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Abstract Abstract 
Social (or Sociable) robots are designed to interact with people in a natural and interpersonal manner. 
They are becoming an integrated part of our daily lives and have achieved positive outcomes in several 
applications such as education, health care, quality of life, entertainment, etc. Despite significant progress 
towards the development of realistic social robotic agents, a number of problems remain to be solved. 
First, current social robots either lack enough ability to have deep social interaction with human, or they 
are very expensive to build and maintain. Second, current social robots have yet to reach the full 
emotional and social capabilities necessary for rich and robust interaction with human beings. To 
address these problems, this dissertation presents the development of a low-cost, flexible, affect-aware 
rear-projected robotic agent (called ExpressionBot), that is designed to support verbal and non-verbal 
communication between the robot and humans, with the goal of closely modeling the dynamics of natural 
face-to-face communication. 

The developed robotic platform uses state-of-the-art character animation technologies to create an 
animated human face (aka avatar) that is capable of showing facial expressions, realistic eye movement, 
and accurate visual speech, and then project this avatar onto a face-shaped translucent mask. The mask 
and the projector are then rigged onto a neck mechanism that can move like a human head. Since an 
animation is projected onto a mask, the robotic face is highly flexible research tool, mechanically simple, 
and low-cost to design, build and maintain compared with mechatronic and android faces. The results of 
our comprehensive Human-Robot Interaction (HRI) studies illustrate the benefits and values of the 
proposed rear-projected robotic platform over a virtual-agent with the same animation displayed on a 2D 
computer screen. The results indicate that ExpressionBot is well accepted by users, with some 
advantages in expressing facial expressions more accurately and perceiving mutual eye gaze contact. 

To improve social capabilities of the robot and create an expressive and empathic social agent (affect-
aware) which is capable of interpreting users' emotional facial expressions, we developed a new Deep 
Neural Networks (DNN) architecture for Facial Expression Recognition (FER). The proposed DNN was 
initially trained on seven well-known publicly available databases, and obtained significantly better than, 
or comparable to, traditional convolutional neural networks or other state-of-the-art methods in both 
accuracy and learning time. Since the performance of the automated FER system highly depends on its 
training data, and the eventual goal of the proposed robotic platform is to interact with users in an 
uncontrolled environment, a database of facial expressions in the wild (called AffectNet) was created by 
querying emotion-related keywords from different search engines. AffectNet contains more than 1M 
images with faces and 440,000 manually annotated images with facial expressions, valence, and arousal. 
Two DNNs were trained on AffectNet to classify the facial expression images and predict the value of 
valence and arousal. Various evaluation metrics show that our deep neural network approaches trained 
on AffectNet can perform better than conventional machine learning methods and available off-the-shelf 
FER systems. 

We then integrated this automated FER system into spoken dialog of our robotic platform to extend and 
enrich the capabilities of ExpressionBot beyond spoken dialog and create an affect-aware robotic agent 
that can measure and infer users' affect and cognition. Three social/interaction aspects (task 
engagement, being empathic, and likability of the robot) are measured in an experiment with the affect-
aware robotic agent. The results indicate that users rated our affect-aware agent as empathic and likable 
as a robot in which user's affect is recognized by a human (WoZ). 

In summary, this dissertation presents the development and HRI studies of a perceptive, and expressive, 
conversational, rear-projected, life-like robotic agent (aka ExpressionBot or Ryan) that models natural 



face-to-face communication between human and emapthic agent. The results of our in-depth human-
robot-interaction studies show that this robotic agent can serve as a model for creating the next 
generation of empathic social robots. 
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Abstract
Social (or Sociable) robots are designed to interact with people in a natural and interper-

sonal manner. They are becoming an integrated part of our daily lives and have achieved

positive outcomes in several applications such as education, health care, quality of life,

entertainment, etc. Despite significant progress towards the development of realistic social

robotic agents, a number of problems remain to be solved. First, current social robots either

lack enough ability to have deep social interaction with human, or they are very expensive

to build and maintain. Second, current social robots have yet to reach the full emotional

and social capabilities necessary for rich and robust interaction with human beings. To

address these problems, this dissertation presents the development of a low-cost, flexible,

affect-aware rear-projected robotic agent (called ExpressionBot), that is designed to sup-

port verbal and non-verbal communication between the robot and humans, with the goal of

closely modeling the dynamics of natural face-to-face communication.

The developed robotic platform uses state-of-the-art character animation technologies

to create an animated human face (aka avatar) that is capable of showing facial expressions,

realistic eye movement, and accurate visual speech, and then project this avatar onto a

face-shaped translucent mask. The mask and the projector are then rigged onto a neck

mechanism that can move like a human head. Since an animation is projected onto a

mask, the robotic face is highly flexible research tool, mechanically simple, and low-cost

to design, build and maintain compared with mechatronic and android faces. The results

of our comprehensive Human-Robot Interaction (HRI) studies illustrate the benefits and
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values of the proposed rear-projected robotic platform over a virtual-agent with the same

animation displayed on a 2D computer screen. The results indicate that ExpressionBot

is well accepted by users, with some advantages in expressing facial expressions more

accurately and perceiving mutual eye gaze contact.

To improve social capabilities of the robot and create an expressive and empathic so-

cial agent (affect-aware) which is capable of interpreting users’ emotional facial expres-

sions, we developed a new Deep Neural Networks (DNN) architecture for Facial Expres-

sion Recognition (FER). The proposed DNN was initially trained on seven well-known

publicly available databases, and obtained significantly better than, or comparable to, tra-

ditional convolutional neural networks or other state-of-the-art methods in both accuracy

and learning time. Since the performance of the automated FER system highly depends

on its training data, and the eventual goal of the proposed robotic platform is to interact

with users in an uncontrolled environment, a database of facial expressions in the wild

(called AffectNet) was created by querying emotion-related keywords from different search

engines. AffectNet contains more than 1M images with faces and 440,000 manually an-

notated images with facial expressions, valence, and arousal. Two DNNs were trained on

AffectNet to classify the facial expression images and predict the value of valence and

arousal. Various evaluation metrics show that our deep neural network approaches trained

on AffectNet can perform better than conventional machine learning methods and available

off-the-shelf FER systems.

We then integrated this automated FER system into spoken dialog of our robotic plat-

form to extend and enrich the capabilities of ExpressionBot beyond spoken dialog and

create an affect-aware robotic agent that can measure and infer users’ affect and cogni-

tion. Three social/interaction aspects (task engagement, being empathic, and likability of

the robot) are measured in an experiment with the affect-aware robotic agent. The results

iii



indicate that users rated our affect-aware agent as empathic and likable as a robot in which

user’s affect is recognized by a human (WoZ).

In summary, this dissertation presents the development and HRI studies of a perceptive,

and expressive, conversational, rear-projected, life-like robotic agent (aka ExpressionBot

or Ryan) that models natural face-to-face communication between human and emapthic

agent. The results of our in-depth human-robot-interaction studies show that this robotic

agent can serve as a model for creating the next generation of empathic social robots.
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Chapter 1

Introduction

Social intelligent robotics is a rapidly emerging field aiming to design robots that are

able to communicate and interact with humans in a socially acceptable way (Breazeal,

2005; Dautenhahn, 2007). They often to achieve positive outcomes in diverse applications

such as education, health-care, quality of life, entertainment, communication, and tasks

requiring collaborative teamwork (Breazeal et al., 2016). These robots are becoming an

integrated part of our daily lives. The population of robotic agents including social and

humanoid robots made in 2008 was about 8.6 million units (Guizzo, 2010) with a pro-

jected annual growth rate of 17% (IDC, 2016). Despite significant progress towards the

development of realistic social robotic agents, a number of problems remain to be solved.

First, current social robots either lack enough ability to have deep social interaction

with human or they are very expensive to build and maintain. Social robots such as Paro

(2004) have the robustness and cost-effectiveness for large-scale production, but lack the

sophistication for deep social interaction. Other robots such as Kismet (2002) exhibit facial

expressions and head and ear movement using mechanical components, however, once

these mechanical platforms are built, they are fixed and cannot be readily modified. On the

other hand, more human-like robots such as Geminoid (2011) possess profound capabilities
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for social interaction, but due to a large number of actuators in their mechatronic faces, they

are expensive and maintenance-intensive for large-scale trials. Another potential problem

in the design of robotic heads is the “Uncanny Valley” effect (Mori et al., 2012), where the

effect of aesthetic design of a robot may influence the user’s experience, perception, and

acceptance of the robot.

Second, current social robots have yet to reach the full emotional and social capabilities

necessary for rich and robust interaction with human beings. Existing robotic platforms

lack the capability of being perceptive and expressive as well as supporting natural spoken

dialog. They often do not endow affect perception and most of the studies carried out with

social robots are either done in a Wizard-of-oZ (WoZ) manner (Vardoulakis et al., 2012),

or were limited to a specific scenario (Pineau et al., 2003).

To address these problems, we designed, manufactured, and evaluated of an affect-

aware rear-projection robotic head, called ExpressionBot, with the capability of showing

facial expressions, visual speech, eye gaze, and perception of user’s facial expression, with

the goal of closely modeling the dynamics of natural face-to-face communication. Our

eventual goal is to provide the research community with a low-cost portable facial display

hardware equipped with a software toolkit that can be used to conduct research leading

to a new generation of robotic heads that model the dynamics of face-to-face communica-

tion with individuals in different social, learning, and therapeutic contexts. The proposed

robotic head can then be integrated with a torso, arms, and even legs but the focus of this

dissertation is the head and face design. To achieve this goal, three research/work streams

is performed in this dissertation as:

1- Design, Implementation, and Study of a Rear-Projected Robotic Agent: Given

the tremendous effort required to develop robot heads and the number of design choices

that must be made, including aesthetic face design, mechanical design, and construction,

hardware implementation, etc., it is often difficult to redesign or rebuild the head based on
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user experiences and limitations discovered during research. In addition, major obstacles

in developing realistic robots faces lie with the actuators and the skin. The FACS system

codes for approximately 40 primary facial muscles movements (AUs) that are involved in

showing facial expressions and mouth movement during speech. These actions can be very

subtle and quick, and many times mechanical actuators fail to mimic them. Also, due to

cost and space constraints, android robotic heads have few actuators and their faces are

relatively larger than an average head. Besides, the skin of the robot, which is often made

of latex, makes unnatural wrinkles and folds on the robot face.

An alternative approach that overcomes many of these problems is to use state-of-the-

art character animation technologies to create an animated human face (aka avatar) that

can produce natural speech and facial expressions, and then project this avatar onto a face-

shaped translucent mask. The mask and the projector can then be rigged onto a neck

mechanism that can move like a human head. In this dissertation, we described the design

and creation of a low-cost emotive robotic head, called ExpressionBot, for natural face-

to-face communication. ExpressionBot consists of a simple neck system and a projector

that projects a facial animation on a 3D translucent facial mask. By virtue of the computer

graphics used to generate the avatar, highly realistic, accurate, and dynamic animations can

be generated. These avatars can range from cartoon-like to photo-realistic faces and are

usually able to show natural visual speech and facial expressions. The proposed robotic

system, relative to mechatronic and android faces, is thus a highly flexible research tool,

mechanically simple, and low-cost to design, build and maintain (the cost of the hardware

system is about $1500).

Since an animation face is projected onto a mask, a big question is: “What are the

value propositions of a rear-projected robot compared with an on-screen animation?”. In

this dissertation, the above question is answered by studying different elements of Human-

Robot vs. Human-Animation Interaction between the rear-projected robotic head and a
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virtual-agent with the same animation displayed on a 2D computer screen. At first, indi-

viduals’ experiences of interpreting the facial expressions and the proposed visual speech

of ExpressionBot is compared with the facial animation on the computer screen. We then

distinguished the role of the robot’s embodiment from its physical presence in perception

of three facial cues (i.e., visual speech, facial expressions and eye gaze). In particular, three

different conditions (i.e., copresent of the robot, telepresent of the robot, and virtual agent)

were studied to answer whether the embodiment of the robot has any interaction value

proposition compared with an on-screen animation.

2- Developing a New Affect Perception System: Although SARs are finding their

place in our society as artificial pets, entertainers, and tools for therapists, current tech-

nologies have yet to reach the full emotional and social capabilities necessary for rich and

robust interaction with human beings. To achieve this potential, research must imbue robots

with the emotional and social capabilities—both verbal and non-verbal—necessary for rich

and robust interaction with human beings. Facial expression, which plays a vital role in

social interaction, is one of the most important nonverbal channels through which Human-

Machine Interaction (HMI) systems can recognize humans’ internal emotions. Due to the

importance of facial expression in designing HMI and Human-Robot Interaction (HRI) sys-

tems, numerous computer vision and machine learning algorithms have been proposed for

automated Facial Expression Recognition (FER). The majority of the techniques for auto-

mated affective computing and FER are based on supervised machine learning methodolo-

gies which require annotated image samples for training.

Recently, due to an increase in the availability of computational power and increasingly

large training databases to work with, the machine learning technique of neural networks

has seen a resurgence in popularity. Deep Neural Networks (DNN), also called deep learn-

ing, obtained state of the art results in several fields of computer visions. Given DNN’s

performance, we proposed a new DNN architecture for facial expression recognition. The
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proposed DNN is trained on seven well-known publicly available databases, and obtained

significantly better than, or comparable to, traditional convolutional neural networks or

other state-of-the-art methods in both accuracy and learning time.

The databases used to train the proposed DNN FER system mainly contain posed ex-

pressions acquired in a controlled lab environment. Hence, the proposed DNN FER system

lack enough generality when used in uncontrolled HRI system. Since eventual goal of the

proposed robotic platform is to interact with users in an uncontrolled setting (aka “in the

wild” setting), where there is a high variation in scene lighting, camera view, image reso-

lution, background, subjects head-pose and ethnicity, we created a database of facial Affect

from the InterNet (called AffectNet) by querying more than one million images from differ-

ent search engines using emotion-related tags in six different languages. We then proposed

a DNN baseline to classify the facial expression images and predict the value of valence and

arousal. Various evaluation metrics show that our deep neural network baselines can per-

form better than conventional machine learning methods and off-the-shelf facial expression

recognition systems.

2- Creating an Affect-Aware Robot: Finally, we integrated our automated FER sys-

tem into the spoken dialog system of our robotic platform to extend and enrich the capabil-

ities of ExpressionBot beyond spoken dialog and create an affect-aware robotic agent that

can measure and infer users’ affect and cognition. We evaluated whether this integration

can improve social/interaction aspects of our agent with users. We designed a series of HRI

experiments, in which the subjects watched some videos to evoke their emotions and the

robot asked them to describe each video in one word. During watching the videos, the robot

recognized subjects’ facial expressions and engaged them in conversation based on the per-

ceived facial expressions. We then measured the accuracy of the automated FER system on

the robot when interacting with different human subjects as well as three social/interaction

aspects, namely task engagement, being empathic, and likability of the robot.
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The remainder of this dissertation is organized as follows: Chapter 2, overviews some

existing social robot platforms, and then describes the mechanism and design of the pro-

posed robotic platform. Chapter 3 presents a deep HRI study using the developed rear-

projected robotic agent. An initial user evaluation test is studied to evaluate individuals’

experiences and impressions of the ExpressionBot. Then, three major elements of face-

to-face communication (i.e., visual speech, facial expressions and eye gaze) are studied in

three different conditions (i.e., copresent of the robot, telepresent of the robot, and virtual

agent) to evaluate the role of embodiment and presence of the robot in comparison with the

same animation projected on a 2D screen.

Chapter 4 explains the proposed DNN architecture and the process of creating and

annotating AffectNet. Chapter 5 discusses the process and evaluation of integrating the pro-

posed automated FER system into spoken dialog of the developed robotic platform to create

an affect-aware robotic agent. Finally, Chapter 6 concludes the finding of this research and

discusses future paths of this investigation.
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Chapter 2

ExpressionBot Design

There are many designs for robotic faces ranging from 2D graphical avatars to mechan-

ically controlled robotic faces. These designs fit into four main categories:

1. Mechatronic Faces

2. Android Faces

3. Onscreen Avatars

4. Light-Projected physical Avatars

Mechatronic robotic faces are physically implemented robots that use mechatronic de-

vices and electric actuators to control facial elements. Kismet (2002) is one the first and

famous expressive mechatronic robots with many features such as eye lids, eye brows, lips

and even expressive ears. Another example is the Philips iCat (van Breemen et al., 2005)

which has a cat-like head and torso with mechanical lips, eye lids, and eye brows. Mecha-

tronic robotic faces have the advantage of being 3D, but they are inflexible, unrealistic, and

have limited ability to display facial expressions and speech. These faces look very much

like a stereotypical robot rather than a human face.
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Android faces are other physically implemented robots that are originated from Anima-

tronics. They have a larger number of mechatronic actuators controlling a flexible elastic

skin; therefore they look more realistic and seem more like a human rather than a robot.

Example of android faces are Albert-Hubo (2005), HRP-4C (2009), Geminoid (2011), and

Zeno (2009). It is an interesting research question as to whether android faces that closely

model human looks and behaviors will enter the uncanny valley as their realism mimics

humans. Due to larger number of actuators and their interaction with skin, they look more

expressive than mechatronic faces. However, they are mechanically very complex, expen-

sive to design, build and maintain.

The on screen avatar class, such as Grace (Gockley et al., 2004) and Second-Life (2003)

are the simplest and earliest robotic faces. Animations for these models can be made by

developing a model for each expression, morphing between them, and then rendering the

result to a computer screen. Despite their low cost and high flexibility, they naturally have

several limitations due to using a flat display as an alternative to a three dimensional physi-

cal head. For example, aside aesthetic unpleasantness, they suffer from lack of establishing

mutual gaze (due to Mona Lisa effect) and physical embodiment that both play vital roles

in natural and realistic face-to-face communication.

The final category, and the focus of our research, is the light-projected physical avatars;

these consist of translucent 3D masks with 2D/3D avatars projected onto them. The avatar

can be projected from the front of a facial mask (forward-projection) or back of a translu-

cent mask (rear-projection). Since an animation is projected onto a mask, the robotic face

can range from cartoon-like to photorealistic. Light-projected physical avatars are thus a

highly flexible research tool, relative to mechatronic and android faces. Factors such as

engagement, embodiment, believability, credibility and realism can be investigated based

on the appearance and behaviors of the 3D animated models, and the robotic head and neck

movement. Moreover, such a system can avoid the Mona Lisa effect (Todorović, 2006) and
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hence users can correctly perceive the robot’s eye gaze direction. Additional features of

robotic avatars include relatively low development cost, low power consumption, poten-

tially low weight and fast reaction.

One of the early examples of rear-projection physical avatars is the Dome robot (Has-

himoto and Morooka, 2005) where a cartoonish animated face is projected onto a dome-

shaped mask. The dome mask makes the image and display calibration process easy. How-

ever, it lacks human face realism and the results appear cartoonish. The Lighthead robotic

face (Delaunay et al., 2011) is another example that also projects an animation onto a face-

shaped translucent mask, resulting in a more realistic appearance. It is capable of displaying

a wide range of facial expressions and emotions. Kuratate et al. (2011) presented a mask

head robot, called Mask-bot, that generates visual speech, head movements, facial expres-

sions and eye movements. Then later, Pierce et al. (2012) introduced Mask-bot 2i with

an automatic approach for projection calibration by using a series of gray-coded patterns

in a calibration booth which supports interchangeable masks. Both Mask-bot and Mask-

bot 2i use human talking head animation that is photo realistic, which is not as flexible as

computer animation.

Al Moubayed et al. (2012) introduced Furhat robot that utilizes computer animation to

deliver facial movements on a 3D translucent facial mask. They also studied the perception

of animation’s gaze on 3D projected against flat screens and demonstrated the limitations

of flat screens in delivering accurate direction of gaze due to Mona Lisa effect, which limits

having situated, multiparty interaction in onscreen Avatars. Furhat uses a pan-tilt unit for

the neck system which has only 2 DOF pitch and yaw. Also Furhat uses a mirror instead of

a fish eye lens which makes the robot to have a larger form factor.

Another approach of creating light-projected avatars is to use forward-projection in-

stead of rear-projection. Lincoln et al. (2009) introduced a forward-projection animation

system called Shader Lamps Avatar where the dynamic motion of a real person is captured
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with a camera and motion sensors; the human motion is then used to control a humanoid

animatronic which is projected on a mask by a front projector. Front projections robotic

avatars are able to portray fully side view of the character, however the whole system is

much larger than the rear-projection robotic avatars.

The remainder of this Chapter is organized as follows: Section 2.1 reviews the mecha-

nism and design of the neck system of the ExpressionBot. The animation system and the

process of lip blending with facial emotion is elaborated in Sec. 2.2. Section 2.3 reviews

the proposed calibration method to calibrate the animation on the robot’s facial mask. A

new design of ExpressionBot that overcome some of the flaws in previous proposed version

in introduced in Sec. 2.4, and Sec. 2.5 conclude this Chapter.

2.1 ExpressionBot: Mechanism and Design

The ExpressionBot consists of three main sections, the neck control system, the display

system and the animation application. The neck system controls the projector and mask

position allowing it to be rotated by the application to track faces and head gestures. The

display system consists of a small projector with a fish eye lens that projects the anima-

tion on a human like (head shaped) face mask. The animation application displays a face

animation along with speech and emotion to be projected on to the mask.

2.1.1 Neck System

The neck mechanism of our existing prototype has three degrees of freedom (DoF)

providing a total of 150◦ of yaw (x-y plane), 30◦ of pitch (x-z plane) and 30◦ of roll (y-

z plane). Solidworks CAD tool was used to design and maximize the range of motion,

resulting in a light, compact, and quiet mechanism. These design constraints were achieved

using a 6”×6” footprint, low friction plastic gears and brushless servomotors. Also, the
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small footprint allows the neck and projector to be easily shrouded by the mask, and allows

the user to control the distance from the mask to the lens in order to project the clearest

possible image.

2.1.2 Display System

Our system uses a Dell DLP M110 portable projector. The projector is capable of up to

300 ANSI Lumens under normal indoor illumination conditions, can display a maximum

resolution of 1200×800, and has a 10000:1 contrast ratio. Attached to the projector is

a Nikon Fisheye Converter FC-E8 which provides a viewing angle of approximately 183

degrees. This allows the projector to display to the whole mask from a relatively close

distance.

To create the mask we designed a mold using the 3D model of the neutral face in

Autodesk Maya. We 3D printed this mold and used it to vacuum form a 1/8 inch sheet

of white translucent acrylic plastic. Then, we added a metal band from top of the mask

to the projector, which allows us to mount a wig on the robot’s head. This makes the

ExpressionBot more aesthetically pleasant and natural, and covers the lights coming out

from the sides of the mask due to fish eye lens wide projection-angle (see Fig. 2.1).

2.2 Animation

We developed a face animation in C# .Net for accurate natural visual speech and show

expression based on multi-target morphing method (Ma and Cole, 2004). Recorded utter-

ances are processed by the Bavieca speech recognizer (Bolanos, 2012), which receives the

sequence of words and the speech waveform as input, and provides a time-aligned phonetic

transcription of the spoken utterance. The aligned phonemes are represented using the In-

ternational Phonetic Alphabet (IPA), a standard that is used to provide a unique symbolic
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(a) (b)

Figure 2.1: ExpressionBot’s design and configuration.

notational for the realization of phonemes in all of the world’s languages (Association,

1999). As IPA is intended as a standard for the phonemic and phonetic representation of

all spoken languages, having IPA in our system will allow us to add other languages easily

as long as the speech recognizer is trained for that language.

For a given language, visually similar phonemes are grouped into units called visemes.

For example the consonants /b/, /p/ and /m/ in the words “buy,” “pie,” and “my” form

a single viseme class. We categorized English phonemes into 20 viseme classes. These

classes represent the articulation targets that lips and tongue move to during speech pro-

duction. A graphic artist designed 3D models of these viseme classes in Maya. Figure 2.2,

demonstrates some visemes used in our animation system. Finally, natural visual speech is

obtained by blending the proper models corresponding to each part of speech with different

weights.

To achieve a smooth and realistic look, we used a kernel smoothing technique. During

speech production, the avatar system receives the time-aligned phonetic input from Bavieca
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system, converts the phonetic symbols into the corresponding visemes, which specifies

the movements of the mouth and tongue, synchronized with the recorded or synthesized

speech. The algorithm models coarticulation by smoothing across adjacent phonemes. We

use the Epanechnikov kernel (Epanechnikov, 1969) to pull the weights for each viseme

associated with the current time value and set the weights for those visemes’ morph targets.

Using the kernel technique resulted in smoother and more natural looking animations;

however, when utterances included the labial phonemes /b/, /m/, /p/, which are accom-

panied by lip closure, the smoothing algorithm prevented the lips from closing when the

duration of the labial phoneme is very short (e.g., 5 msec.) and the adjacent phoneme tar-

gets caused the lips to be open (e.g., /6/ as in “mama”). To force lip closure for the labials,

we extended the duration of labial visemes to include the closure interval (the period of

relative silence before the sound is released, thus increasing the chance that at least one

frame consisting of just the labial viseme will appear.

We designed the models in three portions: eyes, face and hair. This design allows them

to be interchangeable and customizable, and gives us the ability to design any number of

characters to easily change the robot’s appearance. The system has the ability to control eye

gaze independently of the visual speech and facial expression animation, and thus enables

functionality to control eye gaze (e.g., in concert with face tracking).

2.2.1 Lip Blending with Emotion

In order to blend the expressions with the lip movement, the animation uses the follow-

ing formula to generate facial expressions based on the current viseme and emotion morph

targets:

Fj = Fc + λj(F
max
j − F0) (2.1)
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(a) Neutral face (b) Viseme S (c) Anger (d) Disgust

(e) Fear (f) Joy (g) Sadness (h) Surprise

Figure 2.2: Examples of some visemes and expressions

where Fc represents the current viseme, Fmax
j is the desired expression model at the max-

imum intensity, F0 is the Neutral model. The parameter λj ∈ [0, 1] is the intensity of the

jth expression model Fj . The graphic artist designed 3D models of six basic expressions

(i.e., anger, disgust, fear, joy, sadness and surprise) in Maya based on Facial Action Coding

System (FACS) (Ekman and Friesen, 1977). For example joy involves Cheek Raiser (AU

6) and Lip Corner Puller (AU 12) and sadness involves Inner Brow Raiser (AU 1), Brow

Lowerer (AU 4) and Lip Corner Depressor (AU 15).

In order to blend the expressions with the lip movement, adding weight to the emotion

morph targets without regard to the movements of the face caused by speech production will

result in unnatural looking facial expressions. For example, combining the surprise expres-

sion which causes the mouth to be fully open, conflicts with the production of phonemes

like /b/, /f/ and /v/ that are produced with the lips closed or nearly closed. Combining the

joy emotion with puckered mouth visemes such as /o/ will also result in visual speech and
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expressions that are not natural and are perceived as abnormal or creepy. To overcome this

problem, we designed a table that provides a viseme weight factor and a maximum emotion

weight for every viseme emotion combination. These values are adjusted empirically for

each combination.

We separated the facial expression morph targets into upper and lower face morph tar-

gets; the upper face includes everything from the tip of the nose upwards. The lower face

includes the region below the nose; mainly the lips, lower cheeks and chin. This partition-

ing of the face enables us to adjust the weight of just the lower face morph target weights

so that the upper face remains consistent with the morph targets of desired expressions.

In addition, for labial and labiodental visemes (those for the letters m, b, p, f and v) that

require the avatar’s lips to be closed or nearly closed to look natural, we developed visemes

pre-blended with the open mouthed emotions. These are used to replace the viseme and

lower face expression when they come up in combination.

2.3 Calibration

Due to the projector and fish eye lens distortions, the resulting direct projection of the

animated face model on the mask appears distorted (See Fig. 2.4). Hence, we need to

rectify the projection so the image appears undistorted and the facial regions (e.g., eyes,

mouth) of the facial model are projected to the desired position on the mask. In order to

achieve a smooth animation displaying at 30 fps, we decide to distort the original Maya

models rather than rectifying the projection at run time in each frame.

Assuming N is the neutral model in model coordinates (Fig. 2.3.a), S = N ×WV P is

the displayed projection in the screen coordinates where WV P matrix is the multiplication

of the world, view and projection matrices, respectively (Fig. 2.3.b). Assuming M =

project(S) is the projected model on the mask (Fig. 2.3.c), we aim to findN ′ (the distorted
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Figure 2.3: Calibration process.

neutral model) such that M ′ = project(S ′) looks undistorted on the mask, where S ′ =

N ′WV P . In order to estimate the function project(.), we create a checkerboard in the

screen coordinates (Fig. 2.3.b) and projected on the mask (Fig. 2.3.c). Then, we define

a piecewise homography mapping between the corresponding rectangles of the mask and

the triangles displayed on the screen. To find the undistorted neutral model on the mask,

M ′, we apply an affine transformation to place the mold model, used to create the mask

in the vacuum machine, on an image of the mask (Fig. 2.3.d). Afterwards, we apply the

piecewise homography on the mold model and replace the corresponding vertices of the

neutral model in the screen coordinates, S, with distorted mold model to estimate S ′. We

finally use N ′ = S ′WV P−1 as the neutral model in our application. Figure 2.4 shows the

results of our calibration.

In order to improve the rendering speed and overcome the limitations of the rendering

software libraries, we develop a blend-shape system that encodes the vertex position dif-

ferences between each visemes/expression and the neutral model. The application renders

the neutral model with these position differences rather than just blending the models. Be-

cause of this fact, it is unnecessary to apply our calibration procedure to all the viseme and

expression models.
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(a) (b) (c) (d)

Figure 2.4: Result of calibration: (a) and (b) show projection without calibration, (c) and
(d) show projection with calibration from side and frontal view.

2.4 New Design

The design of ExpressionBot discussed in Sec. 2.1.1 and 2.1.1 had the following flaws:

1. Neck System: The neck mechanism of the first prototype had three degrees of free-

dom (DoF). However, three degrees of rotations were not fully independent, i.e., yaw

(x-y plane), pitch (x-z plane) controlling servos depended on the position of the roll

(y-z plane) servo motor. This made programming the servos difficult. Also, the neck

system was not compact and made the system unnaturally large.

2. Lip Protrusion: Although the mask was built based on the 3D model of the neutral

face, the lips protrusion on the mask made the visual speech unnatural since the mask

is static, the jaw and lip movements are only optical and are not moving according to

the speech phonemes movement.

3. Head enclosure: Since the fish-eye lens had a viewing angle of approximately 183

degrees, the light were scattered from the sides. Therefore, we mounted a wig to hide

the bar or band extending from a top of the face mask to the projector and cover any

stray light coming from the sides of the face mask (See Fig. 2.1). Since, the proposed
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(a) (b)

Figure 2.5: New ExpressionBot’s design and configuration. [Patent: Mahoor et al. (2015)]

robotic system is able to project any animation (e.g., male, female, cartoonish, etc.),

the wig might not fit different animation character.

