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Battery energy storage (BES) is a core component in reliable, resilient, and cost-

effective operation of microgrids. When appropriately sized, BES can provide the 

microgrid with both economic and technical benefits. Besides the BES size, it is found that 

there are mainly three planning parameters that impact the BES performance, including the 

BES integration configuration, technology, and depth of discharge.  

In this dissertation, the impact of each one of these parameters on the microgrid-

integrated BES planning problem is investigated. Three microgrid-integrated BES 

planning models are developed to individually find the optimal values for the 

aforementioned parameters. These three microgrid-integrated BES planning models are 

then combined and extended, by including the impact of microgrid islanding incidents on 

the BES planning solution, to develop a comprehensive planning model that can be used 

by microgrid planners to simultaneously determine the installed BES optimal size, 

integration configuration, technology, and maximum depth of discharge.  

Besides applications in microgrids, this dissertation investigates the integration of 

BES to provide other types of support in distribution networks such as load management 

of commercial and industrial customers, distribution network expansion, and solar PV 

ramp rate control.  
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Chapter 1. Introduction 

1.1 Theoretical Background   

The deployment of energy storage systems in distribution network has considerably 

increased in recent years. Installed distributed energy storages (DES) are owned by electric 

utilities or customers and used to provide a variety of services. For example, utilities deploy 

DES to defer distribution network upgrades, improve reliability, or enhance voltage profile 

in their system. The customers on the other hand, install DES to reduce their electricity 

payment by taking advantage of electricity price variations through an energy arbitrage or 

by reducing their potential demand charges. 

The attention toward DES has also increased with the development of microgrids. 

The urgent need for reducing greenhouse gas emissions, improving the system reliability 

and power quality, and upgrading the aging transmission and distribution infrastructure, 

have led to a significant increase in the deployment of microgrids in power systems. The 

U.S. Department of Energy defines a microgrid as “a group of interconnected loads and 

distributed energy resources (DERs) with clearly defined electrical boundaries that acts as 

a single controllable entity with respect to the grid and can connect and disconnect from 

the grid to enable it to operate in both grid-connected or islanded modes” [1].  

Based on this definition, microgrids can be divided into two types: grid-tied 

microgrids and isolated microgrids. In the first type, the microgrid is connected to the main 

distribution network through a connection point known as point of common coupling 
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(PCC). Grid-tied microgrids can disconnect themselves from the distribution network and 

operate in islanded mode, protecting their demand from being affected by any external 

faults. The second microgrid type (i.e., isolated microgrid) is used to supply remote areas 

demand for electricity where the connection to the utility grid is not available.  

Microgrids are considered as viable enablers of DERs integration, and in particular, 

would facilitate an efficient and reliable integration of emission free renewable distributed 

generators (DGs) to support the environmental agenda. Renewable DGs, however, produce 

a variable output power that may impose several challenges to the microgrid operation and 

control, especially during the islanded operation. Various methods are studied to mitigate 

the generation intermittency and volatility associated with renewable DGs, including but 

not limited to demand response [2], generation curtailment [3], provisional microgrids [4] 

[5], and DES deployment [6]. The demand response and renewable generation curtailment 

methods are argued to reduce the microgrid’s economic value and/or reliability as they are 

based on either reducing the available renewable DGs generation or supplied demand (e.g., 

load shedding or load shifting). Provisional microgrids significantly facilitate the 

integration of renewable DGs, however, they require additional investments and control 

mechanism to ensure a reliable and economic operation. The DES, among the rest, is 

discussed to be the best option for mitigating the challenges imposed by renewable 

generation and improving microgrid reliability while at the same time reducing the 

microgrid operation cost.  

DES can store the excess renewable generation to be utilized when it is beneficial 

from either an economic perspective (e.g., energy arbitrage) or a technical perspective (e.g., 

frequency and voltage regulation) [7]. DES applications in microgrids can be further 
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categorized into energy applications and power applications [8]. DES technologies that 

have high power density and fast response are known to be best suited for power quality 

and frequency regulation applications. On the other hand, DES technologies that have high 

energy density and long discharging time are well suited for long-term applications 

including peak shaving and energy arbitrage. Figure 1.1 shows several existing DES 

technologies that can be used in microgrid applications. Among these technologies, battery 

energy storage (BES) technology is considered to be the most attractive option due to its 

technological maturity and ability to provide both sufficient energy and power densities 

[9].   

 

Figure 1.1 DES technologies for microgrid applications 

1.2 Literature Review  

Different methods have been proposed in literature to solve the microgrid-

integrated BES planning problems. In this section, a comprehensive literature review of 

existing methods is presented. Based on the planning objective, the existing methods are 

categorized into: a) cost-based BES planning methods and b) non-cost-based BES planning 

methods. In the cost-based methods, the BES planning problem is solved to either minimize 

the total cost or maximize the total benefits associated with installing the BES within the 

microgrid. In the non-cost-based methods, the BES planning problem is solved to provide 
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technical services such as frequency control, voltage regulation, and power smoothing. In 

such methods, the economic aspect of the problem is ignored.  

1.2.1 Cost-Based BES Planning Methods 

The investment cost associated with purchasing, installing, operating, and 

disposing the BES is greatly related to their size. Thus, most of the existing works in 

literature are concentrated on finding the optimal size for the installed BES. A few works, 

however, include other parameters such as technology and location into the microgrid-

integrated BES planning problem. The installation of the BES is economically justifiable 

only if the provided economic benefits outweigh the investment cost. Most of the reviewed 

papers formulate the BES planning problem as an optimization problem whose objective 

is either to minimize the microgrid total expansion planning cost or to maximize the total 

benefits (i.e., a cost-benefit analysis). The BES parameters are considered as a design 

variables whose optimal value is determined by solving the optimization problem. Figure 

1.2 shows the typical microgrid total expansion planning cost components, which are 

divided into two categories: microgrid operation cost and BES investment cost. The former 

includes any operation cost needed to supply the microgrid local load such as the fuel cost 

and the cost of energy exchanged with the utility grid. It must be noted that the cost or 

benefit of exchanging power with the utility grid is only considered for grid-tied 

microgrids. Nevertheless, the reviewed papers may include all or some of the microgrid 

total cost components depicted in Figure 1.2. 
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Figure 1.2 Microgrid total expansion planning cost components [10] 

The works in [11]-[14] implement mixed integer linear programming (MILP) to 

formulate the BES planning problem. In [11], the renewable generation is not considered 

and the BES is sized for a microgrid containing only dispatchable DGs which reduces the 

potential economic benefits of the BES and ignores one of the most important aspects of 

microgrids. However, this work is expanded in [12] to consider not only renewable 

generation but also a reliability criterion. Different scenarios for the power system 

conditions such as generator outages and line contingencies as well as renewable 

generation are stochastically produced using Monte Carlo Simulation (MCS). After that, 

the large number of generated scenarios is reduced by a scenario reduction technique. A 

loss of load expectation (LOLE) index is used to evaluate the reliability of the studied 

microgrid. A BES capacity expansion model is developed in [13] for an isolated microgrid. 

In this work, the selected BES size is not considered fixed and is updated through the 

planning time horizon. It is found that the developed model reduces the associated cost by 

10% as compared to fixed BES size methods. Similar to [12], this paper uses MCS to model 

the stochastic nature of wind speed, microgrid load, and DG availability, followed by a 

scenario reduction technique. The Ah-throughput is used as a measure for the BES lifetime, 

which is defined as the total amount of Ah or Wh that the BES is expected to deliver 

Microgrid Total Expansion Planning Cost 

Microgrid Operation Cost 

• Local DGs operation cost  

• Utility exchanging power cost 

or benefit  

• Power interruption cost 

BES Investment Cost 

• Power rating and energy rating 

capital costs  

• Operation cost  
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throughout the project lifetime before it needs to be replaced. The Ah-throughput is 

normally made readily available by the BES manufacturer. However, this method is not 

able to accurately determine the BES lifetime as the impact of important factors such as 

depth of discharge and number of cycles are overlooked. The work in [14] includes the 

installation year into the expansion problem and determines the optimal size and 

installation year for BES in an isolated microgrid that minimizes the total microgrid cost.  

A genetic algorithm (GA) is employed in [15] to develop the knowledge base for a 

fuzzy expert system that is used to manage the BES output power and solve a daily unit 

commitment problem in order to minimize the microgrid operation cost. In this work, the 

BES is sized using GA while its charging/discharging schedules are determined based on 

a fuzzy expert system. For economic reasons, the model proposed in [15] does not impose 

a minimum state of charge limit on the BES. Instead, a new cost associated with operating 

the BES at low state of charge is introduced to the objective function to prevent 

unnecessary deep discharge incidents. Similar to [13], the aging of the installed BES is 

modeled based on the weighted Ah-throughput. In this model, a weighting factor 

corresponding to the BES state of charge is multiplied by the amount of the actual Ah 

delivered to obtain what is called the effective cumulative Ah. This effective cumulative 

Ah is divided by the expected Ah that the BES is presumed to deliver when it is first 

installed to determine the BES loss of life. In [16], a hybrid GA-sequential quadratic 

programming (SQP) is used to optimize the size and the location of the BES units and 

capacitors in a smart grid. The SQP is used to solve the optimal power flow while the GA 

is used to determine the optimal size and location of the BES units and the capacitors that 

minimize the overall planning cost. A non-dominated sorting genetic algorithm II (NSGA-



7 

II) is employed in [17] to solve a multi-objective BES sizing problem in presence of 

demand response (DR). The considered objectives are to maximize the photovoltaic 

consumptive rate and the net profit of the microgrid. In [18] a clustering techniques are 

adopted to generate a number of scenarios associated to the wind speed, solar radiation, 

and load daily patterns to be used in BES sizing. GA is implemented to solve the proposed 

optimization problem as well.  

The work in [19] studies BES sizing considering the stochastic nature of wind 

generation. A Here-and-Now approach is implemented to model the variability of wind 

generation by including new constraints to the microgrid unit commitment formulation. 

Particle swarm optimization (PSO) method is used to find the optimal BES size that 

maximize the microgrid total benefit in the grid-connected mode and minimize the 

microgrid total cost in the islanded mode. By decomposing the BES sizing problem into 

two subproblems (i.e., a planning subproblem and an energy management subproblem), 

the work in [20] develops a two-stage optimization strategy in order to reduce the 

computation time required to find the optimal BES size. An improved PSO is applied to 

solve the planning subproblem while Mesh Adaptive Direct Search black box optimization 

algorithm is implemented to solve the microgrid energy management subproblem. The 

authors of [21] and [22] study the optimal BES sizing in the presence of DR to regulate the 

frequency and voltage of a grid-tied microgrid during islanding. A multi-objective function 

is developed aiming to minimize the BES capital cost, maintenance and operating cost, as 

well as the size required to maintain the microgrid stability. A quantum-behaved particle 

swarm optimization (QSPO) is used in [23] to optimize the size of a hybrid energy storage 

system (HESS) that is composed of batteries and ultracapacitors. The authors compare the 
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obtained results by the one obtained using conventional PSO and find that the QSPO is 

faster in solving the optimization problem.  

A new evolutionary optimization algorithm is improved and adopted by the authors 

in [24] to determine the optimal energy rating of a BES installed in a grid-tied microgrid. 

The new algorithm is called Bat Algorithm (BA) and is described as a population-iterative 

based method. The proposed improved BA (IBA) results are compared to other 

optimization methods such as conventional BA, teaching-learning-based optimization, and 

artificial bee colony in terms of the resulted error from conducted test functions. In general, 

it is shown that the IBA yields smaller error values, in terms of best value, mean value, and 

standard deviation, compared to the other methods. Another new evolutionary optimization 

algorithm known as grey wolf optimization (GWO) is applied in [25] to solve the BES 

sizing problem in a microgrid. The obtained microgrid operation cost at the optimal BES 

size along with other optimization parameters such as standard deviation and simulation 

time are compared to those obtained by different optimization methods including the 

aforementioned IBA. GWO shows a superior performance compared to other optimization 

methods. The stochastic nature of the microgrid demand, renewable generation, and 

electricity price is considered in [26]. A scenario based model is developed to formulate 

the unit commitment problem. The impact of the DES size on the microgrid operation cost 

is further investigated.  

An iterative based method is implemented in [27]–[30] to determine the optimal 

BES size. The microgrid unit commitment problem is solved for different BES sizes within 

predetermined minimum and maximum values as shown in Figure 1.3. The unit 

commitment problem is solved by implementing dynamic programming (DP) in [27], 
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knowledge based expert system controller (KBES) in [28], mixed integer nonlinear 

programming (MINLP) in [29], and MILP in [30].  The work in [27] focuses on 

determining the optimal power rating and energy rating of a Vanadium Redox Battery 

(VRB) taking into account the nonlinear relationship between the VRB power and 

efficiency. Different energy storages technologies, including BES, are considered in [28]  

and it is found that lead acid battery yields the minimum energy cost and hence it is the 

optimal energy storage technology choice. The problem of reserve sizing and BES sizing 

is investigated in [31]. The authors propose a two-stage probabilistic co-optimization 

method that determines the optimal BES size as well as the reserve amount that minimizes 

the microgrid total cost with the consideration of the system reliability. The sizing problem 

is decomposed into a master problem in which the BES size is fixed and a subproblem in 

which the optimal reserve size is calculated. The BES size is then updated and the process 

is repeated. The optimal solution (i.e., the BES optimal size and the optimal reserve) would 

be the one that minimizes the microgrid total cost. In order to reduce the calculation time, 

a Markovian steady state analysis is implemented to solve the subproblem and find the 

optimal reserve value. 



10 

 

Figure 1.3 General flowchart for sizing BES using iterative based methods [10]  

1.2.2 Non-Cost-Based BES Planning Methods 

The common aspect of the previous reviewed works is that they solve the 

microgrid-integrated BES planning problem based on an economic objective. However, 

the following papers approach the BES planning problem from a different perspective. A 

duty cycle based sizing method is used in [32] in order to determine the size of a BES to 

be used for peak shaving applications. The BES cycling and the temperature impact on the 

sizing problem are considered and included as factors that adjust the determined size. 

However, it is not clear how the authors determine the values of these factors. In [33], the 

installed BES is analytically sized in order to smooth the power oscillation seen by the 

utility grid. A control algorithm is also developed to protect the BES from being over 
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charged or discharged. The authors in [34] size the BES in order to minimize the power 

transferred through the line connecting the microgrid to the utility grid. The idea behind 

this is to reduce the dependency of the microgrid on the utility grid which will lead to 

improved microgrid reliability during islanded operation. The BES size and location are 

determined in [35] for both grid-connected and islanded microgrids simultaneously. A GA 

is used to solve the microgrid AC power flow. The fitness function is selected to minimize 

the power losses and improve the voltage profile. In [36], authors use a HESS which 

consists of batteries and supercapacitors to improve the power quality when integrating 

wind power in islanded microgrids. Supercapacitors can smooth the wind power with high 

frequency whereas the low frequency part of wind power is smoothed by batteries. The 

optimization problem is modeled by Back Propagation neural network approach and solved 

in short term (to test the wind power smoothing) and long term (to prove the economic 

viability of the model).  

The appropriate size for BES to regulate the frequency of an islanded microgrid is 

investigated in [37]–[41]. In [37] a BES size optimization method based on an artificial 

neural network (ANN) model is proposed. The model inputs are the islanded microgrid 

frequency and voltage, and the output is the optimal BES size that is obtained after training 

the data using a multilayer perceptron structure. The multilayer perceptron structure can 

ensure high accuracy of data fitting so the error of obtained optimal sizing is very small. 

Moreover, the effect of the BES location has been investigated and it is found that the 

optimal location should be close to local loads to minimize power losses. In [38], the BES 

is optimized by analyzing the value of power ramp rate (PRR) of the microgrid. The case 

study shows the effect of the BES on the frequency control with and without considering 
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the PRR. It is shown that the energy of BES that is essential for frequency control is 

remarkably reduced with the PRR consideration. The BES in [39] is used as a primary 

frequency controller to utilize the overloading characteristics of BES to restore the 

mismatch power during islanding transition in microgrids. The optimal BES capacity 

should be able to capture the maximum mismatch power. So, the mismatch power is 

calculated first to determine the BES overload capacity. The largest overloading charge or 

discharge power to restore the mismatch power is considered as the optimal power rating 

of the BES. An inertia based method is proposed in [40] to size the BES considering 

primary control (arrest the deviated frequency) and secondary control (restore the deviated 

frequency). The inertia deficiency for primary and secondary controls are measured as the 

key parameter of the BES sizing. The provided power from the BES may result in voltage 

violation, hence, the voltage stability is enhanced by using power electronics. It is 

discussed that the proposed method performs better in low resistance/reactance distribution 

networks. A HESS is presented in [41] as an islanded microgrid frequency controller. The 

frequency is controlled based on hysteretic loop control to prolong battery lifetime by 

preventing small charge/discharge cycles, while a statistical model based on MCS is 

applied to determine the optimal capacity distributions of the HESS. The HESS output 

power is determined and analyzed through simulation process on the system data. The 

optimal rated power of the battery is determined to depend on the maximum charging or 

discharging power in all cycles, while the optimal rated energy is the integration of all 

charging and discharging power in each single cycle. Similar to battery, the supercapacitor 

distributions capacity is found. The reviewed microgrid-integrated BES planning methods 

are summarized in Table 1.1 in terms of considered microgrid type, BES optimized 
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parameters and planning timeframe. A single day planning timeframe or less is labeled as 

short term whereas one year planning timeframe or longer is labeled as long term.  

