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Abstract

Heterogeneous materials provide a unique combination of desirable mechanical,

thermal or electrical properties. This dissertation presents several micro-structure

modeling approaches to predict the effective properties of heterogeneous materials

and demonstrates its certain application toward two highly heterogeneous, uncon-

ventional structural composite materials (carbon fiber reinforced composite mate-

rials and graphene nanoplatelets composite). By using the efficient computational

algorithm based on the FEA, a randomly oriented disk-shaped particles system are

generated. A new element partition scheme based on the vector operations and

geometry of inclusion has been implemented to mesh the intersected disks. The

computed equivalent conductivity is expressed as a power-law function form with

the key parameters determined from curve fitting. Also, we proposed a novel random

walk method to study the 2-D circular or elliptical and 3-D spherical or ellipsoidal

non-overlapping system diffusion process. A Monte-Carlo scheme is applied to gen-

erate the particulate system for simulation. The effective diffusion coefficient has

been predicted and compared to the finite element method and effective medium

theory. The aspect ratio effect also investigated and compared to other numerical

studies.
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Chapter 1

Introduction

1.1 Introduction of Heterogeneous Materials

Heterogeneous materials have been tremendous developments in science and

technology in the last three decades. It can be defined as materials that contain

non-uniform parts and composed of diverse parts occupy the same component. Het-

erogeneous materials can be found in nature as well as artificially synthesized. Most

common examples are metal alloy systems, polymer blends, porous and cracked me-

dia, polycrystalline materials and composites [85]. Since the high demand of new

heterogeneous materials, design, and development of novel heterogeneous materials

require a proper understanding of the influence of micro-structure on the desired

performance feature. Accurate prediction of the effective properties of highly het-

erogeneous materials with multiple micro-structural phases is a challenging task. It

is necessary to classify and characterize the constituent phases regarding their vol-

ume fractions, size of different phase, distributions of the inclusions, and intrinsic

properties, combined with analytical or numerical models capable of handling more

than just the volume fractions of the phases. To accurately predict the effective

properties of highly heterogeneous materials with multiple micro-structural phases,

1



Figure 1.1: Different type of CFRP models

both analytical solution (Effective Medium Theory) and numerical methods (Finite

Element Analysis or Random Walk Simulation) used to study the materials.

1.1.1 Carbon-Fiber Reinforcement Polymer (CFRP)

Carbon fiber reinforced composite (CFRP) is a lightweight, strong materials

used in the manufacturing of numerous products and has been widely applied to

the area of aerospace [74], civil [81] and automotive engineering [62]. In general,

CFRP is made of thermosetting resins such as epoxy, polyester, or vinyl ester as a

matrix and carbon fibers, aluminum, or glass fibers as fibers in the composite. The

major advantages of CFRP over traditional materials like wood, plastics, steel are

the properties of high stiffness and strength [87]. Furthermore, the CFRP usually

have low coefficient of thermal expansion and high thermal or electrical conductivity

[10, 11, 12, 65, 80]. In the composite, the fibers can be in various forms. The

commonly used fiber forms include unidirectional tow, chopped strand mat, and

braid as well as chopped fiber in a sheet and bulk molding compounds. Figure 1.1

shows the different type of CFRP that usually use in the computational modeling.

Depending on the manufacturing and application process used, the performance of

one fiber performance may be different from the others.

2



1.1.2 Graphene-based Nano-platelets Composite (GNP)

In spite of a short history, graphene became a rapidly rising superstar on the

horizon of materials science. The purely two-dimensional material shows uncon-

ventionally high crystal and electronic quality. Usually, 10-100 layers of graphene

consist of graphene sheets, also called graphene nano-platelets (GNP), shown in

Fig. 1.2 (a) through (c). Because of its unique size and morphology, GNP can

be combined with other polymer materials (plastic, nylon, or rubbers) to enhance

mechanical properties, thermal or electrical conductivity due to their pure graphite

composition [59, 96]. Since graphene has excellent electrical conductivity and high

mechanical strength, composite fibers consisting of graphene take advantage of the

high strength and also have the ability to conduct electricity. Material conductiv-

ity is significantly improved because graphene has a 2D lattice of sp2 bond carbon

and extremely high aspect ratio. Furthermore, graphene layers are dispersed into

polymers that produce multiple conductive pathways in the composites that also

improve the conductivities. Combined with the high-density polymer, GNP can

greatly enhance the mechanical and thermal properties of composites.

