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Abstract

This thesis presents a method for generating an optimized path through a given

track. The path is generated by choosing waypoints throughout the track then

iteratively optimizing the position of these waypoints. The waypoints are then

connected by optimized paths represented by curvature polynomials. The end

result is a path through the track represented as a spline of curvature poly-

nomials. This method is applied to multiple simulated tracks and the results

are presented. By generating and representing the paths in the continuous

domain, the method has improved computational efficiency from many of the

discrete methods used to generate an optimal path through a track. Also,

when using a path to guide an autonomous vehicle, paths represented in the

continuous domain can allow for better tracking and control than discrete

counterparts. As autonomous systems become more integral to our society,

increased computational efficiency, tracking, and control are important areas

of improvement.
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Chapter 1

Introduction

1.1 General Background

As improvements in autonomous systems are being made, the need for

efficient path generation is becoming increasingly important. The problem of

path generation for car-like robots is one of particular interest and difficulty.

The interest stems from a desire to create fully autonomous cars and the

difficulty from the motion constraints of car-like robots.

Most current methods for generating the optimal path through a track are

discrete and can be computationally expensive. Paths generated in the con-

tinuous domain are often more computationally efficient and allow for better

tracking and control than their discrete counterparts.
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1.2 Previous Work

There has been relatively little work completed on optimized path gener-

ation for car-like robots traveling through a track. S. Omidshafiei presents

an approach in [19]. Omidshafiei uses both kinematic and dynamic car mod-

els to formulate an optimal control problem then uses the GPOPS MATLAB

toolbox to solve this problem. The problem is formulated in discrete phases

that represent sections of the track. While Omidshafiei was able to produce

good results for less complicated tracks (smaller number of phases), when this

method was applied to a more complicated track (80+ phases) the problem

was determined to be infeasible to solve in MATLAB.

In [29], S. Koutrik also presented an approach to solve for the optimized

path for a race car traveling through a track. Like Omidshafiei, Koutrik used

a dynamic model of a car to formulate an optimal control problem. He then

discretized and translated the problem into a non-linear control problem. Ref-

erence [11] presents the fuzzy controller methods which were used in the 2007

CIG Simulated Car Racing Competition, by the winning entry. The race ob-

jective is to reach as many randomly generated waypoints as possible within a

given time frame. In [3] the authors outline a method for computing the time-

optimal race line through a track using a series of connected Bézier curves.

The authors of [7] find the optimal race line through a track by dividing the

track into sections and use genetic algorithms to search for the optimal path,

in the sense of both path length and curvature. Reference [22] addresses find-

ing an optimal path through a track while avoiding collision with other cars

on the track.
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As mentioned above much of the work in this area is discretized and be-

comes increasingly computationally expensive as the tracks become more com-

plicated. This is due to having a very large number of decision variables,

parameters, in a single optimization problem. The method developed in this

thesis has no more than twelve parameters for each optimization problem it-

eratively solved.

Closely related to path planning through a track is general path planning

for non-holomonic or car-like robots. A. Scheuer and Th. Fraichard, in [24],

create continuous curvature paths using line segments, circular arcs or clothoid

arcs. In [16] the problem of finding smooth and collision free trajectories is

presented and studied. The authors of [15] use a lower level geometric planner

to find a path and then optimize the path so that it is the shortest distance

which fits the non-holomonic constraints of the robot. A method of using

sinusoidal curves to compute non-holomonic paths is presented in [17]. In [1],

N. Achour, A. Lakhdari and F. Ferguene use Hierarchical Genetic Algorithms

to solve for the optimal paths, balancing between path length and collision

avoidance. In [9] and [27] the problem of motion planning and control of

multiple car-like robots is addressed.

A. Kelly and B. Nagy present a method for rapidly generating optimized

paths using curvature polynomials in [13]. This serves as the basis for the path

generation method in this thesis and will be discussed in more detail later on.

The problem of general collision free motion planning is also closely related

to the problem of optimal path generation through a track. In [21] S. Quinlan

and O. Khatib present the method of elastic bands. This method forms a

connection between global path planning and real time collision avoidance.

3



The elastic band method can both smooth a globally planned path to fit the

constraints of a given robot and adjust the path to avoid obstacles as the

robot detects them. In [20] a kinematic model is used to determine the set of

feasible trajectories. Obstacle conditions, for moving obstacles, are then used

to determine the feasible collision free trajectories from this set. The authors

of [18] provide an off-line trajectory planner for a robot with a single spherical

wheel and propose a feedback controller to track and control the robot along

the computed trajectory. Genetics algorithms are used to plan for the motion

of mobile robots in [26].

Cubic splines are used to parameterize the state-space trajectory and solve

for smooth and time-optimal trajectories, of robot manipulators, in [8]. Ref-

erence [28] uses the RRT (Rapidly-exploring Random Tree) algorithm to gen-

erate a set of possible paths for a mobile robot then develops an algorithm to

select the best path, taking into account information such as the sensors and

controllers of the robot.

In [31] and [30] E. Velenis and P. Tsiotras formulate a method for the

generation of a time optimal velocity profile for a car traveling through a

given path. The velocity profiles generated in this paper are done so using the

methods presented in [31] and [30]. These methods will be discussed in more

detail in a later Chapter. Related to velocity profile generation is tracking

and control of car-like robots. L. Caracciolo, A. Luca and S. Iannitti use a

dymanic car model and design a non-linear controller to solve this problem in

[6].

This thesis also uses non-linear programming and optimal control tech-

niques such as the ones described in [13]. Much work has been done in this

4



area. There are a variety of algorithms and methods that can be used to solve

optimal control and non-linear programming problems such as in [4], [12], [5],

[25] and [10]. Reference [14] provides an overview of the history of non-linear

programming developments. In [23] R. Rockafellar extends the traditional

formulation of non-linear programming problems.

1.3 Problem Introduction

This thesis addresses the problem of computing an optimized path through

a closed loop track. The method presented optimizes a series of waypoints

selected around the track,

wi = [xi yi θi κi]
T , (1.3.1)

such that the path connecting these waypoints is the optimal path through the

track. In (1.3.1), (xi, yi) is the position coordinate of the ith waypoint and θi

and κi are the heading and curvature of the ith waypoint, respectively. Tech-

nical contributions that were made in the process of developing this method

are: (i) Generalizing the optimized path generation method from an arbitrary

starting state. (ii) Formulating a constrained optimization problem to solve

for the optimal position of a waypoint. The optimality is with respect to the

path through the waypoint from given start to end states. (iii) Presenting an

approach, using iterative algorithms, to optimize the position of a series of

waypoints throughout a track.

5



1.4 Thesis Overview

This thesis is divided into six Chapters. Chapter 2 formulates the methods

to: (i) Generate an optimal path given fixed but arbitrary start and end states

and (ii) optimize a single waypoint, with respect to the path, from a beginning

state, through the waypoint, to an end state. Chapter 3 develops the solution,

using the methods formulated in Chapter 2, to compute the optimized path

through a track. Chapter 4 presents the method used to build the time-optimal

velocity profile for a car traveling on the optimized paths. Chapter 5 presents

the results of the solution on multiple tracks and analyzes the performance of

the solution. Chapter 6 is the conclusion.

6



Chapter 2

Point-to-Point Path Generation

2.1 Formulation of Curvature Polynomial Ap-

proach

As previously mentioned, the path generation methods used in this thesis

are derived by the methods presented in [13]. This section briefly describes

those methods as they apply to this thesis.

The state of a vehicle can be modeled as:

x(s) =

∫ s

0

cos θ(z)dz

y(s) =

∫ s

0

sin θ(z)dz (2.1.1)

θ(s) =

∫ s

0

κ(z)dz

κ(s) = u(s).

The curvature, κ(s), is considered the input. The state vector is then made

7



up of position coordinates, heading and curvature,

x = [x y θ κ]T . (2.1.2)

The problem of path generation can then be stated as follows: Given initial

and final states, x0 and xf , find the input, u(s), such that the resulting path

satisfies x0 and xf , as well as any constraints on the path’s shape. A sample

generated path is shown in Figure 2.1.

Figure 2.1: A path generated from x0 = [0 0 0 0]T to xf = [2 2 π 0]T .

8



If we choose polynomial spirals of arbitrary order as the form of the input,

u(s) = a+ bs+ cs2 + ds3 + · · · , (2.1.3)

then the state of the vehicle can now be parameterized as follows:

x(p, s) =

∫ s

0

cos θ(p, z)dz

y(p, s) =

∫ s

0

sin θ(p, z)dz (2.1.4)

θ(p, s) = as+
bs2

2
+
cs3

3
+
ds4

4
+ · · ·

κ(p, s) = a+ bs+ cs2 + ds3 + · · ·

where p = [a b c d · · · ]T .

The challenge is then to calculate the parameters p such that x0 and xf

are satisfied. This can be accomplished by formulating the problem as a con-

strained optimization problem. Let sf be the length of path that satisfies

boundary conditions x0 and xf . Then, a new extended parameter vector in-

cluding sf is defined as:

q =
[
pT sf

]T
. (2.1.5)

The general form of an optimization problem with equality boundary con-

ditions is:

minimize J(q) = φ(q) +

∫ sf

0

L(q)ds (2.1.6)

s.t. g(q) = 0, sf is free.

9



It is straightforward to see that κ(0) = a and if we assume x0 = 0, y0 =

0, θ0 = 0 then we only need to consder xf = [xf yf θf κf ]
T as the boundary

condition. Hence, the constraint equation, g(q), is given by:

g(q) = x(q)− xf (2.1.7)

where x(q) = [x(q) y(q) θ(q) κ(q)]T . Since κ(0) = a parameter a, this

parameter a does not need to be considered moving forward and the parameter

vector q can be redefined as q = [b c d · · · sf ]
T .

2.2 Solution Method for Curvature Polyno-

mial Problem

The solution can be obtained by using the MATLAB ‘fmincon’ solver. This

solver directly solves problems with the form of (2.1.6). For the purposes of

this thesis the ‘Newtonian Interior Point Algorithm’ was the chosen ‘fmincon’

algorithm. In its default setting, this algorithm will approximate the neces-

sary first and second order conditions. This can lead to inaccurate solutions

especially with a complex g(q), as is the case in this thesis, due to the inte-

grals in x(q) and y(q). This problem can be avoided by directly supplying the

gradients of J(q) and g(q) to the ‘fmincon’ solver. Additionally, setting the

Hessian approximation to use finite-differences was found to produce the most

rapid and accurate results.

10



2.3 Generalized Curvature Polynomial Appr-

oach

The method of path generation through a track presented in this thesis

involves connecting multiple optimized paths. However, as discussed in Sec-

tion 2.1, the methods of generating optimized paths presented in [13] assumes

that each path is generated from the origin of its own coordinate system.

This requires several steps and presents complications when connecting the

paths. Specifically let τk be the kth path segment that connects two bound-

ary conditions, xfk−1
=
[
xfk−1

yfk−1
θfk−1

κfk−1

]T
and xfk = [xfk yfk θfk κfk ]T ,

represented in a fixed world coordinate system, Cw. Also let Ck be the coordi-

nate system for τk such that (xfk−1
, yfk−1

, θfk−1
) is the origin. To generate path

τk, the coordinate frame Ck needs to be constructed through translation by

(xfk−1
, yfk−1

) and rotation by θfk−1
, from origin of the world coordinate system

Cw. Next, the representation of xfk must be transformed into the Ck coordi-

nate system from the world coordinate system, Cw. And then finally, we apply

the methods presented in Section 2.1 to generate the path τk that starts from

xfk−1
, (0, 0, 0) in Ck, and ends at xfk , represented in Ck. This method of con-

necting paths was successfully implemented but was clearly more complicated

and messy than needed.