Table 1.1 Summary of existing microgrid-integrated BES planning methods [10] 

Reference 

Number 

Microgrid Operation Mode BES Optimized Characteristics  Planning 

Timeframe 

Grid-
connected 

Isolated or 
Islanded  

Power 
Rating 

Energy 
Rating 

Depth of 
Disch. Technology Location Short Long 

[11] √ × √ × × × × × √ 

[12] √ × √ √ × × × × √ 

[13] × √ √ × × × × × √ 

[14] × √ √ √ × × × × √ 

[15] √ × √ √ × × × √ × 

[16] √ × √ × × × √ × √ 

[17] √ × × √ × × × × √ 

[18] × √ × √ × × × √ × 

[19] √ √ × √ × × × √ × 

[20] √ √ √ √ × × × × √ 

[21] × √ √ × × × × √ × 

[22] × √ √ × × × × √ × 

[23] × √ × √ × × × √ × 

[24] √ × × √ × × × √ × 

[25] √ × × √ × × × √ × 

[26] √ × × √ × × × √ × 

[27] √ √ √ √ × × × √ × 

[28] × √ √ √ × √ × × √ 

[29] × √ × √ × × × √ × 

[30] √ √ × √ × × × √ × 

[31] √ √ × √ × × × × √ 

[32] × √ × √ × × × √ × 

[33] √ × √ √ × × × √ × 

[34] √ × √ × × × × √ × 

[35] √ √ √ × × × √ √ × 

[36] × √ × √ × × × √ × 

[37] × √ √ × × × × √ × 

[38] × √ √ √ × × × √ × 

[39] × √ √ × × × × √ × 

[40] × √ √ √ × × × √ × 

[41] × √ √ √ × × × √ × 
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1.3 Research Motivation, Dissertation Organization, and Main Contributions  

It is found that the reviewed microgrid-integrated BES planning methods in the 

previous section have either one or more of the following shortfalls: (i) Short time frame 

(e.g., one day) or static models (i.e., operation snapshots) are used to calculate the optimal 

BES size, which reduce the accuracy and the practicality of the obtained results; (ii) A 

single BES technology is considered while ignoring the wide range of available BES with 

various technical and economical characteristics; (iii) The impact of some decisive factors 

on the BES lifetime is overlooked, such as the BES depth of discharge, number of 

charging/discharging cycles, and centralized vs. distributed installations; and (iv) On 

merely one operation mode (i.e., either grid-connected or islanded) is focused while the 

required coordination is not taken into account.  

To overcome these shortfalls, five microgrid-integrated BES planning models are 

developed in this research. Chapter 2 presents the general outlines for the developed 

microgrid-integrated BES planning models and specifically discusses the first two models 

which are used to determine the optimal BES size, integration configuration, and 

technology. The impact of the BES depth of discharge on its lifetime is explained in 

Chapter 3 and accordingly two BES planning models that enable the microgrid planners to 

consider such impact on the microgrid expansion results are proposed. A comprehensive 

microgrid-integrated planning model which determines the installed BES technology, size, 

integration configuration, and maximum depth of discharge taking into consideration the 

probability of microgrid islanding operation is presented in Chapter 4.  

Chapter 5 investigates the benefits of utilizing the BES for non-microgrid 

applications such as commercial and industrial (C&I) customers installation, distribution 
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network expansion, and PV ramp rate control. Three BES planning models that are suited 

for the aforementioned applications are developed and tested using numerical studies. This 

dissertation is written using a collection of articles published during the Ph.D. studies. 

These articles are listed at the end of this dissertation under “List of Publications” and cited 

in the reference section.   

The main contributions of this dissertations are as follow:  

• The consideration of important planning parameters in microgrid-integrated 

BES planning problems. These parameters include: BES size, integration 

configuration, technology, and depth of discharge.  

• Improving the accuracy and practicality of BES planning problems results 

by including the impact of BES operation on its lifetime in the planning 

problem formulation.  

• A comprehensive microgrid-integrated BES planning model is developed 

in this dissertation. The developed model enables the microgrid planner to 

simultaneously determine the optimal BES size, technology, maximum 

depth of discharge, and integration configuration taking into accounts both 

microgrid operation modes (i.e., grid connected and islanded operation 

modes).  

• Besides microgrid services, BES planning models for other types of support 

in distribution networks are presented.    
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Chapter 2. Microgrid-Integrated BES Optimal Planning 

2.1 Introduction  

The optimal BES parameters are determined based on economic objective. This 

objective is selected to be the minimization of the microgrid total expansion planning cost 

as shown in Figure 1.2. Expansion planning problems are commonly formulated using 

Mixed Integer Linear Programming (MIP) [42]–[44]. In MIP, an objective function is 

typically needed to be either maximized or minimized. This objective function is composed 

of variables (continuous, integers, or binaries) called decision variables and is solved 

subject to a set of constraints. If the studied expansion problem consists of nonlinear 

constraints, these constraints must be linearized first before solving the problem. An 

example of how to linearize bilinear terms is given in Appendix A.   

A commonly used approach to solve MIP problems is branch and bound approach. 

This approach is based on two processes: 1) bounding process, in which the solution of a 

relaxed MIP problem (e.g., transforming MIP problem into LP problem by removing 

integrality restrictions) is found and imposed as lower bound for minimization problems or 

upper bound for maximization problems; 2) branching process, in which the problem is 

split into a number of subproblems. A comprehensive discussion on the branch and bound 

approach is given in Appendix B [45]. Powerful solvers such as CPLEX, Xpress-MP, and 

SYMPHONEY implement a combination of branch and bound techniques and cutting-
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plane techniques to accelerate the computation time associated with solving MIP problems, 

which allows large MIP problems to be solved using personal computers.  

Compared with MIP, using nonlinear programming to model the microgrid 

expansion problem will have two major impacts on the results: (1) solution optimality, as 

nonlinear programming models may get stuck in a local optimal solution and never reach 

the global optimal solution, which is not the case in linear programming models; (2) 

solution time, nonlinear programming models have higher computation time compared to 

linear programming models, especially when binary variables are introduced to the 

problem, which is the case in the proposed microgrid expansion formulation in this paper. 

In general, it can be said that mixed integer nonlinear programming (MINLP) are hard to 

be solved and can be numerically intractable [46]. Thus, the developed BES planning 

models in this dissertation are formulated using MIP and the resulted optimization 

problems are solved using General algebraic modeling system (GAMS).   

2.2 General Models Outlines  

The objective of the developed microgrid-integrated BES planning models is to 

minimize the microgrid total expansion planning cost which can be defined as:    

  



























S

aRaR

G

)(

i

iiii

d h

dh

d h

M
dhdh

i d h

idhidhi

CECCPP

vLSPIPF

Min



             (2.1) 

The first term in (2.1) represents the DGs generation cost. This cost is normally 

considered for dispatchable DGs only as renewable DGs generation is free of cost. The 

cost or benefit of exchanging power with the main grid is given in the second term. In grid-

connected mode, local load can be partially supplied by the utility grid, however in islanded 
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mode or in isolated microgrids the microgrid must rely solely on its local DERs. Any 

generation shortage in this case results in load curtailment, which reduces the microgrid 

reliability. Therefore, the third term which indicates the cost of unserved energy is imposed 

as a penalty for failing to supply the local demand. The value of lost load (VOLL) is used 

to quantify the economic loss associated with the unserved energy [47]. The VOLL 

represents a customer’s willingness to pay for reliable electricity service [48]. This value 

depends on the customer type and location in addition to the outage time and duration. The 

BES investment cost, which is the last term in (2.1), is composed of annualized power 

rating and energy rating capital costs. It is assumed that the power conversion system cost 

and the BES annual maintenance cost are embedded in the power rating capital cost. Both 

the BES capital costs (i.e., power rating cost and energy rating cost) are annualized using 

(2.2) 
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The objective function of the microgrid expansion planning problem given in (2.1) 

is subject to several operation and technical constraints, associated with the microgrid, 

dispatchable DGs, and the BES, that must be taken into account as discussed in the 

following.  

2.2.1 Microgrid Operation Constraints   

Microgrid’s system level constraints include power balance equality equation, 

power exchange with the utility grid limit, and limits on load curtailment. The microgrid 

operation constraints are given as follow:  
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The load balance equation (2.3) ensures that the total generation in the microgrid, 

the BES output power, and the power that are either purchased from (i.e., positive) or sold 

to (i.e., negative) the main grid matches the demand at all times. If the line connecting the 

microgrid to the main grid is disconnected or if the considered microgrid is isolated, the 

total available generation within the microgrid may not be sufficient to supply the demand. 

In this case, load would be curtailed to satisfy the power balance and the load curtailment 

variable (LS) will have a positive value. The exchanged power with the main grid is 

restricted by both the capacity of the line that connects the microgrid to the main grid and 

by the capacity of the substation transformer as given in (2.4). It is also possible to limit 

the volatility of the power exchanged with the main grid by imposing certain cap values on 

PM value [49]. The parameter δ is used to define the microgrid type. That is, δ is 1 if grid 

tied microgrid is considered and 0 if isolated microgrid is considered. One of the 

motivations for microgrid deployment is the continuity of service for critical loads. The 

critical loads are typically associated with high VOLL so it is not economically advisable 

to consider them for the load curtailment. Keeping this in mind, the load curtailment limits 

can be defined as in (2.5). In order to maintain a reliable operation of the isolated microgrid, 

some reserve must be available to compensate for any sudden shortage in the generation or 
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increase in the load. This reserve will only be used to supply the critical load when needed. 

In other words, a load curtailment may occur even if there is a reserve in the microgrid. 

The dispatchable units and the BES units can provide this reserve for the microgrid. There 

are different methods to quantify the required reserve. Here, the required reserve must be 

at least equal to a value Rtarget which depends on the microgrid critical load at each interval 

(2.6). 

2.2.2 Dispatchable DGs Operational and Physical Constraints  

These constraints represent the physical limitations of the dispatchable DGs which 

differ upon the DG technology and can be expressed as:  
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The output power of the dispatchable DGs is limited by maximum and minimum 

capacity (2.7). The generation variation between two successive periods is limited by ramp 

up and ramp down constraints (2.8)-(2.9). When the DG shuts down, it must stay off for a 

certain minimum down time (2.10). Similarly, when the DG starts up, it must remain on 

for a certain minimum up time (2.11). The contribution of each DG in the online reserve is 

given in (2.12). The DGs that participate in providing reserve must be online and ready to 
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generate as fast as they receive the output change signal. Note that if the microgrid operates 

in grid tied operation mode, the required reserve in (2.6) will be 0 as the main grid will 

pick up any difference between generation and demand, and therefore the DGs do not need 

to participate in the online reserve.  

2.2.3 Microgrid Expansion Planning Budget Limit  

Any expansion planning project normally has a budget limit that cannot be 

exceeded. Investing in BES is no exception. Thus, the BES investment cost is limited by 

the available budget. The available budget limit imposes a higher cap on the BES size and 

can be expressed as: 
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2.3 Microgrid-Integrated BES Optimal Planning Focused on Size and Integration 

Configuration 

The BES can be integrated into the microgrid as an aggregated or community unit 

or as distributed units as shown in Figure 2.1. In the aggregated configuration, one BES 

with a relatively large size is installed next to the utility substation. In the distributed 

configuration, however, multiple smaller-sized BESs units are connected to several busses 

in the microgrid. The BES units may have identical or different power and energy ratings. 

A performance comparison between the aggregated configuration and distributed 

configuration in wind farm application is performed in [50]-[51]. This comparison is 

focused only on the technical side ignoring the economic issues of the problem. Moreover, 

the optimal size of the BES is not determined in the proposed methods even though it is an 

important factor in the assessment of the BES performance. It is very important for 
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microgrid planners to decide which configuration is best suited for their microgrids. 

Moreover, if distributed BES configuration is chosen, the optimal number of the installed 

BES units as well as the optimal size for each unit must be found.  

 

                        (a)                                                                   (b) 

Figure 2.1 Integrating BES in the microgrid; (a) aggregated configuration, (b) distributed 

configuration [52] 

2.3.1 Problem Formulation 

In order to determine the optimal BES size and units number, the objective function 

in (2.1) is solved subject to the previous set of constraints (2.3)-(2.13) as well as the 

following constraints that represent the BES operation:  
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The BES size (i.e., the power rating and the energy rating) are restricted by given 

maximum and minimum values as represented in (2.14) and (2.15), respectively. The 

binary variable xin denotes the BES installation state for BES unit n. If the BES unit is 

installed xin is 1, otherwise it is 0. The BES power is defined as the summation of its 

discharging and charging powers (2.16), where it is made sure that only one is active in 

any given time period using the BES binary operation state u. If u is 1, the BES is 

discharging, otherwise it is either idle or charging.  The BES discharging power is positive 

(2.17) whereas the charging power is negative (2.18). A cycles indicator ξint is added to the 

BES operation model as given in (2.19). Every time the BES begins new discharging cycle, 

the value of ξint will be 1, otherwise it is zero. By this way, the BES performed cycles over 

the expansion planning horizon can be determined. The number of BES performed cycles 

has a significant impact on the BES lifetime [53]. In this BES planning model, a cycle limit 

is imposed on the BES daily cycles in order to prolong its lifetime (2.20). The stored energy 

in each BES is calculated by (2.21) and restricted by (2.22).  Equation (2.23) is used to 

model the BES participation in the online reserve requirement. The BES Charging power 

can be included in the reserve availability since the charging process can be quickly 

interrupted and the power that was used to charge the battery can be used toward supplying 
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the load. Moreover, the minimum of either the available stored energy in the BES at each 

interval and the rated power is considered as available reserve. In grid connected mode of 

operation, the BES does not participate in the online reserve application as any mismatch 

between the microgrid generation and demand will be covered by the main grid.     

2.3.2 Case Study 

Microgrid and BES Data 

A test grid-tied microgrid consisting of two gas turbine units, a PV array, a wind 

generator, and an aggregated load is used to investigate and validate the proposed model. 

The technical characteristics of the gas units are given in Table 2.1. The PV array power 

rating is 1.5 MW and the wind generator power rating is 1 MW. The hourly output power 

of the PV array, the hourly output power of the wind generator, the hourly microgrid 

aggregated load, and the hourly electricity market price are obtained from [54]. The 

maximum power that can be transferred to the main grid is assumed to be 10 MW. The 

BES characteristics are shown in Table 2.2. Two cases are considered: base case operation 

(without BES installation) and BES case. The results are given below: 

Table 2.1 Dispatchable generation units’ characteristics  

Unit 
Cost Coefficient 

($/MWh) 

Min.-Max. 

Capacity 

(MW) 

Ramp Up/Down 

Rate 

(MW/h) 

Min Up/Down 

Time (hour) 

1 75.7 0.8-8 2.5 1 

2 80.1 0.5-5 2.5 1 

Table 2.2 BES characteristics  

Maximum 

Power 

Rating 

(MW) 

Maximum 

Energy 

Rating 

(MWh) 

Power Rating 

Capital Cost 

($/MW/year) 

Energy  

Rating  

Capital Cost 

($/MWh/year) 

Fixed 

 Cost 

($/year) 

Round  

Trip 

Efficiency 

(%) 
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10 20 20,000 11,000 10,000 90 

 

Results and Discussion  

In the first case (i.e., base case) the only cost considered is the microgrid operation 

cost since the BES is not installed. The total generation cost is $2,163,984/year. The 

microgrid profit of exchanging energy with the main grid is $823,862/year. This yields a 

total microgrid operation cost of $1,340,122/year. 

However, in the second case (i.e., BES Installation Case), the proposed model is 

used to find the optimal size and number of installed BES units that minimizes the 

microgrid total expansion planning cost. The maximum number of BES units that can be 

installed in the system is assumed to be 4 to reduce the computation burden. The discharged 

cycles of each BES is limited to two cycles per day as imposed by (i.e., K=2 in (2.20)). The 

optimal number of installed BES units in this case is 2. The power rating and energy rating 

of each BES unit is given in Table 2.3. The microgrid total cost reduces to $1,266,863/year 

compared to the base case. This cost is composed of a total BES investment cost of 

$420,000/year, the generation cost of $1,689,341/year, and the benefit of exchanging 

energy with the main grid of $842,478/year.  