Prior research of GNP were mostly experiments. While the experiments pro-

vided first-hand information about the various import factors, the limitation of ex-

periments is that they cannot provide a uniform conclusion for the similar structure

type, and the complexity can go far beyond the reach of present analytic methods

[46]. Due to this reason, many computational simulations as “virtual” experiments

appeared. In the computational model, the GNP usually is treated as 3-D disk-

like particles that randomly distributed in the matrix, shown in Fig. 1.2(d) [46].

In this model, each GNP is a conducting disk with a random orientation. Then

the percolation theory was applied to explain the electrical conductive behavior of

composites. Near the percolation threshold, the electric conductivity of composites

3



Figure 1.2: SEM of (a) GNP particle, (b) and (c) random distribution of GNPs
within the epoxy matrix; (c) 3D schematic model of GNP conductive network.

follows a power-law relationship:

σ = σ0(φf − φ0)n (1.1)

where σ is the electrical conductivity of composite, σ0 is the electrical conductivity

of the filler, φf is the filler volume fraction, φ0 is the percolation threshold, and n

is a conductivity exponent. In Eq. 1.1 n is not a constant value because Eq. 1.1

does not take into account any of particle shape, orientation, polymer − particle

interaction or particle dispersion. However, n and φ0 can be determined by curve fit-

ting of experiment results. The percolation threshold and the related conductivities

problems will be discussed in the next chapter.
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1.2 Introduction of Percolation and Diffusion in Het-

erogeneous Materials

1.2.1 Percolation Theory

Percolation is one of the simplest natural phenomena in probability theory which

describes the behavior of connected cluster in a random graph. Since percolation

phenomenon has compelling applications to diverse physical problems, percolation

in the disorder media has drawn the attention of many studies [17, 18, 40, 42, 71, 77,

97]. The general concept of the percolation problem is about the connection of the

different shapes of objects (spheres, ellipsoids, sticks, sties, bonds, etc.) randomly

distributed in the system. Suppose the objects have a defined connectivity radius

λ0 and the distance between two objects is less than λ0, then the objects are defined

connected. The number of objects forming a cluster of connection and how the

clusters become infinite are interested in percolation theory. If the density of the

objects, n0, (average number per unit volume), the dimensionless filling factor can be

defined as Eq 1.2. In Eq. 1.2, η = η0 so-called percolation threshold corresponds to

the minimum concentration at which an infinite cluster spans the space. Figure 1.3

shows an example of the percolation phenomenon in the circular system, where the

red circles are the connected cluster in the system. The percolation threshold is a

very important control parameter to guide the manufacturing of the heterogeneous

materials. If the filler concentration is lower than the percolation threshold there is

no certain spanning cluster connecting one side to the opposite side of the system.

On the contrary, if the filler concentration higher than the percolation threshold,

there is always exist a long range spanning cluster. Figure 1.4 shows an example

of the percolation threshold and percolation region.

η = n0λ
d
0 (1.2)
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Figure 1.3: Continuum percolation with disks in 2D random system

The practical application of percolation models includes statistical topography,

turbulent diffusion, and transport problems in heterogeneous media [66]. Other

applications such as predicting the electrical resistance in a mixture of two media

with a conducting materials and insulator [20, 56, 73, 72]. The percolation model

not only can determine some the critical phenomena in the conduction but also can

be used as an idealized model for predicting the diffusion process inside the porous

media [5, 29, 44, 68]. Since the experimental observation of percolation phenomenon

has been restricted, the behavior of classical random heterogeneous system near the

percolation threshold is investigated by numerical method.

