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Abstract

Many large-scale systems can be modeled as groups of individual dynamics, e.g., multi-vehicle systems,
as well as interconnected multiagent systems, power systems and biological networks as a few
examples. Due to the high-dimension and complexity in configuration of these infrastructures, only a few
internal variables of each agent might be measurable and the exact knowledge of the model might be
unavailable for the control design purpose. The collective objectives may range from consensus to
decoupling, stabilization, reference tracking, and global performance guarantees. Depending on the
objectives, the designer may choose agent-level low-dimension or multiagent system-level high-
dimension approaches to develop distributed algorithms. With an inappropriately designed algorithm, the
effect of modeling uncertainty may propagate over the communication and coupling topologies and
degrade the overall performance of the system. We address this problem by proposing single- and multi-
layer structures. The former is used for both individual and interconnected multiagent systems. The latter,
inspired by cyber-physical systems, is devoted to the interconnected multiagent systems. We focus on
developing a single control-theoretic tool to be used for the relative information-based distributed control
design purpose for any combinations of the aforementioned configuration, objective, and approach. This
systematic framework guarantees robust stability and performance of the closed-loop multiagent
systems. We validate these theoretical results through various simulation studies.
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Abstract

Many large-scale systems can be modeled as groups of individual dynamics,
e.g., multi-vehicle systems, as well as interconnected multiagent systems, power
systems and biological networks as a few examples. Due to the high-dimension
and complexity in configuration of these infrastructures, only a few internal vari-
ables of each agent might be measurable and the exact knowledge of the model
might be unavailable for the control design purpose. The collective objectives may
range from consensus to decoupling, stabilization, reference tracking, and global
performance guarantees. Depending on the objectives, the designer may choose
agent-level low-dimension or multiagent system-level high-dimension approaches
to develop distributed algorithms. With an inappropriately designed algorithm,
the effect of modeling uncertainty may propagate over the communication and cou-
pling topologies and degrade the overall performance of the system. We address
this problem by proposing single- and multi-layer structures. The former is used
for both individual and interconnected multiagent systems. The latter, inspired
by cyber-physical systems, is devoted to the interconnected multiagent systems.
We focus on developing a single control-theoretic tool to be used for the relative
information-based distributed control design purpose for any combinations of the

aforementioned configuration, objective, and approach. This systematic frame-
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work guarantees robust stability and performance of the closed-loop multiagent

systems. We validate these theoretical results through various simulation studies.
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Chapter 1

Introduction

“When I want to understand what is happening today or try to decide

what will happen tomorrow, I look back.”

Omar Khayyam — Mathematician, Astronomer, and Poet (1048-1151)

Looking back though history, we notice that the word “feedback”, in engineer-
ing, has been introduced during the 20" century in order to describe the parasitic
effect of an amplifier’s output on the input circuit. In fact, it is more than 2000
years that feedback control systems have been known as parts of human daily
life. An interesting point is that control systems are multidisciplinary topics, and
are heavily affected by theoretical and practical advances in many fields such as
electrical and mechanical engineering as well as mathematics. As an example, we
know that the modern control era emerged as a result of advances in (the state
space domain) mathematical analysis tools and digital computers. (See [1] for

further historical comments on control systems.)



Rise in human population has resulted in the increased “size” of systems which,
consequently, increased the dimension of their mathematical models. Initial inves-
tigation was around direct generalization of existing control systems theories to
the high-dimension systems (previously developed for small-scale systems). This
was introduced under the name “centralized” control of “large-scale systems.”
Theoretical small- to large-scale generalizations could be done independently of
the size of large-scale system. However, in practice, some limitations were im-
posed by the existing computational power of a central digital computer, and
sensing, measurement, and communication abilities. Motivated by these practical
burdens, the (theoretically) conservative “decentralized” control ideas attracted
research interest. In the decentralized scenario, central powerful digital computer
of the centralized approach could be replaced by some “small” computing systems
receiving updates from the sensing tools at their own local subsystems. (See [2]-[3]
for further details on large-scale systems.) The success in decentralized control
ideas motivated researchers to think about the large-scale system as a “system of
(sub-) systems” or, in other words, a group of individuals.

In parallel, researchers were continuously trying to understand the logic behind
collective behavior of biological systems (for example, fish schooling and flocks of
bird). Specifically, scientists believed that any collective decision among travel-
ing animals highly depend on their inter-group communication ability which was
possibly guided by a leading animal that had some global information regarding
the target [4] (e.g., the food resource or geographical position of the destination).
An inspiring study was reported in [5] where the authors proposed a discrete-time
stochastic model to describe the behavior of some moving objects with differ-

2



ent initial headings, and numerically showed a simple heading-averaging rule in
each moving object’s neighborhood could lead all group members to move in the
same direction.

Researchers within the control system society were also trying to understand
these phenomena and use them in their own engineering problems. For example,
knowing about two hypotheses that the lateral position tracking of the preced-
ing bird results in aerodynamic advantages for each follower bird and improved
navigation capabilities, reference [6] studied the bird V-formation with a (control)
systems-theoretic viewpoint and used the result in automatic highway systems
and in-flight formation controls ([7] and [8]). Another research trend was created
by visualizing the communication topology using graphs, abstracting the infor-
mation in some graph-related matrices, and understanding the requirements for
achieving agreement among individual subsystems. Of those, we mention [9]-[10]
and, particularly, reference [11] that proposed a theoretical foundation for a deter-
ministic equivalent formulation of the numerical study in [5] and also connected
that result to graph theory®.

The outcome of these graph-theoretic ideas was astonishing. From a theoret-
ical viewpoint, the distributed design capability allowed researchers to guarantee
a global high-dimension design objective through local low-dimension sub-design
problems. From a practical viewpoint, a global behavior such as heading agree-

ment in [5] and [11] could be achieved using some cheap computing systems (com-

'Researchers are still following systems-theoretic viewpoints in order to explain their observa-
tions in some particular applications. For example, [12] discussed the disturbance propagation
in a string of vehicles using such a viewpoint. However, this has been less attractive than
graph-theoretic distributed control ideas.



pared to the centralized control schemes), and based on local information exchange
within each agent’s neighborhood. This could eliminate the need for availability
of all agents’ absolute measurements with respect to the “same” global coordi-
nate (e.g., in decentralized rendezvous, all moving objects should be equipped
with a global positioning system (GPS) while this is not required in distributed
rendezvous).

These findings were in parallel to industrial improvements in computation,
communication, sensing, and monitoring devices. Specifically, it was possible to
integrate the sensing devices with computation and communication tools, and
have an enabling technology with a reasonable physical size. As a result of these
technological advances, a rapid progress was made in communication-based co-
operative control of unmanned systems (e.g., see [13] and [14]) which, inherently,
could be suitable applications for all distributed control objectives?.

All of these multidisciplinary advances, in addition to the wide range of po-
tential applications for the distributed control strategies [16] (e.g., ranging from
old-style multi-machine power systems [15] to the smart grid), attracted the re-
searchers’ attention to this topic. We further mention that the group “consensus”,
by itself, was a known fact among researchers [17]. Control systems society was
familiar with this topic through distributed decision making problems (see [18]).
Problems involving agents and multiagent systems in distributed computation
were also studied within the computer science society (see the discussion in [19]
and [20]). Thus, all together, this newly emerging topic was named “distributed

consensus in multiagent systems” (other names in the literature were very close

2The objectives will be discussed in Section 1.1.
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to this one). Moreover, successful implementation created new avenues for further
theoretical improvements and kept this research area alive and very active within
the control systems society as will be discussed in the rest of this Chapter. In
Section 1.1, we briefly introduce the terminology and team-based objectives that
have been commonly addressed in the literature of graph-theoretic distributed
multiagent control. In Section 1.2, we survey the literature of multiagent systems
control from the agent modeling and applied control theory viewpoints. In Sec-
tion 1.3, we discuss the contribution and structure of this dissertation. Finally, in

Section 1.4, we summarize this chapter.

1.1 Team-based objectives in cooperative con-
trol of multiagent systems: an overview

In this section, we overview main control goals that have been proposed as the-
oretical and practical team-based objectives. Detailed mathematical information,
if required, will be provided in other sections of this dissertation.

The word multiagent system refers to the fact that there are several (sub-)
systems working as a team toward a common goal. Each system is equipped with
its own measurement, sensing, computation, and communication tools. We clar-
ify that by “sensing”, we distinguish the agent’s ability to measure some aspects
of another system’s behavior. For example, the range sensor is a sensing tool.
(This is different from agent’s absolute measurement about its own behavior.)
Also, cooperation points to the fact that a team of agents are willingly sharing

their information in order to accomplish a global task (in addition to meeting
5



their own local objectives). We have already mentioned that a main feature of
the distributed control algorithms is about the possibility of cooperation without
absolute measurements of agents’ variables. In some references, this is specified
by saying the design is based on some relative measurements in each neighbor-
hood. Here, the neighboring agents are those that share some information with a
specific agent?.

In all cases, with simple words, the objective is agreeing on a common value
among all agents. For example, in [5], the agreement was on the moving direction
(of all particles). This is named consensus in distributed control research studies
which, in fact, refers to “any” agreements among agents of a multiagent system
that have been achieved as the result of sharing information in agents’ neigh-
borhoods. In this sense, we focus on appropriately developing graph-theoretic
algorithms based on the relative measurements. These are known to be consensus
algorithms or protocols.

As a matter of fact, these consensus algorithms only ensure the agreement
among agents, without specifying the “agreement” value. The average consen-
sus algorithms, however, refer to those revised consensus protocols that ensure
agreement on the average of all agents’ initial status*. Although this value is still

unknown, these protocols provide a general sense on the agents’ agreed status

3In a proximity graph scenario, the neighboring agents are sufficiently close to an agent and
belong to its neighborhood area (open connected set), e.g., distance-wise in multi-robot systems,
all agents that are inside a circle with the host robot as the center and radius r > 0.

4By the word “status”, we simply point to any possible agreement variables which, for ex-
ample, could be the internal states of agents in the state space domain.



(we are able to generalize this result to a weighted average consensus by pre-
determining the importance of agents’ information).

The rendezvous specifies the application of consensus algorithms for multi-
robot (-vehicle) systems with position of robots as the consensus variable [21].
Since (line-to-sight) sensors have a limited range of applicability and agents are
moving in space, the proximity graph plays an important role in a rendezvous of
mobile agents [22]. Furthermore, formation control refers to the case that agents
create a pre-defined geometrical shape. For these moving agents, the connectivity
maintenance is a topic of interest for researchers. It aims in ensuring the two
neighboring agents will remain each others’ neighbors during the cooperative task
completion. In distributed flocking or swarming, having some (man-made) moving
objects and some relative measurements, the algorithm tries to automatically
reproduce the observed behavior in nature, e.g., fish chooling and flocks of bird
(see [23]-[26]). Here, a main point is about the agents’ velocity matching. But,
since it usually includes a high-number of moving agents and particularly because
the inter-agent distance can be less that the length of each agent, the collision
avoidance capability has also been considered to enhance the overall reliability
of flocking algorithms. Furthermore, in the distributed attitude alignment, the
consensus variable is pre-specified to be the attitude of agents [27].

A distributed coverage algorithm tries to optimize the distribution of agents
in order to cover the maximum area “by all agents” based on some information
exchange within “each agent’s neighborhood.” Here, a main concern is about
the possible holes (areas not covered by agents). The wireless sensor network
design is about the best distribution of sensing devices to sense a distributed

7



plant, for example, monitor a specific area [28]. Since these might be used in
remote (hazardous) areas and each sensor has a limited energy resource, the en-
ergy consumption is a main constraint that has been discussed in the literature.
Additionally, a sensor network may only provide a part of the required informa-
tion about a plant. Thus, the distributed estimation or (Kalman) filtering can be
used to discover the hidden behavior (or variables) of a distributed system. Those
challenges have been addressed using data fusion or decentralized techniques as
well as consensus-based ideas [29]. Sometimes, researchers deal with a large-scale
optimization problem with a high-number of decision variables. Whenever these
decision variables can be grouped into some subsets of variables, where each cor-
responds to an individual agent, the distributed optimization can be employed to
find the solution of a global optimization problem using some local information
exchange about the decision variables in each neighborhood. Moreover, synchro-
nization has also been investigated in the study of harmonic oscillators, where
the objective is achieving a synchronized oscillation frequency using some relative
measurements in each neighborhood.

In some cases, there exists an agent that is not willing to change its status
based on any of other agents in a multiagent system. This agent may further try to
dictate its own decision (or sequence of actions) to all other agents. This can hap-
pen by sending its status to other agents via “one-way” direct communication or
through some intermediate agents. In the literature, this reference agent is called
a leader, and all other agents are named followers. In this scenario, the objective
is designing a (leader-follower) consensus algorithm that ensures an agreement on
the leader’s status. The distributed containment control is proposed to address

8



leader-follower consensus problems with multiple leaders. A multiagent system is
homogeneous when it is composed by a set of identical agents described by ex-
actly the same dynamics. Otherwise, we call it a heterogeneous, non-identical, or
non-homogeneous multiagent system.

Graphs are appropriate tools to model the communication or sensing capabili-
ties in multiagent systems where each node of the graph represents an (dynamical)
agent, and each edge stands for a relative measurement or information exchange
between the corresponding nodes (agents). The word connected graph refers to
the fact that the information flow can be completed over the communication
graph. This is required to achieve consensus, and simply means all agents are
aware of the multiagent systems’ global status through receiving updates from
one or more neighboring agents over an appropriately designed communication
topology. Various important properties of multiagent systems can also be under-
stood by studying the properties of matrices associated to the graph. This will

be discussed in next chapters.

1.2 Distributed control of multiagent systems: a
brief survey

Several tutorial and survey papers have been published to introduce this field
and update researchers about specific trends in the graph-theoretic distributed
control of multiagent systems (e.g., see [16] and [30]-[34]). In this section, we
provide our own story by observing that the dominant research ideas may fall

into the following categories:



e Modeling:

— Agent-level: The complexity of the agent-level dynamical model can
increase the difficulties in designing distributed control algorithms. In
the literature, agents are described as scalar systems, low- and high-
order structured models, linear time-invariant, and nonlinear dynamics.
These models are described in both time- and frequency-domain and,
further, the time-domain models are reported in both continuous and
discrete forms. We mention that the model selection highly depends
on the team-level objective and the availability of required information

for cooperation.

— Multiagent system-level: Similar to the previous case, the complex-
ity of multiagent system-level model can also contribute in the design
procedure difficulties. In the existing literature, the agents are usually
loosely connected through the distributed control algorithm (we use
the “loosely-"connected to describe the connectedness in distributed
communication topology and, because it is by design, we can remove
it at any time). However, they can also be strongly coupled to each
other due to the physical interconnections in addition to the previous
loose connection. In both cases, any two agents can be connected in
a one-way or two-way manner which we call directed or undirected,

respectively.
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e Control:

— Multiagent system-level (cooperative) objective: This is often moti-
vated by the practical need, although it can be also inspired by some
theoretical findings. We have already talked about this viewpoint in
Section 1.1 (e.g., rendezvous, formation control, flocking, and cover-

age), and do not re-state that discussion here.

— Applied theory: Depending on the model complexity and cooperative
objective, different control algorithms have been used in the literature
of distributed control. Essentially, all existing control theories can be
generalized to for the distributed control purpose. However, we point
out that the usage of relative-measurements imposes some new chal-

lenges compared to the centralized and decentralized control theories.

Depending on the cooperative objective in Section 1.1, there are many ways
to describe the dynamic behavior of the multiagent system by a set of differential
equations. The control approaches are also chosen based on the cooperative ob-
jective, complexity of the model, and the assumptions that have been made based
on the available information about multiagent systems. In the rest of this sec-
tion, we walk through the literature of distributed multiagent control and quickly
overview it from both modeling and control aspects. Since this is a broad topic,

we limit ourselves to the scope of this research.
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1.2.1 Multiagent systems: modeling aspect

The research on this topic was started with a multiagent system of single-
integrators:

where i € {1,2,..., N} denotes the agent’s number, and N is the total number
of agents; and z; € R represents the agent’s state variable, and u; € R indicates
the control input. We point out two reasons that indicate the usefulness of such
initial model selection. As the first point, this model describes the behavior of a
moving object whenever z; is chosen to be the i*" agent’s 1 — dimension position
along a line (e.g., in a rendezvous problem of Section 1.1). We can generalize this
to higher-dimension spaces, e.g., for the formation control purpose. The second
point is about the simplicity of the aggregated model which enables us to focus
on the effect of communication between agents.

The initial work was mainly focused on analysis strategies in intuitive manners.
Reference [35] proposed the concept of Laplacian potential associated to an undi-
rected graph, cost of communication, and agreement and disagreement subspaces.
This reference successfully established a connection between algebraic graph the-
ory to the well-known concepts in (linear) control systems theory ®. Reference [36]
established an alternative approach, and proved the results by proposing a novel
candidate Lyapunov function and using some special properties for the underlying
communication graph. For a set of integrator agents (1.1), [37] distinguished the

controllable and uncontrollable sets of communication topologies by investigating

5 Algebraic graph theory is a study of matrices associated to each graph and their properties.
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the required conditions that a graph topology should satisfy in order to have a
controllable leader-follower multiagent system.

An extension to (1.1) was made in [38] that, inspired by the complex networks
(e.g., Internet and metabolic networks), proposed &; = f(z;) + u; where u; should
be designed with a global knowledge about all sub-dynamics (e.g., using any
approaches similar to the consensus algorithms). Furthermore, [39] proposed a
scalar nonlinear dynamical model &; = f(u;) with a deadzone nonlinearity f, and
addressed its consensus problem based on LaSalle’s invariance principle.

A direct generalization to (1.1) was made by proposing a multiagent system

of double-integrator agents (see [40]-[42]):

Tyl = Tig,  Tig = U4 (1-2)

where, from a physical viewpoint, z;; € R denotes the i** agent’s position, and
x;s € R stands for its velocity. The consensus problem in a multiagent system
of (1.2) was also addressed in [43] by a two-component controller using absolute ve-
locity measurements of agents and, also, relative-state information. Depending on
the application and the cooperative task, these models may provide suitable linear
approximations of the nonlinear systems. For example, [44] showed that a robot’s
nonlinear dynamics can be appropriately transformed to a double-integrator model
for the purpose of formation control.

Reference [45] introduced a multiagent system of second-order nonlinear agents
Ty = X0 and Ty = f(w41, T2, t) + u; and discussed the second-order consensus

limt_mo ||l’11 - .Tj1|| = 0 and hmt_m, ||l’12 - ZEjQH = 0 for Z,j S {1,2, ,N} with
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a nonlinear function f satisfying a Lipschitz-type inequality. The results were
based on the graph- and matrix-related definitions and some derivations based
on the multiagent system’s dynamics. For some locally Lipschitz nonlinearity in
velocity state equation #;5 = f (i1, T4, t) + u; + w;, [46] proposed a linear matrix
inequality-based robust H., control technique for the containment control in a
(multiple leader-based) second-order multiagent system with a scalar unknown
nonlinearity and under a bounded disturbance term. This reference guaranteed
a level of H,, performance in asymptotic convergence of followers’ state variables
to a convex hull spanned by all leaders.

Also, with a globally Lipschitz nonlinearity and using LaSalle’s invariance
principle, [47] addressed the leader-follower consensus in a multiagent system
with followers ;1 = 42 and &0 = f(t,24) + w;, and a reference t¢; = xgy and
Zo2 = f(t,x02). For the same model, [48] discussed a semi-global consensus prob-
lem where, proposing a special control structure, the semi-global consensus was
only guaranteeing limy .. |2 — Zo2|| = 0 compared to a second-order consensus
problem in [45] (there are some additional conditions that we do not go through
for brevity). This reference proposed a special symmetric candidate Lyapunov
function and established its results.