Table 2.3 Installed BES units optimal size [52] 

Installed BES unit number Rated Power (MW) Rated Energy (MWh) 

1 4.05 9 

2 4.95 11 

The installed BES units charging/discharging cycles for one sample day are 

depicted in Figure 2.2. Both BES units are charged during low price periods (hours 1, 2, 
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and 3) and discharged during high price periods (hours 17-20). This helps the microgrid to 

reduce its operation cost by selling the low price energy to the main grid during high price 

hours (i.e., an energy arbitrage). The BES units also follow a rather similar patterns in other 

days. 

 

Figure 2.2 The charging/discharging power of installed BES units and the electricity price 

[52] 

To further investigate the impact of the number of the installed BES units, different 

scenarios with various number of BES units installations are studied. The results are shown 

in Figures 2.3-2.5. The investment cost increases with increasing the number of BES units 

as shown in Figure 2.3. From Figure 2.4, it can be seen that the microgrid operation cost 

decreases as n increases until n reaches 2 and then increases again. Same behavior is 

observed at the microgrid total expansion planning cost as can be seen in Figure 2.5. The 

minimum total expansion planning cost occurs at n = 2 which is similar to the solution 

obtained by the proposed microgrid-integrated BES planning model. This validates the 

ability of the proposed model to determine both the optimal number and the optimal size 

of the ESS in the microgrid. Detailed cost analysis for all scenarios is given in Table 2.4. 
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Figure 2.3 Investment cost with different number of installed BES units 

 

 

Figure 2.4 Microgrid operating cost with different number of installed BES units 

 

 

Figure 2.5 Microgrid total expansion planning cost with different number of installed BES 

units   
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Table 2.4 Detailed cost analysis for different BES units number [52] 

Installed 

BES Units 

Number 

BES 

Investment 

Cost ($/yr) 

Generation 

Cost ($/year) 

Profit of 

Power 

Exchanged 

($/year) 

Operation 

Cost 

($/year) 

Expansion 

Planning 

Cost 

($/year) 

0 0 2,163,984 823,862 1,340,122 1,340,122 

1 270,000 1,815,074 796,585 1,018,489 1,288,489 

2 420,000 1,689,341 842,478 846,863 1,266,863 

3 430,000 1,719,841 860,563 859,278 1,289,278 

4 440,000 1,693,881 783,122 910,759 1,350,759 

When aggregated BES configuration is adopted, the optimal BES power rating and 

energy rating is found to be 5.85 MW and 13 MWh, respectively. However, the lack of 

flexibility in aggregated configuration, especially when the discharging cycles are limited, 

prevent the microgrid from taking advantage of the electricity price variations to increase 

its benefit compared to the distributed BES configuration. Moreover, it is observed that the 

cost of local generation is the highest in aggregated case while the benefit of exchanging 

power with the main grid is the lowest. Increasing the discharging cycles limit will enhance 

the economic viability of aggregated configuration but it will also reduce its lifetime. 

Distributed BES configuration, on the other hand, tends to cope better with price electricity 

variations while prolonging the BES lifetime. 

2.4 Microgrid-Integrated BES Optimal Planning Focused on Size and Technology  

Different BES technologies possess different characteristics including power rating 

cost, energy rating cost, round trip efficiency, depth of discharge, and cycle lifetime. Thus, 

it is very critical to select the appropriate BES technology for the planned microgrid 

considering the required investment and the resultant operational and reliability benefits 
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[55]. The majority of existing methods commonly consider merely one type of energy 

storage while ignoring the impact of their distinct technology characteristics on the optimal 

solution. The studies in [28] and [56] consider the BES technology in sizing, however the 

proposed methods are either based on iterative process or genetic algorithm, which are 

known for high computation burden [57]. In this section, a developed mathematical model 

is presented to determine the BES technology (or a combination of technologies) along 

with their optimal sizes that minimize a standalone microgrid expansion planning cost 

given in (2.1). Even though we examine the problem from an economic perspective, the 

presence of the cost of energy of not supplied in the objective function implies that the 

microgrid reliability is also taken into consideration when the optimal solution is found. 

Four BES technologies are considered: Lead Acid, Sodium Sulphur (NaS), Vanadium 

Redox (VRB), and Nickel Cadmium (NiCd). The proposed model, however, can be used 

to solve any combination of BES technologies as long as their characteristics are known. 

The considered characteristics are power rating cost, energy rating cost, round trip 

efficiency, life cycle, and depth of discharge. The contribution of this work is the provision 

of expansion planning model that takes into account different BES technologies, which 

expands the range of options for microgrid developers. The proposed model further 

considers practical factors that affect the BES operation such as depth of discharge, 

lifetime, and round trip efficiency in the optimization process. Unlike the previous 

expansion model, this model considers stand-alone microgrid (i.e., δ=0). Moreover, 

different BES technologies are considered in this model compared to the previous model 

where only one BES technology is considered.  
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2.4.1 Case Study 

Microgrid and BES Data 

A standalone microgrid, as in Figure 2.6, is used to test the proposed model. The 

technical characteristics of the diesel generator are given in Table 2.5. The hourly actual 

output power for a 1.5 MW PV and a 1 MW wind turbine as well as the hourly aggregated 

local load are retrieved from [54]. The microgrid local peak load is 8 MW, where 40% of 

this load is assumed to be critical that must be supplied at all times. The required reserve 

is assumed to be 10% of the critical load at each hour (i.e., 𝑅𝑑ℎ
target

=0.1*CLdh) A VOLL of 

$20,000/MWh is used in the studies considering a combination of residential and small 

commercial customers. Table 2.6 shows the characteristics of the considered BES 

technologies in this paper, which are borrowed from [58] and [59]. Note that the BES 

capital costs are converted to annual bases using (2) with the assumption of 5% interest 

rate and 10 years project lifetime. The minimum energy rating limits is assumed to be zero 

for the considered BES technologies. For the maximum energy rating limits, maximum 

discharge duration of 4 hours is assumed. The maximum energy rating can be found by 

multiplying the maximum power rating limit of each BES technology with the maximum 

discharge duration time. The expansion planning budget is restricted to $1 million. 
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Diesel Generator
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Battery Energy Storage 

Residential & Commercial 

Demand  

Wind Turbine 

PV
 

Figure 2.6 Standalone microgrid structure [60]   

Table 2.5 Diesel generator characteristics  

Cost Coefficients 

($/kWh) 

Maximum Power 

Capacity (MW) 

Minimum Power 

Capacity (MW) 

Min Up/Down 

Time (hour) 

0.36 8 1.6 1 

Table 2.6 BES technologies characteristics 

BES 

Technology 

Power 

Rating 

Min./Max 

(MW) 

Power 

Rating 

Capital Cost 

($/MW-yr) 

Energy 

Rating 

Capital Cost 

($/MWh-yr) 

Cycles 

Lifetime 

(Cycles/yr) 

D 

(%) 

η 

(%) 

Lead-acid 0/20 38,800 25,900 200 70 78 

NaS 0.5/8 129,500 38,800 250 100 89 

VRB 0.3/3 77,700 19,400 1000 75 85 

NiCd 0/40 64,700 103,600 300 100 78 

Results and Discussion  

Three cases with different microgrid components are studied in the simulation.  

Case 1: In this case the microgrid demand is met solely by the diesel generator. 

This case represents the worse-case scenario when only one power source is supplying the 

load. It is found that 50.033 MWh/year of demand is not supplied. The cost of not supplying 
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this demand is $1,000,656/year. The DG operation cost is $15,134,704/year. The 

summation of these two costs yields a microgrid total cost of $16,135,360/year.  

Case 2: In order to improve the reliability and reduce the microgrid operation cost, 

BES units are considered for installation. The objective is to find the appropriate BES 

technology, or a combination of technologies, as well as their optimal size. Based on the 

simulation results, the optimal solution yields when NaS battery is installed with 0.5 MW 

power rating and 3 MWh energy rating. The microgrid expansion planning cost is 

$15,352,480/year. This cost is composed of cost of energy not supplied ($18,180/year), 

BES investment cost ($181,149/year), and diesel generator operation cost 

($15,153,151/year). 

Case 3: In this case renewable DGs are further considered in the microgrid. To 

examine the renewable DGs impact on the BES technology selection and sizing, different 

penetration levels are considered. The renewable penetration is changed by multiplying 

renewable DGs output power by a renewable generation factor. Four renewable generation 

factors are considered in the simulation: 50%, 100%, 150%, and 200%. The 100% 

renewable generation represents a penetration level of 31.25% (considering the peak load 

of 8 MW and total renewable generation capacity of 2.5 MW). The obtained results for 

different renewable penetration scenarios as well as for Cases 1 and 2 are given in Table 

2.7 and Table 2.8. It can be seen from the results that the renewable penetration has a great 

impact on the BES technology selection and size. Generally, it is observed that as the 

renewable penetration increases, the amount of unmet demand decreases which means that 

the overall microgrid reliability improves. Increasing the renewable penetration also 
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reduces the microgrid expansion planning cost. However, this may not be true for higher 

penetration since relatively larger scale BES units are required to absorb the excess power, 

which imposes higher investment cost to the microgrid. It is also found that the 

combination of different BES technologies is not economic for the considered microgrid. 

Table 2.7 Detailed cost analysis for the studied cases [60]  

Case Number 
MG 

Components 

Unmet 

Demand 

(MWh/yr) 

Cost of 

Energy Not 

Supplied 

($/yr) 

Diesel 

Generator 

Cost 

($/yr) 

Expansion 

planning 

Cost 

($/yr) 

1 
Diesel 

Generator 
50.033 1,000,656 15,134,704 16,135,360 

2 

Diesel 

Generator 

and BESs 

0.909 18,180 15,153,151 15,352,480 

3 

50% 

Renewable 
Diesel 

Generator, 

BESs, and 

Renewable 

DGs 

0.30 6,000 13,964,794 14,013,504 

100% 

Renewable 
0.740 14,800 12,711,213 12,834,743 

150% 

Renewable 
0.248 4,960 11,572,004 11,674,548 

200% 

Renewable 
0.20 4,000 10,405,626 10,567,642 

Table 2.8 Installed BES technology information for the studied cases [60]  

Case Number 

Installed 

BES 

Technology 

Power 

Rating 

(MW) 

Energy 

Rating 

(MWh) 

BES 

Investment 

Cost 

($/yr) 

Number of 

Cycles 

(Cycles/yr) 

1 - - - - - 

2 NaS 0.5 3 181,149 250 

3 

50% 

Renewable 
VRB 0.3 1 42,710 126 

100% 

Renewable 
NaS 0.540 1 108,730 249 
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150% 

Renewable 
Lead Acid 1.18 2 97,584 172 

200% 

Renewable 
Lead Acid 2.07 3 158,016 200 

For the sake of comparison and assurance of the model’s ability to find the optimal 

solution, the simulation is performed for different BES technologies with 100% renewable 

penetration. The obtained results are shown in Table 2.9. It can be seen that the microgrid 

minimum expansion planning cost is found when NaS battery is installed which conforms 

to the proposed model results.  

Table 2.9 Simulation results for different BES technology with 100% renewable 

penetration 

Installed 

BES 

Technology 

Optimal 

Power 

Rating 

(MW) 

Optimal 

Energy 

Rating 

(MWh) 

Unmet 

Demand 

(MWh/yr) 

BES 

Investment 

Cost 

($/yr) 

MG 

Expansion 

Planning 

Cost 

($/yr) 

Lead-acid 0.546 1 2.326 47,085 12,843,823 

NaS 0.540 1 0.740 108,730 12,834,743 

VRB 0.320 1 2.850 44,264 12,844,585 

NiCd 0.540 1 0.740 138,538 12,864,714 
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Chapter 3. Consideration of BES Degradation in Microgrid-Integrated BES 

Planning Problems   

3.1 Introduction  

The BES degradation is greatly related to its operation. How deep the BES is 

discharged and how many charging/discharging cycles are performed have a significant 

impact on the BES rate of degradation. The relationship between these operation 

parameters and the BES lifetime must be taken into account when the BES operation or 

planning problems are investigated. One of the common approaches used to consider the 

BES degradation phenomena in the BES operation problem is to add an extra term to the 

objective function that represents the BES degradation cost in $/kWh (i.e., based on its 

charged/discharged energy) [61]–[64]. In BES planning problem, however, the Ah-

throughput model is normally used to estimate the BES lifetime [15], [65]. In this model, 

the total delivered energy by the BES during the planning time horizon is computed and 

compared with the expected Ah (i.e., current-hour) that the BES can deliver during its 

lifetime, which is typically provided by the manufacturer. This, however, may yield 

inaccurate estimation of the BES lifetime as the relation between the BES depth of 

discharge and number of cycles are not taken into consideration.  

Different methods are proposed to estimate the BES lifecycle [66]–[68]. However, 

it is not uncommon for BES manufacturer to provide the relationship between lifecycle and 

depth of discharge. This information is normally presented in a curve as the one depicted 
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in Figure 3.1. As the depth of discharge increases, the BES lifecycle decreases. Different 

BES technologies have different lifecycle versus depth of discharge relationships. In lead 

acid batteries, for example, this relationship tends to exhibit an exponential form whereas 

in lithium ion batteries a linear relationship is normally observed.  

 

 

Figure 3.1 An example of BES depth of discharge and lifecycle relationship [69] 

3.2 Optimal BES Maximum Depth of Discharge Determination  

3.2.1 Problem Formulation 

This model uses the relationship between the BES depth of discharge and lifecycle 

to determine not only the optimal size of the installed BES but also the optimal maximum 

depth of discharge. The microgrid expansion planning problem is solved for isolated 

microgrid, which means the microgrid type definer (δ) is set to be 0 in (2.4), (2.5), and 

(2.6). The total cost given in (2.1) is minimized subject to the common constraints (2.3)-

(2.13). The following equations are used to model the installed BES operation and the 

impact of the depth of discharge on the BES lifetime:  
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The relationship between the BES depth of discharge and number of cycles, which 

is normally provided by the BES manufacturer, is used in this microgrid-integrated BES 

planning model to determine the optimal size and depth of discharge for the installed BES. 

As MIP is used to formulate the expansion problem in this research, the depth of discharge 

curves are linearized by using a piecewise linearization approximation as depicted in 

Figure 3.2. It is worth noting that increasing the number of depth of discharge segments 

reduces the approximation error but at the same time increases the computational 

requirements. Index m is used to represent the selected segment for the depth of discharge 

value in a step-wise depth of discharge curve.  
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Figure 3.2 Piece wise linearization of BES depth of discharge-lifecycle curve [69] 

As can be seen from (3.6), the installed BES cannot be discharged beyond the 

determined optimal depth of discharge value and cannot be charged above the optimal 

energy rating. The binary variable w determines the optimal depth of discharge value. The 

summation of w over m must be less than or equal to 1 to ensure that only one value of the 

BES depth of discharge is chosen (3.7). The BES energy rating is determined based on the 

optimal power rating and continuous charging/discharging duration (3.10).  

3.2.2 Case Study 

Microgrid and BES Data 

A standalone microgrid that contains one diesel generator, one PV unit, one wind 

turbine, and one aggregated local load, is used to show the practicality and the merits of 

the proposed microgrid expansion model. The characteristics of the microgrid generation 

units are given in Table 3.1. The historical data for the microgrid load and renewable 

generation are obtained from [54] for one year. The microgrid peak load is 8.49 MW. A 
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combination of residential and commercial customers is assumed for this microgrid with a 

value of lost load of $30,000/MWh [48]. The critical load is 40% of the microgrid load at 

each time interval. The microgrid online reserve must be greater than or equal to 10% of 

the critical load to compensate for any sudden decrease in generation or increase in 

demand. Figure 3.3 shows the difference between the microgrid load and available 

generation taking into account the required online reserve. A negative difference means 

that the microgrid has sufficient generation to meet the load and the required online reserve. 

On the other hand, the positive values represent the unserved load due to the shortage in 

the available generation. 

Table 3.1 Microgrid generation units characteristics 

Unit 
Cost Coefficient 

($/MWh) 

Minimum Capacity 

(MW) 

Maximum 

Capacity (MW) 

Diesel Engine 200 1.4 7 

Wind turbine - - 1 

PV - - 1.5 

 

 

Figure 3.3 Difference between microgrid load and installed generation capacity 
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 According to [28], lead acid battery is found to be one of the best BES technologies 

for standalone microgrid applications. Lead acid battery is known to have a low investment 

cost as well as a low life cycle. Thus, it is very important to optimize the battery depth of 

discharge which in turn impacts the number of cycles before the battery reaches its end of 

life time. Even though lead acid battery is used in this simulation, the proposed model can 

be applied to any other battery technology without loss of generality. Table 3.2 provides 

the annualized costs associated with purchasing and installing the lead acid battery in the 

microgrid for different BES lifetimes [70]. The amount of money that can be spent 

investing on the BES is limited by the available budget limit which is assumed to be $3 

million. This budget limit is also annualized and given in Table 3.2 for each BES lifetime. 