The continuum percolation theory is a branch of percolation theory which cen-

ter of the 2-D disk point with random radius r is processed. More specifically, the

underlying points of continuum percolation are randomly positioned in some con-

tinuous space and form a type of point process. For each point, the shapes can be

random, and the shapes overlap each other to form a clusters or components. In

6



Figure 1.4: Percolation threshold and percolation region in circular filler system

continuum percolation, a common research interest focuses on the conditions of oc-

currence for infinite or numerous components [51, 4, 53, 55]. Continuum percolation

has been widely studied because it can provide a more accurate model for disordered

materials especially for the porous media, composite material, and colloids system.

In the current research, the shapes of fillers in the composite include disks and

squares in 2-D and the rods and spheres in 3-D [55, 2, 3, 23, 99]. For the distri-

bution of rod-like filler, one of the obvious examples is carbon nanotube reinforced

composite. Balberg and BinenBaum used a Monte Carlo method to predict the

continuum percolation in both 2-D and 3-D systems of conducting sticks[2, 3]. This

study extended the previous study using an anisotropic sample of rods that ran-

domly oriented in sticks system. The study showed that the percolation threshold

of randomly oriented 2-D or 3-D sticks depends on the aspect ratio. The system

anisotropy properties are determined by the stick excluded volume fraction. The

numerical value of the total excluded volume is found to be the significantly lower

than the invariant excluded volume of spheres and some other parallel-aligned ob-

jects. This indicated that orientation randomness has a much stronger effect on the

onset of percolation in three dimensions than it has in two dimensions. Similar to

7



Figure 1.5: A schematic showing the random fibers in the three dimensional space

the 2-D case an isotropic percolation threshold is found for the uniaxially anisotropic

3-D systems. Zhang and Yi presented a Finite element method (FEM) obtained the

same results as Balberg and Binenbaum [99]. Figure 1.5 shows the Monte-Carlo

model of the 3-D random model.

Although there are a lot of people contribute to theoretical modeling of per-

colation theory in the different shapes particulate system, there are no analytical

approximations for the problem of circular or ellipses inclusion in the 3-D system.

Yi provided a novel analytical and numerical approach to determine the percolative

properties of permeable ellipsoids. In this study, an analytical percolation approach

can identify the percolation point in materials containing ellipses and ellipsoids of

uniform shape and size; meanwhile, the method explored the dependence of perco-

lation on particle aspect ratio [91, 94, 92]. Figure 1.6 shows a Monte-Carlo method

of ellipsoids in the 3-d system.
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Figure 1.6: A schematic showing the random ellipsoids in the three dimensional
space

1.2.2 Heat and Electrical Conduction

Heat conduction is the diffusive transport of thermal energy. In the liquids or

gases phase, it is caused by the interaction of moving atoms and molecules. In the

solid phases, it is caused due to the lattice oscillations.

H = −kdT
dx

(1.3)

where H is the heat flux and T is the temperature, k is the material thermal conduc-

tivity. Similarly, the current and voltage equation is also a linear Fourier equation,

Eq. 1.4.

E = σ
dV

dx
(1.4)

where E is the current flux, σ is conductivity, V is voltage, ∆x is the spatial co-

ordinate in the direction of current flow. The nature of the governing equation

9



makes it possible to investigate the electrical or heat conduction numerically. Since

there is an analogy between heat flow by conduction (Fourier’s law) and the flow of

the electric current (Ohm’s law), in the computational modeling, we only concern

the normalized effective properties. The computed effective conductivities can be

further used as heat conduction or electrical conduction by changing the certain

parameters.

1.2.3 Diffusion in Heterogeneous Materials

Diffusion phenomena in heterogeneous solid media have been widely investigated

in many scientific and technological fields such as astrophysics [98], geology [16, 30,

43, 24] and biomedical images [63, 22]. Understanding diffusion in disordered media

is very important to many physical problems. For example, when water diffuse in

carbon fiber reinforced composite materials, the water molecules degrade the matrix

reinforcement interface or inter-phase and lower the stiffness of the composite [15,

25, 60, 34, 35]. Another example is waste containment such as inorganic chemicals

diffusing in saturated soil [69]. Therefore, during the manufacturing of composite

materials, the diffusion coefficient or diffusivity, D is one of the important criteria.

