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Abstract

A lot of effort has been made during the last two decades to study and apply the
concepts of MIMO technology in most of the wireless standards. Therefore, a huge
improvement in the performance of wireless communications has been made. However,
Demand for wireless services has exponentially increased during the past ten years. Hence,
high throughput is very important for all users to get the best experience with the offered
services. This creates many technical challenges that are difficult to handle with the
existing technology. Therefore, massive multiple input multiple output (massive MIMO)
is a new technology that has been proposed as one of the solutions that can overcome these
challenges and fulfill the requirements of the next generation of wireless communications.
The main concept of massive MIMO is that the base station (BS) equipped with a large
number of antenna elements serve terminals over the same time-frequency resources. It is
going to be one of the key tools that can satisfy and handle the exponential growth in data
traffic. Massive MIMO was introduced as a modified and scalable version of multiuser
MIMO. Massive MIMO improves systems capacity and energy efficiency using simple

linear processing.
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Despite the promising benefits of massive MIMO, a lot of aspects must be tackled
before it can be practically used. This dissertation investigates issues that affect the
performance massive MIMO such as the angle spread, angle of arrival, pilot length and
antenna spacing. Results show that the low angle spread of negatively affects the channel
capacity and energy efficiency (EE). This effect can be reduced by increasing the transmit
power to increase the signal to noise ratio. Moreover, it is shown that and adding more
antennas in the BS and increasing the spacing between them can also diminish the impact
of the imperfect channel by improving the channel capacity and the EE. This research also
analyzes the relationship between the number of terminals and the capacity in a single cell
scenario. Results show that the sum capacity of the system can increase when the number
of users is increased. However, allocating too many users can negatively affect the

performance of massive MIMO.
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Chapter One: Introduction

1.1 Motivation

The last few years have witnessed a huge increase in the wireless data traffic.
Introducing smart hand-held devices in the last decade has led the tremendous growth in
the number of applications that are hungry for bandwidth. Also, many services like file
sharing and video streaming are already pushing the limits of the current wireless networks.
400 million times is the reported increase in mobile data traffic between the years 2000 and
2015, from less than 10 GB per month to 3.7 EB per month respectively [1]. It is not
expected that this trend is stopping any time soon. In the next decade, required data rates
will grow significantly to a level that cannot be supported by the fourth generation (4G)
networks. Figure 1.1 shows the mobile data traffic between the year 2015 and 2020.
Clearly, an acceleration is forecasted in the next few years, as the data traffic is expected
to exceed 30 EB per month in the year 2020 which represent an 8-fold increase over the
year 2015 [1]. Sources of this demand will not only come from data exchange by
smartphones, computers and tablets but also from the emerging kinds of communications,
such as the multimedia rich applications like 3D holography, tele-presence and
communications between machines [2]. Figure 2.2 shows the number of connected devices
between the years 2015 and 2020. It is estimated that the number of connected devices will

be around 11 billion devices by the year 2020. Moreover, most of the future devices will

1



be equipped with a lot of technologies that require very advanced wireless communication
capabilities. Hence, researchers are trying to find ways to handle 1000 times the current
data traffic, provide service for 10 or even 100 times more users and lower the latency for

mobile user by a factor of 5 in comparison with the Long-Term Evolution (LTE).
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Figure 1.1 Global mobile data traffic (source: Cisco [3]).
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The most important parameter to measure the performance of any wireless network

is its throughput in (bits/s):

Throughput = Bandwidth (Hz) % Spectral efficiency (bits/s/Hz).

Obviously, improving the throughput can be done either by increasing the spectral
efficiency or using more bandwidth. Increasing the frequency spectrum is the simplest way
to meet the demand for higher throughput. However, the effectiveness of this option has
recently become less attractive due to many reasons. First, the fact that spectrum is a natural
resource makes it constrained. Multiple communications services must share fixed portions
of the spectrum. Already, various operators and services occupy most part of the available
spectrum. Thus, portions of the spectrum dedicated for other services must be reallocated
for mobile commutations to increase the frequency spectrum of operations. However, this
can be done to a very limited extent that cannot satisfy the future demand for mobile data
traffic. Also, not all bands of the spectrum are suitable for wireless communications due to
their high attenuation and unfavorable propagation. Moreover, spectrum is one of the most
valuable resources in the world which makes this option very expensive for mobile
operators. It is obvious that more spectral efficient technologies are needed to sustain the
evolution of wireless communications. For example, data rates in certain areas can be
increased using more aggressive spectrum reuse strategies. Small cells is one of these
strategies. However, high-mobility users and wide area coverage are two reasons that

makes the small cell option less efficient [4].



Attenuation of the transmitted signals in wireless communications results from the
fading which can be caused by multipath propagation or by obstacles between the receiver
and the transmitter that cause shadowing, yielding a serious challenge for the reliability of
wireless communications. One of the well-known diversity techniques used to enhance the
reliability of communications is the transmission through multiple input multiple output
(MIMO) antennas. It has been proven in MIMO technology that deploying multiple
antennas at the receiver and transmitter increase the amount of data that can be transmitted
and received through a certain frequency band. The gains in this case are linearly
proportional to the minimum number of antennas in the transmitter or the receiver if the
scattering environment is rich and the channel knowledge is the available at the receiver
[5]-[13]. Unfortunately, Due to its complex transmission strategies and the requirement
for accurate channel state information (CSI) at the BS, the adoption of multi-user MIMO
(MU-MIMO) in current standards does not take full advantage of the available research in
literature [14] .

The 5 generation of wireless communication systems (5G) promises much higher
capacity and speeds under limited spectrum and tight power compared to the current
systems [14]—[26] . Hence, signal processing techniques and system configurations must
be fundamentally changed to support efficient signal transmission. Although the enabling
technologies of 5G are not finally identified yet, massive MIMO is a strong candidate
technology. This technology was introduced Back in 2010 when Tom Marzetta from bell
labs published the paper “Noncooperative Cellular Wireless with Unlimited Numbers of
Base Station Antennas” which have been cited over 1300 times. Since then, he and his

colleagues have made many contributions in this area such as [27]-[31]. Massive MIMO
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proposes new strategies to practically implement concepts from MU-MIMO, where non-
cooperative single antenna users, K are served simultaneously through a BS with a very
large number of antenna elements, M [32], [33] . When M is much larger than K, low
complexity linear signal processing can be optimal, while instantaneous channel state
information (CSI) is available to the BS though the uplink (UL) training. It has been shown
that significant improvements in the radiated energy and channel capacity can be achieved

using massive MIMO [29], [34]-[36].

Massive MIMO can be considered as a gold mine of research problems. Despite
the huge advantageous that massive MIMO is bringing to the next generation of wireless
communication such as the ability to accommodate high number of users with very high
data rates and reliability with very low power consumption, a lot of aspects must be
addressed before it can be practically used. In fact, many of the traditional communication
problems are now considered less relevant, however, an entirely new class of problems that
must be considered have been uncovered. Many recent work in literature have discussed
the tremendous improvements that massive MIMO can bring to the capacity and energy
efficiency [29], [30], [37], [38]. Also, impairments that might affect the performance of
massive MIMO have been investigated in [37], [39]-[41]. Hence, interest in this

technology is growing as the numbers of published research in this area increases.

1.2 Fifth Generation (5G)

Interest in the 5G standard is increasing as the long-term evolution (LTE) which is
part of the 4G standards is reaching a maturing level where the only improvements that can

be made are incremental. Many engineering challenges must be dealt with in 5G. Hence,
6



it is very important to understand and recognize the expected capabilities of a 5G system

to meet these challenges. Although many requirements are imposed by different

applications, they do not have to be satisfied simultaneously. The following is a summary

of the 5G requirements.

1.2.1 Data Rate

Meeting the tremendous mobile data traffic is undoubtedly the main reason why

5G is needed. There will be different targets for the various metrics used to measure the

data rate:

a)

b)

Aggregate data rate that indicates the total amount of data that can be handled
by the network, measured in bits/s per unit area. The upgrade from 4G to 5G

will roughly result in 1000x increase in this quantity

Edge rate, which is also known as the 5% rate, represents the least data rate
one can expect to be served within the range of the network. The edge rate is
one of the most important metrics that has a logical engineering meaning. The
aim for 5G is to improve the edge data rate to range between 100 Mbps
(sufficient to stream high definition videos) and 1 Gbps [42]. This means that
5G must ensure that 95% of users get 100 Mbps which is very challenging
because it would require around 100 times improvement over the current 4G

systems where the 5% rate is typically around 1 Mbps.

Peak rate is the ultimate amount of data rate that can be achieved under any

possible system configuration. It is usually considered to be a number dedicated

7



for marketing purposes that engineers do not typically care about. The peak rate

is usually in the range of tens of Gbps.

1.2.2 Latency

The latency of the existing 4G systems is around 15 ms with 1 ms sub-frame time
including the overheads required for access and resource allocations [42]. Even though this
latency is adequate for 4G applications, new cloud based technologies and two way gaming
are expected in 5G [43]. Therefore, 5G must have the capabilities of providing 1 ms latency
which is almost an order of magnitude faster than the contemporary systems. As a result,
this constraint on latency will greatly shrink down the sub-frame time and may also impose

critical design choices at various components of the protocol.

1..2.3 Cost and Energy

Ideally, energy consumption and costs are supposed decrease with 5G or at least
the per link costs and energy should not increase. The cost per bit and the joules per bit
must at least drop by 100x because the data rates on per link basis will be increased around
100x. Many technologies have the potential of reducing power consumption and cost [42].
For example, the spectrum of the millimeter wave will be almost 10-100x cheaper than the
spectrum below 3 GHz used in 3G and 4G. Also, small cells solution will also be 10-100x

cheaper and more efficient in energy consumption than macro-cells.



1.2.4 Devices Types

More diverse range of devices are going to be efficiently supported in 5G. A single
macrocell must be able to support at least 10,000 low rate terminals beside the usual high-
rate devices especially with the rise of machine to machine communications. Therefore,
the network management and control plans relative to 4G must be fundamentally changed
because their state machines and overhead cannot handle such large and diverse subscriber

base.

1.3 Problem Statement

Massive MIMO will be included among many other technologies in the 5G
standards. However, there are a lot of problems that must be considered before finalizing
the 5G standards. Thus, a lot of recent research is aiming for that goal. Capacity and energy
efficiency are one of the most important performance metrics of any wireless system. This
dissertation investigates the performance of massive MIMO using these two metrics. While
it is challenging to maintain ideal channel conditions when a large number of antennas are
located in tight space, many work in literature ignore that issue and just assume a perfect
channel conditions [38]. Hence, a channel model that takes into account the angle spread,
antenna spacing and angle of arrival is considered to explore the capacity and EE of
Massive MIMO systems. This dissertation also investigates the influence of serving too
many users simultaneously in the same geographical area on the performance of massive
MIMO. This effect can vary based on the cell size and the number of antennas in the BS

and the spacing between them.



1.4 Methodology

The simulation capabilities of MATLAB are exploited to inspect the effect of the
imperfect channel knowledge and user allocation on UL channel estimation, capacity and
EE using the mathematical model of massive MIMO. The channel covariance matrix,
which is necessary for the LMMSE estimator, is generated in MATLAB. A closed form
expressions of the probability density function (PDF) for the Signal-to-Interference-Plus-
Noise Ratio (SINR) is derived. The estimated channel is used to calculate the capacity and

energy efficiency of massive MIMO.

1.5 Chapters Organization

The rest of this dissertation is organized as the following:
Chapter 2: reviews the concept of multi-antenna communications. It summarizes the
main characteristics of Point to Point MIMO and Multi-Users MIMO and the
differences between them. It also introduces the massive MIMO technology and
discusses its potential advantages and the possible challenges that must to be dealt
with.
Chapter 3: analyzes the capacity and EE of massive MIMO using the one ring channel
model.
Chapter 4: investigates the relationship between the number users of massive MIMO
and the sum capacity.

Chapter 5: concludes the dissertation and highlights some of future work ideas.

10



Chapter Two: Literature Review

2.1 Introduction

As technologies are becoming more advanced, it can be taken for granted that more
wireless throughput is always going to be needed. It is expected that, within few years,
millions of users will want to use mobile multimedia applications such as online gaming,
e-healthcare, streaming videos and communicating through holographic videos [44]. Thus,

hundreds of megabits per second will be essential for every user.

Availability of spectrum which will never increase, fundamentals of information
theory and the electromagnetic laws of propagation are all aspects that impact the amount
of information that can be transferred wirelessly. Hence, the performance of wireless
networks is always limited at the physical layer [31]. Improving the efficiency of a wireless
networks is typically done by 1) utilizing the free or underutilized areas of the spectrum 2)
increasing the density of access points 3) improving the spectral efficiency by increasing
the number of bits that can be carried in each Hertz [45]. Millimeter wave and small cells
are used to handle the first two respectively [46]. It is likely that the tradition of using new
bands and deploying more access points will continue in the future, but the necessity to

maximize the spectral efficiency is inevitable [47].

11



Using MIMO technology is the only way to substantially improved channel
capacity. The original form of this technology is Point to point MIMO [5] that was
theoretically developed later to Multiuser MIMO [48] and recently Massive MIMO is
evolving to be the optimal and most useful form of the multi antennas communications

[30], [38], [49].

2.2 History of MIMO

There is a remarkable history behind the phrase “Multiple Input Multiple Output”.
Even though it is used to refer to one of the communication techniques, it was used in the

1950s in filters theory and electric circuit [50].

The term MIMO was used to indicate circuits with multiple input and multiple
output ports in its original context. During the 90s, however, this term has been adopted by
communication systems researchers and information theorists to denote a novel signal
processing technique that was developed for wireless systems with multiple antennas. The
reference point in this different use of the term was the communication channel. The term
multiple input was used to denote the signals that were entering the communication channel
from the multiple antennas. Also, the word multiple output implied signals received at the
multiple antennas of the receiver, which were regarded as the output of the communication
channel. It was in the paper published in 1999 by Gerry faschini and Peter Driessen where
the term MIMO used in wireless communications as part of analyzing the theoretical
communication capacity of a wireless system with multiple transmit and receive antennas

[51].