The costs are computed based on a 4% interest rate. The round trip efficiency of the lead 

acid battery is assumed to be 80% and the charging/discharging periods are assumed to be 

3 hours. The relationship between the lead acid battery cycles and its depth of discharge is 

taken from the manufacturer data sheet [71] and presented in Table 3.3. The number of 

cycles for each depth of discharge value must be divided by the BES lifetime to get the 

annual number of cycles for each BES lifetime. 

Table 3.2 Lead acid battery annualized costs and budget limit 

Lead acid Battery 

Lifetime (yr) 

Annualized Power 

Rating Related Cost 

($/MW/yr) 

Annualized Energy 

Rating Related Cost 

($/MWh/yr) 

Annualized Budget 

Limit 

($/yr) 

10 74,658 8,629 396,873 

20 64,716 5,150 220,745 

30 61,566 4,047 173,490 
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Table 3.3 Lead acid battery cycles at different depth of discharge  

Depth of 

Discharge (%) 

Number of Cycles Depth of 

Discharge (%) 

Number of Cycle 

5 30000 55 650 

10 7900 60 580 

15 4000 65 520 

20 2500 70 490 

25 1800 75 450 

30 1500 80 430 

35 1200 85 400 

40 950 90 380 

45 800 95 370 

50 700 100 350 

Results and discussion  

Two cases are studied: in the first case, the microgrid operation without the 

integration of the lead acid battery is studied; in the second case, the expansion model is 

applied to determine the optimal size and depth of discharge for the installed lead acid 

battery that yields the minimum expansion cost. This case is solved for various BES life 

time scenarios. The obtained results for each case are discussed below:  

Case 1: The microgrid load is supplied by the diesel generator and renewable DGs. 

It can be seen from Figure 3.3 that the microgrid load is higher than the installed generation 

capacity during the peak periods, which occurs rarely during the year. As mentioned 

before, the diesel generator fuel consumption and efficiency depend on the diesel generator 

output power compared to its rated power and therefore it is not economically and 

technically advisable to oversize the diesel engine only to supply those rarely occurred 

demands. The unserved demand in this case is found to be 23.4 MWh/year. The computed 

costs associated with this case are given in Table 3.4. 
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Case 2: A lead acid battery is integrated into the microgrid in order to reduce the 

unserved load (i.e., to improve the microgrid reliability) as well as the operation cost. Three 

BES lifetime scenarios, including 10 years, 20 years, and 30 years, are considered in this 

case. The costs and optimal values for each BES lifetime scenario are given in Table 3.4 

and Table 3.5 respectively. From the results presented Table 3.4 in it is clear that the 

integration of the lead acid battery is economically justifiable regardless of the considered 

BES life time, as the reduction in the microgrid operation cost is higher than the investment 

cost imposed by the battery installation. The 20-year BES life time yields the minimum 

microgrid total expansion planning cost. However, if more weight is put on the microgrid 

reliability, then a 10-year BES lifetime would be the more desirable solution. It is further 

noticed that a larger battery size and a lower depth of discharge are needed as the BES life 

time increases. This comes from the fact that higher depth of discharge and BES life time 

reduce the cycles that can be performed by the BES. Thus, a trade off between the size and 

depth of discharge must be performed to reach the optimal solution. 

Table 3.4 Cost analysis for the considered cases [69]   

Case 

Number 

Project 

lifetime 

(years) 

Lead Acid 

Battery 

Investment Cost 

($/year) 

Operation Cost ($/year) Microgrid 

Total 

Expansion 

Planning 

Cost 

($/year) 

Diesel 

Generation 

Cost 

Unserved 

Energy Cost 

1 - - 6,987,198 702,000 7,689,198 

2 

10 61,332 6,990,960 202,639 7,254,931 

20 51,662 6,990,917 207,720 7,250,299 

30 60,057 6,990,833 216,000 7,266,891 
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Table 3.5 Determined optimal values for case 2 [69] 

Project 

lifetime 

(years) 

Optimal Size Optimal 

Depth of 

Discharge 

(%) 

Number of 

Performed 

Cycles 

Unserved 

Energy 

(MWh) 

Power 

Rating 

(MW) 

Energy 

Rating 

(MWh) 

10 0.61 1.83 95 34 6.75 

20 0.64 1.93 75 22 6.92 

30 0.81 2.44 45 26 7.20 

Another representation for the BES depth of discharge value is the minimum state 

of charge, which defines the minimum amount of energy that must be stored in the battery 

at each time interval. For example, a 75% depth of discharge value is equivalent to a 25% 

minimum state of charge. The state of charge for the installed BES is given in Figure 3.4 

for a sample day. It is clear that the lead acid battery state of charge remains above the 

minimum state of charge value determined by the model.  

To further check the accuracy of the obtained results and examine the impact of the 

depth of discharge value on the expansion cost, the simulation is run with a variety of depth 

of discharge values while the lead acid battery size is kept at the determined optimal value. 

Figure 3.5 shows the microgrid total expansion planning costs for the considered BES 

lifetimes. The expansion cost decreases as the depth of discharge increases until it reaches 

the optimal depth of discharge determined by the proposed expansion model after which 

the expansion cost increases again. For a 10-year BES lifetime, the expansion cost is almost 

the same for depth of discharge values larger than 80%. 
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Figure 3.4 Lead acid battery state of charge for one sample day [69] 

 
Figure 3.5 Microgrid total expansion planning cost for different lead acid battery life and 

depth of discharge values at the determined optimal size [69] 

3.3 Variable Depth of Discharge impact on BES Degradation   

Since different BES cycles will have different depth of discharge values, it is 

essential to find a BES planning model that can determine the actual depth of discharge at 

each performed cycle and utilizes this value to accurately estimate the associated BES 

degradation. For this reason, a new factor that represents the depth of discharge impact on 

the BES lifetime is introduced in this model. The new factor is called the BES degradation 
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factor and denoted by ψ. This factor is derived from the BES depth of discharge versus 

lifecycle curve given in Figure 3.2 and calculated using (3.11). 

mSi
N

N

mD

D
im  ,                                         

max

      (3.11) 

 

Where maxD
N  and 

mDN  represent the maximum number of cycles that the BES can 

perform at the maximum depth of discharge (Dmax) and the calculated depth of discharge 

(Dm), respectively. An example of the derived degradation factor is shown in Figure 3.6. If 

the BES is discharged at the maximum depth of discharge, ψ will be 1, otherwise it will be 

smaller than 1. It is worth noting that the number of segment for linearization present a 

tradeoff between the solution accuracy and computation time. A larger number of segments 

ensures a more accurate solution at the expense of increased computation time. A desired 

number of segments will be selected based on the microgrid planner’s discretion. 

 

Figure 3.6 An example of linearized BES degradation factor [72] 
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3.3.1 Problem Formulation 

Similar to previous section, the microgrid expansion objective is to minimize the 

total cost as given in (2.1) taking into consideration a set of constraints that represents the 

microgrid operation limits, the DGs operational and physical limits, and the available 

budget limit (i.e., Equations (2.3)-(2.13)). The BES operation are modelled using the 

following equations:  

SiCCC i

R

ii                                 maxmin      (3.12) 

 

  SiCkCxC
n

iniin
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     (3.13) 

 

Six
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hdSiz imimdhidh  ,,                                    
m

     (3.24) 
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 The BES unit are commonly manufactured in modules. That is, the optimal size of 

the installed BES will be an integer multiple of the BES manufactured base modular size. 

In this model, an incremental step (ΔC) that represents the BES modular energy rating size 

is used. The optimal energy rating size of the installed BES is limited by a minimum value 

(the base modular size) and a maximum value which is imposed due to economic reasons 

(e.g., budget limit) and/or physical reasons (e.g., available space) as in (3.12). The optimal 

energy rating size is determined using (3.13) where kn is an integer variable that starts from 

0 and increases by 1 with each incremental step n. That is, kn = kn-1 +1 and k1 =0. The binary 

variable x is used to determine the selected optimal energy rating size for the installed BES. 

Equation (3.14) ensures that only one energy rating size is selected. If the installation of 

the BES is not feasible, x will be zero. The BES power rating size is determined based on 

the desired discharging time as in (3.15). Different BES technologies have different 

discharging time capabilities. The BES discharging and charging limits can be expressed 

using (3.16) and (3.17), respectively. The binary variable u represents the operation state 

of the BES (i.e., 1 if BES is discharging and 0 if the BES is charging or idling). This binary 

variable is used in (3.18) to indicate the end of each charging/discharging cycle. The BES 

cycles indicator (ξ) is 1 each time the BES completes a full charging/discharging cycle, 

otherwise it is 0. The stored energy in the BES at each time interval is determined using 

(3.19). The amount of stored energy cannot exceed the optimal BES energy rating size and 
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cannot be less than a minimum capacity limit whose value is determined based on the BES 

maximum depth of discharge (3.20). However, the BES is not discharged at the maximum 

depth of discharge value at each cycle and therefore the actual depth of discharge value 

must be determined. Equations (3.21) and (3.22) are used to calculate the variable depth of 

discharge value of each BES charging/discharging cycle. In (3.21), the BES state of charge, 

which represents how much energy stored in the BES compared to the energy rating size, 

is calculated. Note that this value is only determined at the end of the charging/discharging 

cycle (i.e., ξ=1). The state of charge variable is then used to find the depth of discharge 

value from (3.22). It is worth noting that if ξ=0 in (3.21), the value of the state of charge 

variable (γ) must be 1, which forces the value of depth of discharge (D) to be 0 (i.e., the 

charging/discharge cycle is not completed). The binary variable z in (3.22) is used to define 

the depth of discharge segment (m) so it can be used in (3.24) to determine the depth of 

discharge impact on lifetime factor (λ). At each time interval, only one depth of discharge 

is found (3.23). If the BES is discharged at the maximum depth of discharge value, λ will 

be 1, otherwise λ will be less than 1. The exact value of the parameter ψ is obtained from 

(3.11). The summation of the depth of discharge impact on lifetime over the planning 

horizon must be less than the number of cycles that the BES can perform at the maximum 

depth of discharge divided by the project lifetime as in (3.25). Satisfying (3.25) is important 

to ensure that the BES will be in service during the considered project lifetime.   
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3.3.2 Case Study 

Microgrid and BES Data 

The proposed model is tested on a standalone brownfield microgrid that is 

composed of three DGs (1 fuel-based and 2 renewables). The microgrid demand as well as 

the renewable DGs generation are obtained from [54]. The microgrid DGs characteristics 

are given in Table 3.6. It is assumed that 30% of the demand is critical and cannot be 

curtailed. The value of lost load is chosen to be $30/kWh.  

Table 3.6 Microgrid generation units’ characteristics  

Unit  
Cost Coefficient 

($/MWh) 

Minimum Capacity  

(MW) 

Maximum Capacity 

(MW) 

Fuel-based DG 150 0.2 7.2 

PV - 0 1.5 

Wind - 0 1 

The standalone microgrid is planned to be expanded with BES to improve its 

reliability and reduce its operation cost. A Lithium-ion (Li-ion) battery is selected in this 

simulation as the desired BES technology. The Li-ion battery capital costs and efficiency 

are shown in Table 3.7. It must be noted that a 4% interest rate and a 40-year project 

lifetime are assumed when the annualized BES capital costs are calculated. The Li-ion 

battery modular size is assumed to be 0.2 MWh and 20 incremental size steps (i.e., n=20) 

is considered in the simulation.   

Table 3.7 Li-ion battery costs and technical characteristics   

Power Rating 

Capital Cost 

($/kW)  

Energy Rating 

Capital Cost 

($/kWh) 

Round Trip 

Efficiency (%) 

Min./Max 

Depth of 

Discharge (%) 

Min./Max 

Discharging 

Time (hour) 

900 600 95 55/90 1/4 
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The relationship between the Li-ion battery depth of discharge and number of cycle 

is taken from a manufacturer data sheet [73]. After using the piece-wise linearization 

technique, the number of cycles and the associated degradation factor (ψ) are given in Table 

3.8. The proposed expansion model is then used to find the optimal BES size and operation, 

taken into consideration the impact of variable depth of discharge and number of cycles on 

the BES lifetime. It must be noted that, the BES is needed to be in service for the considered 

project lifetime (i.e., 40 years). 

Table 3.8 Li-ion battery cycles and degradation factor at different depth of discharge  

Depth of Discharge (%)  Number of Cycles  Degradation Factor  

55 7500 0.493 

60 6900 0.536 

65 6200 0.596 

70 5800 0.637 

75 5000 0.740 

80 4500 0.822 

85 4100 0.902 

90 3700 1.000 

Results and discussion  

The obtained simulation results for two cases (with and without the BES) are 

tabulated in Table 3.9. It can be seen that installing the BES reduces the amount of unserved 

energy by 99.7%. This huge enhancement in the microgrid reliability is combined with a 

significant reduction in the microgrid total cost. The optimal Li-ion battery energy rating 

size is found to be 1 MWh while the optimal power rating size is found to be 0.418 MW. 

The installed Li-ion battery performed 108 cycles/year to improve the microgrid reliability 

and reduce the operation cost. Note that based on the information given in Table 3.8 along 

with (3.25), the Li-ion battery cannot perform more than 92 cycles/year at the maximum 
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depth of discharge if it is to stay in service for the entire project lifetime. However, due to 

the ability of the proposed model to determine the actual depth of discharge impact on the 

Li-ion battery lifetime, more cycles per year are performed. 

Table 3.9 Operation cost analysis for the standalone microgrid before and after the 

expansion take place [72] 

Microgrid 

Expansion 

State 

Microgrid Operation Cost 

Energy Not 

Supplied 

(MWh/yr) 

Li-ion 

battery 

Investment 

Cost 

Total Cost 

($/yr) 
DGs 

Generation 

Cost ($/yr) 

Load 

Interruption 

Cost ($/yr) 

No BES 7,521,174 1,580,400 52.680 - 9,101,574 

With BES 7,527,893 4500 0.150 591,577.7 8,123,970 

Figure 3.7 shows the Li-ion power and cycle indicator for a one-day sample. It is 

shown that the battery charging/discharging cycles can be accurately calculated using (41) 

in the proposed model. In the examined day, three complete charging/discharging cycles 

are performed by the installed Li-ion battery. The amount of energy stored in the Li-ion 

battery at each time interval is given in Figure 3.8. Figure 3.9 shows the actual depth of 

discharge at each completed cycle which is determined using (44) and (45). The battery is 

discharged with two different depth of discharge values: 70% and 60%. The impact of the 

depth of discharge on the battery lifetime is shown in Figure 3.10. 
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Figure 3.7 Li-ion battery power and cycle indicator [72] 

 
Figure 3.8 Li-ion battery stored energy for a sample day [72] 

 
Figure 3.9 The calculated depth of discharge at each performed cycle [72] 
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Figure 3.10 The impact of the depth of discharge on the Li-ion battery lifetime [72]
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Chapter 4. Comprehensive Microgrid-Integrated BES Planning Model 

4.1 Introduction  

The comprehensive microgrid-integrated BES planning model takes all of the 

previous BES parameters (i.e., BES technology, size, units number, depth of discharge) 

into consideration when the microgrid expansion problem is solved. Moreover, both grid 

tied microgrid operation modes are considered in this model (i.e., grid connected and 

islanded). Under the grid-connected mode operation, the BES is used to increase the 

economic viability of the microgrid as they store energy at low price periods and generate 

the stored energy back to the system to be either used by local demand or sold to the utility 

grid at high price periods. In the islanded mode, however, BES units are used to improve 

the microgrid reliability by minimizing the curtailed load and the cost of unserved energy. 

Robust optimization is implemented in this model to consider the uncertainty associated 

with the renewable DGs and microgrid demand.  

4.2 Problem Formulation 

Similar to the previously discussed BES planning models, the objective of the 

proposed BES optimal comprehensive planning problem is to minimize the microgrid total 

expansion planning cost. However, in this model a new index (s) that represents the 

islanding scenarios is included in the expansion problem. In addition, more accurate 

mathematical equations are used to model the microgrid power flow. The total microgrid 

expansion cost is rewritten as follow:  
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The objective function comprises the microgrid operation cost (first and second 

terms), the cost of unserved energy (third term), and the annualized BES investment cost 

(last term). The microgrid operation cost incorporates the local generation cost and the cost 

of power exchange with the utility grid. This cost is determined only for the microgrid grid-

connected mode, i.e., during the normal operation. Thus, the index for the islanding 

scenario is set to 0 in the operation cost terms in (4.1). In grid-connected mode, local load 

can be partially supplied by the utility grid, however in islanded mode the microgrid must 

rely solely on its local DERs. Any generation shortage in this case results in load 

curtailment, which reduces the microgrid reliability. Therefore, the cost of unserved energy 

is imposed as a penalty for failing to supply the local demand in each islanding scenario. 