The presence of (time-dependent) disturbance may prevent achieving consen-
sus in a multiagent system. In reference [49], a leader-follower consensus (coop-
erative tracking) problem was discussed for a set of heterogeneous second-order
nonlinear multiagent system under a bounded disturbance. In this reference the
agents’ dynamics were modeled by ;1 = 40 and @0 = f;(x;1, Ti2) + u; + w; where
w; was an external disturbance, and f; were continuously differentiable. The
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approach was using a variable-structure controller that was a function of both
lumped relative-state measurements » N (z;1 — xj1) in each neighborhood N; of
the " agent and their sign functions sgn(D_jen (T — x51)).

Using partial-state measurements (without any velocity measurements), this
reference also discussed a distributed observer design problem. In reference [50],
an adaptive leader-follower consensus problem was addressed assuming a leader
o1 = xog and g2 = fo(zo1,t). In this reference, the nonlinearities were unknown
but smooth, such that the neural network ideas could be used to approximate
fi(z) = WE¢i(z;) + ¢; with ¢; denoting basis function vectors, W; vectors of
constant coefficients, and ¢; approximation errors.

There are some other types of integrator-based multiagent systems, for exam-
ple, [51] proposed a heterogeneous multiagent system including both single- and
double-integrator agents. However, an immediate extension to (1.2) was made

in [52] as a high-order integrator model of agent:
Til = Tiz, Tig = Ti3, vy Ting—1) = LTings Tiny, = Ui (1.3)

which can be interpreted as a vehicle’s model taking all position, speed, accelera-
tion, and higher-order jerks (limited by the model’s dimension) into consideration
in the state space model. This model can be viewed as a structured linear time-
invariant (LTT) model:
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where the state matrix A € R"*™ and control input gain matrix B € R"*"«

have the following control canonical structures:

(0 1 0 0 | 0]

0 0 1 0 0
A=t 1 i and B =

o 0 o0 .. 1 0

| An,1 Gng2 Ang3 oo Gpgn, | _1_

with all a,,,; =0 for j € {1,2,...,n,}. Reference [53] further added a disturbance
term to the highest order integrator equation #;,, = u; +w; and proposed an H,
(high-order) consensus algorithm. Moreover, [54] proposed the dynamic nonlinear
agents Ty = xig41) + fu(¥i, i), Trmi+1) = Wi, and y; = x;; where only x;; was
measurable and [ € {1,...,n;}. Additionally, reference [55] discussed a leader-
follower output feedback-based consensus problem for a group of N+1 identical

single-input single-output agents:

Ti1 =xio+ fi(win), Tig=xis+ fo(®ir, Ti2), oy Tin =W+ fo(Tin, .o, Tin)

Yi = Ti1

where subscript 0 denotes the leader and i € {1,2,..., N} denote followers. In
this reference, the functions f; are sufficiently smooth and satisfy the Lipschitz
inequality with a fixed Lipschitz constant. Reference [56] used a similar multiagent

system, but f; were satisfying a time-varying Lipschitz-type inequality.
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A more general version of (1.4) with a,,; # 0 has also been discussed in the
literature [57]. A multiagent system of (unstructured) LTI agents has also been
discussed in the literature. Reference [58] showed that consensus problem can
be solved through a set of IV local stability problem depending on the eigenval-
ues of underlying communication graph Laplacian and dynamics of agents, and
addressed its formation control problem via Nyquist-based criteria. For such a
multiagent systems, [59] proposed a dynamic output feedback strategy to achieve
synchronization. Moreover, [60] found a necessary and sufficient condition to
achieve consensus using output feedback measurements in an LTI multiagent sys-
tem. Also, [61] used a reduced-order observer-based algorithm in order to achieve
consensus in a multiagent system of LTI agents using relative-output measure-
ments (we point out that, for example, references [43] and [58] are proposing
some output feedback approaches as well).

Although a closed-form solution for a nonlinear multiagent system (with an
arbitrary state space dimension) is still unknown to the researchers in this field,
some efforts have been made in the literature to address the consensus problem
for some special classes of nonlinear multiagent systems. Particularly, the state
equation (1.5) has been proposed in order to model a class of nonlinear multiagent

systems compose by Lur’e dynamical agents:

&, = Az + Bu; + D fi(;) (1.5)

where f; : R™ — R™ are some nonlinear functions. Reference [62] discusses an

average consensus problem for a multiagent system of (1.5) assuming a globally
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Lipschitz nonlinear function f. Furthermore, both (unconstrained) LTI and Lur’e
models of a multiagent system were discussed in [63] (using adaptive consensus
algorithm). Reference [64] investigated its adaptive leader-follower tracking idea
using a leader iy = Axg + Br, and N followers @; = Ax; + B(f(z;) + u;) and
y = Cux; where r is an unknown input with a constant bound and f is an un-
known nonlinearity that can be parametrized as f;(z;) = W é(x;) + €;. Here, W;
denotes the weight matrix (unknown and constant), ¢ indicates a known basis
vector, and € represents an approximation error. With a known (homogeneous)
nonlinear function f(x;,t), [65] proposed an observer-based consensus protocol
using relative-output measurements (f was used in the observer dynamics).

A single-input single output agent model was introduced in [66] in order to

consider a nonlinear multiagent system:

;= filz) + gi(x)wi,  y; = hi(x;) + dyu;  Followers

o = fo(xo), Yo = ho(zo) Leader

in order to design a feedback linearization-based synchronization approach when
u; € R, y; € R. In this reference, the absolute state variables x; € R™ were
measurable for i € {1,2,...,N}. Reference [19] introduced Kuramoto coupled

oscillators as another nonlinear model to the literature of multiagent control:

0; = stin(@i —0;) + w;
N;
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where 6; denotes the phase and w; indicates the frequency of the i** oscillator.

We may use k = % for the normalization purpose in a multiagent system of N
oscillators (see [67]).

The nonholonomic mobile robots can be described as follows:

Ty = upcos(0;), Ty = upnsin(6;), 0; = uio

where the pair (2,1, z;2) specifies the location of the robot that, together with the
angle 6;, builds a state variable vector. Also, the pair (u;1, u;) denotes the control
inputs (the translational and rotational velocity of the robot, respectively). Rigid

bodies have also been studied in the literature:
Mi(q:)d + Ci(4, ¢:)di + 9i(q;) = 7

in which ¢; € R" represents a vector of generalized coordinates, and M;, C;, and
g; are appropriately defined. We do not go through these very special nonlinear
model structures. Instead, in the rest of this subsection, we provide a quick
overview of the multiagent systems with modeling uncertainties, and provide a
short note about a few existing references that have considered consensus problems
for physically interconnected multiagent systems.

There are some studies that have addressed the effect of agent-level uncer-
tainties on the graph-theoretic distributed approaches. References [68] and [69]

proposed the following state space model:

@i(t) = (A+ A4(t))zi(t) + Bui(t)
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which could be interpreted as a homogeneous LTI multiagent system in the pres-
ence of heterogeneous modeling uncertainties in agents’ system state matrices,
where AA;(t) = DF;(t)E and FI'F; < §I were satisfied for known matrices D and
E, and a positive scalar §.

Reference [70] addressed a similar issue for multiagent systems with AA;(t) =
BE;(t) and EI'E; < 61, and [71] discussed the case that AATAA; < §1. Also, [72]
proposed a consensus algorithm for high-order integrator agents subject to a set
of scalar nonlinearities. Reference [63] developed consensus algorithms for linear
multiagent systems subject to the Lipschitz nonlinearity, and [73] discussed the
consensus of multiagent systems under the state- and control input-dependent
norm bounded unknown matched nonlinearities. Nevertheless, in these studies,
each agent’s modeling uncertainty was a function of its own variables.

Reference [74] proposed the concept of coupled multiagent systems by intro-
ducing the state-dependent graphs where the dependency was a result of relative-
state information exchange in the distributed consensus algorithm. We mention
that this coupling is still by communication, and the same as [75] that will be
discussed in the next subsection. The coupled-state, -input, and -output mul-
tiagent systems has also been discussed in [76]. In this reference, the coupling
could be part of the system’s dynamics. Additionally, for a state-coupled mul-
tiagent system #; = Ax; + Bu; + F )\ (v; — x;), [77] proposed a distributed
control protocol in order to minimize the effect of disturbance on the agreement
value. Here, the state coupling structure could be different from the communica-
tion topology. However, these studies were limited to the completely known and
linearly coupled multiagent systems. In a different research, based on a linear
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matrix inequality (LMI) formulation, [78] introduced an algorithm to address a
leader-follower tracking problem in a multiagent system of linearly coupled linear
time-invariant agents. Here, the unmatched coupling strength was uncertain and
the communication graph was different from the coupling topology. Also, the size
of LMIs could increase depending on the number of agents. This reference mod-
ified its protocol and developed a gain-scheduled consensus algorithm depending
on a measurable variable # in order to handle the effect of a parameter-dependent
state matrix A(#) which was a function of the same 6 for all agents (note that the
other state space matrices were constant values).

In the next section, we continue the literature survey by reviewing the litera-

ture from a control-theoretic viewpoint.

1.2.2 Multiagent systems: control aspect

Many control theories have already been applied in order to guarantee the
consensus in multiagent systems. In this subsection, within the scope of this
dissertation, we only focus on LQ-based approaches. We also provide a short note
on a recent application of adaptive control ideas in this field.

Due to its systematic structure, linear quadratic regulator-based control ideas
have received attention in the literature of multiagent systems. For a set of dy-
namically decoupled systems, [79] proposed a global quadratic cost function for a
set of individual agents, found a centralized optimal controller, and showed that a
sub-optimal stabilizing system could be found by some local tuning parameters in
the agent level sub-design problems. In our opinion, this reference could be viewed

as a leading research study on LQ-based distributed control systems (compare the
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derivations in [79] to [80], and see the usefulness of Kronecker product). Using
the name of multiple systems, reference [81] used LQ-based strategy to guarantee
an approximately optimal closed-loop system response. In more detail, with a
central control viewpoint, [81] found the optimal closed-loop response under an
all-to-all communication topology (which corresponds to a complete undirected
graph). Then, for an incomplete communication topology, a set of distributed
LQ-based control systems was designed such that the response could converge to
that of an all-to-all design. Reference [82] mainly focused on using LQ-based ideas
to handle a consensus stability problem in a multiagent system. It showed that
the consensus can be achieved using local LQ-based designs. Within this view-
point, [83] addressed an output feedback leader-follower consensus problem based
on an agent-level LQR-based Luenberger observer formulation. In this reference,
the focus was on developing a solution for the proposed consensus problem and
the global optimality of the multiagent system was not discussed.

Based on a similar problem to [79], references [84] and [85] addressed the
global optimality problem via their inverse optimal designs®. Reference [86] pro-
posed interaction-free and interaction-based cost functions in its linear quadratic
regulator formulations for the consensus purpose, where the interaction-related
cost function dependent on the graph Laplacian. This reference was limited to

a set of single-integrators. Thus, [87] proposed a mixed local (using absolute

In the literature of optimal control, optimality is defined with respect to the given cost
function. Therefore, different solutions can be found for different optimal control problems
where each of them is optimal with respect to the corresponding cost function. However, in
the literature of multiagent systems, the definition is a little bit different. Here, the global
optimality refers to a solution of an optimal control problem with a coupled cost function, and
sub-optimality of a solution sometimes refers to the solution of an optimal control problem with
respect to a decoupled cost function.
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state measurements) and multiagent system-level (using relative state informa-
tion) control system, and guaranteed that a certain level of optimality could be
established using an interaction-related cost function subject to an LTI multi-
agent system. For single- and double-integrator agents, [88] further borrowed
the concept of LQR control to find the optimal communication graph topology
and weights. In [89], this has been re-investigated for a multiagent system of
single- and double-integrators. Reference [90] used an LQR formulation in its
leader-follower consensus problem and showed that the global optimality can be
achieved for a special choice of weighting matrices in the cost function, and if the
absolute measurements are available.

In the literature, the consensus convergence rate has also received attention
as an optimality criterion. For a group of single-integrator agents, this is de-
termined by the algebraic connectivity of communication graph (the smallest
non-zero eigenvalue of graph Laplacian). Over a fixed communication graph,
this can be changed by adjusting the weight of communication graph. Refer-
ence [75] proposed an optimization problem to appropriately weigh the commu-
nication topology (graph adjacency or Laplacian matrix) in a multiagent system
with state-dependent communication topology (also see [91]). In [92], the weights
of a communication graph were designed using a semi-definite convex program-
ming approach in order to maximize the consensus convergence speed by changing
the second smallest eigenvalue of the corresponding weighted graph. Moreover,
the convergence speed has been investigated in [57] for a group of LTT agents (with

a control canonical state space representation).
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In [58], an analysis approach was proposed to investigate the stability of a
formation system. Based on this result, one needs to separately verify the sta-
bility of some dynamical systems (with the same dimension as each agent) for
all non-zero eigenvalues of the graph Laplacian. In order to overcome this is-
sue, some researchers proposed a two-step design procedure. In [93], the relative
measurement was “corrected” by a coupling strength ¢ > 0, and passed to the
distributed consensus protocol. By design, this coupling gain was greater than
a threshold value, but bounded within an area named “consensus region” (if we
choose a ¢ within this region, then the consensus is guaranteed). Thus, the au-
thors introduced this region as a measure of robustness for their approach (a
larger region indicates a less sensitive consensus algorithm). In reference [83],
a consensus protocol was introduced where the consensus gain was modified by
such a coupling strength ¢ > 0 (using the non-modified relative measurements).
This reference showed that an unbounded, yet limited from left, consensus region
could be obtained using local LQR designs. Thus, the robustness (as defined
in [93]) was significantly high. However, in both cases, the threshold on coupling
strength ¢ dependent on the smallest non-zero eigenvalue of graph Laplacian ma-
trix. In other words, this global knowledge about the communication graph was
required to ensure agreement using these design approaches. This fact may restrict
the applicability of a distributed algorithm for a multiagent system including a
high-number of agents. Thus, some references proposed adaptive control ideas

in order to design fully distributed consensus algorithms” (e.g., see [73] and [94]-

"We just clarify that the name “distributed control” was proposed based on the simplification
in implementation (versus the centralized approach, and since the decentralized was already used
by the literature of large-scale systems)(see the discussion at the beginning of this chapter).
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[95]). These approaches enable us to design some consensus algorithms purely
based on some local agent-level information, at the expense of added complexity
in implementation compared to the LQR-based ideas that have been discussed in
this subsection.

There are several other approaches that have been studied in the literature
of multiagent control. For example, model predictive control [96], back-stepping
control [97], and sliding mode control [98]. For brevity, we stop surveying the
literature at this point. However, when required, further references are introduced

in next chapters.

1.3 Contribution and structure of this disserta-
tion

The quick literature survey of this chapter shows that the distributed control
of multiagent system can be viewed as a multidisciplinary topic. In particular,
we introduce our research as a synergistic combination of three topics: systems
and control, graph theory, and optimization (see Figure 1.1). Based on such a
viewpoint, in this dissertation, we design a single control-theoretic tool that can
be used to address various problems in the control of multiagent systems. These
challenges might be due to the control objectives, e.g., consensus, decoupling,
stability, tracking, and performance requirements; due to the type of modeling

mismatch such as unknown disturbances, agent-level modeling uncertainties, and

However, the “fully distributed” points to a new level of localization in the design procedure (in
addition to the implementation).
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Systems and control

Distributed
control

Modified
LQR-based
multi-layer

distributed control

Figure 1.1: Modified LQR~based multi-layer distributed control of physically
interconnected multiagent systems as a synergistic combination of three (well-s-
tudied) research topics: systems and control, graph theory, and optimization.
We skip showing the combination of systems and graph theory ends in intercon-
nected multiagent systems (the distributed control is the result of combining
graph theory and control).

linear and nonlinear physical interconnections; or due to the configuration, for

example, single- or multi-layer control ideas. These are categorized as follows:

1. Systems and control: The “systems” includes all possible models that have
been discussed in Section 1.2. We consider two fairly general classes of multi-
agent systems’ models that have been studied in the literature of multiagent

control (see Section 1.2):
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(a)

Linear models: We model the dynamic behavior of agents by 1) linear
time-invariant state space realization subject to unknown disturbances,
and 2) linear parameter-varying state space realization where the vary-
ing parameters denote the operating points of agents, and are unknown.
The unknown varying parameters result uncertainty about the system

matrices as well as coupling gains.

Nonlinear models: We focus on Lur’e nonlinear multiagent systems
which, up to this moment, are among the most complicated state space
realizations of multiagent systems. In fact, we introduce the physical
couplings through these nonlinear terms, and add the complexity by
assuming unknown nonlinearities and unknown interconnected topolo-

gies.

In summary, we consider some levels of modeling uncertainties which add

the complexity in control of multiagent systems. We discuss our control-

theoretic viewpoint under the optimization subject.

. Graph theory: Similar to the literature, we use graph theory in order to

model the communication topology and design a distributed algorithm that

is based on some relative measurements. We follow the same idea and model

the physical interconnection using the graph notation.

. Optimization: Based on the relative measurements in agents’ local neighbor-

hoods, we use our modified optimization-based formulation in four different

ways. The first three items refer to the control objective, and the last one

27



mainly relies on the first three items to address the network optimization

challenge in Figure 1.1:

(a) Robust stability: We propose a modified LQR formulation which, along
with some fundamental concepts of the optimal control theory, enables
us to systematically design the required distributed control protocols
for all of the aforementioned models of multiagent systems in the pres-
ence of various sources of modeling mismatches. Unlike the literature,
we propose a one-step design approach to find the distributed control
gains (see the discussion about coupling strength at page 24). Borrow-
ing some tools from matrix algebra, it further enables us to propose
closed-form solutions for the control-layer (including the communica-

tion topology) in multiagent systems.

(b) Robust performance (guaranteed convergence rate): In one of our de-
signs, we reformulate the modified LQR formulation and ensure a min-
imum convergence rate in multiagent systems with unknown physical
coupling terms. This is one of the main performance criteria that have
been used in the literature of distributed control, yet without any mod-
eling uncertainties. (As will be seen, this formulation enables us to

easily guarantee the same behavior in all other designs.)

(c) Robust performance (guaranteed bound on linear quadratic regulatory
integral functions): In addition to the robust convergence of all trajec-

tories to the desired point of interest® and guaranteed convergence rate

8In consensus, this is the agreement value. In stability, this point refers to the origin as
equilibrium point. In tracking, the reference signal is the common point for all agents.
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for all agents, we prove that the proposed modified LQR formulation

results in guaranteed bound on the given linear quadratic cost function.

(d) Multi-layer distributed control framework: Based on a cyber-physical
framework, we propose multi-layer configurations to handle the effect
of unknown physical coupling terms. We first propose some fixed-gain
fully distributed algorithms where the proofs of stability do not require
any global knowledge about coupling and communication or physical
coupling graphs. This modification enables us to independently change
the communication network at each run of the multiagent system with-
out being worried about the re-design or re-implementation of dis-
tributed controllers. In addition to robustness with respect to modeling
uncertainties in the agent-layer physical couplings’ dynamics, we use
this “control-layer” communication capability to guarantee an upper-
bound on the performance of closed-loop multiagent system and reduce
the implementation cost (i.e., the number of communication links can
be significantly less than the physical couplings in interconnected mul-
tiagent systems). This is done by reformulating cooperative reference
tracking problem to a communication graph topology challenge, and

systematically addressing it via the proposed modified LQR viewpoint.

The next chapters are organized as follows:

e Chapter 2: We review some topics in matrix analysis, graph theory, con-

trol systems, and optimal control theory (proofs can be found in the cited
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references). This quick overview is sufficient to support all developments in

next chapters.

Chapter 3: We emphasize that in multiagent systems (with more compli-
cated dynamics than single-integrators), the distributed control designs are
affected by both “agent dynamics” and “information exchange topology.”
We consider two sources of uncertainties in the linear multiagent systems: 1)
unknown persistent disturbance, and 2) unknown varying operating point.
In the former case, the disturbances can have constant (step-like), ramp,
and sinusoidal shapes; and we address both leaderless and leader-follower
consensus problems. In the latter case, we show that the varying operating
point results in uncertainties in all of the state space realization matrices.
We find the required consensus protocols, and further prove that some addi-
tional requirements should be satisfied to achieve exponential agreement on
zero (i.e., after ensuring the consensus in a multiagent system with modeling

uncertainty).