12



Although multiple antennas are required in MIMO communications, it is not the
first technique that utilizes multiple antennas to be developed. In fact, using multiple
antenna technology to enhance the performance of radars and other aspects of
communications dates back to the early 1900s. During 1905 Karl Braun showed the first
application of multiple antennas which uses phased array antennas to enable rapidly
steerable radar, and later, in AM radio broadcasting to switch between sky-wave and

ground-wave propagations [52].

Fading has been combated in wireless communications using the multi antennas
technology for more than 70 years through the receive diversity. The idea of receive
diversity showed up in 1931 in a paper published by H. Peterson and H. Beverage [53].
The receive diversity was used in military applications such as the troposcatter during the

1950s.

During the early 1990s, two technologies that employ the multi antennas techniques
were introduced. The first technology is the transmit diversity which also combat fading.
This technique was initially introduced in two papers published in 1991 and 1993 [54],
[55]. Later, Alamouti published his well-known paper where he proposed a novel technique
to achieve transmit diversity with a very much less processing requirements at the receiver
[56]. His paper explained how to achieve transmit diversity using a simple space time
coding technique. Since its introduction, Alamouti’s method has become the most

preferable MIMO scheme almost by all wireless systems.
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There was another form of multi antenna techniques being introduced, while
research on transmit diversity was in progress. Instead of using multi antennas to ease the
effect of fading, different group of researchers were looking for new methods of exploiting
fading to satisfy the demand for more throughput. The paper on layered space time
communication published by Gerry Foschini in 1996 who works at AT&T research Labs
illustrated the main concept for the series of spatial multiplexing techniques that were later
known as the Bell-Labs layered Space Time (BLAST) schemes [57]. Two years later, the
team of Foschini were the first to come up with a laboratory prototype system based on a

certain type of BLAST technology known as Vertical BLAST or V-Blast for short [58].

Since these developments in spatial multiplexing and spatial diversity in the late
1990s, a huge amount of research has been done. The emerging MIMO techniques from
this research using the means of spatial multiplexing and spatial diversity led to increasing
the number of wireless standards used commercially. In 2001, Iospan introduced the first
MIMO technology that can be used commercially. Most of commercial communications
standards now include MIMO technology after it was included in the WiMAX standard in

2005.
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Figure 2.1 Summary of the history of Multi-antenna technology [59]

Some of the most important historical events in the use of multi antenna technology
over the past one hundred years are summarized in Figure 2.1. This timeline along with the

previous discussion proofs that MIMO is the most recent form of exploiting the multi-

antenna technology.
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2.3 Point to Point MIMO

During the late 90s, point to point MIMO which is the first form of the MIMO
technologies was introduced [31], [13]. As shown in Figure 2.2, each terminal with
multiple antennas is served with a BS equipped with an array of antennas. Combination
between frequency/time division multiplexing is used to serve different users in distinct
time/frequency blocks [37], [60]. Therefore, throughput is increased without using more
bandwidth or pumping higher power. In what follow, some of the basic facts about Point-
to-Point MIMO are summarized. Vectors are transmitted and received in every channel
use. The channel capacity (in b/s/Hz) with the existence of additive white Gaussian noise

at the receiver according to Shannon theory is [31]:

cY! = log, |IM it %GGH| 2.1
cd = log, |IK + %GHG| 2.2

Where G is frequency response of the channel between the BS and the terminal that is
denoted by an M*K dimensional matrix. pq; and py; are the DL and the UL SNRs that vary
in proportion to the total radiated power. M & K are the number of BS and UE antennas
respectively. While channel knowledge is required at the receiver to satisfy the capacity in
2.1, transmitter is not required to have any knowledge about the channel. For high SNRs,
C%and CY! scale logarithmically with the SNR and linearly with min (M, K) in rich
scattering propagation environments. Therefore, capacity of the link can be improved by

simultaneous use of a large number of antennas at the transmitter and the receiver.
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There are many issues preventing Point to Point MIMO of being scalable beyond
eight antennas. First, eight streams of data may not always be supported by the propagation
environment especially under line of sight conditions [37]. The time needed for training is
proportional to the number of antennas [47]. Third, complicated terminals require
independent electronics for every antenna [31]. Fourth, the signal processing that can
achieve close to Shannon limit performance is very complicated. Finally, users who are
around the cell edge where SNR is usually low as a result of the high path loss would
struggle because of the slow improvement with min(M,K). Table 2.1 illustrates this
situation on the DL capacity for user with k=4 operating at SNR of -3 dB for M=1,2,4,8

BS antennas. It is obvious that only two streams are supported in this situation.

Table 2.1: Capacity (bits/s/Hz) for four antenna users vs. Number of base station
antennas operating at -3 dB

M 1 2 4 8

C 1.51 | 1.83 | 2.06 | 2.19
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2.4 Multiuser MIMO

The MU-MIMO system shown in Figure 2.3 where multi-antenna BS serves
multiple UE is more practical than point to point MIMO. The main principle of multiuser
MIMO is that each BS with multiple antennas can use the same frequency-time resources
to serve a multiplicity of single antenna terminals that share the multiplexing gain [48].
One can intuitively understand the multiuser MIMO scenario as if the K-antennas terminal
in the point to point MIMO was broken up into multiple autonomous terminals [61].
Cooperation between the antennas of the UE is possible in the case of the point to point
MIMO, however UEs in MU-MIMO cannot communicate with each other. Although the
poor-quality channels can sometimes severely influence the throughput achieved by
individual users, the break up actually improves the sum throughput of the system[49].
Hence, the impact of the propagation environment on MU-MIMO system is less than the
case of point to point MIMO due to the multi-user diversity. As a result, many
communication standards such as 802.16 (WiMAX), 802.11 (WiFI) and LTE have
included MU-MIMO. The BS usually is equipped with only few number of antennas (i.e.
10 antennas or less) for most MIMO application. Thus, only modest improvement is

brought to the spectral efficacy using the MIMO technology so far.
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The performance of MU-MIMO system if the terminals in Figure 2.3 with a single
antenna each, K are served by the BS is better than the case of point to point MIMO.
Knowing that G is the M*K matrix that represent the frequency response between the BS

antennas and the K, the sum capacities of the UL and DL are given by

CUI ES 10g2|IM + pUlGGH| 23
cll= 030 logy|ly + pgGD,G" 2.4
Zlevks1

Where v = [vy, ...., Vx]T, pq is the DL SNR, and py; is the UL SNR for every terminal.
The total UL transmit power of multiuser MIMO is greater than the transmit power of the
point to point MIMO by a factor of K [62]. Computing the capacity of the DL in 2.4
depends on solving a convex optimization problem. CSI knowledge is important for both
2.3 and 2.4. On the UL only the BS is required to know the channel while every terminal
must be separately informed about their permissible transmit rate. On the DL, however,

CSI knowledge is required in the BS and the terminals.

The most import thing to note is that cooperation between UE antennas is possible
in the point to point case, whereas terminals cannot cooperate in the multiuser case [61].
However, the lack of cooperation between the terminals in the multi user system does not
affect the UL sum capacity when comparing 2.1 and 2.3. Moreover, the DL capacity 2.4

can exceed the DL capacity in 2.2 of point to point MIMO.
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There are two reasons that make multiuser MIMO better than Point to Point MIMO.
First, multiuser MIMO is less sensitive to the propagation environment. It shows a good
performance even when line of sight conditions is present. Second, single antennas
terminals can be sufficient. However, Multiuser MIMO cannot be scalable for two reasons.
First, the complexity of dirty paper coding and decoding grows exponentially [37]. Second,
the time needed for training to acuire the channel state information (CSI) increases in

proportion with the number of users and the BS antennas [38].

2.5 Massive MIMO

Massive MIMO is a newest form of the MIMO technology that has yet to be
employed in the next generation of wireless systems [28], [63] due to its many advantages
that will enhance the wireless communications. The name of this technology refers to the
concept of equipping the BS with a very large number of antennas [64]. It is going to be an
important solution to handle the exponential growth in data traffic. When this technology
was introduced in [49] and [65], It was presented as a modified and scalable version of
multiuser MIMO. Simple linear processing is sufficient for massive MIMO to add orders

of magnitude of improvement to energy and spectral efficiency [64].

Considering its capacities in 2.3 and 2.4 based on the Shannon theory, increasing
M in multiuser MIMO result in logarithmically growing throughputs. The total time spent
for training , however, increases linearly [66], [67]. Massive MIMO avoid this problem by
taking measures to ensure that operations do not approach Shannon limit, however

achieving a performance that overtake any typical multiuser MIMO system.
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There are three main differences that distinguish between massive MIMO and
multiuser MIMO. First, knowledge of the channel is only required at the BS [68]—[70].
Second, the number of antennas M at the BS is usually much larger than the number of
users K [71]. Third, both the DL and the UL use simple linear signal processing [72].

Therefore, scaling up this technology can be easily done when it comes to the number of

antennas at the BS.
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Figure 2.4 Comparison between possible (M,K) in TDD and FDD systems [34]
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In massive MIMO, hundreds of terminals can be simultaneously served with a BS
equipped with hundreds of antennas over the same time/frequency resources. Some key

enabling characteristics for this technology are:

2.5.1 Time Division Duplex

On the contrary of the frequency division duplex (FDD), The overhead required to
estimate the channel does not depend on the number of BS antennas M under time division
duplex (TDD) protocol [47], [73]. Hence, it is preferred to use TDD protocol in massive
MIMO. Exploiting the channel reciprocity can considerably reduce the overhead required
for CSI acquisition [74]. Figure 2.4 illustrate the advantage of TDD over FDD [34]. It
shows that the possible (M,K) dimensions in TDD is much more than FDD. Therefore, the
resources necessary for channel estimation are not affected by increasing the number of BS
antennas when TDD is used. For example, when the coherence interval T is 200 symbols,
the constraint for the number of users and BS antennas is M+K <200 in FDD system, while

the constraint for TDD systems is 2k<200.

2.5.2 Linear processing

Linear processing: signal processing at the terminals in massive MIMO must be
able to handle large dimensional channels. Hence, one of the advantages of massive MIMO
is linear decoding and precoding [28]. For example, UL data transmission can be decoded
with simple matched filter and DL data transmission can be pre-coded with conjugate

beamforming as illustrated in Figure 2.5.
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2.5.3 Favorable propagation

Due to the law of large numbers, the channel between the terminals and the BS can
be well conditioned. Therefore, massive MIMO exploits the assumption that the channel
vectors are almost orthogonal. This phenomenon is called favorable propagation where
only linear processing is needed for optimal performance. Figure 2.5 illustrates that the
interference and noise can be canceled out on the UL using simple linear detector like the
matched while the BS can exploit linear beamforming techniques to beamform various

streams of data to numerous users without mutual interference.
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Figure 2.6 LuMaMi Massive MIMO testbed
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2.5.4 Array Size

One of the characteristics of massive MIMO is that the antenna array does not
occupy a big space because they are physically small. For example, the spacing between
antennas is about 6 cm at 2.6 GHz. Thus 128 antennas occupy a cylindrical array has a
dimension of a 28cmx29cm only [75]. Another example is shown in Figure 2.6 which is a
photo of massive MIMO testbed of LuMaMi at Lund university [76]. The array which is
designed for carrier frequency 3.7 GHz contains 160 patch antennas that are dual-polarized.
The panel size is 60*120 cm and the spacing between the antenna elements is 4 cm which
leaves a plenty of space for adding more antenna elements. One of the possible deployment

scenarios for such a panel can be on buildings facades.

3.1.5 Scalability

Massive MIMO is a scalable technology: since the BS acquires the channel through
UL pilot when operating in TDD protocol, the time spent on channel estimation does not
depend on the number of BS antennas. Thus, the number of BS antennas can be increased
without adding more time to the estimation process. Furthermore, because multiplexing
and demultiplexing are not needed at the user ends, signal processing on each terminal is

independent of the other users
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2.6 How Does Massive MIMO Operate

UL and DL operations of massive MIMO are illustrated in Figure 2.7 [31]. This
setup might represent a single cell site, or cell taken out of a network. A large number of
UE K inside the cell are served through an array of antennas in the BS. Each terminal
usually have a single antenna [77], [78]. Other cells are served by different BSs that do not
cooperate among each other except for pilot assignment and power control [79]. All
terminals use the full frequency-time resources simultaneously for UL/DL transmissions
[80]. On the UL, individual signal sent by the terminals are recovered at the BS. The BS,
on the DL, makes sure that every UE receives only the signal that was intended for it.
Multiplexing/demultiplexing processing at the BS are possible because of the available
knowledge of the CSI.

The BS creates an arrow beam towards the direction of the terminal under line of
sight (LOS) propagation environment as shown in figure 2.8 (a). The concentration of
these beams become more accurate (i.e. they become narrower) as the number of antennas
is increased. In the case of the existence of a local scattering, the signal received at any
UE consists of the superposition of many independent components as a result of scattering
and reflections which can add up destructively or constructively. These components add
up constructively exactly at the location of the user if the transmitted waveforms are
perfectly selected as shown in Figure 2.8 (b). The precision of the power concentration to
a certain terminal can be increased by adding more antennas to the BS. Therefore, it is

very important to have CSI at the BS that is sufficiently accurate to focus the power [81].
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Figure 2.8 The effect of precoding in different propagation environments [31] .

TDD operation shown in Figure 2.9 is preferred in massive MIMO. The coherence
period divides into three operations that include channel estimation (UL/DL training), UL

data transmission, and DL data transmission.

2.6.1 Channel Estimation

One of the most essential tasks of the BS is detecting the users transmitted signals
on the UL and precoding the DL signals. Hence, the BS requires the CSI which can be
obtained using the UL training. Terminals that are assigned orthogonal pilot signal each,
send these pilot to the BS. The pilot sequences transmitted from all terminals are already

known to the BS. Thus, the BS can estimate the channels using these pilot signals.
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Figure 2.9 TDD protocol of Massive MIMO transmission

Moreover, partial knowledge of CSI might be required at every terminal for
coherent detection of the transmitted signals from the BS. This partial knowledge can be
either obtained using DL training or through some algorithm that can blindly estimate the
channel. To detect its intended signal, the terminal only requires the effective gain of the
channel because the signals performing is conducted using linear precoding techniques at

the BS.