To consider the probability of occurrence of each islanding scenario, prs is added as a 

weighting factor for each scenario. The BES investment cost is composed of power rating 

and energy rating capital costs, annual maintenance cost, and installation cost. It is assumed 

that the power conversion system cost is embedded in the power rating capital cost. The 

annual maintenance cost is normally given in terms of the BES power rating whereas the 

installation cost is given in term of the BES energy rating.  

This objective is subject to several operation and technical constraints, associated 

with the microgrid, dispatchable DGs, and the BES, that must be taken into account as 

discussed in the following. 
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4.2.1 Microgrid Constraints  
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  s,,,                       0  hdbCDDLS bdhbdhbdhs              (4.4) 

 

s,,,          maxmax  hdLlfff lldhsl
         (4.5) 

 

The nodal power balance (4.2) ensures that at each bus the power generated form 

DERs located at that bus plus/minus power flowing to/from the bus equals local demand. 

If the generation is not sufficient, load would be curtailed to satisfy the power balance. The 

BES power is positive when discharging and negative when charging. The utility grid 

power is positive when the power flows from the utility grid to the microgrid, and negative 

otherwise. Note that the utility grid power is zero at all buses except at the point of common 

coupling (PCC). Equation (4.3) imposes a maximum limit on the power transferred through 

the line connecting the microgrid to the utility grid. This equation is modified by including 

a binary parameter z that indicates the microgrid islanding state. That is, if the value of z is 

0, the microgrid is disconnected from the utility grid and operated in the islanded mode, 

while if it is equal to 1, the microgrid is grid-connected. The value of z is set by the 

microgrid planner before solving the expansion planning problem and reflects how many 

hours in a year the microgrid operates in the islanded mode. There is a tradeoff between 

the number of considered islanding scenarios and the reliability of the obtained results and 

the computation burden. Increasing the number of considered islanding scenarios in the 

proposed model will increase both the results accuracy and the time required to solve the 
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problem, while ensuring more reliable operational solutions. One of the motivations for 

microgrid deployment is the continuity of service for critical loads. The critical loads are 

typically associated with high VOLL so it is not economically advisable to consider them 

for the load curtailment. Keeping this in mind, the load curtailment limits can be defined 

as in (4.4). The power flow in the microgrid distribution network is limited by the lines 

capacities (4.5). A radial distribution network is considered, hence (4.2) and (4.5) can 

efficiently model the power flow in the microgrid distribution network. 

 In the proposed model, it is assumed that the microgrid generations and loads are 

in close proximity, thus active losses as well as the bus voltage magnitude and angle are 

ignored in this work. A linear power flow model is needed to be combined with the 

proposed model in order to solve the full AC power flow without introducing nonlinear 

equations. Thus, existing power flow models presented in literature (e.g.,[74]–[77]) are not 

suitable to be used with the proposed model. The model needs to consider both active and 

reactive powers (i.e., a full AC power flow) to determine all bus voltage angles and 

magnitudes, and accordingly, active and reactive losses. The challenge is that the current 

distribution network power flow models are not linear, thus cannot be readily integrated to 

the proposed MILP model. There are certainly available linear power flow models in the 

literature, which however are mainly based on ZIP models, hence not very useful in the 

proposed model in this paper as studies here are focused on active and reactive power 

injections, in line with data collection/measurement and studies of many electric utilities.  

4.2.2 Dispatchable DGs Constraints 

shdiIPPIP idhiidhsidhi  ,,,G                     maxmin        (4.6) 
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Dispatchable DGs output power is limited by maximum and minimum capacities 

(4.6), variations across two successive intervals, i.e., ramp up and ramp down (4.7), (4.8), 

and minimum up/down time limits (4.9), (4.10). Other constraints such as emission and 

fuel limits can be easily included. It must be noted that h-1 values at the first hour of each 

day (i.e., when h=1) are considered equal to the values of the last hour of the previous day 

(i.e., h=24 in d-1). 

4.2.3 BES Constraints  
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The BES power rating is limited by maximum and minimum values (4.11). For 

some BES technologies, such as those considered in this research, the energy rating is 

correlated to the power rating and cannot be sized independently. A capacity to power 

ration is used to size the BES capacity and determine the maximum discharge time at rated 

power (4.12). If flow batteries such as vanadium redox battery are considered, this 

constraint can be easily modified to decouple the power rating and the energy rating. The 

binary variable x is used to indicate the investment state of a BES technology. The BES 

charging/discharging powers are limited by the installed rated power (4.13), (4.14), which 

further impose that the BES power be negative in the charging mode while positive in the 

discharging mode. The binary variable u is used to represent the BES operating state. The 

BES can discharge only when u equals 1 and can charge when u equals 0. Each BES 

technology has a specific lifecycle, which depends on its associated depth of discharge. 

The BES cycle is typically defined as a complete charge and discharge cycle. Therefore, 

computing either the discharging cycles or charging cycles is enough to estimate the total 

number of cycles. Equation (4.15) is used to determine the BES cycles. The value of ξ will 

be 1 every time the discharging process is initiated, otherwise it is 0. In a similar way, the 

BES charging cycles can be computed. The summation of the BES cycles over the planning 

time horizon cannot exceed the determined lifecycle associated with the chosen depth of 

discharge and desired project lifetime (4.16). That is, the installed BES does not need to be 

replaced during the considered project lifetime and therefore the BES replacement cost is 
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not included in (4.1). The value of κ is determined based on the chosen depth of discharge 

(Figure 3.2) in which it is assumed that the curve is divided into N segments. w is a binary 

variable that represents the chosen depth of discharge segment. Equation (4.17) ensures 

that only one depth of discharge value is considered for each installed BES unit. The stored 

energy in the BES at each time interval equals the stored energy in the preceding interval 

minus the discharged or charged energy (4.18). The BES cannot be charged more than its 

rated energy and cannot be discharged below its minimum value which is defined by the 

determined optimal depth of discharge (4.19).  

Finally, the investment cost of the installed BES units is limited by the available 

budget (4.20).  

      BL

B

aaRaR 
 i Kb

iiibiiib CICECCMCPP               (4.20) 

 

The problem is solved from a microgrid developer perspective, which means that 

savings in the upstream grid, such as deferred distribution and transmission upgrades as 

well as benefits of the reduced congestion, are not included. Figure 4.1 shows a schematic 

diagram for the comprehensive microgrid-integrated BES planning model. 
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Figure 4.1 Schematic diagram for the comprehensive microgrid-integrated BES planning 

model [78] 

4.2.4 Data Uncertainties Consideration    

In the presented microgrid expansion planning formulation above, hourly 

forecasted data for the renewable DG generation, the load demand, and the electricity price 

is used. However, forecasting errors may arise as these parameters are affected by 

uncontrollable factors such as weather conditions, customers’ behavior, and congestion or 

outage incidents. The proposed model can be extended by applying robust optimization 

method presented in [79] to address the presence of uncertainties in the microgrid 

expansion problem. Robust optimization determines the worst-case solution by 

maximizing the minimum value of the objective function (4.1) over uncertainty set Ф (i.e., 

for renewable DG generation, load demand, and electricity price). The objective function 

in (4.1) can be rewritten as: 
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Uncertain parameters are associated with a nominal value that can be found from 

the forecast data. These nominal values, however, expand around a range of uncertainty 

which define an interval within which the uncertain parameter is presumed to lie. Thus, the 

uncertain parameters can be expressed as: 
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g
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where the inserted bars in (4.22)-(4.23) represent the upper and lower bounds of 

each parameter. To ensure only one extreme point is chosen, the following constraints are 

imposed to the microgrid expansion model at each time interval:   
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However, it must be noted that a trade-off between the solution optimality and 

robustness must be performed when robust optimization method is used. This can be 

achieved by imposing a higher cap on the maximum number of uncertain parameters that 

can reach their bounds in the considered planning horizon. This cap is known as the budget 

of uncertainty [80]. Increasing the budget of uncertainty value will increase the robustness 

of the obtained solution at the expense of optimality, and vice versa. If the budget of 

uncertainty is set to be 0, the problem is solved by ignoring uncertain parameters.  

To solve the resulted min-max optimization problem, the duality theory is used to 

convert the problem into either maximization or minimization problem. For more details 

about robust optimization formulation and duality theorem, the readers are referred to [79]. 
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4.3 Case Study  

Microgrid and BES Data 

A 5-bus microgrid that contains a gas generator, a wind turbine, and a solar 

photovoltaic unit is used to study the proposed microgrid expansion planning model. DGs 

characteristics and location in the microgrid are given in Table 4.1. The hourly data of 

renewable DGs generation, local loads, and electricity market price are obtained from [54] 

for the expansion planning time frame. The local load details and location in the microgrid 

are given in Table 4.2 while the microgrid distribution network lines characteristics are 

given in Table 4.3. The point of common coupling (PCC), which connects the microgrid 

to the utility grid, is located at bus 1.  

Table 4.1 Local generation units characteristics 

Unit Bus Type 

Cost 

Coefficient 

($/MWh) 

Min-Max 

Capacity 

(MW) 

Min Up/Down 

Time (hour) 

1 3 Gas unit 90 0-7 1 

2 4 PV 0 0-1 - 

3 4 Wind 0 0-1.5 - 

Table 4.2 Microgrid local demand details (R: residential, C: commercial) 

Load Bus 
Peak Load 

(MW) 

Critical Load 

(%) 
Load Type 

VOLL 

($/MWh) 

1 3 6.62 60 C 50,000 

2 5 4.41 30 R&C 50,000 

Table 4.3 Distribution lines connections and capacities 

Line From Bus To Bus Capacity (MW) 

1 1 2 8 

2 2 3 6 

3 2 4 5 
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4 2 5 5 

Four BES technologies are used in the simulation: lead acid, NiCd, Li-ion, and NaS. 

The characteristics of the BES technologies are borrowed from [70] and shown in Table 

4.4. The power rating of each BES technology is constrained by a maximum value, 

assumed to be 5 MW in this paper. A minimum discharging time of 1 hour and a maximum 

discharging time of 5 hours are considered. The available budget is assumed to be $5 

million. The BES manufacturers data sheets are used to determine the relationship between 

the depth of discharge and lifecycle of each BES technology [71], [73], [81], [82]. Based 

on the manufacturer data sheet, ten different depth of discharge values are considered for 

each BES technology (i.e., N=10) through linearization. Increasing the considered depth 

of discharge values will increase both the accuracy and the computational requirements. 

Table 4.5 indicates the lifecycle of the BES technologies at the considered depth of 

discharge values. In the Li-ion battery case, the given minimum depth of discharge in the 

manufacturer data is 50% and no information is given for lower depth of discharge values. 

One-hour islanded scenarios are implemented to evaluate the reliability of the microgrid 

under islanded modes (i.e., 24 scenarios for each day), with uniform probability (i.e., 

pr=1/24). 

Table 4.4 BES technologies characteristics 

Technology 

Power 

Rating Cost 

($/kW) 

Energy 

Rating Cost 

($/kWh) 

Maintenance 

Cost 

($/kW/yr) 

Installation 

Cost 

($/kWh) 

η 

(%) 

Lead-acid 200 200 50 20 70 

NiCd 500 400 20 12 85 

Li-ion 900 600 - 3.6 98 

NaS 350 300 80 8 95 
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Table 4.5 BES Lifecycles for Various Depth of Discharge Values 

Depth of 

Discharge 

(%) 

Number of Cycles 

Lead acid NiCd Li-ion NaS 

10 8000 7900 - 100000 

20 2500 5800 - 60000 

30 1500 3400 - 30000 

40 950 2000 - 15000 

50 700 1200 8000 10000 

55 - - 7500 - 

60 590 900 6900 9000 

65 - - 6200 - 

70 500 800 5800 7000 

75 - - 5000 - 

80 450 700 4500 6000 

85 - - 4100 - 

90 390 600 3700 5000 

100 350 500 3000 4000 

Results and Discussion 

The following four cases are studied in the numerical simulation: 

Case 0: Microgrid optimal scheduling (i.e., the BES units installation is not 

included).  

Case 1: Microgrid expansion planning. In this case, the BES installation to reduce 

both the microgrid operation cost and the cost of unserved energy is considered.  

Case 2: This case investigates the impact of ignoring the relationship between the 

BES depth of discharge and lifecycle on the obtained solution accuracy and practicality. 

Case 3: The impact of uncertainties associated with renewable DGs generation and 

load demand on the obtained solution is studied in this case. 
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Case 0: To accurately assess the benefits of installing the BES to the microgrid, the 

pre-expansion case is solved first in order to enable comparisons to the case of BES 

installation. The microgrid scheduling problem is modeled using (4.2)-(4.10) in this case 

where the last term in the objective function as well as the second term in (4.1) are set to 

0. The results are shown in Table 4.6. The amount of expected unserved energy in this case 

is 67.5 MWh/year. The associated expected cost of unserved energy is $3,373,488. This of 

course would happen only when the microgrid is disconnected from the utility grid and 

operates in the islanded mode.   

Case 1: In this case, the BES installation is considered and the proposed 

mathematical model (i.e., the complete set of equations) is used to model the microgrid 

expansion problem. In the grid-connected mode, the BES installation reduces the microgrid 

operation cost by storing energy during low price hours to be used during high price hours 

toward either supplying local demand (i.e., load shifting) or making economic benefit from 

selling the stored energy to the utility grid (i.e., energy arbitrage). In the islanded mode, 

however, the BES reduces the unserved energy, which results in improving the microgrid 

overall reliability. The obtained results for various project lifetimes are given in Table 4.6. 

It is clear from the results that installing the BES is economically justifiable, as the total 

expansion cost for all the considered project lifetimes is less than the cost of operating the 

microgrid without BES. The BES optimal technology, number, size, depth of discharge, as 

well as the number of annual cycles performed by the BES in the grid-connected mode are 

given in Table 4.7.  
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Table 4.6 Microgrid associated expansion planning costs [78] 

Case 

BES 

Lifetime 

(years) 

BES Total 

Investment 

Cost 

($/year) 

Local 

Generation 

Cost 

($/year) 

Cost of 

Power 

Exchange 

($/year) 

Expected 

Cost of 

Unserved 

Energy 

($/year) 

Total 

Expansion 

Cost 

($/year) 

1 - - 834,778 1,850,987 3,373,488 6,059,253 

2 

10 377,682 834,778 1,843,639 64,272 3,120,371 

15 432,445 834,778 1,796,512 10,680 3,074,416 

20 357,420 834,778 1,815,893 24,960 3,033,053 

Table 4.7 Installed BESs optimal parameters for case 1 [78] 

BES 

Lifetime 

(years) 

BES 

Technology 

Bus 

Number 

Power 

Rating 

(MW) 

Energy 

Rating 

(MWh) 

Depth of 

Discharge 

(%) 

Number of 

Cycles 

(Cycles/year) 

10 Lead-acid  2 2.905 5.929 70 48 

15 
Li-ion 

NaS 

1 

3 

1.461 

1.444 

1.886 

1.900 

80 

80 

300 

396 

20 
Li-ion 

Li-ion 

1 

4 

2.527 

0.401 

2.865 

0.818 

90 

50 

168 

396 

For the project lifetime of 10 years, a centralized lead acid battery located at bus 2 

with the size of 2.905 MW and 5.929 MWh yields the minimum total expansion cost. 

However, from the BES operation analysis, it is found that the lead acid battery is mostly 

installed to improve the microgrid reliability under the islanded operation as the number of 

its cycles in grid-connected operation is low (i.e., 48 cycles). In order for the lead acid 

battery to perform this number of cycles per year and remains in service for 10 years, its 

depth of discharge cannot exceed 70%. Installing the lead acid battery is expected to save 

$7,348/year. However, the big saving is noticed in the islanded operation as the expected 

unserved energy is reduced by 98.09% compared to Case 0.  
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When the project lifetime is increased to 15 years, the investment in expensive 

technologies such as Li-ion and NaS becomes feasible. In this case, it is found that the 

optimal solution yields when Li-ion and NaS batteries are installed at buses 1 and 3, 

respectively. As these technologies can perform a high number of cycles before they reach 

their end of lifetime, they are used to reduce the microgrid operation cost in the grid-

connected mode by purchasing power from the utility grid in low price periods and either 

use it to supply the demand or sell it to the utility grid in high price period. This saves the 

microgrid operator $54,475 per year and will sum up to $817,125 over the considered 

expansion timeframe. Both batteries can be discharged up to 80% of their energy rating 

size. The expected unserved demand in the islanded operation is reduced by 99.68% 

compared to Case 0.  

For a project lifetime of 20 years, the minimum expansion cost is found when two 

Li-ion batteries are integrated to the microgrid at buses 1 and 4. The optimal size and depth 

of discharge values for these two BES units are shown in Table 4.7. The BES installed at 

bus 4, i.e., where the renewable DGs are located, is used to shift the renewable generation 

from off-peak periods to the peak periods which will reduce the amount of energy that is 

needed to be imported from the utility grid during the high price periods and therefore 

reduce the microgrid operation cost. The BES located at bus 1 is used for energy arbitrage. 