Chapter 4: We consider a multi-agent system of double-integrator agents
which is appropriate for motion coordination of multi-vehicle and multi-
robot systems that should operate in unknown environments subject to (the
road profile or wind). These disturbances persistently excite vehicles’ dy-
namics and prevent agreement among vehicles or robots. For this appli-
cation, although ensuring agreement, the distributed disturbance rejection
leaderless consensus algorithm of Chapter 3 results in an uncontrolled in-

crease in all vehicles’ (coordinated) speed. We propose a dynamic output
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feedback leaderless stationary algorithm based on the relative information
exchanges among vehicles and only a few vehicles” absolute measurements.
We systematically design this distributed algorithm by transforming the
problem into a static feedback robust control design challenge for low-order
modified model of vehicles with fictitious modeling uncertainties. We further
propose dynamic leader-follower stationary consensus algorithms for multi-
vehicle systems with a static leader, and analytically find the consensus gains

based on the design matrices and communication graph topology.

Chapter 5: Inspired by our observation in ensuring exponential agreement
on zero, which is equivalent to the global stabilization at the origin (equilib-
rium point), we propose the distributed stabilization problem. We discuss
that this new distributed stabilization problem can be an interesting topic
based on the literature of large-scale systems. We introduce physically cou-
pled modeling uncertainties in parameter-dependent linear and Lur’e non-
linear realizations of heterogeneous multiagent systems. In both cases, we
prove that the fixed-gain modified LQR-based distributed control gains can

efficiently address the distributed stabilization problem.

Chapter 6: We propose two classes of multiagent systems: Lur’e nonlinear
multiagent systems with heterogeneous nonlinear state coupling terms, and
LTT multiagent systems with two different state and control input coupling
terms. We assume that the coupling topologies are unknown. Thus, we
introduce multi-layer control structures to handle the distributed stabiliza-

tion problem. In this chapter, we further propose fixed-gain fully distributed
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algorithms which are designed and implemented independent of any global

knowledge about communication and coupling graph topologies.

Chapter 7: The result of previous chapters are based on multiagent systems
with heterogeneous agents’dynamics. However, we only have considered the
stability problem, the order of model is the same for all of agents, the agent-
layer dynamics are manipulable (i.e., we can implement local controllers at
agent-level subsystems), we left the usage of this additional design degree
of freedom (provided by that multi-layer structure) to the future, and the
robust performance based on the linear quadratic regulatory cost function
criterion is not discussed in those results. In this chapter, we consider the
reference tracking problem in mixed-order heterogeneous multiagent systems
with partially-known interconnected nonlinear agent-layer dynamics where,
unlike the traditional centralized and decentralized control schemes, only a
few agents have access to the reference command. We build a multi-layer
framework and, by treating each inter-agent communication link as a pro-
portional controller, propose linear distributed protocols and transform the
robust cooperative tracking problems to equivalent control-layer communica-
tion topology design challenges. Based on this class of multi-layer intercon-
nected multiagent systems, we systematically incorporate control-theoretic
concepts and matrix-algebraic tools in order to find analytical solutions for
the structurally non-symmetric control-layers that ensure robust stability
and performance of the closed-loop systems. We further provide sufficient
conditions to establish upper-bounds on the uncertainties in physical agent-

layers’ dynamics that can be tolerated by the given control-layer commu-
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nication topologies. Also, we propose a performance-oriented control-layer
design approach based on the given upper-bound on the linear quadratic

regulatory integral functions.

e Chapter 8: We briefly overview this dissertation and propose some future

work ideas.

1.4 Summary

We start this chapter with a note on the emergence of graph-theoretic dis-
tributed control in multiagent systems. Without mathematically formulating the
problem, we introduce the multiagent system-level objectives that have been pro-
posed in the literature. We provide a discussion on the evolution of multiagent
systems’ models and, limiting the literature to the scope of this dissertation, we
briefly explain some theoretical trends on LQ-based approaches and fully dis-
tributed algorithms in the literature of multiagent control. We finally write about

the contribution and structure of this dissertation.
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Chapter 2

Preliminaries

“I was lucky. The one thing I did is to pull some things together that were

in the air to make dissipativity a concept of its own.”

In control, almost from the beginning until the day after tomorrow (2007)

Jan C. Willems — Control systems theoretician (1939-2013)

Along the concepts that have been discussed in Chapter 1, we need some tools
in order to attack on the challenges in distributed control of multiagent systems.
In particular, the developments of this research are based on matrix analysis,
algebraic graph theory, control systems theory, and optimal control theory. These
topics are briefly reviewed in this chapter.

This chapter is organized as follows: in Section 2.1, we overview the required
concepts in vector and matrix analyses; in Section 2.2, we provide some basic def-
initions and properties related to the graph theory; in Section 2.3, we present the
main concepts in stability analysis of dynamical systems; and, in Section 2.4, we

explain some fundamental properties of linear quadratic regulator-based control
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systems. Finally, in Section 2.5, we introduce some references that have been used

in this chapter.

2.1 Matrix analysis

Analysis of any multivariable (control) systems significantly depends on the
properties of matrices and vectors. In this section, we briefly introduce some main
tools of linear algebra that are required to analyze control systems.

We first introduce the notation. The symbol R denotes euclidean space, C
represents the set of complex numbers, and R™™ indicates the set of real-valued
matrices. The symbol 1 stands for a matrix of all ones with appropriate dimension
(including non-square matrices), 0 stands for a matrix of all zeros, 1y represents
an N x 1 vector of all ones, and I,, denotes an n x n identity matrix.

The symbol |a| represents the absolute value of a scalar a € R or the magnitude
of a scalar a € C. The superscript 7 in 7 denotes the transpose of a vector y, and

*

in y* represents the conjugate transpose of y. Furthermore, © = col{x;} Vi €=
{1,2,...,N} denotes x = [z, 2 ... 2L]", and diag{A;} Vi € {1,2,..., N} repre-
sents a diagonal matrix with A;, A, ..., and Ay as its diagonal terms where A;
can be some scalars and matrices.

A square matrix A € R™™" can be characterized by its eigenvalues and eigen-
vectors. Eigenvalues of A, denoted by \; € C for i € {1,2,...,n}, are the roots
of its characteristic polynomial p()\;) = det(\;I, — A), and the non-zero vectors
x; € C" give right eigenvectors of A corresponding to \; whenever Ax; = \;x;.

Also, y; € C" denote left eigenvectors of A if yf A = Ny}
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For any symmetric matrices A = [a;;] € R™", where a;; = a;; and i,j €
{1,2,...,n}, \; € R and we sort them as follows:

Amin(A) = M (A) < Aa(A) < .. € Au(A) = Anaa(A) (2.1)

A symmetric matrix A is positive definite if 27 Az > 0, and positive semi-
definite whenever 7 Az > 0 for all z € R". These can be examined by A, (A) >
0 and Apin(A) > 0, respectively, and are shown by A = 0 and A = 0. We mention
that a positive definite matrix can be written as A = A2T Az with a square and
invertible matrix A2. Also, A > B indicates that A — B is a positive definite
matrix. Similarly, A = B represents a positive semi-definite matrix A — B.

For symmetric matrix A, we can use (2.1) to establish some bounds on a

quadratic term z7 Az:
Fact 2.1.1. (Rayleigh-Ritz inequality) The following inequality is satisfied
for all symmetric matrices A € R™" and vectors x € R":

Amin(A)rTz < 27 Ar < Mpae(A)2’

We use the vector-norm operator ||.|| as a real-valued scalar metric for a vector
space V over R. A vector-norm satisfies: a) ||z|| > 0 for any x € R", and ||z|| = 0 if
and only if z = 0, b) ||az|| = |al||z|| for all scalar a € C, and ¢) ||z+y|| < ||z|+]y||

for any z,y € R". Particularly, the p —norm of a vector x = col{x;} is defined as:

|l = (Z )17, p € [1,00) (2:2)
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We can further define the following special norms:
ol =" lal, el = O 1wl ol = nax |l

=1 =1

Similarly, for a matrix A € R"*™, we define the matriz-norm:

A
14, = sup 142l

(2.3)
220 [zl

which is also known as an induced norm that is induced by the vector norm (2.2).

The induced 2-norm is defined by:
[A]l2 = V/|Amaz (AT A)] (2.4)

where A\yq:(ATA) € R denotes the maximum eigenvalue of the (symmetric)
matrix ATA. The Kronecker product A ® B € RMam)x(mams) of two matrices

A = [a;;] € R™*™e and B € R™*™ is defined as follows:

a1 a19 Ce A1n, CLHB algB Ce alnaB
21 929 R A2n, ang CLQQB Ce agnaB

A®B = ®B = (2.5)
Umgl  Omg2 - Qmong ama1 B amoB ... Qman, B

and satisfies the following properties:
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e Basics:

AR (BC)=(A® B)®C, (A® B)(C® D)= AC ® BD
(A+B)®@(C+D)=A®C+A®D+B®C+B®D
(A BT =AT@ BT, (A9 B)"'=A"1® B!, |A® B| = ||A]||B||
o Eigenvalues and eigenvectors: Let (A, 2) be the i*" eigen-structure (eigen-
spectrum or eigenvalue-eigenvector pair) of A € R"*" for i € {1,2,...,n,},
and ()\f,xf) be the j eigen-structure of B € R™*™ for j € {1,2,...,n;}.

A B A B . . . .
Then, (AfA}, zf ® x7) give all eigenvalue-eigenvector pairs of A ® B.

e Whenever A and B are symmetric matrices, A ® B is a symmetric matrix;
A and B are positive (semi-) definite, A® B is positive (semi-) definite; and

A and B are nonsingular, A ® B is nonsingular.

At the end of this subsection, we provide the statement of Gershgorin disk
theorem which can be used to find some bounded regions for the eigenvalues of

the given matrix.

Theorem 2.1.1. (Gershgorin disk theorem) Let A = [a;;] € C"*" be a matriz
where i,j € {1,2,...,n}. Then, eigenvalues of A are located inside or on n circles
C(ay,r;) with centers ay; and radius lengths r; = Z#i la;;| which are known as

Gershgorin discs.

For a matrix A € R™ " the range space is defined by the set of all linear
combinations of the columns in matrix A, which is written as R(A) = {Az|z €
R™}. The null space or kernel of A is simply N(A) = {z € R"|Az = 0}. It can

38



be seen that R(A) = R™ if and only if A has full row rank, and N(A) = {0} if
and only if A has full column rank.

We mention that a row permutation matrix P € R"*" is an [,, with switched
rows. Multiplying a matrix A € R"*" to P, from left, results in a new matrix A,
with a similar row switching.

Finally, we note that the following fact is always true:

Fact 2.1.2. For any two vectors x,y € R" and a positive definite matrix M €
R™™ we find:

(x+y)"M(x+1y) <207 Max 4+ 2y" My

2.2 Graph theory

Graph-based ideas have been used in different aspects of the control systems
(e.g., to find an input-output transfer function using Mason’s rule, or in multivari-
able control systems). Apart from that, graph theory is now playing a significant
role in the distributed control of multiagent systems. Particularly, graphs provide
a “nice” way to visualize interconnections in multiagent systems, and, further-
more, the graph’s associated matrices and their algebraic properties provide a
unified framework to analysis or synthesis (closed-loop) controlled multiagent sys-
tems. In this subsection, we borrow some basic concepts and definitions from
(algebraic) graph theory to build a foundation for our graph-theoretic develop-
ments in the next chapters.

A graphs G(V,€) is a set of nodes V = {v1,vs,...,vy} which are connected

to each other through a set of edges €& = {(v;,v;)|v;,v; € V} CV x V. A graph
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with no node denotes a null graph, with no edge represents an empty graph, and
with only one node gives a trivial graph; and we ignore them in this research.
In fact, the edge set £ includes pairwise combinations of all nodes. An edge
can be directed (also known as an arc) which results in a set of ordered pairs
(vi,vj) € &€, or undirected that ends in a set of unordered pairs where (v;,v;) € £
implies (v;,1v;) € €. Associated to each node v;, depending on the direction
of edge, we define the node’s in-degree and out-degree as the number of edges
entering and exiting that node, respectively. All information can be lumped in
some appropriate matrices, namely, the adjacency matriz A = [a;;] € RV*N,
degree matriz D = [deg;] = diag{Alyx} € RY*YN where deg; denotes the degree of
the i node v; (after specifying whether it is in-degree or out-degree of a node),

and Laplacian matriz £ = [l;;] € RV*Y which are defined as follows:

- - - N -
0 a2 ... Q1N ijlalj 0 0
N
a921 0 ... QgN 0 ijlagj 0
A: s D:
N
anNy an2 ... 0 0 0 ijl(le
_ N -
Zj:l a1j —Qa192 e —Qa1N
N
—ag Z i—1 (12]‘ Ce —AaaN
L=D—-A= !
N
—an —aNz ... )i GNj

where a;; € {0,1} shows the existence of an edge (v}, ;) with v; as the tail and

v; as the head whenever a;; = 1, and no edge from v; to v; if a;; = 0. We
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assume that there exists no self-loop, therefore, a;; = 0. Based on the in-degree
definition, a node v; is a neighbor of 1; whenever there exists a directed edge from
vj to v;. Over an undirected graph, v; and v; are each other’s neighbors whenever
they share an edge. We let N; be the neighboring set of the it agent. Then,
based on the “in-degree” definition of A, the degree matrix can be rewritten as
D = diag{}_;c, @i;} Where the i'" diagonal term represents the number of edges
entering to the i'" node (a similar change of notation can be readily seen for the
diagonal terms in £). The following example shows the relation of these matrices

for both directed and undirected graphs.

Example 2.2.1. Based on the typical graph in Figure 2.1, we find the adjacency
Ag, in-degree Dy, and Laplacian Dy matrices. The edge between vy and vy rep-
resents (v1,v2) € €, and the edge between vy and vy means (vo,v3), (v3,15) € E.
Removing the directions on edges, we find an undirected graph with the adjacency

A, degree D,, and Laplacian D, matrices.

(0 0 0 0 0 0 00 0 0 (0 0 0 0 0
10110 03000 13 -1 -1 0
Ai=10 1000/ ,.Da=100100,La=|0 -1 1 0 0
00100 00010 0 0 -1 1 0
00010 00001 0 0 0 -1 1]
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(o—)

Figure 2.1: A digraph for example 2.2.1 with (Ag, Dy, L4). Removing all direc-
tions on edges, we find an undirected graph with (A, Dy, Ly,).

0 10 0 0 (100 0 0 (1 -1 0 0 0]
10110 03000 13 -1 -1 0
A=lo1010/,D.=l00200/.Lu=]0 -1 2 -1 0
01101 00030 0 -1 -1 3 -1
00010 0000 1 0 0 0 -1 1

We further mention that a graph with no parallel edge and no self-loop is
called a simple graph. Also, a simple graph with all possible pairs of nodes
represents a complete graph. A graph Gew = (Vsup, Esup) is a subgraph of G if
Ve €V and E,p € €. A walk with length m on G is a finite sequence of nodes
Vios Viys s Vi1 Vi, Whenever the edges (v;,,1v4,,,) € € forall k € {0,1,...,m—1}.
A walk with no repeated edge is called a trail, and a trail with no repeated node
is a path. Whenever there exists at least one walk between all pairs of nodes,
the graph is connected. A tree is a connected graph with no circuit where, by
circuit, we mean a path that starts from a node and ends in the same node. A
directed graph is strongly connected if there exists a directed path from any nodes
to all others. A directed graph is quasi-strongly connected if one of the following

conditions holds for every pair of nodes v; and v;: a) v; = v;, b) there exists a
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directed path v; — v;, or ¢) there exist some intermediate nodes v; to create a
walk from v; to v; b (e.g., with one intermediate node, there exist a path v; —
and a path v, — ;). A node is called a root if it receives no information from
other nodes (i.e., its in-degree is zero). A directed tree is a walk over G (thus, a
subgraph of G) where each node, except the root, has an in-degree equal to one;
and, the directed spanning tree of G is a strongly connected tree that covers all
nodes of G (it is defined over a digraph, and includes the minimum number of
directed edges that passes through all nodes). A digraph has a directed spanning
tree if and only if it is quasi-strongly connected. Note that a connected graph has
at least one spanning tree.

For any (di-) graphs, 1y is a right eigenvector of £ and zero is its corresponding
eigenvalue, i.e., L1y = 0 which means 1y € N(L£). Based on the Gershgorin disk
Theorem 2.1.1, we find that all eigenvalues of a graph Laplacian £ lie in some disks
(degi, Y jen, @ig) for all i € {1,2,..., N}. Due to the fact that deg; = .\, aij,
we conclude that all eigenvalues of £ are inside and on a “big” disk with center
¢ = max;(deg;) and radius 7 = max;(deg;). For an undirected graph, we further
know that £ = £T = 0 and 1y is both right and left eigenvectors corresponding
to the eigenvalue zero, and all of its eigenvalues are some real-valued numbers. As
a result, these scalars lie on a line connecting the origin to 2 max;(deg;).

We now summarize some main points about an undirected graph as a fact:

Fact 2.2.1. a) All eigenvalues of the graph Laplacian L are nonnegative, b)
the graph G is connected if and only if zero is a simple eigenvalue of L, c)
1 is the right and left eigenvector corresponding to the eigenvalue zero of L

(M = 0), and d) since L is a symmetric matriz, there always exists a unitary
43



transformation T € RN*N such that T'LT = A where A = Diagy{[\1, Ad]},
Ay = diag{[M2, X3, ..., An]}, and \; € R denotes the it eigenvalue of L. For a

connected graph, only Ay =0, and Ay > 0.

Remark 2.2.1. [t is straightforward to generalize these results to a weighted graph
denoted by G(V,E, W) where W represents a set of weights associated to the edges
in E. Then, the graph-related matrices can be modified appropriately with exactly
the same properties. For example, the graph Laplacian matriz can be rewritten
as Ly = ZjeNi w;j and L;j = —w;; Vj # 1. In fact, the non-weighted scenario
can be viewed as a weighted graph with a threshold operation an the wights (i.e.,
a;; = 1if wy; > wy, and a;; = 0 otherwise where wy, denotes a threshold value).
However, except Chapter 7, all results are limited to the non-wighted graph defi-

nitions.

2.3 Control systems theory

In this section, we overview some basic concepts of the control systems theory
that have been used for the stability analysis in the next chapters. We start by

introducing a state space model of a nonlinear system:

©(t) = f(z,u,t),  y(t) =h(z,u,t), 2(0)=x
where x € R™ denotes the state variable, u € R™ represents the control input,

and y € R™ indicates the measurement output. For the analysis purpose, we

usually substitute u = k(z) and find the following closed-loop system:
T = f(z,1), z(0) =z (2.6)
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In fact, it should be f'(x,t) = f(z, k(x),t). This misuse of notation will not
have any adverse effects on the rest of this chapter, but simplifies the notation.
This also can be viewed as an unforced state equation whenever v = 0 (with full
state information). The function f : D — R" is piecewise continuous in time!,
and satisfies the Lipschitz condition locally around the point x; over a domain
D = B(zp,r) = {||lz—xL|| < r} C R"™. The later condition indicates the existence

of a positive Lipschitz constant 7, such that:

1f(z,t) = fly. O <velle—yll,  zyeD (2.7)

The global Lipschitz condition refers to the case D = R"=. This global property
ensures existence and uniqueness of the solution of state equation (2.6) over any
time intervals.

As a special case, we know & = f(z,u) and y = h(x,u) as an autonomous
(time invariant) nonlinear system. This system may have several equilibrium

points which are the solutions of:

f(xeq) =0 (2.8)

The stability of a nonlinear system should be (separately) analyzed for all
equilibrium points. In the following definition, we discuss the stability of an
equilibrium point at the origin for a nonlinear system (otherwise, we transfer the
origin of dynamical system to the non-zero equilibrium point using appropriate

change of variables, and use the same results).