To overcome these problems, and make the system more compact, we re-design the

ExpressionBot. The new design contains a head enclosure to prevent any projected light

from being scattered from the sides of the robotic head, which may make the projected

facial image on the mask look brighter. Also, the neck system is replaced with a pan-tilt

unit coupled with the neck system and configured to move the head enclosure and the face

mask. This makes the whole system more compact and also affordable. In addition, the lips

protrusion were removed by smoothing out the lips of the neutral face 3D model. Figure 2.5

shows the solid-work model of the new system. As it is shown, the model is more compact

compared with previous version shown in Fig. 2.1.
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Figure 2.6: Ryan

2.4.1 Ryan

Based on the new design, and through a license agreement with the University of Den-

ver, a new robotic platform is developed at DreamFace-Tech. (2015) called Ryan. Ryan

(shown in Fig. 2.6) has a torso equipped with a 10” LCD touch screen which can be used to

gather sensory input, display videos, and play games with users. Ryan is equipped with a

Microsoft Kinect to track users’ movements and two stationary arms for an increased sense

of realism. The neck has two degrees of freedom (DoF) providing a total of 180◦ of yaw,

and 45◦ of pitch. The neck system controls the projector and mask position allowing it to

be rotated by the robot application to track faces and head gestures. The same animations

presented in Section 2.2 and calibration algorithm presented in Section 2.3 is used to cali-

brate the animation on the mask and rectify the distortion of the projector and the fish-eye

lens 1. We used Ryan in HRI studies (Chapters 3 and 5) as it is more aesthetic and has

torso.
1Ryan platform and its new features are developed at DreamFace tech LLC. and it is not part of this

dissertation.
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2.5 Conclusion

Major obstacles in developing realistic robots faces lie with the actuators and the skin.

The FACS system codes for approximately 40 primary facial muscles movements (AUs)

that are involved in showing facial expressions and mouth movement during speech. These

actions can be very subtle and quick, and many times mechanical actuators fail to mimic

them. Also, due to cost and space constraints, android robotic heads have few actuators and

their faces are relatively larger than an average head. Besides, the skin of the robot, which

is often made of latex, makes unnatural wrinkles and folds on the robot face.

In this Chapter, we described the design and creation of a low-cost emotive robotic

head, called ExpressionBot, for natural face-to-face communication. ExpressionBot con-

sists of a simple neck system and a projector that projects a facial animation on a 3D

translucent facial mask. Hence, the rear-projection robotic platform can portray natural and

realistic facial movement, as advanced computer graphic system can easily animate them.

Since an animation is projected onto a mask, the robotic face can range from cartoon-like

to photorealistic. The proposed robotic system, relative to mechatronic and android faces,

is thus a highly flexible research tool, mechanically simple, and low-cost to design, build

and maintain (the cost of the hardware system is about $1500).

The developed robotic head represents a new level of integration of emotive capabilities

that enables researchers to study socially emotive robots/agents that can generate spoken-

language, show emotions, and communicate effectively with people in a natural way as

humans do. Such systems can be applied in many domains including health-care, educa-

tion, entertainment, and home-care. It will also be an ideal platform for designing a new

generation of more immersive and effective intelligent tutoring and therapy systems, and

robot-assisted therapeutic treatments.
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Chapter 3

Human-Robot Interaction

In Chapter 2, the mechanism and design of the proposed robotic platform are discussed.

As shown, the proposed robotic is a mechanically simple and low-cost platform that is built

on the rear projection of an animation on a 3D translucent facial mask. It is known that,

the perception of 3D objects that are displayed on 2D surfaces is influenced by the Mona

Lisa effect (Todorović, 2006). In addition, physical embodiment can make a difference in

perception of social robots (Dautenhahn et al., 2002; Wainer et al., 2006), which lacks in

on screen avatar class. However, a big question is remained unanswered, as:

“What are the value propositions of a rear-projected robot compared with an on-screen

animation?”

In this Chapter, the above question is answered by studying different elements of Human-

Robot vs. Human-Animation Interaction. At first, individuals’ experiences of interpreting

the facial expressions and the proposed visual speech of ExpressionBot is compared with

the facial animation on the computer screen. During these experiments, the users were in

front of the robot, and it was not clear whether the users benefited from the physicality of

the robot or they were under the impression of its physical presence. We then distinguished

the role of the robot’s embodiment from its physical presence in three major facial cues
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(i.e., visual speech, facial expressions and eye gaze). In particular, three different condi-

tions (i.e., copresent of the robot, telepresent of the robot, and virtual agent) were studied

to answer whether the embodiment of the robot has any interaction value proposition com-

pared with an on-screen animation.

3.1 Initial Evaluation

In order to evaluate individuals’ experiences and impressions of the ExpressionBot, we

designed and conducted three experiments. Participants were 23 typical adults, 9 female

and 14 males, with age range 18-51 years (Mean= 27.26, SD=7.79) and a variety of ethnic-

ities (19 Caucasian, 2 Asian, 2 Hispanic).

Hereafter, we refer to the 3D computer character on the computer screen as the screen-

based agent, and the projection of the 3D model onto the robotic head as the physical

agent. We used a 23” LCD display to display the screen-based agent at the same size as the

physical agent.

The objective of the first experiment was to assess how accurately subjects were able

to interpret the projected facial expressions. Participants watched the robotic agent and the

screen-based agent in two different sessions randomly (i.e. some participants observed the

physical agent first while the others watched the screen-based agent first). A series of six

basic emotions (joy, sadness, surprise, disgust, fear and anger) were displayed in random

order. Each expression was displayed one time for about 5 seconds. The subject was then

asked to select one of the six categories. They could also respond “none,” if they were

unable to assign the facial expression to one of the six categories.

Tables 3.1 and 3.2 present confusion matrices of the intended and classified expressions

displayed on the physical agent and the screen-based agent, respectively. Comparing the

percentages reported in these tables shows that the surprise and sad emotions were recog-
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nized perfectly (100% recognition rate) in both agents by the participants. The joy emotion

was recognized perfectly when displayed on the physical agent but was recognized 92%

of the time on the screen-based agent. Interestingly, Anger was recognized correctly 85%

of the time for the physical agent, and only 38% of the time for the screen-based agent.

Disgust was classified as anger more often than it was classified as disgust for both agents,

and fear was recognized correctly over 50% of the time in both agents, and confused most

often with sadness. In sum, the results showed high recognition rates for Joy, Sadness and

Surprise in both agents, lower and similar recognition rates for Disgust and Fear in the two

agents, and superior performance for Anger when displayed on the physical agent.

Table 3.1: Confusion matrix of recognized expression on the physical agent
% Joy Anger Sadness Disgust Surprise Fear None

Joy 100 0 0 0 0 0 0
Anger 0 85 0 10 0 0 5

Sadness 0 0 100 0 0 0 0
Disgust 0 60 0 40 0 0 0
Surprise 0 0 0 0 100 0 0

Fear 0 0 35 10 0 55 0

Table 3.2: Confusion matrix of recognized expression on the screen-based agent
% Joy Anger Sadness Disgust Surprise Fear None

Joy 92 0 0 8 0 0 0
Anger 0 38 8 46 0 8 5

Sadness 0 0 100 0 0 0 0
Disgust 8 46 0 38 8 0 0
Surprise 0 0 0 0 100 0 0

Fear 0 0 38 0 8 54 0

In the second experiment, we evaluated the proposed method for visual speech and ex-

amined subjects’ judgments of speech production quality using the physical agent. Two

short segments of speech were used in this experiment. Segment 1 was a seven second

interval of a Margaret Thatcher’s speech with length of 11 seconds while segment 2 was

a seven second interval of Microsoft Anna synthetic speech. We chose these segments to
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cover a variety of length, speed, accent, and different phonemes (vowels, consonants and

labial phonemes). Each speech was played two times with different lip synchronization

approaches: 1) A basic approach where at each phoneme only the corresponding viseme

was displayed without any kernel smoothing; 2) The proposed approach described in Sec-

tion 2.2 where lip closure was enforced in labial phonemes and kernel smoothing was

applied.

We asked the participants to rate how realistic the visual speech looked on a scale from

0 to 5, where 0 being unrealistic and 5 being very realistic. Table 3.3 shows the evaluation

of the two speech segments for the two different visual speech approaches displayed on

the physical agent and screen-based agent. One-tail paired T-test analyses were conducted,

where the results show that there was not significant preferences between the physical and

on-screen agents. However, the T-Test analysis indicated a significant preference for the

proposed approach for synchronizing lips with speech over basic approach (p=.001 and

p=.0002 on the physical agent and p=.0933 and p=.0067 on the screen-based agent for the

speech segments 1 and 2, respectively).

Table 3.3: Average (STD) values of visual speech rating on the physical agent and the
screen-based agent

Physical Agent Screen-based Agent
Basic Proposed Basic Proposed

Speech 1 3.04 (0.80) 3.85 (0.85) 3.06 (0.79) 3.53 (0.91)
Speech 2 2.50 (0.88) 3.45 (0.75) 2.42 (0.93) 3.21 (0.69)

Inspired by the experimental setting in (Al Moubayed et al., 2012), we evaluated the

perception of the eye gaze direction of the physical agent and screen-based agent. In this

experiment, five subjects were simultaneously seated around an animated agent in two

separate sessions; one session to examine the screen-based agent and another session for

the physical agent (see Fig. 3.1). The seats were positioned at -45◦, -25◦, 0◦, 25◦, 45◦,
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where 0◦ is the seat in front of the agent. The distance of the subjects to the agent was five

feet.

In the first setting (called eye gaze only), the agent’s head looked straight and only the

eye gaze was shifted towards each subject. After each shift, all the subjects were asked

to report the subject number that the agent was looking at. We repeated each experiment

three times with 10 random eye gazes each time. In this setting, the subjects perceived the

direction of the eye gaze 50% (SD=24%) of the times correctly for the screen-based agent

and 88% (SD=13%) of the times correctly for the physical agent (p<0.005).

In the second setting (called eye gaze plus arbitrary head movement), the agent rotated

its head and shifted its eye gaze randomly at the same time, but the head was not nec-

essarily towards the subject of interest. Then, after each head movement and gaze shift,

all the subjects reported the subject number that the agent was looking at. We repeated

each experiment three times with 10 random eye gazes each time. In this setting, subjects

perceived the direction of the eye gaze 43% (SD=18%) of the time correctly for the screen-

based agent and 77% (SD=15%) of the times correctly for the physical agent (p<.000017).

These results show that compared with the screen-based agent, the subjects perceived the

eye gaze direction produced by the robotic face more accurately in both the “eye gaze only”

and “eye gaze plus arbitrary head movement” settings.

3.2 Evaluation of Presence and Embodiment

Socially intelligent agents are becoming an integrated part of our daily lives. This is

owing to advancements in computer technology, artificial intelligence, and recent innova-

tions in virtual reality and computer graphics. The population of robotic agents including

social and humanoid robots made in 2008 was about 8.6 million units (Guizzo, 2010) with

a projected annual growth rate of 17% (IDC, 2016). Virtual agents, on the other hand, have

25



Figure 3.1: Experimental setup and placement of subjects.

received considerable attention in recent years as social agents (e.g. for museum guidance

(Kopp et al., 2005), education (Vala et al., 2007), entertainment (Hartholt et al., 2009), and

training for job interviews (Hoque et al., 2013)) due to the flexibility of computer rendered

faces and the ubiquity of computer screens on mobile devices. Virtual agents are often

used when a physical task or interaction such as moving objects is unnecessary. As robotic

technologies are focusing more on improving social interaction with users, determining

which kinds of robots or virtual agents are best suited for social interaction becomes in-

creasingly important. One fundamental research question is what would be the difference

between virtual agents and robots in terms of human interaction, particularly in perceiving

major elements of face-to-face communication (both verbal and non-verbal facial cues and

skills).

The most salient difference between a robot and a virtual agent on a computer screen

is physical embodiment. Several investigations have compared various elements of social

interaction among robots and virtual agents (Cassell, 2000; Ju and Sirkin, 2010; Kidd and

Breazeal, 2004; Walker et al., 1994), and the majority of these investigations suggested

that the physicality of the robot benefits user interaction. However, in the majority of
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these experiments, a robot with physical embodiment was physically present in front of the

subjects. This is potentially problematic since the subject’s percepts and evaluations may

be affected not only by the robot’s embodiment but also by its presence.

Some researchers evaluated the role of presence by comparing a robotic agent with

its telepresence or an animated, computer-rendered of the robot (Li, 2015), however, few

have compared all three conditions in a same experiment/platform (See Fig. 3.2). Also,

the majority of these studies compared the influence of these agents on social elements

such as likability (Kiesler et al., 2008), enjoyment (Wainer et al., 2007), etc. by requiring

subjects to complete a questionnaire after interaction in the lab. Although the reliability

of questionnaires can be validated by measurements such as Cronbach’s Alpha (Cronbach,

1951), self-report may be an inaccurate quantitative measure, especially with small sample

sizes. Hence, better quantitative measures are necessary to determine whether a physically

present robotic agent can produce different, and perhaps superior experiences compared to

a screen-based version of the same robot.

In the following sections, we studies the role of embodiment and presence in human

perception of a rear-projected robot’s facial cues. We used Ryan (the extended version

of ExpressionBot explained in Chapter 2, Section 2.4.1), since the same animation from

a virtual agent could be projected to this robotic face, thus allowing comparison of the

virtual agent’s animation behaviors with both telepresent and physically present robotic

agents. Because face-to-face communication is an important method of social interaction

which plays a major role in individuals’ socialization and experience (Kendon et al., 1975),

we focus on three major elements of face-to-face communication—visual speech, facial

expression, and eye-gaze. We leverage three different agency conditions (copresent robot,

telepresent robot, and virtual agent) to evaluate whether the embodiment and presence of a

social robot provides any extra value for discriminating these social cues compared with an

on-screen animation. Similar to other robotic platforms, Ryan has some limitations (e.g.,
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(Bainbridge et al., 2011)
(Kose-Bagci et al., 2009)

(Kidd and Breazeal, 2004)
(Lee et al., 2006)

(Kiesler et al., 2008)
(Wainer et al., 2007)

This work

(Li and Chignell, 2011)

(Ju and Sirkin, 2010) (Kidd and Breazeal, 2004) (Fujimura et al., 2010)
(Delaunay et al., 2010) (Al Moubayed et al., 2013) (Mollahosseini et al., 2014)

Figure 3.2: Comparison of presence and embodiment dimensions across three categories
of experimental stimuli in the literature (inspired from Li (2015)). The majority of studies
do not distinguish the telepresence of a robot (physical embodiment) from the copresence
of a robot (physical presence).

the mask is static and the jaw and lip movements are only optical). We consider these

limitations in this study.

The remainder of this chapter is organized as follows. Section 3.3 reviews the definition

of physical embodiment and presence and then defines research questions of this study.

Sections 3.4, 3.5, and 3.6 study the role of embodiment and presence in perception of

a robot’s visual speech, facial expression, and eye gaze, respectively. In each of these

sections, a brief review of prior work, the algorithm used to generate the facial cues, the

experiments and settings, and the results, as well as a brief discussion of the results are

presented. Finally, Section 3.7 discusses the results and findings and concludes this chapter.
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3.3 Embodiment and Presence

Socially Intelligent Agents (SIAs) are systems that are able to connect and interface

to humans via the ability to show aspects of human-style social intelligence (Dautenhahn,

1998). These agents can have a wide range of forms, some of which have physical bodies

(e.g. a robot) or virtual observable bodies/faces (e.g. an intelligent avatar), and some of

which interact with others using only voice or text without having any appearance (e.g.

Siri). Since body gesture and expressions play a crucial role in social interactions and com-

munication (e.g., body language, head gesture, facial expressions, speech, etc.), researchers

try to build SIAs that closely mimic the appearance, behavior, and social skills of human

beings (Dautenhahn, 2001). The field of “embodied conversational agents” is an excellent

example of this approach (Cassell, 2000).

Mimicking the appearance of humans in SIAs or “tighter coupling of the [human] body

to the interface” (Biocca, 1997) is viewed as central for providing the embodiment to the

agents. This embodiment can be both virtual (e.g., embodied conversational virtual agents)

and physical (e.g., robot). Pfeifer and Scheier (1999) defined the physical embodiment in

intelligent robots as “a term used to refer to the fact that intelligence cannot merely exist in

the form of an abstract algorithm but requires a physical instantiation, a body.”

In-line with this definition, much work has examined the role of embodiment with re-

gard to a variety of social interaction elements such as persuasion (Ju and Sirkin, 2010),

likeability (Kidd and Breazeal, 2004; Kiesler et al., 2008), enjoyment (Wainer et al., 2007),

trustworthiness (Kidd and Breazeal, 2004), helpfulness (Wainer et al., 2007), direct gaze

recognition (Ju and Sirkin, 2010), and ease of interaction (Fujimura et al., 2010). The

majority of these reports claimed that the physicality of the robot benefited user interac-

tion. However, many of these studies did not distinguish physical embodiment from the

copresence of the robot.
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Copresence is a sociological concept describing the condition in which human indi-

viduals interact with each other (Goffman, 1963; Zhao, 2003). In our case, copresence

refers to how the agent is presented to the user. Zhao (2003) defined copresence in two

dimensions: 1) the mode of being with others (i.e., physical conditions that structure hu-

man interaction), and 2) the sense of being with others (i.e., subjective experience of being

with others). The mode of copresence is related to the concept of “distance” in the taxon-

omy of copresence, which can be physical proximity (within range of the naked senses) or

electronic proximity (outside the range of the naked senses but within the range of senses

extended through electronic media) (Li, 2015). In real-world environments, physical and

digital presence correspond to “copresence” and “telepresence,” respectively (Zhao, 2003).

The mode of copresence is also similar to the concept of “directness” in the literature (Li,

2015; Milgram et al., 1995). Physical and digital presence can be simply defined as a situa-

tion in which the embodied agent can be touched (or can touch the person). In other words,

as Milgram et al. (1995) stated: “[Physical or digital presence:] [the condition] whether

primary world objects are viewed directly or by means of some electronic synthesis pro-

cess.”

The mode of copresence (e.g., physical or digital) can affect a person’s sense of copres-

ence or “social presence” (Zhao, 2003). Some researchers evaluated the role of presence

by comparing a robotic agent with its telepresence or a video of the robot. In a recent sur-

vey (Li, 2015), the effects of physical embodiment and physical presence were explored

through a study of 33 experimental works to compare how people interact with 1) phys-

ically present robots, 2) telepresent robots, and 3) virtual agents. The study showed that

physical presence plays a greater role in determining a person’s response to an agent than

physical embodiment. The methods used in these studies include post-treatment question-

naires or measuring subjects’ behaviors during laboratory experiments. Among these 33
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studies, however, few compared all three conditions in the same experiment/platform (See

Fig. 3.2).

3.3.1 Research Questions

Based on the above and since face-to-face interaction is one of the essential elements

of a social system, we have designed three research questions to be addressed in this dis-

sertation:

• Q1: What is the effect of physical embodiment on perception of agents’ facial cues

(telepresent robot vs. virtual agent)?

• Q2: What is the effect of physical presence on perception of agents’ facial cues

(copresent robot vs. telepresent robot)?

• Q3: What is the joint effect of physical embodiment and presence on perception of

agents’ facial cues (copresent robot vs. virtual agent)?

In order to answer these research questions, we studied three major facial cues (i.e.,

visual speech, facial expressions and eye gaze) in this investigation. Each experiment in-

cluded four conditions:

1. Virtual Agent (VA): An animated face was presented on a 2D screen.

2. Copresent Robot (CR): The robot was physically present in front of each subject.

3. Telepresent Robot (TR): A video or still image of the robotic head was presented

to each subject. The videos/images were captured in a frontal angle of the physical

agent, and the face in the video was scaled to match the size of the copresent robot.
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4. Human Ground-Truth (GT): A human performed the task instead of the agent

in front of each subject, or the subject was presented with a video recording of the

human. If a video was presented, the size of the face in the video was scaled to match

the size of the virtual agent’s face. The purpose of performing the experiments with

GT (human) is to evaluate what we expected to be optimal perception of social cues

in our research setting.

In all four conditions, subjects were seated in front of the agent, with the same viewing

angle and distance between the subjects and the agent. We used a rear-projected robotic

head for this study since computer graphic generated avatars can show natural visual speech

and facial expressions, and the same virtual agent animation behaviors can be compared

with telepresent and physically present robotic agents. Similar to other robotic platforms,

rear-projected robots have some limitations. For instance, Android robotic heads are lim-

ited by the number of actuators used in their face, or non-humanoid robots may not be

able to show facial expressions. Similarly, since the mask is static in rear-project robotic

heads, the jaw and lip movements are only optical and some facial movements (such as

nose wrinkling during the expression of disgust) cannot be shown. Therefore, the findings

of this investigation cannot be generalized to all other embodiments without considering

the relevant differences between the embodied agents.

3.4 Visual Speech

Visual speech includes the visible oral cues (e.g., movement of the lips, tongue, and

jaw) during speech production. These visual cues are not simply a by-product of speech

production; they influence auditory perception of speech and vice versa. For example,

McGurk and MacDonald (1976) showed that perception of mouth movements can affect
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the auditory perception of speech and Sweeny et al. (2012a) showed that hearing speech

sounds influences the perception of simple visual shapes.

Considering the importance of speech and dialogue in social interaction, it is not sur-

prising that many social robotic platforms have the capability of showing lip synchroniza-

tion with auditory speech. Mechanical and Android robotic platforms such as Kismet (Br-

eazeal, 2000), HRP-4C (Kajita et al., 2011), FR-i (Oh et al., 2010), Luo Head (Luo et al.,

2011) and Alex (Lin et al., 2013a) have relatively basic visual speech due to limited actu-

ators and mechanical components that are necessary to control the jaw movements. Com-

puter graphic animations, on the other hand, have a greater capability for depicting natural

visual speech, since mechanical actuators do not control the lips/jaw movements. Never-

theless, lack of physical embodiment and physical presence may constrain the perception

of speech in graphic animations.

3.4.1 Related Work

Studies show that virtual embodied talking agents enhance the level of engagement,

increase speech comprehension in noisy environments, make agents appear more life-like,

and users tend to spend more time with these systems (Lester et al., 1999; Walker et al.,

1994). Siciliano et al. (2003) compared SynFace Virtual Agent (VA) with audio (without

visual speech) and video of a human, and concluded that visual-based speech intelligi-

bility of this virtual agent is better than audio only, whereas it is significantly lower than

audio-visual intelligibility of human visual speech. Ouni et al. (2003) performed a similar

experiment on Baldi virtual agent. They eliminated syntactic and semantic cues by evaluat-

ing the perception of visual speech on a non-meaningful series of three Arabic words, and

they concluded that speech is better perceived on VA with visual speech than with auditory
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Table 3.4: Summary and overview of literature comparing audio-visual speech in different
conditions

Work Agent Condition* Description Results**CR TR VA GT

Siciliano
et al. (2003) SynFace X X

• 12 normal hearing (NH) and 13
hearing-impaired (HI) listeners
• Audio signal was degraded for NH
group
• Video of the original talker was used
for GT

• Average intelligibility of VA increased
by 22% compared to audio only
• Intelligibility of VA was significantly
lower than GT

Ouni et al.
(2003) Baldi X X

• Non-meaningful series of three Arabic
words presented to 19 participants
• Total of 300 words and 100 trials
• Audio signal was degraded

• Average intelligibility of VA increased
by 24% compared to audio only
• Intelligibility of VA was 15% lower
than GT

Al Mouba-
yed et al.
(2013)

Furhat X X X

• Audio-visual perception viewed at
frontal and 45◦ angle.
• A collection of short Swedish sentences
• Reduced audio signal quality

• Audio-visual speech was better
perceived on CR compared with VA.
• No significant difference between
frontal and 45◦ view angle

Mollahos-
seini et al.
(2014)

Expres-
sionbot X X

• Two short segments of speech
• Examined two different lip
synchronization approaches.
• Participant rated how realistic the visual
speech looked on a scale from 0 to 5

• Significant preference for the proposed
visual speech approach over basic method
• No significant preferences between CR
and VA

This Work Ryan X X X X • Section 3.4.2 • Section 3.4.4
* CR, TR, VA, and GT stand for Copresent Robot, Telepresent Robot, Virtual Agent, and Ground Truth (human) respectively.
** Only the relevant finding from the original papers are reported in this summary.

information only, but still nevertheless significantly lower than audio-visual intelligibility

of human visual speech.

Only a few studies have compared the role of embodiment and presence of robotic

agents in audio-visual speech perception. Al Moubayed et al. (2013) investigated the role of

embodiment of a copresent robotic agent for improving the perception of visual speech. A

facial animation on a 2D screen was compared with a rear-projection of the same animation

using Furhat (Al Moubayed et al., 2012) and a video of humans from different viewing

angles. A collection of short and everyday Swedish sentences with a length of three to

six words in each sentence was created. The audio signal quality was reduced using band-

pass filtering in specified frequencies and replaced with white noise. Six conditions were

studied: audio only, virtual agent viewed at frontal and 45◦ angle, copresence of a robot

viewed at frontal and 45◦ angle, and the original video recordings of the sentences viewed

at the frontal angle. Fifteen sentences were examined in each condition. Auditory-visual

perceptual sensitivity was measured as the number of correctly recognized words divided
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by the number of words in each sentence. This study, conducted on ten subjects with

normal hearing, showed that audio-visual speech intelligibility was better perceived with

the copresent robot (even though the jaw did not move in the mask), compared with the

virtual agent on a flat screen. However, there was no significant difference in the audio-

visual intelligibility of the face when it was looked at either from a front-view or a 45◦

angle on both the virtual agent and robot.

Mollahosseini et al. (2014) studied individuals’ experiences and impressions of a pro-

posed visual speech algorithm. In particular, they compared judgments of speech produc-

tion quality of a virtual agent with rear-projection of the same animation using Expres-

sionBot. Two short segments of speech were presented with two different lip synchroniza-

tion approaches (i.e., a proposed approach with kernel smoothing and lip closure in labial

phonemes and a basic approach without any further smoothing and processing). The par-

ticipants (23 typical adults) rated how realistic the visual speech looked on a scale from 0

to 5. Results showed a significant preference for the proposed lip synchronization approach

over the basic approach. However, there was no difference in preference for visual speech

from the virtual agent compared with the copresent robot.

Table 3.4 summarizes the results of studies on audio-visual speech intelligibility. As

shown, none of these studies compared all three conditions of CR, TR, and VA to distin-

guish the role of embodiment from the presence of an intelligent agent in perception of

visual speech. In this dissertation, we studied the perception of visual speech from three

different types of emotional agents (i.e. VA, TR, CR) as well as from a human (as the

optimal case) and based on auditory information alone (as the baseline) using the same

experimental setup. Since the methodology and evaluation metrics of evaluating visual

speech perception are not standard across the literature, we introduced a new test of visual

speech perception along with standard criteria to evaluate the visual speech perception.
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3.4.2 Methodology

We used the same visual speech algorithm presented in Chapter 2, Section 2.2, which is

based on a multi-target morphing method (Ma and Cole, 2004). In particular, the recorded

utterances are processed by the Bavieca speech recognizer (Bolanos, 2012), which receives

the sequence of words and the speech waveform as input and provides a time-aligned pho-

netic transcription of the spoken utterance. The aligned phonemes are represented using the

International Phonetic Alphabet (IPA), a standard that is used to provide a unique symbolic

notational for the realization of phonemes in all of the world’s languages (IPA-Handbook,

1999). Having IPA in our system will allow us to add other languages easily as long as the

speech recognizer is trained for that language.

For a given language, visually similar phonemes are grouped into units called visemes.

For example, the consonants /b/, /p/ and /m/ in the words “buy,” “pie,” and “my” form

a single viseme class. English phonemes are categorized into 20 viseme classes. These

classes represent the articulation targets that the lips and tongue move toward during speech

production. A graphic artist designed 3D models of these viseme classes in Maya. Finally,

natural visual speech was obtained by blending the proper models corresponding to each

part of speech with different weights.

The avatar system converts phonetic symbols into the corresponding visemes, and syn-

chronizes them with the audio signal. To achieve a smooth and realistic appearance, the

algorithm models coarticulation by smoothing across adjacent visemes using a kernel tech-

nique, while ensuring lip closure for labial phonemes (e.g., /b/, /m/, /p/).

3.4.3 Visual Speech Experiment

Unlike with auditory speech (e.g., an evaluation of hearing ability), there is not a stan-

dard methodology to evaluate the perception of visual speech. Several researchers have thus
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developed their own approaches and evaluation criteria. The sets of sentences in the major-

ity of these studies (See Table 3.4) are not comprehensive and do not consider syntactic and

semantic cues. Measures of performance such as the number of correctly recognized words

divided by the number of words in each sentence (Al Moubayed et al., 2013), or subjec-

tive evaluation of how realistic the visual speech appeared (Mollahosseini et al., 2014) are

not standard, either. To address this issue, we developed an Audio-Visual Speech Percep-

tion In Noise (AV-SPIN) test to evaluate the perception of visual speech using a systematic

and standardized approach. The AV-SPIN material, including videos, sentences, and IPA

aligned auditory information, will be publicly available to the research community.1

The Speech Perception In Noise (SPIN) test was developed to address sensory and lin-

guistic cognitive processes of everyday speech (Elliott, 1995; Kalikow et al., 1977). SPIN

consists of 250 meaningful sentences categorized as High-Predictability (HP) sentences

and 250 non-meaningful sentences categorized as Low-Predictability (LP) sentences. The

listener’s task is to recognize the last word in each sentence (referred to as the keyword).

HP sentences contain syntactic and semantic cues helpful for predicting the keyword (e.g.,

The sleepy child took a nap), while LP sentences do not provide any cues predictive of

the keyword (e.g., Betty knew about the nap). The sentences were divided into ten sets

each containing 50 sentences (25 HP and 25 LP sentences), where odd-numbered sets were

complementary of even-numbered sets (i.e., same keywords were in the opposite type of

sentence).

Bilger et al. (1984) studied the SPIN test on 128 listeners (aged 19 to 69) with sen-

sorineural hearing loss and proposed a revision (R-SPIN) such that different sets produce

equivalent results. Particularly, 31 sentences and their complements were eliminated, 19

sentence pairs were arbitrarily removed, and the remaining sentences were redistributed to

create 200 HP sentences and their complementary 200 LP sentences. These 400 sentences

1A copy of AV-SPIN is available in: http://mohammadmahoor.com/databases-codes/
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were divided into eight sets each containing 50 sentences (25 HP and 25 LP sentences),

where odd-numbered sets were complementary of even-numbered sets. Traditionally the

R-SPIN is presented with ambient noise at a Signal-to-Noise Ratio (SNR) of 8 dB.

Since R-SPIN is strictly auditory, audio-visual intelligibility cannot be examined with

the original R-SPIN materials. Therefore, we created an AV-SPIN corpus by capturing a

native English speaker’s face as she produced R-SPIN sentences. Similar to the R-SPIN

test, the quality of the audio signal was degraded by babble noise. Since the subjects were

not hearing-impaired, the audio signal was presented at a high signal-to-noise ratio of -9

dB (i.e., the power of the noise was significantly higher than the auditory speech signal).

Four conditions (VA, CR, TR, and GT), as well as audio only, were examined in the

current experiment. In all conditions, subjects were seated in front of the agent at a distance

of 60 cm. To maintain voice consistency between the conditions, the audio signals were

extracted from the videos and force-aligned using Bavieca speech recognizer (Bolanos,

2012). Twenty sentences (10 HP and 10 LP sentences) were randomly assigned to each

condition for each subject. A different set of sentences was used to train the subjects at the

beginning of the experiment.