2.6.2 UL Data Transmission

UL data transmission occupies part of the coherence interval. In the UL, the BS
receives the transmitted data from all K terminals in the same frequency-time resource. The
BS detect the signals transmitted from all terminals exploiting the channel estimates and

the linear combining techniques.
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2.6.3 DL Data Transmission

The BS transmits the DL data to all the terminals on the same frequency/time
resource. In specific, the BS creates M pre-coded signal and feed them to M antennas. This

can be done using the estimated channel and the symbol intended for the Kth user.

2.7 Benefits of Massive MIMO

The need for more reliable communications and the demand for wireless throughput
will always increase. Hence, new technologies in the future are required to simultaneously
serve many users with a very high throughput [82]. These requirements can by met with
massive MIMO. The capacity of the UL transmission under favorable propagation

conditions is (DL transmission follows the same argument):

Csum = log, det ( Iy + p,MIg) = Klog,(1 + Mp,,) 2.1

Where M and K represent the array gain and multiplexing gain respectively. It is obvious
that large K and M result in a very high energy and spectral efficiency. Hence, by increasing
K and M, higher number of users can be served over the same frequency band without the
need the increase the transmit power of every terminal. Therefore, the throughput of every
user increases. Moreover, the transmit power can be reduced 3 dB by doubling the number

of antennas in the BS without compromising the quality of service.
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Favorable propagation conditions and Optimal processing at the BS are necessary
to get the array and the multiplexing gain. These gains can also be achieved using linear
processing with massive MIMO instead of the usual low dimensional point to point MIMO
with very complicated processing schemes [83]. In fact, when the number of BS antennas
is increased to a very large number in massive MIMO, the channel becomes favorable
because of the low of large numbers. Therefore, linear processing is considered almost
optimal for massive MIMO. Therefore, array and multiplexing gains can be achieved using
simple linear processing. Also, the throughput can always be improved by increasing the

number of users and the BS antennas.

Figure 2.10 shows the capacity as a function of the number of BS antennas for
optimal receivers and linear receivers at K=10. The capacity for MRC, ZF and MMSE are
also shown in the figure. It is clear that the capacity approaches the Shannon sum capacity
of the optimal receivers when M is large. For example, the largest sum rate that can be
obtained with optimal receiver and M=K=10 is 8.5 bits/s/Hz. However, when M is large,

say 60, the sum rate of 38 bits/s/Hz can be obtained with simple ZF receivers.
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2.8 Challenges of Massive MIMO

Although massive MIMO have great advantages, many challenges still need to be

dealt with. The most important issues are listed below:
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2.8.1 Unfavorable propagation

It is assumed that massive MIMO operates under favorable propagation conditions.
In practice, however, there many circumstances that makes the propagation of the channel
unfavorable. For example, the propagation environment when the number of users is much
more than the number of scatters, or if the scatters between the BS and the channels of
different users are common. Disturbing the antennas of the BS over a large area is one

possible solution to this problem.

2.8.2 Pilot Contamination

Cellular networks in practice consist of a large number of cells. Due to the scarcity
of the frequency spectrum, frequency resources are shared between many cells. Thus,
assigning orthogonal pilots for all the users is difficult because of the restricted channel
coherence period. These orthogonal sequences are usually reused between the different
cells. Hence, the process of channel estimation in a certain cell can be affected with the
pilot sequences transmitted on the other cells. The system performance can be reduced by

this phenomena known as “pilot contamination” [84].

Pilot contamination is one of the major issues that imposes limitations on the
performance of massive MIMO systems. Even if the number of BS antenna grows to a very
large number, this effect cannot be eliminated. A lot of research is being made to reduce
this effect. In order to reduce the impact of inter cell interference that leads to the pilot
contamination, many solutions have been proposed. Pilot contamination precoding

schemes, the eigenvalue decomposition based channel estimation as well as pilot
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decontamination are proposed in [85]-[87]. It has been shown in [88] that pilot
contamination could be decreased using pilot assignment schemes between the cells that
are aware of the channel covariance in a specific types of channels. A lot of research is

still trying to consider this issue from many prospective.

Although the focus of current research is on non-orthogonal pilots as the main cause
of pilot contamination, there are other causes for pilot contamination that have been
identified recently [89]. Various sources that can cause pilot contamination include non-
reciprocal transceivers due to the structure of the internal clock of the radio frequency
chains and hardware impairments causing out of band and in band distortions that affect

training signals.

2.8.3 The Need for New Designs and Standard

Deploying massive MIMO using the current standard such as LTE would be very
efficient. However, the maximum number of antennas at the BS allowed by the LTE
standard are only 8 antennas. Moreover, the CSI used by LTE are assumed rather than
measured. For example, one of the possibilities for the DL in LTE is to transmit the pilot
signals from the BS through many fixed beams. The strongest beam is then reported back
to the BS to be used for the DL transmission. Massive MIMO, on the other hand, exploit
measured (estimated) channel information. Thus, new standards are needed before massive

MIMO is reduced to practice.
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There are other changes necessary to adjust to massive MIMO. For example, the
expensive transceivers in the current communication systems must be replaced with a large
number of inexpensive and low power consuming antennas. a special consideration must
be given to the hardware designs. Huge efforts on the industrial and academic levels are

needed for this purpose.
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Chapter Three: The Impact of Angle Spread, Angle of Arrival and Antenna

Spacing on Massive MIMO Systems

3.1 Introduction

A BS equipped with a large number of antennas is one of the main characteristics
of massive MIMO. The UEs K can operate with one antenna only [39], [90]. Also, using
the TDD protocol in massive MIMO enable UL and DL transmission on the same
subcarrier. Therefore, the process of channel estimation can be more efficient especially
when M is large because the time needed for training is independent of the number of
antennas M at the BS [71], [41], [91]. The reciprocal channel between the single antenna

terminal and the BS is illustrated in Figure 3.1.

The channel matrix in the analysis of massive MIMO usually consists of
independent identically distributed (iid) complex Gaussian gains. However, this is not
always the case in real world. Specifically, the correlation between the transmitting or
receiving pair of antennas, or the presences of a direct LOS paths in the received signal
causes H # H,,,. Therefore, the effects of realistic channel conditions on the performance

of massive MIMO are investigated in this dissertation.
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Notations:

x: lower case boldface is used to indicate column vectors
X: matrices are represented with uppercase boldface

XT: transpose

X*: conjugate

XH. conjugate transpose

X*: conjugate

tr(X): trace of matrix X.

Base Station User Terminal

Figure 3.1. Channel reciprocity in massive MIMO based on TDD protocol
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3.2 Channel and System Model

3.2.1 Time Division Duplex (TDD)

The process of the TDD protocol is shown in Figure 3.2. During the coherence
period T,oper, the channel is static [92]. The coherence period is divided as the following:

for TUl:, channel uses, UL pilot signaling starts each fading block followed by TY%,

pilo
channel uses of UL data transmissions. Then, the DL pilot signaling for T2} pilot channel uses
enable the terminals of estimating their actual channels and the present interference
conditions to coherently recover the DL data. Irrespective of the number of antennas M,
the number of pilots is scalar, hence the DL pilot signaling does not necessarily grow as M
increases. The coherence period finishes with DL data transmission for TS5k, ,. TDD satisfy

the following relation T pilot T TYE Tpllot + Thk e = Teoner-

UL DL
Tpnlot Tdata Tpllot TData

Coherence Period T gher

Figure. 3.2 Illustration of TDD protocol and data transmissions.
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3.2.2 One Ring Model

The one ring model describes the environment where most of the scatters are
concentrated around the UE in a ring shape. This model is suitable for suburban areas
where the UE and the BS are separated with a high distance. The one ring model has been
widely used to investigate outdoor MIMO communications were the UE is placed at the
center of a ring of scatters. In general, every scatter on the ring is a representation of
many scatters that form the incident ray in a certain direction. The angular spread with

respect to the BS in the UL controls the radius of the ring [93].

The one ring model SISO model in [94] was used to investigate a narrowband
Rayleigh fading channel in [94], [95]. The reference model of the MIMO channel has been

derived using the one ring model in [96].

The channel covariance matrix is generated using the one ring model in [97] to
analyze the influence of non-ideal channel conditions on the performance of massive
MIMO systems. The one ring model shown in Figure 3.3 assumes that a ring of scattering
objects of radius 7 surrounds the terminal while no scattering objects are located around
the BS. The azimuth angle between the terminal and the BS is denoted 6 and they are
located at distance d of each other. The multipath components arrive to the terminal with

an angle spread A. The covariance matrix R of the channel is generated using 3.1 [98].
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The Toeplitz form of the channel covariance matrix is given as

[R]n,p — if—AA-lfe e—J2mD(n=p)sin(@) 32
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3.2.3 Downlink transmission
The DL channel is either used to transmit data or to estimate the channel using
training pilots. The model of a downlink signal z € C received at the terminal for multiple

input single outputs system is

z=hTd+v 3.3

where d € CV*! indicates the pilot signal or the zero-mean random signal. X = E{dd}
denotes the covariance matrix where the average power is pB5 = tr(X). Due to precoding,
the design parameter X is dependent on the channel realization h € H where the set of
channel realizations is denoted H. Hence, during each coherence period, h remains
constant but changes between blocks because H changes. The additive term v is receiver
noise which composed of the receiver noise Vyyise~CN (0, oyg?) and the interference

Vintery from transmitting simultaneously to other terminals. The interference and the data

signal are independent of each other and both have zero mean.

V = Vnoise T Vinterf 34
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3.2.4 Uplink Transmission

The reciprocal UL channel is used for data transmission and pilot signaling to
estimate the channel; see Figure 3.1. like 3.3, the received signal y € CMat the BS is

modeled as

y=hs+n 3.5

where s € C indicates the stochastic data signal or the deterministic pilot signal used to
estimate the channel; in any case, pY% = E{|s|?} is the average power. The additive
termn € C V> in 4.5 is composed of the interference from simultaneous transmissions
and the receiver noise n,,,;s.. The interference is independent of s but can be dependent on

the channel realization .

N = Nyoi5e + Nipgerf 3.6

3.3 Uplink Channel Estimation

Comparison between the received UL signal y in 3.5 and the UL pilot s is made to
estimate the current channel realization h. The typical channel estimation (pilot-based)
considers Rayleigh fading channel with a known statics which is affected with independent
complex Gaussian noise [49]. At the BS, linear minimum mean square error (LMMSE)
estimator is used to estimate the channel based on the observation of the received uplink

signal y in (3.5).
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:l)

=s*RY 1y 3.7

where ¥y and R denote the covariance matrices of y and the channel
Y = E{yy#} = pUER + S+op4°1 3.8

The mean square error (MSE) is
MSE = tr(G) = E||h - h][; 3.9
The error covariance matrix G is given in 3.10.
G = E{((h—h)(h—h)"} = R—pUERY-IR 3.10

The channels consists of the LMMSE estimate in 3.7 pulse an unknown estimation error
h = h + € where € € CV*! indicate the estimation error. h and € both have zero mean
and uncorrelated, but are independent. Thus, the covariance matrix of the estimated channel
is E{ ilil"} = R — G where G= E{ee'} is given in 3.10.

Suppose that the pilot signal is y € C*# where 1 < B < Tp}j,,. Then, for every

element of B, Separate LMMSE estimate is computed, h; = h — ¢, for i = 1, ..., B, using

3.7. Taking the average results in

= N 1
h=-%f h=h--%,¢ 3.11

B
Then the MSE ofiis
1wp H 1B tr(G)
E{(22E.€) GIE e)f= "2 312
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Start

[ Input the values of the variables ]

l

[ Calculate the pilot signal ]

l

Calculate the channel covariance matrix
using the one ring model

A

[ Compute the matrix A in the LMMSE Estimator ]
[ Compute the MSE ]

l

[ Repeat the process for different variables ]

End

Figure 3.4 Flowchart of the simulation of massive MIMO channel estimation accuracy.
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4.3.1 Results and Discussion

0
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Angle Spread

Figure 3.5 Estimation error as a function of angle spread UL SNR: 5 dB [69] .

The flowchart in Figure 3.4 describes the main steps to simulate and analyze the channel
estimation accuracy of massive MIMO systems. All simulation and figures are generated
in MATLAB.

Figure 3.5 shows the relative estimation errors per antenna for an angle spread that
varies between 10 and 55 degrees. Four different BS antennas have been considered with
no interference (S = 0). The covariance matrix R of the channel is generated with the one
ring model form [97]. The angle of arrival (AOA) considered is 30 degree which reasonable

assumption especially for an array with half-wavelength spacing between antennas.
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Figure 3.5 proves that it is easier to estimate channels with less error per antenna
when the angle spread is low. This can be noted when the number of BS antennas is high;
reducing the angle spread of the one ring model result in less estimation errors. Hence, The

BS with large number of antennas is more sensitive to the variations in angle spread.

100 I I I I I T T T T T

—
S,
1L
L]
1

Estimation Error per Antenna
=

—15dB

'3 | ! 1 ! ! ! | L I L
19 5 10 15 20 25 30 35 40 45 50 55

Angle Spread

Figure 3.6 Estimation error as a function of angle spread for different SNRs with BS of 50
antennas [69].

Figure 3.6 illustrate the possibility of improving the estimation accuracy of the
massive MIMO channel by increasing the SNR. The figure considers the impact of three

different values of UL SNRs on the channel estimation accuracy when the BS is equipped
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with 50 antennas. Estimation error per antenna is also shown as a function of angle spread.
High SNR increases the accuracy of channel estimation by reducing the number of errors.
Therefore, high UL SNR is needed to fully utilize massive MIMO because accurate CSI is
necessary for coherent reception/transmission. Also, high angle spread can compensate for

the lower SNRs.

T T
—+— Angle Spread 10| |
—s— Angle Spread 20
—&— Angle Spread 30

Estimation Error per Antenna

1 1

1 1

1 2 3 4 5 6 7 8 9 10
Pilot Length (B)

1072

Figure 3.7 (a) Estimation error per antenna as a function of the pilot length UL SNR of 5
dB [69].
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Figure 3.7 (b) Estimation error per antenna as a function of the pilot length UL SNR of
15dB [69].