The expected unserved energy in this case is reduced by 99.26% compared to Case 0.  

The BES cycles are computed using equation (4.15). Figure 4.2 shows how the 

proposed model can accurately compute the BES cycles over the planning horizon. It can 

be seen from the figure that the summation of the BES cycles indicator (ξ) over one week 
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equals to the number of performed cycles over the same period. This enables microgrid 

planners to take the impact of the number of BES cycles on its lifetime into consideration 

during the planning stage. Ignoring this impact may require the BES replacement before 

the expected end of project which imposes an extra cost to the expansion plan.  

The other factor that affects the BES lifetime is the depth of discharge, i.e., the 

amount of energy that can be taken from the BES in each cycle. Figures 4.3-4.5 depict the 

SOC for the installed BES units for each considered project lifetime for a sample one week. 

It must be noted that the optimal depth of discharge value puts a cap on how deep the BES 

can be discharged based on the relationship between the BES depth of discharge and 

lifecycle. However, the BES can operate with a depth of discharge value that is less than 

the determined optimal value as can be seen from the state of charge curves. The 

determined optimal depth of discharge value, however, will ensure that the installed BES 

does not need to be replaced during the considered project lifetime which is one of the 

microgrid planner requirements in this work.  

 

Figure 4.2 The Li-ion battery power and cycles for 15-year project lifetime [78] 
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Figure 4.3 The installed Lead-acid battery SOC for one sample week [78] 

 

Figure 4.4 The installed Li-ion battery and NaS battery SOC for one sample week [78] 
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Figure 4.5 The installed Li-ion batteries SOC for one sample week [78] 

The reason behind the variation in the obtained optimal BES technology and 

location in the studied cases stems mainly from two factors: the considered project lifetime 

and the BES application. These factors are actually correlated to each other as both of them 

have an impact on the number of cycles performed by the BES. In the 10-year project 

lifetime case, for example, a lead acid battery is found to be the optimal choice of BES 

technology to be installed. This BES is used to improve the microgrid reliability during 

islanding scenarios which rarely occur. This explains why the lead acid battery is selected 

as the optimal technology in this case as it is characterized with low capital cost and 

lifecycle. The lead acid battery is located at bus 2 in order to be available to supply both 

microgrid demand which are located at buses 3 and 5. For longer project lifetimes (i.e., 15 

and 20 years) investing in more expensive BES types, which are characterized with high 

lifecycles such as Li-ion and NaS, becomes feasible. Since these BES technologies have 

high lifecycles and roundtrip efficiencies, they can be used to perform energy arbitrage and 

load shifting. The economic revenue gained by these applications combined with the long 
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project lifetime that the BES will be in service outweigh the high investment cost 

associated with installing the BES. The optimal locations for the installed BES units are 

determined by their applications. If the BES is installed to perform energy arbitrage 

application, it should be placed close to the PCC, which is bus 1 in the studied microgrid. 

In the other hand, if the BES is installed for load shifting applications, it should be placed 

close to the microgrid demand or generation units, which are located at buses 3 and 4.    

Case 2: In order to accurately estimate the benefits and the optimal parameters of 

installed BES, the impact of operation factors such as depth of discharge and number of 

cycles on the BES lifetime must be included into the microgrid expansion problem. In this 

section, the importance of considering such impact is investigated. The microgrid 

expansion planning problem is resolved while ignoring the limit on the BES number of 

cycles. In other words, the relationship between the BES depth of discharge and lifecycle, 

which is represented by (4.16), is omitted from the proposed formulation. A 10-year BES 

lifetime case is considered. Table 4.8 shows the obtained results for this case. Since the 

BES operation impact on its lifetime is not included in the model, the optimal BES 

technology would be the less expensive BES candidate, which is lead acid battery. 

Moreover, the optimal maximum depth of discharge is found to be 100%. This result, 

however, is unrealistic as the installed lead acid battery is expected to perform 792 

cycles/year. Based on the relationship between the BES depth of discharge and lifecycle, 

which is given in Table 4.5, the installed lead acid battery must be replaced within the first 

5 months from its installation. This shows how important it is to consider the BES operation 
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impact on its lifetime in the microgrid expansion problem in order to enhance the accuracy 

and practicality of the obtained results. 

Table 4.8 Numerical simulation results for case 2 [78] 

BES 

Lifetime 

(years) 

Optimal 

BES 

Technology 

BES 

Optimal 

Size 

(MW/MWh) 

Optimal 

Maximum 

Depth of 

Discharge 

(%) 

Number of 

performed 

cycles/year 

Expected 

End of 

Lifetime 

(months) 

10 
Lead-acid 0.823/1.306 100 792 5 

Lead-acid  2.105/3.341 100 792 5 

Case 3: In this case, the forecast errors in renewable DG generation and load 

demand impacts on the obtained solution are investigated. The worst-case scenario occurs 

when a reduction in renewable DG generation and increase in load demand compared to 

the forecasted data take place. Thus, -20% forecast errors in renewable DGs generation and 

+10% forecast errors in load demand are considered. These forecast errors are assumed to 

happen for 1000 hours/year. Increasing or decreasing the number of hours per year at which 

the uncertainties are considered leads to more conservative or aggressive solution against 

data uncertainties. In the conservative solution, the obtained results are more robust against 

uncertainties but at the same time higher microgrid expansion cost is expected. On the other 

hand, the aggressive solution yields less robust results against uncertainties with lower 

microgrid expansion total cost compared to the conservative solution. The 1000 hours/year 

used in this simulation can be considered as a moderate solution. The 10-year BES lifetime 

case is resolved here using the proposed model with the consideration of uncertainties. 

From the numerical simulation results, it is found that when the uncertainties associated 

with renewable DG generation and load demand are taken into consideration, the microgrid 
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total expansion cost increases to become $3,368,200/year. Moreover, expensive BES 

technologies, which are characterized with high lifecycle such as NaS battery become 

economically feasible. The optimally determined parameters of the installed BES units are 

given in Table 4.9. The reason behind installing NiCd and NaS batteries instead of lead 

acid battery, which is found to be the optimal BES technology in Case 1, is that considering 

the uncertainties in the microgrid expansion problem requires the installed BES to be used 

more frequently in order to overcome the rapid change in the renewable DGs generation 

and the load demand, especially during islanding operation. Thus, BES technology with 

high lifecycle is needed in such case. A summary of the studied cases’ advantages and 

disadvantages are shown in Table 4.10. 

Table 4.9 Numerical simulation results for Case 3 [78] 

BES 

Lifetime 

(years) 

Optimal BES 

Technology 

BES Optimal 

Size 

(MW/MWh) 

Optimal 

Maximum 

Depth of 

Discharge (%) 

Number 

of performed 

cycles/year 

10 
NiCd 2.483/2.922 100 48 

NaS 1.510/1.987 50 600 

Table 4.10 Studied cases summary [78] 

Case Pros Cons 

0 
• No BES investment cost as the BES is 

not installed in this case. 

• High microgrid operation cost and 

low reliability, especially during 

islanded operation. 

1 

• Improve the microgrid reliability by 

supplying demand during islanded 

incidents. 

• Reduce operation cost by using BES to 

perform energy arbitrage application. 

• Impact of BES depth of discharge on its 

lifetime is considered. 

• Stochastic nature of renewable DGs 

generation and load demand is not 

included in the expansion problem. 
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2 

• Microgrid total expansion cost is 

reduced as the impact of BES depth of 

discharge on its lifetime is ignored. 

• Unrealistic results are obtained and 

thus the BES will need to be 

replaced before the end of the 

desired project lifetime. 

3 

• The obtained result is robust against 

renewable generation and load demand 

uncertainties. 

• High microgrid total expansion 

cost. 

• The optimality of the obtained 

solution might be impacted. 

General algebraic modeling system (GAMS) is used to solve the optimization 

problem in both studied cases. The problem is implemented on a 2.4-GHz personal 

computer using CPLEX 11.0. The obtained solution is found within a 0.05% gap of the 

optimal solution; hence it provides a near-optimal solution. The gap is adjusted using the 

built-in functionalities of CPLEX in which in each iteration an upper bound and a lower 

bound of the current solution are calculated and the relative difference is considered as an 

optimality gap. It is worth noting that in the long-term planning problem it is not always 

possible to achieve the optimal solution due to the complexity of the problem and the large 

number of binary and continuous variables. The computation time, however, depends on 

the considered case, the number of islanding scenarios, and the optimality gap among other 

factors. For the first case (i.e., the microgrid scheduling problem without the BES 

installation) the problem is solved within seconds. When the BES installation is included 

to the problem, the problem is solved within multiple hours. The highest computational 

effort is associated with the 20-year project case. The optimal solution is reached within 

slightly less than 18 hours. However, as the problem in hand is an expansion planning 

problem, it is solved offline where the computation time is not as important as in operation 

problem
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Chapter 5. Optimal Planning of BES for Non-Microgrid Applications 

5.1 Optimal Planning of BES for Commercial and Industrial Customers   

5.1.1 Introduction 

In addition to the energy consumption charge (in $/kWh), the electricity bill of 

commercial and industrial (C&I) electricity customers normally contains a demand charge 

(in $/kW) that accounts for the customer peak demand. This demand charge is high and 

can reach sometimes up to 50% of the customer electricity bill [83]. Shaving the peak 

demand will benefit both the customer, by significantly reducing the peak demand 

payments, as well as the entire grid system, by helping reduce the network congestion and 

possibly lowering marginal energy prices. There are various methods to shave peak 

demand, however one common method is to use BES. The BES can be used to store energy 

during off-peak hours to supply the peak demand. In this case, the customer load profile 

will not be affected as the shaved demand will be supplied by the BES discharged power, 

thus the local load is not affected but the net load seen from the utility side is changed. 

With the implementation of time-based electricity rates, the BES can also be used to further 

reduce the electricity cost by energy arbitrage. That is, the BES will be charged during low 

price hours and discharged during high price hours. This is different from peak shaving as 

the electricity price may vary based on factors other than load profile such as transmission 



 

77 

network congestion or generators’ bidding. A viable electricity price prediction technique 

can be of help in this application to accurately capture the price variations [84]. 

5.1.2 Problem Formulation 

The total annual cost of the commercial customer is divided into three parts: energy 

consumption cost, monthly peak demand cost, and BES investment cost. The objective 

function of the optimization problem is to minimize the summation of these costs as: 

BPE CCCMin             (5.1) 

 

The first term in (5.1) denotes the annual energy consumption cost. To reduce this 

cost, the BES is operated for energy arbitrage. The second term in the objective function 

represents the annual cost associated demand charges. This cost can be reduced by using 

the BES to help with peak shaving. The utility measures the commercial customer monthly 

peak demand and multiply the measured peak power by the demand charge set by the 

utility. The BES size is the main factor that determines the ability of the BES to adequately 

perform the energy arbitrage and the peak shaving services. It also determines the BES 

investment cost, which is the last term in (5.1). 

Equation (5.2) is used to calculate the annual energy consumption cost. The power 

exchanged between the utility and the customer is limited by the capacity of the distribution 

line connecting them (5.3). It must be noted that power may flow to the grid if the 

commercial customer has any type of on-site generation sources installed. In this case, P 

would be negative and the customer will be paid at the real-time electricity price. 


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The contribution of the peak demand on the annual electricity cost is expressed by 

(5.4). The maximum power drawn from the utility grid at each month can be modeled using 

(5.5). The value of Pmax will be determined to be higher than the power exchanged with the 

utility grid at each time interval during each month. However, since the objective is to 

minimize the customer electricity cost, the value of Pmax will be minimized until it 

eventually become equal to the actual monthly peak demand value. 

maxC m
m

m

P P       (5.4) 

hmPLPP m

M

mh  ,                             maxmax
     (5.5) 

 

The BES investment cost is composed of power rating cost and energy rating cost. 

The optimization problem is solved for one year and therefore the BES investment cost is 

normalized on an annual basis. The annual BES maintenance cost is included in both 

annualized power and energy rating costs. Equation (5.6) denotes the investment on the 

BES. This investment is constrained by the available budget which will further impose a 

cap on the BES size (5.7). The optimization problem is solved for one year and therefore 

the BES investment cost is normalized on an annual basis. 

RRPB ECPCC ECC          (5.6) 

                              C BLB           (5.7) 

The objective function (5.1) is subject to the following operational constraints 

which represent the system power balance and the BES operational limits   
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5.1.3 Case Study  

Commercial Customer Data  

The developed optimal BES sizing model is validated by testing on a commercial 

customer. It is assumed that the customer already has a local generation, solar photovoltaic 

(PV) in this case. The hourly PV generation and local demand are borrowed from [54]. The 

PV power rating is 1.5 MW and the customer peak demand is 8.49 MW. The commercial 

customer is connected to the utility grid through a distribution line with 10 MW capacity. 

The utility offers a real-time pricing rate to charge the customer for its energy consumption. 

The hourly electricity prices are taken from [85]. Besides the energy consumption charge, 

a demand charge of $13/kW is considered.  

A lithium-ion battery is considered as the selected BES technology, as it is 

characterized by high efficiency and large number of cycles. The capital cost of lithium-

ion batteries has shown a significant decrease during the past few years and is predicted to 
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exhibit further reduction in the near future. The Li-ion battery technical and economical 

characteristics are shown in Table 5.1. The relationship between the depth of discharge and 

the number of cycles that can be performed by the Li-ion battery before it needs to be 

replaced is taken from [73], which is linearized and shown in Table 5.2. If the installed Li-

ion battery is desired to be in service for the project lifetime, which is the case in this work, 

the number of cycles in Table 5.2 must be divided by the project lifetime. In other words, 

the BES is assumed to perform the same number of cycles each year. The validity of this 

assumption depends on the annual variation on the customer demand, PV generation, and 

electricity price.  

Table 5.1 Lithium-ion battery characteristics 

Power Rating 

Capital Cost 

($/MW) 

Energy Rating 

Capital Cost 

($/MWh) 

Round Trip 

Efficiency (%) 

Charging/ 

Discharging 

duration (hour) 

Budget Limit 

(M$) 

30,000 20,000 98 3 1 

Table 5.2 Lithium-ion battery number of cycles vs depth of discharge value 

Depth of Discharge (%) 50 55 60 65 70 

Number of Cycles 8000 7500 6900 6200 5800 

Depth of Discharge (%) 75 80 85 90 100 

Number of Cycles 5000 4500 4100 3700 3000 

Results and Discussion  

Three cases are considered in the numerical simulation:  

Case 1: Solving the optimization problem without BES (i.e., calculating the commercial 

customer electricity cost). 

Case 2: Solving the optimization problem with BES but without considering the impact of 

the BES operating parameters on its lifetime. 
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Case 3: Solving the optimization problem with BES using the developed model.  

The results of these cases are summarized in Table 5.3 and Table 5.4.  In the first 

case, the BES optimal parameter is ignored in Table 5.3 as the BES is not yet installed. It 

is found that the demand charge cost is about 32% of the total electricity cost. The second 

case studies the general approach used by many papers in the literature. In this case, the 

limit on the BES number of cycles, i.e., (5.13), is not considered. Since the depth of 

discharge does not affect the BES lifetime in this scenario, the optimal value as expected 

is determined to be 100%. Moreover, the BES optimal size is found to be large. Installing 

the BES reduces the total planning cost (i.e., the total electricity cost and the BES 

investment cost) by 3.75% which saves the customer $109,326 per year. The energy 

arbitrage application reduces the annual customer energy consumption cost by 8.86%, 

while the peak shaving application reduces the annual peak demand related cost by 9.95%. 

However, based on the number of performed cycles over the year and the relationship 

between the BES depth of discharge and number of cycles in Table 5.2, it can be said that 

the installed BES will need to be replaced after two years. This of course imposes extra 

cost that was not considered in the problem. 