Each subject participated in all five conditions (audio-only, VA, CR, TR, and GT) in a

random order. The LP and HP sentences in each condition were shuffled and were selected

such that each condition did not share any sentences. The sentences were played only once,

and at the end of each sentence, the subject had 30 seconds to write down the keyword (last

word in each sentence). The subjects could adjust the sound volume at their convenience

during the training period, but the same audio volume was used in all conditions of the

remaining experiments. A set of headphones with the same audio volume was used in all

the conditions. Since headphones were used, the direction of the voice did not play a role

in the perception of speech. In addition, this allowed us to eliminate other roles, and only

study the psychological effect of presence/embodiment of the robot. Only one trial was
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performed for each subject, since hearing a keyword in HP could have helped the subject

to identify it in an LP sentence.

3.4.4 Visual Speech Results

Seventeen native English speakers with normal hearing listened to the audiovisual R-

SPIN test corpus in five conditions. Figure 3.3 shows the mean accuracy for each condition.

We performed a 2 (Predictability; HP, LP) × 5 (Condition; VA, CR, TR, GT, and Audio-

Only conditions) ANOVA with both predictability and agent as the within-subject factors.

The test showed a significant main effect of agent [F (4, 64) = 30.48, p <.0001, h2p =

.656] and a significant main effect of predictability [F (1, 16) = 134.55, p <.0001, h2p =

.894]. The interaction between agent condition and sentence predictability, however, was

not significant [F (4, 64) = 1.44, n.s.].

As Fig. 3.3 shows, VA (and all other conditions) produced significantly better audio-

visual intelligibility than the audio-only condition [two-tailed t-test p < .001]. This con-

firms that visual information can affect speech perception, and shows the efficacy of the

visual speech algorithm. The ground-truth (video of the human) had significantly higher

audio-visual intelligibility than the other conditions [two-tailed t-test p < .001], which

indicates that the proposed visual speech algorithm has room for improvement.

In order to measure the effect of agents’ embodiment and presence in only VA, TR

and CR conditions, we performed a 2 (Predictability; HP, LP) × 3 (Condition; VA, CR,

TR) ANOVA with both predictability and agent condition as the within-subject factors.

The analysis showed that the main effect of predictability was still significant [F (1, 16) =

82.03, p <.0001, h2p = .837], however the main effect of agent was not significant [F (2, 32)

= .381, n.s.] nor was the interaction between agent condition and predictability [F (2, 32)

= 1.44, n.s.]. In other words, embodiment and presence did not improve the perception
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Figure 3.3: The average accuracy of audio-visual speech perception in different conditions.
CR, TR, VA, and GT stand for Copresent Robot, Telepresent Robot, Virtual Agent, and
Ground Truth (human) respectively.

of visual speech regardless of syntactic and semantic cues in the sentences. A detailed

analysis of these results and comparison of the findings with the literature are discussed in

Section 3.7.

3.5 Facial Expressions

Facial expression is one of the most critical nonverbal channels used by human beings

to convey emotion. Emotion is not only critical in creating more sensitive and effective in-

telligent agents but also impacts how people respond to the agent (Beer et al., 2011). Hence,

facial expression is a vital component in natural social interaction and Human-Robot In-

teraction (HRI) systems, and has been employed in a variety of robots such as Kismet

(Breazeal, 2003), the Philips iCat (Van-Breemen, 2004), Geminoid F (Becker-Asano and

Ishiguro, 2011), and on-screen agents (Bruce et al., 2002; Cassell, 2000).

Mechanical and Android robotic platforms control face movement using actuators in

their faces. However, due to cost and space constraints, the number of actuators in robotic
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faces are often limited. Moreover, because facial actions involved in facial expression can

be very subtle and quick, mechanical actuators often fail to mimic them. Computer-graphic

animations, on the other hand, have a greater capability for controlling facial movement, but

their lack of physical embodiment and physical presence may constrain the perception of

facial expression in virtual agents. Rear-projected robotic heads add physical embodiment

to computer animation agents, but since the mask is static, some of the facial movements

such as nose wrinkling in the expression of disgust cannot be portrayed on a robotic face.

Therefore, it is important to investigate the role of embodiment and presence to find out

whether physical embodiment and presence can improve the perception of an agent’s facial

expressions. A few studies have compared the role of embodiment and presence in the per-

ception of robotic agents’ facial expressions, and to the best of our knowledge perception

of facial expression on rear-projected robotic heads has not yet been investigated.

3.5.1 Related Work

A few studies have compared the role of embodiment and presence in the perception

of robotic agents’ facial expressions. Bartneck et al. (2004) studied the role of presence

in perception of intensity and recognition accuracy of facial expression using the robotic

character iCat (Van-Breemen, 2004) and its telepresence condition (movie on a screen).

Subjects were asked to categorize each emotion and rate its intensity. The study found a

non-linear relationship between the geometrical intensity (robot’s expression intensity) and

the intensity of emotions perceived by the user. The results also indicated that emotions

depicted by the robot were judged as having greater intensity, but there was no significant

difference in the perceived intensity and recognition accuracy between the presence of the

robotic character and its telepresence.
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Kätsyri and Sams (2008) investigated the effect of dynamics on identifying basic emo-

tions between a virtual agent (Talking Head) and a video of a human. Dynamic and static

depictions of six basic emotions from a human face and a virtual agent were shown to 54

subjects. Subjects identified expressions on the human face much better than on the virtual

agent. There was no significant difference in the identification of static and dynamic ex-

pressions of the human face. Identification of some expressions such as anger and disgust

on the virtual agent failed to exceed chance level in the static condition, while dynamics

improved it notably in lower intensities.

Table 3.5: Summary and overview of literature comparing perception of emotion in differ-
ent conditions

Work Agent Condition* Emotion� Description Results**CR TR VA GT No. In

Bartneck
et al. (2004) iCat X X 5 X

• Ten geometrical intensities
were displayed
• Participants recognized the
emotion and its intensity

• The relationship between the
geometrical and perceived
intensity was not linear
• No significant difference
between CR and TR in the
intensity and recognition
accuracy

Kätsyri and
Sams (2008)

Talking
Head X X 6 • Dynamic and static facial

expressions were studied

• GT perceived better than VA
• Dynamics did not improve GT
• Dynamics improved
recognition of subtle emotions,
notably anger and disgust of
VA.

Mollahos-
seini et al.
(2014)

Expres-
sionbot X X 6 • Participants selected six

categories as well as “none”

• Superior recognition
performance for anger in CR
• Similar recognition rates for
other emotions in both CR and
VA

Lazzeri et al.
(2015)

The Robot
FACE X X X 6

• The robot, its 2D&3D models,
and 2D&3D models of human
were shown
• Physiological signals of
subjects were recorded

• CR was better perceived than
2D photos or 3D models (VA
and GT)
• No significant differences in
the subjects’
psychophysiological states

This Work Ryan X X X X 6 X • Section 3.5.2 • Section 3.5.4
* CR, TR, VA, and GT stand for Copresent Robot, Telepresent Robot, Virtual Agent, and Ground Truth (human) respectively.
�No. is the number of studied emotions and In stands for whether different Intensity levels are studied.
** Only the relevant finding from the original papers are reported in this summary.

Mollahosseini et al. (2014) studied the extent to which embodiment and physical pres-

ence improved the perception facial expression. The study evaluated how accurately sub-

jects were able to interpret the facial expressions of a virtual 2D agent and its projection
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on a rear-projected robotic platform. Six basic emotions at their maximum intensity level

were displayed in random order, and subjects were then asked to associate each with one

of these six categories or to indicate that none were appropriate. They found similar recog-

nition rates for happiness, sadness, surprise, disgust and fear in both a virtual agent and a

copresent robot, and superior performance for anger when portrayed by the robot.

Lazzeri et al. (2015) studied the role of embodiment in conjunction with presence on

a humanoid Android robot (Robot FACE). Fifteen subjects identified six basic emotions

displayed on the robot, in 2D photos of the robot, 3D virtual animation models, as well as a

set of 2D photos and 3D models of a human taken from Bosphorus Database (Savran et al.,

2008). Preliminary results showed that facial expressions were better identified on the robot

than its virtual animation, and the recognition rates of facial expressions performed by the

robot were similar to those achieved with human stimuli.

Table 3.5 summarizes studies of facial expression perception with robots and their rel-

evant findings. As shown, none of these studies compared all three conditions of CR, TR,

and VA to distinguish the role of the embodiment from the presence of the robot. In this

dissertation, we studied all three different conditions of emotional agents (i.e. VA, TR, CR)

as well as human facial expressions (as the optimal case) in the same experimental setup.

We also investigated emotion perception at different intensity levels to study the effect of

intensity level on perception of different agents’ facial expression.

3.5.2 Methodology

In order to design realistic and standard facial expressions in our animation system,

we used the same algorithm presented in Chapter 2, Section 2.2.1, which is based on the

Facial Action Coding System (FACS) (Ekman and Friesen, 1978). The FACS model is a

well-known approach for quantifying affective facial behaviors, and describes all possible

43



(a) (b) (c) (d) (e) (f)

Figure 3.4: Six basic facial expressions at their maximum intensity: a) Anger, b) Disgust,
c) Fear, d) Happiness, e) Sadness, and f) Surprise.

facial actions in terms of Action Units (AUs). The FACS explains facial movements and

does not describe affective state directly. Friesen and Ekman (1983) proposed EMFACS to

convert AUs to affect space. For example, EMFACS states that happiness involves raising

of the cheek (AU 6) and pulling of the corner of the lip (AU 12), whereas sadness involves

raising of the inner brow (AU 1), lowering of the outer brow (AU 4) and depression of the

corner of the lip (AU 15). For the current experiment, a graphic artist designed 3D models

of six basic expressions (i.e., anger, disgust, fear, happiness, sadness and surprise) in Maya

based on EMFACS. Figure 3.4, demonstrates six basic facial expressions at their maximum

intensity used in our animation system.

In order to show facial expressions at different intensities and blend them with visual

speech, we used the same algorithm presented in (Mollahosseini et al., 2014). In particular,

our animation used the following formula to generate the morph target based on the current

viseme and emotion morph targets:

Fj = Fc + λj(F
max
j − F0) (3.1)

where Fc represents the current viseme, Fmax
j is the desired expression model at the maxi-

mum intensity, F0 is the Neutral model. The parameter λj ∈ [0, 1] is the intensity of the jth

expression model Fj .
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(a) 0% (b) 15% (c) 30% (d) 45%

(e) 60% (f) 75% (g) 90% (h) 100%

Figure 3.5: Different intensity level of surprised emotion on the virtual agent

3.5.3 Facial Expressions Experiment

Six basic facial expressions (anger, disgust, fear, happiness, sadness, surprise) were

displayed in four conditions corresponding to the types of agents (VA, CR, TR, and GT)

at seven intensity levels (15%, 30%, 45%, 60%, 75%, 90% and 100%). Each emotion was

displayed with an animation/movie starting from neutral until the face’s expression reached

one of seven intensities. The animations took one second from neutral to the desired inten-

sity and then remained static until the subject responded. Subjects were asked to categorize

the emotion of the face as belonging to one of the six basic emotional categories (listed

above) or to report “none” if they were unable to assign the facial expression to any of the

six categories.

To evaluate the GT condition, subjects were presented with the video recordings of an

actress portraying the facial expressions randomly selected from the extended CK+ dataset

(Lucey et al., 2010). In order to pair the intensity of GT with the animation, two experts

annotated the intensity of emotions between 0 to 100%, frame by frame. The intensity of

each frame was considered as the average intensity of the two annotators. Each video in

the GT condition took one second, started with a neutral expression, and ended at the de-
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sired emotional intensity level. Since the animation uses a weighted blend shape technique

defined in (3.1), the intensity of emotion on the animation was easily defined by changing

the parameter λj from zero to the desired intensity level over one second. Figure 3.5 shows

different intensity levels of a sample emotion (surprise) on the virtual agent. Clearly, more

subtle emotion intensities are more difficult to discriminate and could easily be confused

with a different emotion.

Subjects were seated in front of the agent at a distance of 60 cm. Each combination of

emotion and intensity was displayed twice in each block of trials, one with each intensity

level, where the lowest intensity faces were shown first, then the second lowest, etc. In

other words, subjects categorized 84 emotions (2 trials× 6 emotions× 7 intensities) where

the first 12 videos/animations portrayed six emotions at intensity level 15% each played

twice randomly, the second 12 videos/animations portrayed six emotions at intensity level

30%, and so on. The reason for sorting the trials by intensity level was that the subjects

could have recognized the facial movement of an emotion at higher intensity levels and

generalized the facial movements for recognition at lower intensity levels. In addition,

each subject participated in only one agent condition, since VA, TR, and CR share the

same animation and seeing an emotion at a higher intensity level of one condition could

have helped the subject to recognize that same emotion at a lower intensity in another

condition, on a different agent.

3.5.4 Facial Expression Results

We evaluated the perception of facial expressions of emotion performed by different

agents with 48 subjects. Each subject participated only in one agent condition (i.e., 12

subjects rated the facial expressions displayed by one particular agent). In each condition,
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Table 3.6: Confusion matrix of the emotion recognition rates (in percentage) of CR, TR
and VA with presented facial expression (columns) against subjects’ judgments (rows).

Copresent Robot (CR) Telepresent Robot (TR) Virtual Agent (VA)

AN* DI FE HA SA SU AN DI FE HA SA SU AN DI FE HA SA SU

Anger 95.2 2.4 0.6 0.0 0.6 0.0 91.1 5.4 0.0 0.0 1.8 0.0 81.5 4.8 0.0 0.0 0.6 0.6
Disgust 0.0 87.5 1.2 1.2 0.0 0.6 3.0 77.4 1.2 0.0 0.0 0.0 3.0 90.5 3.0 0.6 0.6 0.0
Fear 0.0 0.6 78.6 0.0 0.0 3.0 1.2 1.2 76.8 0.0 3.6 5.4 1.8 3.6 81.5 0.0 3.6 3.0
Happiness 0.0 0.0 0.0 89.9 0.0 1.2 0.0 0.6 0.6 83.9 0.0 0.6 0.0 0.0 0.0 89.3 0.0 0.6
Sadness 1.2 3.0 14.3 0.0 98.2 1.8 2.4 1.8 14.9 0.0 88.7 3.0 6.5 0.6 10.7 0.0 89.3 1.2
Surprise 0.0 1.2 2.4 7.7 0.0 91.1 1.2 4.2 3.6 10.7 0.0 81.5 0.6 0.6 4.2 10.1 0.0 94.6
None 3.6 5.4 3.0 1.2 1.2 2.4 1.2 9.5 3.0 5.4 6.0 9.5 6.5 0.0 0.6 0.0 6.0 0.0

Accuracy 90.08 83.23 87.80

*AN, DI, FE, HA, SA, and SU stand for Anger, Disgust, Fear, Happiness, Sadness, and Surprise, respectively.

subjects saw facial expressions on an agent, and they were asked to select one of the six

basic facial expressions (Anger, Disgust, Fear, Happiness, Sad and Surprise) or None.

A mixed 6 (emotions) × 7 (intensities) × 4 (agent conditions: CR, TR, VA and GT)

ANOVA with emotion and intensity as the within-subject factors and embodiment as the

between-subjects factor was conducted. The dependent variable was recognition accu-

racy. The recognition accuracy differed significantly between emotions [F (5, 220) = 10.86,

p <.0001, h2p = .198] and between intensity levels [F (6, 264) = 129.27, p <.001, , h2p =

.746]. Not surprisingly, faces with higher intensity received higher recognition accuracy.

This analysis also revealed a significant interaction between the emotion and agent condi-

tion [F (15, 220) = 1.95, p <.020, , h2p = .117]. The interaction between agent and intensity

was also significant [F (18, 264) = 3.97, p <.001, h2p = .213]. This suggests that the type of

agent is particularly important when recognizing subtle expressions. The three-way inter-

action was also significant [F (90, 1320) = 1.55, p <.001, , h2p = .096]. This suggests that

the dependency on intensity is only important for certain emotions (the intensity × agency

interaction was significant for anger, fear, sad, and surprise, all p’s <.05). Figure 3.6 shows

the mean accuracy for each agent condition at different intensity levels, collapsed across

the different expressions. As shown, the subjects discriminated emotion better on CR than

on VA or TR.
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Figure 3.6: The average accuracy of emotion perception in different conditions.

There was also a significant main effect of agency on recognition accuracy [F (3, 44)

= 3.06, p = .038, h2p = .173]. Post-hoc Least Significant Difference (LSD) analysis on

different agent conditions indicated that expression recognition for TR was significantly

worse than for human ground-truth and CR (p-values of 0.010 and 0.014, respectively).

All other agent conditions were not significantly different from each other or ground-truth.

In other words, both embodiment and presence were important factors in improving the

perception of emotional expressions. Expression discrimination was better for the ground-

truth (video of the human) condition than the other conditions, which indicates that the

facial expression of the animation has room for improvement.

Table 3.6 shows the confusion matrices of the emotion recognition rates for the differ-

ent agent conditions of CR, TR, and VA. The highest values are shown in bold. As shown,

anger, happiness, and sadness were perceived better on CR, while disgust, fear, and sur-

prise were recognized better on the virtual agent. To address whether this difference was

significant between different emotions, separate post-hoc LSD analyses were conducted for

each emotion. Table 3.7 shows the result of pairwise comparisons post-hoc LSD analyses

and effect sizes of different agent conditions for different emotions.
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Cohen’s d is an effect size used to indicate the standardized difference between two

groups defined as:

d =
M1 −M2√
(σ2

1 + σ2
2)/2

(3.2)

where Mi is the mean and σi is the standard deviation of group i. Generally, the effect size

is considered small if d > 0.2, medium if d > 0.5 and large if d > 0.8 (Cohen, 1977). As

indicated in Tables 3.7:

• Anger was recognized better on both CR and TR compared to VA, with a medium

effect size (effect of embodiment).

• Recognition of disgust, fear, and happiness was equivalent across all the agent con-

ditions.

• Sadness was recognized better on CR compared to TR and VA, with a medium/large

effect size (the effect of both embodiment and presence).

• Surprise was recognized worse on TR comparing with VA, with a medium effect size

(effect of embodiment). However, Surprise was recognized better on CR compared

with TR, with a medium effect size (the effect of presence).

A detailed analysis of these results and comparison of these findings with the literature

are discussed in Section 3.7.

3.6 Eye Gaze

Eye gaze is one of the most basic and important features of the human face for non-

verbal communication. Humans incorporate gaze both consciously and unconsciously into

various human-human interaction schemes (Chen and Yeh, 2012). For example, neurons
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Table 3.7: Pairwise comparison (LSD p-value) and Cohen’s d effect size of users’ percep-
tion of facial expressions on different agent conditions.

TR vs CR VA vs CR VA vs TR
p d p d p d

Anger .405 .271 .004 .652 .031 .419
Disgust .121 .347 .642 -.155 .050 -.493
Fear .447 .139 .913 .002 .386 -.135
Happiness .340 -.023 .784 -.230 .222 .218
Sadness .034 .789 .046 .727 .891 -.008
Surprise .010 .421 .426 -.237 .001 -.658

in the primate visual cortex can respond selectively to eye gaze, head orientation, or even

the combination of both (Perrett et al., 1985). Eye gaze serves several different functions

such as capturing attention, maintaining engagement (Cassell, 2000), conveying informa-

tion about emotional and mental state (Ruhland et al., 2014), augmenting verbal communi-

cation (Emery, 2000), orchestrating turn-taking, and deictic reference (Kendon, 1967).

Considering the importance of eye gaze in social interaction, it is not surprising that

social gaze behavior has been studied in many robotic platforms (Imai et al., 2002; Mutlu

et al., 2009; Yoshikawa et al., 2006). Mechanical and Android robotic platforms control

eye gaze by using actuators in the eyeballs. These actuators, however, may not be fast or

accurate enough to replicate movement of the human eyes. The movement of the human

eye is controlled by three pairs of muscles and it can reach an angular speed of about

400◦/sec with 200ms time to initiate (Pateromichelakis et al., 2014). Computer graphics

animations, on the other hand, have a greater capability for producing natural-looking eye

gaze (Cassell, 2000; Ruhland et al., 2014). However, it is known that the perception of 3D

objects that are displayed on 2D surfaces is influenced by the Mona Lisa effect (Todorović,

2006). Hence, the lack of physical embodiment and physical presence may constrain the

perception of virtual agents’ eye gaze.
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3.6.1 Related Work

Table 3.8: Summary and overview of literature comparing perception of eye gaze in differ-
ent conditions

Work Agent Condition* EG� Description Results**CR TR VA GT

Anstis et al.
(1969) TV X X X

• A horizontal scale (ruler) was used
• Video of a human used for TR
• The agent’s head was rotated with
-30◦,0◦ and 30◦ angles

• Errors were greatest when head
rotation and eye rotation were
incongruent.

Delaunay
et al. (2010) LightHead X X X X

• A grid with 100 cells was used
• Video of a human used for TR
• Instead of head rotation, subjects
viewed the Agent with 0◦ and 45◦

angles

• CR performed better than TR
• GT performed significantly better
than other conditions, in both frontal
and side view situations

Al Mouba-
yed and
Skantze
(2012)

Furhat X X
• A grid with nine cells was used
• Vergence, parallel eyes, static and
dynamic eyelids

• Perception of gaze was
significantly worse when the head
was moving compared with eye
movement alone.
• No significant difference between
gaze with and without vergence.

Moubayed
et al. (2012) Furhat X X

•Mona Lisa effect studied on five
subjects sitting around a circle.
• Only eye rotation studied

• Gaze was perceived more
accurately on CR

Misawa et al.
(2012) LiveMask X X

• Photos of a person looking from
-30◦ to 30◦

• Instead of rotating the head,
subjects’ view angle was changed

• CR was significantly better than
VA
• The Mona Lisa effect occurred in
VR

Mollahos-
seini et al.
(2014)

Expres-
sionbot X X

•Mona Lisa effect studied on five
subjects sitting around a circle

• Discrimination of eye gaze was
better on CR

This work Ryan X X X X X
* CR, TR, VA, and GT stand for Copresent Robot, Telepresent Robot, Virtual Agent, and Ground Truth (human) respectively.
�EG stands for Emergent Gaze which is defined as simultaneous movement of head and eye-gaze.
** Only the relevant finding from the original papers are reported in this summary.

Many studies in vision science have evaluated head-eye gaze, but only on telepresent

faces (Allison et al., 2000; Baron-Cohen et al., 1995; Itier and Batty, 2009; Sweeny et al.,

2012b). Although embodiment and presence have been studied individually, there is not

a comprehensive study that distinguishes the role of embodiment and presence in gaze

perception. Gaze perception of a physically present human agent and his video was studied

on a TV set by Anstis et al. (1969). In this classic study, subjects were asked to report the

point on a glass screen at which the agent (TV or a human) was looking. To simulate head

rotation in the telepresent condition, the TV set was rotated. The agent’s head was rotated

to -30◦, 0◦ and 30◦ angles. The study found that eye gaze was much better perceived on a
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physically present human agent than on its telepresent counterpart, and the perception of

gaze was distorted with the rotation of the TV.

Delaunay et al. (2010) studied gaze perception on the LightHead robotic face, its telep-

resence, and the gaze of a human agent. A vertical glass screen with a 10x10 grid was

placed between the agents and the subjects, and subjects were asked to report the gaze

point when viewed from a frontal and 45◦ angle. Since asking a human to hold his/her head

steady in a 45◦ position was not possible and chin/forehead rests did not allow horizontal

rotations, to study the effect of head rotation, subjects were instead moved to a position

with a 45◦ angle with respect to the agent. Under these conditions, subjects judged gaze

from the video and the robot in both frontal and 45◦ view situations with equal sensitivity.

Al Moubayed and Skantze (2012) compared the perception of eye gaze on Furhat

robotic face with a human agent in different conditions (i.e., presence of vergence, static/

dynamic eyelids, etc.). They took a different approach by asking the agents to look at nine

points on a table between the agent and the subjects. In this case, there was no significant

difference between gaze with vergence and without vergence. Furthermore, head move-

ment appeared to be more effective for influencing judgments along the horizontal axis

while eye movement dominated judgments along the vertical axis. Regardless of condi-

tions, gaze from the human agent was perceived better than gaze from the robot.

Studies show that virtual agents suffer from the Mona Lisa effect (Misawa et al., 2012;

Mollahosseini et al., 2014; Moubayed et al., 2012), in which the eyes in a picture appear

to be looking at the viewer regardless of their location in front of the picture. For example,

Moubayed et al. (2012) studied the Mona Lisa effect on a virtual agent and its 3D projection

on Furhat robotic face. Five subjects were simultaneously seated around the agent, each of

whom was asked to report their perception of the agents’ eye gaze direction. The results

showed a clear Mona Lisa effect in the virtual agent since many subjects perceived a mutual

gaze at the same time.
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Table 3.8 summarizes several studies on eye gaze perception and their most relevant

findings. The majority of these studies report that physical presence plays a greater role

in perception of an agent’s eye gaze than physical embodiment. Presumably, having a 3D

view of the nose direction, the eye position and their composition help viewers to perceive

eye gaze direction more accurately. Additionally, few studies have explored emergent gaze.

Emergent gaze occurs when the visual system integrates global information about the rota-

tion of the head with local information about the rotation of the eyes, to compute a distinct

metric of gaze present in neither feature alone (Cline, 1967; Kinya and Mitsuo, 1984; Kluttz

et al., 2009; Langton et al., 2004; Otsuka et al., 2014; Sweeny and Whitney, 2017; Wollas-

ton, 1824). This approach to measuring gaze perception has been surprisingly underutilized

in robotics work.

The present study evaluates the perception of emergent gaze, while at the same time

comparing the roles of embodiment and presence of the robot. One of the reasons that

emergent gaze has not been studied extensively both with humans and robots is the diffi-

culty inherent in controlling the movements of a human agent. Rotating a human’s head

and eyes to an exact position requires special apparatuses, and it complicates the experi-

ment process. Hence, most studies of gaze either do not include a condition with a human

agent, or they use a typical chin/forehead rest to fix the human’s head in place, which

precludes examination of emergent gaze.

3.6.2 Methodology

To evaluate the accuracy of agents’ eye gaze in the current investigation, the agent

looked at a particular point on a glass divider located between the agent and the subjects. A

horizontal line with fifty-one equidistant points was drawn on the glass. The agent looked
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at a point on the glass screen and subjects were asked to report their perception of the

agent’s gaze direction.

In order to precisely set eye gaze toward a target point, we needed to rotate the agents’

eyeballs such that the pupils were directed towards the target point. In this study, the target

points were at agent’s eye level, hence we only needed to change the yaw angle for the

eyes. Assuming the face is frontal (rotated zero degrees), the yaw angle for right and left

eyes (αr and αl, respectively) is calculated as:

αr =
π

2
− arctan

x+ Er
Dr

(3.3)

αl =
π

2
− arctan

x− El
Dl

(3.4)

where x ∈ [−75cm, 75cm] is the target point on the glass screen. Er andEl are the distance

of right and left eye from the center of the glass screen in the x-Axis, and Dr and Dl are

the distance of the right and left eyes from the glass screen in the y-Axis, calculated as:

Er = El = H × sin(θ) (3.5)

Dr = Dl = D +H × cos(θ) (3.6)

where H is the distance of the head pivot point (C) to the center of the eyes, θ is the angle

between the eyes and the head pivot point, D is the distance of the head pivot point to the

glass screen. Figure 3.7a shows the schema and the variables used in these calculations.

When the head is straight and not rotated, Dl = Dr and Er = El. If the head is rotated

by γ◦ (Figure 3.7b), the values of Er and Dr in Equations (3.3) and (3.4) are changed as
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(a) Head facing forward (b) Head rotated by γ

Figure 3.7: Schema and the variables used in the calculating eye gaze angle (Drawing not
to scale).

follows:

Er = H × sin(θ + γ) (3.7)

El = H × sin(θ − γ) (3.8)

Dr = D −H × cos(θ + γ) (3.9)

Dl = D −H × cos(θ − γ) (3.10)

In the above equations, we assumed that the agent does not have any facial curvature in

the eye area (Figure 3.8-left). If the face has an angle (ε) in the eye area (Figure 3.8-right),

Equations (3.3) and (3.4) will change as follows:

αr =
π

2
− arctan

x+ Er
Dr

− ε (3.11)

αl =
π

2
− arctan

x− El
Dl

+ ε (3.12)
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Figure 3.8: Mask with flat eye region (left) and with angled eye region (right)

3.6.3 Eye Gaze Experiment

To evaluate the role of embodiment and presence in perception of agents’ eye gaze, four

conditions (VA, CR, TR, and GT) were examined in this experiment. In each condition,

the agent looked at a particular point on a glass divider located between the agent and the

subjects. The subjects were then asked to report their perception of where the agent was

looking.

The subjects were seated in front of the glass screen, and then asked to keep their head

still on a chin-forehead rest and look straight at the agent at a distance of 120cm. To

simulate the most accurate head rotation and avoid a Mona Lisa effect, which is common

when viewing a face on a flat screen, in the VA condition we presented rotations of the

animated head itself rather than rotations of the screen portraying the head. Figure 3.9

illustrates the eye gaze evaluation setup.

Fifty-one points, three centimeters apart from each other, were marked by letters and

numbers on the glass. However, the agents looked at only five points located at -39, -21, 0,

21 and 39 centimeters (with zero as the middle point of the glass divider). Hereafter, these

points are referred to as A, B, C, D and E, respectively (shown in Fig. 3.9). Subjects were

not aware of the agent’s restricted gaze targets, and they were instructed that the agent may

look at any points on the glass. Figure. 3.10 shows photos of different conditions viewed

from the subject’s position.
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(a) (b)

Figure 3.9: Perception of eye gaze room setup.

We examined the emergent perception of eye gaze (i.e., the integration of head rotation

information with eye position). In particular, there were five possible head rotations (-30◦,

-16◦, 0◦, 16◦, and 30◦), and in each head position, the eyes were shifted toward the five

points on the glass screen. An example of this condition is shown in Fig. 3.9, where the

agent’s head is rotated toward +16◦ and the eyes are directed at point B.

The method described in Section 3.6.2 was used to calculate the angle for the agent’s

eyes in CR and TR scenarios. The dimensions of the robot head for CR and the 3D model

for VA were measured, and depending on the target point on the glass screen, the eyes of

the robot/3D model were rotated toward the target point. The measurement used in CR was:

D = 73cm, H = 13.35cm, θ = 13◦, and the measurement used in VA was: D = 70cm,

H = 10.45cm, θ = 17◦. Since a mask with a flat eye region was used in CR and a flat

screen was used in VA, the value of ε was set to 0◦.

A Canon EOS 80D DSLR camera was used to take pictures of the robot from the point

of view of the subject. The captured pictures were calibrated to the size of the robot head.

57



Using this method, from the point of view of the subject, the agent in both CR and TR had

the same size and proportions, and in theory, the same direction of eye gaze (if we took a

picture from the subject’s point of view, it would look the same). The difference was that

the TR condition featured a 2D representation of the CR condition.

To keep the human agent’s head in an exact head rotation angle consistently during

the GT experiments, we modified a chin/forehead rest to rotate and then stabilize in 1◦

increments. In the GT condition, a human was seated in the place of the agent and looked

at the points on the glass, while keeping his head still on this chin forehead rest and his

shoulders facing directly forward.