A much more convenient approach to connecting the paths is to generalize

each path so that it can start from an arbitrary initial condition. If the state

11



of a vehicle is modeled as:

x(p, s) = x0 +

∫ s

0

cos θ(p, z)dz

y(p, s) = y0 +

∫ s

0

sin θ(p, z)dz (2.3.1)

θ(p, s) = θ0 + κ0s+
bs2

2
+
cs3

3
+
ds4

4
+ · · ·

κ(p, s) = κ0 + bs+ cs2 + ds3 + · · ·

where (x0, y0, θ0, κ0) are the initial position coordinates, heading, and curva-

ture, respectively. Then paths of arbitrary initial conditions can be generated

using the same methods as described in Section 2.1. Although the generalized

paths can be generated using the same methods, the derivatives required for

optimization problem differ due to the changes in the equations modeling the

state of the vehicle. These necessary derivatives are derived in the appendix.

2.4 Path with an Optimized Waypoint

Consider the following problem: Optimize the position of a single waypoint

with respect to a cost function. The cost function is evaluated on the path

from an initial state, x0, to a final state, xf , through the waypoint, w =

[xw yw θw κw]T where w has the constraints:

xlb ≤ xw ≤ xub

ylb ≤ yw ≤ yub (2.4.1)

θw, κw are free.
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Figure 2.2: A path generated from x0 = [2 0 π/2 0] to xf = [0 0 3π/2 0]T

passing through the waypoint with boundaries described by the square.
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Let τ be the path that connects x0 and xf passing through a given waypoint

w. Then τ can be decomposed into two subpath segments as follows:

τ = τ1 ⊕ τ2 (2.4.2)

where τ1 is the path from x0 to w, τ2 is the path from w to xf , and ⊕ denotes a

concatenation operator that connects two paths. For each path τi i = 1, 2, τi is

defined by the state equation (2.3.1) with parameters qi = [bi ci di · · · sfi]T .

Note that for τ1 the initial conditions are simply x0 and for τ2 the initial

conditions are w. An example of such a path τ is shown in Figure 2.2.

To optimize the location of a waypoint w, within the constraints (2.4.1) and

with respect to some cost function, the waypoint w must also be considered a

parameter:

q3 = [xw yw θw κw]T . (2.4.3)

Then the whole parameter vector for optimized path generation problem

is:

q =
[
qT1 qT2 qT3

]T
. (2.4.4)

It is now possible to formulate this problem as a constrained optimization

problem using the form given in (2.1.6) with a constraint equation of the form:

g(q) =

 g1(q)

g2(q)

 (2.4.5)

where g1(q) = [g1x g1y g1θ g1κ]
T is the constraint equation corresponding to τ1

and g2(q) = [g2x g2y g2θ g2κ]
T is the constraint equation corresponding to τ2.
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If we let x1(q) and x2(q) be the state vectors for τ1 and τ2, respectively, then

g1(q) = x1(q)− q3

g2(q) = x2(q)− xf .
(2.4.6)

This problem can then be solved in the same way as the path generation

problem in the previous section. Derivatives of the constraints equation with

respect to the parameters are

∂g

∂q
=


∂g1

∂q

∂g2

∂q

 =


∂g1

∂q1

∂g1

∂q2

∂g1

∂q3

∂g2

∂q1

∂g2

∂q2

∂g2

∂q3

 (2.4.7)

where, for i, j = 1, 2, ∂gi

∂qj
are defined as

∂gi
∂qj

=



∂gix
∂bj

∂gix
∂cj

∂gix
∂dj

· · · ∂gix
∂sfj

...
...

...
...

...

∂giκ
∂bj

∂giκ
∂cj

∂giκ
∂dj

· · · ∂giκ
∂sfj


(2.4.8)

15



and, for j = 3,

∂gi
∂q3

=



∂gix
∂xw

∂gix
∂yw

∂gix
∂θw

∂gix
∂κw

...
...

...
...

∂giκ
∂xw

∂giκ
∂yw

∂giκ
∂θw

∂giκ
∂κw


. (2.4.9)

A detailed derivation of these partial derivatives is in the appendix.

2.5 Choice of Cost Function and Number of

Parameters

This section describes the selection of the cost function. The cost function

used is:

J(q) =
1

2

∫ sf

0

κ2(p, s)ds. (2.5.1)

This cost function prioritizes a smooth path. But this cost function does

not necessarily lead to the most optimal path in the sense of travel time, as

the increased path smoothness may lead to a longer path. The derivatives

associated with this cost function are detailed in in the appendix.

The optimization problem of generating a single path segment has four

constraints, that is g(q) contains four equations. As a result it is necessary

to include at least four parameters in q to obtain a solution which satisfies

the constraints. Considering sf as one of the parameters, the assumed form of

k(s) must be at least a second order polynomial. One additional parameter

16



is used to allow for optimality in the solution. Therefore k(s) is a third order

polynomial and the full parameter vector is q = [a b c d sf ]
T .
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Chapter 3

Closed-Loop Path Generation

3.1 An Iterative Approach for Loop Waypoints

Optimization

Consider a car traveling through a track that is defined by a series of

waypoints, each defined as in (2.4.1), and no boundaries. This is demonstrated

in Figure 3.1.

In order to solve for the optimal path through all of these waypoints, the

position of each waypoint (within its bounds) is optimized as in Section 2.4 and

then the waypoints are connected with optimal paths. To give more detailed

discussion on this process, let us first define

wp opt(x0,xf ,w,b) (3.1.1)

as a function that uses the methods of Section 2.4 to optimize the position

of a waypoint, w, such that the path from the initial state, x0, through the

18



Figure 3.1: A path generated from x0 = [0 0 0 0]T to xf = [0 0 2π 0]T ,
passing through the waypoints with boundaries described by the squares. The
dots denote the optimized waypoint positions.
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waypoint, w, and to the final state, xf , is optimal in the sense of some cost

function, such as the one described in Section 2.5. The function’s inputs are

the initial and final states, the initial waypoint position w, and a vector,

b = [xlb xub ylb yub]
T , (3.1.2)

which denotes the bounds on the waypoint as defined in (2.4.1). The function

outputs the optimized waypoint position.

Additionally, we define

path opt(x0,xf ) (3.1.3)

as a function that uses the methods of Section 2.3 to optimize a path, in the

sense of the same cost function as above. This function takes initial and final

states, x0 and xf , as inputs and outputs an optimized path. The output is in

the form of a vector containing the parameters which describes the path, thus

for path i, τi = qi = [ai bi ci di sfi]
T .

The final function defined is

cost function(τ). (3.1.4)

This function takes a matrix of path descriptions, τ , as an input and out-

puts the value of the sum of the same cost function used in (3.1.1) and (3.1.3)

for all the inputted paths. In the input each column vector contains the pa-

rameters describing a single path.

20



Algorithm 1 Loop Waypoint Optimization

1: Input: Input: A vector x0 = [x0 y0 θ0 κ0]
T which denotes the initial

and find states, and a matrix B = [b1 b2 · · · bn] where each vector
bi contains the bounds corresponding to the ith waypoint as defined in
(3.1.2).

2: Output: The matrix W = [w1 w2 · · · wn] where each vector wi is the
optimized waypoint, and a matrix τ = [τ1 τ2 · · · τn+1] that contains the
paths connecting the waypoints.

3: Initialization:
4: ∆J = 1
5: j = 0
6: Choose wi within bi, ∀i ∈ 1, · · · , n
7: X = [x0 w1 w2 . . . wn x0]
8: τ = [τ1 τ2 · · · τn]
9: LOOP Process:
10: while ∆J > Tolerance do
11: j = j + 1
12: for i = 2 · · ·n+ 1 do
13: wi = wp opt(Xi−1,Xi+1,Xi,Bi−1)
14: Xi = wi

15: end for
16: for i = 1 · · ·n+ 1 do
17: τi = path opt(Xi,Xi+1)
18: end for
19: J(j) = cost function(τ)
20: if j > 1 then
21: ∆J = |J(j)− J(j − 1)|
22: end if
23: end while
24: W = [X2 X3 · · · Xn]
25: return τ , J(j), W

The pseudo-code for the waypoint optimization algorithm is presented in

Algorithm 1. Note that, in Algorithm 1, the cost function is built in to (3.1.1)

and (3.1.3). The notation Xi denotes the ith element in X. τi is used in

the same manner, and wi is a local variable. The while loop in Algorithm

1 is stopped when the difference in the cost function from the (j − 1)th to
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jth iteration is below a tolerance. Figure 3.2 demonstrates the asymptotic

behavior of Algorithm 1 for the generation of the path shown in Figure 3.1.

Figures 3.4 and 3.6 also show this asymptotic behavior for the paths in 3.3

and 3.5. This asymptotic behavior, along with the condition described above,

ensures that an optimal solution is reached. Note that the solution is for the

given initial conditions i.e. it could be a local minimum. The tolerance used

in this paper is .001.

Figure 3.2: Cost function versus iterations of Algorithm 1 for the path gener-
ation shown in Figure 3.1.

22



Figure 3.3: A path generated from x0 = [0 0 0 0]T to xf = [0 0 π 0]T

passing through the waypoints with boundaries described by the squares. The
dots denote the optimized waypoint positions.
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Figure 3.4: Cost function versus iterations of Algorithm 1 for the path gener-
ation shown in Figure 3.3.
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Figure 3.5: A path generated from x0 = [0 0 0 0]T to xf = [0 0 π 0]T

passing through the waypoints with boundaries described by the squares. The
dots denote the optimized waypoint positions.
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Figure 3.6: Cost function versus iterations of Algorithm 1 for the path gener-
ation shown in Figure 3.5.
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It is important to notice that in new iterations each waypoint is optimized

with updated starting and ending states. This is the key factor that allows

this iterative process to find an optimal solution.

3.2 Obstacle Avoidance

The same general process described in the above section can be used to

solve for an optimal path through a track with boundaries. Waypoints are cho-

sen throughout the track, optimized, and then connected by optimal paths.

This general process integrated with track boundary collision avoidance ob-

stacles is shown in Algorithm 2.

Algorithm 2 Track Path Optimization (TPO) Algorithm

1: Input: The description of a track, denoted by Track

2: Output: The optimal path through the track
3: Initialization:
4: J = 0
5: in track = false
6: LOOP Process:
7: while true do
8: Run Algorithm 1 → τnew, Jnew
9: ∆J = Jnew − J
10: if in track & ∆J > 0 then
11: break
12: else
13: J = Jnew
14: τ = τnew
15: in track = test in track(τ , Track)
16: Update waypoints selections
17: end if
18: end while

The function test in track(τ, Track) takes a path, τ , and a description of a

track, Track, as inputs and outputs a Boolean indicating if the path is entirely
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within the track. Remembering that Algorithm 1 outputs an optimized path

connecting a series of waypoints, this algorithm is fairly straight forward. The

implementation of test in track(τ, Track) was completed by representing the

track as a polygon and the path as a set of (x, y) points. The MATLAB

‘inpolygon’ function was then used to check for collision of the path and track.

The ‘inpolygon’ function takes vectors representing the x and y points of the

inner and outer boundaries of a polygon and checks if all points in an inputed

set are within this polygon. Details of this track representation are in the next

section.