The diffusion coefficient is encountered in Fick’s first and second laws, similar to

thermal or electrical conduction; it can be written in Eq. 1.5 and Eq. 1.6

J = −Ddφ
dx

(1.5)

∂φ

∂t
= D

∂2φ

∂x2
(1.6)

where J is the diffusion flux, D is the diffusion coefficient, φ is the concentration of

the solute in the liquid phase, x is the direction of transport position, and t is the

diffusion time. The diffusion coefficients can be also determined on particular fea-
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Figure 1.7: A schematic showing the random ellipsoids in the three dimensional
space

tures undergoing the Brownian Motion in a quiescent fluid at a uniform temperature

by the Einstein-Stokes expressions:

D =
κBT

6πηr
(1.7)

where κB is Boltzmann’s constant, T is the absolute temperature, η is the dynamic

viscosity, and r is the radius of the spherical particle.

For the solute diffuse in the solid media, the diffusion processing is slower than

diffuse in gas or liquid because the pathways for migration are more tortuous in the

solid phase. Also, diffusive mass fluxes are less in solid than in gas or liquid because

solid particles in the media occupy some of the cross-sectional areas. Figure 1.7

illustrated the schematic of water diffuse in different tortuous solid media, which

shows that the size of the particles highly affects the diffusion process.

Since the tortuosity factor is usually difficult to measure, it is convenient to

define an effective diffusion coefficient De, which is often represented as a weighted
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average of the grain boundary diffusion coefficient as follows:

De = D0τ (1.8)

when Eq. 1.8 is substituted into Fick’s first law, Eq. 1.5 for diffusion in disorder

media becomes

J = −De
∂c

′

∂x
(1.9)

where c
′

is defined the solute concentration in terms of the total volume of concen-

tration c
′

= θc and rewritten the Eq. 1.9 in terms of this modified concentration as

follows:

J = −D0τθ
∂c

∂x
(1.10)

The effective diffusion coefficient can be evaluated with different analytical and nu-

merical models such as effective medium theory, finite element analysis, and random

walk theory. All those three methods will be introduced in the next section.

1.3 Review of Effective Medium Theory (EMT)

The analytical solutions to predict the mechanical properties, mass or heat trans-

port of heterogeneous materials is one of the efficient ways. One of the most popular

models is an effective medium theory (EMT). The main concept of this method is

averaging the multiple values of the constituents that directly make up the compos-

ite materials. Since the precise calculation of multiple constituent values is nearly

impossible in the composite material, the EMT’s provide acceptable approximations

which in turn describes useful parameters and properties of the composite materials

in a macroscopic view. In the EMT, the properties and volume fractions of the

components can describe the effective properties of the entire model.
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Figure 1.8: (a) Maxwell approximation model; (b) maxwell approximation in differ-
ent size inclusions

1.3.1 Maxwell Approximation

The earliest studies on the heterogeneous materials were proposed by Maxwell

[47, 50]. The Maxwell approximation assumes one of the components as a host

which is embedded in a single spherical or ellipsoidal inclusion. Figure 1.8 shows

the schematic of Maxwell approximation. The diffusion coefficient of matrix and

inclusion are Dm and Df , representatively. Suppose the effective diffusion coefficient

of the model is, De, following the original derivation of Maxwell equation, we imagine

that the particle concentration c has an average gradient g along some axis. The

inclusion’s volume fraction:

φ = r30r
3
1 (1.11)

The effective diffusion De can be determined from the following steady-state equa-

tion:

∆cr,θ = 0 (1.12)

13



in the coordinates r and θ, where θ is an angle between radius r and the external

gradient g. The appropriate solution of Eq. 1.12 can be calculated as follows:

c1(r, θ) = Ar cos(θ), (0 ≤ r ≤ r0) (1.13)

c2(r, θ) = Br + Er2 cos(θ), (r0 ≤ r ≤ r1) (1.14)

ce(r, θ) = −gr cos(theta), (r1 ≤ r) (1.15)

where ci(r, θ) is a local particle concentration in inclusions (i = 1) or in a host ma-

terial (i = 2). The unknown constant A, B, E and g from the boundary conditions

for the particle concentrations and fluxes in Eq. 1.13 and Eq. 1.15 can be calculated

as follows:

c1(r0, θ) = c2(r0, θ) (1.16)