In all four conditions, first, the agent’s head was rotated to one of the five angles (-30◦,

-16◦, 0◦, 16◦, and 30◦) randomly. Then at each of these head angles the eyes were rotated

to gaze at one of the 10 points on the board (two trials for the five targets A, B, C, D and E)

randomly. The subject was asked to close his/her eyes between each trial to eliminate any

effect of seeing the agent adjust his head and eyes. In total, each subject reported 50 gaze

directions (5 angles × 5 points × 2 trials) for each condition. Each condition was run in a

block lasting five minutes and the subjects were asked to leave the room for two minutes

until the room was setup for the next condition.

3.6.4 Eye Gaze Results

We examined the perception of eye gaze with 23 subjects, each of whom had normal

or corrected to normal vision. Four different agent conditions (VA, TR, CR and GT) were

presented in random order to the subjects, and subjects were asked to report their percep-

tion of the point at which the agent was looking. Accuracy was calculated by measuring

the error in each subject’s reports of eye gaze. Gaze perception error was defined as the
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(a) Copresent Robot (b) Telepresent Robot

(c) Virtual Agent (d) Ground-Truth

Figure 3.10: Eye gaze different conditions

absolute distance between the point that the subjects reported and the actual target point at

which the agent was looking.

We performed a 5 (head rotation)× 5 (eye gaze)× 4 (agent conditions: CR, TR, VA and

GT) ANOVA with agent condition, head rotation and target point as within-subject factors.

The dependent variable was gaze perception error. This analysis revealed a significant main

effect of agent condition [F (3, 66) = 134.55, p <.0001, h2p = .460]. We also found main

Table 3.9: Average and proportional error with respect to human ground-truth for different
agent conditions.

Average Error ± STD (cm) Proportional Error to GT
GT* 7.88 ± 2.90 -
CR 10.50 ± 3.11 33.26%
TR 11.04 ± 3.16 46.47%
VA 13.04 ± 2.88 65.57%
* CR, TR, VA, and GT stand for Copresent Robot, Telepresent Robot,Virtual Agent,

and Ground Truth (human) respectively.
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(a) Ground-Truth (b) Copresent of Robot

(c) Virtual Agent (d) Telepresent of Robot

Figure 3.11: The average error (cm) in perception of different agents’ eye gaze for different
head rotation and gaze shift (Best viewed in color).
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effects of head rotation [F (4, 88) = 70.25, p <.0001, h2p = .762] and eye gaze [F (4, 88)

= 31.39, p <.0001, h2p = .588]. This analysis also revealed an interaction between agent

condition and head rotation [F (12, 264) = 11.17, p <.0001, h2p = .337], but the interaction

between the agent condition and eye gaze was not significant [F (12, 264) = 95.16, n.s].

Figure 3.12 shows the estimated marginal means of gaze perception error for different

agents, head rotation angle and target points. As shown, differences between the agent

conditions depended on head rotation, but not eye gaze.

Table 3.9 shows the average and standard deviation of error for each condition and

proportional error with respect to human ground-truth. The results indicate that eye gaze

was better perceived on CR than TR and VA, with 13.21% and 32.23% lower proportional

error, respectively. Figure 3.11 shows the average error (cm) in the perception of different

agents’ eye gaze for different head rotation and target points. As Fig. 3.11-(a) shows, when

the eye gaze was directly toward the subject’s face (point C), the perception of eye gaze

had a relatively negligible amount of error. In other words, subjects were able to recognize

mutual eye contact with high precision on the human agent. The same pattern emerged in

the CR and TR conditions. Interestingly, subjects discriminated mutual eye gaze poorly in

the VA condition, especially with incongruent head and eye rotations.

Notably, when the head was rotated to its extremes (-30◦ and 30◦), perception of gazes

directed toward points B and D had higher error than gazes directed toward points A and

E. This suggests that subjects had difficulty recognizing gaze direction accurately when

the rotation of the head was incongruent with that of the eyes. Hence, subjects may have

guessed a point at the far end of the glass screen, which gave them more room for error at

points B and D.

As shown in Fig. 3.11, eye gaze of the virtual agent was seen with a notable amount

of error (∼24cm) when combined with a strong head rotation. This could be because the

animation lacked binocular depth cues by virtue of being present on a flat screen. This
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could have made the perception of head rotation more difficult, while the embodiment of

the robot helped subjects to recognize the head angle better.

In order to more directly measure the effect of agents’ embodiment and presence, we

removed human GT from the analysis and performed a 5 (head rotation) × 5 (eye gaze)

× 3 (agent conditions: CR, TR, VA) ANOVA with agent condition, head rotation and eye

gaze as within-subject factors. This analysis revealed main effects of agent [F (2, 44) =

8.740, p = .001, h2p = .284], head rotation [F (4, 88) = 64.95, p <.001, h2p = .747] and eye

gaze [F (4, 88) = 16.39, p <.0001, h2p = .427]. Similar to previous analysis, and as shown

in Figure 3.12, there was a significant interaction between the agent condition and head

rotation [F (8, 176) = 8.75, p <.0001, h2p = .285], but the interaction between the agent

condition and eye gaze was not significant [F (8, 176) = 23.98, n.s].

Since there was an interaction between the agent condition and head rotation, we per-

formed pairwise two-tailed t-test comparisons between agent conditions at different head

rotations. Table 3.10 shows pairwise p-value and Cohen’s d effect-size between agent con-

ditions. As shown, embodiment improved the perception of eye gaze at -30◦ and 30◦, as

indexed by significant differences between TR and VA conditions (p < .001 and p = .023

with large effect sizes d = 1.22 and d = 0.69 respectively). Physical presence did not

improve the perception of eye gaze, as the differences between TR and CR conditions were

not significant at any head angle. There were also significant differences between CR and

VA at -30◦ and 30◦ (both p < .001 with large effect sizes d = 1.49 and d = 0.89 re-

spectively). Because TR and VA were both significantly different at these head angles,

we conclude that improvement in the perception of eye gaze compared with CR is mainly

due to embodiment rather than presence of the robot. And in particular, embodiment of

the robot highly affected the precision of the gaze perception combined with extreme head

rotations in a frontal situated setting.
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Table 3.10: Pairwise comparison (LSD p-value) and Cohen’s d effect size of users’ percep-
tion of eye gaze at different head rotations. Significant pairs are shown in bold.

TR vs CR VA vs CR VA vs TR
Head Angle p d p d p d

-30◦ .660 0.13 <.001 1.49 <.001 1.22
-16◦ .479 0.21 .190 0.39 .5484 0.17
0◦ .890 -0.04 .278 -0.32 .269 -0.32

16◦ .599 -0.15 .116 0.47 .158 0.42
30◦ .217 0.36 .004 0.89 .023 0.69

3.7 Discussion and Conclusion

In this Chapter, we aimed to find the value propositions of a rear-projected robot com-

pared with an on-screen animation. For this purpose, we performed two sets of HRI ex-

periment. At first, individuals’ experiences of interpreting the facial expressions and the

proposed visual speech of ExpressionBot is compared with the facial animation on the

computer screen. During these experiments, the users were in front of the robot, and it

was not clear whether the users benefited from the physicality of the robot or they were

under the impression of its physical presence. We then distinguished the role of the robot’s

embodiment from its physical presence in three major facial cues (i.e., visual speech, fa-

cial expressions and eye gaze). In particular, three different conditions (i.e., copresent of

the robot, telepresent of the robot, and virtual agent) were studied to answer whether the

embodiment of the robot has any interaction value proposition compared with an on-screen

animation. In particular, aimed to investigate the effect of physical embodiment (Q1), phys-

ical presence (Q2), and the joint effect of physical embodiment and presence, on human

perception of agents’ facial cues (Q3). Three major facial cues (i.e., visual speech, facial

expressions and eye gaze) were studied in this research. To study these effects, we lever-

aged three different agent conditions (i.e., copresent robot, telepresent robot, and virtual

agent) as well as human ground truth to evaluate the optimal case in our settings. Below,

we discuss the results of these three separate experiments.
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Visual Speech: We found that speech from a virtual agent, and all other conditions,

produced significantly better audio-visual intelligibility than speech from auditory infor-

mation alone (Section 3.4.4). Nevertheless, the human ground-truth (video of a human)

condition produced significantly higher audio-visual intelligibility than the other condi-

tions. This confirms that visual information can affect speech perception, and hence the

proposed visual speech algorithm has room for improvement. Audio-visual intelligibility

was not significantly different across the agent conditions with no significant interaction

between agent condition and predictability of the sentences.

Our results indicated that physical embodiment (Q1), physical presence (Q2), and the

joint effect of physical embodiment and presence (Q3) did not differ in the extent to which

they improved the perception of visual speech regardless of syntactic or semantic cues in

the sentences. This could be because the mask was static and the jaw and lip movements

were only optical in the rear-projected robotic platform. Other types of embodiment, such

as Android robots, may express different behaviors. However, since controlling natural lip

movement on Android robots necessitates several actuators and a very elastic skin, existing

Android robotic faces may even perform worse than computer graphics animations.

This finding is consistent with our earlier study (Mollahosseini et al., 2014), but in-

consistent with the study by Al Moubayed et al. (2013), though similar rear-projection

technology with a static mask was used in both studies. It is unlikely that the results were

influenced by different visual speech algorithms. It is more likely that the difference be-

tween Al Moubayed et al. (2013) and our finding is due to different audio-visual corpus and

the intelligibility measurement criteria. The audio-visual corpus used in the present study

was a standard set considering the syntactic and semantic cues in the sentences, while

Al Moubayed et al. (2013) used a collection of short, everyday sentences with the number

of correctly recognized words divided by the number of words in each sentence as the cri-

terion of perception. Additionally, the sample size may also have affected the results, as the
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study performed by Al Moubayed et al. (2013) was evaluated with ten subjects, compared

to this study that 17 subjects participated in.

Facial Expression: We found that expression recognition for the virtual agent and

copresent robot were not significantly different from expression recognition from human

ground-truth (Section 3.5.4). In other words, the facial expression generation algorithm can

portray emotions similar to those from a human. Separate post-hoc LSD analyses for each

emotion indicated that embodiment improved perception of the expression of anger (Q1),

and embodiment and presence had a joint effect on improving perception of the expression

of sadness (Q3). Physical embodiment impaired perception of the expression of surprise,

however, physical presence could compensate for this negative effect (Q2).

We believe that the negative effect of physical embodiment on the perception of an

agent’s surprised expression could have occurred because the jaw does not move in the

static mask, making subtly surprised faces difficult to perceive. This phenomenon (i.e., the

effect of seeing a moving expression on a static mask) was presumably less noticeable when

the robot was present in front of users (CR condition), as the difference between CR and VA

was not significant for the expression of surprise. Since the only varying factor between

TR and CR was the “presence” of the robot, we believe that presence could potentially

compensate for the negative effect of seeing facial movements on a static mask.

These results are consistent with our previous study (Mollahosseini et al., 2014), in-

dicating that subjects perceived the facial expression of anger (and sadness in the present

study) with greater accuracy in the robotic face than that of the virtual agent. Our find-

ing is also consistent with (Bartneck et al., 2004). We also found a significant difference

between the robot and telepresence of the robot for perception of the facial expressions of

sadness, similar to Bartneck et al., who found a significant difference between CR and TR

for recognizing sadness at intensities lower than 30%.
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This finding is inconsistent with a study by Lazzeri et al. (2015) in which all emotions

were better perceived on a robotic agent than on a virtual agent. Perhaps, the difference

between (Lazzeri et al., 2015) and our finding is mainly due to the difference between the

embodiments (i.e., Android vs rear-projected robotic heads). The masks in rear-projected

robotic heads are static, thus jaw and the lip movements are only optical and some facial

movements such as nose wrinkling in the expression of disgust cannot be shown, whereas

Android robotic heads can be more flexible in controlling the skin if enough actuators are

provided. In addition, Lazzeri et al. (2015) created a synthesized virtual agent from a set

of pictures of a physical robot acquired from various angles and used Unity 3D software

to animate the 3D models. Our virtual agent featured an accurate 3D model which was

projected on the robotic face. Hence, the same animation and expression dynamics were

used in both our robot and virtual agent conditions.

Eye Gaze: We found that there was a significant main effect of agent type between

virtual agent, telepresent robot, copresent robot and human ground-truth (Section 3.6.4).

There was a significant interaction between the agent condition and head rotation, but the

interaction between the agent condition and the eye gaze was not significant. Eye gaze was

better perceived on CR than TR and VA, with 13.21% and 32.23% lower proportional error.

Pairwise comparisons between agent conditions at different head rotations showed that

embodiment improved the perception of eye gaze at extreme head rotations (Q1). Physical

presence did not improve the perception of eye gaze (Q2), as the difference between TR

and CR conditions was not significant at any head rotation. There were also significant

differences between the CR and VA conditions at extreme head rotations. Thus, because

TR and VA were both significantly different at these head angles, improvement of eye gaze

perception relative to CR was mainly due to embodiment rather than presence of the robot

(Q3).
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Table 3.11: Summary of role of embodiment and presence in perception of different facial
cues.

Physical
Embodiment*

Physical
Presence�

Join
Effect**

Visual Speech 7 7 7

Facial Expression 3 3 3

Eye Gaze 3 7 3

* Physical Embodiment indicates a significant difference between tele-present robot and virtual agent.

�Physical Presence indicates a significant difference between co-present robot and tele-present robot.

** Join Effect indicates a significant difference between co-present robot and virtual agent.

These findings are congruent with previous studies showing that the perception of a

robot’s eye gaze is more accurate than that of a virtual agent (Misawa et al., 2012; Mol-

lahosseini et al., 2014; Moubayed et al., 2012). There was no difference in perception of

gaze when seen on a robotic agent or its telepresence, which is consistent with a study per-

formed by Delaunay et al. (2010). We also did not observe a significant difference between

gaze perception on the telepresent robot and virtual agents—a comparison which has not

been addressed in previous studies.

Table 3.11 summarizes the results of role of embodiment and presence in perception of

different facial cues. The first column (physical embodiment) indicates a significant differ-

ence between tele-present robot and virtual agent. The second column (physical presence)

indicates a significant difference between co-present robot and tele-present robot. The third

column (join effect of physical embodiment and physical presence) indicates a significant

difference between co-present robot and virtual agent.

3.7.1 Conclusion

The results of our initial HRI studies on a group of participants illustrated that the

subjects perceived the facial expression anger with a much greater accuracy in the robotic

face than the screen-based face and they also rated the generated visual speech smooth and
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realistic on both robotic and screen-based systems. In addition, we studied the perception

of eye gaze’s direction in two experiments, one in which the head was frontal and only the

eye gaze was shifted, and the other with the head rotated but not necessarily correlated with

the eye gaze direction. In both experiments, our results showed that participants perceived

the robotic face mutual gaze more accurately.

Then we examined the role of social robots’ embodiment and presence in users’ per-

ception of facial cues using a quantitative approach. Understanding how people respond

to physical and virtual agents is an important factor in designing successful social agents.

The results of this study (summarized in Table 3.11) indicate that:

1. Neither embodiment nor presence plays a role at improving the perception of visual

speech, regardless of syntactic or semantic cues in sentences.

2. Both embodiment and physical presence improve the perception of certain facial

expressions in emotive agents.

3. The combination of embodiment and presence (and mainly embodiment) highly af-

fects the precision of eye gaze perception in a frontal situated setting.

Comparison of our findings with previous studies also indicates that the type of embod-

iment is important. We used a rear-projected robotic head in this study, which has some

limitations (e.g., the mask is static, the jaw and lip movements are only optical). We believe

that the limitations of embodiment can highly affect the perception of social cues. For in-

stance, Android robotic heads are limited by the number of actuators used in their face and

non-humanoid robots may not be able to show certain facial expressions. Therefore, the

findings of any investigations on the role of embodiment and presence cannot necessarily be

generalized to other types of robotic embodiments, without considering the characteristics

of the embodied agents.
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(a) Head rotation

(b) Target Point

Figure 3.12: Estimated marginal means of gaze perception error for different agents and
(a) head rotation angles and (b) different gaze target points. The target points A, B, C, D
corresponds to -39, -21, 0, 21 and 39cm from the center, respectively. CR, TR, VA, and GT
stand for Copresent Robot, Telepresent Robot, Virtual Agent, and Ground Truth (human)
respectively.
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Chapter 4

Affect Perception

Current Human Machine Interaction (HMI) systems have yet to reach the full emo-

tional and social capabilities necessary for rich and robust interaction with human beings.

Facial expression, which plays a vital role in social interaction, is one of the most important

nonverbal channels through which HMI systems can recognize humans’ internal emotions.

Ekman and Friesen (1971) identified six facial expressions (viz. anger, disgust, fear, happi-

ness, sadness, and surprise) as basic emotional expressions that are universal among human

beings.

Due to the importance of facial expression in designing HMI and Human Robot In-

teraction (HRI) systems (Mollahosseini et al., 2014), numerous computer vision and ma-

chine learning algorithms have been proposed for automated Facial Expression Recognition

(FER). Also, there exist many annotated face databases with either human actors portray-

ing basic expressions (Gross et al., 2010; Lyons et al., 1998; Mavadati et al., 2013; Pantic

et al., 2005), or faces captured spontaneously in an uncontrolled setting (Dhall et al., 2013;

Mavadati et al., 2013). Automated FER approaches attempt to classify faces in a given

single image or sequence of images as one of the six basic emotions. Although, traditional

machine learning approaches such as support vector machines, dictionary learning (Mo-
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hammadi et al., 2016) and to a lesser extent, Bayesian classifiers, have been successful

when classifying posed facial expressions in a controlled environment, recent studies have

shown that these solutions do not have the flexibility to classify images captured in a spon-

taneous uncontrolled manner (“in the wild”) or when applied databases for which they were

not designed (Mayer et al., 2014). This poor generalizability of these methods is primarily

due to the fact that many approaches are subject or database dependent and only capable

of recognizing exaggerated or limited expressions similar to those in the training database.

Many FER databases have tightly controlled illumination and pose conditions. In addition,

obtaining accurate training data is particularly difficult, especially for emotions such as

sadness or fear which are extremely difficult to accurately replicate and do not occur often

real life.

Recently, due to an increase in the ready availability of computational power and in-

creasingly large training databases to work with, the machine learning technique of neural

networks has seen resurgence in popularity. Recent state of the art results have been ob-

tained using neural networks in the fields of visual object recognition (Krizhevsky et al.,

2012; Szegedy et al., 2014), human pose estimation (Toshev and Szegedy, 2014), face

verification (Taigman et al., 2014), and many more. Even in the FER field results so far

have been promising (Kahou et al., 2013). Unlike traditional machine learning approaches

where features are defined by hand, we often see improvement in visual processing tasks

when using neural networks because of the network’s ability to extract undefined features

from the training database. It is often the case that neural networks that are trained on

large amounts of data are able to extract features generalizing well to scenarios that the

network has not been trained on. We explore this idea closely by training our proposed

network architecture on a subset of the available training databases, and then performing

cross-database experiments which allow us to accurately judge the network’s performance

in novel scenarios.
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The eventual goal of the proposed robotic platform is to interact with users in an un-

controlled setting (“in the wild”), where there is a high variation in scene lighting, camera

view, image resolution, background, subjects head-pose and ethnicity. Since, existing fa-

cial expression recognition systems lack enough generality in the wild, we proposed a new

Deep Neural Network (DNN) architecture. The proposed DNN is trained on seven well-

known publicly available databases. However, the majority of these datasets are captured

in a lab controlled setting. Therefore, we created a database of facial Affect from the In-

terNet (called AffectNet) by querying more than one million images from different search

engines using 1250 emotion related tags in six different languages.

The rest of this Chapter is organized as follows: Section 4.1 reviews existing FER sys-

tems. Section 4.2 introdcues our proposed approach to extract facial landmark point, which

is in a key step in facial image representation and analysis. Section 4.3 introduces the pro-

posed DNN architecture, the process of learning from seven publicly available databases

and the experimental results of subject-independent and cross-database settings. The pro-

cess of creating and annotating AffectNet is explained in Section 4.4. Section 4.5 introduces

two proposed DNN baseline to classify the facial expression images and predict the value

of valence and arousal. At the end, Sec. 4.6 concludes the findings of this research on affect

perception.

4.1 Existing FER Systems

Algorithms for automated FER usually involve three main steps, viz. registration, fea-

ture extraction, and classification. In the face registration step, faces are first located in the

image using some set of landmark points during “face localization” or “face detection”.

These detected faces are then geometrically normalized to match some template image in a

process called “face registration”. In the feature extraction step, a numerical feature vector
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is generated from the resulting registered image. These features can be geometric features

such as facial landmarks (Kobayashi and Hara, 1997), appearance features such as pixel

intensities (Mohammadi et al., 2014), Gabor filters (Liu and Wechsler, 2002), Local Binary

Patterns (LBP) (Shan et al., 2009), Local Phase Quantization (LPQ) (Zhen and Zilu, 2012),

and Histogram of Oriented Gradients (HoG) (Mavadati et al., 2013), or motion features

such as optical flow (Kenji, 1991), Motion History Images (MHI) (Valstar et al., 2004), and

volume LBP (Zhao and Pietikainen, 2007). Since selecting the most appropriate feature is

not trivial, Zhang et al. (2014, 2015) fuse multiple features using multiple kernel learning

algorithms. However by using neural networks, we do not have to worry about the feature

selection step - as neural networks have the capacity to learn features that statistically allow

the network to make correct classifications of the input data. In the third step, of classifi-

cation, the algorithm attempts to classify the given face as portraying one of the six basic

emotions using machine learning techniques.

Cohn et al. (2007) distinguished two conceptual approaches to studying facial behav-

ior: a “message-based" approach and a “sign-based" approach. Message-based approaches

categorize facial behaviors as the the meaning of expressions, whereas sign-based ap-

proaches describe facial actions/configuration regardless of the action’s meaning. The

most well-known and widely used sign-based approach is the Facial Action Coding Sys-

tem (FACS) (Ekman and Friesen, 1977). FACS describes human facial movements by their

appearance on the face using standard facial substructures called Action Units (AUs). Each

AU is based on one or a few facial muscles and AUs may occur individually or in combi-

nations. Similarly, FER algorithms can be categorized into both message-based and sign-

based approaches. In message-based approaches FER algorithms are trained on databases

labeled with the six basic expressions (De la Torre and Cohn, 2011), and more recently,

embarrassment and contempt (Lucey et al., 2010). Unlike message-based algorithms, sign-

based algorithms are trained to detect AUs in a given image or sequence of images (De la
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Torre and Cohn, 2011). These detected AUs are then converted to emotion-specified ex-

pressions using EMFACS (Friesen and Ekman, 1983) or similar systems (Taheri et al.,

2014). In this research, we develop a message-based neural network solution,

FER systems are traditionally evaluated in either a subject independent manner or a

cross-database manner. In subject independent evaluation, the classifier is trained on a

subset of images in a database (called the training set) and evaluated on faces in the same

database that are not elements of the training set often using K-fold cross validation or

leave-one-subject-out approaches. The cross-database method of evaluating facial expres-

sion systems requires training the classifier on all of the images in a single database and

evaluating the classifier on a different database which the classifier has never seen images

from. As single databases have similar settings (illumination, pose, resolution etc.), subject

independent tasks are easier to solve than cross database tasks. Subject independent eval-

uation is not, however, unimportant. If a researcher can guarantee that the data will align

well in pose, illumination and other factors with the training set, subject independent eval-

uation can give a reasonably good representation of the classification accuracy in an online

system. Another technique, subject dependent evaluation (person-specific), is also used in

limited cases, e.g. FERA 2011 challenge (Valstar et al., 2011); often in these scenarios the

recognition accuracy is more important than the generalization.

Recent approaches to visual object recognition tasks, and the FER problem have used

increasingly “deep” neural networks (neural networks with large numbers of hidden lay-

ers). The term “deep neural network” refers to a relatively new set of techniques in neural

network architecture design that were developed in order to improve the ability of neural

networks to tackle big-data problems. With the large amount of available computing power

continuing to grow, deep neural network architectures provide a learning architecture based

in the development of “brain-like” structures which can learn multiple levels of representa-
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tion and abstraction which allow algorithms for finding complex patterns in images, sound,

and text.

It seems only logical to extend cutting-edge techniques in the field of “deep learning”

to the FER problem. Deep networks have a remarkable ability to perform well in flexi-

ble learning tasks, such as the cross-database evaluation situation, where it is unlikely that

hand-crafted features will easily generalize to a new scenario. By training neural networks,

particularly deep neural networks, for feature recognition and extraction we can drastically

reduce the amount of time that is necessary to implement a solution to the FER problem

that, even when confronted with a novel data source, will be able to perform at high levels

of accuracy. Similarly, we see deep neural networks performing well in the subject inde-

pendent evaluation scenarios, as the algorithms can learn to recognize subtle features that

even field experts can miss. These correlations provide the motivation for this reserach,

as the strengths of deep learning seem to align perfectly with the techniques required for

solving difficult “in the wild” FER problems.

A subset of deep neural network architectures called “convolutional neural networks”

(CNNs) have become the traditional approach for researchers studying vision and deep

learning. In the 2014 ImageNet challenge for object recognition, the top three finishers all

used a CNN approach, with the GoogLeNet architecture achieving a remarkable 6.66% er-

ror rate in classification (Russakovsky et al., 2014; Szegedy et al., 2014). The GoogLeNet

architecture uses a novel multi-scale approach by using multiple classifier structures, com-

bined with multiple sources for back propagation. This architecture defeats a number of

problems that occur when back-propagation decays before reaching beginning layers in the

architecture. Additional layers that reduce dimension allow GoogLeNet to increase in both

width and depth without significant penalties, and take an elegant step towards compli-

cated network-in-network architectures described originally by Lin et al. (2013b). In other

word, the architecture is composed of multiple “Inception" layers, each of which acts like
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a micro-network in the larger network, allowing the architecture to make more complex

decisions.

More traditional CNN architectures have also achieved remarkable results. AlexNet (Kr-

izhevsky et al., 2012) is an architecture that is based on the traditional CNN layered archi-

tecture - stacks of convolutions layers followed by max-pooling layers and rectified linear

units (ReLUs), with a number of fully connected layers at the top of the layer stack. Their

top=5 error rate of 15.3% on the ILSVRC-2012 competition revolutionized the way that

we think about the effectiveness of CNNs. This network was also one of the first networks

to introduce the “dropout” method for solving the over fitting problem (Suggested by Sri-

vastava et al. (2014)) which proved key in developing large neural networks. One of the

large challenges to overcome in the use of traditional CNN architectures is their depth and

computational complexity. The full AlexNet network performs on the order of 100M op-

erations for a single iteration, while SVM and shallow neural networks perform far fewer

operations in order to create a suitable model. This makes traditional CNNs very hard to

apply in time restrictive scenarios.

Liu et al. (2013) proposed a new deep neural network architecture, called an “AU-

Aware” architecture was proposed in order to investigate the FER problem. In an AU-

Aware architecture, the bottom of the layer stack consists of convolution layers and max-

pooling layers which are used to generate a complete representation of the face. Next in the

layer stack, an “AU-aware receptive field layer” generates a complete representation over

all possible spatial regions by convolving the dense-sampling facial patches with special

filters in a greedy manner. Then, a multilayer Restricted Boltzmann Machine (RBM) is

exploited to learn hierarchical features. Finally, the outputs of the network are concatenated

as features which are used to train a linear SVM classifier for recognizing the six basic

expressions. Results in (Liu et al., 2013) show that the features generated by this “AU-

Aware” network are competitive with or superior to handcrafted features such as LBP,
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SIFT, HoG, and Gabor on the CK+, MMI and databases using a similar SVM. However,

AU-aware layers do not necessarily detect FACS defined action units in faces.

Kahou et al. (2013) combined multiple deep neural network architectures to solve the

FER problem in video analysis. These network architectures included: (1) an architec-

ture similar to the AlexNet CNN run on individual frames of the video, (2) a deep be-

lief network trained on audio information, (3) an autoencoder to model the spatiotemporal

properties of human activity, and (4) a shallow network focused on the mouth. The CNN

is trained on the private Toronto Face Database (Susskind et al., 2010) and fine tuned on

the AFEW database (Dhall et al., 2013), yielded an accuracy of 35.58% when evaluated

in a subject independent manner on AFEW. When combined with a single predictor, the

five architectures produced an accuracy of 41.03% on the test set, the highest accuracy in

the EmotiW 2013 (Dhall et al., 2013) challenge, where challenge winner 2014 (Liu et al.,

2014b) achieved 50.40% on test set using multiple kernel methods on Riemannian mani-

fold.

A 3D CNN with deformable action parts constraints is introduced in (Liu et al., 2014a)

which can detect specific facial action parts under the structured spatial constraints, and ob-

tain the discriminative part-based representation simultaneously. The results on two posed

expression datasets, CK+, MMI, and a spontaneous dataset FERA achieve state-of-the-art

video-based expression recognition accuracy.

4.2 Facial Landmark Point Extraction

Facial landmark point extraction is a key step in facial image representation and analy-

sis. The Active Appearance Model (AAM) proposed by Cootes et al. (2001) is a powerful

object description method that is commonly used for facial landmark points extraction

(Cootes et al., 2001; Matthews and Baker, 2004), facial action unit extraction (Mahoor
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et al., 2009), medical image segmentation and analysis (Cootes et al., 2004). The idea be-

hind AAM is to represent a visual object (e.g. facial image) using a linear model of shape

and texture (appearance) eigenvectors obtained from a set of manually labeled training im-

ages. Then, the model is used to represent an instance of the object in a novel image. This

process is often called AAM fitting.

AAM fitting is a non-linear optimization problem. Different optimization approaches

have been proposed to find the best model parameters that result in minimum error be-

tween the synthesized appearance models obtained from the AAM and the input image.

In general, due to variation of camera view angle, resolution and focal distance, facial im-

ages have different scaling, rotation, and translations. In order to remove global shape

variations, all shapes are normalized and the modeling is only concerned with local shape

deformation. Therefore, it is necessary to combine a global shape transformation with the

normalized AAM. The global shape transformation is often a 2D similarity transformation.

Finding optimal parameters of the global transformation improves the accuracy of fitting in

representing novel facial images with different shape and pose variations.

Traditionally, the stochastic gradient descent algorithm or iteratively incremental addi-

tive techniques are used to update the AAM parameters to fit onto novel images (Cootes

et al., 2001). The fitting problem can also be viewed as finding a model instance sim-

ilar to the given facial image and therefore it can be considered as an image alignment

problem. Baker and Matthews (2004) have categorized these approaches into four classes:

Forwards Additive, Forwards Compositional, Inverse Additive, and Inverse Compositional.

Matthews and Baker (2004) proposed Projecting Out (PO) technique which is admittedly

one of the fastest algorithms for AAM fitting. Gross et al. (2005) also proposed the Si-

multaneously Inverse Compositional (SIC) method that can handle images of subjects not

included in the training better at the price of losing speed.
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In the literature, there are some works (Keller and Averbuch, 2004; Mégret et al., 2010)

on image alignment for applications, such as motion estimation (Keller and Averbuch,

2004), that take advantage of the gradients of both the template and target images. These

approaches are called bidirectional image alignment. Bidirectional approaches work better

than unidirectional image alignment approaches (Mégret et al., 2010). In this work, we

reformulate AAM fitting using a bidirectional image alignment scheme.