3.2.1 Track Representation

How the track is represented can allow for easier selection, initialization,

and updating of waypoints. The methods of representing the track were for-

mulated with this in mind and the reasons for this formulation will become

more clear through the discussion of updating waypoint selection.

Two vectors represent the inner track: one representing x values and one

representing y values. The inner line of the track is composed by connecting the

corresponding set of x and y points. This set of points is used to construct the

center and outer lines of the track. Figure 3.7 shows an example representation

of a track inner line.

Constructing the vectors representing the center and outer lines is com-

pleted through the use of transformation matrices. Consider the problem of

transforming a point in a coordinate system, C1, to the world coordinate sys-

tem, Cw. If (x, y) is the coordinates of the base of C1, represented in Cw, and

θ represents the angle of rotation from Cw to C1 then the following transfor-
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Figure 3.7: Example track inner line represented by two vectors, V 1 and
V 2. V 1 = [0 : 0.1 : 4] (a vector from 0 to 4 with increment size 0.1) and
V 2 =

√
4− (V 1− 2)2. V 1 represents the y values of the inner line and V 2

represents the x values of the inner line.
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mation matrix transforms a point from C1 to Cw

T =


cos(θ) − sin(θ) x

sin(θ) cos(θ) y

0 0 1

 . (3.2.1)

The point p = [px py]
T , in C1 coordinates, can be transformed to Cw by

 p̃

1

 = T

 p

1

 (3.2.2)

where p̃ is the point p in Cw. px is the x coordinate of p and py is the

y coordinate of p. In order to construct the center and outer track lines,

define pi = [xi yi]
T to be a point along the inner track line, pc = [xc yc]

T

and po = [xo yo]
T to be the points along the center and outer track lines

corresponding to pi, w to be the track width, and θ to be the angle of the

tangent to the inner track line at pi. Also define Ci to be a coordinate system

where pi, represented in Cw, is the base and θ is the angle of rotation from Cw

to Ci. Then pc and po, in Ci, are [0 −w/2]T and [0 −w]T , respectively. Using

Equations (3.2.1) and (3.2.2), pc and po can be transformed to Cw giving the

following relations:

xc =
w

2
sin(θ) + xi

yc = −w
2

cos(θ) + yi (3.2.3)

xo = w sin(θ) + xi

yo = −w cos(θ) + yi.
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θ is calculated by:

θ = arctan

(
yi − yi−1
xi − xi−1

)
(3.2.4)

where [xi−1 yi−1]
T denotes the point before pi along the inner line. The center

and outer line vectors are calculated by iteratively using this process on all

points in the inner line. Figure 3.8 shows an example of this method. With

this formulation the track can be represented as a polygon and used to check

if a path is within its boundaries. As mentioned earlier the MATLAB function

‘inpolygon’ is used to do this testing.

3.2.2 Selecting Initial Waypoints and Waypoint Bound-

aries

Initial waypoints are selected so that they are evenly spaced along the

center line. The number of initial waypoints depends on the shape of the

track with more complicated tracks requiring more waypoints. Note that the

choice of the amount of initial waypoints only affect computational efficiency,

i.e. if the choice is close to the optimal number of waypoints it will take less

iterations to find this optimal number of waypoints. If n waypoints are selected

and sf is the length of the track center line, then the waypoints are initially

positioned at intervals of
sf
n

. Given the representation of the track from the

previous sub-section, the distance along the center line from the start to the

nth point on the center line is:
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Figure 3.8: Example of calculating the points on the center and outer track
lines, pc and po, corresponding to a point on the inner track line, pi. pi = [2 2]T

and θ, the angle of the tangent at pi, is π. The base of Ci is translated by (2, 2)
and rotated by π, from Cw. The track width is .5 giving pc = [0 − .25]T and
po = [0 − .5]T , in Ci. Using Equation (3.2.3), pc and po can be transformed
to Cw and are [2.25 2] and [2.5 2], respectively.
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sn =
n∑
i=2

√
(xi − xi−1)2 + (yi − yi−1)2 (3.2.5)

where (xi, yi) is point i on the center line and (xi−1, yi−1) is point i− 1 on the

center line. The initial θ for the waypoints is selected to be the angle of the

tangent to the center line at the waypoint and can be calculated with (3.2.4).

The curvature, k, values are initially all set to 0.

The waypoint boundaries must be defined so that they are fully within the

track. The waypoint boundaries are described as follows:

xlb = xwc −
w

2
√

2

xub = xwc +
w

2
√

2
(3.2.6)

ylb = ywc −
y

2
√

2

yub = ywc +
w

2
√

2

where w is the track width and xub, yub, xlb, ylb are the upper and lower

bounds on the waypoint. The point (xwc, ywc) is defined as the center point

of the waypoint and is always a point on the center line of the track. Given

(3.2.6) the boundaries of any waypoint can be described by the center point

and track width. Equation (3.2.6) is derived by inscribing a square within a

circle of radius w
2

centered on (xwc, ywc). The resulting square has a width of

w√
2
. Since the track is defined to have a constant width at all points, these

boundary conditions guarantee that the waypoint will always be within the

track.
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3.2.3 Updating the Waypoints

Two simple methods for updating the number of waypoints were explored:

(i) Consecutively multiplying the number of waypoints by some number at the

end of each iteration, and (ii) Consecutively adding some number to the num-

ber of waypoints at the end of each iteration. Once the number of waypoints is

updated they are positioned along the track center line as described in Section

3.2.2.

The first method was generally faster at solving for a trajectory but could

lead to a less optimal solution. Since Algorithm 2 iteratively optimizes each

waypoint, using the previous and next waypoints as initial and final states, if

the waypoints are too close together than the outputted path will follow closely

along the track centerline. The second method led to more optimal solutions

but can be at the cost of computational efficiency, if the number of starting

waypoints is far off from the optimal number. In that case many iterations

must be run to find a solution.

Figures 3.9 and 3.10 show paths through a simple track and demonstrate

the two different waypoint update methods. Figure 3.9 shows the waypoints

updated by adding one waypoint each iteration and Figure 3.10 shows the

waypoints updated by doubling the number of waypoints each iteration. These

Figures demonstrate that adding one waypoint each iteration led to a more

optimal solution. Results on more complicated tracks are contained in the

Chapter 5.
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Figure 3.9: Path through track 1. Start and end point is (0, 0). Number of
waypoints: 3, marked by the black dots. Waypoint update method: adding
one waypoint each iteration. Ending cost function value: 3.614.
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Figure 3.10: Path through track 1. Start and end point is (0, 0). Number of
waypoints: 4, marked by the black dots. Waypoint update method: multi-
plying the number of waypoints by two each iteration. Ending cost function
value: 3.775.
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Chapter 4

Velocity Profile Generation

Method

In order to create trajectories from the optimized paths a velocity profile

was created using the methods described in [31] and [30]. Profiles were created

for both point mass and a dynamic models. This chapter directly outlines the

methods from [31] and [30] used to create the velocity profiles in this thesis.

4.1 Point Mass Velocity Profile Formulation

The problem, as given in [31], for a point mass traveling through a path

is as follows: Given acceleration limits and fixed boundary conditions (initial

and final position and velocity), find the velocity profile for minimum travel

time. The path is described by its curvature as a function of path length, s.

The equations of motion, for the point mass, are given by:
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m
d2s

dt2
= ft (4.1.1)

m

(
ds

dt

)2

k(s) = fn

where κ(s) is the curvature function describing the path, m is the mass, ft

is the force tangential to the path, and fn is the force normal to the path.

Considering given acceleration limits on the tangential force, fmaxt , and normal

force, fmaxn , equation (4.1.1) leads to the following relation:

(
ft
fmaxt

)2

+

(
fn
fmaxn

)2

− 1 ≤ 0. (4.1.2)

In [31] it is formally proven that in order to achieve minimum travel time

through a path the maximum available force must be used at all times. The

following control law allows this to be achieved:

ft = u

√
(fmaxt )2 −mκ(s)

(
fmaxt

fmaxn

)2(
ds

dt

)2

. (4.1.3)

Both u and ft are considered inputs with u ∈ [−1,+1]. Maximum force is

achieved by setting u = −1 when the vehicle is decelerating and u = +1 when

the vehicle is accelerating. There also exist a critical velocity,

(
ds

dt

)
critical

= vcritical = fmaxn

√
1

mκ(s)
, (4.1.4)

where ft = 0. At this vcritical there is a loss of controllability since ft = 0.

Therefore vcritical is the maximum allowable velocity along the trajectory. The

method of constructing a velocity profile from the above control laws and
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relations is as follows:

• Find the local maximum points of the absolute value of the path curva-

ture. Figure 4.1 shows the absolute value curvature profile of a sample

path.

• For each of the local maximum a velocity profile is constructed so that

at the local maximum v = vcritical. u = −1 is used before the maximum

and u = +1 after the maximum. Figure 4.2 shows the velocity profiles

constructed from each of the points of local maximum shown in Figure

4.1.

• The profile from the given initial condition is constructed with u = +1.

For the final condition a velocity profile is constructed with u = −1,

ending at the final condition. Figure 4.2 also shows the profiles from the

initial condition and leading into the final condition.

• The optimal velocity profile is then the minimum of all of the above

profiles at each point along the trajectory. The optimal velocity profile

for the trajectory described by Figure 4.1 is shown in Figure 4.3.

Given an initial velocity, v0, acceleration, a, and distance traveled, ∆s, the

following equation is used to calculate the velocity after traveling ∆s:

v =
√

2a∆s+ v02. (4.1.5)

Equations (4.1.3) and (4.1.5) can be combined to give the discrete integration

relationship:
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Figure 4.1: Curvature of a path with respect to distance traveled.
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Figure 4.2: Constructed velocity profiles from the path described by Figure
4.1. The solid line is the profile constructed leading into the final condition,
the dashed line is constructed from the curvature maximum, and the dashed
and dotted line is constructed from the initial condition.
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Figure 4.3: The time optimal velocity profile constructed as the minimum of
the velocity profiles in Figure 4.2.
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vi =

√√√√√2u

√
(fmaxt )2 −mκ(si−1)

(
fmax
t

fmax
n

)2
v2i−1∆s

m
+ v2i−1 (4.1.6)

where vi−1 is the velocity when the distance si−1 has been traveled on the path

described by κ(s).

The velocity profile can be constructed as described above along with equa-

tion (4.1.6). In the case of an accelerating profile (u = +1) equation (4.1.6) can

be used as is, but in the case of a decelerating profile (u = −1) the subscripts

i and i− 1 are switched in order to reverse integrate.

4.2 Dynamic Model Velocity Profile

As mentioned previously, the methods in this section directly outline the

methods in [30] used to generate a time optimal velocity profile for a half car

model. This section begins by presenting and explaining the half car model

and all associated equations. Then the method to generate an optimal velocity

profile is presented and explained.

The half car model as used in this thesis is shown in Figure 4.4. The motion

of a half-car model can be described by the following equations:

mÿ = (fFx + fRx) sinψ − (fFy + fRy) cosψ

mẍ = (fFx + fRx) cosψ − (fFy + fRy) sinψ (4.2.1)

Iz = fFy`F − fRy`r
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Figure 4.4: The half car model for a car traveling on a path described by radius,
R(s), or alternatively curvature, κ(s), through the relationship κ(s) = 1

R(s)
.

Diagram from [30] Figure 6.
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where m is the vehicle mass, Iz is the polar moment of inertia of the vehicle,

fij (i = F,R, j = x, y) denotes the friction forces on the front and rear tires

(F,R) along the longitudinal and lateral body axes (x, y), and ψ is the yaw

angle of the vehicle. The coordinates of the center of gravity are denoted by

(x, y).