Df∂c1(r, θ)∂r|r=r0 = Dm∂c2(r, θ)∂r|r=r0 (1.17)

c2(r1, θ) = ce(r1, θ) (1.18)

Dm∂c2(r, θ)∂r|r=r1 = De∂ce(r, θ)∂r|r=r1 (1.19)

From Eqs. 1.12 and 1.19, we can obtain:

r30A− r30B − E = 0 (1.20)

Dfr
3
0A−Dmr30B + 2D2E = 0 (1.21)

r31B + E + r31g = 0 (1.22)

Dmr
3
1B −Der31g + 2D2E = 0 (1.23)
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According to the the above equations, the results are calculated as follows:

De = Dm + 3(Df +Dm)φDf + 2Dm − (Df −Dm)φ (1.24)

In general, for an arbitrary space dimension (d = 1, 2and3) in stead of Eq 1.24, the

equation can be written as:

De = Dm + d(Df −Dm)φDf + (d− 1)Dm − (Df −Dm)φ (1.25)

Equation 1.25 not only can apply to the uniform size spherical inclusions but also a

random inclusion distribution of different radius depending on the Eq. 1.11:

φ = (ri0)
d(ri1)

d (1.26)

where d is space dimension. Combining the Eq. 1.26 and Eq. 1.25, the general

Maxwell equation can be rewrite as follows:

De = Dm[1 +
d(Df −Dm)φ

Df + (d− 1)Dm − (Df −Dm)φ
] (1.27)

However, the Maxwell approximation yields inaccurate results considering the

following scenarios [37]:

1. Inclusions in the system are totally impenetrable:

∂c2(r, θ)δr|r=r0 = 0 (1.28)

2. Particle velocities in the matrix and inclusion are different.

c1(r0, θ) = kc2(r0, θ) (1.29)
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In order to improve the Maxwell approximation, Kalnin et al. [37] provided a rea-

sonable approximation that agrees well with the Monte Carlo simulation in both

two- and three-dimensions. In the method, they introduced two measurable coeffi-

cients, λ1 and λ2 that connect the concentrations of the different phases to rewrite

the Maxwell equation:

λ1 =
c1
c2

(1.30)

λ2 =
1

1− φ+ λ1φ
(1.31)

De = Dmλ2[1 +
d(Dfλ1 −Dm)φ

λ1Df + (d− 1)Dm − (λ1Df −Dm)φ
] (1.32)

where c1 and c2 represent the concentration of inclusion and matrix, respectively.

In case of impermeable inclusions (i.e. in the process of the complete reflection of

particles at the inclusion-matrix interface, or c1/c2 → 0, Eq. 1.32 can be simplified

in both as:

De =
Dm(d− 1)

d− 1 + φ
(1.33)

The above methods are compared to our numerical result in the next chapter,

and we will discuss the similarity and difference later on.

1.3.2 Self-Consistent Filed Theory (SCFT)

Self-Consistent Model is another well defined approximation to study the het-

erogeneous materials behavior which considers the components interaction by di-

viding the original component into an enormous of small individual components

[48, 52, 26]. The effective properties of the model are approximated by the average

of all the single individual effect. The explicit formula of the self-consistent theory

for the disorder media effective conductivity can be shown as follows:

N∑
i=0

φ
σi − σe

σi + (d− 1)σe
= 0 (1.34)
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σe = α+

√
α+ 4(d− 1)σfσm

2(d− 1)
(1.35)

α = σm(dφm − 1) + σf (dφf − 1) (1.36)

For the isolate inclusions, the effective conductivity is:

σe =
d(d− 1)− (d+ 1)φ

d(d− 1)− 2φ
σm (1.37)

where σm, σf , and σe are the conductivity of matrix, conductivity of fiber and

effective conductivity, respectively. d is the dimension of the system, φf and φm are

the volume fraction of inclusion and matrix. The effective diffusion coefficient can

be obtained with a similar equation as Eq. 1.37:

De =
d(d− 1)− (d+ 1)φ

d(d− 1)− 2φ
Dm (1.38)