In our approach, we minimize the error between a warped image and the appearance

template by iteratively solving a non-linear least square problem. The warping is a piece-

wise affine of a normalized AAM that is followed by a global transformation. In each

iteration, shape parameters are optimized based on the trained appearance template using

the Inverse Compositional Algorithm (ICA) (Baker and Matthews, 2004), and global trans-

formation is found based on the gradient of the input image using incremental update. We

call this approach bidirectional warping. Moreover, we utilize affine transformation instead

of 2D similarity to increase the generality of the global shape transformation, and apply a

fitting constraint to prevent the algorithm from resulting in non-face shapes. We show that

the proposed bidirectional approach can be applied to PO and SIC fitting methods. We

study the performance of the proposed bidirectional PO and SIC methods in extracting

facial landmark points, and examine and compare the effect of proposed affine transfor-

mation, and the fitting constraint on both bidirectional and the original PO and SIC fitting

methods.

4.2.1 Active Appearance Model (AAM)

AAM consists of a shape component and an appearance component obtained from a set

of annotated landmark points in training images. Let’s assume we are given a training facial

image set with annotated shapes defined as: s = (x1, y1, x2, y2, ..., xv, yv)
T . The training
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images are first normalized and aligned using iterative Procrustes analysis (Cootes et al.,

2004). This step removes variations due to a chosen global shape normalization trans-

formation so that the resulting model can efficiently consider local and non-rigid shape

deformation. We then can combine the resulting AAM with a global transformation. Af-

terwards, Principal Component Analysis (PCA) is applied to the set of normalized training

shapes and a shape model is defined as:

s = s0 +
n∑
i=1

pisi, (4.1)

where the base shape s0 is the mean shape and the vectors si are n eigenvectors correspond-

ing to the n largest eigenvalues. Then, all the training images are normalized by warping

them into the base shape s0, using piecewise affine warp, and the appearance model is

defined as:

A(x) = A0(x) +
m∑
i=1

λiAi(x) ∀x ∈ s0, (4.2)

where A0 is the mean appearance and the vectors Ai are the m eigenvectors corresponding

to the m largest eigenvalues.

The goal of fitting is to find a model instance that can efficiently describe the object

(e.g. face) in a given image. Thus, it can be considered as an image alignment problem.

In other words, we want to find the model instance M(W(x; p)) = A(x) as similar as the

image I(x).

In general, facial images have different scaling, rotation, and translations. Therefore,

it is necessary to combine a global shape transformation with the normalized AAM. If

we consider the global shape transformation as N (x; q), we want to minimize the error

between the template and I (N (W (x; p) ; q)). Considering global shape transformation,

the objective of the fitting process is to find p and q in order to minimize the error image
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as:

E(x) =
∑
x∈s0

[A0(x)− I (N (W (x; p) ; q))]2, (4.3)

which is a non-linear least square problem. We can have different definitions for the

global transformation N (x; q). Matthews and Baker (2004) defined a set of 2D similar-

ity transformations as a subset of piecewise affine warps. Assuming the base mesh s0 =

(x01, y
0
1, ..., x

0
v, y

0
v)

T, we choose s∗1 = s0, s∗2 = (−y01, x01, ...,−y0v , x0v)
T, s∗3 = (1, 0, . . . , 1, 0)T

and s∗4 = (0, 1, . . . , 0, 1)T, then global transformation is N (x; q) = s0 +
∑4

i=1 qis
∗
i . This

representation of N (x; q) is similar to W (x; p) and therefore similar analysis on the shape

parameters p can be applied to q. If we assume that the two sets of shape vectors si and

s∗i are orthogonal to each other, we can add the four 2D similarity vectors s∗i to the begin-

ning of AAM shape vectors si (Matthews and Baker, 2004) and model any given shape as:

s = s0 +
∑n+4

i=1 pisi. In practice, si and s∗i are not quite orthogonal to each other. This

can either be ignored when the size of si is small or the complete set of si and s∗i can be

orthonormalized preferably.

Baker and Matthews (2004) related AAM to the Lucas-Kanade algorithm. They pro-

posed the Inverse Compositional Algorithm (ICA), in which they find shape variation on

the template and compose the inverse of that with the current shape. Therefore, many

computationally expensive tasks are precomputed.

Matthews and Baker (2004) considered appearance variation in the fitting by finding

shape parameters in a linear subspace where the appearance variation is ignored and then

“projected out” to the full space with respect to the appearance eigenvectors. The proposed

method is more generic compared with the ICA, but the fitting is not accurate when applied

to subjects that are not similar to subjects in the training set. The “projecting out” approach

is called PO in the rest of this work.
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Gross et al. (2005) introduced Simultaneously Inverse Compositional (SIC) method,

which is more generic. In this method the fitting procedure minimizes the error between

[A0(x) +
∑m

i=1 (λi + ∆λi)Ai] and I (N (W (x;p) ; q)), where Ai are m appearance eigen-

vectors correspond to them largest appearance eigenvalues, and (λi + ∆λi) are parameters

of appearance that are found simultaneously with respect to the ∆p. As the appearance pa-

rameters are optimized in each iteration, both steepest descent and the Hessian matrix (H)

should be calculated in each iteration, and therefore the method is slower. Gross et al.

(2005) compared PO with the SIC, and reported that SIC is more accurate in modeling

unseen subjects.

4.2.2 Bidirectional Warping for AAM Fitting

In this work, we optimize the global transformation’s parameters (q) based on I , us-

ing an incremental update and the shape’s parameters (p) based on A0, using inverse

compositional approach. If we assume p and q are known, reversing the role of W in

I (N (W (x; p) ; q)) and computing the incremental global warp N with respect to W in

I (N (W (x; p) ; q)), we can solve the Equation (4.3) iteratively as:

∑
x∈s0

[A0 (N (W (x; 0 + ∆p) ; 0))− I (N (W (x; p) ; q + ∆q))]
2
. (4.4)

Then to update the warping parameters, we use W(x; p)←W(x; p) ◦W(x; ∆p)−1 and

q = q + ∆q. Assuming W (x; 0) and N (x; 0) are identity warps, first order Taylor series

expansion of the Equation (4.4) on ∆p and ∆q gives:

∑
x∈s0

[
A0 +∇A0

∂W
∂p

∆p− I (N (W (x;p) ; q))−∇I ∂N
∂q

∆q
]2
, (4.5)

where ∇ is the image gradient, ∂W
∂p and ∂N

∂q are the Jacobian of the warp evaluated at

p = 0 and current q respectively. By taking the derivative of the Equation (4.5), neglecting
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second order ∆p∆q terms and optimizing for ∆p and ∆q, we obtain:

∆p = H−11

∑
x

[
∇A0

∂W
∂p

]T
[I (N (W (x; p) ; q))− A0], (4.6a)

∆q = H−12

∑
x

[A0 − I (N (W (x; p) ; q))]

[
∇I ∂N

∂q

]
, (4.6b)

where

H1 =

[
∇A0

∂W
∂p

]T [
∇A0

∂W
∂p

]
, (4.7a)

H2 =

[
∇I ∂N

∂q

]T [
∇I ∂N

∂q

]
. (4.7b)

As ∂N
∂q is evaluated at p = 0, H1 can be precomputed and saved in the memory, while H2

depends on the current shape and the warped input image gradient, and therefore it should

be computed in each iteration. Figure 4.1 shows the steps of the bidirectional warping for

inverse compositional algorithm. We call this approach Bi-ICA in the rest of this work.

The “projecting out” technique can be applied to the bidirectional warping, i.e. instead

of SD =
[
∇A0

∂W
∂p
]

in the Equation (4.6a) and (4.7a), SD is calculated as:

SD(x) = ∇A0
∂W
∂p
−

m∑
i=1

[∑
x∈s0

Ai (x) .∇A0
∂W
∂p

]
Ai(x), (4.8)

Similar to the PO, the H1 can be precomputed, but the dot product of the modified

steepest descent images with the error image should be computed in each iteration. The

bidirectional warping of the PO is called Bi-PO in the rest of this work.

To have a more generic fitting, we can optimize the shape parameters on the full space

of the appearance vectors. In this case, we need to optimize the appearance parameters as

well as the shape parameters like the SIC method. The algorithm operates by iteratively
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Figure 4.1: The Bidirectional Warping Algorithm

Pre-compute:
(3) Evaluate the gradient∇A0 of the template A0 (x)

(4) Evaluate the Jacobian ∂W
∂p at (x; 0)

(5) Compute the steepest descent images∇A0
∂W
∂p

(6) Compute the Hessian matrix H1 using Equation (4.7a)
Iterate:

(1) Warp I with W (x; p) and N (x; q) to compute
I (N (W (x;p) ; q))

(2) Compute E = [I (N (W (x;p) ; q))− A0 (x)]
(7) Evaluate the gradient∇I (N (W (x;p) ; q))

(8) Evaluate the Jacobian ∂N
∂q

(9) Compute the steepest descent images∇I ∂N
∂q

(10) Compute the Hessian matrix H2 using Equation (4.7b)
(11) Compute ∆p and ∆q using Equation (4.6a) and (4.6b)
(12) Update W (x; p)←W (x; p) ◦W (x;−∆p)−1

and q = q + ∆q

minimizing:

f(x) =
∑
x∈s0

[A0 (N (W (x; 0 + ∆p) ; 0))

+
m∑
i=1

(λi + ∆λi) Ai (N (W (x; 0 + ∆p) ; 0))

− I (N (W (x; p) ; q + ∆q))]2 , (4.9)

simultaneously with respect to ∆p, ∆q and ∆λ = (∆λ1, ...,∆λm). Then we update the

warp W(x; p)←W(x; p) ◦W(x; ∆p)−1, q = q + ∆q and λ = λ+ ∆λ.

We define the concatenation parameter of the shape and the appearance r = [p, λ]T , and

the steepest-descent images as:

SDsim(x) =

(
∇A

∂W
∂p1

, ...,∇A
∂W
∂pn

,A1, ...,Am

)
(4.10)
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where∇A = ∇A0 +
∑m

i=1 λi∇Ai. We can then compute the parameter update ∆r as:

∆r = −H−1sim
∑
x

SDT
sim(x)E(x) (4.11)

where H−1sim =
∑

x SDT
sim(x)SDsim(x).

To find the parameter of the global transformation (q), we used incremental update as:

q = q + ∆q, where ∆q = H−12

∑
x−E(x)

[
∇I ∂N

∂q

]
. This approach is called Bi-SIC in the

rest of this work. In this case both SDsim and Hsim are calculated in each iteration. The

extra computational load of Bi-SIC in comparison with SIC is to calculate the gradient of

the warped image and H2 in each iteration.

In addition to the introduced bidirectional approach, we also propose two modifications

to AAM fitting as follows:

1-Affine Transformation: Image alignment techniques for AAM fitting usually con-

sider a 2D set of similarity transform for the global transformation. Affine transformation

can improve the performance of Active Shape Model for facial feature extraction (Mahoor

et al., 2006). In this work, we apply an affine transformation with six degrees of freedom

for AAM fitting. Assuming the base mesh is: s0 = (x01, y
0
1, ..., x

0
v, y

0
v)

T. We choose s∗1 =

(x01, 0, ..., x
0
v, 0)

T, s∗2 = (y01, 0, ..., y
0
v , 0)

T, s∗3 = (0, x01, ..., 0, x
0
v)

T, s∗4 = (0, y01, ..., 0, y
0
v)

T,

s∗5 = (1, 0, . . . , 1, 0)T and s∗6 = (0, 1, . . . , 0, 1)T. The global affine transformation is de-

fined as: N (x; q) = s0 +
∑6

i=1 qis
∗
i . This transformation has more degrees of freedom and

therefore results in a better modeling of the shape variation.

2- Fitting Constraint: Introduced approaches for AAM fitting still suffer from lack

of generality for unseen faces. In addition, the result can differ significantly from trained

shapes. One idea is to apply some constraints on fitting iterations. Defining a well con-

straint is not easy because of the complexity of the face shape, huge variation of the appear-

ance due to different subjects, illuminations and expressions, and the existence of non-face

areas (e.g. glasses). In this dissertation, we apply a simple constraint of Active Shape Mod-
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els (ASM) (Cootes et al., 2004), i.e. those shape parameters (p) are updated that pi ≤ 3
√
bi,

where bi are the eigenvalues of the trained shapes. This constraint will force the algorithm

to result in shapes similar to trained shapes with a limited degree of freedom and therefore

prevent it from resulting in non-face shapes.

4.2.3 Experimental Results

We implemented PO (Matthews and Baker, 2004), SIC (Gross et al., 2005), and our

proposed Bi-PO and Bi-SIC methods using Matlab platform. We also used the affine trans-

formation for the global transformation instead of 2D similarity and applied the introduced

constraint to the PO, SIC, Bi-PO, and Bi-SIC methods and called them PO-AC, SIC-AC,

Bi-PO-AC, and Bi-SIC-AC, respectively.

We applied the aforementioned methods on CMU Multi-PIE face dataset (Gross et al.,

2010). The CMU Multi-PIE database contains more than 750,000 images of 337 people.

Subjects were imaged under 15 view points and 19 illumination conditions. The image

resolution is 640×480, where the distance between the center of the eyes are approximately

80 pixels. Certain poses of a subset have 68 facial landmark points. We select a subset from

the dataset containing 100 different subjects with the frontal head pose and with the same

illumination. We also selected 50 images of left and right head poses that have 68 facial

landmark points. Figure 4.2 shows images of sample subjects in frontal, left and right

poses.

To initialize the shape model in AAM fitting, we selected two outer eye corners and the

chin point (3 points) from the ground truth landmarks and perturbed them randomly by 5

pixels. Then we used the average shape obtained from training subjects as the initial shape

and transformed it using similarity transformation obtained by those three perturbed points.

Figure 4.3a shows the initial shape for a sample image.
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Figure 4.2: Some sample images of frontal, left and right poses from Multi-PIE dataset
(Gross et al., 2010).

We tested the performance of the PO, SIC, PO-AC, SIC-AC, Bi-PO, Bi-SIC, Bi-PO-AC,

and Bi-SIC-AC methods when the number of images in the training sets varied using 10-

fold cross validation. Particularly, we selected 10, 20, 30, 40, 50, 60, 70, 80 and 90 images

randomly from the frontal subset and trained separate AAMs. For testing the generalization

performance of the fitting methods, we fitted the trained models onto 10 images that are

not included in the training sets and repeated this experiment 10 times for different test

images. For comparing the fitting performance, we calculated the Root Mean Square Error

(RMSE). The value of RMSE shows the distance between the fitted and the actual shape.

Naturally, the smaller the RMSE, the better the fitting.

In our first experiment, we examined the effect of using affine transformation and con-

straint on both the PO and SIC method as well as the introduced bidirectional warping.

Figure 4.4 shows the fitting RMSE value of the PO, Bi-PO, PO-AC, and Bi-PO-AC on

the frontal subset. Figure 4.5 shows the fitting RMSE value of the SIC, Bi-SIC, SIC-AC,

and Bi-SIC-AC on the frontal subset. In both experiments, using affine transformation and

having constraint improved the fitting performance. When we have the constraint, it keeps
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(a) initial shape (b) fitted shape

Figure 4.3: Initial and fitted shapes of a sample image.

the shape similar to the trained shapes (i.e. face) during the fitting process and prevents

the algorithm from resulting non-face shapes. In addition, the affine transformation gives

the algorithm more degrees of freedom, and therefore it fits better on unseen samples. It is

also shown that bidirectional warping has a better fitting performances than unidirectional

warping. Bi-PO and Bi-SIC both have comparative fitting performance and both fit better

in comparison with the original unidirectional algorithms.

There are no standard or established choices for the convergence criterion. In this work,

we visually inspected a number of results in the RMSE range of 0-20 and confirmed that

those having RMSE less than 5 pixels seem successfully fitted. Figure 4.3b shows a sample

fitted image having RMSE 4.02.

Figure 4.6 shows the percentage of fitted shapes for the frontal subset using PO, Bi-PO,

PO-AC, and Bi-PO-AC. Figure 4.7 shows the percentage of fitted shapes for the frontal

subset using SIC, Bi-SIC, SIC-AC and Bi-SIC-AC. As it shown, the bidirectional warping

has better performance than the unidirectional method. Also applying the constraint and

affine transformation result in a better modeling of unseen images and more convergence

on both the PO and SIC. It should be mentioned that the percentage of fitting depends on

88



10 20 30 40 50 60 70 80 90
2

4

6

8

10

12

14

16

18

size of training set

R
M

S
 b

et
w

ee
n 

fit
te

d 
sh

ap
e 

an
d 

gr
ou

nd
−t

ru
th

 

 

PO
PO−AC
Bi−PO
Bi−PO−AC

Figure 4.4: RMSE of fitting for variation of Projecting Out as: Projecting Out (PO), Pro-
jecting Out with Affine constraint (PO-AC), Bidirectional Projecting Out (Bi-PO), and
Bidirectional Projecting Out with Affine constraint (PO-AC).
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Figure 4.5: RMSE of fitting for variation of SIC. Simultaneously Inverse Compositional
(SIC), Simultaneously Inverse Compositional with Affine Constraint (SIC-AC), Bidirec-
tional Simultaneously Inverse Compositional (Bi-SIC), Bidirectional Simultaneously In-
verse Compositional with Affine Constraint (Bi-SIC-AC).

the threshold value, but empirically both algorithms have more or less similar performance

in comparison to each other in a reasonable range of threshold value.
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Figure 4.6: Percentage of fitted images for variation of PO.
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Figure 4.7: Percentage of fitted images for variation of SIC.

In another experiment, we tested the generalization performance of our proposed ap-

proach for different poses. We trained an AAM with 120 images (40 images of each frontal,

left and right subsets). To test the generality of the fitting, we fitted the trained model onto

the 10 other subjects from each pose. We repeated this experiment five times and averaged

the fitting results of the SIC, Bi-SIC, SIC-AC, and Bi-SIC-AC. Initial shape was again the

warped average shape obtained from training subjects. Table 4.1 shows the average RMSE
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Table 4.1: RMSE of fitting on the left and right poses.
SIC SIC-AC Bi-SIC Bi-SIC-AC

left 6.99 8.60 8.43 8.76

right 4.07 3.40 4.02 3.37

frontal 3.78 3.46 4.02 3.38

Table 4.2: Percentage of fitted on the left and right poses.
SIC SIC-AC Bi-SIC Bi-SIC-AC

left 72 76 62 72

right 80 88 80 90

frontal 86 90 84 96

of fitting for frontal, left and right poses. Similarly, we defined a threshold of RMSE less

than 5 pixels as the fitted shape. Table 4.2 shows the percentage of fitted shapes for frontal,

left and right pose subsets. Similar to the previous experiment, using affine transformation

and applying constraints on SIC improve the fitting performance. The introduced bidirec-

tional approach also improves the SIC performance significantly, especially when we have

pose variations.

Computational Complexity: The bidirectional method introduces an extra computa-

tion in every iterations of fitting. If we assume n is the number of warp parameters, N is

the number of pixels, and m is the number of top appearance eigenvectors, the complexity

of the PO and SIC methods per iteration are O(nN + n2) and O((n+m)2N + (n+m)3),

respectively (Baker and Matthews, 2004). In the bidirectional approach, we have k pa-

rameters for the chosen global transformation, and in every iterations we need to compute:

the gradient of the image (step 7) with the complexity of O(N); the Jacobian ∂N
∂q (step 8)

with the complexity of O(kN); the steepest descent images (step 9) with the complexity of

O(kN); the Hessian matrix H2 and invert it (step 10) with the complexity of O(k2N + k3);

and ∆q with complexity of O(kN + k).
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The complexity overload of the bidirectional approach is O(k2N +k3). The numbers n

and m depend on the size of the training set and the model dimensionalities. In most AAM

implementations, the dimensionalities of the shape and appearance models are chosen by

retaining a fixed percentage (typically 95%) of the variance in the eigenvalues (Gross et al.,

2005). In our experimental results, depending on the size of the training set, n varies

between [10, 30] andm varies between [12, 70]. For the affine transformation, k is 6. Hence,

the complexity of Bi-PO is at least two times greater than PO, and the complexity of Bi-SIC

is greater than SIC. However, this is based on the assumption of having the same constant

factor for all steps.

We implemented all algorithms using Matlab on a windows platform. We executed

them on a PC with Intel core Duo 3.00 GHz CPU having 4 GB of RAM, where both imple-

mentations have the same termination condition, i.e. the algorithm terminates if the shape

does not change or continues for 50 iterations at maximum. In practice, the implemented

PO and SIC methods take 3 and 8 seconds for each frame, while the execution of the Bi-PO

and Bi-SIC-AC methods take 20 and 27 seconds, respectively.

4.2.4 Discussion and Conclusions

In summary, unlike previous image alignment approaches for AAM fitting that warp ei-

ther the input image (e.g. Lucas-Kanade method) or the appearance template (e.g. inverse

compositional algorithm), we warp both the input image for the global transformation and

the template for the shape parameters in the fitting process. Warping both the input image

and the appearance template causes the AAM to consider more appearance variations, and

therefore it can fit better on images with different poses and appearances. We showed that

the introduced bidirectional approach can be applied on the “projected out” and the “si-

multaneously inverse compositional” approaches for AAM fitting. We also proposed using
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affine transformation with six degrees of freedom instead of 2D similarity and applying

a simple constraint to prevent the fitting algorithm from resulting in shapes far from face

geometry.

We tested the performance of the proposed approach on Mutli-PIE dataset. We com-

pared the accuracy of our proposed fitting approach with the PO and SIC methods. First,

we trained the AAM with different number of training images and tested the fitting accu-

racy on unseen images. In another experiment, we then compared the accuracy of fitting

on images with different poses. Our experimental results showed that warping both the

image and the template makes the AAM fitting more generic. In addition, applying affine

transformation gives the algorithm more degrees of freedom to model new face instances

and the proposed constraint in the fitting iterations prevents resulting in non-face shapes.

In conclusion, our method is promising for modeling and tracking facial images of unseen

subjects (i.e. generic model) and also when the accuracy of AAM fitting has priority to the

execution speed.

4.3 A New Deep Neural Network Architecture

In this section, we present a novel deep neural network architecture for the FER prob-

lem, and examines the network’s ability to perform cross-database classification while

training on databases that have limited scope, and are often specialized for a few expres-

sions (e.g. MultiPIE and FERA). We conducted comprehensive experiments on seven well-

known facial expression databases (viz. MultiPIE, MMI, CK+, DISFA, FERA, SFEW, and

FER2013) and obtain results which are significantly better than, or comparable to, tradi-

tional convolutional neural networks or other state-of-the-art methods in both accuracy and

learning time.
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Often improving neural network architectures has relied on increasing the number of

neurons or increasing the number of layers, allowing the network to learn more complex

functions; however, increasing the depth and complexity of a topology leads to a number

of problems such as increased over-fitting of training data, and increased computational

needs. A natural solution to the problem of increasingly dense networks is to create deep

sparse networks, which has both biological inspiration, and has firm theoretical foundations

discussed in (Arora et al., 2013). Unfortunately, current GPUs and CPUs do not have the

capability to efficiently compute actions on sparse networks. The Inception layer presented

in (Russakovsky et al., 2014) attempts to rectify these concerns by providing an approxi-

mation of sparse networks to gain the theoretical benefits proposed by Arora et al. (2013),

however retains the dense structure required for efficient computation.

Applying the Inception layer to applications of Deep Neural Network has had remark-

able results (Sun et al., 2015; Szegedy et al., 2014), and it seems only logical to extend

state of the art techniques used in object recognition to the FER problem. In addition to

merely providing theoretical gains from the sparsity, and thus, relative depth, of the net-

work, the Inception layer also allows for improved recognition of local features, as smaller

convolutions are applied locally, while larger convolutions approximate global features.

The increased local performance seems to align logically with the way that humans pro-

cess emotions as well. By looking at local features such as the eyes and mouth, humans can

distinguish the majority of the emotions (Bal et al., 2010). Similarly, children with autism

often cannot distinguish emotion properly without being told to remember to look at the

same local features (Bal et al., 2010). By using the Inception layer structure and applying

the network-in-network theory proposed by Lin et al. (2013b), we can expect significant

gains on local feature performance, which seems to logically translate to improved FER

results.
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Another benefit of the network-in-network method is that along with increased local

performance, the global pooling performance is increased and therefore it is less prone to

overfitting. This resistance to overfitting allows us to increase the depth of the network

significantly without worrying about the small corpus of images that we are working with

in the FER problem.

The proposed DNN architecture is inspired by the techniques provided by the GoogLeNet

and AlexNet architectures. Our network consists of two elements, first our network con-

tains of two traditional CNN modules (a traditional CNN layer consists of a convolution

layer by a max pooling layer). Both of these modules use rectified linear units (ReLU)

which have an activation function described by:

f(x) = max(0, x) (4.12)

where x is the input to the neuron. Using the ReLU activation function allows us to

avoid the vanishing gradient problem caused by some other activation functions (Krizhe-

vsky et al., 2012). Following these modules, we apply the techniques of the network in

network architecture and add two ”Inception” style modules, which are made up of a 1×1,

3 × 3 and 5 × 5 convolution layers (Using ReLU) in parallel. These layers are then con-

catenated as output and we use two fully connected layers as the classifying layers (Also

using ReLU). Figure 4.8 shows the architecture of the network used in this research.

In this work, we register facial images in each of the databases using research standard

techniques. We used bidirectional warping of Active Appearance Model (AAM) (Molla-

hosseini and Mahoor, 2013) and a Supervised Descent Method (SDM) called IntraFace (Xi-

ong and De la Torre, 2013) to extract facial landmarks, however further work could consider

improving the landmark recognition in order to extract more accurate faces. IntraFace uses

SIFT features for feature mapping and trains a descent method by a linear regression on
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Figure 4.9: Sample of the face registration. From left to right images are taken from
MultiPIE, SFEW, MMI, CK+ and DISFA. First row shows the original images and the
second row shows their registered images respectively.

training set in order to extract 49 points. We use these points to register faces to an average

face in an affine transformation. Finally, a fixed rectangle around the average face is con-

sidered as the face region. Figure 4.9 demonstrates samples of the face registration with this

method. In our research, facial registration increased the accuracy of our FER algorithms

by 4-10%, which suggests that registration (like normalization in traditional problems) is a

significant portion of any FER algorithm.

Once the faces have been registered, the images are resized to 48×48 pixels for analysis.

Even though many databases are composed of images with a much higher resolution testing

suggested that decreasing this resolution does not greatly impact the accuracy, however

vastly increases the speed of the network. To augment our data, we extract 5 crops of

40×40 from the four corners and the center of the image and utilize both of them and their

horizontal flips for a total of 10 additional images.

In training the network, the learning rates are decreased in a polynomial fashion as:

base_lr(1− iter/max_iter)0.5, where base_lr = 0.01 is the base learning rate, iter is the

current iteration and max_iter is the maximum allowed iterations. Testing suggested that

other popular learning rate policies such as fixed learning rate, step where learning rate is
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Table 4.3: Proposed DNN architecture Configuration
Layer type Patch Size/

Stride

Output 1 x 1 3 x 3 3 x 3

reduce

5 x 5 5 x 5

reduce

Pooling Operations

Convolution - 1 7× 7 / 2 24× 24× 64 5.7M

Max pool - 1 3× 3 / 2 12× 12× 64 5.7M

Convolution - 2 3× 3 / 1 12× 12× 192 1.4M

Max Pool - 2 3× 3 / 2 6× 6× 192 1.4M

Inception - 3a 64 128 96 32 16 32 2.6M

Inception - 3b 128 192 128 96 32 64 4.5M

Max Pool - 4 3× 3 / 2 3× 3× 480 0.6M

Inception - 4a 192 208 96 48 16 64 1.3M

Avg Pooling - 6 1× 1× 1024 25.6K

Fully Connected 1× 1× 4096 0.2M

Fully Connected 1× 1× 1024 51K

multiplies by a gamma factor in each step, and exponential approach did not perform as

well as the polynomial fashion. Using the polynomial learning rate, the test loss converged

faster and allowed us to train the network for many iterations without the need for fine-

tuning. We also trained the bias nodes twice as fast as the weights of the network, in

order to increase the rate at which unnecessary nodes are removed from evaluation. This

decreases the number of iterations that the network must run before the loss converges.

4.3.1 Face Databases

In the FER problem, however, unlike visual object databases such as imageNet (Deng

et al., 2009), existing FER databases often have limited numbers of subjects, few sample

images or videos per expression, or small variation between sets, making neural networks

significantly more difficult to train. For example, the FER2013 database (Goodfellow et al.,

2015) (one of the largest recently released FER databases) contains 35,887 images of dif-

ferent subjects yet only 547 of the images portray disgust. Similarly, the CMU MultiPIE

face database (Gross et al., 2010) contains around 750,000 images but it is comprised of
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Table 4.4: Number of images per each expression in databases
AN DI FE HA NE SA SU

MultiPie 0 22696 0 47338 114305 0 19817
MMI 1959 1517 1313 2785 0 2169 1746
CK+ 45 59 25 69 0 28 83
DISFA 436 5326 4073 28404 48582 1024 1365
FERA 1681 0 1467 1882 0 2115 0
SFEW 104 81 90 112 98 92 86
FER2013 4953 547 5121 8989 6198 6077 4002
* AN, DI, FE, HA, Ne, SA, SU stand for Anger, Disgust, Fear, Happiness,
Neutral, Sadness, Surprised respectively.

only 337 different subjects, where 348,000 images portray only a “neutral” emotion and

the remaining images do not portray anger, fear or sadness.

Since, many samples are necessary for a DNN to extract most appropriate and distin-

guishable features, we evaluate the proposed method on well-known publicly available fa-

cial expressions databases: CMU MultiPIE (Gross et al., 2010), MMI (Pantic et al., 2005),

Denver Intensity of Spontaneous Facial Actions (DISFA) (Mavadati et al., 2013), extended

CK+ (Lucey et al., 2010), GEMEP-FERA database (Bänziger and Scherer, 2010), SFEW

(Dhall et al., 2011), and FER2013 (Goodfellow et al., 2015).

Table 4.4 shows the number of images for six basic expressions and neutral faces in

each database.

4.3.2 Results

We evaluated the accuracy of the proposed deep neural network architecture in two dif-

ferent experiments; viz. subject-independent and cross-database evaluation. In the subject-

independent experiment, databases are split into training, validation, and test sets in a strict

subject independent manner. We used the K-fold cross validation technique with K=5 to

evaluate the results. In FERA and SFEW, the training and test sets are defined in the
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Table 4.5: Average Accuracy (%) for subject-independent
Top-1 Top-2 State-of-the-arts

MultiPIE 94.7±0.8 98.7±0.3 70.6 (Lee et al., 2014), 90.6 (Eleftheriadis et al., 2015)

MMI 77.6±2.9 86.8±6.2
63.4 (Liu et al., 2014a), 74.7 (Liu et al., 2013),

79.8 (Mayer et al., 2014), 86.9 (Shan et al., 2009)
DISFA 55.0±6.8 69.8±8.6 -

FERA 76.7±3.6 90.5±4.6
56.1 (Liu et al., 2014a), 75.0 (UCR-team, 2011),

55.6 (Valstar et al., 2011)
SFEW 47.7±1.7 62.1±1.2 26.1 (Liu et al., 2013), 24.7 (Eleftheriadis et al., 2015)

CK+ 93.2±1.4 97.8±1.3
84.1 (Mayer et al., 2014), 84.4 (Lee et al., 2014),
88.5 (Taheri et al., 2014), 92.0 (Liu et al., 2013)
92.4 (Liu et al., 2014a), 93.6 (Zhang et al., 2015)

FER2013 66.4±0.6 81.7±0.3 69.3Tang (2013)

database release, and the results are evaluated on the database defined test set without per-

forming K-fold cross validation. Since there are different samples per emotion per subject

in some databases, the training, validation and test sets have slightly different sample sizes

in each fold. On average we used 175K samples for training, 56K samples for valida-

tion, and 64K samples for test. The proposed architecture was trained for 200 epochs (i.e.