By piecewise continuous, we mean f can be discontinuous at finitely many points, and the
left and right limits exist at each discontinuity point.
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Definition 2.3.1. (6 — € stability definition) The x., = 0 is a locally stable
equilibrium point of (2.6), with a locally Lipschitz f over a domain D including
the origin and f(0) =0, whenever Ve >0 36 >0 > ||z <d = ||f(2)] <e; it
is a locally asymptotically stable equilibrium point, if it is stable and ||x — x4]| <
d = limy_ || f(z)]] = 0. These results are globally valid whenever the initial

condition can be arbitrarily selected, i.e., § — oc.

It is a hard task, if not an impossible one, to ensure stability of a complex
dynamical system using this 0 — e definition. Fortunately, the Lyapunov stability
results provide some useful tools to verify the stability of a dynamical system with-
out solving the nonlinear differential equation. The following theorem summarizes

the Lyapunov’s findings.

Theorem 2.3.1. (Lyapunov stability) Let conditions of Definition 2.5.1 be

satisfied. Let V (x) be a continuously differentiable function over D and satisfy:
V(z)>0 VeeD with V(z)=0 if and only if =0 (2.9)

Then, the origin of (2.6) is a stable equilibrium point if:

Vi) <0OVzeD (2.10)

Furthermore, the origin is an asymptotically stable equilibrium point if:

V(z) <O0VzeDand z #0 (2.11)

Rewording these results, a candidate Lyapunov function V' satisfying (2.9)-
(2.10) is called a positive semi-definite function, and is shown by V' = 0; a V
satisfying (2.9) and (2.11) is called a positive definite function, and is specified by

V = 0; and a V satisfying V(z) — oo whenever ||z|| — oo is named a radially
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unbounded Lyapunov function. The results of Theorem 2.3.1 are globally valid if
the candidate Lyapunov function is radially unbounded. The Lyapunov function-
based analysis can also be used to establish the exponential stability of a nonlinear
system. We discuss the required conditions in the next theorem.
Theorem 2.3.2. (Exponential stability) Assume that conditions of Theo-
rem 2.3.1 are satisfied. The origin is an exponentially stable equilibrium point
of the nonlinear system & = f(x) whenever there exists a Lyapunov candidate
function that satisfies:

alz|’ < V(w) < aslal’,  and  V(x) < —ayl|z||” (2.12)

for some positive constants ay, as,az, and b.

As a special case, a strictly proper linear time-invariant dynamical system is
given by the following model in the state space domain:
(t) = Ax(t) + Bu(t)

y(t) = Cu(t)

(2.13)

where A € R"*"= gtands for the state matrix, B € R"=*™ denotes the input gain
matrix, and C' € R™*" gpecifies the measurement gain matrix. The solution of

this first-order differential state equation is given by:

t
z(t) = ez () +/ A Bu(r)dr (2.14)

to

_ t .

and, thus, y(t) = CeAt0)x(t,) + C [, eAt=7) Bu(7)dr.
A linear system has only one equilibrium point located at the origin such that
the stability of origin is equivalent to the stability of the system. A complete
statement on stability of the linear systems (based on the state space domain

notation) depends on the definition of Jordan blocks which we do not need in this

47



research. In the next theorem, we only characterize the exponential stability of a

linear system.

Theorem 2.3.3. The linear system (2.13) is globally exponentially stable if and
only if all eigenvalues of A have strictly negative real parts. This result is equiva-
lent to the existence of a solution P > 0 for the following Lyapunov equation for
any Q > 0:

ATP + PA=-Q (2.15)

Note that, whenever all eigenvalues of A, in & = A.x have strictly negative
real part, ||z|| < ae?||z(0)|| is satisfied, and A is called a Hurwitz matrix. In this
case, asymptotic stability and exponential stability are equivalent to each other.

Controllability or the weaker condition stabilizability, and observability or the
weaker requirement detectability play important roles in designing a controller and
stability analysis of a closed-loop system. In the rest, we overview these topics.

For a system at ty = 0, we first emphasize that the state equation in (2.13)
has a response of the form (2.14) where the first term e*z(0) is not affected by
the control input . Thus, the state response for an input u under a zero initial
condition is given by z(t) = ftl; eA=7) Bu(7)dr. Then, a reachable set R = Ry
of the state equation in (2.13) at a time 7' > 0 is defined as the set of all state
variables x(7T) that can be reached from initial rest condition (at ¢ = 0) by a
continuous control input u. Now, the controllability is defined as follows:
Definition 2.3.2. (Controllability) The pair (A, B) represents a controllable
linear time-invariant system (2.13) if R = R™. This controllability property is

satisfied if and only if the controllability matriz C is a full row rank matrix:

48



Rank(C) = Rank([B, AB, A’B, ..., A" ' B]) = n,
or, equivalently (if and only if ), there exist no nonzero z € C™ and A\ € C to

simultaneously satisfy the following conditions:

YA = \F and 2B =0

In summary, this definition says that there always exists a trajectory to move
from an initial state x(0) to a final state x(t;) at a finite time ¢ty > 0. There
always exists a similarity transformation which results in a staircase representa-

tion of (2.13):

Te A Ap| | . B.
Luc 0 Auc Lye O
(2.16)
T
y = [Cc Ouc]
Lye

where (A, B.) represents a controllable pair, and A, includes all uncontrollable
modes of (A, B) in (2.13). This simply says that x. can be controlled from any
initial condition z.(0) to any final condition z.(t;) at a finite time ¢; > 0 in the

presence of an extra term Aj2,.(t). Now, we have the following definition:

Definition 2.3.3. (Stabilizability) A linear time-invariant system (2.13) is sta-
bilizable if and only if all of its uncontrollable modes are located in the open left-half
plane (i.e., Aye is a Hurwitz matriz). Mathematically, this can be verified by en-

suring that the matriz [A — sl,,, B| has full row rank for all eigenvalues of A

where s € {\(A)|R(N\) > 0}.
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The uncontrollability may have different reasons including the insufficient
number of inputs. However, close to the topics of this research on multiagent
systems, an interestingly uncontrollable system can be obtained after connecting
some controllable systems (each serial, parallel, or feedback scenario may result
in an uncontrollable coupled dynamical system).

The complete state space model (2.13) includes an output equation y = Cz
that models a set of measurements and, under some conditions, can be used to
reconstruct all state variables x (we may use them in a feedback framework in
order to control a system). The following definition formalize the observability of

a linear time-invariant system:

Definition 2.3.4. (Observability) The pair (C,A) represents an observable
state space model (2.13) whenever it is possible to uniquely reconstruct all state
variables x(t) Vt € [0,tf], with t; > 0, using only u(t) and y(t) measurements in
that time interval. This property can be verified by a full column rank test of the

observability matriz O:

CA
rank(O) = rank(

~—

Ny (2.17)

C A

or, equivalently (if and only if), there exist no nonzero v € C™ and A € C to

simultaneously satisfy the following conditions:

Az = \z and Cx=0
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Similar to the controllability discussion, we always can find a transformed rep-

resentation which separates observable and unobservable modes of a system (2.13):

T A, O To B,
= + U
jjuo A21 Auo Lyo Buo
(2.18)
Zo
v <[ o
Tyo

Then, the detectability is defined as follows:

Definition 2.3.5. (Detectability) A linear time-invariant system (2.13) is de-
tectable if and only if all of its unobservable modes are located in the open left-half
plane (i.e., Ay, is a Hurwitz matriz). Mathematically, this can be verified by en-

A —sl,

x

suring that the matrix has full column rank for all eigenvalues s of A

B
with s € {MA)R() > 0},

Also, we introduce the duality property in establishing controllability and

observability of state space model (2.13):

Lemma 2.3.1. (Controller and observer duality) The controllability of a
triple (C, A, B) is equivalent to the observability of a triple (BT, AT ,CT), and

vice versa.

Based on these insights, we provide a statement of the Kalman decomposition

in the next theorem:
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Theorem 2.3.4. (Kalman decomposition) Every state space model (2.13)

can be transformed to an equivalent canonical form:

i’co Aco 0 A13 0 Leo Bco
icuo A21 Acu,_-. A23 A24 :Ucuo Cluo
= —|— u

Lo 0 0 A, 0 Tuco 0
j;ucuo 0 0 A43 Aucuo xueuo 0
Sl L L (2.19)

Leo

Leu,
v =fe 0 d

Luco

Lucue

which is shown in Figure 2.2. Moreover, the following state space equation gives

the completely controllable and observable (sub-) dynamics of (2.13):

:tco = Acaxco + Bcou
(2.20)

Yy = C(coxco
In practice, sometimes, we do not have access to all state information x. There-
fore, we need to design a state observer to estimate this information. We have
shown that the design of an observer can be transformed to a dual stabilization
problem based on the Lemma 2.3.1. Now, we provide a statement of the sepa-

ration principle in designing controller and observer gains for an observer-based

output feedback control problem.
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CU,

(60]

UcUo

Figure 2.2: A conceptual presentation of the Kalman decomposition. Whenever
all modes of cu,, uc0, and u.u, are in the left complex half-plane, we say
the system does not have any unstable hidden modes in the sense of Kalman
decomposition.

Lemma 2.3.2. (Separation principle) The estimated state & of (2.13) can be

found by a Luenberger observer using measurements u and y:

=A%z + Bu+ K,(y — 9)

>

(2.21)
= C#

<

where K, € R™*™ denotes an observer gain. Then, u = K.z, where K. € R"*"=
represents the feedback control gain, stabilizes (2.13) whenever K. results in a

Hurwitz matriz A — BK., and, separately, K, does the same with A — K,C'.

We now explain a statement of the Bellman-Gronwall lemma that will be used

in the next chapters:
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Lemma 2.3.3. (Bellman-Gronwall lemma) Let z(t),g(t), and h(t) be non-
negative piecewise continuous functions of time t. If a function w(t) satisfies the

inequality w(t) < z(t) + g(t) ftz h(T)w(T)dr, VYt >ty > 0; then, we find:

t
w(t) < z(t) + g(t)/ (z(s)h(s)els PDINIY g5 it > o > 0.

to

2.4 Optimal control theory

The results of Section 2.3 are useful to analyze properties of closed-loop (feed-
back) system. In parallel, many theoretical research studies have been devoted to
the controller synthesis problem. The optimal control is one of the oldest theo-
retical research topics that, in addition to the stability, guarantees a desired level
of performance for the closed-loop system. Particularly, linear quadratic regular-
based (LQR-based) ideas have received significant attention in the literature. In
this section, we overview the procedure to design an LQR (control) system for a
linear time-invariant model (2.13), introduce some basic definitions related to the
proposed algorithm, and mention some of the most fundamental properties of the
resulting closed-loop system with an LQR optimal controller in the loop.

Specifically, we introduce (2.22) as a performance (integral) cost function to
simultaneously quantify the degree of stability and control effort (closeness of x

to the origin and size of u, respectively):

J(x(0)) = /Ooo(xTQ:B + u” Ru)dt (2.22)
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where ) = 0 and R > 0 denote the state and input weighting matrices, respec-
tively. We define U as a set of admissible (linear static state feedback) control sig-
nals that stabilize the state equation in (2.13). Then, the optimal linear quadratic

regulator problem is defined as the following minimization problem:

minimize J(z(0))
uel (223)
subject to @ = Az + Bu.

For any selection of the design matrices @ and R, J(z(0)) = z7(0)Pz(0) gives
a lower bound (solution) on the cost function (2.22) for all u € U, where the

matrix P = PT is the solution of an algebraic Riccati equation:

ATP+ PA+Q - PBR'B'P=0 (2.24)

We assume that the pair (A, B) is stabilizable, and (Qz, A) is observable.
Then, v* = K. = —R'BTPz gives the minimizer of (2.23) with a unique
stabilizing solution P 3= O for the ARE (2.24), i.e., the matrix A — BR™'BTP
is Hurwitz (note that if @ > 0, then P > 0). A closed-loop system with this
LQ-based control signal has many “nice” properties. We mention the gain margin
(robustness) which is, with K, as the optimal LQ-gain K, is still a stabilizing
controller for any o € (0.5,00), and phase margin (robustness) that means e/’ K.,
is still a stabilizing controller for any 5 € (—60,60) degrees. Particularly, we

define the Hamiltonian:

H = 2" Qx + u" Ru + J! (Ar + Bu) (2.25)
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where J, = % is calculated along the state trajectory of the system. Moreover,

we know that the optimal control signal u* satisfies the Hamilton-Jacobi-Bellman
(HJB) equation 0 = J + min,{z? Qz + u*f Ru* + J:T(Ax + Bu)} = 0 which, for
an infinite horizon LQR problem subject to a linear time-invariant system can be

reduced to H = 0 as follows:
2" Qz +u" Ru+ J! (Ax + Bu) = 0 (2.26)

where we have used J = J* and u = u* for simplicity. This can be related
to the algebraic Riccati equation (2.24) as 0 = 27Qxz + 2T KTRKxz + 27 P(A +
BRK)z+a2"(AT+ KT"BT) Pz = 27(Q+ KTRK+PA+ PBK+ATP+ K"BTP)x =
2T (ATP+PA+Q—PBR™' BT P)z. Based on the necessary condition of optimality
OH/0u = 0, we further find that the following condition is satisfied implementing
an optimal control signal:

oJ"

wWw'R+-= B=0 2.27
U +8£L‘ ( )

When we apply an optimal control signal, the optimal sequence of actions (deci-
sions or policies) will still be the same if we skip part of the sequence and start
at any later time on the trajectory. This is known as the principle of optimality.
These fundamental results play important roles in the developments of this re-

search. We now introduce finite-horizon LQR problem as a more general case

than (2.23):

min - J =a"(ty) Halty) + [ (2(H)TQu(t) + u(t)” Ru(t))dt .
subject to 2(t) = Az(t) + Bu(t)
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where H = H” = 0 is a terminal cost matrix. In this case, the necessary condi-
tions of optimality are satisfied by u(t) = —R™' BT L(t) where z(t) and L(t) are
solutions of the following matrix differential equation:
@t A —BR'BT| |ux(t x(t
<> = " =: Hy ) (2.29)
L(t) -Q AT L(t) L(t)
in which H); denotes Hamiltonian matrix. The optimal control signal is then

rewritten as follows:

u(t) = =R BT P(t)x(t) (2.30)

based on the fact that L(t) = P(t)x(t) and P(t) is the solution of Riccati equa-
tion P(t) = —ATP(t) — P(t)A — Q + P(t)BR'BT P(t) with boundary condition
P(t;) = H. In the next chapters, since P = lim;_,P(t), we use (2.28)-(2.30)
and establish a relationship between the pattern of zeros in steady solution P of

ARE (2.24) and design matrices ( and R in (2.23).

2.5 Bibliography

In this chapter, we have touched the surface of different theoretical concepts
ranging from the mathematics to control systems. This brief can be used as a
quick reference for the developments in the next chapters. Further details on
matrix analysis are available in [99]. Particularly, some main properties of the
Kronecker product can be found in [100], and a systems-theoretic viewpoint on

norms (of signals and systems) is explained in [101]. References [102]-[103] are
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good references to find the usefulness of graphs in the old theoretical developments
within the control systems society. But, in our research, a graph visualizes the
communication in a multiagent system, and the properties of its associated matri-
ces are used for the distributed control design purpose. In this sense, [104] provides
a sufficiently detailed discussion on graph theory that can be used for the analysis
of multiagent systems. We just mention that this research is limited to the graphs
with non-negative weights (versus the signed graph in [105]). The basic definitions
and results about nonlinear systems are explained in [106], and similar findings
about linear systems are reported in [107]. Some basic concepts and handy tools
in the control systems, including the well-known Bellman-Gronwall lemma, are
reviewed in [108]. Reference [109] is a rich source of fundamental concepts in the
optimal control theory. Moreover, [110] nicely summarizes some existing research

topics and trends about the linear quadratic-based control systems.
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Chapter 3

Distributed Consensus in

Physically Decoupled Multiagent

Systems!

“Essentially all models are wrong, but some are useful. ... The practical

question is how wrong do they have to be to not be useful.”

Empirical model-building and response surfaces (1987)

George E. P. Box — Statistician (1919-2013)

Consensus algorithms have been widely designed to manage the collective be-
havior among a set of individual agents. Shortly, we recall that the initial research
studies focused on proposing some graph-theoretic ideas in order to: 1) localize the

information exchange in multiagent systems and use the relative-measurements,

IThis chapter is based on the results of [111] and [112]. Each section has its own parameters
and variables which are (re-) defined appropriately.
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2) analyze the effect of communication topology on the stability and performance
of the closed-loop multiagent systems, and &) understand the effect of agent’s
(high-order) dynamics on completing the cooperative task. However, in practice,
these models are insufficient to precisely describe the behavior of each individual
agent and, also, the collective behavior of a multiagent system.

In this chapter, our primary objective is to study the challenges that have
been imposed by relative measurements in the the consensus problem (compared
to centralized and decentralized control techniques which are based on the abso-
lute measurements of each subsystem). An overview of the literature in Chapter 1
indicated a trend on more realistic scenarios by adding agent-level modeling uncer-
tainties. Thus, to increase the challenge, we consider two sources of uncertainties
in the state-space realization of agents’ dynamics: 1) agent-level unknown external
disturbances, and 2) multiagent system-level unknown varying operating condi-
tion. We use our (incomplete) knowledge about these sources of uncertainties, and
find some appropriate models which are useful to design the consensus algorithms
ensuring agreement among agents of a physically decoupled multiagent system.
We assume that only relative-information is available for each distributed algo-
rithm which results in some coupled-by-communication consensus algorithms?.
We further mention that our modified LQR formulation results in guaranteed
consensus without being worried about the selection of coupling strength (see

Subsection 1.2.2, page 24).

2The word “coupled-by-communication” refers to the fact that this coupling is added by
design and can be manipulated accordingly. Such a coupling does not exist in decentralized
control.
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This chapter is organized as follows: in Section 3.1, we address the leaderless
and leader-follower consensus problems in the presence of unknown persistent
disturbances. In Section 3.2, we handle the leaderless consensus problem for a
multiagent system with multiagent system-level varying operation condition. We
summarize our findings and provide some references in Section 3.3. Finally, we

collect all proofs in Section 3.4.

3.1 Distributed consensus of linear multiagent
systems under persistent disturbances

In this section, we address the consensus problem in the presence of persistent
disturbances with unknown magnitudes, and using only relative-output measure-
ments in each agent’s neighborhood. The proposed model can handle all constant
(step-like), ramp, or sinusoidal disturbances (also, a combination of them). We
discuss both leaderless and leader-follower communication topologies, and we fur-
ther calculate the agreement value of the multiagent system in the leaderless

consensus scenario.

3.1.1 Leaderless consensus
3.1.1.1 Problem statement
We consider a multiagent system with the following dynamical agents:

Yi = ZjeM Cla; — ;)

(3.1)
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where i € {1,2,..., N} indicates the agent’s number over an undirected communi-
cation topology (graph) G; x; € R™ denotes the system state variable, u; € R™
represents the control input vector, w; € R™ stands for the persistent distur-
bance vector, and y] € R™ indicates the lumped relative-output measurement
of the i*" agent with respect to its neighbors; A € R"*"= represents the system
state matrix, B € R™*™ indicates the control input matrix, I' € R™*™* stands
for the unmatched disturbance input matrix, and C € R™*" denotes the out-
put matrix. (In general, I' is not in the range of B, so we call it an unmatched
disturbance input matrix. However, the results are valid for the matched case
as well.) Each unknown persistent disturbance w; is modeled by the following
disturbance generator:

0

Zwi = Fzyi  with 2,;(0) = 2z,

(3.2)

w; = szi

where z,; € R™w stands for the disturbance state, 20, represents the unknown
initial value of z,;, and F' € R"w*™w and # € R™*™w are two known constant
matrices that determine the disturbance shape. Some appropriate pairs of (F )
are given in Table 3.1 in order to generate a constant (step-like), ramp, or si-
nusoidal disturbance (we can also consider F(1,2) = 1 and F(2,1) = —? to
generate a sinusoidal disturbance with a frequency equal to 2 rad/s). A combi-
nation of these disturbances can also be created by augmenting these models.
Now, the leaderless consensus is achieved whenever (3.3) is satisfied in the
presence of unknown heterogeneous disturbances w;, for all initial conditions of

agents, and over the given undirected graph topology G:
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Table 3.1: Examples of persistent disturbances modeled by (3.2).