1.3.3 Differential Effective Medium (DEM)

The differential effective medium theory was originally proposed by Bruggeman

[8]. DEM is one of the best methods to predict the composite inclusion problem

because the inclusions are always discontinuous and the matrix is always continuous

in this assumption. Therefore, it does not need to consider the percolation properties

to match the experimental system comparing to other EMT’s. The standard DEM

is a two-phase, since each inclusion can be a different phase through having different

mechanical or electrical properties. The implicit formula for this approach are shown

in the following equation:

(
σf − σe
σf − σm

)(
σm
σe

)1/d = 1− φf (1.39)
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For measurement of effective diffusion coefficient:

(
Df −De

Df −Dm
)(
Dm

De
)1/d = 1− φf (1.40)

1.4 Review of Monte Carlo Simulation

The first method used to solve the stochastic heat or mass equation is the Monte

Carlo method. This method relies on a repeated random sampling of results and

substituting them into Eq. 1.6 or Eq. 1.6. Once each random sampling of value is

substituted, the stochastic heat equation can be determined by the total value of

the each sample. Hence for each sample, the heat or mass equation is solved, and

the temperature is evaluated at a specific point (x0, t0). Once a large number of

values are sampled and the resulting values for T (x0, t0) or D(x0, t0) are calculated,

a histogram of the T (x0, t0) or D(x0, t0) is created. As the number of samples

increases, the histogram of T (x0, t0) or D(x0, t0) approaches the probability density

function of T (x0, t0) or D(x0, t0). Then the mean and standard deviation of T (x0, t0)

or D(x0, t0) are calculated to characterize the distribution [58].

The Monte Carlo method is used throughout uncertainty quantification as a

standard to compare other methods against. Since Monte Carlo method simply

involves random variables and use the numerical method to solve PED, the errors

due to spatial and temporal discretization can be negligible. Therefore, the Monte

Carlo method provides a reliable solution. To obtain a more reliable result, it

requires a nearly infinite number of sample values. A large number of samples is

very time-consuming because it needs to solve a large number of partial differential

equations. Hence, less computationally expensive methods are desirable during the

modeling.
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1.5 Review of Finite Element Analysis (FEA)

1.5.1 Fundamental of FEA

The finite element analysis (FEA) is frequently used to solve the mass and heat

transfer problems, and it applies to complex geometries and composite structures

with various boundary conditions. The FEA is a numerical mathematics by simpli-

fying the initial problem to solve a system of linear equations. In summary, FEA is a

numerical procedure that can be used to obtain solutions of many engineering prob-

lems involving stress analysis, heat transfer, fluid dynamics, composite materials,

etc.

The finite-element method not only can be used to solve steady-state file prob-

lems but also can solve time-dependent transient temperature distribution problem.

It is with the first of these two types of problem that we shall be concerned in the

entire study in this thesis.

The aim of the following paragraphs is to gain a partial differential equation

(PDE) by the solution of which we shall obtain the internal temperature [79]. Let

us imagine that the problem that we wish to solve is one involving a two-dimensional

steady-state temperature distribution: that is, there is one dimension, z, along which

temperature does not vary. Suppose that the temperature distribution is given on

the boundary Γ of a certain region, Ω, and we know that rate at which heat is

being supplied at all positions in Ω. Our task is to find the temperature distribution

throughout Ω. (Other types of boundary conduction may be specified, for example,

the rate at which heat is flowing into or out of the region across part of the boundary

may be fixed). Then if {ϕ} is the vector of nodal temperatures and Q is a function

defining the heat input, then we seek a matrix expression such that

[K]{φ} = {f} (1.41)
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Figure 5.4: FEA model of ellipsoidal particles in compression

create the non-overlapping system, we can set a sufficiently small time step to ensure

numerical accuracy. In the next step, the generated random non-overlapping spher-

ical or ellipsoidal inclusions will be meshed on each particle. To further improve the

computational accuracy during the contact analysis, a refined mesh will be created

at the outer layer of each inclusions. All the element is assigned the same material

properties. The system will be constrained inside fixed domain. Apparently, if the

particles were initially at rest, the local density of disks would be higher near the

