apoptotic cells, regardless of 

treatment or shRNA viral infection (Figures 24 and 26). It is possible that this is a 

consequence of general Cdc42 degradation during apoptotic cell death, as Cdc42 has 

been previously shown to possess a caspase cleavage sensitivity consensus sequence 

(DXXD) near the Rho insert region (Tu and Cerione, 2001). These results more 

conclusively confirm that while Cdc42 function may not be an essential component to 

neuronal survival, it appears to convey some amount of neuroprotection to cells that are 

enduring stressful conditions. Collectively, our data suggest that Cdc42 is not absolutely 

necessary for neuronal survival as is Rac, but it likely is an additional pro-survival 

protein that contributes to neuronal survival during cellular duress. As neurons are 

progressively exposed to increasing levels of stress during the course of 

neurodegenerative diseases, Cdc42 could present as a potential therapeutic target in 

delaying disease advancement. 
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Chapter Five: Conclusions and Future Directions 

 

Our in vitro experiments have provided evidence for the role of small Rho 

GTPase family member Cdc42 in neuronal survival. While studies have consistently 

shown that Cdc42 is not absolutely vital for neuronal survival, as is its sibling Rac, we 

wanted to determine whether it had any neuroprotective function at all. We induced cell 

death by removing both growth factor-containing serum and depolarizing potassium to 

model a stressful neuronal environment, and then manipulated the function either broadly 

of Cdc42, or of one of its downstream effectors (ACK-1, PAK or N-WASp). Through 

these studies, we were able to re-confirm that Cdc42 inhibition under healthy growth 

conditions did not impede neuronal survival, but that its inhibition, or that of its 

downstream effectors ACK-1 and PAK, did significantly sensitize neurons further to cell 

death. N-WASp inhibition did not appear to have any impact on neuronal survival. Our 

findings advocate a neuroprotective role for Cdc42 under strenuous neuronal 

environmental conditions, and suggest that it could be a viable therapeutic target in 

progressive neurodegenerative disease. 

For future studies, we intend to perform similar experiments, but utilizing a 

different substance for the initial induction of cell death known as HA-14. HA-14 induces 

apoptosis by directly antagonizing pro-survival members of the Bcl-2 family (Bcl-w and 

Bcl-XL), as well as by disrupting the anti-apoptotic association between Bax and Bcl-2 

(Chen et al. 2002). Stankiewicz et al. (2015) demonstrated how a Rac1 chemical inhibitor 
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known as NSC induced apoptotic cell death in CGNs by causing an increase in 

mitochondrial localization and activation of pro-apoptotic Bcl-2 protein Bad. Many of the 

survival pathways involved in Cdc42 signaling also impact Bcl-2 proteins (i.e. 

PI3K/Akt), so if our results were similar with the use of HA-14, we could begin to define 

more clearly the death mechanisms involved in Cdc42 inhibition. In addition, we would 

like to conduct a Western blot panel for various BH-3 only proteins (i.e., Bim, Noxa, 

Puma, Bad, etc.) after treatment of CGNs with ZCL278 and AIM100 in both 25K+ and 

5K- media conditions. This could also indicate more precisely which death pathway is 

occurring in our experiments. Also, we aim to more clearly ascertain the role of the 

ACK-1 signaling pathway in neuronal survival, as its connection to survival in other cell 

types has been well documented. We will obtain a constitutively active ACK-1 mutant 

and see if survival can be rescued after treatment with a Cdc42 or ACK-1 specific 

chemical inhibitor (i.e., ZCL278, AIM100) in stressful growth media. 

We would also like to explore the role of Cdc42 in brain cancer, by manipulating 

its function in human glioblastoma cell line U-87 MG. The current form of treatment 

most commonly administered to glioblastoma multiforme (GBM) patients is an oral 

chemotherapeutic agent called temozolomide (TMZ). TMZ is an alkylating agent that 

works by methylating and damaging DNA in an attempt to destroy tumor cells, however 

GBM is particularly evasive to treatment in general, and TMZ tends to only increase 

lifespan by a few months without improvement in patient life quality (Stupp et al. 2005). 