Increasing the length of the pilot signal can also be used to improve the estimation
accuracy. This is illustrated in Figure 3.7 (a,b) where the relative estimation error per
antenna shown for different angle spread with variable pilot lengths. There is a clear gain
in the accuracy of channel estimation that can be achieved by increasing the length of the
pilot. Figure 3.7 also shows reduction in estimation errors occurs when channels are highly

correlated along with increasing the pilot length.
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Figure 3.8 Estimation error for the LMMSE estimator as a function of the angle of arrival
(AOA); uplink SNR of 25dB [99].

Angle of arrival can also affect the estimation accuracy of massive MIMO. This is
illustrated in Figure 3.8 where the relative estimation error is shown as a function of the
angle of arrival (AOA) to the BS with half wavelength spacing between antennas. The
estimation accuracy increases as the angle of arrival to the BS increases. This improvement
can be noticed when the number of BS antennas is 128 where the least number of errors

per antenna happens at 90-degree AOA.
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The impact of antenna spacing on the channel estimation accuracy is shown in
Figure 3.9. The antenna spacing in the figure ranges between half the wavelength to four
times the wavelength. Obviously, Varying the antenna spacing can affect the quality of the

channel estimation when the number of BS antenna is very high.

Estimation Error per Antenna

—«— 2 antennas
—+&—4 antennas
—p— 16 antennas
—— 128 antennas

i 1 A

0.5 1 1.5 2 2.5 3 3.5 4
Antenna Spacing

Figure 3.9 Impact of antenna spacing on the channel estimation accuracy. uplink SNR of
25dB [99].
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3.4 DL/UL Data Transmission

Under the TDD protocol, the ergodic capacities of the DL data transmission 3.3 and
the UL data transmission 3.5 are investigated in this section. These capacities are derived
based on the estimated channel using the LMMSE estimator in 3.7. Arbitrary knowledge
HBS of the channel H is available at the BS in every coherence period. The conditional
distribution f = (d|H BS) of the signal d is selected based on that knowledge. Different
arbitrary knowledge H YF of the channel 7 is used at the terminal to decode data. The

ergodic DL capacity (in bit/s/Hz) is [39]

max . BS 47 UE
E{f: (d|HBS):E||d|| 2 < pBS %(d,zm,}[ S H )} (3.13)

DL
Tdata

CDL —

Tcoher

where Z(d; z|H,H BS W UE) represents the mutual information between the transmitted

and received signals d and z respectively for a certain channel knowledge of (3 UE ,H BS)

DL
Tdata

and a certain channel realization H. The ratio denotes the allocated portion of

coher

channel uses for the DL.

The ergodic capacity (bit/s/Hz) of the uplink channel in (3.3) is

TUL max
data

UL _— . BS 47 UE
O =Bl — iy E(lsl3) < pro WGYILICSTD] o0

where z(d;yl}[ ,HEBS, H UE) is the mutual information between the transmitted and
received signals s, y respectively for a given channel knowledge (H YE,7B5) and a given
channel realization . The joint distribution of £, B85, 7 VE is used to find the

expectation in 3.14 and the conditional distribution of the data signal f = (d|H YE). The
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UL ~
ratio Tdata_ denotes the allocated fraction of channel uses for the UL channel. H YEand

coher

F BS are the channel available at the receiver for the DL/UL respectively which can be

degraded compared to £ YEand H BS. The DL capacity in 3.13 and the UL capacity in 3.14

become
TDL
DL — data g {log,(1 + SINRPL (XDL))} 3.15
coher
TUL
cUL — T«iﬂ E {log,(1 + SINRUL (XUL))} 3.16
coher
where xPl = [uPl . uPY]"denotes the beamforming vector and xV* = [udl .. u}M]"

indicate the receive combining. Both vectors have a unit norms and are functions of h.

The expressions for the DL and the UL SINR are given in 3.17 and 3.18 respectively.

|[E{hHXDL|j:[“UE}|2

SINRPL(xPL) = —
[E{|hHXDL|2|g_TUE} _ |IE{thDL|j-TUE}|2 + [E{I}[pLJ;[ } (;ZB%E
3.17
SINRYL(xYL)
_ |E{h#xVL| 7 BS}|?
B ULYH 2 1y UL|4f BS
B0t 2 77 5) — [ 7T ) 4 BT Qo ¥ o DT

3.18
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Start

[ Input the values of the variables ]

A 4

[ Define different types of assumptions ]

[ Channel Generation ]

[ Imperfect CSI ]

¥

[ Compute the SINR }

Calculate the total system capacity by
taking the average of all realizations

l

[ Repeat the process for different variables ]

End

Figure 3.10 Flow chart of the simulation of massive MIMO capacity analysis.
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3.4.1 Results and Discussion

In this section, the effect of channel anngle spread, angle of arrival and antenna

spacing on the capacity of massive MIMO is illustrated. The average SNRs considered for

the DL and the UL are defined as pBS % and pYE % respectively. The angle spread
UE BS

and the number of antennas are varied under fixed SNR. To make the DL and UL capacities

DL UL
identical, the ratio of the DL and UL data is fixed at —%2ta = data — ( 45 The flowchart

coher Tcoher

in figure 3.10 describes the main steps to numerically generate and analyze the capacity of

massive MIMO systems.
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Figure 3.11(a) Channel capacity as a function of the angle spread ; SNR:0 dB [63].
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Figure 3.11 (b) Channel capacity as a function of the angle spread ; SNR:25 dB [63].

Figure 3.11 (a & b) considers three different numbers of antennas: 50,100 and 300
with SNRs of 0 and 25 dB respectively. Results show the channel capacity in bit/s/Hz as a
function of angle spread for the three cases. The capacity grows as the angle spread is
increased. Hence, the least correlated channels give the best performance while the lowest
performance happens with the strongly correlated channels. Note that adding more
antennas to the BS increases the channel capacity which is consistent with one of the main
advantages of Massive MIMO. Figure 3.11 (b) shows the capacity is more sensitive to

variations in the angle spread at high SNR.
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Figure 3.12 shows the relation between the channel capacity and the number of BS
antennas and the angle spread. Results indicate that as the number of BS antenna increases
the capacity increases as will. Also, the channel capacity is negatively affected by the low
angle spread even when the number of antennas is very high. Distinguishing between the
various transmitted signals becomes difficult for the BS because of the difference in the
length of the paths between the scatters and the transmitting antennas gets smaller as the

angle spread decreases.

Capacity [bit/sHz]
N w (42} o ~ o © O

Uncorrelated -
——— One Ring 10 Degrees

One Ring 20 Degrees
— — One Ring 30 Degrees

—

0 200 400 600 800 1000
Number of Base Station Antennas (N)

Figure 3.12 Channel capacity as a function of the number of antennas for different angle
spread scenaros SNR:25 dB [99].
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Figure 3.13 Channel capacity as a function of the AOA for different BS antennas
SNR:25 dB [99].

Figure 3.13 considers the channel capacity of massive MIMO for three different
numbers of antennas: 50,100 and 300 with SNR of 25 dB. Results show the channel
capacity in bit/s/Hz as a function of AOA for the three cases. The channel capacity
decreases as the AOA increases. Therefore, it can be concluded that the capacity of the
channel is inversely proportional to the AOA. Note that that the impact of AOA on the

capacity can be much higher when the number of BS is very high.
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Spacing between the antenna elements in the BS can also affect the capacity of
missive MIMO systems. Figure 3.14 shows the capacity as the antenna spacing is varied
for different number of BS antennas. The channel capacity is improved as the separation
between the antennas elements is increased. However, the effectiveness of increasing the
antenna spacing stops after a certain point which makes any further separation between the

antennas pointless.

9.5 T T T T T v

(o]

v

N
(&)

o

Capacity [bit/s/Hz]
o~

»

—s— 50 antennas

—p— 100 antennas
5 —&— 200 antennas|
—e— 300 antennas

4.5 i L L Il i 1
0.5 1 1.5 2 2.5 3 3.5 4

Antenna Spacing

Figure 3.14 Channel capacity as a function of the antennas spacing for different
corelation scenaros SNR:25 dB [99].
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3.5 Energy efficiency

The energy efficiency (EE) in bit/Joule of the massive MIMO is defined as the ratio
capacity (in bit/channel use) and to the transmit power that is measured in (joule/channel
use). The energy consumption at the amplifiers in the transmitters in each coherence period

under the TDD protocol is
BS UE
— DL DL P UL UL P
Eamp - (Tpilot + Tdata) wBS + (Tpilot + Tdata) wUE 3.18

where wBS, wUE denote the efficiency of the amplifiers at the BS and the UE respectively.
y p

The average power (Joule/channel use) is given as

DL BS UL UE DL BS
Eamp _ <Tpilot p Tpilot p Tdata b +
— “DL BS UE BS
Tcoher Tcoher w Tcoher w Tcoher w
DL power
DL UL
Tpilot PBS Tpilot pUE Téjalfa pUE 3.19
UL\ wBS ' T wUE T wUE :
coher coher coher

UL power

where ap;, and ay, are the ratios of the DL and the UL transmission respectively

Tcll)alfa 3 ‘20

dpL = —pL , UL
Tdata+Tdata

Tdat
Ayl = BT .~0T 3.21
Tdata+Tdata

The EE (in bit/Joule) of massive MIMO system is defined as the following.

DL
DL _ C

EEDPL = S TR 3.22

pilot p pilot p~*= Tdata P

DL Bst gETNP+ |+ BS
Tcoher @ Tcoher @ Tconer @
cUL

EEDPL = 3.23

DL UL UL

Tpilot pBS  Tpilot pVUE Tdata PYE
auL| 7 BStT gEtNp+{ |+ UE

coher @ coher @ coher @
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where Np + ¢ denote the baseband circuit power consumption

[ Input the values of the variables ]

[ Channel Generation ]

. 2
[ Imperfect CSI ]

Calculate the system capacity

\ 4

Calculate the transmit power

l

Calculate Energy Efficiency of the system
by taking the average of all realizations

I

[ Repeat the process for different variables J

Figure 3.15 Flowchart of the simulation of massive MIMO EE analysis.
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3.5.1 Numerical Results
The relation between the performance of Energy Efficiency (EE), the number of
BS antennas, imperfect channel conditions and transmit power of massive MIMO is

presented in this section. The power consumed by the circuit if only one antenna is used is

p+¢=0.02 S — However, the circuit power for any number of antennas N is
Channel use

Np + {. Therefore, splitting between p and  is : ﬁ = 0. Also, the amplifiers efficiencies

are w35 = wYE = 0.3. The covariance matrix of the channel is produced using the one ring

model in 3.6 with angel spread that varies between 10 to 50. To make the EE of the

UL DL
downlink and the uplink identical, we let ap, = ayy, = 0.5 and —92t2 = Jdata — ( 05 The

Tcoher Tcoher

flowchart in figure 4.15 describes the main steps followed to numerically generate and

analyze the EE of massive MIMO systems.

The average EE of the DL and the UL for three different number of BS antennas
using the capacities in 3.12 and 3.13 are shown in Figure 3.16 (a). EE improves as the
number of antennas goes up. Hence, EE is very important feature of massive MIMO. The

figure also shows that the performance improves as the angle spread is increased.

Figure 3.16 (b) shows the power allocations corresponding to the curves in Figure
3.16 (a). Although higher number of antennas N is more energy efficient, more transmit
power is required as the number of antennas is increased. The transmit power grows as the

angle spread of the channels increased.
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Figure 3.17 (a) shows the average EE of the DL and the UL for three different
number of BS antennas using the capacities in 3.12 and 3.13. EE improves as the number
of antennas goes up. Hence, EE is very important feature of massive MIMO. Also, it is
oblivious that as the AOA to the BS increases, EE decreases as a result. The impact of

increasing the AOA can notices when it exceeds 50 degrees.

Figure 3.17(b) shows the power allocations corresponding to the curves in Figure
3.17 (b). Although higher number of antennas N is more energy efficient, more transmit

power is required as the number of antennas is increased and when the AOA is very small.

The average EE of the DL and the UL for three different number of antennas using
the capacities in 3.12 and 3.13 are shown in Figure 3.18 (a) as a function of the antenna
spacing. EE can be increased by adding more number of antennas to the BS. This confirms
one of the most important properties of massive MIMO. Improvement in EE can be also
achieved by increasing the spacing between the antenna elements. Figure 3.18 (b) shows
the power allocations corresponding to the curves in Figure 3.17 (a). The transmit power

grows as the separation between the antennas increases.
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3.6 Conclusion

This chapter considered the impact of non-ideal channel conditions on the capacity
and energy efficacy of massive MIMO. The analysis was based on a system model that
considers for these channel conditions. Numerical results showed that the gain of the
enormous antenna array in massive MIMO systems depends on the CSI. Results also
showed the impact of the angle spread, AOA, antenna spacing and SNR on the channel
estimation accuracy, capacity and EE were the channel covariance matrix was generated
using the one ring model. The channel estimation accuracy can be improved if the angle
spread and the spacing between antenna are decreased and if the AOA, pilot length, SNR
and the number of BS antenna are increased. While The channel capacity is proportional
to the angle spread, SNR, number of BS antennas, and antenna spacing, it is inversely
proportional to the AOA. The EE is improved as the angle spread, SNR, antenna spacing,
and number of antennas are increased but decreases at lower AOA.

It can be concluded that one of consequence of the non-ideal channels is the
degradation in capacity and energy efficiency of massive MIMO systems. This can be
combated by increasing the transmit power to increase the SNR, increase the spacing of

the antenna array and by adding more number of antenna at the BS.
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Chapter Four The Effect of Users Allocation on The Capacity of Massive MIMO

4.1 Introduction

Current research on massive MIMO concentrates on the benefits of employing
hundreds of antennas at the BS that enable each cell of simultaneously serving large
number of users. [27], [29], [100]. It has already been shown that significant improvement
in the channel capacity can be achieved though simple linear processing techniques that
can give almost near optimal performance. However, too many users might want to use
their devices in the same location especially in large cities. Therefore, it is very important
to analyze the performance of massive MIMO systems in these circumstances to
understand the effect of the large number of users in the cell. Extensive studies about the
capacity of the small scale MIMO systems with too many users have already been
conducted with the assumption of having a perfect channel state information (CSI) [101],
[102]. Imperfect CSI in point to point and multiuser MIMO systems are considered in
[103]-[105], however, it is still needed to investigate large system in order to study the

behavior of massive MIMO.