150K iterations on mini-batches of size 250 samples). Table 4.5 gives the average accuracy

when classifying the images into the six basic expressions and the neutral expression. The

average confusion matrix for subject-independent experiments can be seen in Table 4.6.

Here, we also report the top-2 expression classes. As Table 4.5 depicts, the accuracy

of the top-2 classification is 15% higher than the top-1 accuracy in most cases, especially

in the wild datasets (i.e. FERA, SFEW, FER2013). We believe that by assigning a single

expression to a image can be ambiguous when there is transition between expressions or

the given expression is not at its peak, and therefore the top-2 expression can result in a

better classification performance when evaluating image sequences.

The proposed architecture was implemented using the Caffe toolbox (Jia et al., 2014)

on a Tesla K40 GPU with 2880 CUDA cores and 12GB RAM which is able to perform 4.29

TFLOPS single precision operation. It took roughly 20 hours to train 175K samples for 200
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Table 4.6: Average (%) confusion matrix for subject-independent
predicted

AN DI FE HA NE SA SU

A
ct

ua
l

AN* 55.0 7.0 12.8 3.5 7.6 8.5 5.3
DI 1.0 80.3 1.8 5.8 8.5 2.2 0.1
FE 7.4 4.3 47.0 8.1 18.7 8.6 5.5
HA 0.7 3.2 2.4 86.6 5.5 0.2 1.0
NE 2.3 6.3 7.8 5.5 75.0 1.3 1.4
SA 6.0 11.3 8.9 2.7 13.7 56.1 0.9
SU 0.8 0.1 2.8 3.5 2.5 0.6 89.3

* AN, DI, FE, HA, Ne, SA, SU stand for Anger, Disgust, Fear,
Happiness, Neutral, Sadness, Surprised respectively.

epochs. Figure 4.10 shows the training loss and classification accuracy of the top-1 and

top-2 classification labels on the validation set of the subject-independent experiment over

150,000 iterations (about 150 epochs). As the figure illustrates, the proposed architecture

converges after about 50 epochs.

In the cross-database experiment, one database is used for evaluation and the rest of

databases are used to train the network. Because every database has a unique fingerprint

(lighting, pose, emotions, etc.) the cross database task is much more difficult to extract fea-

tures from (both for traditional SVM approaches, and for neural networks). The proposed

architecture was trained for 100 epochs in each experiment. Table 4.7 gives the average

cross-database accuracy when classifying the six basic expressions as well as the neutral

expression.

As a benchmark to our proposed solution, we trained a full AlexNet from scratch (as

opposed to fine tuning an already trained network) using the same protocol as used to train

our own network. As shown in Table 4.8, our proposed architecture has better performance

on MMI & FER2013 and comparable performance on the rest of the databases. The value

of the proposed solution over the AlexNet architecture is its training time - Our version of
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Figure 4.10: Training loss and classification accuracy on validation set

Table 4.7: Average Accuracy (%) on cross database

Top-1 Top-2 Mayer et al.
(2014)

Shan et al.
(2009)

Miao et al.
(2012)

Zhang et al.
(2015)

MultiPIE 45.7 63.2 - - - -
MMI 55.6 68.3 51.4 50.8 36.8 66.9
DISFA 37.7 53.2 - - - -
FERA 39.4 58.7 - - - -
SFEW 39.8 55.3 - - - -
CK+ 64.2 83.1 47.1 - 56.0 61.2
FER2013 34.0 51.7 - - - -
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Table 4.8: Subject-independent comparison with AlexNet results (% accuracy)
Proposed Architecture AlexNet

MultiPie 94.7 94.8
MMI 77.9 56.0
DISFA 55.0 56.1
FERA 76.7 77.4
SFEW 47.7 48.6
CK+ 93.2 92.2
FER2013 66.4 61.1

AlexNet performed more than 100M operations, whereas the proposed network performs

about 25M operations.

4.3.3 Discussion

As shown in Tables 4.5 and 4.7, the results in the subject-independent tests were either

comparable to or better than the current state of the art. It should be mentioned that we have

compared our results with the best methods on each database separately, where the hyper

parameters of the presented models are fine-tuned for that specific problem. We perform

significantly better than the state of the art on MultiPIE and SFEW (no known state of

the art has been reported for the DISFA database). The only exceptions to the improved

performance are with the MMI and FERA databases. There are a number of explanations

for this phenomenon.

It should be mentioned that, we have compared our results with the best methods on

each dataset separately, where hyper parameters are fine-tuned for that specific problem.

For example, Mayer et al. (2014) has a better accuracy on MMI dataset compared to ours

(79.8% to 77.6%), while the same method lower accuracy on CK+ dataset, or Shan et al.

(2009) performs better than our proposed approach in the case of subject-independent,

while we got a better result in cross-database experiments.
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One of the likely reasons for the performance discrepancies on the subject-independent

databases is due to the way that the networks are trained in our experiments. Because

we use data from all of the studied databases to train the deep architecture, the input data

contains image that do not conform to the database setting such as pose and lighting. It

is very difficult to avoid this issue as it is hard or impossible to train such a complex net-

work architecture on so little data without causing significant overfitting. Another reason

for the decreased performance is the focus on cross-database performance. By training

slightly less complicated architectures, or even using traditional methods such as support

vector machines, or engineered features, it would likely be possible to improve the perfor-

mance of the network on subject-independent tasks. In this research however, we present a

comprehensive solution that can generalize well to the FER “in the wild” problem.

4.4 AffectNet

There are several models in the literature to quantify affective facial behaviors: 1) cate-

gorical model, where the emotion/affect is chosen from a list of affective-related categories

such as six basic emotions defined by Ekman and Friesen (1971), 2) dimensional model,

where a value is chosen over a continuous emotional scale, such as valence and arousal

(Russell, 1980) and 3) Facial Action Coding System (FACS) model, where all possible fa-

cial actions are described in terms of Action Units (AUs) (Ekman and Friesen, 1977). FACS

model explains facial movements and does not describe the affective state directly. There

are several methods to convert AUs to affect space (e.g., EMFACS (Friesen and Ekman,

1983) states that the occurrence of AU6 and AU12 is a sign of happiness). In the categor-

ical model, mixed emotions cannot adequately be transcribed into a limited set of words.

Some researchers tried to define multiple distinct compound emotion categories (e.g., hap-

pily surprised, sadly fearful) (Du et al., 2014) to overcome this limitation. However, still
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the set is limited, and the intensity of the emotion cannot be defined in the categorical

model. In contrast, the dimensional model of affect can distinguish between subtly dif-

ferent displays of affect and encode small changes in the intensity of each emotion on a

continuous scale, such as valence and arousal. Valence refers to how positive or negative

an event is, and arousal reflects whether an event is exciting/agitating or calm/soothing

(Russell, 1980). Figure 4.11 shows samples of facial expressions represented in the 2D

space of valence and arousal. As it is shown, there are several different kinds of affect and

small changes in the same emotion that cannot be easily mapped into a limited set of terms

existing in the categorical model.

There is a debate that the reduction of emotion space into two dimensions may not cover

the full affect space. Fontaine et al. (2007) suggested four continuous dimensions to repre-

sent similarities and differences in the meaning of emotion words. Although having more

dimensions can cover a larger affect space, still valence and arousal are the most accepted

and commonly used continuous dimensions in the affective computing community.

Recently, databases of facial expression and affect in the wild received much attention.

These databases are either captured from movies or the Internet, and annotated with cat-

egorical model (Dhall et al., 2013; Goodfellow et al., 2015; Mollahosseini et al., 2016b),

dimensional model (Zafeiriou et al., 2016), and FACS model (Benitez-Quiroz et al., 2016).

However, they only cover one model of affect, have a limited number of subjects, or contain

few samples of certain emotions such as disgust. Therefore, a large database, with a large

amount of subject variations in the wild condition that covers multiple models of affect

(especially the dimensional model) is a need.

To address this need, we created a database of facial Affect from the InterNet (called Af-

fectNet) by querying different search engines (Google, Bing, and Yahoo) using 1250 emo-

tion related tags in six different languages (English, Spanish, Portuguese, German, Arabic,

and Farsi). AffectNet contains more than one million images with faces and extracted facial
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Figure 4.11: Sample images in Valence Arousal circumplex

landmark points. Twelve human experts manually annotated 440,000 of these images in

both categorical and dimensional (valence and arousal) models and tagged the images that

have any occlusion on the face. Figure 4.11 shows sample images from AffectNet and their

valence and arousal annotations.

To calculate the agreement level between the human labelers, 36,000 images were an-

notated by two human labelers. AffectNet is by far the largest database of facial affect in

still images which covers both categorical and dimensional models. The URL of facial

images, their facial landmark points, the query terms, and the affect labels will be publicly

available to the research community 1.

1A copy of AffectNet is available in: http://mohammadmahoor.com/databases-codes/
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4.4.1 Existing databases

Early databases of facial expressions such as JAFFE (Lyons et al., 1998), XM2VTS

(Messer et al., 1999), Cohn-Kanade (Lucey et al., 2010; Tian et al., 2001), MMI (Pantic

et al., 2005), and MultiPie (Gross et al., 2010) were captured in a lab-controlled environ-

ment where the subjects portrayed different facial expressions. This approach resulted in a

clean and high-quality database of posed facial expressions. However, posed expressions

may differ from daily life unposed (aka spontaneous) facial expressions. Thus, capturing

spontaneous expression became a trend in the affective computing community. Examples

of these environments are recording the responses of participants’ faces while watching a

stimuli (e.g., DISFA (Mavadati et al., 2013), AM-FED (McDuff et al., 2013)) or perform-

ing laboratory-based emotion inducing tasks (e.g., Belfast (Sneddon et al., 2012)). These

databases often capture multi-modal affects such as voice, biological signals, etc. and

usually a series of frames are captured that enable researchers to work on temporal and

dynamic aspects of expressions. However, the diversity of these databases is limited due to

the number of subjects, head pose variation, and environmental conditions.

Hence there is a demand to develop systems that are based on natural, unposed facial

expressions. To address this demand, recently researchers paid attention to databases in

the wild. Dhall et al. (2013) released Acted Facial Expressions in the Wild (AFEW) from

54 movies by a recommender system based on subtitles. The video clips were annotated

with six basic expressions plus neutral. AFEW contains 330 subjects aged 1-77 years and

addresses the issue of temporal facial expressions in the wild. A static subset (SFEW (Dhall

et al., 2011)) is created by selecting some frames of AFEW. SFEW covers unconstrained

facial expressions, different head poses, age range, occlusions, and close to real world

illuminations. However, it contains only 700 images, and there are only 95 subjects in the

database.
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The Facial Expression Recognition 2013 (FER-2013) database was introduced in the

ICML 2013 Challenges in Representation Learning (Goodfellow et al., 2015). The database

was created using the Google image search API that matched a set of 184 emotion-related

keywords to capture the six basic expressions as well as the neutral expression. Images

were resized to 48x48 pixels and converted to grayscale. Human labelers rejected incor-

rectly labeled images, corrected the cropping if necessary, and filtered out some duplicate

images. The resulting database contains 35,887 images most of which are in the wild set-

tings. FER-2013 is currently the biggest publicly available facial expression database in the

wild settings, enabling many researchers to train machine learning methods such as Deep

Neural Networks (DNNs) where large amounts of data are needed. In FER-2013, the faces

are not registered, a small number of images portray disgust (547 images), and unfortu-

nately most of facial landmark detectors fail to extract facial landmarks at this resolution

and quality. In addition, only the categorical model of affect is provided with FER-2013.

The Affectiva-MIT Facial Expression Dataset (AM-FED) database (McDuff et al., 2013)

contains 242 facial videos (160K frames) of people watching Super Bowl commercials us-

ing their webcam. The recording conditions were arbitrary with different illumination and

contrast. The database was annotated frame-by-frame for the presence of 14 FACS action

units, head movements, and automatically detected landmark points. AM-FED is a great

resource to learn AUs in the wild. However, there is not a huge variance in head pose

(limited profiles), and there are only a few subjects in the database.

The FER-Wild (Mollahosseini et al., 2016b) database contains 24,000 images that are

obtained by querying emotion-related terms from three search engines. The OpenCV face

recognition was used to detect faces in the images, and 66 landmark points were found

using Active Appearance Model (AAM) (Mollahosseini and Mahoor, 2013) and a face

alignment algorithm via regression local binary features (Ren et al., 2014; Yu, 2016). Two

human labelers annotated the images into six basic expressions and neutral. Comparing
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with FER-2013, FER-Wild images have a higher resolution with facial landmark points

necessary to register the images. However, still a few samples portray some expressions

such as disgust and fear and only the categorical model of affect is provided with FER-

Wild.

The EmotioNet (Benitez-Quiroz et al., 2016) consists of one million images of facial

expressions downloaded from the Internet by selecting all the words derived from the word

“feeling” in WordNet (Miller, 1995). Face detector (Viola and Jones, 2004) was used to

detect faces in these images and the authors visually inspected the resultant images. These

images were then automatically annotated with AUs and AU intensities by an approach

based on Kernel Subclass Discriminant Analysis (KSDA) (You et al., 2011). The KSDA-

based approach was trained with Gabor features centered on facial landmark with a Radial

Basis Function (RBF) kernel. Images were labeled as one of the 23 (basic or compound)

emotion categories defined in (Du et al., 2014) based on AUs. For example, if an image has

been annotated as having AUs 1, 2, 12 and 25, it is labeled as happily surprised. A total of

100,000 images (10% of the database) were manually annotated with AUs by experienced

coders. The proposed AU detection approach was trained on CK+ (Lucey et al., 2010),

DISFA (Mavadati et al., 2013), and CFEE (Lucey et al., 2011) databases, and the accuracy

of the automated annotated AUs was reported about 80% on the manually annotated set.

EmotioNet is a novel resource of FACS model in the wild with a large amount of subject

variation. However, it lacks the dimensional model of affect, and the emotion categories

are defined based on annotated AUs and not manually labeled.

On the other hand, some researchers developed databases of the dimensional model

in the continuous domain. These databases, however, are limited since the annotation of

continuous dimensions is more expensive and necessitate trained annotators. Examples

of these databases are Belfast (Sneddon et al., 2012), RECOLA (Ringeval et al., 2013),

Affectiva-MIT Facial Expression Dataset (AM-FED) (McDuff et al., 2013), and recently
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published Aff-Wild Database (Zafeiriou et al., 2016) which is the only database of dimen-

sional model in the wild.

The Belfast database (Sneddon et al., 2012) contains recordings (5s to 60s in length)

of mild to moderate emotional responses of 60 participants to a series of laboratory-based

emotion inducing tasks (e.g., surprise response by setting off a loud noise when the partici-

pant is asked to find something in a black box). The recordings were labeled by information

on self-report of emotion, the gender of the participant/experimenter, and the valence in the

continuous domain. The arousal dimension was not annotated in Belfast database. While

the portrayed emotions are natural and spontaneous, the tasks have taken place in a rel-

atively artificial setting of a laboratory where there was a control on lighting conditions,

head poses, etc.

The Database for Emotion Analysis using Physiological Signals (DEAP) (Koelstra

et al., 2012) consists of spontaneous reactions of 32 participants in response to one-minute

long music video clip. The EEG, peripheral physiological signals, and frontal face videos

of participants were recorded, and the participants rated each video in terms of valence,

arousal, like/dislike, dominance, and familiarity. Correlations between the EEG signal fre-

quencies and the participants’ ratings were investigated, and three different modalities, i.e.,

EEG signals, peripheral physiological signals, and multimedia features on video clips (such

as lighting key, color variance, etc.) were used for binary classification of low/high arousal,

valence, and liking. DEAP is a great database to study the relation of biological signals and

dimensional affect, however, it has only a few subjects and the videos are captured in lab

controlled settings.

The RECOLA benchmark (Ringeval et al., 2013) contains videos of 23 dyadic teams

(46 participants) that participated in a video conference completing a task which required

collaboration. Different multi-modal data of the first five minutes of interaction, i.e., audio,

video, ECG and EDA) were recorded continuously and synchronously. Six annotators
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measured arousal and valence. The participants reported their arousal and valence through

the Self-Assessment Manikin (SAM) (Bradley and Lang, 1994) questionnaire before and

after the task. RECOLA is a great database of the dimensional model with multiple cues

and modalities, however, it contains only 46 subjects and the videos were captured in the

lab controlled settings.

Audio-Visual Emotion recognition Challenge (AVEC) series of competitions (Ringeval

et al., 2015; Schuller et al., 2011, 2012; Valstar et al., 2013, 2014, 2016) provided a bench-

mark of automatic audio, video and audiovisual emotion analysis in continuous affect

recognition. AVEC 2011, 2012, 2013, and 2014 used videos from the SEMAINE (McK-

eown et al., 2012) database videos. Each video is annotated by a single rater for every

dimension using a two-axis joystick. AVEC 2015 and 2016 used the RECOLA benchmark

in their competitions. Various continuous affect recognition dimensions were explored in

each challenge year such as valence, arousal, expectation, power, and dominance, where

the prediction of valence and arousal are studied in all challenges.

The Aff-Wild Database (Zafeiriou et al., 2016) is by far the largest database for mea-

suring continuous affect in the valence-arousal space “in-the-wild”. More than 500 videos

from YouTube were collected. Subjects in the videos displayed a number of spontaneous

emotions while watching a particular video, performing an activity, and reacting to a practi-

cal joke. The videos have been annotated frame-by-frame by three human raters, utilizing a

joystick-based tool to rate valence and arousal. Aff-Wild is a great database of dimensional

modeling in the wild that considers the temporal changes of the affect, however, it has a

small subject variance, i.e., it only contains 500 subjects.

Table 4.9 summarizes the characteristics of the reviewed databases in all three models

of affect, i.e., categorical model, dimensional model, and Facial Action Coding System

(FACS).
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4.4.2 Evaluation Metrics

There are various evaluation metrics in the literature to measure the reliability of anno-

tation and automated affective computing systems. Accuracy, F1-score (Sokolova et al.,

2006), Cohen’s kappa (Cohen, 1960), Krippendorf’s Alpha (Krippendorff, 1970), ICC

(Shrout and Fleiss, 1979), area under the ROC curve (AUC), and area under Precision-

Recall curve (AUC-PR) (Jeni et al., 2013) are well-defined widely used metrics for evalu-

ation of the categorical and FACS-based models. Since, the dimensional model of affect

is usually evaluated in a continuous domain, different evaluation metrics are necessary. In

the following, we review several metrics that are used in the literature for evaluation of

dimensional model.

Root Mean Square Error (RMSE) is the most common evaluation metric in a continuous

domain which is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(θ̂i − θi)2 (4.13)

where θ̂i and θi are the prediction and the ground truth of ith sample, and n is the number

of samples in the evaluation set. RMSE-based evaluation can heavily weigh the outliers

(Bermejo and Cabestany, 2001), and it is not able to provide the covariance of prediction

and ground-truth to show how they change with respect to each other. Pearson’s correlation

coefficient is therefore proposed in some literature (Nicolaou et al., 2011; Schuller et al.,

2011, 2012) to overcome this limitation:

CC =
COV {θ̂, θ}

σθ̂σθ
=
E[(θ̂ − µθ̂)(θ − µθ)]

σθ̂σθ
(4.14)

Concordance Correlation Coefficient (CCC) is another metric (Ringeval et al., 2015;

Valstar et al., 2016) which combines the Pearson’s correlation coefficient (CC) with the
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square difference between the means of two compared time series:

ρc =
2ρσθ̂σθ

σ2
θ̂

+ σ2
θ + (µθ̂ − µθ)2

(4.15)

where ρ is the Pearson correlation coefficient (CC) between two time-series (e.g., prediction

and ground-truth), σ2
θ̂

and σ2
θ are the variance of each time series, and µθ̂ and µθ are the

mean value of each. Unlike CC, the predictions that are well correlated with the ground-

truth but shifted in value are penalized in proportion to the deviation in CCC.

The value of valence and arousal are [-1,+1] and their signs are essential in many

emotion-prediction applications. For example, if the ground-truth valence is +0.3, pre-

diction of +0.7 is far better than prediction of -0.1, since +0.7 indicates a positive emotion

similar to the ground-truth (despite both predictions have the same RMSE). Sign Agree-

ment Metric (SAGR) is another metric that is proposed in (Nicolaou et al., 2011) to evaluate

the performance of a valence and arousal prediction system. SAGR is defined as:

SAGR =
1

n

n∑
i=1

δ(sign(θ̂i), sign(θi)) (4.16)

where δ is the Kronecker delta function, defined as:

δ(a, b) =


1, a = b

0, a 6= b

(4.17)

The above discussed metrics are used to evaluate the categorical and dimensional base-

lines on AffectNet in Sec. 4.5.
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4.4.3 Existing Algorithms

Affective computing is now a well-established field, and there are many algorithms and

databases for developing automated affect perception systems. Since it is not possible to

include all those great works, we only give a brief overview and cover the state-of-the-art

methods that are applied on the databases explained in Sec. 4.4.1.

Conventional algorithms of affective computing from faces use hand-crafted features

such as facial landmarks (Kobayashi and Hara, 1997), pixel intensities (Mohammadi et al.,

2014), Gabor filters (Liu and Wechsler, 2002), Local Binary Patterns (LBP) (Shan et al.,

2009), Local Phase Quantization (LPQ) (Zhen and Zilu, 2012), and Histogram of Oriented

Gradients (HOG) (Mavadati et al., 2013). These hand-crafted features often lack enough

generalizability in the wild settings where there is a high variation in scene lighting, camera

view, image resolution, background, subjects head pose and ethnicity.

An alternative approach is to use Deep Neural Networks (DNN) to learn the most appro-

priate feature abstractions directly from the data and handle the limitations of hand-crafted

features. DNNs have been a recent successful approach in visual object recognition (Kriz-

hevsky et al., 2012), human pose estimation (Toshev and Szegedy, 2014), face verification

(Taigman et al., 2014) and many more. This success is mainly due to the availability of

computing power and existing big databases that allow DNNs to extract highly discrimina-

tive features from the data samples. There have been enormous attempts on using DNNs

in automated facial expression recognition and affective computing (Fan et al., 2016; He

et al., 2015; Mollahosseini et al., 2016a,b; Tang, 2013) that are especially very successful

in the wild settings.

Table 4.10 shows a list of the state-of-the-art algorithms and their performance on the

databases listed in Table 4.9. As shown in the table, the majority of these approaches have

used DNNs to learn a better representation of affect, especially in the wild settings. Even
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some of the approaches, such as the winner of the AVEC 2015 challenge (He et al., 2015),

trained a DNN with hand-crafted features and still could improve the prediction accuracy.
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Figure 4.12: A screen-shot of the software application used to annotate categorical and
dimensional (valence and arousal) models of affect and the osculation tag if existing. Only
one detected face in each image is annotated (shown in the green bounding box).

4.4.4 Facial Images from the Web

Emotion-related keywords were combined with words related to gender, age, or eth-

nicity, to obtain nearly 362 strings in the English language such as “joyful girl”, “blissful

Spanish man”, “furious young lady”, “astonished senior”. These keywords are then trans-

lated into five other languages: Spanish, Portuguese, German, Arabic and Farsi. The direct

translation of queries in English to other languages did not accurately result in the intended

emotions since each language and culture has differing words and expressions for differ-

ent emotions. Therefore, the list of English queries was provided to native non-English

speakers who were proficient in English, and they created a list of queries for each emotion

in their native language and inspected the quality of the results visually. The criteria for

high-quality queries were those that returned a high percentage of human faces showing the

intended queried emotions rather than drawings, graphics, or non-human objects. A total

of 1250 search queries were compiled and used to crawl the search engines in our database.
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Since a high percentage of results returned by our query terms already contained neutral

facial images, no individual query was performed to obtain additional neutral face.

Three search engines (Google, Bing, and Yahoo) were queried with these 1250 emotion

related tags. Other search engines such as Baidu and Yandex were considered. However,

they either did not produce a large number of facial images with intended expressions or

they did not have available APIs for automatically querying and pulling image URLs into

the database. Additionally, queries were combined with negative terms (e.g., “drawing”,

“cartoon”, “animation”, “birthday”, etc.) to avoid non-human objects as much as possible.

Furthermore, since the images of stock photo websites are posed unnaturally and contain

watermarks mostly, a list of popular stock photo websites was compiled and the results

returned from the stock photo websites were filtered out.

A total of∼1,800,000 distinct URLs returned for each query were stored in the database.

The OpenCV face recognition was used to obtain bounding boxes around each face. A face

alignment algorithm via regression local binary features (Ren et al., 2014; Yu, 2016) was

used to extract 66 facial landmark points. The facial landmark localization technique was

trained using the annotations provided from the 300W competition (Sagonas et al., 2013,

2016). More than 1M images containing at least one face with extracted facial landmark

points were kept for further processing.

4.4.5 Annotation

Crowd-sourcing services like Amazon Mechanical Turk are fast, cheap and easy ap-

proaches for labeling large databases. The quality of labels obtained from crowd-sourcing

services, however, varies considerably among the annotators. Due to these issues and the

fact that annotating the valence and arousal requires a deep understanding of the concept,

we avoided crowd-sourcing facilities and instead hired 12 full-time and part-time annota-
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tors at the University of Denver to label the database. A total of 440,000 images were given

to these expert annotators to label the face in the images into both discrete categorical and

continuous dimensional (valence and arousal) models. Due to time and budget constraints

each image was annotated by one annotator.

A software application was developed to annotate the categorical and dimensional (va-

lence and arousal) models of affect. Figure 4.12 shows a screen-shot of the annotation

application. A comprehensive tutorial including the definition of the categorical and di-

mensional models of affect with some examples of each category, valence and arousal was

given to the annotators. Three training sessions were provided to each annotator, in which

the annotator labeled the emotion category, valence and arousal of 200 images and the

results were reviewed with the annotators. Necessary feedback was given on both the cate-

gorical and dimensional labels. In addition, the annotators tagged the images that have any

occlusion on the face. The occlusion criterion was defined as if any part of the face was

not visible. If the person in the images wore glasses, but the eyes were visible without any

shadow, it was not considered as occlusion.

Categorical Model Annotation

Eleven discrete categories were defined in the categorical model of AffectNet as: Neu-

tral, Happy, Sad, Surprise, Fear, Anger, Disgust, Contempt, None, Uncertain, and Non-

face. The None (“None of the eight emotions”) category is the type of expression/emotions

(such as sleepy, bored, tired, seducing, confuse, shame, focused, etc.) that could not be

assigned by annotators to any of the six basic emotions, contempt or neutral. However,

valence and arousal could be assigned to these images. The Non-face category was defined

as images that: 1) Do not contain a face in the image; 2) Contain a watermark on the face;

3) The face detection algorithm fails and the bounding box is not around the face; 4) The

face is a drawing, animation, or painted; and 5) The face is distorted beyond a natural or
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Table 4.11: Number of Annotated Images in Each Category
Expression Number
Neutral 80,276
Happy 146,198
Sad 29,487
Surprise 16,288
Fear 8,191
Disgust 5,264
Anger 28,130
Contempt 5,135
None 35,322
Uncertain 13,163
Non-Face 88,895

normal shape, even if an expression could be inferred. If the annotators were uncertain

about any of the facial expressions, images were tagged as uncertain. When an image was

annotated as Non-face or uncertain, valence and arousal were not assigned to the image.

The annotators were instructed to select the proper expression category of the face,

where the intensity is not important as long as the face depicts the intended emotion. Ta-

ble 4.11 shows the number of images in each category. Table 4.12 indicates the percentage

of annotated categories for queried emotion terms. As shown, the happy emotion had the

highest hit-rate (48%), and the rest of the emotions had hit-rates less than 20%. About 15%

of all query results were in the No-Face category, as many images from the web contain

watermarks, drawings, etc. About 15% of all queried emotions resulted in neutral faces.

Among other expressions, disgust, fear, and contempt had the lowest hit-rate with only

2.7%, 4%, and 2.4% hit-rates, respectively. As one can see, the majority of the returned

images from the search engines were happy or neutral faces. The authors believe that this is

because people tend to publish their images with positive expressions rather than negative

expressions. Figure 4.13 shows a sample image in each category and its intended queries

(in parentheses).
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Table 4.12: Percentage of Annotated Categories for Queried Emotion Terms (%)
Query Expression

HA SA SU FE DI AN CO

A
nn

ot
at

ed
E

xp
re

ss
io

n

NE* 17.3 16.3 13.9 17.8 17.8 16.1 20.1
HA 48.9 27.2 30.4 28.6 33 29.5 30.1
SA 2.6 15.7 4.8 5.8 4.5 5.4 4.6
SU 2.7 3.1 16 4.4 3.6 3.4 4.1
FE 0.7 1.2 4.2 4 1.5 1.4 1.3
DI 0.6 0.7 0.7 0.9 2.7 1.1 1
AN 2.8 4.5 3.8 5.6 6 12.2 6.1
CO 1.3 0.9 0.4 1.1 1.1 1.2 2.4
NO 5.4 8.7 4.8 8.1 8.8 9.3 11.2
UN 1.3 3.1 4.3 3.1 4.1 3.7 2.7
NF 16.3 18.6 16.7 20.6 16.9 16.8 16.3

* NE, HA, SA, SU, FE, DI, AN, CO, NO, UN , and NF stand for Neutral, Happy, Sad,

Surprise, Fear, Anger, Disgust, Contempt, None, Uncertain, and Non-face categories,

respectively.

Neutral (Angry) Happy (Happy) Sad (Angry) Surprise (Fear) Fear (Fear) Disgust (Disgust)

Angry (Angry) Contempt (Happy) Non-face (Surprise) Uncertain (Sad) None (Fear) None (Happy)

Figure 4.13: Samples of queried images from the web and their annotated tags. The
queried expression is written in parentheses.
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Dimensional (Valence & Arousal) Annotation

The definition of valence and arousal dimensions was adapted from Russell (1980) and

was given to annotators in our tutorial as: “Valence refers to how positive or negative an

event is, and arousal reflects whether an event is exciting/agitating or calm/soothing”. A

sample circumplex with estimated positions of several expressions, borrowed from Pal-

toglou and Thelwall (2013), was provided in the tutorial as a reference for the annotators.

The provided circumplex in the tutorial contained more than 34 complex emotions cat-

egories such as suspicious, insulted, impressed, etc., and used to train annotators. The

annotators were instructed to consider the intensity of valence and arousal during the anno-

tation. During the annotation process, the annotators were supervised closely and constant

necessary feedback was provided when they were uncertain about some images.

To model the dimensional affect of valence and arousal, a 2D Cartesian coordinate sys-

tem was used where the x-axis and y-axis represent the valence and arousal, respectively.

Similar to Russell’s circumplex space model Russell (1980), our annotation software did

not allow the value of valence and arousal outside of the circumplex. This allows us to

convert the Cartesian coordinates to polar coordinates with 0 ≤ r ≤ 1 and 0 ≤ θ < 360.