The path angle (angle of the tangent to the path), φ, and the slip angle,

β, are defined as:

φ = arctan

(
ẋ

ẏ

)
β = φ− ψ. (4.2.2)

The total friction forces for the front and rear tires are given by:

Fi = FizD sin(C arctan(Bsi)) (4.2.3)

where i = F,R, Fiz is the vertical load at the front and rear axles, and B, C, D

are constants defined by the type of surface, tire, ect. Reference [19] gives the

following equations to calculate Fiz:

FFz = mg
`R

`F + `R

FRz = mg
lF

`F + `R
(4.2.4)

where `R and `F are the lengths from the center of gravity to the rear and
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front axles, respectively. The total slip, si (i = F,R), is given by:

si =
√
s2ix + s2iy (4.2.5)

where sij (i = F,R, j = x, y) is the slip along the longitudinal and lateral

axes of the ith wheel.

The lateral slip of the rear tire is:

sRy =
v sin β − ψ̇lR

v cos β
. (4.2.6)

Pacejka’s Magic Formula [2] uses equations (4.2.3), (4.2.5), and (4.2.6) and

gives the rear tire friction force by:

fRj = −sRj
sR

FR (4.2.7)

where j = x, y.

The front and rear longitudinal slip are considered the control inputs and

are chosen in the range six = [−1,+1] [2].

After establishing these equations and control inputs the next step is to

construct front, rear, and resultant force diagrams that will be used in deter-

mining the optimal velocity profile. We will begin by constructing the rear

force diagram (also called the rear force characteristic).

For a given state, (v, β, ψ̇), it can be seen from Equation (4.2.6) that the

rear lateral slip, sRy, is fixed. Then, for that same given state, the lateral

and longitudinal rear tire forces, fRj (j = x, y), can be plotted against rear

longitudinal slip, sRx, using Equations (4.2.3), (4.2.5), (4.2.7), and the fixed
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rear lateral slip, sRy. Figure 4.5 shows an example of these plots. The values

of fRx and fRy can be plotted against each other to create the rear friction

force diagram (rear force characteristic). An example of this diagram is shown

in Figure 4.6.

Figure 4.5: Plots of fRj (j = x, y) against sRx ∈ [−1,+1]. Computed with
the values of FFz = 300 N , D = .7 , C = 1.5 , B = 7, lR = .4 m, β =
π
32
rad, ψ̇ = .35 rad

s
, v = 1 m

s
.

Next the front friction force diagram (front friction characteristic) is con-

structed. Equation (4.2.8) shows that the front tire lateral slip, sFy, is de-

pendent on the steering angle, which is a control input, so the front friction

characteristic cannot be constructed directly as with the rear friction charac-
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Figure 4.6: The rear friction characteristic from the vehicle state described in
Figure 4.5.
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teristic.

sFy = −v sin(β − δ) + ψ̇lF cos δ

v cos(β − δ) + ψ̇lF sin δ
(4.2.8)

where δ is the steering angle. The steering angle is defined as the angle between

the longitudinal front tire axes and the longitudinal body axis.

It can be seen from Equation (4.2.8) that sFy ∈ [−1,+1]. Combining this

with Equation (4.2.5), remembering that the front lateral slip is a control input

chosen such that sFx ∈ [−1,+1], it is clear that the total front slip is between

zero and one i.e. sF ∈ [0,+1]. Using Equation (4.2.3) the maximum combined

front tire force, Fmax
F , can be calculated on the interval sF ∈ [0,+1], this is

demonstrated in Figure 4.7.

The total front tire force, FF , must then lie within a circle of radius Fmax
F .

Such a friction circle is shown in Figure 4.8.

Reference [30] demonstrates that, assuming we can control the front lateral

slip and steering angle, the front friction forces, fFx and fFy, can be chosen

anyway such that the total front tire friction force, FF , is within the friction

circle. This friction circle is the front friction characteristic (front friction force

diagram).

The front friction circle can be combined with the rear friction character-

istic to create a resultant force diagram (‘GG-diagram’). Note that the above

mentioned diagrams are unique for each state of the vehicle. An example ‘GG-

diagram’ is shown in Figure 4.9. The unique Fi (i = F,R) values are where

ftot intersects with the front friction circle and rear wheel friction character-

istic, respectively. fij (i = F,R, j = x, y) can then be found by breaking
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Figure 4.7: The front tire force curve calculated from (4.2.3) with the values
of FRz = 392.4 N , D = .7 , C = 1.5 , B = 7. The maximum of this graph is
Fmax
F .
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Figure 4.8: The friction circle corresponding to the max shown by Figure 4.7
.
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Fi (i = F,R) into its components along the xβ and yβ directions.

Figure 4.9: A sample ‘GG-Diagram’. fn, ftot, and ft refer to the normal,
total, and tangential forces on the center of gravity of the car. The angle
between xβ and t is β. This figure can be best understood when looking at
the corresponding half car diagram, Figure 4.4. Diagram from [30] Figure 10.

.

It can be seen that for any given ftot there are unique front and rear lon-

gitudinal and lateral tire forces. These forces are such that the total front tire

friction force, FF , and total rear tire friction force, FR, are along the direc-

tion of ftot and lie on the front wheel friction circle and rear wheel friction

characteristic, respectively. ftot is also associated with a unique normal and
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tangential force, fn and ft.

Velocity profiles, for the dynamic case, are constructed as follows:

• First a ‘GG-Diagram’ for the initial state is constructed.

• Using this unique ‘GG-Diagram’ the initial values of fij (i = F,R, j =

x, y) are found or calculated as will be described.

• Equation (4.2.1) can then be directly integrated and gives, along with

Equation (4.2.2), the state of the car (v, β, ψ̇), at the next time step.

• This new state is then used to construct its unique ‘GG-digram’.

• The required normal force, fn, then is calculated using (4.1.1) and the

tangential force, ft, is computed such that the total force, ftot, is on the

edge of the ‘GG-Diagram’.

• The new values of fij (i = F,R, j = x, y) are calculated. From here

Equation (4.2.1) can be integrated again to get the values for the next

state of the car.

• This process is then iteratively repeated to construct a velocity profile.

This method is followed until β ≥ βcritical. Reference [30] shows that

incorporating this βcritical increases stability in the yaw dynamics and suggests

a value of 10 degrees for βcritical, which is used in this thesis. At this point

the method changes so that FF + FR = fn. The total rear friction force,

FR, is chosen to be along the normal direction. FF is then calculated such

that FF + FR = fn holds. This method is continued at each iteration until

β < βcritical.
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The strategy for calculating the optimal velocity profile is generally the

same as the strategy in the previous section, with a few changes, and can be

summarized as follows:

• Find the local maximum points of the absolute value of the path curva-

ture.

• For each of the local maximum a velocity profile is constructed so that at

the local maximum v = vcritical, β = 0, and ψ̇ = 0. vcritical is calculated

using Equation 4.1.4. The initial values of fij (i = F,R, j = x, y)

are computed such that the total force of the ‘GG-Diagram’, ftot, is

along the normal direction i.e. ftot = fn. The velocity profile leading

into the maximum is then constructed, as described above, with reverse

integration of Equations (4.2.1) and negative tangential force, fn. The

profile leading away from the maximum is constructed with a positive

tangential force, ft, and forward integration of Equations (4.2.1). Figure

4.10 shows an example of these profiles.

• The profile from the given initial condition is constructed with a positive

ft. For the final condition a velocity profile is constructed with a negative

ft, ending at the final condition. Figure 4.10 also shows the profiles from

the initial condition and leading into the final condition.

• The optimal velocity profile is then the minimum of all of the above

profiles at each point along the trajectory. The optimal velocity profile

for the trajectory described by Figure 4.1 is shown in Figure 4.11.
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Figure 4.10: Constructed velocity profiles with the dynamic model from the
path described by Figure 4.1. The solid line is the profile constructed from the
final condition, the dashed line is constructed from the curvature maximum,
and the dashed and dotted line is constructed from the initial condition.
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Figure 4.11: The time optimal velocity profile constructed as the minimum of
the velocity profiles in Figure 4.10
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As this section was an outline of the methods from references [31] and [30]

used in this thesis the reader is referred to these references for more detail.
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Chapter 5

Results

5.1 Optimized Paths Through a Track

This section contains the results for optimized paths through tracks. Al-

gorithm 2 was tested on several different tracks. In every case the waypoint

update method was to add one to the number of waypoints.

First, Figures 5.1 and 5.2 demonstrate the behavior of Algorithm 2 as

the number of waypoints increase. Figure 5.1 shows the paths with 5 and

75 waypoints. Figure 5.2 shows the cost function values of path calculated

with increasing waypoints. This demonstrates that increasing the number of

waypoints around the track causes the path to closely follow the center line and

thus the cost function approaches the value equal to cost function evaluation

of the track center line. When running Algorithm 2 the first path found that

is within the track boundaries may not always be the most optimal path.

Therefore running the algorithm until the cost function begins to increase will

help ensure that the optimal path is found. It is important to note here that
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the solution is optimal for the waypoint update and initial placement methods

used. As will be mentioned in Chapter 6, new methods of waypoint placement

and updating are being explored. These new methods could lead to solutions

with lower cost function values.

Figure 5.1: Paths through the shown oval track starting and ending at (0, 0).
The solid path is calculated with 5 optimized waypoints and the dashed path
is calculated with 75 optimized waypoints.

Results for the optimized closed-loop path generation through tracks of

varying complexity are shown in Figures 3.9, 5.3, 5.4, and 5.5.

In each case the first path found that fit within the track was the most

optimal path. That is, using the minimum number of waypoints led to the
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Figure 5.2: The cost function value of the optimized path through the track
in Figure 5.1 for a given number of waypoints.
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Figure 5.3: Path through track 2. Start and end point is (0, 0). Number of
waypoints: 7, marked by the black dots.
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Figure 5.4: Path through track 3. Start and end point is (0, 0). Number of
waypoints: 13, marked by the black dots.
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Figure 5.5: Path through track 4. Start and end point is (0, 0). Number of
waypoints: 18, marked by the black dots.
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most optimal path through the track. This is expected but, as mentioned

above, may not always be the case. It is also noted that scaling down the

track size leads to a much more rapid solution. Figures 3.9, 5.3, and 5.4 are

on a much smaller scale than Figure 5.5 and Algorithm 2 was able solve for a

solution much faster.

5.2 Velocity Profiles on Tested Tracks for Point

Mass

The results of creating a velocity profile, for a point mass of 1 kg with

maximum normal and tangential forces of 1 N , on each of the four tracks in

Figures 3.9, 5.3, 5.4 and 5.5 are shown here.

The average velocity and total travel time for each of the above Figures

are summarized in Table 5.1.

Table 5.1: Comparison of Average Velocities and Total Travel Times.

Corresponding Figure Average Velocity (m/s) Total Travel Time (s)
5.6 0.892 5.923
5.7 1.039 6.451
5.8 0.987 5.469
5.9 2.680 20.967
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Figure 5.6: Velocity vs. distance traveled for the trajectory shown in Figure
3.9.
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Figure 5.7: Velocity vs. distance traveled for the trajectory shown in Figure
5.3.
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Figure 5.8: Velocity vs. distance traveled for the trajectory shown in Figure
5.4.
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Figure 5.9: Velocity vs. distance traveled for the trajectory shown in Figure
5.5.
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5.3 Velocity Profiles on Tested Tracks for Dy-

namic Model

The results of creating a velocity profile based on a dynamic model with

the properties summarized in Table 5.2 are shown in this section. Note that

due to the tested tracks being scaled in size the properties of the dynamic

model were also scaled.