In this chapter, the estimated CSI is used to analyze the capacity of Massive MIMO
for any number of users. Hence, the UL and the DL lower bounds of the sum capacity

which can be achieved with per user basis MMSE detectors and the uplink pilots are
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derived. The analysis shows that the capacity can be improved by increasing the number
of users when the BS is equipped with a large number of antennas. However, when the
number of users exceeds a certain number the overall sum capacity of the system start
decreasing.

4.2 System Model

Again, a single cell scenario where K single antennas users are served with a BS
with M antenna is considered. It is assumed that each coherence block consists of S
transmission symbols and that the users’ channels do not change during every block.
Within the coherence block, the response of channel from the user & to the BS is denoted
C, € CM*N_ The small spacing between antennas and the lack of enough scattering in the
channel can cause spatially correlated fading. Thus, spatial correlation is described using

the kronecker model.

1 1
Ck = Ri,kckaRi,k 41
Where the elements of the matrix C,, ; € CY*V are i.i.d. The spatial correlation at the BS

and the user k are denoted R, and R, respectively. The eigenvalue decomposition of
R, is Vi A, Vi where A, is the matrix containing the eigenvalues diag {™; ; ...,»; v} and

V|, denote the unitary matrix.
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4.2.1 UL Channel Estimation

The number of orthogonal sequences during the UL pilot signaling to estimate all
the channels at the BS is B=NK. Thus, the matrix that contains the pilots of user & is denoted

Ty € CV*B. Where tr(T, T) < BP, is the pilot energy constraint to minimize the MSE

1
of channel estimation using the pilot matrix T, = VkLﬁcUi. Where L, =

diag{®y 1, ...., €y n} 1s used to distribute the maximum power P, between the N dimensions

of the channel. U, € CB*Nsatisfies UYUT = BI, and U¥U, = 0 when k # £. Hence, the
k k Uk N kUp

received uplink signal at the BS is

1

Y=X5,C T, +N=X(_ Hg DiU,Z +N 4.2

1
where D, = AL, and Hj = Ri,ka,ka. N denotes the noise at the receiver. It the

statistical information D, is available at the receiver then the LMMSE estimate of the

channel is

1

” = 2
hy = (D;®R, 1) (Dk®R, ) +—Iyn) by 43

1

where by, = Vec(% Y, Uy)= Vec(HkDi + \/% NU;). If the ith column of Hj, is Bk‘i, then

a ~ H . q)k,i' l :]
E{hk,ihk,j} = {0' P 4.4

0'2 -1

where @ ; = @ ; = dj Ry (dk,iRr,k glm) Ry k-
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4.2.1 UL Channel Capacity

When every user transmitter knows only its channel while the BS has perfect
knowledge of the CSI to all users, every terminal pre-code its transmitted signal to

maximize the capacity [106]. If the precoding matrix of user £ during the transmission of

1

the UL data is denoted T, € CV*N, then Tj = VkP,f where Py, = diag{py 1 ..., Prn}
denotes the power allocation matrix with tr(P,) < P,. Therefor, the received UL signal

at the BS can be expressed as

1 1

y= Z£=1 Ck Tkxk +n= Zﬁ:l Hk A?CPIEXR +n 4.5

where the data symbol transmitted for the user & is denoted x,, ~CN (0, Iy) and the noise
at the receiver noise is donated n ~CN (0, ol,,). The mutual information between y and

X = [Xg, ..., Xg] has the following lower bound
I(y,H; x) > IK_, E{log,|Iy + O, HY ¥, He |} 4.6

where H =[ﬁ1'_.__,ﬁk] is the imperfect BS at the receiver, O, = AP, and ), =
(Z#ikﬁt’ﬁiﬁg] +Z+ o_ZIM)_l with Z = Z§ 211\1,=1>‘f,n pf,n(Rr,f— (D#,n)- UL capacity of

the user & can be maximized using the following MMSE detector

i = > ki Pk,iZBk,i 4.7

where ¥ = (X3! + H,0,HE)~1. The UL channel capacity of user k after applying the

MMSE detector to the signal in 4.5 is
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Cux = 2it1 E {log,(1 + SINRRY)} 4.8

where SINR is

N 2
N iPk,i| e ik,
E {tri(yyH —>pivk b i Af ) te i | A}

4.9

SINRY; =
4.2.2 DL Channel Capacity

1 1

The average effective channel at the user is Hj, £ Ai]E{H,’;’ Wk}ﬂf, where W, €

CM*N denotes the user k DL precoding matrix and ,, allocate the transmit power between

the NV streams. At the kth user, the received signal is

1

yi = CH TK  W,Q2x, +n, 4.10

where x,~CN (0, 1,,) indicates the DL signal dedicated for £th user and n;,~CN (0, ol,,)
is the additive noise at the receiver. The processed received signal with user’s k eigenvector

of its correlation matrix V{ is

1

1
z, = Viy, = A2 HE Y0, WeQ2 %, + Vi, 4.11
The mutual information between x;, and z; has the following lower bound

I(Zkﬁxk) = 10g2|IN + ﬁllgﬁkﬁkl} 4.12
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1 1
where IT;, = (AL E{H}! ¥, (WpQ,W;)H,}A% + 6%Iy)~!. The LMMSE of the kth user
that maximizes the DL channel capacity is 1, ; = I hy,;, where I = T * + H,H} The DL

channel capacity of user k after applying the MMSE detector to the signal in 4.11 is
CoLx = 2iq E {log, (1 + SINRYD} 4.13
where SINR is

_ 2
Irfl iy i

4.14

SINRY; =

- 2
v B {ziz) oy = [rflie
where Bk,i indicates the ith column of H,,
4.3 Results and Discussion

Certain cells might have to serve a large number users in some circumstances. In
big cities, cells are always allocated a large number of users that must be served while cells
in rural area might not be loaded at all. Figure 4.1 shows the capacity of a single cell
massive MIMO as a function of the number of active users in the cell in three scenarios.
The optimal capacities vary depending on the number of antennas in the BS. The first case
is when the number of antennas at the BS is 50. In this case, the capacity start increasing
until the number of users reaches 40. After this point, the capacity start degrading as more
number of users are added to the cell. When the number of BS antennas is 100, the
maximum capacity that can be reached is almost 125 bits/s/Hz with 65 users. Finally, the

most suitable number of users on a cell where the BS is equipped with 200 antennas is 85
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users as the channel capacity can reach up to 190 bit/s/Hz. Therefore, BS with large
number of antennas perform better as it accommodates more user but, the capacity start
degrading as the number of users exceeds a certain point. For example, the optimal
capacities when the BS is equipped 50, 100 and 200 antennas occur at 40, 65 and 90 active
terminals respectively. [107] studied the effect of number of users on the capacity of
massive MIMO using different estimation techniques. Our results show that the optimal

capacity of a single cell can be actually achieved with higher number of users using the

LMMSE estimator.
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Figure 4.2 shows the impact of the number of user on the capacity as the number
of antennas is increased. The capacity increase with a faster rate when the number of users
is below 40 and the number of BS antennas is under 80. However, the capacity increase
much in a much faster rate for BS with more than 80 antennas when the number of users
is above 40. Although [47] claims that the channel capacity is proportional to the number
of users and the BS, our simulation of massive MIMO using the LMMSE estimator can

negatively affect the capacity of the cell.
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One of the conventional solution to increase the system capacity is cell
densification. Hence, massive MIMO system can be used as another network solution to
increase the overall system capacity.

Massive MIMO can provide a good capacity even at low SNRs. Figure 4.3 shows
the relation between the average SNR and the capacity of Massive MIMO. Starting from
very low SNR below 0 dB, there is a small improvement as the SNR increases. However,
capacity start saturating above 5 dB. Therefore, the transmit power of massive MIMO does
not have to be very high to achieve its benefits. Our results are consistent with [107] where

the performance of massive MIMO is analyzed using different processing techniques.
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4.4 Conclusion

This chapter analyzed the channel capacity of massive MIMO in a single-cell
scenario under the impact of variable number of scheduled users. Using the estimated CSI
though the UL pilots, the ergodic sum capacity is calculated using the LMMSE detectors.
Although it is assumed that the performance of massive MIMO improves as the number of
users increases, the maximum number of users that can be served without affecting the
performance depends on the number of BS antennas. Hence, the higher the number of
antennas the better increasing the number of users improves the capacity of the system.

In general, high per cell channel capacity are achieved by allowing many users of
transmitting simultaneously. While 40 users give a per cell capacity of 70 bit/s/Hz when
the BS is equipped with 50 antennas, the performance increases to 110 bit/s/Hz and 145

bit/s/Hz when the BS is equipped with 100 and 200 antennas respectively.
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Chapter Five: Summary and Future Work

5.1 Summary

Massive MIMO is a new technology that will be used in the 5™ generation of
wireless communications. There are a lot of issues that must to be considered before this
new technology is put to practice. This research studied two aspects that can affect the

performance of massive MIMO systems.

The first matter that affect the performance of massive MIMO is the quality of
channel. It has been shown that one of the effects of the high channel correlation is the
degradation in capacity and energy efficiency of massive MIMO systems. The effect of
such channel conditions can be reduced by increasing the transmit power to improve the
SNR. Increasing the spacing of the antenna array and adding more antennas at the BS can

also lower the effects of channel by improving the channel capacity and the EE.

The impact of the user allocation on the capacity of massive MIMO was also
investigated in this dissertation. It was shown that more number of terminals can be hosted
in the cell when the number of BS antenna is increased. However, allocating too many

users can negatively affect the capacity of massive MIMO.
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5.2 Future Work

Massive MIMO is a new technology that comes with many challenges and issues
that must be investigated. Therefore, there are plenty of possible research directions. The

following list are providing some of the potential research directions in massive MIMO:

e Extend the Investigation to include issues such as higher numbers of BS antennas and
different estimation method and compare their effects.

¢ Investigating the performance of massive MIMO in multi-cells scenario and compare it
to the performance of the current small cells.

¢ Pilot contaminations: this is one of the things that significantly can limit the performance
of massive MIMO. Dealing with this issue that happens during the training period
because of interference from other cells is very important research directions. The effect
of pilot contamination can be reduced using larger frequency reuse factors. However,
this will decrease the spectral efficiency because it reduces the pre-log factor. Increasing
the cell size can also reduce the effect of pilot contamination because the power of the
signal inside the cell is going to be much stronger than interference from other cells. The
problem is that the users at the edge of the cell might not be able to receive a decent
quality of service. Therefore, an appropriate design to reduce the effect of pilot
contamination that consider the size of the cell and pilot reuse factor should be

investigated.
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¢ The mechanism of acquiring the channel state information still need to be investigated
to get an appropriate answer for many issues such as the possibility of blind estimations

and the using FDD instead of TDD.
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Abstract— Massive MIMO is an emerging technology that has
the potential of bringing huge improvements to wireless
communications in the future. This paper investigates the effects
of spatial correlation on the capacity and energy efficiency of
massive MIMO. We use a channel covariance matrix that is
generated according to the one ring model. We consider linear
minimum mean square error (LMMSE) for estimating channel
properties with pilot signals. The impact of channels spatial
correlation on the capacity and energy efficiency of the massive
MIMO model used in this paper are demonstrated using computer
simulation. We show that the capacity and energy efficacy
improve as the correlation between the channels is reduced.

Index Terms— Massive MIMO, Channel Estimation, Capacity,
Energy efficiency Angular Spread, LMMSE

I. INTRODUCTION

The amount of data delivered over wireless networks has
increased considerably during the recent years [1]. This growth
in data exchange is going to continue in the future driven by
new technologies such as augmented reality and device to
device communications [2], [3]. This will represent a major
challenge because the amount of available spectrum is limited
and it will never increase [4]. Future wireless communications
systems must be efficient in exploiting these resources. Hence,
new technologies should substantially increase the transmission
capacity without requiring additional bandwidth or consuming
more energy.

Massive MIMO is a promising new technology that can help
overcome the future challenges and meet the expected demand
for higher data rates [5]. The idea of scaling up MIMO is
relatively new [6]. This technology will play an important role
of increasing the spectral efficiency of wireless
communications. It is going to be an order of magnitude scale
up of multi user MIMO technology. The concept of massive
MIMO is illustrated in Fig. 1 where the base station (BS) that
has a large number of antennas communicate with terminals
equipped with single antenna each [2]. With the help of the
huge antenna array, transmit beamforming focus the downlink
signal at a certain terminal. As the number of antennas is

978-1-5090-4228-9/17/$31.00 ©2017 IEEE

increased, the accuracy of this focus improves [2]. Hence, the
main feature of massive MIMO is that every user should only
get the signal that is intended for him with the least interference
possible from other terminals [7].

Exploiting time division duplex (TDD) scheme, Uplink and
downlink transmission of Massive MIMO happen on same
frequency but at different times [8]. Massive MIMO takes
advantage of channel reciprocity which means channel state
information (CSI) is the same for the uplink and the downlink.
Therefore, the CSI estimated on the uplink is used to combine
the received single on the uplink and also to beamform

downlink data [9].

Y%xm_r
'LL‘LT

o,
J Ny

Base Station User Terminal

Fig.1. Massive MIMO base station (BS) d with hundreds of
while only one antenna is used in the user terminal.

Massive MIMO will send information only on the direction
of the intended user. Therefore, transmit beamforming requires
a good knowledge of the channel at the base station. Also,
accurate CSI leads to reducing the bit error rate (BER) that
result in enhanced spectral efficiency [10]. There are various
channel estimation methods that can be used to obtain a good
CSI. The most popular methods used for channel estimation use
pilot signal. The quality of the estimated channel are affected
by the environment and the channels spatial correlation (SC)
[10]. The SC depends on the scattering objects that are present
in the propagation environment and the antennas configuration.