The annotation software showed the value of valence and arousal to the annotators when

they selected a point in the circumplex. This helped the annotators to pick more precise

locations of valence and arousal with a higher confidence.

A predefined estimated region of valence and arousal was defined for each categorical

emotion in the annotation software (e.g., for happy emotion the valence is in (0.0, 1.0], and

the arousal is in [-0.2, 0.5] ). If the annotators select a value of valence and arousal outside

of the selected emotion’s region, the software indicates a warning message. The annotators

were able to proceed, and they were instructed to do so, if they were confident about the

value of valence and arousal. The images with the warning messages were marked in the
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Figure 4.14: Histogram (number of frames in each range/area) of valence and arousal an-
notations (Best viewed in color).

database, for further review by the authors. This helped to avoid mistakes in the annotation

of the dimensional model of affect.

Figure 4.14 shows the histogram (number of samples in each range/area) of annotated

images in a 2D Cartesian coordinate system. As illustrated, there are more samples in the

center and the right middle (positive valence and small positive arousal) of the circumplex,

which confirms the higher number of Neutral and Happy images in the database compared

to other categories in the categorical model. 2

2A numerical representation of annotated images in each range/area of valence and arousal is provided in
the Appendix B.
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Table 4.13: Annotators’ Agreement in Dimensional Model of Affect
Same Category All

Valence Arousal Valence Arousal
RMSE * 0.190 0.261 0.340 0.362
CORR 0.951 0.766 0.823 0.567
SAGR 0.906 0.709 0.815 0.667
CCC 0.951 0.746 0.821 0.551
* RMSE, CORR, SAGR, and CCC stand for Root Mean Square Error, Correlation,

Sign Agreement Metric, and Concordance Correlation Coefficient respectively.

4.4.6 Annotation Agreement

In order to measure the agreement between the annotators, 36,000 images were anno-

tated by two annotators. The annotations were performed fully blind and independently,

i.e., the annotators were not aware of the intended query or other annotator’s response. The

results showed that the annotators agreed on 60.7% of the images. Table 4.14 shows the

agreement between two annotators for different categories. As it is shown, the annotators

highly agreed on the Happy and No Face categories, and the highest disagreement occurred

in the None category. Visually inspecting some of the images in the None category, the au-

thors believe that the images in this category contain very subtle emotions and they can be

easily confused with other categories (the last two example of Fig. 4.13 show images in the

None category).

Table 4.14: Agreement Between Two Annotators in Categorical Model of Affect (%)
Neutral Happy Sad Surprise Fear Disgust Anger Contempt None Uncertain Non-Face

Neutral 50.8 7.0 9.1 2.8 1.1 1.0 4.8 5.3 11.1 1.9 5.1
Happy 6.3 79.6 0.6 1.7 0.3 0.4 0.5 3.0 4.6 1.0 2.2
Sad 11.8 0.9 69.7 1.2 3.4 1.3 4.0 0.3 3.5 1.2 2.6
Surprise 2.0 3.8 1.6 66.5 14.0 0.8 1.9 0.6 4.2 1.9 2.7
Fear 3.1 1.5 3.8 15.3 61.1 2.5 7.2 0.0 1.9 0.4 3.3
Disgust 1.5 0.8 3.6 1.2 3.5 67.6 13.1 1.7 2.7 2.3 2.1
Anger 8.1 1.2 7.5 1.7 2.9 4.4 62.3 1.3 5.5 1.9 3.3
Contempt 10.2 7.5 2.1 0.5 0.5 4.4 2.1 66.9 3.7 1.5 0.6
None 22.6 12.0 14.5 8.0 6.0 2.3 16.9 1.3 9.6 4.3 2.6
Uncertain 13.5 12.1 7.8 7.3 4.0 4.5 6.2 2.6 12.3 20.6 8.9
Non-Face 3.7 3.8 1.7 1.1 0.9 0.4 1.7 0.4 1.2 1.4 83.9
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Table 4.13 shows various evaluation metrics between the two annotators in the contin-

uous dimensional model of affect. These metrics are defined in Sec. 4.4.2. We calculated

these metrics in two scenarios: 1) the annotators agreed on the category of the image; 2)

on all images that are annotated by two annotators. As Table 4.13 shows, when the an-

notators agreed on the category of the image, the annotations have a high correlation and

sign agreement (SAGR). According to Table 4.14, this occurred on only 60.7% images.

However, there is less correlation and SAGR on overall images, since the annotators had a

different perception of emotions expressed in the images. It can also be seen that the an-

notators agreed on valence more than arousal. The authors believe that this is because the

perception of valence (how positive or negative the emotion is) is easier and less subjective

than arousal (how excited or calm the subject is) especially in still images. Comparing the

metrics in the existing dimensional databases (shown in Table 4.10) with the agreement of

human labelers on AffectNet, suggest that AffectNet is a very challenging database and even

human annotations have more RMSE than automated methods on existing databases.

The quality of search engines were also evaluated between the indented emotion of

the query and the categorical model annotation. The search engines have some overlaps.

The greatest overlap is between Bing and Yahoo, where 40% of the images are in com-

mon, compared to Bing and Google (have less than 5% common images) and Yahoo and

Google (3% in common). When we queried the engines, Google, Yahoo, and Bing pro-

duced ∼620,000, ∼115,000, and ∼150,000 images, respectively out of ∼1M images. The

reason for having more images from Google in the database is that the Google API allowed

us to query different image size/resolutions for the same query. According to the annotated

images, the overall accuracies of emotion related queries were 12.8%, 21.7%, and 16.60%

for Google, Yahoo, and Bing, respectively.
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4.5 Baseline

In this section, two baselines are proposed to classify images in the categorical model

and predict the value of valence and arousal in the continuous domain of dimensional

model. Since deep Convolutional Neural Networks (CNNs) have been a successful ap-

proach to learn appropriate feature abstractions directly from the image and there are many

samples in AffectNet necessary to train CNNs, we proposed two simple CNN baselines for

both categorical and dimensional models. We also compared the proposed baselines with

conventional approaches (Support Vector Machines (Cortes and Vapnik, 1995) and Support

Vector Regressions (Smola and Vapnik, 1997)) learned from hand-crafted features (HOG).

In the following sections, we first introduce our training, validation and test sets, and then

show the performance of each proposed baselines.

4.5.1 Test, Validation, and Training Sets

Test set: The subset of the annotated images that are annotated by two annotators is

reserved for the test set. To determine the value of valence and arousal in the test set, since

there are two responses for one image in the continuous domain, one of the annotations is

picked randomly. To select the category of image in the categorical model, if there was a

disagreement, a favor was given to the intended query, i.e., if one of the annotators labeled

the image as the intended query, the image was labeled with the intended query in the test

set. This happened in 29.5% of the images with disagreement between the annotators. On

the rest of the images with disagreement, one of the annotations was assigned to the image

randomly. Since the test set is a random sampling of all images, it is heavily imbalanced.

In other words, there are more than 11,000 images with happy expression while it contains

only 1,000 images with contemptuous expression.
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Validation set: Five hundred samples of each category is selected randomly as a val-

idation set. The validation set is used for hyper-parameter tuning, and since it is balanced,

there is no need for any skew normalization.

Training set: The rest of images are considered as training examples.

4.5.2 Categorical Model Baseline

Facial expression data is usually highly skewed. This form of imbalance is commonly

referred to as intrinsic variation, i.e., it is a direct result of the nature of expressions in the

real world. This happens in both the categorical and dimensional models of affect. For

instance, Caridakis et al. (2008) reported that a bias toward quadrant 1 (positive arousal,

positive valence) exists in the SAL database. The problem of learning from imbalanced

data sets has two challenges. First, training data with an imbalanced distribution often

causes learning algorithms to perform poorly on the minority class (He and Garcia, 2009).

Second, the imbalance in the test/validation data distribution can affect the performance

metrics dramatically. Jeni et al. (2013) studied the influence of skew on imbalanced vali-

dation set. The study showed that with exception of area under the ROC curve (AUC), all

other studied evaluation metrics, i.e., Accuracy, F1-score, Cohen’s kappa (Cohen, 1960),

Krippendorf’s Alpha (Krippendorff, 1970), and area under Precision-Recall curve (AUC-

PR) are affected by skewed distributions dramatically. While AUC is unaffected by skew,

precision-recall curves suggested that AUC may mask poor performance. To avoid or

minimize skew-biased estimates of performance, the study suggested to report both skew-

normalized scores and the original evaluation.

We used AlexNet (Krizhevsky et al., 2012) architecture as our deep CNN baseline.

AlexNet consists of five convolution layers, followed by max-pooling and normalization

layers, and three fully-connected layers. To train our baseline with an imbalanced training
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set, four approaches are studied in this research as Imbalanced learning, Down-Sampling,

Up-Sampling, and Weighted-Loss. The imbalanced learning approach was trained with the

imbalanced training set without any change in the skew of the dataset. To train the down-

sampling approach, we selected a maximum of 15,000 samples from each class. Since

there are less than 15,000 samples for some classes such as Disgust, Contempt, and Fear,

the resulting training set is semi-balanced. To train the up-sampling approach, we heavily

up-sampled the under-represented classes by replicating their samples so that all classes

had the same number of samples as the class with maximum samples, i.e., Happy class.

The weighted-loss approach weighted the loss function for each of the classes by their

relative proportion in the training dataset. In other words, the loss function heavily pe-

nalizes the networks for misclassifying examples from under-represented classes, while

penalizing networks less for misclassifying examples from well-represented classes. The

entropy loss formulation for a training example (X, l) is defined as:

E = −
K∑
i=1

Hl,ilog(p̂i) (4.18)

where Hl,i denotes row l penalization factor of class i, K is the number of classes, and p̂i is

the predictive softmax with values [0, 1] indicating the predicted probability of each class

as:

p̂i =
exp(xi)∑K
j=1 exp(xj)

(4.19)

Equation (4.18) can be re-written as:

E = −
∑
i

Hl,ilog(
exp(xi)∑
j exp(xj)

)

= −
∑
i

Hl,ixi +
∑
i

Hl,ilog(
∑
j

exp(xj))

= log(
∑
j

exp(xj))
∑
i

Hl,i −
∑
i

Hl,ixi

(4.20)
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The derivate with respect to the prediction xk is:

∂E

∂xk
=

∂

∂xk
[log(

∑
j

exp(xj))
∑
i

Hl,i]−
∂

∂xk
[
∑
i

Hl,ixi]

= (
∑
i

Hl,i)
1∑

j exp(xj)

∂

∂xk

∑
j

exp(xj)−Hl,k

= (
∑
i

Hl,i)
exp(xk)∑
j exp(xj)

−Hl,k

= (
∑
i

Hl,i)p̂k −Hl,k

(4.21)

When H = I , the identity, the proposed weighted-loss approach gives the traditional

cross-entropy loss function. We used the implemented Infogain loss in Caffe (Jia et al.,

2014) for this purpose. For simplicity, we used a diagonal matrix defined as:

Hij =


fi

fmin
, if i = j

0, otherwise
(4.22)

where fi is the number of samples of the ith class and fmin is the number of samples in the

most under-represented class, i.e., Disgust class in this situation.

Before training the network, the faces were cropped and resized to 256×256 pixels.

No facial registration was performed at this baseline. To augment the data, five crops of

224×224 and their horizontal flips were extracted from the four corners and the center of

the image at random during the training phase. The networks were trained for 20 epochs

using a batch size of 256. The base learning rate was set to 0.01, and decreased step-wise

by a factor of 0.1 every 10,000 iterations. We used a momentum of 0.9.

Table 4.15 shows the top-1 and top-2 F1-Scores for the imbalanced learning, down-

sampling, up-sampling, and weighted-loss approaches on the test set. Since the test set

is imbalanced, both the skew-normalized and the original scores are reported. The skew
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normalization is performed by random under-sampling of the classes in the test set. This

process is repeated 200 times, and the skew-normalized score is the average of the score on

multiple trials. As it is shown, the weighted-loss approach performed better than other

approaches in the skew-normalized fashion. The improvement is significant in under-

represented classes, i.e., Contempt, Fear, and Disgust. The imbalanced approach performed

worst in the Contempt and Disgust categories since there were a few training samples of

these classes compared with other classes. The up-sampling approach also did not classify

the Contempt and Disgust categories well, since the training samples of these classes were

heavily up-sampled (almost 20 times), and the network was over-fitted to these samples.

Hence the network lost its generalization and performed poorly on these classes of the test

set.

Table 4.16 shows accuracy, F1-score, Cohen’s kappa, Krippendorf’s Alpha, area under

the ROC curve (AUC), and area under the Precision-Recall curve (AUC-PR) on the test

sets. Except for the accuracy, all the metrics are calculated in a binary-class manner where

the positive class contains the samples labeled by the given category, and the negative class

contains the rest. The reported result in Table 4.16 is the average of these metrics over

eight classes. The accuracy is defined in a multi-class manner in which the number of

correct predictions is divided by the total number of samples in the test set. The skew-

normalization is performed by balancing the distribution of classes in the test set using

random under-sampling and averaging over 200 trials. Since the validation set is balanced,

there is no need for skew-normalization.
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The confusion matrix of the weighted-loss approaches is shown in Table 4.17. The

weighted-loss approach classified the samples of Contempt and Disgust categories with an

acceptable accuracy but did not perform well in Happy and Neutral. This is because the

network was not penalized enough for misclassifying examples from these classes. We

believe that a better formulation of the weight matrix H based on the number of samples

in the mini-batches or other data-driven approaches can improve the recognition of well-

represented classes.

Table 4.17: Confusion Matrix of Weighted-Loss Approach on the Test Set
Predicted

NE HA SA SU FE DI AN CO

A
ct

ua
l

NE 53.3 2.8 9.8 8.7 1.7 2.5 10.4 10.9
HA 4.5 72.8 1.1 6.0 0.6 1.7 1.0 12.2
SA 13.0 1.3 61.7 3.6 5.8 4.4 9.2 1.2
SU 3.4 1.2 1.7 69.9 18.9 1.7 2.8 0.5
FE 1.5 1.5 4.6 13.5 70.4 4.2 4.3 0.2
DI 2.0 2.2 5.8 3.3 6.2 68.6 10.6 1.3
AN 6.2 1.2 5.0 3.2 5.8 11.1 65.8 1.9
CO 16.2 13.1 3.5 3.1 0.5 4.3 5.7 53.8

* NE, HA, SA, SU, FE, DI, AN, CO, NO, UN , and NF stand for Neutral, Happy, Sad,

Surprise, Fear, Anger, Disgust, Contempt, None, Uncertain, and Non-face categories,

respectively.

We compared the performance of CNN baseline with a Support Vector Machine (SVM)

(Cortes and Vapnik, 1995). To train SVM, the faces in the images were cropped and resized

to 256×256 pixels. HOG (Dalal and Triggs, 2005) features were extracted with the cell size

of 8. We applied PCA retaining 95% of the variance to reduce the HOG features dimen-

sionality from 36,864 to 6,697 features. We used a linear kernel SVM in Liblinear package

(Fan et al., 2008) (which is optimized for large-scale linear classification and regression).

Table 4.16 shows the evaluation metrics of SVM. Since Liblinear package does not provide

the scores of classifications, the AUC and AUCPR cannot be calculated. Comparing the
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performance of the SVM with the CNN baselines on AffectNet indicates that CNN models

perform better than conventional SVM and HOG features in all metrics.

We also compared the baseline with Microsoft Cognitive emotion API (Microsoft-

Oxford, 2015) as an available off-the-shelf expression recognition system. The MS cogni-

tive system had an excellent performance on Neutral and Happy categories with an accu-

racy of 0.94 and 0.85, respectively. However, it performed poorly on other classes with an

accuracy of 0.25, 0.27 and 0.04 in the Fear, Disgust and Contempt categories. Table 4.16

shows the evaluation metrics on the MS cognitive system. Comparing the performance

of the MS cognitive with the simple baselines on AffectNet indicates that AffectNet is a

challenging database and a great resource to further improve the performance of facial

expression recognition systems.

Figure 4.15 shows nine samples of randomly selected misclassified images of the weighted-

loss approach and their corresponding ground-truth. As the figure shows, it is really dif-

ficult to assign some of the emotions to a single category. Some of the faces have partial

similarities in facial features to the misclassified images, such as nose wrinkled in disgust,

or eyebrows raised in surprise. This emphasizes the fact that classifying facial expressions

in the wild is a challenging task and, as mentioned before, even human annotators agreed

on only 60.7% of the images.

4.5.3 Dimensional Model (Valence and Arousal) Baseline

Predicting dimensional model in the continuous domain is a real-valued regression

problem. We used AlexNet (Krizhevsky et al., 2012) architecture as our deep CNN base-

line to predict the value of valence and arousal. Particularly, two separate AlexNets were

trained where the last fully-connected layer was replaced with a linear regression layer con-

taining only one neuron. The output of the neuron predicted the value of valence/arousal in
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Angry (Disgust) Disgust (Angry) Fear (Sad) Angry (Sad) Happy (Surprise) Fear (Surprise)

Surprise (Fear) Angry (Fear) Angry (Disgust) Happy (Neutral) Sad (Angry) Happy (Contempt)

Figure 4.15: Samples of miss-classified images. Their corresponding ground-truth is given
in parentheses.

continuous domain [-1,1]. A Euclidean (L2) loss was used to measure the distance between

the predicted value (ŷn) and actual value of valence/arousal (yn) as:

E =
1

2N

N∑
n=1

||ŷn − yn||22 (4.23)

The faces were cropped and resized to 256×256 pixels. The base learning rate was

fixed and set to 0.001 during the training process. We used a momentum of 0.9. Train-

ing was continued until a plateau was reached in the Euclidean error of the validation set

(approximately 16 epochs with a mini-batch size of 256). Figure 4.16 shows the value of

training and validation losses over 16K iterations (about 16 epochs).

We also compared Support Vector Regression (SVR) (Smola and Vapnik, 1997) with

our DNN baseline for predicting valence and arousal in AffectNet. In our experiments,

first, the faces in the images were cropped and resized to 256×256 pixels. Histogram of

Oriented Gradient (HOG) (Dalal and Triggs, 2005) features were extracted with the cell

size of 8. Afterward, we applied PCA retaining 95% of the variance of these features to
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Figure 4.16: Euclidean error of training valence and arousal.

Table 4.18: Baselines’ Performances of Predicting Valence and Arousal on Test Set
CNN (AlexNet) SVR

Valence Arousal Valence Arousal
RMSE 0.394 0.402 0.494 0.400
CORR 0.602 0.539 0.429 0.360
SAGR 0.728 0.670 0.619 0.748
CCC 0.541 0.450 0.340 0.199
* RMSE, CORR, SAGR, and CCC stand for Root Mean Square Error,

Correlation, Sign Agreement Metric, and Concordance Correlation

Coefficient respectively.

reduce the dimensionality. Two separate SVRs were trained to predict the value of valence

and arousal. Liblinear (Fan et al., 2008) package was used to implement SVR baseline.

Table 4.18 shows the performances of the proposed baseline and SVR on the test set.

As shown, the CNN baseline can predict the value of valence and arousal better than SVR.

This is because the high variety of samples in AffectNet allows the CNN to extract more dis-

criminative features than hand-crafted HOG, and therefore it learned a better representation

of dimensional affect.
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Figure 4.17: RMSE of predicted valence and arousal using AlexNet and Euclidean (L2)
loss (Best viewed in color).

The RMSE of CNN baseline (AlexNet) between the predicted valence and arousal and

the ground-truth are shown in Fig. 4.17. As illustrated, the CNN baseline has a lower

error rate in the center of circumplex. In particular, predicting low-valence mid-arousal

and low-arousal mid-valence areas were more challenging. These areas correspond to the

expressions of contempt, bored, and sleepy.

4.6 Conclusion

In this chapter, we presented a new deep neural network architecture for automated

facial expression recognition. The proposed network consists of two convolutional layers

each followed by max pooling and then four Inception layers. The Inception layers increase

the depth and width of the network while keeping the computational budget constant. The

proposed approach is a single component architecture that takes registered facial images as

the input and classifies them into either of the six basic expressions or the neutral.

We evaluated our proposed architecture in both subject-independent and cross-database

manners on seven well-known publicly available databases. Our results confirm the supe-
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riority of our network compared to several state-of-the-art methods in which engineered

features and classifier parameters are usually tuned on a very few databases. Our network

is the first work which applies the Inception layer architecture to the FER problem across

multiple databases. The clear advantage of the proposed method over conventional CNN

methods (i.e. shallower or thinner networks) is gaining increased classification accuracy

on both subject independent and cross-database evaluation scenarios while reducing the

number of operations required to train the network.

The analysis of human facial behavior is a very complex and challenging problem. The

majority of the techniques for automated facial affect analysis are mainly based on machine

learning methodologies, and their performance highly depends on the amount and diversity

of annotated training samples. Recently, databases of facial expression and affect in the

wild received much attention. However, existing databases of facial affect in the wild only

cover one model of affect, have a limited number of subjects, or contain few samples of

certain emotions.

The Internet is a vast source of facial images, most of which are captured in uncon-

trolled conditions. These images are often taken in the wild under natural conditions. In

this research, we introduced a new publicly available database of a facial Affect from the In-

terNet (called AffectNet) by querying different search engines using emotion related tags in

six different languages. AffectNet contains more than 1M images with faces and extracted

landmark points. Twelve human experts manually annotated 440,000 of these images in

both the categorical and dimensional (valence and arousal) models and tagged the images

that have any occlusion on the face.

The agreement level of human labelers on a subset of AffectNet showed that expression

recognition and predicting valence and arousal in the wild is a challenging task. The two

annotators agreed on 60.7% of the category of facial expressions, and there was a large
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disagreement on the value of valence and arousal (RMSE=0.34 and 0.36) between the two

annotators.

Two simple deep neural network baselines were examined to classify the facial ex-

pression images and predict the value of valence and arousal in the continuous domain

of dimensional model. Evaluation metrics showed that simple deep neural network base-

lines trained on AffectNet can perform better than conventional machine learning methods

and available off-the-shelf expression recognition systems. AffectNet is by far the largest

database of facial expression, valence and arousal in the wild, enabling further progress in

the automatic understanding of facial behavior in both categorical and continuous dimen-

sional space. The interested investigators can study categorical and dimensional models

in the same corpus, and possibly co-train them to improve the performance of their af-

fective computing systems. It is highly anticipated that the availability of this database

for the research community, along with the recent advances in deep neural networks, can

improve the performance of automated affective computing systems in recognizing facial

expressions and predicting valence and arousal.
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Chapter 5

Affect-Aware Agent

In Chapters 2 and 3, we showed that our proposed rear-projection robotic platform can

show natural visual speech and facial expressions, and users preferred the robotic platform

over a virtual agent presented on a 2D screen. In Chapter 4, we created a new database

of facial expressions and proposed a new automated Facial Expression Recognition (FER)

system that is able to recognize users’ emotions in facial images in uncontrolled conditions.

The goal of this chapter is to integrate emotional intelligence and the proposed automated

FER system into spoken dialogs of the developed robotic platform to evaluate whether this

integration can add up values to our robot.

The objective of integrating the automated FER system into the robot is to improve

social capabilities of the robot and create an expressive and empathic social agent (affect-

aware) which is capable of interpreting users’ emotional facial expressions and act accord-

ingly. For this purpose, we designed a simple experiment in which the subjects performed

a simple in front of the robot, and the robot engages them in conversation based on their

perceived facial expressions. We measured the accuracy of the automated FER system on

the robot when interacting with different human subjects as well as three social/interaction

aspects, namely task engagement, being empathic, and likability of the robot.
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The rest of this chapter is organized as follow. Section 5.1 reviews the definition of

empathy in the literature and the studies of empathy in social agents. Section 5.2 discusses

the experiments and Section 5.3 introduces the questionnaire designed to evaluate the so-

cial/interaction aspects of the agent studied in the experiments. Section 5.4 presents our

findings on the effect of creating affect-aware robotic agent using automated FER system.

Finally, Section 5.5 concludes this chapter.

5.1 Empathy

There are several definitions for Empathy in the literature. These definitions can be

divided into three major categories: (1) affective empathy (also called emotional empa-

thy, or primitive empathy), where empathy is an affective response to others’ emotional

states, (2) cognitive empathy, where empathy is the cognitive understanding of others’

emotional states, and (3) combination of both affective and cognitive components (Om-

dahl, 1995; Staub, 1987). Researchers such as Davis (1994), Hoffman (2001), and Preston

and De Waal (2002) have attempted to unify different perspectives of empathy by adopting

a multidimensional approach. Davis (1994) defines empathy as:

“A set of constructs having to do with the responses of one individual to the

experiences of another”.

Similarly, Hoffman (2001) defines empathy as a psychological process that makes a

person have:

“Feelings that are more congruent with another’s situation than with his own

situation”.
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Preston and De Waal (2002) defines empathy as a “Perception-Action Model” (PAM)

that considers several phenomena (and processes) such as emotional contagion and sym-

pathy. They defined empathy as the capacity to (a) be affected by and share the emotional

state of another, (b) assess the reasons of emotional state, and (c) identify and adopt other

perspectives. In this work, we adopt this definition of empathy. Along with this definition,

six elements are involved in an empathic situation (Paiva et al., 2017):

1. Observer (empathizer): a person/agent who responds emotionally to the affective

state of another one.

2. Target: a person/agent who expresses an emotional state (or is in an emotional situ-

ation perceived by the observer).

3. Event: an event that happens and is witnessed by the observer.

4. Emotion: an emotion to which the observer responds.

5. Context: a context/situation where the event happens.

6. Mediating factors: factors such as the relation between the observer and the tar-

get, the mood of the observer, the presence or absence of another person/agent, past

situations, etc.

5.1.1 Empathy in Social Assistive Robots

Studies on empathy in social agents can be divided into two approaches (Paiva et al.,

2017). The first approach is to consider the human as the observer (empathizer) and the

agent as the target that triggers empathy in the human partner (see Figure 5.1a). In this case,

the agent does not necessarily show empathic behavior, but it is designed to evoke empathy

in the human observer. These agents are used for helping children to deal with bullying
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(Paiva et al., 2004), training young doctors on interview patients with depression (Marsella

et al., 2000), and intercultural training with culturally configurable agents (Mascarenhas

et al., 2013). The second approach—and the focus of this work—is to build agents with

empathic behavior, i.e., agents as observers that empathize with human partners as targets

of empathy (see Figure 5.1b).

Developing agents with empathic behavior has received considerable attention, espe-

cially in the virtual agent community (Paiva et al., 2017). Studies have shown that em-

pathic virtual agents are perceived as more likable, trustworthy and caring (Brave et al.,

2005), reduce stress (Prendinger and Ishizuka, 2005), and they can build and sustain long-

term socio-emotional relationships with human partners (Bickmore and Picard, 2005). In

the field of social robotics, however, researchers have only more recently started to as-

sess the effects of empathy in human-robot interaction (compared to the research on the

virtual agents). This is mainly due to the advances and improvement in automatic affect

recognition in different modalities (e.g., facial expression recognition, speech tone senti-

ment analysis, speech-to-text sentiment analysis etc.), which enables robots to interact with

users in a less controlled setting (i.e., user facial pose, environment illumination/noise etc.).

Several works in the area of social robotics have studied the effect of evoking empa-

thy in users (Hayes et al., 2014; Kwak et al., 2013; Rosenthal-von der Pütten et al., 2013;

Seo et al., 2015). Majority of these works concluded that users have more empathy with

a physical robot than a virtual agent. For example, Kwak et al. (2013) studied the effect

of evoking empathy in users for different levels of agency (i.e., a mediated robot which

delivers the emotional state of a remote user or a simulated robot which expresses its own

emotion) and the physical embodiment (i.e., physically embodied or physically disembod-

ied). Inspired by Milgram (1963) experiment, participants were allowed to punish the robot

with an electric shock when the robot responded incorrectly, and the robot showed some

type of “bruises” through light-emitting diodes to express negative emotional states. The
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(a) Agent as targets of empathy

Event

Event witnessed

or imagined

Situation / Context

Empathic Response

User

Agent

User

(b) Empathic agents as observer (focus of this study)

Figure 5.1: Two different perspectives of studying empathy in social agents (Paiva et al.,
2017).
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results indicated that participants empathized more with the mediated robot than with the

simulated robot. Also, the participants empathized more with a physically embodied robot

than with a physically disembodied one.

In another interesting work, Seo et al. (2015) evaluated how people empathize with a

physical or simulated virtual agent of the robot when something bad happens to it. Par-

ticipants played a collaborative game with NAO robot. At some point, the robot which

is controlled by WoZ started expressing “problems” due to a virus, which made it work

badly and eventually, the fault cleared the agent’s memory. Their results suggested that

people empathize more with a physical robot than a simulated one. A detailed comparison

of different studies that used robot/virtual agents to evoke users’ empathy can be found in

a recent survey (Paiva et al., 2017).

There are few works that used social robots as observers that empathize with human

partners as targets of empathy (see Figure 5.1b). Riek et al. (2010) investigated how im-

itation by a robot can affect people’s perceptions of their conversation with it. The robot

operated in one of three ways: full head gesture mimicking, partial head gesture mimick-

ing (nodding), and non-mimicking. Participants engaged in two conversational tasks with

the robot, one non-emotional (i.e., describe the route they took to the laboratory that day),

and the other one emotionally salient (i.e., tell their first memories of Cambridge—people

they met, things they saw, foods they ate, etc.). After the experiment, participants rated

a modified version of the Interactant Satisfaction Survey (Kang et al., 2008) with fifteen

item that measured the social attraction toward and emotional credibility of conversation

partners. The results indicated that the participants in the full head gesture condition rated

their interaction the most positively, followed by the partial and non-mimicking conditions.

Cramer et al. (2010) studied how empathy affects people’s attitudes towards robots. In

a between-subjects design, two groups of subjects participated in an online survey experi-

ment and watched a four-minute video of an actor playing a cooperative game with an iCat
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robot (Van-Breemen, 2004). The robot expressed empathic behavior towards the actor in

three conditions: emphatically accurate, neutral, and inaccurate (i.e., incongruent behavior

to the situation). The study showed that subjects’ trust decreased when robot’s empathic

responses were incongruent with the affective state of the subjects. Contrarily, subjects

who observed the robot displaying accurate empathic behaviors felt a higher relationship

with the robot.

Leite et al. (2014) studied empathic model for social robots aiming to interact with chil-

dren for extended periods of time. Sixteen subjects from the 3rd grade played a total of five

chess exercises with the iCat robot over five consecutive weeks. After every child’s move-

ment on the chessboard, the robot provided empathic feedback on that move by conveying

facial expressions influenced by the child’s affective state (positive, negative, and neutral)

and the state of the game. In addition, if the child’s affective state is negative and below a

certain threshold, the robot also displayed social supportive behaviors. After playing with

the robot, in the first and last weeks of interaction children filled in a questionnaire. The re-

sult indicated that the ratings of social presence, engagement and self-validation remained

similar after five weeks, contrasting with a similar study (Leite et al., 2009) where the robot

was not endowed with the empathic model.

5.2 Methodology

In this work, we aim to integrate our developed FER module to our robotic platform and

study the role of understanding user’s facial expression in three social/interaction aspects

(task engagement, being empathic, and likability of the robot). For this purpose, we studied

three robotic agent conditions:

1. Non-Empathic (NE): In this condition, the robot does not recognize user’s affect (or

assume the user’s affect is neutral) and only performs the task.
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2. Automated Recognition-Empathic (AR-E): In this condition, the developed auto-

mated FER system is used to recognize user’s affect. If the recognized affect is not

neutral, the robot empathizes with the user via a set of predefined conversation.