Type of disturbance F 0
Constant 0 1
Ramp [0 1] [1 O}
00
Sinusoidal (€2 rad/s) { 0 Q} 1 0]
- 0
tlggo (i(t) —x;(t) =0 Vi,je{l,2,...,N} (3.3)

The following assumption holds in the rest of this subsection:

Assumption 3.1.1. (a) the pair (A, B) represents a stabilizable state space real-

A T
ization, (b) the pair ({C 0} : ) characterizes an observable augmented

0 F

system and disturbance state space realization, and (c) the Moore-Penrose pseudo-

inverse BT exists, (d) the graph G is connected.

Let \; € R be the i'" eigenvalue of the graph Laplacian matrix £ corresponding

to G for all i € {1,..., N}. Then, we emphasize that an (distributed) observability
A T6

condition is required for ([)\ZC 0} , ). We decompose this to an unob-
0 F

servable mode with A; = 0, and observable modes corresponding to the rest of
eigenvalues \; # 0 and @ # 1. Then, focusing on observable modes, the condition

is simplified to Assumption 3.1.1.b.
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3.1.1.2 Main results

In order to guarantee the leaderless consensus (3.3) for a multiagent system of
agents (3.1)-(3.2), we propose the following consensus algorithm:
wp = K2 (& — ;) + K2 (3.4)
JEN;
where K7 € R"*"= denotes the system state feedback gain, and K € R "=
stands for the disturbance control gain. The estimated system state z; € R™ and

the estimated disturbance state Z,,; € R™w are obtained using the observer (3.5):

f:i = AZ; + Bu, + I'w; + K2 (y! — 97)

Zui = Fiui + K2y —97)

Ji = O3 en, (@ — 3y)

W; =02y

where K7 € R"=*™ represents the system state observer gain, and K}’ € R"=w*"

indicates the disturbance state observer gain.

Remark 3.1.1. We re-emphasize that the pair (F,0) is known and the distur-
bances’ initial values are unknown (possibly, there are N different initial values,
one for each individual agent’s disturbance generator model). Thus, in multiagent
system (3.1)-(3.2), agents are subject to persistent disturbances with a similar
waveform but different magnitudes. Therefore, although the disturbances are het-
erogeneous, we can (and do) propose a homogeneous observer (3.5) using the same

F and 0 matrices.

We define the system state estimation errors ¥; = z; — x; and the disturbance

state estimation errors Z,; = Z,; — Zwi. Also, in order to analyze this multiagent
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system over G, let © = col{z;} and z,; = col{z,;} be the aggregated system state
and disturbance state vectors, respectively; and & = col{Z;} and Z, = col{Z,;}
be the aggregated system state and disturbance state estimation error vectors for
i € {1,2,.., N}, respectively. Furthermore, let e, = [#7, ZL]7 be the aggregated
estimation error over G. Now, we find the matrix representation (3.6) for a closed-

loop multiagent system of (3.1)-(3.2) and (3.4)-(3.5):

T M11 M12 X Nl
= + Zw (3.6)
éo 0 M22 €o 0

where the submatrices are defined as follows:
My = (In®A)+(L® BK?), My=[(L®BK?), (Iy® BKY)]
(In®A) — (LR KXC) (Iy®T0)
My = ) N1:[N®(F9+BK:;U)
—(L® KXC) (In®F)
Because L is a symmetric matrix, there always exists a unitary transformation
T that converts £ to a completely diagonal matrix A (see Fact 2.2.1, page 43).
We define &r = (T7' ® I,,, )z, eor = diag{[T' ® I,,,, T7' ® I, ]}e,, and z,r =
(T ® I, )zw, and find:

T M11 M12 T N1

Eor 0 My |eor 0

with the following submatrices:
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- A 0

Mll -
0 (In.1®A)+ (Ag® BKY)
8 0 0 BKY 0 5 ML M2
My = My = ~ ~
0 Ay@BK* 0 Iy_,®BK" e Ve
0 - 0 0
it - . g =
0 (IN—l@A)—(AdQ@KZCC) 0 —Ad®Kg}C

M2 =Iy@T0, MZ=Iy®F N =Iy®(I0+ BKY)

T can be

We introduce a row permutation matrix P such that n = [n7,n?]
written as n = Plzk, 21 21T, Applying this P to (3.7), as a transformation
matrix, separates the unobservable and uncontrollable mode (corresponding to
A1 = 0) from observable and controllable modes (corresponding to Ay # 0). In
this transformed case, m = [v],, 27, Zop,]" and 1y = [z, 2y, Zh4] where zq4,
T4, and Z,4 are some variables that can be found after removing the first agent’s
variables respectively from xr, 7, and Z,7. The result of this transformation is
written as follows:

i Py| O m 1
- + ZwT (38)

72 0 | Py P Qo
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where the first row represents the unobservable and uncontrollable agreement dy-
namics and the second row gives the observable and controllable disagreement

dynamics®, and the submatrices are partitioned as follows:

A| 0 BEK? Py | Py Py
Pp =]10|A T6 Py = 0 | Py Py
o|lo F 0 | P2 PP
'+ BKY In_1 ® (I + BKY)
Q1 = 0 Q2 = 0
0 0

Pl = (Iy.1®A)+ (Aq® BK®), P}2=A,;® BK®
P2123 = (In-1 ® BKY), P2222 = (In-1®@A) — (Mg @ K5O)
PE =Iy @70, P3=—(Aq®K"C), PFH=Ix 10F
Since the observer-based consensus algorithm does not receive information
about the unobservable mode, we limit the consensus algorithm design to the

observable dynamics:

3The agreement and disagreement dynamics (and subspaces) are two terms that have been
taken from the literature of multiagent systems [104]. Briefly, in this dissertation, they specify
the effect of A; (determines the null space of £ in a connected graph) and Ay > 0 that includes
nonzero eigenvalues of £. Based on the discussion after Assumption 3.1.1, part of the dynamics
of the transformed system which is affected by A\; = 0 is not observable (and not controllable).
However, the other part can be observed, manipulated, stabilized, and have a convergent be-
havior 2 — 0 in the transformed multiagent system (3.8). Thus, when the consensus (3.3) is
achieved for the non transformed multiagent system (3.6), x; are affected by the unobservable
(uncontrollable) dynamics corresponding to 7, (note that @ = col{x;} can be found by trans-
forming back from (3.8) to (3.6) using two transformation matrices P and T'). Since the limit
behavior z; = z; shows an agreement, the unobservable (uncontrollable) dynamics of the trans-
formed multiagent system are called “agreement dynamics,” and the rest of them are named
“disagreement dynamics.”
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Fa Py P2 P || In_1 ® (T + BK™)

ol =1 0 | P2 PB | |7|+ 0 Zwd (3.9
S 0 |PE PE | |z 0
Pao Q@

which include N-1 dynamical systems of the form (3.10) Vi € {2,3,..., N}:
Tai = Axdi + )\ZBKfi’dz -+ BK;véwdi + Fﬁzwdi, (310)

and another N-1 dynamical systems given by:

Zai = (A= NK2O)Zg + D0z,
. (3.11)
Zwdi = —NKYCTg + FZya
The effect of unobservable and uncontrollable mode (corresponding to A; = 0)
on the agreement value will be discussed in Lemma 3.1.1. In the next theorem,
we convert the “global” (collective) consensus problem (3.3) over graph G to a
set of equivalent “local” stability analysis problems that are affected by non-zero

eigenvalues of L.

Theorem 3.1.1. Let Assumption 3.1.1 be satisfied by multiagent system (3.1)-
(3.2) over G. An observer-based consensus algorithm (3.4)-(3.5) solves the con-

sensus problem (3.3) if for all i € {2,..., N}:
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KCE

1. The Luenberger observer gain K, = * | results in the Hurwitz (closed-
Ky
A—-NKZC T4
loop) matriz with appropriate eigenvalues, sufficiently
-\KYC  F

far from the imaginary axis. This matrix corresponds to the observer error

dynamics (3.11).

2. The control-gain K, = [Kg K;U} stabilizes (3.12) for all nonzero \;, and

rejects the unknown disturbances wg; = 0zyq; -

Tgi = Azgi + Bug + 1024
Yai = Ni%a; (3.12)

Ugi = KZyai + K Zwai
Proof. This proof is given at Subsection 3.4.1. [

Theorem 3.1.1 characterizes some conditions for the stability analysis of agree-
ment (consensus) dynamics. But, this theorem is not useful for the synthesis
purpose, because it should be “verified” for “all N-1 nonzero eigenvalues” of L.

Hence, we rewrite (3.12) as follows:
Tagi = Azg; + /\zBKffL’dl + (BK;U + Fe)dei (313)

and propose the following design procedure:
Design procedure 3.1.1. The control gains in (3.13) can be designed in two steps:

1. Disturbance gain K¥: this gain is designed to minimize | BKY +1'0||. Based

on the Assumption 8.1.1.c, we find K¥ = —BT6.
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2. State feedback gain K7: using K of Step 1, we design a feedback gain K7
that solves the robust control problem (3.14) with a fictitious uncertainty in

By 2 BD(\;) where D(\;) 2 N1, :

Tai = Axg + Baug;

(3.14)
ugp = Kiwg;
We rewrite the state equation in (3.14) as follows:
Ltdi = ALEdi + BD)\QudZ- + BD)\QE()\,L>ud,L (315)
(. ~ - N —

Nominal model Network-induced uncertainty

where we have defined Dy, £ A1, such that 0 < Dy, < D()\;), D(\;) = Nil,,,,
and E(X\;) = D' D(X\;) — I,,, = 0 are satisfied. In the next remark, we clarify the
reason to introduce a robust control problem with a (fictitious) network-induced

uncertainty in the state space realization of agents. Also, in the next theorem, we

address the design problem in Design procedure 3.1.1.2.

Remark 3.1.2. In state equation (3.15), we know all B, D,,, E(\;), and ug;.
However, we consider it as a network-induced uncertainty. As a result, we can
find a single consensus protocol that works for all agents. Otherwise, there are
N — 1 nonzero eigenvalues of L which can be different scalar values. Thus, we
may need up to N — 1 different consensus protocols. As another result, based
on this formulation, we propose a one-step design without calculating the coupling
strength (see Subsection 1.2.2 at page 24 to find about the two-step design procedure

in the literature).
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Theorem 3.1.2. The solution ug = KZzg = —RleIQBTdeZ- of the modified
LQR optimal control problem (3.16) subject to the nominal model in (3.15) solves
the robust control problem of Design procedure 3.1.1.2. The matrix P represents
the solution of algebraic Riccati equation (ARE) (3.17), and Q = QT = 0 and
R = RT = 0 are the state and control input weighting matrices, respectively. This

K? provides the required gain in the consensus protocol (3.4).

min / (23,Qr4; + ug; Rug;)dt (3.16)
ug; ERMu 0
A"P+ PA+ Q- PBD,,R'D; B"P =0 (3.17)
Proof. This proof is provided at Subsection 3.4.2. O]

Theorem 3.1.2 gives the required control gains in Design procedure 3.1.1.2,
and so we have found the required result for Theorem 3.1.1.2. The reason to
name (3.16) a “modified” LQR problem is that the minimization should be solved
subject to a modified model of agents (affected by the communication topology
through \y). In the next theorem, we address the first part of Theorem 3.1.1 by

finding the required observer gains in (3.5) using a modified LQR formulation.

Theorem 3.1.3. Let u, = K 'z, = —R;'D,,C¢P,x, be the signal that solves
the optimal control problem (3.18) subject to (3.19). Then, this K, = [K*T, K*T]T
denotes the observer gain in Theorem 3.1.1.1. The matriz P, indicates the solution
of ARE (3.20), Q, = QT = 0 and R, = RT = 0 are two constant matrices,
Cs=[C, 0, Dap, = Aaln,, Ea(N) = D3, Da(Xi) = I, = 0, and Dy(X;) = Nil,,,.

a
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min / (2T Qury + ugRou,)dt (3.18)
0

Uq ER™u
o = Agxa + Cg Dy U (3.19)
AaPa + PaAg + Qa - PanTDZ)\QR,;lDa7/\QCEPQ - O (320)
Proof. This proof is given at Subsection 3.4.3. m

Based on the above results, the consensus protocol 3.4 results in a closed-
loop multiagent system with stable disagreement dynamics (3.9) while rejecting
persistent disturbances in the disagreement subspace. The remaining question is
about the final agreement value in the presence of persistent disturbances, and
under the effect of unobservable and uncontrollable agreement dynamics. Once
the multiagent system’s trajectory enters to its agreement subspace, the following

lemma is valid (note that the disagreement dynamics are already stabilized).

Lemma 3.1.1. For a multiagent system of (3.1)-(3.2), if Assumption 3.1.1 is sat-
isfied, the proposed consensus algorithm (3.4)-(3.5) results in the following agree-

ment values:

a N N -~
zi(t) = %%40 > iz 2i(0) + %Qﬁg izt Zwi(0)
~a N ~ N -
(L) = %%40 >z Zi(0) + % T 2 ey Zui(0)
53]@@) = %ﬁbﬁ sz\il Zwi(0)
where the superscript @ stands for the agreement value of each variable, and other

parameters are defined as follows:
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11 —

t t
¢640 _ eAt’ 13 _ _/ (eA(t_T)FQeFT)dT, %if _ / (eA(t_T)FHeFT)dT, i{)l{) _ eFt
0 0

Proof. This proof is given in Subsection 3.4.4. m

Now, we summarize some observations about the result of previous lemma.
Remark 3.1.3. Few points about the agreement values in Lemma 3.1.1 are:

o We need to note that Lemma 3.1.1 provides the agreement values of “estima-
tion errors” ¢ = ¢ —x} and Z, = 28, —ze.. This fact reflects the definition
of closed-loop multiagent system (3.6). Then, we find that the final “esti-
mated” values are &% = x¢ + <o Zf\il 7:(0) + ~ 013 Zfil(fﬁ,,(o) — 20i(0)) =

%%40 Z@Nﬂ z;(0) + %%40 Zz]\; 7;(0) = %%40 21111 2i(0). In fact, 27 = 0

whenever #(0) = 0. Also, 2%, = 2%, + ~ &% Zﬁl(égi(O) — zuwi(0)).

e For a Hurwitz A, ¢fy — 0 ast — oo. Thus, the results of Lemma 8.1.1 can

be simplified to the following values:

zy = limy e %Qﬁ? Zf\il Zui(0)
= limy e % it Zf\il Zui(0)
Zi = limyo0 %Qb:ﬁ) vaﬂ Zwi(0)

which end in the final estimated values 3% = 2§ +1im,_0 ¢33 SN (22,(0) -
20i(0)) = 0 independent of £(0), and 2%, = 2%, +limy_,0 O3 SOV (22,(0) —

Zwi(0)).
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3.1.1.3 Simulation verification

Now, we implement our leaderless consensus algorithm over an undirected

graph in Figure 3.1 with the following graph Laplacian:

3 -1 0 -1 -1

-1 -1 0 -1 3

In the next examples, we limit ourselves to the constant persistent disturbances
(i.e., =0 and § = 1 in the disturbance generator model (3.5)). Then, starting

from time ¢ = 0s, the consensus signal (3.4) can be written as follows:
t
ui(t) = K237(t) + K2 K2 C / 22(7) — (r)dr
0

that is essentially a state-feedback control signal with integral actions on the

differences of lumped relative-state measurements zj = >, - (v; — x;) and their

o)
a“a’

Figure 3.1: An undirected leaderless communication topology G

74



estimated values 77 = ) ien; (&i—2;). In other words, for a constant disturbance,
based on our knowledge about integral control or observer, the tracking error
between the estimated lumped relative estimations and the actual lumped relative
state variables will converge to zero.

In all cases, we initialize the system and disturbance (generator) state space
models by z;(0) = [-10,20]7,25(0) = [15,—15]T,23(0) = [10,15]7,24(0) =
[—30,20]7, 25(0) = [20, —=30]T, 21:(0) = 2,22(0) = 5, 23(0) = 3, 24(0) = 9, z5(0) =
4. Also, the disturbance state estimator is initialized by 2; = 0 for all ¢ €
{1,2,3,4,5}. We design the control gains using Design procedure 3.1.1.1 and
Theorem 3.1.2; and the observer gains based on Theorem 3.1.3. Then, we calcu-
late our expectations based on the Lemma 3.1.1 and Remark 3.1.3.

In the next example, we consider an unstable multiagent system with a nonzero

initial state estimator value.

Example 3.1.1. (Unstable agent dynamics) Consider the multiagent system (3.1)

that realizes double-integrator agents by the following state space matrices:

Furthermore, assume that all estate estimators are initialized at zero except T3 =

(10, —15]T. Using the results of Lemma 3.1.1 and Remark 3.1.3, we find:
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a t —r ~
zi(t) = %eAt Z?:l z;(0) — %fo eA=ldr Z?:1 Zwi(0)

1 ¢

[

5 8 rt t—T1 5 o~
Zi:l z;(0) — 100 fo dr Zi:l Zwi(0)
01 1

0.92t2 + 2t + 1

1.84t + 2
. s 1t 2 2 — 3t
B(t) =geM 2 3:(0) = =
0 1f -3 -3
Zwi = Zwi T % ?:1 Zwi(0)
where the last term results in 23, = —2.6, 20, = 0.4, 22, = —1.6, zJ, = 4.4,
28, = —0.6. Figures 3.2 and 3.3 depict the simulation verification results.
ZDl
400
T ] B
5 200 & -20 \
100 I 40
0 F,.i'; o
0 5 10 15 ] 5 10 15
" ‘ 10
T D
& ul =
-10
-50
-20
o 5 10 15 o 5 10 15
Time (s) Time (s)

Figure 3.2: The time-varying leaderless agreement in a multiagent system of
double-integrators in Example 3.1.1. From Top to bottom, Left: z;; and x;9,
and Right: 2;; and ;5 for i € {1,2,...,5}. The thick light-blue curves show
the expected trajectories which are calculated in Example 3.1.1.

76



-1

Q: _2 |
23
-4 1
o 5 10 15
a2
- D [ 1 1
] 5 10 15
0 T
% -1 i
ER
_3 1 1
] 5 10 15
6 . .
e 5T
2 gt
3 1 1
] 5 10 15
1 T T
£ 0T \\
= 9+t
-2 L L
0 5 10 15
Time (s)

Figure 3.3: Final values of the estimated disturbances in leaderless Exam-
ple 3.1.1. Top to bottom are w; to ws. Along with the Remark 3.1.3, this
confirms achieving agreement for some constant disturbances. (Note that the
result of this section is focused on the steady-state agreement values, not the
transient repose. In solving the proposed LQR problems, our emphasizes was
on fast consensus. Thus, we omit the transient response and show the accu-
racy in calculating the final agreement values. Of course, different responses
can be achieved by different trade-offs in selection of state and input weighting
matrices.)

Now, we let all state estimators’ initial values be zero, and investigate our

claim about the state estimators’ agreement value in Remark 3.1.3.

Example 3.1.2. (Unstable agent dynamics) In Example 3.1.1, let 23(0) = 0.
Now, the simulation result in Figure 3.4 verifies ¢ = 0 which could be expected

based on the discussion in Remark 3.1.5.

In the next example, we consider a stable multiagent system and observe the

discussion in Remark 3.1.3.
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Figure 3.4: The time-varying leaderless agreement in a multiagent system of
double-integrators under the same scenario as Example 3.1.1; however, with
#3(0) = 0. From Top to bottom, Left: x;; and z;2, and Right: #;; and Z;o for
ie{1,2,..,5}

Example 3.1.3. (Stable agent dynamics) Assume a stable multiagent system of

agents (3.1) specified by the following state space realization:

We expect

5 5

1 0.368

Ty = EA_IFH E 2wi(0) = . 2l =0, Zy, = Zwi — E 2wi(0)
i=1 0 i=1

which are confirmed by the simulation result in Figure 3.5 (the 2%, are the same

as the previous examples and are not re-presented here).
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Figure 3.5: Final values of leaderless agents’ states and their estimations. From
Top to bottom, Left: x;; and z;2, and Right: Z;; and &;o for ¢ € {1,2,...,5}.