Notations: x, X denote column vectors and matrices
respectively. XT denote transpose, XH denote conjugate
transpose and X" indicate. Trace of matrix X is indicated as
tr(X). x~CN (X, R) is circular symmetric complex Gaussian
vector where the mean and covariance matrix are X and R
respectively.
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II. SYSTEM AND CHANNEL MODEL

In this paper, we study the impact of spatial correlation on
the capacity and energy efficacy of a single link under the effect
of a random interference conditions. The base station (BS) in
this link contain N-antennas whereas the terminals only have a
single antenna each. The key principle in this study is that we
can increase the quantity of antennas N in the base station to a
very large number. We consider a TDD scheme that uses the
same flat fading subcarrier when switching the transmission
between the uplink and the downlink. This makes the process
of channel estimation more efficient [11]. This is because the
estimation accuracy and the amount of the overhead required in
the uplink are independent of the number of antennas [12], [9].
Channel reciprocity of the TDD protocol is illustrated in Fig.2
where the estimated channel is used for detecting the uplink
data and then to transmit data on the downlink.

We assume that the channel is fixed during a coherence
period Teoper With channel realizations that are random and
independent between fading blocks. We are considering the
TDD mode in Fig. 2 that was used in many sources such as [13],
[14]. Every block starts with uplink pilots, followed by uplink
data. After that, the system switches to the downlink which
begins with downlink pilot that enable the terminals of
estimating their channels and the existing interference
conditions. The downlink signaling does not scale with the
number of antenna N because their numbers are scalar
regardless of N. The downlink data transmission concludes the
coherence period for T5%, uses of the channel. The following
equation is valid for the TDD protocol T;;':ILot +Toh . + T;?if'at +
Tl%‘ta = Iconer-

We model the random channel h € € V*? between the base
station and the terminal as an ergodic random process that has
a constant independent realization for every coherence
time h ~CNV (0, R). The covariance matrix is denoted as R =
E{hh"} € C"*N. We assume that the spectral norm of the
covariance matrix R is uniformly bounded.

TUL

UL DL DL
pllot Taata Tpllol Toita

Coherence Period T gper

Fig. 2. Tllustration of TDD protocol where the coherence time is divided
between uplink/downlink pilot and data transmissions.
A. Downlink/Uplink channel model

The task of the downlink channel is transmitting data and
estimating channels based on pilots. The received downlink

signal z € C for multiple input single outputs flat fading
channel is modeled as

z=hTd+v )

where d € CV*! can be a training sequence to estimate the
channel or a random data signal with zero mean. The
covariance matric is indicated as X = E{dd”} and p®® = tr(X)
is the average power. X is a parameter that depends on the
realization of the channel h. Hence, X remains constant for
every coherence time but changes after that because the channel
realization changes. The v term in (2) is a random process that
contains the noise of the receiver V,,i.~CN (0, oyg?) and
interference from other terminals Vi, ery Which is independent
of the data signal and has zero mean.

V = Ungise T Vinterf @)

The uplink channel is used to send training sequences for
channel estimation and to transmit data; see Fig. 1. The system
model that we consider in the uplink with a received signal y €
CN at the base station is

y=hs+n 3)

where s € C can be a random data signal or a training signal to
estimate the channel. The average power of that signal is pU% =
E{|s|?}. The term n € C¥** in (4) consists of the receiver
noise N, ;s and interference of the transmission from other
terminals. The interference depends on the channel realization
but does not depend on s.

N = Npgise T Dingerf 4)

B. One ring model

We consider the one ring model from [15] to investigate the
impact of spatial correlation on the capacity and energy efficacy
of massive MIMO. The model assumes that the terminal is
surrounded by a ring of scattering objects with radius 7 as
shown in Fig. 3. However, no scattering objects is around the
base station according to the one ring model. It also assumes
that the terminal is located at distance d and has an azimuth
angle 0 with the base station. The angular spread of the
multipath components is denoted as A. The channel covariance
matrix R for the antennas 1 < n,p < N is given in (5) [16].

[R],, = ZLA ﬁA KT (@+0)(un=p) g )

where
k() = — 2{ (cos(a), sin(a))T

Up, Up denote the position vectors of the BS
The antenna spacing is assumed to be half the wavelength

with a uniform linear array (ULA). The channel covariance
matrix is given in its Toeplitz form in (6).
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Scattering ring

Fig. 3. A terminal at distance d from the base station that is surrounded by a
ring of a scattering objects.

III. UPLINK CHANNEL ESTIMATION

The channel state information h is estimated on the uplink
by comparing an already known uplink training sequence s
with the received uplink signal y in (3). We are considering
Rayleigh fading channel which is affected by independent
complex Gaussian noise [17]. The channel h is estimated at the
base station using linear minimum mean square error estimator
(LMMSE) from the received uplink signal in (3).

h =s*RY 1y ©)
where R indicates the covariance matrix and ¥ is given in (8)
Y = Efyy"} = p"R + S+ops°1 ®)

The MSE is
MSE = tr(G) = E||h - h]|} ©)

G = E{(h—h)(h—h)"} =R—pURY'R  (10)

where G indicate the error covariance matrix. The channels
consists of the LMMSE estimate in (7) pulse an unknown
estimation error.

h=h+e (11)
where € € CV*1 indicate the estimation error.

IV. DL/UL DATA TRANSMISSION

‘We now analyze the channel capacity of the downlink in (1)
and the uplink in (3). The analysis is based on having an
imperfect pilot estimated channel as we discussed in the
previous section. Therefore, the capacity depends on the CSI
acquired using the LMMSE estimator. We are considering the
channel capacities (in bit/channel use) of the downlink in (1)
and the uplink in (3) for a random knowledge of CSI at the base
station (BS) and the user equipment (UE). In every coherence
periods the base station is assumed to have a random knowledge
HBS of the channel . The base station uses this knowledge to

choose the conditional distribution of the transmitted signal d
f = (d|H®S). Also, UE has a different random knowledge of
the channel 7 VE. Therefore, the downlink capacity is

cbL =

Tdata max . BS 7 UE
e B = i) s Elag < pos el w70
(12)

where  ¥(d;zl7, %%, 7¢) indicates the mutual information
between the received signal z and the transmitted signal d.
Also the capacity of the uplink system in (3) is

cuL =

Tata max . BS 77 UE
Tm':" E {f - (Sl}[UE) . IE{"S" %} < pBS I(d,ylﬂ,ﬁ L H )}
13)

where %(d;ylo, %5, 7 ) is also the mutual information between
the received signal y and the transmitted signal s. The joint
distribution of 7,7 V¢ is used to find the expectation in (13).

DL UL
T, T, .

Note also that —92%and —92%_ denote the fraction of channel
Tcoher Tcoher

uses given for downlink and uplink data transmissions.

Assuming that H YEand H B are the channel estimated at
the receiver for the DL/UL respectively. These estimates are not
identical to the actual #™and 7. The capacities in (12) and (21)
become

DL
CPL = Jdafa [ (150 (1 + SINRPL (xPLY)} 14
Tcoher
UL
CUL = Tdata b (160, (1 + SINRUE (xVL)} (15)
Tcoher

where xPU = [uPY .. uP']" and xV' = [uf ... uf"]T indicate
the beamformig and receive combining vectors that are both a
function of h and have a unit norms respectively. The SINR
for the downlink and the uplink are given in (16) and (17)
respectively.

|E{h"x”"lﬁ'"s)|z (1 6)

SINRPL(xDL) =
L 5{|hn,m|2|57us}_|g(wxnn|yus)|z+%

[Efn"x M7 o5) an

vy, UL|57BS|
E{|hn,u|.|2|7as}_||.;(hnxm.|yas)|2 il )(q";’gsm il

SINRUE(xYY) =

Capacities on (14) and (15) can be calculated numerically for
any downlink beamforming vector and any uplink receive
combining vector for the estimated channel h.

A. Numerical Results

In this section we illustrate the effect of channel spatial
correlation on the capacity of massive MIMO. The average
SNRs we consider for the downlink and the uplink are defined
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as pBS ;;(IR ) and pUE “( ) ~ respectively. We vary the angular

spread and the number of antennas, while we fix the SNR
values. In order to make the downlink and uplink capacities
identical and we fix the ratio of the downlink and uplink data

Tcoher  Tcoher

Fig 4. considers spatially correlated scenario for three
different numbers of antennas: 50,100 and 300 where SNR is
fixed at 0 dB. Simulation results shows the capacity as a
function of angular spread of the one ring model for the three
cased. The capacity grows as the angular spread is increased.
This means that the least correlated channels give the best
performance while the lowest performance happens with the
strongly correlated channels. The figure also shows that
capacity grows as we add more antennas to the base station. Fig.
5. is similar to Fig. 4 but with different SNR value. The overall
capacity is increased for all the antennas as a result of increasing
the SNR to 25 dB. Also, the capacity is more sensitive to
changes in the spatial correlation between the channels.

: M‘*«N e
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Fig. 4. Channel capacity as a function of the angular spread for different number
of antennas SNR:0 dB.
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Fig. 5. Channel capacity as a function of the angular spread for different number
of antennas SNR:25 dB.

V. ENERGY EFFICIENCY

Energy efficiency (EE) of massive MIMO is considered in
this section. The energy efficiency can be found by taking the
ratio capacity (bit/channel use) and the transmitted power
which is measured in (joule/channel use). Thus, the
measurement unit of EE is bit/Joule. With the TDD mode, the
energy used by the amplifiers in the transmitters in every
coherence time is

pllE
Eamp (Tpilut data was + ( ilot data a,uz (18)
where w?S, wUYE denote the efficiency of the amplifiers at the base
station and the user equipment respectively. The average power

(Joule/channel use) is given as

wBS

DL UL
Eamp _ (Tpllnt P | Thilot p“E) THky P

Tcoher

Tcoher wYE
DL power

Teoher

+

Tolor P Toln ﬁ) Lt (19)

+ UL ( h)m + IAJUE

UL power

T coher

where ap;, and ayy, are the ratios of the downlink and the uplink
transmission respectively

Ta"aLta
@pL = IBL 470 (20
o+ Tdata
ayL = data (21)
Ta+Tahta

The EE (in bit/Joule) of massive MIMO system is defined as the
following.

DL
C
EEPL = BS TUlor pUE TOL  BS @2
pilot p pilot L data pBS
(Tconerw“ Tcoher +~p+() Tcoher wBS
UL
C
BES= pilot pBS  Tpilot pUE YL, pUE @23)
Pt Bt Np+ |4+date
(Tm.erw Tcoher @ 4 {) Tcoher @

where Np + ¢ denote the baseband circuit power consumption.

A. Numerical Results

Now, we illustrate how EE behave depending on the
number of antenna, spatial correlation, transmit power. We
setup: p + ( = 0.0z Channel use )
consumed by the circuit if only one antenna is used. However,
the circuit power for any number of antennas N is Np + (.
Therefore, we use splitting between p and {: # = 0. We also

which represent the power

set the amplifiers efficiencies to w® = w"E =03 . The
covariance matrix of the channel is generated using the one ring
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model in (6) with angel spread that varies between 10 to 50. In
order to make the EE of the downlink and the uplink equal, we
let ap, = ay, = 0.5 and TTC:“:' = % =0.05.

Fig. 6 shows EE of the downlink and the uplink for three
different number of antennas using the capacities in (12) and
(13). EE increase as the number of antennas goes up. Hence,
EE is very important feature of massive MIMO. The figure also
shows that the performance improves as the angular spread is
increased. Thus, EE improves as the correlation between the
channels is decreased.
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Fig. 6. Achievable energy efficiency as function of the angular spread for three
different scenarios N (50, 100, 200) and a fixed SNR: 20 dB.

Fig. 7 shows the power allocations that corresponded to the
curves in Figure. 6. Although higher number of antennas N is
more energy efficient, more transmit power is required as the
number of antennas is increased. The transmit power grows as
the correlation between the channels is decreased.
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Fig. 7. The corresponding transmit power of the curves in Fig. 6.

VI. CONCLUSION

This paper studied the impact of channel spatial correlation
on the capacity and energy efficacy of massive MIMO. The
study was founded on a system model which considers spatial

correlation between the channels. We showed that the
performance of the enormous antenna array gain of massive
MIMO systems might vary depending on the degree of channel
correlation. Simulation results show that the capacity and
energy efficiency can be limited by the channel correlation
matrix that was generated using the one ring model. We showed
that higher levels of channel spatial correlation results in a

degradation in capacity and energy efficiency of massive
MIMO systems.

REFERENCES

[1] T. L. Marzetta, “Massive MIMO: An Introduction,” Bell Labs Tech. J.,
vol. 20, pp. 11-22, 2015.

[2] E. Bjomson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO: ten
myths and one critical question,” JEEE Commun. Mag., vol. 54,no. 2, pp.
114-123, 2016.

[3] 1. G. Andrews et al., “What Will 5G Be?,” JEEE J. Sel. Areas. Commun,
vol. 32, no. 6, pp. 1065-1082, 2014.

[4] A. Alshammari, S. Albdran. M. A. R. Ahad, and M. Matin. “Impact of
Angular Spread on Massive MIMO Channel Estimation,” in The 19th
International Conference on Computer and Information Technology
(ICCIT). In Press, 2016.

[5] L.Lu,G.Y.Li A. Ashikhmin R Zh d,and A. L. Swindlek “An
Overview of Massive MIMO : Benefits and Challenges,” JEEE J. Sel.
Top. Signal Process., vol. 8, no. 5, pp. 742-758. 2014.

[6] T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited
Numbers of Base Station Antennas,” vol. 9, no. 11, pp. 3590-3600, 2010.

[71 S. Albdran, A. Alshammari, M. Ahad, and M. Matin, “Effect of
Exponential Correlation Model on Channel Estimation fo Massive
MIMO.” in The 19th International Conference on Computer and
Information Technology (ICCIT), In Press, 2016.

[8] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for Next Generation Wireless Systems,” no. February, pp. 1-19,
2013.

[91 M. Agiwal, A. Roy, and N. Saxena. “Next Generation 5G Wireless
Networks : A Comprehensive Survey,” vol. 18, no. 3, pp. 1617-1655,
2016.

[10] X.Liu, M. E. Bialkowski. and F. Wang, “Investigations into the Effect of
Spatial Correlation on Channel Estimation and Capacity of Multiple Input
Multiple Output System,” Int’l J. Commun. Netw. Syst. Sci., vol. 2, no. 4,
pp. 267-275, 2009.

[11] S. Biswas, J. Xue, F. A. Khan, and Tharmalingam Rantnarajah,
“Performance Analysis of Correlated Massive MIMO Systems With
Spatially Distributed Users,” JEEE Syst. J., vol. PP, no. 99, pp. 1-12.