Table 5.2: Properties of the Dynamic Half-Car Model.

B 7
C 1.5
D .7

`f (m) .0065
`r (m) .0055

Iz (kgm2) 10
m (kg) 6

Max Velocity (m/s) 15

The average velocity and total travel time for each of the above Figures

are summarized in Table 5.3.

Table 5.3: Comparison of Average Velocities and Total Travel Times.

Corresponding Figure Average Velocity (m/s) Total Travel Time (s)
5.10 2.946 1.899
5.11 3.271 3.349
5.12 3.088 3.063
5.13 8.643 14.224

Figures 5.10, 5.11, 5.12, and 5.13 show examples of velocity profiles that

can be constructed to complete the creation of a trajectory given an optimal
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Figure 5.10: Velocity vs. distance traveled for the path shown in Figure 3.9
for the dynamic model.
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Figure 5.11: Velocity vs. distance traveled for the path shown in Figure 5.3
for the dynamic model.
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Figure 5.12: Velocity vs. distance traveled for the path shown in Figure 5.4
for the dynamic model.
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Figure 5.13: Velocity vs. distance traveled for the path shown in Figure 5.5
for the dynamic model.
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path calculated as outlined in this thesis. In order to evaluate the cost function

used in this paper, the average normal forces were compared for a car traveling

on the center line of the track (using the same car properties as described in

Table 5.2) and on the optimized path, with the average velocities computed

from the optimized dynamic velocity profile. These results are summarized in

Table 5.4. Table 5.4 shows that in each case the optimized path has a much

smaller average normal force. This would lead to a much more comfortable

ride as passengers would experience less forces acting on them throughout the

ride.

Table 5.4: Comparison of Average Normal Force Traveling through the Track
Center Line and Optimized Path.

Corresponding Track
Figure

Average Center Line
Normal Force (N)

Average Optimized
Path Normal Force
(N)

3.9 17.076 0.885
5.3 12.853 0.708
5.4 14.421 0.618
5.5 11.316 0.699
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Chapter 6

Conclusion

In this thesis a method of calculating optimized paths through a track has

been presented.

First, a constrained optimization problem was formulated to calculate an

optimized path between arbitrary initial and terminal states. Next, the con-

strained optimization problem was extended to incorporate a waypoint opti-

mization problem so that the path from an initial state, through the waypoint,

to a final state is optimal in some sense. Finally, the algorithms to calculate

the optimal closed-loop path of a car through a track were presented. These

algorithms were tested on multiple tracks and the results were shown. These

paths were also used to construct velocity profiles in order to calculate com-

plete trajectories.

Further investigation into the efficient placement and updating of way-

points could lead to more optimal and efficient paths. A method of using the

track’s curvature to choose the placement of the waypoints is currently under

investigation.

75



Bibliography

[1] N Achour, A Lakhdari, and F Ferguene. Motion planning for car-like

robots using hierarchical genetic algorithms. In Proceedings of the World

Congress on Engineering, volume 2, 2013.

[2] Pacejka H Bakker E, Nyborg L. Tyre modelling for use in vehicle dynamics

studies. SAE, (870421), 1987.

[3] Matteo Botta, Vincenzo Gautieri, Daniele Loiacono, and Pier Luca Lanzi.

Evolving the optimal racing line in a high-end racing game. In Compu-

tational Intelligence and Games (CIG), 2012 IEEE Conference on, pages

108–115. IEEE, 2012.

[4] MJ Box. A new method of constrained optimization and a comparison

with other methods. The Computer Journal, 8(1):42–52, 1965.

[5] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited

memory algorithm for bound constrained optimization. SIAM Journal on

Scientific Computing, 16(5):1190–1208, 1995.

[6] Luca Caracciolo, Alessandro De Luca, and Stefano Iannitti. Trajectory

tracking control of a four-wheel differentially driven mobile robot. In

76



Robotics and Automation, 1999. Proceedings. 1999 IEEE International

Conference on, volume 4, pages 2632–2638. IEEE, 1999.

[7] Luigi Cardamone, Daniele Loiacono, Pier Luca Lanzi, and Alessan-

dro Pietro Bardelli. Searching for the optimal racing line using genetic

algorithms. In Computational Intelligence and Games (CIG), 2010 IEEE

Symposium on, pages 388–394. IEEE, 2010.

[8] D Costantinescu and EA Croft. Smooth and time-optimal trajectory

planning for industrial manipulators along specified paths. Journal of

robotic systems, 17(5):233–249, 2000.

[9] Jaydev P Desai, James P Ostrowski, and Vijay Kumar. Modeling and

control of formations of nonholonomic mobile robots. IEEE transactions

on Robotics and Automation, 17(6):905–908, 2001.

[10] Philip E Gill, Walter Murray, and Michael A Saunders. Snopt: An sqp al-

gorithm for large-scale constrained optimization. SIAM review, 47(1):99–

131, 2005.

[11] Duc Thang Ho and Jonathan M Garibaldi. A fuzzy approach for the 2007

cig simulated car racing competition. In Computational Intelligence and

Games, 2008. CIG’08. IEEE Symposium On, pages 127–134. IEEE, 2008.

[12] Dervis Karaboga and Bahriye Basturk. Artificial bee colony (abc) op-

timization algorithm for solving constrained optimization problems. In

International Fuzzy Systems Association World Congress, pages 789–798.

Springer, 2007.

77



[13] Alonzo Kelly and Bryan Nagy. Reactive nonholonomic trajectory genera-

tion via parametric optimal control. The International Journal of Robotics

Research, 22(7-8):583–601, 2003.

[14] Harold W Kuhn. Nonlinear programming: a historical view. In Traces and

Emergence of Nonlinear Programming, pages 393–414. Springer, 2014.

[15] J-P Laumond, Paul E Jacobs, Michel Taix, and Richard M Murray. A

motion planner for nonholonomic mobile robots. IEEE Transactions on

Robotics and Automation, 10(5):577–593, 1994.

[16] Jean-Paul Laumond. Finding collision-free smooth trajectories for a non-

holonomic mobile robot. In IJCAI, volume 10, pages 1120–1123, 1987.

[17] Richard M Murray and Sosale Shankara Sastry. Nonholonomic motion

planning: Steering using sinusoids. IEEE Transactions on Automatic

Control, 38(5):700–716, 1993.

[18] Umashankar Nagarajan, George Kantor, and Ralph L Hollis. Trajectory

planning and control of an underactuated dynamically stable single spher-

ical wheeled mobile robot. In Robotics and Automation, 2009. ICRA’09.

IEEE International Conference on, pages 3743–3748. IEEE, 2009.

[19] Shayegan Omidshafiei. Optimal racing line control. 2014.

[20] Zhihua Qu, Jing Wang, and Clinton E Plaisted. A new analytical solution

to mobile robot trajectory generation in the presence of moving obstacles.

IEEE transactions on robotics, 20(6):978–993, 2004.

78



[21] S. Quinlan and O. Khatib. Elastic bands: connecting path planning and

control. In Proceedings IEEE International Conference on Robotics and

Automation, pages 802–807 vol.2, May 1993.

[22] Tizar Rizano, Daniele Fontanelli, Luigi Palopoli, Lucia Pallottino, and

Paolo Salaris. Global path planning for competitive robotic cars. In

Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on,

pages 4510–4516. IEEE, 2013.

[23] R Tyrrell Rockafellar. Extended nonlinear programming. In Nonlinear

optimization and related topics, pages 381–399. Springer, 2000.

[24] Alexis Scheuer and Th Fraichard. Continuous-curvature path planning for

car-like vehicles. In Intelligent Robots and Systems, 1997. IROS’97., Pro-

ceedings of the 1997 IEEE/RSJ International Conference on, volume 2,

pages 997–1003. IEEE, 1997.

[25] Klaus Schittkowski. Nlpql: A fortran subroutine solving constrained non-

linear programming problems. Annals of operations research, 5(1):485–

500, 1986.

[26] Kazuo Sugihara and John Smith. Genetic algorithms for adaptive motion

planning of an autonomous mobile robot. In Computational Intelligence

in Robotics and Automation, 1997. CIRA’97., Proceedings., 1997 IEEE

International Symposium on, pages 138–143. IEEE, 1997.

[27] Petr Svestka and Mark H Overmars. Coordinated motion planning for

multiple car-like robots using probabilistic roadmaps. In Robotics and

79



Automation, 1995. Proceedings., 1995 IEEE International Conference on,

volume 2, pages 1631–1636. IEEE, 1995.

[28] Jur Van Den Berg, Pieter Abbeel, and Ken Goldberg. Lqg-mp: Optimized

path planning for robots with motion uncertainty and imperfect state

information. The International Journal of Robotics Research, 30(7):895–

913, 2011.

[29] S Van Koutrik. Optimal control for race car minimum time maneuvering.

Master’s thesis, Delft University of Technology, 2015.

[30] E Velenis and P Tsiotras. Optimal velocity profile generation for given

acceleration limits; the half-car model case. In EEE International Sym-

posium on Industrial Electronics, pages 355–360, 2005.

[31] Efstathios Velenis and Panagiotis Tsiotras. Optimal velocity profile gen-

eration for given acceleration limits: Theoretical analysis. In American

Control Conference, Proceedings of the 2005, pages 1478–1483. IEEE,

2005.

80



Appendix A

Derivation of Derivatives from

Section 2.3

The derivatives in this section are calculated using the methods presented

in [13], with the addition of an arbitrary starting position. In (2.1.7) the

constraint equation was defined as:

g(q) = x(q)− xf , (A.0.1)

where q = [pT sf ]
T , p = [b c d · · · ]T , x(q) = [x(q) y(q) θ(q) κ(q)]T , and

xf = [xf yf θf κf ]
T . The state equations are:

x(q) = x0 +

∫ sf

0

cos θ(p, s)ds

y(q) = y0 +

∫ s

0

sin θ(p, s)ds (A.0.2)

θ(q) = θ0 + κ0sf +
bs2f
2

+
cs3f
3

+
ds4f
4

+ · · ·

κ(q) = κ0 + bsf + cs2f + ds3f + · · ·
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where q = [b c d · · · sf ]T . Note that the parameter a is not considered in p

since κ(p, s)|s=0 = a = κ0. The derivatives of θ(q) and κ(q) with respect to q

are readily apparent:

∂θ

∂q
=

[
s2f
2

s3f
3

s4f
4
· · · κ(q)

]
(A.0.3)

∂κ

∂q
=

[
sf s

2
f s

3
f · · · κ′(q)

]
where κ′(q) = b+ 2csf + 3ds2f + · · · .

The calculations of the derivatives of x(q) and y(q) are computed using

Leibniz’s Rule, which is as follows:

∂

∂x

(∫ b(x)

a(x)

f(x, t)dt

)
=

f(x, b(x))
∂

∂x
b(x)− f(x, a(x))

∂

∂x
a(x) + (A.0.4)∫ b(x)

a(x)

∂

∂x
f(x, t)dt.