3.1.2 Leader-follower consensus

3.1.2.1 Problem statement

In the leaderless consensus problem of Subsection 3.1.1, we could ensure agree-
ment on a common value that was a function of initial state and disturbance values.
We showed that all state trajectories could converge to the agreement subspace
which was built by the unobservable and uncontrollable disagreement dynam-
ics. In this section, we propose a special communication topology and discuss
the leader-follower consensus (tracking) problem. An example of this topology is
shown in Figure 3.6 where, without loss of generality, we have added a new agent
vy to the simulation scenario of Figure 3.1. In this case, a leader agent with the

following dynamics is added to the multiagent system:
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fo = Ao (3.21)

Yo = Cug
where the zy € R™ denotes the state vector and the gy € R™ indicates the output
of the leader agent. Assume that follower agents are similar to (3.1) in Subsec-
tion 3.1.1. We let these followers communicate to each other over an undirected
graph G (similar to the leaderless scenario in Section 3.1). However, the leader
is connected to a set of few followers over some directed edges where this leader
and follower communication information (also known as pinning information) is
lumped in B = diag{[bi,bs, ..., bx]} where b; = 1 when the i** follower receives
information from the leader and b; = 0 otherwise, and ¢ € {1,2,..., N}.. Hav-
ing this special leader-follower communication topology G;¢, we let H = L + B be
its reduced-order Laplacian matrix. Now, the leader-follower problem is solved
when (3.22) is achieved by all follower agents i € {1,2, ..., N} under the unknown
disturbances w;, and any initial conditions over the given graph topology G;;:

lim (x;(t) — zo(t)) =0 (3.22)

t—o00

The following fact is known about any reduced-order Laplacian matrix H:

Fact 3.1.1. The reduced-order graph Laplacian H is positive definite if Gy has a

spanning tree with leader agent as the root.
Furthermore, the following assumption is satisfied in this subsection:

Assumption 3.1.2. There exists a directed path from the leader to each follower,

and xq 1s known for those followers connected to the leader.
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Remark 3.1.4. Let Ly € ROVTUXWNHYD be the graph Laplacian matriz for a
leader-follower communication topology Giy with one leader and N followers. With
the leader agent as the root of a spanning tree, this Liy has a simple zero eigen-

value, and Ly can be partitioned as follows:

0 0
Ly =

b H

where H = L + B € RV*N with £ € RV*N as the graph Laplacian matriz of N
followers’ undirected graph G, and B € RN*Y as defined previously. Therefore, we
call H a reduced-order Laplacian matrix because the communication topology can
be re-constructed knowing this matriz. Note that, by definition, Ly has only one
zero eigenvalue, and that corresponds to the first row. Also, we already see that H

18 a symmetric matrix with real-valued eigenvalues. Thus, we sort all eigenvalues

Figure 3.6: A special type of directed leader-follower communication topology
Gy where all followers v1-v5 communicate over an undirected graph G with a
graph Laplacian matrix £, and few followers (here, 11 and v») receive infor-
mation from the leader vy over some directed edges with non-zero b; (here,
by and b2). This leader and follower connections can be lumped in a vector
b= [b1,...,b5]7. Then, H = L + B represents a reduced-order graph Laplacian
matrix for G;y where B = diag{b}.
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of H as 0 < py < g < ... < pn. Moreover, we can find a unitary transformation

matriz that can convert H to a completely diagonal matriz A = diag{p;}.

3.1.2.2 Main results

Here, we consider a leader-follower multiagent system with a leader (3.21) and
N followers (3.1)-(3.2) where the followers’ output measurements are changed sa

follows:

yi = C() (x; — x5) + bi(w; — x0))
JEN;
which include the leader’s output whenever b; # 0. We propose a dynamic con-

sensus algorithm:

wi = GE{D (& — &) + bi(&: — 20)} + G¥ 2w (3.23)
JEN;

using the following observers:

T; = Ai; + Bu; + T + G (yi — ;)

Zwi = Flui+ G (y; — 47) (3.24)
G =2 ien; (@i — 95) + bi(9i — wo)
uA)i = eéwz

where 3, = Cz;, GI € R™*™ and GY € R"™*"w denote the state-feedback
and disturbance control gain, respectively; and G? € R"*™ and G € R"™w*"
represent the state- and disturbance-observer gains, respectively.

Let ¢, = z; — xp be the leader-follower tracking error. Then, € = col{¢;}
denotes the aggregated leader-follower tracking error vector over G;r. Now, we
find the augmented leader-follower tracking error, system state estimation error,

and disturbance state estimation error dynamics:
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é¢=[(In®A)+ (H®BGH)]e+ [H® BG?|i+ [Iy ® BGY]zZ, + [In ® (BGY +T10))|2,

and .
T =|[(UIn®A) - (HRGEC)|2+ Iy @10)z,
| [(In ® A) —( )JE + [In @ Y] (3.25)
Zow = —HRGYCZ+ [Iy ® F|Z,
We follow an idea similar to Subsection 3.1.1.2, and find the following trans-

formed diagonalized representation:

éT Mn M12 €T Nl

éoT 0 M22 €oT 0

where ep 2 (T7' ® I, )e, and:

M = (Iy®A)+ A ® BGE, My = [(A® BGE), (Iy ® BGY))

i MY MR _

My = | = 7, N, = Iy ® (BGY +T9)
Mgy Mg

My =(In®A) - (A®GC), My =IveTd

MZ = —A®GVC, MZ=Iy®F

Based on the Remark 3.1.4, all eigenvalues of H are positive real numbers

(compared to the leaderless consensus where A; = 0). Thus, we take all (diagonal)
subsystems of (3.26) to get (3.27) and (3.28):

éTi = AETi + BUTZ‘ + F@zwﬂ

Yei = i€ (3.27)

ur; = Giyea + GYZuri
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G A e {M o 01) Zri (3.28)

2wT’£ 0 F G})U 2wTi

(SIS

Now, in the next theorem, we convert the leader-follower consensus task to a

stability problem.

Theorem 3.1.4. Suppose that Assumption 3.1.1.a to ¢, and Assumption 3.1.2 are
satisfied for a leader-follower multiagent system of this subsection. The closed-loop
multiagent system with an observer-based consensus algorithm (3.23)-(3.24) solves

the leader-follower consensus problem (3.22) if:

G2 A—-NG2C T9
1. The observer gain G, = results in a Hurwitz matriz
GY -\NGYC F

with eigenvalues in left half plane, sufficiently far away the imaginary axis.

2. The control-gain G, = {Gg GEU] stabilizes (3.27) for all eigenvalues of H,

and rejects the unknown persistent disturbance wr; = 0z,7;.

Proof. Since p; > 0 for all i € {1,2,..., N}, this proof is similar to that of
Theorem 3.1.1 (corresponding to \; # 0 for i« € {2,...,N}), and we skip it

for brevity. ]

Also, the design procedure to find appropriate control gains can be summarized

as follows:
Design procedure 3.1.2. The control gains in (3.23) can be designed in two steps:

1. Disturbance gain G¥: this gain is designed to minimize the ||BGY + T'0||.
Based on the Assumption 3.1.1.c, the G¥ = —BIT0 rejects the unknown

disturbance.
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2. State feedback gain G7: using a G of the previous step, we design a feedback
gain G that solves the robust control problem (3.29) for a fictitious modeling

uncertainty due to B, £ BD(u;) where D(w;) £ pil,,.

éri = Aer; + Byur;
: (3.29)
ur; = Grer;
Now, we propose two theorems in order to find these “appropriate” state-

feedback and -observer gains. These theorems complete the design of our relative

output-based leader-follower consensus protocol.

Theorem 3.1.5. Assume that up; = Gixg; with G = —R'DIB"P. solves
the modified LQR problem (3.30) subject to a dynamical system (3.31) where P,
denotes solution of ARE (3.32), Q. = QT > 0 and R. = R' > 0 are two constant
matrices, D, = pl,,, and E(w) £ D;lD(M) — I,, = 0. Then, this up; also

stabilizes the uncertain system (3.33) which indicates solving the leader-follower

consensus problem (3.22) using full state feedback measurement.

min / (er:Qceqi + up; Reury)dt (3.30)
ur; ER"u 0
éTz' = AETZ‘ + BDuuTi (331)
A"P.+ P.A+Q.— P.BD,R'D B"P. = 0 (3.32)
éTi = AETi + BDHU/TZ‘ + BDME(MZ)UTZ (333)

Proof. This proof is similar to the proof of Theorem 3.1.2. Also, see the discussion

in proof of Theorem 3.1.4. O

Theorem 3.1.6. Let ue, = GLxy = =R Doy yCea Peatea be the signal that solves

the minimize problem (3.34) subject to (3.35) where P., denotes the solution of
85



ARE (3.36), Qe = QF = 0 and R., = RL, = 0 are two constant matrices, Cey =
[Ca 0]7 Dea,,u = MlIny; Eea(,ui) = Dg_a}ulDﬁa(/’l‘i) - [ny = 07 and Dea(ﬂ) = ,uzjny

This ue, stabilizes the uncertain models (3.37), and, thus, G, gives the observer

gain in Theorem 3.1.4.1.

min / (70, Qcatea + Uca Reatica) dt (3.34)
Ueq ERTY 0
jjﬂl = Agl'ea + CEZDE;MUW (335)
AgP.g + PyAY + Qoo — Pfacej;Dz;,uR;lle,uCeaPm -0 (3.36)
Gea = Ap Tea + O DL e + CLDeg iy Bea(117) tca (3.37)

Proof. This proof is similar to the proof of Theorem 3.1.3. Also, see the discussion

in proof of Theorem 3.1.4. O]

3.1.2.3 Simulation verification

Here, we consider the leader-follower communication topology of Figure 3.6

with the following reduced-order Laplacian matrix:

4 -1 0 -1 -1

-1 -1 0 -1 3

Example 3.1.4. (Stable agent dynamics) Consider the state space model of Exam-

ple 3.1.5. Assume there exists a leader with an initial condition x¢(0) = [15,15]T.
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and observer gains.

20 20
10 10
3 0 = 0
-10 -10

=20 =20
i 5 10 15 20 i 5 10 15 20
50 50
g D& &0 %
=50 -50
o 5 10 15 20 0 5 10 15 20
Time (s) Time (s)

Figure 3.7: Leader-follower tracking problem in Example 3.1.4. From Top to
Bottom, Left: z;; and x;2, and Right) #;; and Z;o for i € {0,1,2,...,5}. The
thick black curves correspond to the leader agent.

However, now, we assume that followers are subjected to wy; = sin(0.5t), we =
1.5sin(0.5t), ws = 2sin(0.5t), wy = 0.5sin(0.5t), and ws = sin(0.5t). We use

Design procedure 3.1.2.1, Theorem 3.1.5, and Theorem 3.1.6 to find the control

that indicate the leader-follower consensus problem (3.22) is solved, and the dis-
turbances are estimated precisely. In this example, we note that there exists no

L-induced null space (unobservable agreement dynamics) to degrade the distur-

bance estimation performance.

Example 3.1.5. (Unstable agent dynamics) Consider an unstable multiagent sys-

tem with the following state matriz and leave other matrices the same as previous

examples in this chapter:
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Time (s)

Figure 3.8: Disturbances (solid blue) and their estimated values (dashed red)
in leader-follower tracking problem Example 3.1.4. From top to bottom corre-
spond to the disturbances wi, we, w3, wy, and ws.

A:
-1 0

which results in an oscillatory time-response by the leader. The leader-follower
tracking capability of our algorithm, and disturbance estimation results are de-

picted in Figure 3.9 and Figure 3.10, respectively.

Example 3.1.6. (Unstable agent dynamics) Now, consider the example 3.1.1
under a leader-follower tracking scenario. Here, the leader’s initial condition is
xo = [0,5|7. Asis depicted in Figure .11, followers agree on the leader’s position
zo1(t) = bt and follow it with the leader’s velocity xoe = 5. Moreover, the state
estimators are able to precisely estimate the agents’ state variables using only
lumped relative-measurements in their neighborhood. Additionally, Figure 3.12
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shows that the disturbances can also be estimated precisely. We mention that in
Ezxample 3.1.1, the constant disturbance was persistently exciting the unobservable
(uncontrollable) agreement dynamics and, therefore, we observed an increased ve-
locity in all agents (with constant acceleration which was not shown, but could

easily be guessed based on the calculated velocity).

5 5

=% 0 & 0

5 5
0 20 40 0 20 40

5 5

oo 40

5 5
0 20 40 0 20 40

Time (s) Time (s)

Figure 3.9: Leader-follower tracking problem with an unstable leader in Exam-
ple 3.1.5. From Top to Bottom, Left: x;; and Z;1, and Right: #;; and Z;5 for
1€{0,1,2,...,5}.
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Figure 3.10: Disturbances (solid blue) and their estimated values (dashed red)
in leader-follower tracking problem with an unstable leader in Example 3.1.5.
From top to bottom correspond to the disturbances wi, we, w3, wy, and ws.

200

100

=100

50

20

o 10 20
Time (s)

30

& D@#f

200

100

-100
20

50

-50
o 10 20

Time (s)

30

Figure 3.11: Leader-follower tracking problem with an unstable leader in Ex-
ample 3.1.6. From Top to Bottom, Left: z;; and x;2, and Right: Z;; and Z;o

for i € {0,1,2, ...

5}
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Figure 3.12: Disturbances (solid blue) and their estimated values (dashed red)
in leader-follower tracking problem with an unstable leader in Example 3.1.6.
From top to bottom correspond to the disturbances wi, we, w3, wy, and ws.

3.2 Distributed leaderless consensus of operat-
ing point-dependent linear multiagent sys-
tems

The existing consensus algorithms are mainly about completely known lin-
ear time-invariant agent models. However, the linear time-invariant model of a
dynamical system usually is an approximations of a nonlinear dynamic behavior
at some fixed operating conditions. Under a more realistic scenario, the state
space realization (2.13) can be generalized to a model with a time-varying triple
(A(t), B(t),C(t)). In some circumstances, we are able to approximate a nonlinear
model with a set of linear models that are characterized by some independent vari-

ables that determine, or depend on, the operating condition of a system. Then,
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the state space realization (2.13) is rewritten as a parameter-dependent model
with the triple (A(6(t)), B(6(t)), C(0(t))).

In this section, we consider a multiagent system where all agents can be char-
acterized by the same unknown independent parameter 6(¢), and propose two
linear quadratic regulator formulations which address the leaderless consensus
problem based on some fundamental concepts from the optimal control theory in

Section 2.4.

3.2.1 Problem statement

Consider a group of agents communicating over an undirected graph G:

where i € {1,2,..., N} indicates the agent number, x; € R™ denotes the state
vector, u; € R™ represents the control input vector, A(f) = Y7 (A,,0m) €
R"=>"= stands for the parameter-dependent state matrix, B(6) £ > (B,,0™) €
R %™ refers to the parameter-dependent control input matrix, A,, € R™*™ and
B,, € R™*™ denote some known coefficient matrices, and the real-valued scalar
parameter 0(t) € [0nin, Omaz] indicates an independent-parameter that determines
the operating condition of the multiagent system. The parameter 6 is unknown
but the lower bound #,,;, € R and the upper bound 6,,,, € R are two known
constants. Thus, the state space model (3.38) represents a partially-unknown

multiagent system where the unknown independent parameter 6(t) specifies the

multiagent system-level operating point. Proposing a high-order polynomial of

92



6(t) in modeling of state-space realization matrices, enables us to handle the

nonlinear dependency of the linearized model to the operating point*.

In the rest of this section, the objective is achieving the leaderless consensus

among a set of N agents (3.38), which is repeated here:

lim (z;(t) — x;(t)) =0 (3.39)

t—o00

We consider two different scenarios:

1.

For m € {1,2,...,ny}, assume that neither A,, nor B,, is in the range space

of By. As a result, we find the following state space model:

w;(ws,u;) = Cyizi + Dyiu;
where w; € R™ captures the effect of unknown operating condition in (3.38)

and acts as a state- and control input-dependent perturbation. Also, Cy; =

> ((Apnb™) and Dys = Y00 (Bpnf™).

. Form € {1,2,...,np}, assume B, = 0, and A,, be in the range space of By:

& = Ao + Bol(us + zi(x:))
(3.41)
zi(r;) = Cais
where z; € R™ denote the matched uncertain term, due to an unknown

operating-point, and C;; = B} > (An0™).

4To provide a physical sense, we may imagine a group of aircraft flying at the same altitude
6(t) that may change during the time. Specifically, this scenario can be the case for the flight
formation control problem. Also, in a wind farm of similar wind turbines, assuming all wind
turbines are subjected to the same wind speed, we can show that a first-order polynomial of 8
is sufficient to model the wind-dependent behavior of wind turbine in region 3, for the purpose
of generator speed or electrical power regulation. However, the high-order polynomial matrices
might be required to capture wind turbine’s wind-dependent behavior in entire regions 2, 2.5,

and 3.
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Remark 3.2.1. FEquivalently, instead of assuming the existence of BS, we could
impose the structural assumption A(6;) = Y 7 (AL,0") where Ay = Ay and
Al = BoAy,, form € {1,2,...,n9} in order to find a similar multiagent system

with a matched uncertainty.

We design a distributed consensus signal u; such that the leaderless consensus
problem (3.39) is achieved by agents (3.38) (rewritten as (3.40) or (3.41)). The

following assumption holds true in this section:

Assumption 3.2.1. (a) The pair (Ao, By) characterizes a stabilizable state space

realization, and (b) the graph G is connected.

3.2.2 Main results

3.2.2.1 Equivalent multiagent system with unmatched modeling un-

certainty

We first rewrite the i agent’s model (3.40) as follows:

t; = Aox; + Bou; + wi(xi, w;) (3.42)

Wi (T3, 0;) = D00 Wi (T4, ;) Wi (T4, w;) = A 0™ + By,

We propose the following distributed consensus protocol:
ui =Ky Y (2 — ) (3.43)
JEN;
where Ky € R™*" denotes the consensus gain for a multiagent system with
unmatched uncertainties. Let x = col{z;} be the aggregated state vector and

u = diag{u;} be the aggregated control input. We further define w,,(x,u) =
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col{wm,(x;,u;)} and introduce w(z,u) = col{w;(x;, u;)} == > _ wm,(z,u) as the

aggregated unmatched uncertainty. Then, we find:

T =(In® Ag)zr + (Iy ® Bo)u+ w(z,u)

(3.44)
W (z,u) = Iy ® Ap)0™z + (Iy @ Byp)i™u
where we have a coupled-by-communication consensus algorithm over G:
u=(L® Ky)z (3.45)

which means, we need to design a distributed consensus signal u that is coupled

through £. We decompose this coupled consensus signal as follows:
u=(L®I,,)v and v= Iy ® Ky)z (3.46)

and, by passing the coupled term into the system’s dynamics, find a new repre-

sentation for the aggregated multiagent system:

T =Uny®Ay)r+ (LR By)v +w(x,v
(In ® Ao)z + ( 0) (z,v) (3.47)
Wi (z,v) = (IN® Ap)0"x + (L & B,y,)0"v
which is coupled by two terms £® By (known) and >"""_ (£L® B,,,)0™ (unknown).