[12] R C. De Lamare, “Massive MIMO Systems: Signal Processing
Challenges and Research Trends,” pp. 1-9.

[13] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO
achievable rates with downlink training and channel state feedback,™

IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 28452866, 2010.

[14] E. Bjomson, M. Kountouris, M Bengtsson, and B Ottersten, “Receive

ing vs. multi-stre 1 ind y with multi-
antenna users,” JEEE Trans. Signal Process, vol. 61. no. 13, pp. 3431-
3446, 2013.

[15] A. Adhikary, J. Nam, J. Y. Ahn, and G. Caire, “Joint Spatial Division and
Multiplexing—The Large-Scale Array Regime” IEEE Trans. Inf
Theory, vol. 59, no. 10, pp. 6441-6463, 2013.

[16] J. Gong, J.F. Hayes, and M. R. Soleymani, “The effcctofantennaphyﬂcs
on fading correlation and the capacity of multiel
IEEE Trans. Veh. Technol., vol 56 no. 41, pp 1591-1599, 2000.

[17] T.L.M: “How much g 1S d formultiuserMIMO?,”
ACSSC 40th Asilomar Con/erem:e on S’Ig'nals, Systems and Cumpurers
2006, pp. 359-363.

102



19™ International Conference on Computer and Information Technology, December 18-20, 2016, North South University, Dhaka, Bangladesh

Impact of Angular Spread on Massive MIMO
Channel Estimation

Ahmed Alshammaril, Saleh Albdran', Md. Atiqur Rahman Ahad® and Mohammad Matinl, Senior Member, IEEE
1Department of Electrical Engineering ,University of Denver
2Department of Electrical and Electronic Engineering, University of Dhaka

Abstract— large scale antenna arrays technology has the
potential of bringing many advantages to future wireless systems.
Energy and spectral efficiency are going to be the most important
features. Hence, accurate estimate of channel state information
(CSI) makes these advantages achievable. This paper investigates
the effects of angular spread on the accuracy of channel
estimation for massive multiple input multiple output (MIMO)
wireless communication systems. The model we consider consists
of user equipment (UE) and a base station with large antenna
array. Linear minimum mean square error (LMMSE) is used to
estimate the uplink channel of a massive MIMO system using a
pilot signal. It is shown that higher spatial correlation (SC)
positively affects the accuracy of channel estimation when the
signal to noise ratio is kept constant.

I state

Keywords—Massive MIMO, ch I estimation, ch
information, angular spread, LMMSE.

I. INTRODUCTION

The quantity of electromagnetic spectrum is always going
to be same, but the demand for wireless throughput will always
be growing [1], [2], [3]. Therefore, new technologies are
always emerging. Massive multiple input multiple output
(MIMO) is a new promising network architecture that recently
has been proposed [4]. It has a great potential of increasing
spectral and energy efficiency in order to meet the growing
demand for wireless services [5],[6]. Massive MIMO is
considered to be a multiuser MIMO where each base station 1is
equipped with a large number of antennas that communicate
with a single antenna user equipments (UEs) [7], [8], [9].

Spectral efficiency can be limited by channel estimation
accuracy [3][10],[11]. Therefore, accurate estimate of the
channel state information (CSI) is important for the base
station (BS) and the user equipment (UE) to achieve the
advantages of Massive MIMO[12], [13]. However, acquiring
CSI in Massive MIMO is not an easy task because the
overhead required to estimate the channel is overwhelming [1],
[14]. In order to avoid this issue, time division duplexing
(TDD) 1s used instead of Frequency Division duplexing
(FDD). To exploit channel reciprocity in TDD mode, channels
are only estimated for the uplink where all UEs synchronously
send uplink data signals followed by pilot sequences [5], [15].
CSI 1s then estimated by the BS using these pilot sequences
[16].

978-1-5090-4090-2/16/$31.00 ©2016 IEEE

Propagation environment and spatial correlation (SC) vary
according to antennas configuration and objects between the
transmitter and the receiver which affect channel properties
[17]. Most massive MIMO analysis in literature is based on
the assumption that channels are independent [9]. This
assumption is not practical in reality where we have large
number of antennas at the BS. This paper investigates the
relation between SC and channel estimation accuracy of
massive MIMO systems. Due to its low complexity and near
optimal performance, (LMMSE) estimator is used to obtain
CSL

The rest of the paper 1s organized as the following: Section
II introduces the system model and illustrates the one ring
model that is used to simulate the effect of SC. Section III
describe the LMMSE uplink channel estimation. Numerical
results are shown in section IV. Finally, section V concludes
the paper.

Notation: Column vectors x and matrices X are represented
by lower and upper case boldface respectively. X7, X# and
X* indicate transpose, conjugate transpose and conjugate
respectively. tr(X) is the trace of matrix X. x~CN'(X,R)
denote circular symmetric complex Gaussian stochastic vector
where X and R are the mean and covariance matrix
respectively. [|x]|, indicate spectral norm.

II. SYSTEM AND CHANNEL MODEL

This paper investigates the accuracy of channel estimation
for massive MIMO. We consider a single uplink established
between one BS with array of N antennas and a single antenna
UE. The attractive thing about UE with single antennas 1s that
they are cheap, simple and consume less power while they still
provide high throughput. Moreover, the assumption of single
antenna UE can be considered as a special case of UE with
multiple antennas when each antenna is treated as a separate
autonomous user [9].

We assume a block fading structure which makes the
channel between the base station and UEs h € CV*! stay
constant for a coherence period T¢oper- h 1s considered to be
ergodic  process that has independent realization
h~CN (0,R) . R=E{hh"}e ¢V is the covariance
matrix. Regardless of the number of antennas, spectral norm
of R is assumed to be uniformly bounded.

ISBN 978-1-5090-4089-6

103



19" International Conference on Computer and Information Technology, December 18-20, 2016, North South University, Dhaka, Bangladesh

The received signal y € CV at the BS is given by the
following uplink system model

y=hs+n 1)

Where s € C can either be known pilot signal to estimate
channel or data signal. The average transmitted power
ispUf = E{|s|*}. n = Nygi5e + Ningers € CV*? indicates an
additive term which is composed of receiver noise
Npoise~CN (0, 055%1) and the interference Dinterf from other
users. Interference varies depending on the channel
realizations #, but it is independent ofs. Therefore, the
covariance matrix W E{n,pisen” inters} for pilot
transmission 1s assumed to have a zero mean. W is assumed to
have a uniform bounded spectral norm [[W[|, = 0(1).

We use the one ring model from [18] in order to explore
the influence of SC on the channel estimation accuracy of
massive MIMO. The one ring model is depicted in Fig. 1
where a ring of scattering objects of radius r i1s surrounding
the UE while the BS station 1s not surrounded by anything. UE
is located at distance d from the BS at azimuth angel 6 . The
multipath components arrive with angular spread (AS) A from
the main angle of arrival. The channel coefficients of antennas
1 < n,p < N are correlated as illustrated in [19].

Fig. 1. UE located at distance d from BS with azimuth angel 8 and AS A due
to a ring of scatterers with radius r.

@

Rl = %-[fA /¥ n=tp) dg
where
2
ki) = - Tn(cos(a) ,sin{a))T

Up, up indicate the position vectors of the base station
antennas in the two dimensional coordinate.

The BS in this model is assumed to have uniform linear
array (ULA) with antenna spacing of half wavelength. The
Toeplitz form of the covariance matrix for channel of a user at
Angle of Arrival 8, and AS A has the form
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1 aA+6 .
[R]"‘p - ﬁf A+oe-/2nD(n—p)sm(a) da (3)

Where n,p € {0,1,...,N — 1}

III. UPLINK CHANNEL ESTIMATION

Estimating the current CSI h is done by making a
comparison between a known pilot signal s and the received
UL signal y 1n (1). Rayleigh fading channels are the kind of
channels considered in this paper. They are observed under the
effect of independent complex Gaussian noise [20]. Linear
minimum mean square error (LMMSE) estimator h is used to
estimate h form the received signal y in (1).

h=sRy'y @
Where R is the covariance matrix of h and the covariance
matrix of y is

¥ = E{yy"} = pER + S+0,5°1 ®

Where § denotes interference

The mean squared error is MSE = E[[h — h||: =tr(G)and G
1s given by

G= E(h-n)(h-n)"}=R-pURy"IR (6

The channel can be decomposed as h = b + € where h is
the estimation in (4) and € € C¥*! indicate the estimation

error. E{ ih#} = R — G and E{e€e”} = G are the covariance
matrices where G 1s given in (6).

The length of the pilot signal can influence the accuracy of
channel estimation [6]. The LMMSE estimator in (4) uses a
scalar pilot signal y to excite all the channel dimensions in the
UL. Increasing the length of the pilot can improve the MSE.

Assume that the training signal is y € CF where 1 <
B < Tgi",ot. Separate LMMSE estimates need to be calculated
for every element B, h; =h —¢; for i = 1,..., B and taking
the average we get.

f=152 hi=h-1%2¢ @)

Then the MSE becomes
ef(ise Y (iye _ u© g
(52h.e) CEhien}= "5 ®

Hence, the MSE is inversely proportional to the pilot length. It
goes to zero with increasing the length of the pilot B.
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IV. NUMERICAL RESULTS

This section shows the effect of SC on the accuracy of the
estimated channel.

MSE
TR
for different numbers of antennas at the BS is presented as a
function of angular spread in Fig. 2. We consider N=
(2,4,16,128) antennas at the BS and we fix the SNR at 5dB.
The one ring model [19] is used to generate the channel
covariance matrix R. This model assumes that the multipath
components arrive to the BS with an angle spread between 0
to 90 degrees from the main angle of arrival. It is also
assumed that spacing between the adjacent antennas is half
wavelength where the BS has ULA.

The relative estimation error per antenna, MSE,.,; =

0

Estimation Error per Antenna

— — — 2 antennas
——— -4 antennas
——— 16 antennas
—— 128 anlennas

102 ' s L
O 10 20 30 40 50 60 70 80 90
Angular Spread

Fig 2. Relative estimation error for the linear MMSE estmatator as a
function of angular spread for different numbers of antennas at the BS with
uplink SNR= 5dB.

10° . .

Estimation Error per Antenna

30 40 50 60
Angular Spread
Fig. 3. Relative estimation error for the linear MMSE estmatator as a

function of angular spread for different SNRs= (5, 10, 15)dB with BS of 50
antennas.
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Fig. 2 confirms that in the case of low angular spread
where the spatial correlation is high, estimation accuracy is
improved when the number of antennas at the BS is large.
However, there is no big difference in estimation accuracy
between BSs with high and low number of antennas when the
channels are uncorrelated.

The Relative estimation error for the linear MMSE
estmatator as a function of angular spread for different SNRs=
(5, 10, 15)dB where the BS have 50 antennas is shown in Fig.
3. Estimation accuracy is improved at higher uplink SNR. Fig.
3 proves that increasing the uplink SNR can always makes the
estimate of the channel more accurate regardless how
correlated the channels are.

Estimation Error per Antenna
3
’

2 " ' s
10 5 5
Pilot Length (B)

Fig. 4. Relative estimation error for the linear MMSE estmatator as a
function of pilot length for different angular spreads (10, 20, 30) degrees with
uplink SNR of 5dB

lar Spread 30

Eslimation Error par Antenna
s
o
]
1
1
|
|
I
[

4 " 1L
L 1 2 5 6
Pilot Length (B)

Fig. 5. Relative estimation error for the linear MMSE estmatator as a
function of pilot length for different angular spreads (10, 20, 30) degrees with
uplink SNR of 15dB.
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Longer pilot signals that span B>1 channel uses can reduce
errors per antenna. Fig. 4 and Fig. 5 show the relative
estimation error for the linear MMSE estmatator as a function
of pilot length for different angular spreads (10, 20, 30)
degrees where the uplink SNRs are 5 dB and 15 dB
repectively. Correlated channels can exist when the angular
spread of one ring model 1s low. It is clear that highly
correlated channels can be estimated with more accurrcy. This
conclusion is consistant with the results of [19]. It is also
obvious that increasing the length of the pilot bring additional
improvement to the channel estimation accurcy.

V. CONCLUSION

We investigated the accuracy of channel estimation for
massive MIMO systems. The investigation was established on
an uplink system model where the BS has a large number of
antennas while the user has a single antenna. We studied the
effects of spatial correlation on the estimation error per
antenna for massive MIMO. We also used the one ring model
in order to analyze the impact of SC between antennas.
Simulation results showed that increasing the number of
antennas makes channel estimation more accurate especially
when the antennas are highly correlated.
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Impact of Spatial Correlation and Users
Allocation on The Performance of Massive
MIMO Systems

Ahmed Alshammari, Saleh Albdran, and Mohammad Matin

Abstract— The next generation of wireless networks must
substantially improve the area data throughput, to meet the
expected growth on the demand of wireless communications. The
area data throughput can at least be ten times improved using the
Massive MIMO technology that increases the spectral efficiency
without using more bandwidth or increasing the density of the
cells. These ph 1improv can be made possible using
large numbers of antennas in the base station (BS) to enable spatial

Itiplexing of a big ber of ter Is. In this paper, we study
the relation between the number of terminals, channel spatial
correlation, number of BS antennas, other system parameters and
the performance of Massive MIMO systems. The system analysis
is based on the derived spectral and energy efficiencies expressions
that can be achieved using the channel estimates. Simulations are
used to show the ergodic channel capacity and the energy
efficiency, in different ch 1 spatial correl. scenarios and
different ber of user ter Is. We notice that the energy
efficiency and the capacity improve as the channels starts de-
correlating. We also note that the improvement in the channel
capacity varies depending on the bers of ter Is and the BS
antennas.

Index Terms— Massive MIMO, Capacity, LMMSE, Wireless,
Correlation, spectral efficiency.

I. INTRODUCTION

ATA traffic has doubled almost every 30 months since the

invention of wireless communications according to the
observation that Martin Cooper made in the nineties [1], [2].
The current exponential increase is led by the escalating
demand driven by the huge growth wireless data traffic.
Nothing indicate that this demand will slow down anytime
soon. Thus, future cellular networks must have higher capacity
to meet the continuously growing need for wireless
communications [3]. It is preferred to achieve this goal without
increasing the number of base stations or using additional
bandwidth. Thus, one of the main goals of the 5G technologies
is being more efficient in bandwidth usage by orders of
magnitude [4]-[6].