For simplicity of notations, it is useful to define the following equations:

fy(p) = sin θ(p, s) (A.0.5)

fx(p) = cos θ(p, s).

x(q) and y(q) can now be written as:

x(q) = x0 +

∫ sf

0

fx(p, s)ds (A.0.6)

y(q) = y0 +

∫ sf

0

fy(p, s)ds.
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Now a direct application of Leibnitz’s Rule can be used to solve for ∂x
∂q

and

∂y
∂q

as follows:

∂z

∂b
= −1

2

∫ sf

0

s2fi(p, s)ds

∂z

∂c
= −1

3

∫ sf

0

s3fi(p, s)ds

∂z

∂d
= −1

4

∫ sf

0

s4fi(p, s)ds (A.0.7)

...

∂z

∂sf
= fj(p, sf )

where fi(·) = fy(·), fj(·) = fx(·) for z = x and fi(·) = fx(·), fj(·) = fy(·) for

z = y.

83



Appendix B

Derivation of Derivatives from

Section 2.4

The state equations defined in Section 2.4 are defined as:

x1(q) = x0 +

∫ sf1

0

cos θ1(p1, s)ds

y1(q) = y0 +

∫ sf1

0

sin θ1(p1, s)ds

θ1(q) = θ0 + κ0sf1 +
b1s

2
f1

2
+
c1s

3
f1

3
+
d1s

4
f1

4
+ · · ·

κ1(q) = k0 + b1sf1 + c1s
2
f1 + d1s

3
f1 + · · · (B.0.1)

x2(q) = xw +

∫ sf2

0

cos θ2(p2, s)ds

y2(q) = yw +

∫ sf2

0

sin θ2(p2, s)ds

θ2(q) = θw + κwsf2 +
b2s

2
f2

2
+
c2s

3
f2

3
+
d2s

4
f2

4
+ · · ·

κ2(q) = kw + b2sf2 + c2s
2
f2 + d2s

3
f2 + · · ·

where q = [q1 q2 q3]
T , qi = [pTi sfi] and pi = [bi ci di · · · ]T for i = 1, 2.
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Equation (2.4.5) gives the constraint:

g(q) =

 g1(q)

g2(q)

 (B.0.2)

where g1(q) = [g1x g1y g1θ g1κ]
T is the constraint equation corresponding to τ1

and g2(q) = [g2x g2y g2θ g2κ]
T is the constraint equation corresponding to τ2.

We begin by deriving the derivatives for g1k and g2k with respect to q. These

derivatives are straight forward:

∂g1k
∂q1

=
[
sf1 s

2
f1 s

3
f1 · · · κ′1(q)

]
∂g1k
∂q2

= [0 0 0 · · · 0]

∂g1k
∂q3

= [0 0 0 − 1] (B.0.3)

∂g2k
∂q1

= [0 0 0 · · · 0]

∂g2k
∂q2

=
[
sf2 s

2
f2 s

3
f2 · · · κ′2(q)

]
∂g2k
∂q3

= [0 0 0 1]

where

κ′1(q) = b1 + 2c1sf1 + 3d1s
2
f1 + · · ·

κ′2(q) = b2 + 2c2sf2 + 3d2s
2
f2 + · · · .
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The derivatives of gθ1 and gθ2 are also straight forward:

∂gθ1
∂q1

=

[
s2f1
2

s3f1
3

s4f1
4
· · · κ1(q)

]
∂gθ1
∂q2

= [0 0 0 · · · 0]

∂gθ1
∂q3

= [0 0 − 1 0] (B.0.4)

∂gθ2
∂q1

= [0 0 0 · · · 0]

∂gθ2
∂q2

=

[
s2f2
2

s3f2
3

s4f2
4
· · · κ2(q)

]
∂gθ2
∂q3

= [0 0 1 sf2] .

The derivatives of gx1 and gy1 can be derived by the same method as in

the previous appendix. Also note that gx1 and gy1 do not depend at all on q2.
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The derivatives are:

∂gx1
∂q1

=



−1

2

∫ sf1

0

s2fy1(p1, s)ds

−1

3

∫ sf1

0

s3fy1(p1, s)ds

−1

4

∫ sf1

0

s4fy1(p1, s)ds

...

fx1(p1, sf1)



T

∂gx1
∂q2

= [0 0 0 · · · 0]

∂gx1
∂q3

= [−1 0 0 0] (B.0.5)

∂gy1
∂q1

=



1

2

∫ sf1

0

s2fx1(p1, s)ds

1

3

∫ sf1

0

s3fx1(p1, s)ds

1

4

∫ sf1

0

s4fx1(p1, s)ds

...

fy1(p1, sf1)



T

∂gy1
∂q2

= [0 0 0 · · · 0]

∂gy1
∂q3

= [0 − 1 0 0] (B.0.6)

where

fx1(p1, s) = cos θ1(p1, s) (B.0.7)

fy1(p1, s) = sin θ1(p1, s).
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The only remaining derivatives are the derivatives of gx2 and gy2 with

respect to q. Noting that gx2 and gy2 do not depend at all on q1, the derivatives

with respect to q1 are:

∂gx2
∂q1

= [0 0 0 · · · 0] (B.0.8)

∂gy2
∂q1

= [0 0 0 · · · 0] .

The derivatives of gx2 and gy2 with respect to q2 can be derived by the

same method in the previous appendix. These derivatives are:

∂gx2
∂q2

=



−1

2

∫ sf2

0

s2fy2(p2, s)ds

−1

3

∫ sf2

0

s3fy2(p2, s)ds

−1

4

∫ sf2

0

s4fy2(p2, s)ds

...

fx2(p2, sf2)



T

(B.0.9)

∂gy2
∂q2

=



1

2

∫ sf2

0

s2fx2(p2, s)ds

1

3

∫ sf2

0

s3fx2(p2, s)ds

1

4

∫ sf2

0

s4fx2(p2, s)ds

...

fy2(p2, sf2)



T
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where

fx2(p2, s) = cos θ2(p2, s) (B.0.10)

fy2(p2, s) = sin θ2(p2, s).

Lastly, we define the derivatives of gx2 and gy2 with respect to q3. The

derivatives with respect to xw and yw are:

∂gx2
∂xw

= 1

∂gy2
∂yw

= 1 (B.0.11)

∂gx2
∂yw

= 0

∂gy2
∂xw

= 0.

The Leibnitz’s rule must be used in order to calculate the derivatives with

respect to θw and κw. Rewriting gx2 and gy2 as

gx2 = xw − xf +

∫ sf2

0

fx2(p2, s)ds (B.0.12)

gy2 = yw − yf +

∫ sf2

0

fy2(p2, s)ds
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gives way to a straightforward use of Leibnitz’ rule. The final derivatives are:

∂gx2
∂θw

= −
∫ sf2

0

fy2(p2, s)ds

∂gx2
∂κw

= −
∫ sf2

0

sfy2(p2, s)ds (B.0.13)

∂gy2
∂θw

=

∫ sf2

0

fx2(p2, s)ds

∂gy2
∂κw

=

∫ sf2

0

sfx2(p2, s)ds.
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Appendix C

Calculation of Cost Function

Derivatives

The derivatives of the cost function needed for the single path generation

problem from section 2.3 directly follow the formulations in [13]. These for-

mulations are outlined here.

The cost function used in this thesis, (2.5.1), is:

J(q) =
1

2

∫ sf

0

κ2(p, s)ds. (C.0.1)

The Leibnitz’s rule is used to calculate the following relation for the the

gradient with respect to q:

∂J

∂q
=

∫ sf

0

κ(q)
∂κ

∂q
ds. (C.0.2)
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This relation is used to calculate the following derivatives:

∂J

∂q
=

[
∂J

∂b

∂J

∂c

∂J

∂d
· · · ∂J

∂sf

]
. (C.0.3)

Equations (2.1.4) and (A.0.3) give the curvature and partial derivatives of

the curvature with respect to q:

κ(s) = κ0 + bs+ cs2 + ds3 + · · · (C.0.4)

∂κ

∂q
=

[
sf s

2
f s

3
f · · · κ′(q)

]
.

Using these partial derivatives along with (C.0.3), the derivatives of the

cost function can be calculated. Defining the following equation is helpful for

the notation of these derivatives:

Kn = κ0
sn+1

n+ 1
+ b

sn+2

n+ 2
+ c

sn+3

n+ 3
+ d

sn+4

n+ 4
+ · · · . (C.0.5)

Then the derivatives are:

∂J

∂q
=

[
K1 K2 K3 · · · ∂J

∂sf

]
(C.0.6)

where

∂J

∂sf
=

1

2
κ(q)2. (C.0.7)

The derivatives of the cost function needed for the way point optimization

problem in Section 2.4 is now formulated. The cost function for this problem
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can be written:

J(q) = J1(q) + J2(q)

J1(q) =
1

2

∫ sf1

0

κ21(q)ds (C.0.8)

J2(q) =
1

2

∫ sf2

0

κ22(q)ds

where κ1(q), κ2(q), and q are as in (B.0.1). Noticing that κ1(q) does not

depend at all on q2 and that κ2(q) does not depend at all on q1, the derivatives

of J(q) with respect to q1 and q2 can be calculated using the same method as

in the previous section. If we define

Kn
1 = κ0

sn+1

n+ 1
+ b1

sn+2

n+ 2
+ c1

sn+3

n+ 3
+ d1

sn+4

n+ 4
+ · · · (C.0.9)

Kn
2 = κw

sn+1

n+ 1
+ b2

sn+2

n+ 2
+ c2

sn+3

n+ 3
+ d2

sn+4

n+ 4
+ · · · ,

then

∂J

∂q1

=

[
K1

1 K2
1 K3

1

...
1

2
κ1(q)2

]
(C.0.10)

∂J

∂q2

=

[
K1

2 K2
2 K3

2

...
1

2
κ2(q)2

]
.

It is also apparent that J1(q) does not depend on q3 and J2(q) does not

depend on xw, yw and θw. The derivative of J2(q) with respect to κw can be

calculated using the Leibnitz’s rule and is:

∂J

∂κw
= sf2. (C.0.11)
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Then

∂J

∂q3

= [0 0 0 sf2]
T . (C.0.12)

And finally

∂J

∂q
=

[(
∂J

∂q 1

)T (
∂J

∂q 2

)T (
∂J

∂q 3

)T]T
. (C.0.13)
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Appendix D

MATLAB Simulation Code

function [ W, x, y, Q, J ] = Algorithm_1( xo, yo, thetao, ko, w, l, ...

thetaguesses, sfguesses )

% The inputs are: a matrix, w, where the row vectors are the center points

% of the waypoints, the length, l, of the waypoint boundaries, a vector

% of the initial theta values, thetaguess, for each waypoint, the initial

% values for the arc length, sfguesses, of each path segment connecting the

% waypoints, and the starting point of the track (xo, yo, thetao, ko). Note

% that w ends with the final waypoint and theta guesses ends with the

% angle of the tangenth to the end of the track (not the final waypoint

% theta value).

% The outputs are: a matrix, W, where the row vectors are the optimized

% waypoints, the x and y values, x and y, of the optimized paths

% connecting the waypoints, a matrix, Q, where the row vectors are the

% paramters describing the optimized paths connecting the waypoints, and a

% vector, J, that has the cost function values at the end of each

% iteration.

% Calculate the number of waypoints.

num_wp = size(w) - 1;

num_wp = num_wp(1);

% Initial guesses for the waypoint theta values.

theta = ones(num_wp,1);

for i = 1:num_wp

theta(i) = thetaguesses(i);

end

% Initialize the matrix of optimized waypoints including intial and final

95



% conditions.