A study by Milano et al. (2009) detailed the use of Dasatinib as a potential therapeutic 

agent to be used in combination with TMZ. Their study found that the co-treatment of 
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glioblastoma cells with Dasatinib and TMZ both increased autophagic cell death, and 

increased the efficacy of TMZ overall. However this study concluded that the results 

were due to Dasatinib’s inhibition of Src kinases. Due to its multi-target impacts, we 

speculated that their results could have actually been an ACK-1 inhibitory consequence, 

as Dasatinib is also an ACK-1 inhibitor. We would like to use both AIM100 and ZCL278 

in combination with TMZ to see if there is an impact on glioblastoma cell survival. As 

AIM100 is much more specific to ACK-1, if we achieve similar results, it is possible that 

the sensitization of cancer cells to TMZ is actually due to the inhibition of ACK-1 

activity. Through these experiments, we hope to find that manipulation of Cdc42 could 

be an option in the treatment of other disease types. 
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Appendix A: Abbreviations 

 

ACK-1: activated Cdc42 kinase 1 

AID: autoinhibitory domain 

ALS: amyotrophic lateral sclerosis 

ANOVA: analysis of variance 

AR: androgen receptor 

Arp2/3: actin related protein 2/3 

BD: basic domain 

BSA: bovine serum albumin 

Cdc42: cell division control protein 42 

CGN: cerebellar granule neuron 

CML: chronic myelogenous leukemia 

CRIB: Cdc42/Rac interactive binding motif 

Cy3: indocarbocyanine 

Dbl: diffuse B-cell lymphoma 

DH: Dbl homology 

DMSO: dimethyl sulfoxide 

DOCK: dedicator of cytokinesis 

DRG: dorsal root ganglion 

EBD: EGFR binding domain 

EGFR: epidermal growth factor receptor 

FBS: fetal bovine serum 

FITC: fluorescein isothiocyanate 

FKHR: forkhead box protein 

G-LISA: GTPase-linked immunosorbent assay 

GAP: GTPase activating protein 

GBD: GTPase binding domain 

GBM: glioblastoma multiforme 

GDI: guanine nucleotide dissociation inhibitor 

GDP: guanosine diphosphate 

GEF: guanine nucleotide exchange factor 

GFP: green fluorescence protein 

GPCR: G-protein coupled receptor 

GTP: guanosine triphosphatase 

IAPs: inhibitor of apoptosis proteins 

HRP: horseradish peroxidase 

JAK/STAT: janus kinase/signal transducers and activators of transcription 

LIMK: LIM kinase 

LPA: lysophosphatidic acid 

mAChR: muscarinic cholinergic receptor 

MAPK: mitogen activated protein kinase 

MEFs: mouse embryonic fibroblasts 

MLC: myosin II regulatory light chain 
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MLCK: myosin light chain kinase 

MOI: multiplicity of infection 

MRX: mental X-linked retardation 

N-WASp: neuronal Wiskott-Aldrich syndrome protein 

NMR: nuclear magnetic resonance 

PAK: p21-activated kinase 

PBS: phosphate buffered saline 

PBS-T: phosphate buffered saline + Tween 20 

PFM: paraformaldehyde 

PH: Pleckstrin homology 

PI3K: phosphoinositide-3-kinase 

PIP2: phosphatidylinositol 4,5-bisphosphate 

PIP3: phosphatidylinositol (3,4,5)-trisphosphate 
PVDF: polyvinylidene difluoride 

RISC: RNA induced silencing complex 

RNAi: RNA interference 

ROCK/PTEN: Rho-associated protein kinase/phosphatase and tensin homolog 

SAM: sterile alpha motif 

SEM: standard Error of the Mean 

shRNA: short-hairpin RNA 

UBA: ubiquitination 

VCA: verprolin homology, cofilin homology, acidic 

WAS: Wiskott-Aldrich syndrome 

WASp: Wiskott-Aldrich syndrome protein 

WH1: WASp-homology 1 

WIP: WASp interacting protein 

WWox: WW domain-containing oxioreductase 
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