Three different components can be used to increase the
efficiency of wireless systems: (1) using more of the frequency
spectrum (2) densification of the cellular networks by
increasing the numbers of cells that operate with independent
base stations and (3) increasing the efficiency of bandwidth

278

usage [7]. The first two components have greatly contributed to
the improvement of spectral efficiency of the previous network
generations. However, bands below 5 GHz that can provide
good network service are so scarce because most of it has
already been allocated to existing services. Moreover, although
it is still possible to increase the cell density, the option of cell
densification is reaching a saturation point. On the other hand,
no major improvements were made on the spectral efficiency in
the past network generations. Therefore, this factor might be the
only way to bring higher area throughput to the next generation
of wireless networks [8].

During the last decade, the technology of multiple input
multiple output (MIMO) has considerably contributed to the
improvements in the reliability and the capacity of wireless
systems [8]. Although the initial form of the MIMO technology
was designed for devices equipped with several antennas to
communicate with each other in point to point links, it has been
developed to more general form known as multi-user MIMO
where the BS serves users with single antenna terminals to
share the multiplexing gain [9]. In general, the impact of the
propagation environment on Multi user MIMO is less than the
case of point to point MIMO due to the multi-user diversity.
Therefore, Multi user MIMO became an important component
of most communication standards [8]. Typically, the number of
BS antennas are not so big for MIMO applications. Hence. it
does not bring significant improvements for spectral efficiency.

Massive multiple input multiple output (MIMO) which is a
scale up of MIMO technology has recently been proposed [10].
This technology provides the means that can potentially
enhance spectral efficiency by orders of magnitudes [11]. It can
achieve this goal by equipping the BS with tens or even
hundreds of antennas [12], [13]. According to the theory of
random matrix, [14] asymptotically shows that increasing the
antennas eliminate the impact of the uncorrelated noise and the
small scale fading. The cell size and the number of users with
massive MIMO are independent. Moreover, simple linear
signal processing like match filtering is sufficient to achieve the
advantageous of massive MIMO [15]. These unprecedented
gains allow serving tens of users in every cell simultaneously,

while the robustness against inter-user interference is
maintained [16], [17].
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The downlink (DL) and uplink (UL) operations of Massive
MIMO are shown in Fig.1 that can be considered cell singled
out of a network of cells. Single antenna users K are served
through a BS that contains an array of antennas [18]. Different
BS serve the other cell sites without cooperating with each other
except for power control and the assignment of pilots [10].
Every user can take the advantage of the full time-frequency
resources for the UL and DL transmissions. On the UL, the BS
recovers the signals sent by individual users. On the DL, users
only receive the signals aimed for them. At the BS, availability
of the channel state information (CSI) enable multiplexing.
between users.

Time division duplex (TDD) mode in Fig. 2 has several
advantageous. First, channel knowledge is only needed at the
BS for coherent antenna processing [1], [19]. Second, the
necessary overhead required for channel estimation and the
number of BS antennas are independent. Hence, TDD is
preferred for massive MIMO because it is possible to use the
same frequency resource for UL and DL transmissions when
they are separated in time [18]. TDD operation exploit the fact
that propagation channels can be reciprocal which makes the
channel response identical for both directions [20]. The
property of channel reciprocity enable massive MIMO systems
of using the same channel for combining the received UL signal
and the precoding of the DL transmission.

This paper studies the effect of spatially correlated channels
and the number of users of Massive MIMO systems on its
capacity and energy efficiency. The remainder of this paper is
structured as the following. The system model is introduced in
section II. Section III discusses the channel estimator used to
estimate the Massive MIMO channel. section IV shows the
numerical results that illustrate the limitations that channel
spatial correlations and user allocation impose on the capacity
on the Massive MIMO system. Section V investigates energy
efficiency of the model introduced in section II. Section VI is
the final part which conclude this paper.

Notations: column vectors and matrices are indicated with
boldface lowercase X and uppercase X respectively. X# is used
to denote conjugate transpose, X' denote transpose, X* indicate
conjugate and tr(X) is used to indicate the trace of matrix X is
denoted

eagveid
LLXY

Douv,,,l%b
ity ¢
A’@rm/
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Base Station User Terminal

Fig.1. Channel reciprocity between base station (BS) with a large number of
antennas and a single antennas terminal.

UL m oL
Toiae Taita Teitor

Coherence Period Teonar

Fig. 2. Time division duplex (TDD) protocol

II. SYSTEM MODEL

This paper investigates the performance of Massive MIMO
systems considering the effect of channel spatial correlation and
the number of users in a single cell scenario. The BS is equipped
with M-antennas while the users have a single antenna each.
The BS antennas M can be increased to a very large number.
Hence, to enable efficient channel estimation, time division
duplex (TDD) mode is used to transmit DL and UL signals
through one flat fading subcarrier [11]. The overhead needed
for channel estimation and the number of BS antennas are
independent because of channel reciprocity according to the
TDD protocol.

A. Downlink/Uplink channel model

The received signal z € C on the DL for multi input single
output flat fading channel are modeled as

z=hTd+v (1)

where d € € ¥*1denotes the pilot signal or the zero mean
stochastic data signal. X = E{dd"} indicates the covariance
matrix where the average power is p55 = tr(X). The parameter
X depends on the channel realization. Therefore, it stays the
same during the coherence period but varies between blocks
since the channel realization differs. v represents a stochastic
process that consists of the receiver noise and the zero-mean
interference caused by other users

V = Unoise + Vinterf 2

The received UL signal y € C¥which also can be used for
pilot and data transmissions is modeled as in (3).

y=hs+n 3)

where s € C represents the pilot signal used for channel
estimation or the stochastic data signal with average power
pYE = E{|s|?}. The term n € CN*! in (4) is also a
representation of the stochastic process containing the receiver
noise and the zero-mean interference caused by other users

N = Nygise + ninterf (4)

B. One ring model

To analyze the capacity of Massive MIMO channels, we
consider the one ring model [21]. Fig. 3 shows that model with
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Scattering ring

Fig. 3. The one ring model

the assumption that the location of the user is surrounded with
a ring of radius 7 of scattering objects whereas the BS is not
surrounded with any scattering objects. The model also assumes
an azimuth angle 6 between the BS and user which is located at
distance d. The covariance matrix R of channel for 1 < n,p <
N is given in (5) [22].

[Rl,p = 5 [y e/ @ Pndaa (5)

where A denotes the angle spread of the multipath components,
Up, Up indicate the position vector of the BS and

k(a) = —Zg(cos(a),sin(a))T

The antennas are assumed to be distributed with a half
wavelength spacing in a uniform linear array (ULA). Hence,
The Toeplitz form of the channel covariance matrix is given in

(6).

A+0

—j2nD(n-p)sin(a)
_as0€ da

6

1
[R]n,p = E

III. UPLINK CHANNEL ESTIMATION
Estimating the UL channel h is done using the UL pilot
transmission. We consider Rayleigh fading channel under the
effect of i.i.d noise [9]. We use the linear minimum mean square

nal Journal of Computer Science and Information Security (IJCSIS),

The actual channel consists of the LMMSE channel estimate
and the estimation error as shown in (7)

h=h+e (€8))

where € € C¥*denotes error of the LMMSE estimator.

A. Numerical Results

Simulation results that show the influence of spatial
correlation on accuracy of channel estimation are discussed in
this section.

‘We consider various numbers of BS antennas (2, 4, 16, 128)
and different uplink SNRs. Fig. 4 shows the per antenna relative
estimation errors with respect to the angle spread. The
multipath components are received at the BS with angle spread
that varies between 0 and 55 degrees according to the one ring
model which is used to generate the covariance matrix of the
channel R. The most important observation from Fig. 4 is that
the channel spatial correlation has a great effect on the
estimation accuracy. According to the one ring model,
decreasing the angle spread results in higher spatial correlation.

10

©

c

£

2

3

<

8

o

&

w

c

2

©

E

B

w

4 —e—2 Anemas

o ——4 Anemas
/ —&—16 Anennas
/ o128 Anannas

2
0 0 2% 30

Angle Spread

3% 40 45 50 55

Fig. 4. Estimation error per antenna vs angle spread with UL SNR= 5dB

error estimator (LMMSE) to estimate the UL channel using the v f

received UL signal f
h = s*RY 1y (7) é
<
where ¥ is given in (8) and R denote the covariance matrix 5
&
Y = Efyy"} = pUER + S+0ps’1 ®
E
The mean square error (MSE) is 2

2
MSE = tr(G) = E[[h - h"z ® e S I S N I R -
Angle Spread
‘Where the error covariance matrix G
Fig. 5. Estimation error vs angle spread for 50 BS antennas with SNR (5, 10,
6= E(h-h(h-h)"}=R-pRY'R (100 D
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Our results show that it is easier to estimate the spatially
correlated channel because they have smaller errors as shown
in Fig. 5. We also notice that the estimation error per antenna
is improved if the antennas number N is increased in the one
ring model. The reason for that is the lack of richness in the
propagation that can be encountered in practice as in the one
ring model.

Fig. 5. shows the estimation error per antenna using the one
ring model for N=50 antennas for various SNRs=(5,10, 15) dB.
Estimation accuracy is presented as a function of angle spread.
Higher SNRs reduce the errors in channel estimation per
antenna.

IV. DL/UL DATA TRANSMISSION

This section investigates the capacity of massive MIMO
channel. We focus on the impact of spatial correlation and the
user allocation. We evaluate the capacity of the system based
on the imperfect pilot based estimated channel that was studied
in section II. Hence, the system capacity will depend on the
channel state information obtained with the LMMSE estimator.
We start by considering random knowledge of the channel at
the user equipment and the BS to evaluate the DL and UL
channel capacities in (1) and (3) respectively. Therefore,
random knowledge # BSis available at the BS of the channel
during each coherence time. This knowledge is used to select
conditional distribution of the transmit data f = (d|HB5).
Moreover, different knowledge of the channel T VE i5 available
at the user equipment. The capacity of DL channel is

CchL =

Tdita max . BS 77 UE

B _ ajpces) s man3 < prs T(&2A90305 T )]
(12)

The mutual information between the transmitted and the
received DL signals is T(d; z|#¢, B, 7 UE). The capacity of
the UL channel is calculated as

CcUL =

UL
Tdata max

. BS 47°UE
B Gacv) < Bl Z) < pBs T( Y1908, T UE)) s

13)

The mutual information between the transmitted and the
received UL signals is T(d; y|H, H BS, 7 UE). The expectation
in (13) can be calculated using the joint distribution of
— DL UL ]
7,788, FrVE Tdata o g Tdata i dicate the portion of channel
Tcoher Teoher
uses allocated for UL and DL transmissions respectively.

If 7T YEand T S are the available estimations of the DL/UL
channel at the receiver that do not match # 3Sand 7 UE,
capacities in (12) and (13) become

DL
DL = Mdata [ {]og, (1 + SINRPE (xPL))} (14)
Tcoher
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UL
CUL = Jdafa g (1og, (1 + SINRU" (xV4))}

Tcoher

(15)

where xU = [uf" .. uf"" and xPL = [uDv ... uPMT denote the
receive combining and the transmit beamforming vectors which
have unit norm and are a function of f. Capacities on (14) and
(15) can be numerically computed for any beamforming vector
and any combining vector of the estimated channel h. The
SINR for DL & UL are given in (16) and (17) respectively.

SINRPE(xPY) =
|E{thDL|§rUE}|2 16
2 2 ,;I[E 7 UE) "’ZUE ( )
lE{|h”x'-"'-| |ﬂ'uz]_|5[hnxm.|5;'us}| =y T
SINRUE(xYY) =
| E{nHxVL |5 BS |2 an
H e
2 EJ(xUL)" Qg+ x VL[ BS
]E{|thULIZ|j?’BS}_|]E{thUL|ﬂ'HS}| + = "p:gs X | }
65 o
6 T ettt
55 ”
p
5 7
8.0/ N
g5l L cerereieeserers coveestiiritiontas
s )|
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Fig. 6. Channel capacity vs angle spread SNR:0 dB.
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Fig. 7. Channel capacity vs angle spread SNR:25 dB.

A. Numerical Results

Next, we show the impact of spatial correlation and users
allocation on the channel capacity of massive MIMO in a single

https://sites.google.com/site/ijcsis/
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A. Numerical Results

Energy efficiency of massive MIMO can be affected by many
factors such as the transmit power, spatial correlation, the
number of antennas and the circuit power parameters p and {.
The power consumed by the system with N=1 antennas is

assumed to be p + { = 0.02 “

Channel use
of antennas NV, Np + { is the consumed power at the circuit.

P_— 0 is used to split between p and {. Also, the amplifiers

. Hence, for any number

+e
efficiencies w®S, wVEis fixed at 0.3. The one ring model in (6)
is used to generate the channel covariance matrix with varying
the angle spread between 10 and 50. Setting up ap;, = ay, =

UL 7DhL

0.5 and -3 — _data _ ( 05 result in identical DL and UL
Tcoher  Tcoher

EE.

Fig. 9 shows the energy efficiencies of DL/UL for three
different number of antennas scenario using (12) and (13).
Increasing the number of antennas in the BS improve the energy
efficacy. The figure also shows that the increased channel
spatial correlation has a negative effect on the energy efficiency
of massive MIMO.

The corresponding power allocations of the three cases in
Fig. 9 are shown in Fig 10. Despite the enhanced energy
efficacy, more transmit power is needed when increasing the
number of antennas in the BS and when the channels are less
correlated.
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Fig. 10. Energy efficiency vs the angle spread at SNR: 20 dB.
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VI. CONCLUSION

The effect of spatial correlation and the user allocations on
massive MIMO systems were studied in this paper. The
analysis is based on a system model that considers the spatial
correlation and the number of users in a single cell scenario.
Our results show that the benefits of the gains that comes with
the large antenna array varies based on the channel condition
and the number of users being served. It has been shown that
the capacity and the energy efficiency are negatively affected
when the channel spatial correlation is increased. It was shown
that more users can be served when the number of base station
antennas is increased. However, exceeding a certain number of
users negatively affects the performance of Massive MIMO
system.
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