W = ones(num_wp, 4);

for i = 1:num_wp

W(i,:) = [w(i,:), theta(i), 0];

end

W = [xo, yo, thetao, ko; W; w(end,:), thetaguesses(end), 0];

% Algorithm 1

j = 0;

dJ = 1;

while dJ > .001

j = j + 1;

for i = 2:size(W) - 1

% Optimize the waypoint postions.

[ q ] = wp_opt(W(i-1,1), W(i-1,2), W(i-1,3), W(i-1,4),...

W(i+1,1), W(i+1,2), W(i+1,3), W(i+1,4), w(i-1,1),...

w(i-1,2), l, W(i,1), W(i,2), W(i,3), W(i,4),...

sfguesses(i-1), sfguesses(i));

W(i,:) = [q(9), q(10), q(11), q(12)];

sfguesses(i-1) = q(4);

sfguesses(i) = q(8);

end

% Create the paths and calculate the cost function value at the

% jth iteration.

Q = ones(num_wp + 1, 4);

for i = 1:num_wp + 1

Q(i,:) = path_opt(W(i,1), W(i,2), W(i,3), W(i,4), W(i+1,1),...

W(i+1,2), W(i+1,3), W(i+1, 4), sfguesses(i));

end

J(j) = cost_function(Q, W(:,4));

if j > 1

dJ = abs(J(j) - J(j-1));

end

end

% Create the path x and y vectors.

x = ones(101, num_wp + 1);

y = x;

for i = 1:num_wp + 1

xy = x_vs_y(W(i,1), W(i,2), W(i,3), W(i,4), Q(i,:));

x(:,i) = xy(:,1);

y(:,i) = xy(:,2);

end

end
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function [ wp, Q ] = Algorithm_2( xin, yin, L, num_wp, is_loop )

% The inputs are: two column vectors, xin and yin, that are the x and y

% values of the inner track line, a width, L, of the track, an intial

% number of waypoints, num_wp, and a Boolean indicating if the track is a

% loop.

% The outputs are: the optimized waypoint positions, wp, the optimized

% path as a matrix, Q, of parameter vectors describing each path section

% connecting the optimized waypoints, and a plot of the optimal path

% through the track.

% Center and outer lines of the track and the angle of the tangent to

% center line at each point.

[XY, theta_c] = track(xin ,yin, L);

% Distance vector corresponding to the track center line.

S = arclength(XY(:,1), XY(:,2));

% Algorithm 2

in_track = false;

J = 1000;

dJ = -1;

j = 0;

while (~(in_track && dJ > 0))

% Setting intial values for the waypoints.

X = ones(num_wp + 1, 4);

s_increment = S(end)/(num_wp + 1);

sfguesses = s_increment * ones(num_wp + 1, 1);

for i = 1:num_wp

k = find(S >= i*s_increment, 1);

X(i, 1) = XY(k, 1);

X(i, 2) = XY(k, 2);

X(i, 3) = theta_c(k + 1);

X(i, 4) = 0;

end

% Adding the track endpoint

X(num_wp + 1, 1) = XY(end, 1);

X(num_wp + 1, 2) = XY(end, 2);

if (is_loop)

X(num_wp + 1, 3) = 2*pi;

else

X(num_wp + 1, 3) = theta_c(end);

end

X(num_wp + 1, 4) = 0;

% Setting length of the square waypoint boundaries.

97



l = L/sqrt(2);

% Optmize the waypoints and create the optimal paths conecting the

% waypoints.

[wp_new, Xtrj_new, Ytrj_new, Q_new, J1] = ...

Algorithm_1(0, 0, 0, 0, X(:,1:2), l, X(:,3), sfguesses);

Jnew = J1(end);

% Check the path for collisions with the track and if the cost function

% is still decreasing.

xq = reshape(Xtrj_new,[],1);

yq = reshape(Ytrj_new,[],1);

if (is_loop)

xv = [XY(:,3); NaN; xin];

yv = [XY(:,4); NaN; yin];

else

xv = [xin; flipud(XY(:,3))];

yv = [yin; flipud(XY(:,4))];

xq = xq(30:end-30);

yq = yq(30:end-30);

end

in = inpolygon(xq, yq, xv, yv);

in_track = numel(xq(~in)) == 0;

j = j + 1;

dJ = Jnew - J;

if (~(in_track && dJ > 0) || j == 1)

Xtrj = Xtrj_new;

Ytrj = Ytrj_new;

Q = Q_new;

wp = wp_new;

J = Jnew;

num_wp = num_wp + 1;

end

end

% Plot the optimal path through the track.

plot(xin, yin, XY(:,3), XY(:,4), Xtrj, Ytrj)

end

function [ q ] = wp_opt( xo, yo, thetao, ko, xf, yf, thetaf, kf, xcwp,...

ycwp, l, x1o, y1o, theta1o, k1o, s1o, s2o)

% The inputs are: the path initial constraints (xo, yo, thetao, ko), the

% path final constraints (xf, yf, thetaf, kf), the center of the waypoint

% (xcwp, ycwp), the width of the waypoint, l, the initial guess for the

% optimal waypoint (x1o, y1o, theta1o, k1o), and the initial guesses for

% the lengths of paths 1 and 2, s1o and s2o, respectively (if s1o and s2o
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% are inputted as zero a default value is used).

% The output is: the parameter vector for the optimization problem.

% Functions to break down the parameter vector.

q1_in_q = @(q) [q(1); q(2); q(3); q(4)];

q2_in_q = @(q) [q(5); q(6); q(7); q(8)];

q3_in_q = @(q) [q(9); q(10); q(11); q(12)];

% Setting up intial values & guesses.

if s1o == 0

s1o = ((theta1o - thetao)^2)/5 + 1;

end

if s2o == 0

s2o = ((thetaf - theta1o)^2)/5 + 1;

end

q3o = [x1o; y1o; theta1o; k1o];

% Get more accurate initial values for the parameters.

q1o = transpose(path_opt(xo, yo, thetao, ko, x1o, y1o, theta1o, k1o, s1o));

q2o = transpose(path_opt(x1o, y1o, theta1o, k1o, xf, yf, thetaf, kf, s2o));

q1o = transpose(q1o);

q2o = transpose(q2o);

qo = [q1o;q2o;q3o];

% Calculate the boundaries on the waypoint.

xlb = xcwp - l/2;

xub = xcwp + l/2;

ylb = ycwp - l/2;

yub = ycwp + l/2;

% Define the system equations.

fCn = @(thetao, ko, b, c, d, s, n) (s.^n).*cos(thetao + ko.*s +...

b.*(s.^2)/2 + c.*(s.^3)/3 + d.*(s.^4)/4);

fSn = @(thetao, ko, b, c, d, s, n) (s.^n).*sin(thetao + ko.*s +...

b.*(s.^2)/2 + c.*(s.^3)/3 + d.*(s.^4)/4);

Cn = @(thetao, ko, q, n) integral(@(s) fCn(thetao, ko, q(1), q(2), q(3),...

s, n), 0, q(4));

Sn = @(thetao, ko, q, n) integral(@(s) fSn(thetao, ko, q(1), q(2), q(3),...

s, n), 0, q(4));

g1 = @(xo, thetao, ko, q) xo + Cn(thetao, ko, q, 0);

g2 = @(yo, thetao, ko, q) yo + Sn(thetao, ko, q, 0);

g3 = @(thetao, ko, q) thetao + ko*q(4) + q(1)*(q(4)^2)/2 +...

q(2)*(q(4)^3)/3 + q(3)*(q(4)^4)/4;

g4 = @(ko, q) ko + q(1)*q(4) + q(2)*(q(4)^2) + q(3)*(q(4)^3);

g = @(xo, yo, thetao, ko, q) [g1(xo, thetao, ko, q); g2(yo, thetao,...

ko, q); g3(thetao, ko, q); g4(ko, q)];
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X1 = @(q) [q(9); q(10); q(11); q(12)];

Xf = [xf; yf; thetaf; kf];

g4prime = @(q) q(1) + 2*q(2)*q(4) + 3*q(3)*q(4)^2;

gneg = @(q) [X1(q) - g(xo, yo, thetao, ko, q1_in_q(q));

Xf - g(q(9), q(10), q(11), q(12), q2_in_q(q))];

Jeq = @(b, c, d, s) (ko + b.*s + c.*(s.^2) + d.*(s.^3)).^2;

J = @(q) integral(@(s) Jeq(q(1), q(2), q(3), s), 0, q(4))/2 +...

integral(@(s) Jeq(q(5), q(6), q(7), s), 0, q(8))/2;

% First order conditions.

dgdq1 = @(q) [-Sn(thetao, ko, q1_in_q(q), 2)/2, -Sn(thetao, ko,...

q1_in_q(q), 3)/3, -Sn(thetao, ko, q1_in_q(q), 4)/4,...

cos(g3(thetao, ko, q1_in_q(q))), 0, 0, 0, 0,-1, 0, 0, 0];

dgdq2 = @(q) [Cn(thetao, ko, q1_in_q(q), 2)/2, Cn(thetao, ko,...

q1_in_q(q), 3)/3, Cn(thetao, ko, q1_in_q(q), 4)/4,...

sin(g3(thetao, ko, q1_in_q(q))), 0, 0, 0, 0, 0, -1, 0, 0];

dgdq3 = @(q) [q(4)^2/2, q(4)^3/3, q(4)^4/4, g4(ko, q1_in_q(q)),...

0, 0, 0, 0, 0, 0, -1, 0];

dgdq4 = @(q) [q(4), q(4)^2, q(4)^3, g4prime(q1_in_q(q)), 0,...

0, 0, 0, 0, 0, 0, -1];

dgdq5 = @(q) [0, 0, 0, 0, -Sn(q(11), q(12), q2_in_q(q), 2)/2,...

-Sn(q(11), q(12), q2_in_q(q), 3)/3, -Sn(q(11),...

q(12), q2_in_q(q), 4)/4, cos(g3(q(11), q(12), q2_in_q(q))), 1, 0,...

-Sn(q(11), q(12), q2_in_q(q), 0), -Sn(q(11), q(12), q2_in_q(q), 1)];

dgdq6 = @(q) [0, 0, 0, 0, Cn(q(11), q(12), q2_in_q(q), 2)/2,...

Cn(q(11), q(12), q2_in_q(q), 3)/3, Cn(q(11), q(12), q2_in_q(q),...

4)/4, sin(g3(q(11), q(12), q2_in_q(q))), 0, 1,...

Cn(q(11), q(12), q2_in_q(q), 0), Cn(q(11), q(12), q2_in_q(q), 1)];

dgdq7 = @(q) [0, 0, 0, 0, q(8)^2/2, q(8)^3/3, q(8)^4/4, g4(q(12),...

q2_in_q(q)), 0, 0, 1, q(8)];

dgdq8 = @(q) [0, 0, 0, 0, q(8), q(8)^2, q(8)^3, g4prime(q2_in_q(q)),...

0, 0, 0, 1];

dgdq = @(q) [dgdq1(q); dgdq2(q); dgdq3(q); dgdq4(q); dgdq5(q); dgdq6(q);...

dgdq7(q); dgdq8(q)];

kn = @(ko, q, n) ko*q(4)^(n + 1)/(n + 1) + q(1)*q(4)^(n + 2)/(n + 2) +...

q(2)*q(4)^(n + 3)/(n + 3) + q(3)*q(4)^(n + 4)/(n + 4);

dJdq = @(q) [kn(ko, q1_in_q(q), 1), kn(ko, q1_in_q(q), 2),...

kn(ko, q1_in_q(q), 3), g4(ko, q1_in_q(q))^2/2, kn(q(12), q2_in_q(q),...