boundary than in the interior, because the outside particles tend to gather together

while the density of the interior particles remain unchanged. To minimize this pos-

sible inhomogeneity in the simulation, the random initial velocities will be assigned

to the particles at the beginning to allow them to move around and adjust their

locations throughout the simulation. The ABAQUS will be used to model the con-

tact interactions. Pairwise contact interactions will be assigned between the surface

elements of the inclusion. The third step, we can express the simulation results as
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function of requested time intervals, specific position of the domain walls, or specific

volume fraction of the particles. The deformed finite element mesh along with the

updated nodal positions at each time step will then be used for the conductions.

Figure 5.4 shows a complete finite element model in compression. In the model,

we will remove all the kinetic degrees of freedom and only analysis the temperature

(or electric potential). A unit temperature or electric potential will be assigned on

one side of the unit cell and the steady state value of the opposite side is measured.

The contact resistance will be included in the simulation in the form of contact

conductance, or gap conductance, which could be dependent on either the contact

pressure or the gap distance. The implicit finite element scheme will be used in the

conduction analysis because a direct, transient analysis using the explicit scheme in

the current problem would otherwise require an extremely small time step due to

the involvement of the contact resistance, and would therefore be much more costly.

5.4 Publications

5.4.1 Journal Articles

1. J. Qiu, Y.B. Yi, X.B. Guo, “Computational prediction of electrical and ther-

mal conductivities of disk-like particulate composites,” International Journal

of Computational Materials Science and Engineering, 4.03 (2015): 1550013.

2. J. Qiu, Y.B. Yi, “Random walk simulation model of diffusion in circular

and elliptical particulate composites,” International Journal for Multiscale

Computational Engineering, 2017, under review.

3. J. Qiu, Y.B. Yi, “Random Walk Based Stochastic Modeling of Three-Dimensional

Particulate Composite Systems,” International Journal for Multiscale Com-

putational Engineering, 2017, in preparation.
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4. D.F. Zhao, Y.B. Yi, J. Qiu, ”Computational Study of the effect of interparticle

contact in Conductive Properties of Random particulate Systems,” 2017, in

preparation.

5.4.2 Conference and Patent

1. J. Qiu, J. Mody, J. Reindeau, “Automating Routine Data Analysis For Faster

TAT,” 2017 NE Tech Forum, 2017, accepted.

2. K.H. Teo, J. Mody, J. Riendeau, J. Qiu, “Virtual Imaging Failure Analysis,”

Patent, 2017, under review.
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[79] Barna Szabó and Ivo Babuska. Introduction to finite element analysis. John

Wiley and Sons, 2011.

[80] R Taipalus, T Harmia, MQ Zhang, and K Friedrich. The electrical conduc-

tivity of carbon-fibre-reinforced polypropylene/polyaniline complex-blends: ex-

perimental characterisation and modelling. Composites science and technology,

61(6):801–814, 2001.

[81] Mohammadreza Tavakkolizadeh and Hamid Saadatmanesh. Strengthening of

steel-concrete composite girders using carbon fiber reinforced polymers sheets.

Journal of Structural Engineering, 129(1):30–40, 2003.

[82] Elyas Tawerghi and Yun-Bo Yi. A computational study on the effective proper-

ties of heterogeneous random media containing particulate inclusions. Journal

of Physics D: Applied Physics, 42(17):175409, 2009.

[83] Jan Tobochnik, David Laing, and Gary Wilson. Random-walk calculation of

conductivity in continuum percolation. Physical Review A, 41(6):3052, 1990.

[84] G Tør̊a, T Ramstad, and A Hansen. Anomalous diffusion on clusters in steady-

state two-phase flow in porous media in two dimensions. EPL (Europhysics

Letters), 87(5):54002, 2009.

[85] S Torquato. Theory of random heterogeneous materials: Handbook of materials

modeling, 1333–1357. 2005.

[86] Charles Toulemonde, Renaud Masson, and Joumana El Gharib. Modeling the

effective elastic behavior of composites: a mixed finite element and homogeni-

sation approach. Comptes Rendus Mécanique, 336(3):275–282, 2008.
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