Table 5.3 Obtained optimal parameters for the Li-ion battery  

Case Power Rating 

(MW) 

Energy Rating 

(MWh) 

Depth of 

Discharge (%) 

Number of 

Cycles 

2 1.772 5.316 100 1451 

3 0.340 1.020 55 485 
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Table 5.4 Obtained commercial customer costs for the considered cases   

Case BES 

Investment 

Cost ($/year) 

Energy 

Consumption 

Cost ($/year) 

Peak Demand 

Cost ($/year) 

Total Cost 

($/year) 

1 - 1,976,918 940,420 2,917,338 

2 159,489 1,801,601 846,884 2,807,976 

3 30,600 1,959,873 900,444 2,890,917 

To get more realistic results, the optimization problem is solved again using the 

proposed model. The desired project lifetime is chosen to be 15 years. It is noticed that the 

optimal BES size is smaller compared to Case 2. Moreover, the optimal depth of discharge 

is found to be 55%. With this depth of discharge, the BES can perform up to 500 cycles 

per year. In the obtained results, the performed number of cycles is 485. The total planning 

cost is reduced by 0.91% compared to the total electricity cost in Case 1. Using the BES in 

energy arbitrage application reduces the annual energy consumption cost by 0.86%, 

whereas using the BES for peak shaving application reduces the annual peak demand 

related cost by 4.2%. Although it seems that this reduction is smaller than the reduction in 

Case 2, the aggregated economic benefits over the project lifetime is actually higher. In 

Case 2, the aggregated saving is $218,652 whereas in this Case 3, aggregated saving is 

$396,300. Hence, it can be said that considering the impact of the BES depth of discharge 

and number of cycles on the BES lifetime does not only improve the practicality of the 

obtained results but also increases the gained economic benefits. Fig. 2 depicts the 

reduction on the peak demand associated with each case.  
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Figure 5.1 Commercial customer monthly peak demand reduction 

It is worth mentioning that the obtained optimal BES size may not be available in 

the market as the BES manufacturers produce a range of predetermined sizes. However, 

the obtained results can be used as a basis for the BES size selection. Moreover, the 

obtained results are greatly impacted by economical and technical factors such as BES 

capital cost, charging/discharging duration, project lifetime, electricity prices, demand 

charges, and local solar generation capacity. Therefore, sensitivity analyses are conducted 

to investigate the impact of some of the aforementioned factors on the optimization results. 

Table 5.5 shows the impact of changing the BES discharging/charging duration on 

the obtained results. For a 1-hour charging duration, the installation of the BES is not 

feasible as can be seen from the results. As the charging/discharging duration increases, 

the BES benefits outweigh its investment cost which makes the investment in the BES 

economically viable. The total planning cost reduces as the discharge duration increases 

until it reaches 5 hours, after which the total planning cost increases again. However, the 

impact of the discharge duration on the BES size and depth of discharge are not 

proportional. 
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Table 5.5 Sensitivity analysis for different BES charging/discharging duration  

Discharging/ 

Charging duration 

(hour) 

Power Rating 

(MW) 

Depth of 

Discharge (%) 

Number of 

Cycles 

Total Cost 

($/year) 

1 - - - 2,917,338 

2 0.489 50 513 2,895,899 

3 0.340 55 485 2,890,918 

4 0.390 80 300 2,888,167 

5 0.393 85 262 2,885,066 

6 0.440 60 459 2,897,278 

As expected, increasing the demand charge will increase the total planning cost, 

shown in Table 5.6. It is also noticed that increasing the demand charges causes the BES 

size and depth of discharge to increase. The explanation of this will be that as the demand 

charges increase, the economic benefit of installing the BES to shave the commercial 

customer peak demand becomes clearer and therefore investing in larger BES size turns 

out to be feasible. 

Table 5.6 Sensitivity analysis for different demand charge values  

Demand 

Charges 

($/kW) 

Power 

Rating 

(MW) 

Depth of 

Discharge 

 (%) 

Number 

of 

Cycles 

Total 

Cost  

($/year) 

9 0.285 50 508 2,622,421 

11 0.326 50 523 2,758,814 

13 0.340 55 485 2,890,918 

15 0.562 55 495 3,025,571 

17 0.632 85 272 3,159,407 

The last sensitivity analysis is performed to examine the PV capacity impact on the 

BES optimal size and depth of discharge. Since the PV is assumed to be already installed 

in the system, it is not necessary to include its total planning cost into this analysis. From 
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Table 5.7, it can be seen that as the solar generation increases, the BES size increases. 

However, the analysis results do not show a clear relationship between the PV capacity and 

the optimal depth of discharge value.  

Table 5.7 Sensitivity analysis for different PV capacities 

PV Capacity  

(MW) 

Power Rating 

(MW) 

Depth of Discharge 

 (%) 

Number of 

Cycles 

1 0.357 80 280 

1.5 0.340 55 485 

2 0.622 50 524 

2.5 0.785 65 388 

5.2 Optimal Planning of BES for Distribution Network Expansion   

5.2.1 Introduction  

To meet the forecasted load growth and to maintain an acceptable quality of service, 

electric utilities need to continuously expand and upgrade their existing distribution 

networks. Failing to determine the appropriate expansion plan may increase the distribution 

network operation cost and reduce its reliability. Thus, efficient distribution network 

expansion models are of great importance for electric utilities. Traditionally, expansion and 

upgrade of distribution networks involved building new distribution lines, transformers, 

and substations. However, due to the rapid advancement in distributed energy resources, 

especially distributed battery energy storage, new expansion paradigms are emerging. If 

the distributed BES units are optimally sized and placed within the distribution network, 

they can potentially lead to a reduction in the total expansion cost, which includes 

investment cost and system operation cost, while at the same time help achieve economic, 

reliability, and power quality objectives [86], [87]. Moreover, the distributed BES units 
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can provide the distribution network with other benefits such as loss reduction and voltage 

profile enhancement which may not be readily available using traditional expansion 

methods.  

Different approaches have been proposed to solve the distribution network 

expansion planning problem. The work in [86] and [87] review many of the existing 

distribution network expansion planning models. Traditional distribution network 

expansion models are proposed in [88]–[93] that focus on adding or replacing substations, 

transformers, and distribution lines. On the other hand, the works in [94]–[97] consider 

only the installation of distributed BES units and accordingly propose planning models to 

find the optimal size and location of the installed distributed BES units within the 

distribution network. Few published works consider simultaneous investment on both 

traditional options and distributed BES [82]–[86]. The distribution network expansion 

models in  [98]–[100] use dynamic programming, a method that is characterized by high 

computation burden. In [101] mixed integer nonlinear programming is used to formulate 

the distribution network expansion planning problem and thus the solution optimality is 

not guaranteed. The work in [102] assumes that the installed distributed BES size is known 

in advance. This assumption reduces the practicality of the proposed method knowing that 

the BES investment cost is mainly related to its size.  

In this section, a distribution network expansion planning model is developed to 

determine the optimal expansion plan that minimizes the total expansion cost while 

benefitting from distributed BES units installation. Linearized distribution power flow is 

used to examine the network constraints, i.e., voltage magnitude and line flow, to ensure 
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the feasibility of the obtained expansion plan. Mixed integer linear programming (MIP) is 

used to formulate the problem. The solution of the problem will be the optimal size and 

location of the distributed BES units to be installed in the network. 

5.2.2 Problem Formulation   

The objective of the distribution network expansion is defined as to minimize the 

total expansion cost, which is a summation of the investment cost associated with installing 

new distribution lines and distributed BES units as well as the load interruption cost as 

given in (5.17). 
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The first term in (5.17) indicates the investment cost of building new distribution 

lines, which is obtained from line capacity and length. The second term is the distributed 

BES units investment cost, which comprises two terms associated with power rating cost 

and energy rating cost. The cost of the power electronics needed to interface the BES units 

with the distribution network is assumed to be embedded into the BES power rating cost. 

The last term in the objective represents the cost associated with failing to supply the load 

demand. This cost depends on the interrupted load type, location, and time. This objective 

is minimized subject to the distribution network and the distributed BES units operational 

and budget constraints as further discussed in the following. 
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Distribution Network Operational Constraints 

These set of constraints ensure an adequate and reliable operation for the 

distribution network. The first constraint that must be fulfilled all times is the active and 

reactive power balance constraint (5.18) and (5.19). 
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The active and reactive line flow equations, as shown respectively in (5.20) and 

(5.21), are nonlinear in nature. 
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Since the bus voltage angles in adjacent buses in distribution networks are normally 

close, the difference between these angles can be considered close to zero. Keeping this in 

mind, the trigonometric terms in (5.20) and (5.21) can be approximated as sin(θit – θjt)≈(θit 

– θjt) and cos(θit – θjt)≈1.  Besides, the bus voltage magnitude and angle can be expressed 

using the voltage and angle deviation at each bus with respect to the slack bus (i.e., the bus 

at which the distribution network is connected to the higher voltage subtransmission 

network). That is, the bus voltage magnitude and angle can be redefined as Vit=1+ΔVit and 

θit=1+Δθit.  
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By substituting the trigonometric terms approximation and the new bus voltage 

magnitude and angle definitions into the line flow equations, (5.22) and (5.23) are obtained. 
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In this work, the distribution power flow problem is solved in two steps. In the first 

step, the third term in (5.22) and (5.23) is omitted by setting iV̂  =0. In this step, a lossless 

power flow solution is obtained. The bus voltage deviation that is calculated in the first 

step is recorded as iV̂  and used in the second step. The distribution power flow is then 

solved in the second step using (5.22) and (5.23). In this way, the nonlinear distribution 

power flow is linearized and thus can be used in the developed distribution network 

expansion model. The line flow in each distribution line is constrained by its associated 

capacity limits for active and reactive power, respectively as in (5.24) and (5.25). 

t,ijijijtij PLPLPL  e
maxmax L                               (5.24) 

 

t,ijijijtij QLQLQL  e
maxmax L                               (5.25) 

For candidate lines, the line flow equations are modified, as in (5.26)-(5.29), to 

include a binary variable z that represents the distribution line investment state. If a new 

line between buses i and j is built, zij is 1, otherwise it is 0. Note that when zij is 0, (5.26) 

and (5.27) are relaxed and the line flow is set to 0 by (5.28) and (5.29). On the other hand, 

when zij is 1, (5.26) and (5.27) treat the candidate line as an existing line, i.e., impose similar 
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equation for line flow as in existing lines, and (5.28) and (5.29) add the active and reactive 

capacity limits, respectively. 

t,ij

PL

ijjiiij

jiijjiijijtij

zVVVg

bVVgz

 



cL          )1(K))(ˆ

)()(()1(K 
          (5.26) 

 

t,ij

QL

ijjiiij

jiijjiijijtij

zVVVb

gVVbz

 



cL)1(K ))(ˆ

)()(()1(K 

            


          (5.27) 

 

t,ijijijijtijij zPLPLzPL  c
maxmax L                  (5.28) 
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Lastly, the bus voltage magnitude is limited by maximum and minimum limits 

(5.30).  
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maxmin           (5.30) 

 

DBES units Operational Constraints 

The distributed BES units investment and operation can be modeled using (5.31)-

(5.37). The distributed BES units charging and discharging power cannot exceed the 

optimal power rating size (5.31)-(5.32). The distributed BES units operating state indicator 

u ensures that the distributed BES units is either charging or discharging and is not in both 

states simultaneously. The distributed BES power is positive when the BES is discharging 

and negative when the BES is charging. The distributed BES units are assumed to be used 

only for active power applications. The distributed BES units’ power used in (5.18) at any 

time interval is determined as the summation of the DBES charging and discharging power 

(5.33). The amount of energy stored in the DBES is calculated by (5.34). To protect the 

distributed BES units from overcharging or undercharging situations, the amount of hourly 
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stored energy is constrained by associated maximum and minimum limits based on the 

optimal energy rating and the allowable depth of discharge (5.35). The optimal power 

rating size is limited by the available technology/module size (5.36). The distributed BES 

units energy rating is determined based on the energy to power ratio in (5.37).   
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The desired values from the BES planning model, when considered within the 

expansion planning model, are x, which represents the decision to install the distributed 

BES units as well as its location, and ER and PR, which represent the size of the installed 

distributed BES units.   

Distribution Network Expansion Budget Limit 

Each expansion project has an available budget limit that cannot be exceeded. This 

limit will impact the selected expansion plan such as the type of the technology to be used, 

the location and the optimal size (5.38). 
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5.2.3 Case Study 

Distribution Network and DBES Data 

The IEEE 33-bus system, shown in Figure 5.2, is used to study the proposed 

distribution network expansion planning model. The hourly load demand data are 

borrowed from [54] and scaled to be suitable for this system. The forecasted load growth 

is given in Table 5.8. This load growth is assumed for active load and the reactive load 

growth is determined accordingly based on a fixed power factor. The cost of failing to 

supply loads is assumed to be $20/kWh.  The candidate distribution lines data is given in 

Table 5.9. The line investment cost is determined based on the information given in [103]. 

A lead acid battery is selected as the selected distributed BES technology. However, other 

BES technologies can be used without loss of generality. The lead acid battery 

characteristics are retrieved from [70] and shown in Table 5.10. The annualized capital cost 

is calculated assuming 10% interest rate, along with a lifetime of 20 years and 10 years for 

the lines and the distributed BES units, respectively. 
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Figure 5.2 IEEE 33-bus single line diagram 

Table 5.8 Forecasted load growth  

Bus Number 1 2 3 4 5 

Load Growth (%) 0 12 10 2 3 

Bus Number 6 7 8 9 10 

Load Growth (%) 5 1.5 6 0.5 2.3 

Bus Number 11 12 13 14 15 

Load Growth (%) 5 0 0.5 8 6 

Bus Number 16 17 18 19 20 

Load Growth (%) 2 8 4 3 15 

Bus Number 21 22 23 24 25 

Load Growth (%) 2 0.3 10 0 5 

Bus Number 26 27 28 29 30 

Load Growth (%) 8 4 0 0.5 5 

Bus Number 31 32 33 - - 

Load Growth (%) 6 0.3 0 - - 

Table 5.9 Candidate distribution lines data 

Candidate 

Line 
From Bus 

To 

Bus 

R 

(Ohms) 

X 

(Ohms) 
Capacity (kW) 

Inv. Cost 

($/year) 

1 1 2 0.0922 0.0470 4600 21811.72 

2 2 3 0.4930 0.2511 4100 103951.77 

3 3 4 0.3660 0.1864 2900 54585.86 

4 4 5 0.3811 0.1941 2900 56837.9 

5 5 6 0.8190 0.7070 2900 122147.05 

6 6 7 0.1872 0.6188 1500 14441.03 

7 7 8 0.7114 0.2351 1050 38415.3 

8 8 9 1.0300 0.7400 1050 55619.56 

9 9 10 1.0440 0.7400 1050 56375.56 
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10 10 11 0.1966 0.0650 1050 10616.32 

11 11 12 0.3744 0.1298 1050 20217.44 

12 12 13 1.4680 1.1550 500 37748.28 

13 13 14 0.5416 0.7129 450 12534.07 

14 14 15 0.5910 0.5260 300 9118.215 

15 15 16 0.7463 0.5450 250 9595.21 

16 16 17 1.2890 1.7210 250 16572.72 

17 17 18 0.7320 0.5740 100 3764.54 

18 2 19 0.1640 0.1565 500 4217.11 

19 19 20 1.5042 1.3554 500 38679.12 

20 20 21 0.4095 0.4784 210 4422.56 

21 21 22 0.7089 0.9373 110 4010.31 

22 3 23 0.4512 0.3083 1050 24364.61 

23 23 24 0.8980 0.7091 1050 48491.62 

24 24 25 0.8960 0.7011 500 23039.82 

25 6 26 0.2030 0.1034 1500 15659.87 

26 26 27 0.2842 0.1447 1500 21923.83 

27 27 28 1.0590 0.9337 1500 81693.65 

28 28 29 0.8042 0.7006 1500 62037.80 

29 29 30 0.5075 0.2585 1500 39149.69 

30 30 31 0.9744 0.9630 500 25055.80 

31 31 32 0.3105 0.3619 500 7984.22 

Table 5.10 Lead acid battery characteristics 

Min./Max. Power 

Rating (kW) 

 

Capital Cost Depth of 

Discharge (%) 

Min./Max Energy 

to Power Ratio ($/kW) ($/kWh) 

0/200 300 200 85 1/5 

Results and Discussion 

Three cases are studied in this simulation:  

Case 1: The distribution network power flow is solved without considering the 

network expansion to determine the amount of potentially curtailed load.  

Case 2: A traditional distribution network expansion problem is solved in which 

the load growth will be met by installing new distribution lines. 
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Case 3: The proposed distribution expansion planning model is used to meet the 

forecasted load growth. The expansion plan is expected to be either installing new 

distribution lines, installing distributed BES units, or a combination of these two. 

The obtained results for each case are presented below:  

Case 1: In this case, it is found that 6684 kWh of load must be curtailed each year 

for the distribution network to operate in a secure manner. The curtailed loads are located 

at buses 18, 25, and 33. This load curtailment costs $133,680/year based on the considered 

value of lost load. This is however the worst-case scenario when the electric utility chooses 

not to expand their network. In practice, electric utilities are obligated to meet certain 

reliability standards. The distribution network reliability is measured using reliability 

indices such as customer average interruption duration index (CAIDI) and system average 

interruption duration index (SAIDI) among others [104], significantly limiting permitted 

load curtailments. 