Compared to (3.46), we now focus on designing a “decoupled” control signal:

Let 27 2 (T7' ® L)z, v = (T7' ® I, )v, and wyr = (T7! @ I,,, )wy, such that
wyp 2 (T7'@ I, )w = "0 Wy (z7,vr). Based on the Fact 2.2.1, we find a

partitioned multiagent system model as follows:
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T _ Ao 0 Tt N 0 0 vt wry (T71)
Trd 0 In_1®Ay]| |z74g 0 Ai® Byl |vra wra(Trd, Vra)

49)
Now, we need to design a decoupled consensus signal vr = (Iy ® Ky)xp for

the decoupled multiagent system model (3.49). Here, zp = |25, 2L,]7, vp =

Wk vE Y, and wr(zr,vr) = [wh(z71), why(Tra, vra)]T. The (disagreement)

T

aggregated variable zrg is defined by z7g = [z1,,...,2L\]T; similarly, we find

vrqg = [VEy, ., vEN]T and wrg = [wh,, ..., why]T. Furthermore, note that we have
used a partitioned diagonal matrix A = diag{[0, A4]} where Ay = diag{\;}, and
A; denote nonzero eigenvalues of G for ¢ € {2,3,.., N}.

There is no control on the first row of (3.49) that corresponds to the agree-
ment space. (The effect of agreement dynamics will be discussed in Lemma 3.2.1

and Lemma 3.2.2.) The second row of (3.49) corresponds to the controllable

disagreement dynamics, and is rewritten as follows:

@ra = Aotra + Bovrg + BoEvra + wra(vra, VTdZ (3.50)
VvV
Network-level nominal multiagent system thwork_lgvz\lr uncertainty

where Ay = Iy_1® Ao, By = In.1® X2 B, and E = (52 —Iy_1)®1,, (A discussion
similar to Remark 3.1.2 at page 70 can be made for introducing the network-level
uncertainty in state equation (3.50)). We limit the synthesis of consensus gain Ky

to the disagreement dynamics by introducing the reduced-order consensus signal

Urq € RW=Dnu with KU = (IN—l X KU)i

vra = Kyzrg (3.51)
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We now propose an auxiliary multiagent system:
i‘Td = AQZETd + BOVTd + 7 (352)

where 7 = [7, ..., 747 € RW=Yn denotes a fictitious control input® that has
been added to handle the effect of wrq(z7q, vrg) € RE—Hne,

We briefly re-state that the distributed consensus algorithm design objective
was to steer disagreement dynamics’ trajectory toward the agreement subspace
using the consensus protocol (3.51). To design an appropriate consensus gain Ky,
we have proposed a disagreement dynamics stabilization problem, and we further
have proposed an auxiliary multiagent system model in order to handle the effect
of unmatched modeling uncertainties.

Let R, = In_1 ® R, and R, = r;1,, where . > 0 is a design parameter. We

always can find a quadratic upper bound on wypg:
w%dRTwTd S ZL’%deITd + I/qj:dR:l/Td = w%dMRTwTdM (353)

using Fact 2.1.2, and Rayleigh-Ritz inequality in Fact 2.1.1. Here, R = Iy_®@R?,

R/ =1y ®RY, RY =r¥l,,, and rZ,rY > 0. An example is provided to clarify

T T

successive use of Fact 2.1.2 at page 39.

Example 3.2.1. Let ng = 2. We write wrg = wrg + wrae where wrg = (In_1 ®
Al)QCL’Td—i-(IN_l ®A)92ITd and Wpgy = (IN_l®Bl)9VTd+<IN_1®BQ)¢92VTd. Then,

a way to calculate the upper bound (3.53) is as follows:

5The numbering matches that of vr4 and, in fact, 71 does not exist.
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w%dRerd = (wra1 + wTdQ)TRT(wle + Wrdz)

< 2wy Rewrgr + 2w7F g Rewras

< xpy(In-1 @ AT )(46°R,) (In 1 @ Ay)arg
+ 274(In1 ® A7)0 R, ) (In—1 ® As)ara
+ vig(Inoy @ AT) (40 R, ) (In—1 ® Ar)vra
+ vig(In-1 ® AT)(40' R, ) (In-1 © Ag)vrg

< ah (Ino1 @ 4(02ATR A, + 0*AT R, Ag))wry
L (Ino1 @ 4(0°BTR, B, + 0BT R, By))vra

where the last term can be easily found by Fact 2.1.1

In Theorem 3.2.1, we provide sufficient conditions to systematically find an

appropriate K.

Theorem 3.2.1. Let the signals vpr; = Kyxp, = —/\QR;IBOTPxTZ- and T; =
Grri = —RT_IP:cTi solve the minimization problem (3.54) subject to the auxil-
iary system (3.55) such that the condition (3.56) or (3.57) is satisfied. Then, the
control signal (3.51) exponentially stabilizes the uncertain disagreement dynam-
ics (3.50). The matriz P denotes the solution of ARE (3.58), By = [/\QB0 1%17
Ry = Diagy{[R.s, R;|}, Qf = Q+ R%, and R, = R, + RY. Moreover, Q = Q" =~
0, R, = R =r,,, - 0, R, =Rl =r.I, = 0, and r,,r. > 0 are design

parameters.

Ji(x7;(0)) = min / (x%Qfa:Ti + I/%iRVfVTi + TiTRTTi)dt (3.54)
0

VriTi
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i'Ti = AOl‘Ti + /\QB()VTZ' + Ti (355)

Q—-2G"R.G+ KR, Ky = 0 (3.56)

Q—-2G"R.G~ 0 (3.57)

AJP+ PAy+Qy — PBfR]TIB}FP =0 (3.58)

Proof. This proof is discussed at Subsection 3.4.5. O]

We point out that, in LQR formulation (3.54), the effect of modeling uncer-
tainty wrq appears in both @)y and R, ¢. Also, note that post-processing is required
to find a suitable control gain K7, because the conditions (3.56) and (3.57) depend
on the control gains Ky and G that should be designed (and are not available at
the beginning). Moreover, although we have proved that the disagreement dynam-
ics are exponentially stable, we still are interested in knowing about the agreement

value. To do this, we propose a new lemma and specialize it in Remark 3.2.2.

Lemma 3.2.1. Assume that conditions of Theorem 3.2.2 are satisfied. Then,

agents of (3.44) reach the following state agreement value fori € {1,2,...,N}:

al(t) = %@At in(m + /0 gAo(t=o) Zwi(a:i(a),ui(a))da) (3.59)

where the superscript I denotes the final (time-varying) value.

Proof. This proof is available at Subsection 3.4.6. n
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Remark 3.2.2. For a Hurwitz A, the agreement value is given by:

_ Aot o
! _tlggoN/ sz (o), u;(0)))do (3.60)

because et — 0 as t — oco.

In Theorem 3.2.1, we established a sufficient condition to ensure an (unknown)
agreement among agents (3.44). In Lemma 3.2.1, we found the agreement value
and, assuming a Hurwitz A, we derived a simplified agreement value in Re-
mark 3.2.2. Now, in Lemma 3.2.2, we further establish a sufficient condition

that guarantees a state agreement on zero for multiagent system (3.44).

Lemma 3.2.2. State variables of (3.44) agrees on zero if q < g where ¢ £

S0 Ky B 2 A [ |07 |, s denotes the mazimum eigenvalue of AT A,

and o, B > 0 satisfy ||e?!]] < ae Pt

Proof. This proof is given at Subsection 3.4.7. m

3.2.2.2 Equivalent multiagent system with matched uncertainty

Now, we solve the consensus problem (3.39) for multiagent systems of (3.41).
We show that this simplified structure, compared to (3.40) that has been discussed
in previous section, relaxes the post-processing requirement (3.56) or (3.57) in

finding an appropriate consensus gain.
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For brevity, we only introduce new variables and parameters, and others can

be found in previous subsection. We first rewrite (3.41) as follows:

St'i = oni -+ BO(Uz + z; (271))
zi(xi) =200 zmii) (3.61)

and propose a distributed consensus protocol:
JEN

where K); € R™*" denotes consensus gain in the presence of matched modeling
uncertainty Byz;(z;). Let z = col{z;} be the aggregated matched uncertainty

vector. Now, over G, we model the multiagent system as follows:

& =(n® A+ (In® Bo)(u+ 2(z))

(3.63)
zm(z) = (I ® BJA,)0™x
where z(z,u) == )", z,(x,u). In this case, the aggregated consensus protocol
appears as a coupled signal:
u=(L® Ky)x (3.64)
We decompose this coupled consensus signal as u = (£L ® I,,)v and v =

(Iny ® Kyr)z, and pass the coupled term to the multiagent system’s dynamics:

Zm(x) = (IN® BgAm)me

Vv = ([N®KM).T
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which results in a coupled dynamics due to £ ® By, and a decoupled (consensus)
signal v. Applying the diagonalization transformation of Proposition 2.2.1 results

in a partitioned transformed multiagent system:

jjTl AO 0 71 0 O 1%
= +
T7d 0 In_1®A| |14 0 Aq® By| |vra
L (3.65)
By 0 zr1 ()
+
0 In-1®Bo| |zra(zra)

where zp £ (T ® I,,,)z. Letting 2,7 = (T7! ® I,,)%m, the uncertain term is

defined by:

ng
zp(xr) == Z Zmr (T7), where  zyr(rr) = (In ® BgAm)meT
1

The first row of (3.65) represents the uncontrollable agreement dynamics, and
the second row models the controllable disagreement dynamics. The design of con-
sensus algorithm is limited to the second row of (3.65) that is rewritten as (3.66)-
(3.67) (the potential effects of agreement dynamics, with modeling uncertainty,

will be discussed in Lemma 3.2.3 and Lemma 3.2.4):

irg = Aotra + Bovrg 4 BoEvra + Bozrax(2r) (3.66)
Network-level nominal multiagent system Network-levg uncertainty
vra = KnZrq (3.67)

L

where KM = [N—l & KM and sz)\(xT) = o ZTd(xT)-
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Also, defining R = Iy_1 ® R, R = rIy_1, and r > 0, we always can find a

quadratic upper bound on zrg4y as is given below (see Example 3.2.1 at page 97):

T p T px LT D,

Theorem 3.2.2 provides sufficient conditions to stabilize the uncertain disagree-
ment dynamics (3.66) and, equivalently, to derive the transformed multiagent

system (3.65) to its agreement subspace.

Theorem 3.2.2. Let vy, = Ky = _AQRilBg—'meTi be the control signal that
solves the LQR minimization problem (3.69) subject to the i'" agent’s networked
nominal dynamics (3.70). Then, vrq = col{vr;} exponentially stabilizes the uncer-
tain disagreement dynamics (3.66). Here, P,, denotes the solution of ARE (3.71),
and Q,, = Q + R*. Furthermore, Q = Q" = 0, R=RT =rl,, = 0, andr >0

are design parameters.

Ji(x1:(0)) = min/ (23 Qi + v Rups ) dt (3.69)
vri 0
iTi = AoZBTi + )\QBOVTZ' (370)
AL Py 4 PpAg + Qp — NPy BoR'BIP, =0 (3.71)
Proof. This proof is provided at Subsection 3.4.8. O

In the next lemma, we find the agreement value of a multiagent system (3.63):

Lemma 3.2.3. Assume that conditions of Theorem 3.2.2 are satisfied. Then,

multiagent system (3.63) reaches a state agreement on the following value:
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N N
1 o
ol (t) = N@At ;xi(()) + /0 et=o) g, ; zi(2;(0))do) (3.72)
wherei € {1,2,..., N} and the superscript f denotes the final (time-varying) value.
Proof. The proof follows that of Lemma 3.2.1. O

Remark 3.2.3. For a Hurwitz Ay, we know that e — 0 as t — oo, and a

state-agreement is achieved on the following value:

N
1 [e.9]
of =iy [ I8y S s(wo)do (373)
0 i=1

The next lemma provides a sufficient condition which ensures a state agreement

on zero among all agents (3.41).

Lemma 3.2.4. The agreement value of a multiagent system (3.63) is zero if
s < ﬁ where s =30 poy pm = A/ lsmnr |00 ], Smoar denotes the mazimum
eigenvalue of A%BgTBgAm, and o, 3 > 0 are such that the Hurwitz matriz Ay

satisfies the exponential bound ||e?!|| < ae .

Proof. This proof can be derived based on the proof of Lemma 3.2.2. ]

3.3 Summary and bibliography

In this chapter, we consider linear multiagent systems subject to different
sources of uncertainties. The first case is discussed for both leaderless and leader-
follower (communication) topologies using some relative-output measurements.

These designs guarantee consensus under different types of unknown disturbances:
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constant (step-like), ramp, or sinusoidal (and a combination of them). In the sec-
ond case, we assume that the operating condition of the multiagent system varies
in time, and results in a parameter-varying model of the multiagent system. We
propose a leaderless consensus problem, and establish a state agreement that de-
pends on all agents’ initial state values, and further found the required condition to
achieve a state agreement on zero (which is equivalent to the exponential stability
of an uncertain multiagent system model using “relative-state” measurements).
We show that all of these results can be systematically guaranteed borrowing some
fundamental concepts from the optimal control theory.

Localizing the dynamics of closed-loop multiagent systems, with distributed
consensus algorithms in the loop, results in heterogeneous sub-models that de-
pend on non-zero eigenvalues of communication graph Laplacian matrix. In the
literature, various viewpoints have been proposed to overcome such a problem and
design the same (non-heterogeneous) control gain for all agents. The dominant
approaches are based on a two-step procedure where the control gain is designed
based local dynamics to be multiplied by a scalar correction factor which depends
on the communication network topology. References [82] and [83] introduced a
correction factor to modify the algebraic Riccati equation-based control gain and
guarantee leaderless consensus in a multiagent system (e.g., based on the formu-
lation of this chapter, we need to implement ck.., ck., in consensus signal (4.4)
where ¢ is a correction gain that should be designed independent of the actual
gains k., and k), and [93] used the correction gain to modify its relative mea-
surements (e.g., in this viewpoint we need to use modified relative measurements
cyl in (4.4)-(4.5) with a modification factor ¢). In this chapter, we reformulate
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the problem as a state-feedback robust control challenge for the nominal net-
worked vehicles” model (identical for al agents) subject to fictitious uncertainties
(in general, non-identical for agents). We then provide a systematic one-step ap-
proach to find appropriate control and observer gains that guarantee consensus in
multiagent systems.

The disturbance rejection (or cancellation), by itself, has received significant
attention in the literature of control systems. Particularly, with a known and
fixed waveform but unknown magnitude, the persistent disturbance rejection has
also been reported in the literature under different names, for example, distur-
bance accommodation control in [115] which can be combined with state feedback
algorithms (as we have done in conjunction with the optimal control ideas of
Section 2.4). Recently, this issue has also been discussed in the literature of mul-
tiagent systems considering a constant disturbance or integrator agent models
(e.g., see [116] and [117]). In a different research work, a leader-follower consensus
for a linear time-invariant multiagent system subject to constant disturbances has
also been investigated in [118]. Moreover, [119] proposed a consensus algorithm
to deal with the disturbances acting on a multiagent system of nonholonomic
moving agents.

The parameter-dependent model of Section 3.2 has been seen in many prac-
tical cases, including the wind turbine application (e.g., see the references in
Sec. IIL.LF [120]). Moreover, the discussion on parameter-dependent aircraft mul-
tiagent system at page 93 is inspired by [121]. The proposed methods in this
chapter are applicable to the unknown and possibly time-varying operating point
scenarios. Alternatively, linear parameter varying and gain scheduling controls
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can be applied whenever the independent (scheduling) parameter is measurable.
Also, the frequency domain approaches are usually limited to the constant or
(practically) very slow-varying parameters. While our ideas are inspired by [122],
similar approaches can be found in the literature of control systems theory under
the name of guaranteed-cost control (e.g., see [110], [123], and [124] with a different
set of structural assumptions).

Finally, although it is straightforward to establish the positive definiteness of a
reduced-order graph Laplacian matrix H for a connected leader-follower commu-
nication graph (see the partitioning of graph Laplacian matrix in Remark 3.1.4,

page 81), a (different) proof is given in [114].

3.4 Appendix: proofs

We have proposed the main results of this chapter through several theorems,
lemmas, and propositions. For the sake of readability, we have not discussed their
proofs within the main body of this chapter, and, instead, have gathered all of
them in this Appendix section. Subsections 3.4.1, 3.4.2, 3.4.3, and 3.4.4 are related
to Section 3.1, and Subsections 3.4.5, 3.4.6, 3.4.7, and 3.4.8 focus on the results

of Section 3.2.

3.4.1 Proof of Theorem 3.1.1 (page 68)

We first mention that the multiagent system’s dynamics (3.6) can be trans-
formed to (3.8) using a similarity transformation that has been discussed in
Fact 2.2.1. Therefore, consensus of a closed-loop multiagent system of (2.13)-
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(3.2) and (3.4)-(3.5) (or equivalently, the matrix form (3.6)) is the same as deriving
all states of (3.8) to the agreement space (described by the first row in (3.8)). In
other words, we need to asymptotically stabilize the disagreement dynamics (3.9).
Hence, we consider N-1 sub-systems in (3.10) to design control gains K? and KY,
and N-1 sub-systems in (3.11) to design the observer gains K? and K. These
issues are further detailed in the rest of this proof:

Part 1) Based on the observer error dynamics (3.11), we find that, in fact, we

xT

need to design an observer gain K, = | for the following augmented system:
Ky
Tai A T0 Tdi |: :| Td;
= ) Ydi = )\ZC 0
2wdz‘ 0 F Zwdi —_——— Rwdi (374)
—— Cq
Aq

We propose a Luenberger observer as follows:

ivdi = A, dei + Kao(Yai — Yai), Yai = Ca o

Zwdi Zwdi Rwdi
in which, whenever Assumption 3.1.1.b is satisfied, an observer gain K, can al-
ways be found to arbitrarily assign eigenvalues of the closed-loop matrix in The-
orem 3.1.1.1. Consequently, we can stabilize the observer dynamics (arbitrarily
fast).

Part 2) Because of Assumption 3.1.1.b, as is discussed in Part 1 of this proof,

the estimation error response in (3.11) converges to zero arbitrarily fast. We
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replace the estimated values in (3.10) with the actual variables to get (3.12).
Therefore, stabilizing this system for all i € {2,..., N} confirms our claim in

Theorem 3.1.1.2.

3.4.2 Proof of Theorem 3.1.2 (page 70)

All we need is proving that ug = KZx4, designed for the nominal model
in (3.15), stabilizes the closed-loop system with entire uncertain model (3.15)
where the uncertainty is induced by the communication topology (we have N — 1
possibly different eigenvalues, and introducing this fictitious modeling uncertainty
helps finding a homogeneous consensus protocol). We define the following candi-

date Lyapunov function:

V(2ai(t)) = 2g;(t) Prai(t)

where P > 0 is the solution of ARE (3.17). At time t = 0, V(x4(0)) is equal to
the LQR cost functional J(z4(0)) in (3.16):

V(24(0)) = J(24(0)) = min / (:chl-Qxdi + udTiRudi)dt' >0
0

uq; ER"u

Therefore, P in the candidate Lyapunov function V is such that the following

Hamilton-Jacobi-Bellman equation is satisfied for the nominal dynamics in (3.15):

: T T T _
min (mdiQxdi + udiRudi + dei (A.I'dl + BD,\QudZ-)) =0

uq; ERMu
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where V;le = %. In particular, implementing w4 = KZXxq with an optimal gain

K? = —R™'D} BT P, the pairs (24, uq;) satisfy the following equalities:

le;Ql’dl + uzl;Rudz + V;E;Z(Axdl + BD)\Zudi) =0
2u£R + V;{;Bl)/\2 =0

because the algebraic Riccati equation (3.17) is satisfied and K*7 = —PBD,,R™"
is implemented (the relation between the first equality and algebraic Riccati equa-
tion is discussed in Section 2.4). Now, we calculate the time deviation of this

candidate Lyapunov function along the uncertain trajectory (3.15) and find:

= —2hQug — 2L K RK x4 — 20 KITRE(N) K2 xy;

< —25Qra < 0

where we have used the fact that RE(\;) = (/’\\—; —1)R»>0forallie {2,3,..,N}.
Now, based on the Lyapunov Theorem 2.3.1, the closed-loop system (3.14) is
asymptotically stable for all initial values of agents (and for all non-zero \;).