3. Human Recognition-Empathic (HR-E): In this condition, instead of automated

FER system, a human observer recognizes user’s affect and prompts the robot. If the

recognized affect is not neutral, the robot empathizes with the user via the same set of

conversation used in the AR-E condition. The purpose of performing the experiments

with this condition is to evaluate the response of the users to an optimal case (optimal

perception of facial expression) in our research setting.

In order to evoke emotion in subjects, two stimuli each containing four video clips

(approximately 30 seconds long) were created. Each clip was intended to elicit a certain

spontaneous emotion (i.e., happy, surprise, sad, disgust) taken mostly from YouTube. The

clips contained segments of videos such as laughing baby and funny scenes to evoke hap-

piness, survival of car crashes to evoke surprise, dogs crying over dead owner/friends to

evoke sadness, and eating giant larva and dead animal to evoke the emotion of disgust. We

did not include fear and anger (two of six basic facial expressions) in the stimuli and experi-

ment, as scaring subject may emotionally disturb them and it is difficult to evoke anger with

a short video. Further information about the video clip is provided in the Appendix C.1.

Subjects were not fully aware of the experiment’s intention (i.e., empathizing with sub-

jects), and the task of the experiment was described to them as “You watch some videos and

the robot will ask you to describe the video in one word”. All participants in the study were

IRB consented prior to enrolling in the experiment. Participation was completely voluntary

and the subjects were told that they may feel sad or disgusted while watching some of the

videos and they can leave the study at any time. While watching the videos, subjects sat on

a comfortable chair positioned in front of a 19” LCD display and the robot at a distance of
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Figure 5.2: Evaluation of empathic agent room setup

60 cm in all three conditions. They were alone in the experiment room while an observer

was watching them through a one-way mirror (See Figure 5.2). The observer recorded

the facial expression of the subjects during watching the videos. The facial behaviors of

subjects were also video recorded for further analysis.

In the beginning of the experiment, Ryan introduced herself and explained the task as:

“Hello my friend. My name is Ryan. We are going to have a short experiment together.

In this experiment, you are going to watch some videos and I appreciate it if you describe

the video in one word to me. Are you ready?”. The robot waits until the user is ready, and

then displays one of the stimuli randomly with the fix sequence of happy, surprise, sad and

disgust in all three conditions (NE, AR-E, and HR-E). We chose this sequence, i.e., showing

clips intended to elicit positive emotion first, hence it might be difficult (or even impossible)

to evoke positive emotions with a short video after emotionally disturbing subjects with

negative emotions. Figure 5.3 shows the conversation graph of the experiment.
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Hello my friend. My
name is Ryan. We are
going to have a short

experiment together. In
this experiment, You
are going to watch
some videos and I
appreciate it if you

describe the video in
one word to me. Are

you ready?

Video: disgust

Video: sad

Video: surprise

Yes
Let's watch a video

togeather.

Video: happy

No
No problem. Let me
know when you are

ready.
*

Figure 5.3: Conversation graph of the experiment

5.2.1 Automated FER System

In order to enhance the accuracy of the proposed deep neural network baseline model

for FER (Section 4.5) and since we only study four facial expressions in this work, we

trained a 50-layers Residual Network (ResNet) (He et al., 2016) on five classes of neutral,

happy, surprise, sad, and disgust of affectNet database (Section 4.4). The ResNet archi-

tecture is a state-of-the-art CNN with added shortcut connections, i.e., a linear transform

of each layer’s input to the layer’s output. Figure 5.4 shows a building block of residual

learning in ResNet. Adding the shortcut connection eases the training of deeper networks

(more than 100 layers) and avoid degradation problem (the phenomenon that accuracy gets

saturated and then degrades rapidly (He et al., 2016)). The residual connection has yielded

state-of-the-art performance in several computer vision applications such as visual object

detection (He et al., 2016), semantic image segmentation (Chen et al., 2016), audio clas-

sification (Hershey et al., 2017), and facial expression recognition (Hasani and Mahoor,

2017).

During the experiments, subjects’ faces were captured by a webcam installed on the

video player monitor. The OpenCV face recognition library was used to detect faces in the

images, and 66 landmark points were found using a face alignment algorithm via regression

local binary features (Ren et al., 2014; Yu, 2016). We used these points to register faces

to an average face using an affine transformation. Once the faces have been registered, the
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Figure 5.4: Building block of Residual learning in ResNet (He et al., 2016)

face regions were cropped, resized to 48×48 pixels, and fed into the trained network for

classification.

We used a K40 GPU for training the network, and an Intel Core i7 CPU during the

inference. The face detection, registration, and expression classification take ∼20ms, en-

abling us to process five frames per second. A majority voting is used to determine user’s

facial expression during watching the video. As videos trigger emotions in few scenes and

users had neutral faces in the rest of time of watching the videos, the frames with emo-

tions detected as neutral faces were discarded by the probability of 0.5 in a majority voting

scheme.

5.2.2 Empathic Conversations

According to Preston and De Waal (2002) empathy reaction can be a function of three

factors:

1. Be affected by and share the emotional state of another.

2. Assess the reasons of emotional state.

3. Identify and adopt other perspectives.
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Taking into account these elements and the previously given definition of empathy, we

propose the following features that need to be embodied in our empathic robot:

• The robot should be capable of recognizing, understanding, and interpreting the

user’s emotional state (facial expression in this experiment).

• The robot should be capable of expressing its emotion using both verbal and non-

verbal cues.

• The robot should be capable of perspective taking, being supportive, and have self-

correction to adopt other perspectives.

The robot recognizes user’s facial expression during watching the videos. Based on

the affective state of the user, the robot appraises the situation and generates empathic re-

sponses, e.g., “congruent facial expressions” in tune with the user’s affective state, “perspective-

taking”, “being supportive”, and “self-correction”.

A set of predefined empathic responses based on the perceived affect state and conver-

sation with users were carefully designed. Figures 5.5, 5.6, 5.7, and 5.8 show empathic

conversation map after showing videos intended to elicit happy, surprise, sad, and disgust

emotions, respectively. For instance, as shown in Figure 5.7, if Ryan recognizes sadness,

she shows sad face [congruent facial expressions] and says “It looks like the video made

you sad. Am I right?”. If the user confirms that he/she was sad, the robot keeps the sad

face and say “Me too. It was heartbreaking. I am sorry you had to watch it.” [perspective-

taking], “Do you want to talk about it?”. Based on user’s response, the robot will say “I

understand. It was obvious from your face.” [perspective- taking], “I wish I could hug

you” [being supportive]. If the user did not have a negative affect (e.g., user had a neutral

face) and the robot recognized it incorrectly, the robot stops showing sad face and says

“Oh. Seems like I misinterpreted your face” [self-correction], “You are focused on the

task. Good Job” [being supportive].
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5.3 Social/Interaction Aspects Measurements

We evaluated the impact of the affect recognition system in three social/interaction as-

pects, i.e., task engagement, empathy, and likability of the robot. For this purpose, we

designed a 23-items questionnaire on a 5-point Likert scale ranging from “Strongly Dis-

agree” to “Strongly Agree”. The questionnaire is shown in Appendix C (Table C.1). The

questions are designed as follows:

Task engagement: Questions 1-8 are designed to assess the engagement and enjoy-

ment of the task. Examples of these questions are: “The task of describing the videos was

easy for me.”, “I enjoyed watching the videos.”, “The experiment was exciting.”, “I felt

mentally immersed in the experiment.”, etc.

Empathy of the robot: Questions 9-19 measure the empathy of the robot, borrowed

from EMOTE project questionnaire. The EMOTE project was a three year FP7 research

project which ended in March 2016 (Project, 2013). The EMOTE project questionnaire is

inspired by some of the dimensions of Interpersonal Reactivity Index (IRI) (Davis, 1983)

where it is also claimed to be a proper resource for measuring empathy in socially assistive

robots (Tapus and Mataric, 2007). In the EMOTE questionnaire, instead of asking about

the user’s perceptions of their own empathic capacities, the items aimed at appraising the

robot’s empathy. The EMOTE questionnaire has been used in short and long-term studies

in the EMOTE project, both for individual interactions (one person and one robot) and

multiuser interactions (Paiva et al., 2017).

The EMOTE questionnaire has 14 questions. We excluded three questions in our ques-

tionnaire as they did not fit to our task, e.g., “<the robot> tries to look at all sides of an

issue before he makes a decision”. Examples of questions 9 to 19 in our questionnaire

are: “Ryan can have tender and concerned feelings for people less fortunate than her-
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self.”, ‘Ryan sometimes tried to understand me better by imagining how things look from

my perspective.”, “Ryan tries to imagine how she would feel if she was in my place.”, etc.

Likability of the robot: Questions 20-23 estimate the likability of the robot, borrowed

from Reysen Likability Scale (Reysen, 2005). Reysen Likability Scale is an 11-items ques-

tionnaire on a 7-point Likert scale ranging from “Very Strongly Disagree” to “Very Strongly

Agree” which is intended to measure the perceived likability of a target individual. Reysen

Likability Scale has been extensively used in robotic literature to evaluate likability of a

robot in different scenarios (Li et al., 2010; Rau et al., 2009; Riek and Robinson, 2011).

Due to the limitation in the number of questions and in order to be consistent with other

questions, we only selected four questions from Reysen Likability Scale and changed the

scale to 5-point Likert scale ranging from “Strongly Disagree” to “Strongly Agree”. The

selected questions are: “The robot was friendly.”, ‘The robot was likable.”, “The robot was

warm.”, and “The robot was approachable.”.

5.4 Results

We evaluated our proposed empathy model with 16 typical adults, 9 female and 7 males,

with age range 18-35 years (Mean= 25.6, SD=5.5) and a variety of ethnicities (12 Cau-

casian, two Asian, one Hispanic, and one Black). Eight subjects participated in AR-E and

NE (i.e., control) conditions, and the other eight subjects performed the experiment with

HR-E and NE conditions. The order of conditions was randomly assigned to each subject.

Subject’s facial expressions were recorded by a human observer in the observation room

as well as automated FER system in all conditions. In NE condition, robot assumed neutral

facial expressions. In HR-E condition, the robot picked human recognized user’s facial

expression. In the AR-E condition, the robot acted based on automated FER system. The

accuracy of automated facial expression with respect to recorded emotions by the human
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Table 5.1: Confusion Matrix of Automated Facial Expression Recognition Accuracy (%)
Automated FER system

Neutral Happy Surprise Sad Disgust

H
um

an
R

ec
og

ni
ze

d Neutral 28.0 20.0 36.0 14.0 2.0
Happy 2.9 82.9 14.3 0.0 0.0
Surprise 7.1 28.6 50.0 7.1 7.1
Sad 23.5 29.4 5.9 35.3 5.9
Disgust 10.0 30.0 35.0 20.0 5.0

Table 5.2: Subjects’ facial expression recorded by the human observer during watching
videos (%)

Subject Facial Expression
Neutral Happy Surprise Sad Disgust

V
id

eo

Happy 11.8 88.2 0.0 0.0 0.0
Surprise 58.8 0.0 41.12 0.0 0.0
Sad 50.0 0.0 0.0 50.0 0.0
Disgust 26.5 14.7 0.0 0.0 58.8

observer was 49%. Table 5.1 shows the confusion matrix between recorded emotions by

the human observer and automated FER system.

Table 5.2 illustrates facial expressions expressed by subjects (recorded by the human

observer) for each video clip intended to elicit different emotions. As shown, the videos

intended to elicit happiness were most successful in evoking the intended emotion (88.2%),

while the videos intended to elicit surprise were least successful (41.12%) and the majority

of the subjects remained neutral during watching these videos.

The subjects filled out the questionnaire after each condition. Figure 5.9 shows the av-

erage subjects’ rating and standard error of each condition. We performed a 3 (Agent Con-

ditions; NE, AR-E and HR-E) × 3 (Aspects; robot’s likability, empathy and task’s engage-

ment) ANOVA with social/interaction aspects as the within-subject factor and agent condi-

tion as the between-subjects factor. The dependent variable was average subject’s rating for

each social/interaction aspect. The test showed a significant main effect of agent condition

[F (2, 29) = 17.49, p <.0001, h2p = .547] and a significant main effect of social/interaction
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Figure 5.9: The average user’s rating and standard error of different empathic agents.

aspect [F (2, 58) = 14.29, p <.0001, h2p = .330]. The interaction between agent condition

and social/interaction aspect was also significant [F (4, 58) = 7.84, p <.0001, h2p = .351].

To inspect whether this significant difference exists among all conditions, we performed

pairwise two-tailed t-test comparisons between different conditions for different aspects.

Table 5.3 shows pairwise p-value and Cohen’s d effect-size between agent conditions. As

mentioned in Chapter 3, Cohen’s d is an effect size used to indicate the standardized differ-

ence between two groups defined in Equation (3.2). Generally, the effect size is considered

small if d > 0.2, medium if d > 0.5 and large if d > 0.8 (Cohen, 1977).

As indicated in Tables 5.3:

• Subjects rated empathy and likability of both AR-E and HR-E agents more than

NE. This shows that the predefined set of conversations and recognizing user’s facial

expressions improved the user ratings of empathy and likability.

• There was no significant difference between subjects’ ratings of empathy and lika-

bility in AR-E and HR-E. This shows that the subject found the agent endowed with
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Table 5.3: Pairwise comparison (T-test p-value) and Cohen’s d effect size of users’ rating
for different empathic agents. Significant pairs are shown in bold.

NE vs AR-E NE vs HR-E AR-E vs HR-E
p d p d p d

Empathy <.001 1.143 <.001 1.908 0.072 0.272
Likability <.001 0.915 <.001 0.75 0.231 0.302
Task Engagement 0.370 0.062 0.116 0.172 0.477 0.125
* NE, AR-E, and HR-E stand for Non-Empathic, Automated Recognition-Empathic, and Human

Recognition-Empathic robots, respectively.

the automatic FER as good as human recognized expressions, despite the lower ac-

curacy of automated FER. We believe that “self-correction” played an important role

in compensating poor accuracy of automated FER system.

• There was no significant difference between subjects’ ratings of the task in all con-

ditions. In other word, subjects rated the task engagement similar in all conditions,

regardless of being empathized or not.

5.5 Conclusion

We extended and enriched the capabilities of our proposed robotic platform beyond

spoken dialogs to create a system that can measure and infer users’ affect and cognition. We

integrated our proposed automated FER system into spoken dialogs of our robotic platform

and evaluated whether this integration can improve three social/interaction aspects (task

engagement, being empathic, and likability of the robot). For this purpose, we designed a

simple experiment in which the subjects watched some videos to evoke their emotions and

the robot asked them to describe each video in one word. During watching the videos, the

robot recognized subjects’ facial expressions and engaged them in conversation based on

the perceived facial expressions.
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We studied three conditions as:

• Non-Empathic robot (NE), in which the robot did not recognize user’s affect and

only performed the task (control condition).

• Automated Recognition-Empathic (AR-E), in which the developed automated FER

system was used to recognize subject’s affect.

• Human Recognition-Empathic (HR-E), in which a human observer recognized user’s

affect and prompted the robot (optimal condition).

Our results indicated that the subjects rated empathy and likability of both the AR-E and

HR-E robots significantly higher than the non-empathic robot (the control condition). Also,

there was no significant difference between subjects’ ratings of the task in all conditions.

In other words, subjects rated the task engagement similar in all conditions, regardless

of being empathized or not. Of course, this finding depends on the type of task. In our

experiment, the task (describing videos in one word) was fairly easy and short.

We also calculated the accuracy of the integrated automated FER system on the robot

when interacting with different users. Despite the automated FER system was trained on

AffectNet which covers a variety of scene lightings, camera views, backgrounds, subjects

head-pose and ethnicity, etc., the automated FER system only was 49% correct in our set-

ting. We processed user’s facial expressions frame by frame and used a weighted majority

voting to determine the users’ affect during watching the video clips. Perhaps, a better

approach considering spatiotemporal in recognizing facial expressions would result in a

better recognition. Surprisingly, despite the lower accuracy of the automated FER, there

was no significant difference between subjects’ ratings of empathy and likability of AR-E

and HR-E (optimal condition). We believe that “self-correction” played an important role

in compensating poor accuracy of automated FER system. In other word, subjects preferred

a robot with an ability to understand their affect, even with a low accuracy.
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Chapter 6

Conclusion and Future Work

This dissertation described our current progress towards designing, manufacturing, and

evaluating a perceptive and expressive life-like robotic head, called ExpressionBot. Ex-

pressionBot consists of a neck system and a light projector that projects a facial animation

on a 3D translucent facial mask. Since a computer-generated facial animation is projected

onto a mask, the rear-projected robotic platform can portray natural and realistic facial

movement, and the robotic face can range from cartoon-like to photo-realistic characters.

The proposed robotic system, relative to mechatronic and android faces, is thus a highly

flexible research tool, mechanically simple, and low-cost to design, build, and maintain

(the cost of the hardware system is about $1500).

At first, individuals’ experiences of interpreting the facial expressions and the proposed

visual speech of ExpressionBot was compared with the facial animation on the computer

screen. The results of our initial HRI studies illustrated the benefits and the value of the

proposed robotic platform over the same animation displayed on a computer flat screen.

The studies indicated that although having embodiment through the rear-projected system

does not play any role in improving the perception of visual speech, it can improve the
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perception of emotive agents in certain emotions such as Anger and Sadness, and highly

affects the precision of the eye gaze.

During these experiments, the users were in front of the robot, and it was not clear

whether the users benefited from the physicality of the robot or they were under the im-

pression of its physical presence. We then distinguished the role of the robot’s embodiment

from its physical presence in three facial cues (i.e., visual speech, facial expressions and

eye gaze) using a quantitative approach. In particular, three different conditions (i.e., co-

present of the robot, telepresent of the robot, and virtual agent) were studied to discover

whether the embodiment of the robot has any interaction value proposition compared with

an on-screen animation. The results of this study indicate that:

1. Neither embodiment nor presence plays a role in improving the perception of visual

speech, regardless of syntactic or semantic cues in sentences.

2. Both embodiment and physical presence improve the perception of certain facial

expressions in emotive agents.

3. The combination of embodiment and presence (and mainly embodiment) highly af-

fects the precision of eye gaze perception in a frontal situated setting.

Since, the eventual goal of the ExpressionBot is to interact with users in an uncon-

trolled setting (aka “in the wild” setting), where there is a high variation in scene lighting,

camera view, image resolution, background, subjects’ head-pose and ethnicity, and exist-

ing facial expression recognition systems lack enough generality in the wild, we proposed

a new Deep Neural Network (DNN) architecture and created a new database of facial faces

with expressions (called AffectNet). AffectNet contains more than 1M images with faces

and 440,000 manually annotated images with facial expressions and valence and arousal

emotions. Only, the process of annotating took more than a year and AffectNet is by far
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the largest database of facial affect in still images which covers both categorical and di-

mensional models. Experimental results of the proposed deep neural network architecture

and two simple baselines on AffectNet indicated that proposed affect perception system is

more accurate than existing expression recognition systems.

We then integrated this automated FER system into the spoken dialog of our robotic

platform to extend and enrich the capabilities of ExpressionBot beyond spoken dialog and

create an affect-aware robotic agent that can measure and infer users’ affect and cognition.

We evaluated whether this integration can improve social/interaction aspects of our agent

with users. We designed a series of HRI experiments, in which the subjects watched some

videos to evoke their emotions and the robot asked them to describe each video in one

word. We studied three conditions as: 1) Non-Empathic robot (NE), in which the robot did

not recognize user’s affect and only performed the task (control condition), 2) Automated

Recognition-Empathic (AR-E), in which the developed automated FER system was used

to recognize subject’s affect, and 3) Human Recognition-Empathic (HR-E), in which a

human observer recognized user’s affect and prompted the robot (optimal condition). Three

social/interaction aspects (task engagement, being empathic, and likability of the robot)

were measured in the experiment. Our results indicated that the subjects rated empathy and

likability of both the AR-E and HR-E robots significantly higher than the non-empathic

robot (the control condition). Also, users rated our affect-aware agent as empathic and

likable as a robot in which user’s affect is recognized by a human (HR-E).

The developed robotic head represents a new level of integration of emotive capabilities

that enables researchers to study socially emotive robots/agents that can generate spoken-

language, show emotions, measure and infer users’ affect and cognition, and communicate

effectively with people in a natural way as humans do. Such systems can be applied in many

domains including health-care, education, entertainment, and home-care. It will also be an
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ideal platform for designing a new generation of more immersive and effective intelligent

tutoring and therapy systems, and robot-assisted therapeutic treatments.

While this dissertation has demonstrated the potential of the proposed affect-aware

robotic platform, there are some future research and improvements that can be made to

enhance the proposed platform. Some of these directions are:

1. Affect recognition from other modalities: In this dissertation, we only used facial

expression recognition to understand user’s affect. Although facial expressions play

a vital role in social interaction and they are a common nonverbal channel through

which HMI systems can recognize humans’ internal emotions, human affect sensing

can be obtained from a broader range of behavioral cues and signals such as body

gestures, head movements, speech acoustic analysis, dialog sentiment analysis. Us-

ing multi-modal affect recognition with audiovisual affect sensing and tactile sensors

(e.g., heart rate, skin conductivity, thermal signals etc.) can enable social robots to

understand non-visible user’s affect beyond basic expressions with higher accuracy.

2. Considering spatio-temporal features in recognizing facial expressions: The pro-

posed FER system in this dissertation showed a great accuracy in classifying facial

images. However, in practice, the robot interact with users on a continuous basis.

Methods such processing user’s facial image frame by frame and using majority vot-

ing to determine the affect over a period of time can have low accuracy, especially in

subtle emotions. An alternative approach is to consider spatio-temporal information

to determine user’s affect over a period of time. This can be solved by using Re-

current Neural Networks, however, it necessitates creating a large database of videos

captured in wild setting.

3. Improving the facial animation system: Our comprehensive HRI study on distin-

guishing the role of embodiment from physical presence, showed that there was not
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a significant difference between some emotions and perception of visual speech. The

perception of these facial cues highly depends on the algorithm and the models that

are used to generate them in the animation. Some of the facial models need to be

re-designed by the graphic artist to portray better emotions. Also, the visual speech

algorithm has room for improvement as the ground-truth (video of the human) had

significantly higher audio-visual intelligibility than our animation/robot. We used a

multi-target morphing method to generate the visual speech. Other approaches such

as using motion capture to train a visual speech generation system can enhance the

performance of visual speech in our animation.

4. Integrating eye-gaze with spoken dialog: In this dissertation, we mainly focused

on understanding user affect from facial expressions. Eye gaze is also one of the

most basic and important features of the human face for nonverbal communication.

Considering the importance of eye gaze in social interaction, the agent should be

endowed with the ability to perceive user’s eye-gaze direction for capturing user’s

attention and maintaining engagement with the user. In addition, the agent can be

empowered with the ability to control its eye-gaze direction during interaction with

the user. This can improve the ability to convey information about the emotional and

mental state of the agent and makes the interaction more natural.

In summary, this dissertation presented the development and HRI studies of a percep-

tive, and expressive, conversational, rear-projected, life-like robotic agent (aka Expres-

sionBot or Ryan) that models natural face-to-face communication between human and

emapthic agent. The results of our in-depth and comprehensive human-robot-interaction

studies show that this robotic agent can serve as a model for creating the next generation

of empathic social robotic agents for a variety of applications including but not limit ted to

aging health-care, education, and entertainment.
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Appendix B

AffectNet

Table B.1: Agreement percentage between two annotators in categorical model of affect
(%)

A1* A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 0.0** 69 70 68 0 0 0 0 0 0 0 0

A2 69 0 64.9 68.3 0 0 0 64.7 0 0 0 0

A3 70 64.9 0 70.6 67.4 69.9 63 62.3 0 48.1 0 0

A4 68 68.3 70.6 0 70.4 70.8 64.3 67.5 0 27.5 0 0

A5 0 0 67.4 70.4 0 70.6 0 0 0 0 0 0

A6 0 0 69.9 70.8 70.6 0 0 0 0 0 0 0

A7 0 0 63 64.3 0 0 0 0 0 75.8 0 0

A8 0 64.7 62.3 67.5 0 0 0 0 51.1 0 0 0

A9 0 0 0 0 0 0 0 51.1 0 0 54.4 0

A10 0 0 48.1 27.5 0 0 75.8 0 0 87.5 0 61.9

A11 0 0 0 0 0 0 0 0 54.4 0 0 0

A12 0 0 0 0 0 0 0 0 0 61.9 0 0

* A1 to A12 indicate Annotators 1 to 12

** Zero means that there were no common images between the two annotators
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Table B.2: Samples of annotated categories for queried emotion terms
Queried Expression
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Table B.3: Samples of annotated images by two annotators (randomly selected)
Annotator 1

Neutral Happy Sad Surprise Fear Disgust Anger Contempt None Uncertain Non-Face
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nn
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Sad
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ce

Arousal

V: 0.0  A: -0.98

V:  -0.47  A: -0.73

V: 0.7  A: -0.73

V: 0.23  A: -0.65

V: -0.3  A: -0.35
V: -0.85  A: -0.38

V:  -0.95  A: 0.19

V:  -0.77  A: 0.45
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V: 0.3  A: 0.62V: -0.4  A: 0.6

V: -0.12  A: -0.75

V: -0.55  A: -0.6

Figure B.1: Sample images in valence arousal circumplex with their corresponding valence
and arousal values (V: Valence, A: Arousal).
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Table B.4: Number of annotated images in each range/area of valence and arousal
Valence

[-1,-.8] [-.8,-.6] [-.6,-.4] [-.4,-.2] [-.2,0] [0,.2] [.2,.4] [.4,.6] [.6,.8] [.8,1]
A

ro
us

al
[.8,1] 0 0 21 674 1021 521 60 57 0 0
[.6,.8] 0 74 161 561 706 1006 432 738 530 0
[.4,.6] 638 720 312 505 2689 1905 1228 992 3891 957
[.2,.4] 6770 9283 3884 2473 5530 2296 3506 1824 2667 1125
[0,.2] 3331 1286 2971 4854 14083 15300 4104 9998 13842 9884
[-.2,0] 395 577 5422 3675 9024 23201 6237 42219 23281 21040

[-.4,-.2] 787 1364 3700 6344 2804 1745 821 5241 10619 9934
[-.6,-.4] 610 7800 2645 3571 2042 2517 1993 467 1271 921
[-.8,-.6] 0 3537 8004 4374 5066 3379 4169 944 873 0
[-1,-.8] 0 0 4123 1759 4836 1845 1672 739 0 0

Table B.5: Evaluation metrics and comparison of CNN baselines, SVM and MS Cognitive
on categorical model of affect on the validation set.

CNN Baselines
SVM MS Cognitive

Imbalanced Down-Sampling Up-Sampling Weighted-Loss

Accuracy 0.40 0.50 0.47 0.58 0.30 0.37

F_1-Score 0.34 0.49 0.44 0.58 0.24 0.33

Kappa 0.32 0.42 0.38 0.51 0.18 0.27

Alpha 0.39 0.42 0.37 0.51 0.13 0.23

AUCPR 0.42 0.48 0.44 0.56 0.30 0.38

AUC 0.74 0.47 0.75 0.82 0.68 0.70

Table B.6: Baselines’ performances of predicting valence and arousal on the validation set
CNN (AlexNet) SVR

Valence Arousal Valence Arousal

RMSE 0.37 0.41 0.55 0.42

CORR 0.66 0.54 0.35 0.31

SAGR 0.74 0.65 0.57 0.68

CCC 0.60 0.34 0.30 0.18
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Appendix C

Affect-Aware Agent

C.1 Empathy Stimuli

In order to evoke emotion in subjects, two stimuli each containing four video clips
(approximately 30 seconds long) were created. Each clip was intended to elicit a certain
spontaneous emotion taken from following YouTube videos:

• Happiness

– https://www.youtube.com/watch?v=1JArN6rag8s

– https://www.youtube.com/watch?v=gtMHOot16yk

• Surprise

– https://www.youtube.com/watch?v=wm0ywsD9V88

– https://www.youtube.com/watch?v=gtMHOot16yk

• Sadness

– https://www.youtube.com/watch?v=Gv63u6pFBoI

– https://www.youtube.com/watch?v=eb3J-GfY6T4

• Disgust

– https://www.youtube.com/watch?v=QuB3kr3ckYE

– https://www.youtube.com/watch?v=0sWGpfcQnHk
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C.2 Affect-Aware Questionnaire

Table C.1: Affect-Aware Questionnaire

1- The task of describing the videos was easy for me.
1 2 3 4 5

Strongly Disagree Strongly Agree

2- The videos were meaningless.*
1 2 3 4 5

Strongly Disagree Strongly Agree

3- The videos changed my feeling.
1 2 3 4 5

Strongly Disagree Strongly Agree

4- The robot explained the task clearly.
1 2 3 4 5

Strongly Disagree Strongly Agree

5- The experiment was exciting.
1 2 3 4 5

Strongly Disagree Strongly Agree

6- I enjoyed watching the videos.
1 2 3 4 5

Strongly Disagree Strongly Agree

7- The videos were long enough to be described.
1 2 3 4 5

Strongly Disagree Strongly Agree

8- I felt mentally immersed in the experiment.
1 2 3 4 5

Strongly Disagree Strongly Agree
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9- Ryan can have tender and concerned feelings for people less fortunate than
herself.

1 2 3 4 5
Strongly Disagree Strongly Agree

10- Sometimes Ryan found it difficult to see things from my point of view.*
1 2 3 4 5

Strongly Disagree Strongly Agree

11- Sometimes Ryan did NOT feel sorry for me when I was having problems or
issues.*

1 2 3 4 5
Strongly Disagree Strongly Agree

12- If Ryan would see someone being bothered or hurt, she would probably feel
protective towards them.

1 2 3 4 5
Strongly Disagree Strongly Agree

13- Ryan sometimes tried to understand me better by imagining how things look
from my perspective.

1 2 3 4 5
Strongly Disagree Strongly Agree

14- Ryan is NOT disturbed when I am upset.*
1 2 3 4 5

Strongly Disagree Strongly Agree

15- If Ryan would see someone being treated unfairly, she would NOT feel much
pity for them.*

1 2 3 4 5
Strongly Disagree Strongly Agree
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16- Ryan is often quite touched by things that she sees happening.
1 2 3 4 5

Strongly Disagree Strongly Agree

17- I would describe Ryan as a pretty soft-hearted robot.
1 2 3 4 5

Strongly Disagree Strongly Agree

18- If Ryan is upset with someone, she would try to put herself in my shoes for a
while to understand the situation.

1 2 3 4 5
Strongly Disagree Strongly Agree

19- Ryan tries to imagine how she would feel if she was in my place.
1 2 3 4 5

Strongly Disagree Strongly Agree

20- The robot was friendly.
1 2 3 4 5

Strongly Disagree Strongly Agree

21- The robot was likeable.
1 2 3 4 5

Strongly Disagree Strongly Agree

22- The robot was warm.
1 2 3 4 5

Strongly Disagree Strongly Agree

23- The robot was approachable.
1 2 3 4 5

Strongly Disagree Strongly Agree

* The scores of questions marked with asterisk are reversed.
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