Case 2: In this case, the traditional distribution network expansion planning model 

is employed to find the expansion plan. It is assumed that the distribution network 

substation has the adequate capacity and is not required to be replaced or upgraded. In this 

case, the only available expansion option is to build new distribution lines to meet the 

forecasted growth in the load demand. In this case the load curtailment is reduced to 814.19 

kWh/year when four new distribution lines, namely candidate lines 1, 12, 14, and 17, are 

installed. The curtailed load demand is located at buses number 18 and 25. The load 

demand located at bus 33 does not experience any load interruption in this case compared 

to Case 1. The total distribution network expansion cost is $88726.628/year.  
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Case 3: This case represents the optimal distribution network expansion plan based 

on the proposed model. Here, a combination of building new distribution lines and 

installing distributed BES units is considered. The optimal plan will be the one that yields 

the minimum total expansion cost. The solution of this problem is to install three distributed 

BES units at buses 18, 25, and 33, which are buses that initially experienced load 

curtailment. It can be noticed that the optimal distributed BES units size is small compared 

to the network total load. This is due to the fact that the installed distributed BES units are 

needed only to shave the peak demand which results in significant savings for the electric 

utility company in terms of reduced load curtailment and also deferred/prevented 

distribution line installation. Installing the distributed BES units reduces the load 

curtailment to 0, which means the expanded distribution network should be able to meet 

the forecasted load growth. The optimal distributed BES units’ sizes are given in Table 

5.11. A summary of the results for the studied cases is provided in Table 5.12.  

Table 5.11 Installed distributed BES optimal size and location for case 3 

Optimal Power 

Rating Size (kW) 

Optimal Energy Rating Size 

(kWh) 

Optimal Location 

(Bus) 
35.05 140.19 18 

15.88 29.54 25 

18.23 23.46 33 

Table 5.12 Obtained results for the considered cases  

Case 1 2 3 

No. of Installed Lines - 4 - 

Installed Lines - 1,12,14,17  
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No. of Installed BES - - 3 

Total Power Loss (MW) 2285.515 2305.022 2288.232 

Load Curtailment (KWh/year) 6684 814.19 0 

Interruption Cost ($/year) 133680 16283.87 0 

Investment Cost ($/year) - 72442.75 9663.04 

Total Cost ($/year) 133680 88726.628 9663.04 

To investigate the impact of the installed distributed BES units on the distribution 

network voltage profile, the voltage magnitude at each bus is calculated for the three 

studied cases. Figure 5.3 shows the voltage magnitude at each bus in the system at a specific 

time interval. As expected, the buses that experience load curtailment are the weakest in 

the system in terms of voltage magnitude. However, building new lines or installing 

distributed BES units equally enhance the voltage profile at those buses as can be seen 

from the figure. It is expected that with more stringent requirement in voltage deviation 

limit (i.e., equation 96), voltage profile will be enhanced even more with the optimal 

distributed BES units. This of course will be associated with larger distributed BES units 

size. 
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Figure 5.3 Voltage profile for the IEEE 33-bus system at a specific time interval 

5.3 Optimal Planning of BES for Solar PV Ramp Rate Control 

5.3.1 Introduction  

The penetration of solar photovoltaic (PV) units in power system has shown an 

increase in the past few years and is expected to continue growing in the near future. This 

is due to several factors such as the drop in solar PV technology cost, the advancements in 

power electronics and control methodologies, and the implementation of new regulations 

that allow solar PV owners to make profit when connected to the grid. If not properly 

controlled and managed, high solar PV penetration may introduce some challenges to the 

power system operation. One of the main challenges is caused by the fact that the primary 

source of solar PV is the solar irradiance which changes over the time causing the solar PV 

power to fluctuate. The variation in the solar PV ramp rate can be categorized into small 

ramp rates and large ramp rates due to weather changes and cloud passage. Both types of 

PV ramp rates must be addressed and controlled to ensure a reliable grid operation [105], 

[106].  

Various methods have been discussed to solve the solar PV power variation issue 

and to control the ramp rate of the power injected to the grid. These methods include 
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voltage regulating control [107], active power reserve [108], geographical dispersion 

[109], and energy storage integration [110]. However, it is shown that energy storage 

integration is the most attractive option as the installed storage can be used for other 

applications, such as energy arbitrage and regulation services, which increase the economic 

value of energy storage. Among the various available energy storage technologies, battery 

energy storage (BES) stands out to be the most mature technology that can be used for 

solar PV ramp rate control. 

The main challenge that faces BES installation is the associated high investment 

cost. The BES investment cost is greatly related to the selected technology and size. Sizing 

BES for solar PV ramp rate control is addressed in literature and different methods are 

proposed to find the optimal size of the installed BES. The work in [111] derives an 

analytical method to determine the required BES maximum power and minimum capacity 

for controlling PV ramp rate. A statistical approach is adopted in [112] to determine the 

BES size required to smooth the solar PV output power. The work in [113] uses a moving 

average technique to investigate BES sizing for commercial solar PV system. In [114], the 

BES size is found based on an economic dispatch solution. Although extensive, the 

reviewed literature only considers the installation of one BES to control solar PV ramp rate 

and further ignores the variation between the BES technologies characteristics which 

results in a higher total investment cost.  

The solar PV ramp rate changes according to weather conditions. In the worst case, 

solar PV ramp rate may reach up to 100% of its rated capacity. If one BES is used to control 

the solar PV ramp rate, it will need to have both high lifecycle and high capacity. A BES 
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with such characteristics is expensive and might not be economically viable to be 

purchased and installed. However, analyzing PV ramp rate variations reveals that large 

ramp rates rarely occur unlike small ramp rates. Thus, in this model, the small and large 

solar PV ramp rate controls are decoupled and two different BES technologies are used to 

perform the PV ramp rate control. The BES technology with higher cost and lifecycle, such 

as a Li-ion battery, will be used to control small solar PV ramp rates while the BES with 

lower cost and lifecycle, such as a lead acid battery, will be used to control large solar PV 

ramp rates. A coordinated BES sizing method is proposed to determine the optimal size for 

both BES units in order to minimize the overall investment cost while satisfying the grid 

ramp rate control requirements. 

5.3.2 Problem Formulation   

Figure 5.4 shows the structure of the PV-BES system studied in this paper. This 

system is connected to the grid via DC/AC inverter. For the sake of simplicity, the power 

electronic converters are not shown in the figure. The solar PV power signal fluctuates with 

time due to the variation in solar irradiance. If the PV power is fed to the grid as it is, it 

may negatively impact grid voltage values and cause considerable load-generation 

mismatch. Therefore, BES units are integrated to the solar PV to control the ramp rate and 

to ensure a mitigated solar PV output. BES 1 is installed to handle the large solar PV ramp 

rate while BES 2 is used to mitigate the small solar PV ramp rate. It must be noted that 

BES 2 is expected to perform high number of charging/discharging cycles while BES 1 is 

expected to perform long charging/discharging periods. The produced PV power signal 

must comply with the grid ramp rate requirements as shown in Figure 5.4. 
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Figure 5.4 Studied PV-BES system structure for ramp rate control application 

The objective of the BES optimal planning problem is to minimize the overall 

investment cost associated with installing the BES units while satisfying the grid ramp rate 

requirement. The BES investment cost can be divided into two parts: power rating cost in 

$/kW and energy rating cost in $/kWh. The objective function is defined by (5.39). 
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s ECCPCC           (5.39) 

 

The power transferred to the grid (PG) is the summation of the solar PV power (PPV) 

and the installed BES power (PB) as given by (5.40). Indices d and t represent days and 

considered time periods within each day, respectively. That is, if each hour is divided into 

an identical set of minutes (n), then the considered time periods for each day (t) is equal to 

24×(60/n). In this work, a 5 minutes solar PV data is used (i.e., n=5). Since the BES 

planning problem is solved for one year, a total number of 105,120 time periods will be 
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considered. The change in the power transferred to the grid in all of the considered time 

periods should follow a permissible ramp rate limit imposed by the grid operator (5.41).  

  ,                             G tdPPP
Ss

B
sdt

PV
dtdt  



          (5.40) 
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The installed BES units are governed by a set of constraints that model their 

operation as follow: 
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The BES power (PB) given in (5.40) is the summation of the BES charging power 

and discharging power at each time period (5.42). The charging and discharging power of 

the installed BES are modeled using (5.43)-(5.44). The binary variable u indicates the BES 

operation state, that is the BES is discharging when u=1 and either charging or in idle state 

when u=0, thus it is ensured that the BES does not charge and discharge at the same time 

period. This binary variable is used in (5.45) to indicate the BES cycle completion, i.e., 

BES charging/discharging cycle is completed when the value of ξ is 1. The stored energy 
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within the BES at each time period is defined as the stored energy at the previous time 

period minus the BES charging/discharging power (5.46). The value of τ in (5.46) depends 

on the considered time periods. It must be noted how the BES charging/discharging power 

are defined in (5.43) and (5.44), which will result in a negative value for BES charging 

power and positive value for the BES discharging power. Keeping this in mind the stored 

energy within the BES will increase if the BES is charging and decrease if the BES is 

discharging. In general, the stored energy within the BES is limited by the maximum and 

minmum values, normally provided by the BES manufacturer, to protect the BES from 

excessive charging and discharging conditions. These limits are different from one BES 

technology to another. In this work, it is assumed that the BES can be charged up to its 

rated capacity and can be discharged up to an allowable depth of discharge value (D) 

decided based on the considered BES technology (5.47).  

5.3.3 Case Study 

Solar PV and BES Technologies Data  

The proposed model is tested on a 1 MW solar PV unit. The solar PV power data 

are retrieved from [115] with a 5-minute time resolution. Figure 5.5 shows the PV power 

profile for one month while Figure 5.6 shows the associated ramp rate values. As can be 

seen that the solar PV power profile is different from one day to another. Most of the 

presented days, however, show a typical solar PV power profile that is associated with 

small ramp rate variation. For these days, a small BES is sufficient to control the variations 

and maintain the power sent to the grid within the required ramp rate limit. Due to weather 

changes, the PV profile at certain days exhibit a rapid change which results in high ramp 
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rate variations. In this case, a large BES is needed to either absorb or produce the difference 

between the PV output power and the power that should be sent to the grid in order to 

satisfy the grid operator ramp rate limit.  

 
Figure 5.5  Solar PV power for one month period 

 
Figure 5.6 Solar PV ramp rate for one month period 

In this work, two BES technologies with different characteristic and capital costs, 

as shown in Table 5.13, are utilized to control the solar PV ramp rate. An 8% interest rate 

and a 10-year lifetime is assumed to calculate the annualized capital costs. 

Table 5.13 BES technologies characteristics   

BES 

Technology 

Power Rating 

Cost ($/kW) 

Energy Rating 

Cost ($/kWh) 

Depth of 

Discharge (%) 

Round Trip 

Efficiency (%) 

Lead acid  600 400 70 75 

Li-ion 1300 800 90 95 



 

105 

Results and Discussion  

The ramp rate limit is assumed to be 0.05 MW (i.e., 5% of PV rated power). The 

optimal size for the installed BES units along with the corresponding annualized 

investment cost are calculated as in Table 5.14. The overall investment cost is found to be 

$36,475/year. Figure 5.7 shows PV power, output power after using lead acid battery for 

large ramp rate control, and the output power after using Li-ion battery for small ramp rate 

control. Besides the difference in the installed size, it is noticed that the lead acid battery 

performs around 66% less cycles than the Li-ion battery (2136 cycles/year for lead acid 

and 6312 cycles/year for Li-ion).  Table 5.15 shows how many times in a year the ramp 

rates value has exceeded a given percentage of the solar PV rated power ramp rate values. 

It can be seen that large ramp rates (i.e., >15%) are mitigated using lead acid battery. After 

mitigating large ramp rates, the Li-ion battery is used to control the small ramp rates (i.e., 

<10%) to satisfy the grid ramp rate limit.     

Table 5.14 Numerical Simulation Results    

BES Technology 
Optimal Power 

Rating (KW) 

Optimal Energy 

Rating (KWh) 

Investment Cost  

($/year) 

Lead acid  205 96 24,048.6 

Li-ion 58 10 12,426.6 

 

 

                                              (a)                                                 (b)                                              (c) 

Figure 5.7 (a) PV power, (b) output power after using lead acid battery for large variation 

control, (c) output power after using Li-ion for small variation control (i.e., power 

transferred to the grid) 
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Table 5.15 Ramp Rate Analysis     

Ramp Rate 

Percentage 

No. of violations 

in original Solar PV after using BES 1  after using BES 2 

5 2040 1104 0 

10 828 12 0 

15 444 0 0 

20 228 0 0 
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Chapter 6. Conclusion and Future Research  

BES is perceived to be a vital component in ensuring a cost-effective and reliable 

microgrid operation during both the grid-connected and the islanded operation modes. 

However, to add a BES to an existing microgrid requires the consideration of some decisive 

and critical factors, such as the BES size, integration configuration, technology, and depth 

of discharge. This dissertation explained the impact of these BES planning parameters on 

the BES operation and further developed a comprehensive expansion models to optimally 

determine their values for various BES technologies and microgrid types.  

The developed BES planning models aimed at minimizing the microgrid total 

expansion planning cost, i.e., the summation of the microgrid operation cost, the cost of 

unserved energy, and the storage investment cost. Numerical simulations performed on test 

microgrids validated the effectiveness of the proposed microgrid-integrated BES planning 

models. The obtained results showed that the developed models were able to determine the 

optimal BES size, integration configuration, technologies, and depth of discharge that 

minimizes the total microgrid expansion planning cost.  

Besides microgrid application, this research investigated the utilization of BES in 

reducing I&C customers electricity bill, expanding distribution network, and 

accommodating solar PV ramp rate. Three planning models of BES used for each of the 

aforementioned applications are proposed to ensure economic and reliable BES 
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installation. The ability of the proposed models to find optimal planning parameters of the 

installed BES while taking into consideration the impact of BES operation on its lifetime 

were validated through numerical simulations.  

Although the developed BES planning models in this dissertation cover a wide 

range of BES applications in distribution network, more investigations are required on 

using the BES for multiple stacked applications [116]. This will increase the BES economic 

value and therefore increase its deployment in the power system. Such research requires 

the development of comprehensive models that can accurately quantify each application 

that can be performed by the BES and accordingly select the optimal applications that 

maximize the benefits of installing the BES from either the grid prospective or the owner 

prospective. However, a modification in the existing regulations and market arrangements, 

especially those that prevent the utilization of BES in some of power applications, needs 

to be done to realize the full capabilities provided by BES. 
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Appendix A 

Linearization of bilinear terms: if variable y is equal to the multiplication of 

continuous variable β and k binary variables δ1, δ2, δ3, …, δk such as illustrated in (A1), it 

can be described by 2(k+1) constraints as shown in (A2)-(A3). M is a large positive 

constant. 

                                               ... 321 ky      (A1) 
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                       ,...,3,2,1 kjMyM jj      (A3) 

If at least one binary variable is zero, according to (A3), y would be zero, and 

(A2) would be relaxed. If all binary variables are one, all k constraints in (A3) would be 

relaxed, and according to (A2), y would be equal to β. Therefore, the equation is 

linearized, and the results of the constraints defined in (A2)-(A3) conform to the original 

equation in (A1).
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Appendix B 

A commonly used approach to solve MIP problems, such as the one presented in 

this paper, is the branch and bound approach. Before explaining how this approach works, 

a concept of MIP relaxation must be introduced. A relaxed MIP problem can be defined 

based on the following two characteristics:  

1) Any solution to the original MIP problem is also a feasible solution to the relaxed 

problem.  

2) The objective function value associated with the original MIP solution is larger 

than or equal to the objective function value associated with the relaxed problem solution.  

A typical relaxed MIP problem is its corresponding LP problem, which can be 

found by removing any integrality constraints in the original MIP problem. To this end, 

solving the corresponding LP problem will yield one of three possible cases: infeasible 

solution, feasible solution that satisfies the original MIP integrality constraints, or feasible 

solution that does not satisfy the original MIP problem integrality constraints. If there is no 

solution to the LP problem, then the problem is said to be infeasible and some of the 

constraints must be relaxed or the problem should be reformulated. In case of a feasible 

solution, if the obtained LP solution happens to satisfy the original MIP integrality 

constraints, then the LP solution is the optimal solution for the original MIP problem. 

However, such optimistic case does not happen often and the LP solution normally tends 

not to comply with the MIP integrality constraints. In this case, the LP problem is divided 

into two sub-problems. This process is known as branching as the LP problem is branched 

into sub-problems. These sub-problems are solved and the obtained solutions are compared 
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with each other. If the solutions of both sub-problems satisfy the integrality conditions, 

they must be compared and the sub-problem solution that is associated with smaller 

objective function value for minimization problem or larger objective function value for 

maximization problem is selected as the optimal solution. If only one sub-problem solution 

satisfies the MIP integrality conditions, then this solution is saved as incumbent solution 

(i.e., the optimal solution if no better solution is found) while the branching process is 

continued on the second sub-problem searching for a better solution that satisfies the MIP 

integrality conditions. Powerful solvers such as CPLEX, Xpress-MP, and SYMPHONEY 

implement a combination of branch and bound techniques and cutting-plane techniques to 

accelerate the computation time associated with solving MIP problems, which allows large 

MIP problems to be solved using personal computers. The resulted MIP problem can be 

solved using GAMS. More information about GAMS can be found in [117]. The branching 

and bounding steps are shown in the following figure.  
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