1), kn(q(12), q2_in_q(q), 2), kn(q(12), q2_in_q(q), 3),...

g4(q(12), q2_in_q(q))^2/2, 0, 0, 0, g3(0, q(12), q2_in_q(q))];

% Run the solver.

lb = [-1000; -1000; -1000; -1000; -1000; -1000; -1000; -1000;

xlb; ylb; -1000; -1000];

ub = [1000; 1000; 1000; 1000; 1000; 1000; 1000; 1000; xub; yub;

1000; 1000];
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options = optimoptions(@fmincon, ’SpecifyObjectiveGradient’,true,...

’SpecifyConstraintGradient’,true,’HessianApproximation’,...

’finite-difference’, ’SubproblemAlgorithm’, ’cg’,...

’MaxFunctionEvaluations’,10000, ’MaxIterations’,2000);

nonlcon = @con;

q = fmincon(@fun,qo,[],[],[],[],lb,ub,nonlcon,options);

% Functions used in the solver.

function [c,ceq, gc, gceq] = con(x)

c = [];

ceq = gneg(x);

gc = [];

gceq = transpose(dgdq(x));

end

function [f, g] = fun(x)

f = J(x);

g = dJdq(x);

end

end

function [ q ] = path_opt( xo, yo, thetao, ko, xf, yf, thetaf, kf, sfo)

% The inputs are: the initial constraints for a path (xo, yo,

% thetao, ko), the final constraints for the path (xf, yf, thetaf, kf), and

% an initial guess, sfo, for the parameter sf. If sfo is zero a default

% value is used.

% The outputs are: the parameter vector for a path that satifies the

% inputted constraints and is optimized with the smoothness cost function.

% Setting up initial guesses.

a = ko;

if (sfo == 0)

sfo = ((thetaf - thetao)^2)/5 + 1;

end

% Calculating inproved initial guesses.

qo = initial_path( xo, yo, thetao, ko, xf, yf, thetaf, kf, sfo);

Xf = [xf; yf; thetaf; kf];

% Defining the system equations.

fCn = @(b, c, d, s, n) (s.^n).*cos(thetao + a.*s + b.*(s.^2)/2 +...

c.*(s.^3)/3 + d.*(s.^4)/4);

fSn = @(b, c, d, s, n) (s.^n).*sin(thetao + a.*s + b.*(s.^2)/2 +...

c.*(s.^3)/3 + d.*(s.^4)/4);

Cn = @(q, n) integral(@(s) fCn(q(1), q(2), q(3), s, n), 0, q(4));
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Sn = @(q, n) integral(@(s) fSn(q(1), q(2), q(3), s, n), 0, q(4));

g1 = @(q) xo + Cn(q, 0);

g2 = @(q) yo + Sn(q, 0);

g3 = @(q) thetao + a*q(4) + q(1)*(q(4)^2)/2 + q(2)*(q(4)^3)/3 +...

q(3)*(q(4)^4)/4;

g4 = @(q) a + q(1)*q(4) + q(2)*(q(4)^2) + q(3)*(q(4)^3);

g = @(q) [g1(q); g2(q); g3(q); g4(q)];

gneg = @(q) Xf - g(q);

Jeq = @(b, c, d, s) (a + b.*s + c.*(s.^2) + d.*(s.^3)).^2;

J = @(q) integral(@(s) Jeq(q(1), q(2), q(3), s), 0, q(4))/2;

% First order conditions.

kprime = @(q) q(1) + 2*q(2)*q(4) + 3*q(3)*q(4)^2;

dgdq = @(q) [-Sn(q, 2)/2, -Sn(q, 3)/3, -Sn(q, 4)/4, cos(g3(q));

Cn(q, 2)/2, Cn(q, 3)/3, Cn(q, 4)/4, sin(g3(q));

(q(4)^2)/2, (q(4)^3)/3, (q(4)^4)/4, g4(q);

q(4), q(4)^2, q(4)^3, kprime(q)];

Kn = @(q, n) a*q(4)^(n + 1)/(n + 1) + q(1)*(q(4)^(n + 2))/(n + 2) +...

q(2)*(q(4)^(n + 3))/(n + 3) + q(3)*(q(4)^(n + 4))/(n + 4);

dJdq = @(q) [Kn(q, 1), Kn(q, 2), Kn(q, 3), (g4(q)^2)/2];

% Run the solver.

nonlcon = @con;

options = optimoptions(@fmincon, ’SpecifyObjectiveGradient’,true,...

’SpecifyConstraintGradient’,true,’HessianApproximation’,...

’finite-difference’, ’SubproblemAlgorithm’, ’cg’,...

’MaxFunctionEvaluations’,10000, ’MaxIterations’,2000);

q = fmincon(@fun,qo,[],[],[],[],[],[],nonlcon,options);

% Functions needed for the solver.

function [c, ceq, gc, gceq] = con(x)

c = [];

ceq = gneg(x);

gc = [];

gceq = transpose(dgdq(x));

end

function [f, g] = fun(x)

f = J(x);

g = dJdq(x);

end

end

function [ J ] = cost_function( Q, ko )
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% The inputs are: a matrix, Q, where each row vector contains the

% parameters describing a path and a vector, ko, that contains the intial

% curvature values for each path described by Q.

% The output is: a value of the sum of the cost functions for each path.

% Defining the cost function.

Jeq = @(ko, b, c, d, s) (ko + b.*s + c.*(s.^2) + d.*(s.^3)).^2;

% Summing the cost function values.

Jf = @(ko, q) integral(@(s) Jeq(ko, q(1), q(2), q(3), s), 0, q(4))/2;

if length(ko) == 1

J = Jf(ko, Q);

else

J = 0;

for i = 1:length(Q(:,1))

J = J + Jf(ko(i), [Q(i,1), Q(i,2), Q(i,3), Q(i,4)]);

end

end

end

function [ s ] = arclength( x, y )

% The inputs are: two column vectors decribing the points on a line, x

% and y.

% The outputs are: a cooresponding distance vector, s.

% Initialize the vectors

size = length(x);

s = ones(size, 1);

dx = diff(x);

dy = diff(y);

s(1) = 0;

% Calculate the distance vector.

for i = 2:size

int = sqrt(dx(i-1)^2 + dy(i-1)^2);

s(i) = s(i-1) + int;

end

end

function [ q ] = initial_path( xo, yo, thetao, ko, xf, yf, thetaf, kf, sfo)

% The inputs are: the initial constraints for a path (xo, yo,

% thetao, ko), the final constraints for the path (xf, yf, thetaf, kf), and
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% an initial guess, sfo, for the parameter sf. If sfo is zero a default

% value is used.

% The outputs are: the parameter vector for a path that satifies the

% inputted constraints.

% Setting up initial conditions.

if (sfo == 0)

sfo = ((thetaf - thetao)^2)/5 + 1;

end

a = ko;

AA = [sfo, sfo^2;

(sfo^2)/2, (sfo^3)/3];

AB = [kf - ko;

thetaf - thetao - ko*sfo];

BC = AA\AB;

bo = BC(1);

co = BC(2);

do = 0;

qo = [bo; co; do; sfo];

Xf = [xf; yf; thetaf; kf];

% Defining the system equations.

fCn = @(b, c, d, s, n) (s.^n).*cos(thetao + a.*s + b.*(s.^2)/2 +...

c.*(s.^3)/3 + d.*(s.^4)/4);

fSn = @(b, c, d, s, n) (s.^n).*sin(thetao + a.*s + b.*(s.^2)/2 +...

c.*(s.^3)/3 + d.*(s.^4)/4);

Cn = @(q, n) integral(@(s) fCn(q(1), q(2), q(3), s, n), 0, q(4));

Sn = @(q, n) integral(@(s) fSn(q(1), q(2), q(3), s, n), 0, q(4));

g1 = @(q) xo + Cn(q, 0);

g2 = @(q) yo + Sn(q, 0);

g3 = @(q) thetao + a*q(4) + q(1)*(q(4)^2)/2 + q(2)*(q(4)^3)/3 +...

q(3)*(q(4)^4)/4;

g4 = @(q) a + q(1)*q(4) + q(2)*(q(4)^2) + q(3)*(q(4)^3);

g = @(q) [g1(q); g2(q); g3(q); g4(q)];

gneg = @(q) Xf - g(q);

% Run the solver.

options = optimoptions(@lsqnonlin, ’MaxFunctionEvaluations’,10000,...

’MaxIterations’,2000);

q = lsqnonlin(gneg, qo,[], [], options);

end

function [ XY, theta_c ] = track( xin, yin, L )

% The inputs are: two column vectors, xin and yin, which define the points

% for the inside of a track and the track width, L.
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% The outputs are: a matrix whose column vectors are xc, yc, xo, and yo

% (xc and yc are the points for the center track line and xo and yo are

% the points for the outer track line) and a vector, theta_c, which

% contains the angle of the tangents to the center line for each point

% along the center line.

% Initializing dy and dx.

dy = diff(yin);

dx = diff(xin);

yin = yin(2:end);

xin = xin(2:end);

% Calulate the inner and outer track line vectors.

xc = L/2*sin(atan2(dy, dx)) + xin;

yc = -L/2*cos(atan2(dy, dx)) + yin;

xo = L*sin(atan2(dy, dx)) + xin;

yo = -L*cos(atan2(dy, dx)) + yin;

% Define theta corresponding to each x and y point on the center line.

% Making sure that the angle is commulative from the start of the track

% and starts at zero.

theta_c_1 = atan2(diff(yc),diff(xc));

for i = 1:length(theta_c_1)

if (theta_c_1(i) < 0)

theta_c_1(i) = theta_c_1(i) + 2*pi;

end

end

d_theta_c = diff(theta_c_1);

k = find(abs(d_theta_c) >= pi/2);

for i = 1:length(k)

d_theta_c(k(i)) = 0;

end

theta_c = ones(length(d_theta_c) + 1, 1);

theta_c(1) = 0;

for i = 1:length(d_theta_c)

theta_c(i + 1) = theta_c(i) + d_theta_c(i);

end

% Define the XY matrix

XY= [xc, yc, xo, yo];

end

function [ xy ] = x_vs_y( xo, yo, thetao, ko, q)

% The inputs are: a vector, q, of the parameters for a

% path and the intial conditions for the path (xo, yo, thetao, ko).
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% The outputs are: two vectors that are 100 cooresponding x and y

% values for a given path described by the inputs.

% Defining the system equations.

fCn = @(ko, b, c, d, s, n) (s.^n).*cos(thetao + ko.*s + b.*(s.^2)/2 +...

c.*(s.^3)/3 + d.*(s.^4)/4);

fSn = @(ko, b, c, d, s, n) (s.^n).*sin(thetao + ko.*s + b.*(s.^2)/2 +...

c.*(s.^3)/3 + d.*(s.^4)/4);

Cn = @(ko, q, n) integral(@(s) fCn(ko, q(1), q(2), q(3), s, n), 0, q(4));

Sn = @(ko, q, n) integral(@(s) fSn(ko, q(1), q(2), q(3), s, n), 0, q(4));

g1 = @(ko, q) xo + Cn(ko, q, 0);

g2 = @(ko, q) yo + Sn(ko, q, 0);

% Create the x and y vectors.

x = ones(1,101);

y = ones(1,101);

i = 1;

for si = 0:q(4)/100:q(4)

x(i) = g1(ko, [q(1), q(2), q(3), si]);

y(i) = g2(ko, [q(1), q(2), q(3), si]);

i = i + 1;

end

xy = transpose([x; y]);

end
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