Based on Theorem 2.3.2, we can further conclude an exponential stability by

letting a1 = Apin(P), a2 = Apaz(P), a3 = Apin(@), and b = 2.
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3.4.3 Proof of Theorem 3.1.3 (page 71)

Based on the Theorem 2.3.1, as the dual to the observer design problem

for (3.74), we can find a control signal u, that stabilizes the following model:
tq = ATz, + CTu, (3.75)

where CT' = CT'D,()\;) create fictitious modeling uncertainties Vi € {2, 3, ..., N}.

This is straightforward to rewrite (3.75) and find:

Lo = Agxa CCTDa AU + \C(STD@/\QEG()\,')U%

N

Vv TV
Nominal model Network-induced uncertainty

using the Luenberger observer equation (3.75). Now, the problem is reduced to
Theorem 3.1.2 with a similar proof. Based on the duality Lemma 2.3.1, this

K, = [K*, K*T]T gives the required observer gain in Theorem 3.1.1.1.

3.4.4 Proof of Lemma 3.1.1 (page 72)

Based on (3.8), dynamics of 7; and 7, are decoupled. Also, as a result of
Theorem 3.1.1, we know that Py is Hurwitz. Thus, n§ = limi.n2(t) = 0.
Furthermore, the following time response can be found based on the first-order

state equation (3.8):

r4, = = eMap,(0 +f0 AT BKYeF T 2,01(0))dr

7, = eMir(0) + [o (e IT0er 2,7, (0))dr (3.76)

Z11 = e Z,71(0)
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Now, substituting K from Design procedure 3.1.1, we find:

¢ 0 O | z71(0) 0 0 ¢f| | 27.(0)
m = ¢oom(0) +oum0) = 0 ¢5 0| | Z7:(0) | T |0 0 ¢%}| | 7.(0)
0 0 0| [Zra(0)] [0 0 63| |zr(0)

_ . Poo + P11 O ,
Therefore, for the entire partitioned model (3.8), n* = n(0) is

0 0
satisfied. Now, let T}, = diag{[T ® I,,,, T® I,,,, T ® I,,_,,]} and P be the same as

the one that we have used to find (3.8). Then:

x® z(0)
$oo + o110

| = TP PT, " | #(0)
0 0

Za Zu(0)

is achieved for the initial augmented model (3.6) (the augmented model, right
before the similarity transformation). This results in the following agreement

values for the system state and observer state estimation errors:

vl |0 0 @ | x(0)
=10 o} o z(0)
Zu 0 0 &F] |Z.,(0)

where @3 = (51 ® ¢fy) Vi € {1,2,3}, and also &% = (51 ® ¢i}) Vi € {1,2,3}

where 1 € RV*Y denotes a matrix of all ones. Hence, the proof is completed.
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3.4.5 Proof of Theorem 3.2.1 (page 98)

We aggregate (3.54) for i € {2,3,..., N} and use (3.53) in order to find the
augmented cost function (3.77):

J(z74(0)) = min / (214Qra + VigRyvra + 77 RoT + Whgpy Rewpanr ) dt
0

vrd,T

where R, = Iy_1 ® R,. The augmented control signals vpy = Kyxpg and
7 = Garg, where G = Iy_; ® G, the augmented auxiliary system (3.52), and

conditions (3.77) and (3.78) can be found similarly.
O — 2T R.G + KIR Ky = 0 (3.77)
Q—-2G"R,G -0 (3.78)
In summary, the aggregated control signals vy and 7 minimize the augmented
cost function (3.77) subjected to the augmented auxiliary system (3.52) and, also,
the condition (3.77) or (3.78) is satisfied. In the rest, we prove that the uncertain
disagreement dynamics (3.50) can be asymptotically stabilized using only vpy in
the closed-loop configuration (i.e., without implementing the auxiliary control

signal 7).

We introduce a candidate Lyapunov function:

V(zra(t)) = 274(t) Prra(t)
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where P = Iy_; ® P and P is the solution of ARE (3.58). We know that at time

t = 0, the relationship V(z74(0)) = J(274(0)) is satisfied for

J(274(0)) = min / (25, Qurg + Vh Ryvra + 77 Rem + whyy Rewran)dt (3.79)
0

vVra,T

Thus, the Lyapunov function (3.79) satisfies the Hamilton-Jacobi-Bellman equa-

tion (3.80) (subject to the augmented auxiliary multiagent (3.52)):

min{l‘ngl‘Td—i-V%dRVVTd—i-TTRTT—Fw%dMRT’LUTdM—i-V;Z;d (AoiETd—i-Bol/Td—FT)} =0
vrd,T

Specifically, implementing vpy = Kyapg and 7 = Gapy, the triple (274, vra, Tra)

satisfies the following equalities:

3 Qrrg + Vi Ryvrg + 70 R 4wy Rewran + Vf;d(/_lox;pd + Bovrg+7) =0

because the ARE (3.58) is satisfied (see the relation between this inequality and

an ARE in Section 2.4), and

2r"R, + VI =0

TTd

because the control gains are chosen to be Ky = Iy_1 ® (—/\QR;leOTP) and

G =1Iy_1®(—R:'P). Here, V,,,, = OV(zra)

Td 8de
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The time deviation of V' along the uncertain dynamics (3.50) results in the

followings:
V= —a2l,Qurg — v Ryvra — (7 + wra)" Re (7 + wra)
— QV%dRVfEVTd — (w%dMRTwTdM — w%dRTwTd) + 2TTRTT
where £ = ET = 0 and we have —2v1 R, ;Evpqg = —2(r, + r¥)vi,Evrg < 0.

Therefore, V can be written as either one of the followings:
V S —l’ngl'Td — ijdeuVTd -+ QTTRTT

V S —.T%dQl'Td + 2TTR.,-T

Now, by substituting vp4 and 7, we find V < 0 because (3.77) or (3.78) is satis-
fied. Thus, based on the Lyapunov Theorem 2.3.1, the closed-loop disagreement
dynamics (3.50) are asymptotically stable for all initial values of agents (and for
all non-zero ;). Based on Theorem 2.3.2, we can further conclude an exponential
stability by letting b = 2, a1 = A\pin(P), a2 = Anaz(P), a3 = Apin (M) where M
can be Q — 2GTR,G + K} R, Ky or Q — 2GTR,G.

3.4.6 Proof of Lemma 3.2.1 (page 99)

We know that Theorem 3.2.2 is satisfied, thus xéd = limy,oo x1q(t) = 0.
Based on the partitioned representation (3.49), the dynamics of (uncontrollable)

agreement space are given by:
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i1 = Aoxr1 + wri(Tr) (3.80)

where we note that the (6-dependent) uncertain function wz; depends on neither

vr nor xrg. The solution of this differential equation is given by:

t
zp1(t) = ey (0) +/ ey (291 (0))do (3.81)
0

Therefore, we observe the following behavior for (3.49) after reaching to the

agreement subspace:

o ah, etz (0) + f(f eA0= (271 (0))do
! = -
:L‘é:d 0
eAOt 0 . er(t—U)
= 2r(0) + J wr(zr(o),vr(o))do
0o O 0 0

where v is added as an input argument to wr to consider its effect on wry. We
further partition the similarity transformation matrix 7" = [T1|T,] where T} =
\/Lﬁl ~ (corresponding to A; = 0), and T, contains all other columns of 7. This

transformation matrix was used to get (3.49). Now, we find:

o = L1 ®AN(0) + [! (1 ® e u(a(0), u(o))do

1
N
= ¥y @ e 30 2,(0) + fy 31y @ e T8 wii(0), wi(0))do

Jr T fT]T

where 2/ = [z1", 2", xy |7, and 1 is an N x N matrix of all ones.
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3.4.7 Proof of Lemma 3.2.2 (page 100)

Based on the conditions of this lemma, we know the inequalities || A, x| <
VItm |zl l; [[wmri || < fmller]], and [[wr (er, vr)|] < gl|wn|] are achieved.
Using the solution (3.81) in Subsection 3.4.6, we further find:

t
|z @] < al!x%\le_ﬁ“raqe_m/ (™ [lwrs(0)l])do
0

where 2%, £ 271(0). Based on the Bellman-Gronwall Lemma 2.3.3, by setting
w(t) = |lzr ()], 2(t) = allad,||e P, g(t) = age ™, and h(t) = €', we find the
following inequality:

|z, (B)]] < a|ad,||e”Pon!

Therefore, the condition ¢ < g guarantees exponential stabilization of the agree-
ment dynamics (3.80). Using the result of Theorem 3.2.1 for the disagreement
space, all states of (3.49) converge to the origin that means all states of (3.44)

reach to an agreement on zero. Thus, the proof is done.

3.4.8 Proof of Theorem 3.2.2 (page 103)

Aggregation of (3.70) for ¢ € {2,3,..., N} results in the network-level nominal
multiagent system in (3.66) where, for this nominal multiagent system, the control

signal vpqy = Kprorg minimizes the following augmented cost function:

J(JITd(O)) = mln/ (I%dQITd + V%dRVTd + Z%d)\MRZTd)\M)dt
vYrd Jo

where Q = Iy_; ® Q. In the rest, we prove that this vpy also stabilizes the

entire uncertain multiagent system (3.66). We propose the following candidate

Lyapunov function for ¢ > 0:
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V(zra(t)) = 274(t) Prra(t)

where P = Iy_; ® P and P is the solution of ARE (3.71). We further no-
tice that the boundary condition V(214(0)) = J(214(0)) = miny,,, [~ (27,Q@rq+
vh Rupg+zt 0 Reraar)ds = 0is satisfied. Thus, we write the following Hamilton-

Jacobi-Bellman equation using the network-level nominal dynamics in (3.66):

min{z},Qrrq + vigRvrg + Z%dAMRZTdAM + ij;d(/_lwird + Bovra)} =0
vrd

Particularly, implementing vrq = Ky@rq, the following equalities are guaran-

teed by the pair (x7q, vrq):

$T1qQurd + VigRvrg + Z%dAMRZTdAM + VxTTd(AOSCTd + Bovrg) =0 (3.82)

UL R+ V;E;dBO =0
because the ARE (3.71) is satisfied by P, and the control gain is selected as K); =
—X\R7'Bl'P,,. Now, the time deviation of the candidate Lyapunov function along
the uncertain dynamics (3.66) gives the following result:
V. =VZI irg

— T N T > T D T DI

— (zrax + vra)T R(zray + vra) < —2k,Qrpg < 0

where £ = E7 = 0, we have —QV%dREVTd = —QTV%dEVTd < 0. Thus, based
on the Lyapunov Theorem 2.3.1, the disagreement uncertain dynamics (3.66) are
asymptotically stable for all initial values of agent dynamics over the graph G.
Furthermore, using the Rayleigh-Ritz inequality in Fact 2.1.1, we can show that

the condition of Theorem 2.3.2 are also satisfied, and the closed-loop disagreement
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dynamics are exponentially stable by setting b = 2, a1 = A\pin(P), a2 = Apaa(P),

az = )\mzn(Q)
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Chapter 4

Distributed Stationary Consensus

in Multi-Vehicle/Multi-Robot

Systems!

In Chapter 1, we discussed that various distributed algorithms have already
been designed to ensure collective behavior among agents of multiagent systems.
In Chapter 3, we developed an optimal control-theoretic tool that ensured consen-
sus in multiagent systems subject to unknown disturbances or operating point-
dependent modeling uncertainties. In Examples 3.1.1 and 3.1.2, we showed the
proposed leaderless consensus algorithm ended in agreement on position and ve-
locity in which all vehicles continuously increase their speed. In this chapter,
we develop a dynamic output feedback leaderless stationary consensus algorithm

based on the relative output information of vehicles and only a few vehicles” ab-

IThis chapter is based on the reference [113].
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solute measurements. We propose a framework to transform this dynamic output
feedback problem into three low-order subproblems for disturbance rejection, con-
sensus, and observer gain design tasks. Independently of the number of vehicles,
consensus and observer gains are systematically found through two robust static
state feedback formulations for low-order dynamics subject to fictitious modeling
uncertainties. We further prove the proposed framework can be used to guarantee
leader-follower stationary consensus in multi-vehicle systems (with a leader whose
dynamics are not identical to the follower vehicles), and find analytical solutions
for the consensus gains based on the design parameters and inter-vehicle commu-
nication graph. We verify the feasibility of proposed leaderless and leader-follower
stationary consensus approaches in simulation.

The rest of this chapter is organized as follows. In Section 4.1, we propose a
distributed leaderless stationary consensus algorithm that ensure vehicles’ agree-
ment on a fixed point in the presence of unknown persistent disturbances. In
Section 4.2, we further prove the proposed framework for the leaderless scheme
can be generalized to the leader-follower stationary consensus in which the agree-
ment value is an adjustable command. In Section 4.3, we verify the effectiveness
of these approaches through various simulation studies. In Section 4.4, we sum-
marize these results and provide additional references that are related to the topic

of this chapter. All proofs are gathered in Section 4.5.

4.1 Leaderless stationary consensus

In this section, we develop a systematic framework to design output feedback

dynamic stationary consensus algorithm for leaderless multi-vehicle systems. The
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proposed strategy is based on the relative output measurements and a few vehicles
(potentially, only one vehicle) absolute output variables, and ensures agreement in
the presence of various unknown persistent disturbances. For such a multi-vehicle
system with limited information, we first show the relative information-based
dynamic consensus task can be reformulated as a set of local stability problems
using heterogeneous absolute measurements. Then, in order to have a scalable
design applicable to multi-vehicle systems with a high-number of vehicles, we
further recast it as three sub-problems to find disturbance cancellation, robust

feedback, and robust observer gains.

4.1.1 Problem statement

We consider a group of moving vehicles modeled by the following dynamics:
T; = v; v =u; +d; (4.1)
Ui = 01 (X jen; (@i — x5) + biws) + g2 (O e n; (vi — v7) + bivy)
where x; € R denotes position, v; € R velocity, u; € R control input, and y; € R
output measurement of the i*" vehicle. Also, g; # 0, g» € R are two output-gain
scalars where, e.g., when gs = 0 reduces to a partial measurement scenario for the
multi-vehicle system. Moreover, whenever " vehicle has access to its absolute

output measurement, we set b; = 1 and, otherwise, b; = 0.

Fact 4.1.1. The triple (C, A, B) is controllable and observable where:

A= , B = , C= {91 92] where g3 #0
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The effects of unknown environment, e.g., road profile or wind disturbance,
on the vehicles’ dynamics are modeled by a set of heterogeneous persistent dis-

turbances d; € R (also see (3.2)):

' (4.2)
di == CdZZ'

where z; € R™ stands for the disturbance-state of i'* vehicle, z{ unknown initial
value of the disturbance-state, and A; € R™*" and Cy € R™*" are two known
constant matrices that determine the shape of disturbance. For this multi-vehicle
system, the leaderless stationary consensus task is defined as follows which should

be achieved in the presence of unknown persistent disturbances:

fimesoc (13(6) = 25(0)) =0 Vi,j € {1,2,..,N} (4.3)

limy o () =0
Based on the definitions in Chapter 3, the conventional leaderless consensus
for the multi-vehicle system can be defined as lim; o (2;(t) — z;(¢f)) = 0 and
limy o0 (v;(t) — v(t)) = 0 for i,j € {1,2,...,N} (see (3.3)). This agreement can
be achieved whenever the stationary consensus (4.3) is satisfied; however, the
reveres direction is not necessarily true (for nonzero v; = v;). Moreover, the
formulation (4.2) generates various types of disturbances as given in Table 3.1. In
particular, the combination of constant and sinusoidal waveforms with unknown
amplitudes can be used to model the persistently constant (dc component) and

main harmonics of complicated disturbance waveforms, e.g., based on the (fast)

Fourier series decomposition of road profile and wind disturbance data.
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4.1.2 Main result

In order to guarantee the leaderless stationary consensus of multi-vehicle sys-
tem (4.1) in the presence of heterogeneous persistent disturbances (4.2), we pro-
pose a dynamic distributed stationary consensus algorithm:

U; = kfcx (i’l — Zi'J) + kcv (f)z — ’{J]) — O{U'lA/i + chZA’di (44)
JEN; JEN;

where «,, > 0 is a design scalar, and k.., k., € R and K., € R'*" are the control
gains to be determined later in this section. The i** vehicle’s estimated position
z; € R, velocity v; € R, and disturbance state variable z; € R"= are found using

a distributed observer:

fi = 0; + kom(iyf - ?):)

@ = U; +Cii+kov<yir —]J:)

Zai = Adkai + Koa(y! — 1) (4.5)
Z)f = gl(zjej\/i(fz’ - if?j) + bii'i) + 92(21'6/\@ (@z - @j) + bi@i)
d; = CaZai

in which the observer gains ko, ko, € R and K,; € R™*! will be designed later in
this section. Also, N denotes the neighboring set of i" vehicle over an undirected

graph G which satisfies the following assumption.
Assumption 4.1.1. The undirected communication graph G is connected.

We define observer error variables e,; = Z; — z;, €, = 0; — U4, €2 = Zqi — Zdi

and find the observer error dynamics:
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é:pi = Cyi — ko:p(gl(zj'gj\[i (exi - ezj) + bzezm) + 92(2j€/\/’i (evi - evj) + bievi))
€vi = Cglsi — kov(.gl(ZjeN’i(exi — ey;) + bieg) + gQ(ZjeM(Gm — eyj) + biey;))

€2 = Agesi — Koa(91(X e, (€xi — €aj) + biewi) + 92(D_jep: (€vi — €j) + biewi))
(4.6)

The augmented multi-vehicle system and observer error dynamics are modeled by:
¢ Ay | A ¢ B
_ 11 12 N d1 s (47)
e 0 A22 € 0
0 Iy 0 0 0

kcxff kcv[' — O41)]N kcx»c kcv»c - avIN ch ® IN

_glkoxH IN - ngoa:H O
Agy = —grkowH — ok H CaRIn| By =

0

(ch + Cd) ® In
— 1 Kod @H —gpKu®@H Ag® Iy

where ¢ = [27, 01T € R?MN, 2 = col{z;} € RY, v = col{v;} € RN, e =
[el el T € RENTN: and e, = col{ey},e, = col{e,} € RY. Based on
the disturbance generator model (4.2) and Table 3.1, it is evident that the di-
mension n, of disturbance state variable z; depends on the shape of persistent

disturbance; thus, we define z = col{col{z;},...,col{z,.}} € RY¥" and e, =

col{col{e.1;},...,col{e.n.i}} € RN"= where e,; = 2;; — 2; for all 1 € {1,...,n.}.
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We now take the diagonal blocks of (4.7) and find two sets of differential equa-
tions corresponding to multi-vehicle and observer error dynamics. In particular,

é = Agse results in the following transformed aggregated observer dynamics:

é$T _glkoa:Ah IN - ngoa:Ah 0 €T
eor | = | —gikovAn — g2k, Ca®@ In| |ewr (4.8)
e.r — 1 Koa @ Ny —2Koa @A, Ag®@ In| |eur

in which e, = Th_lel,, CoT = Th_lev, e.r = (I, ® Th_l), and 7}, € RV*V is a
unitary transformation matrix that completely diagonalizes the symmetric matrix
H as TyHT, ' = A = diag{p;} where p; > 0 are eigenvalues of H = 0 for
i € {1,2,...,N}. We notice that these aggregated error dynamics are in fact

composed by N “networked” observer error models:

éari = —HiG1kowCori + (1 — gaptikor)eurs
évri = —pig1koveari — fig2koveuori + Cae.ri (4.9)
.1 = —Hig1 Koa€ari — pig2Koaori + Aaeori
where p; result in heterogeneity of the closed-loop networked observers (with
Koz, kop and K4 in the loop).
Moreover, using the first row ( = Ay;¢ + Bgz of (4.7), the multi-vehicle

system is written as follows:

Uy kox N1 key\p — Iy | | vr (Keg +Ca) @ Iy
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in which xp = T, 'z, vp = T, 'v, 20 = (I, ® T~1)z where T; € RV*V is a unitary
transformation that completely diagonalizes the symmetric Laplacian matrix £
such that TZETI_1 = N\, = diag{0, Ay, A3, ..., A\n'}. As is seen, \; = 0 in the diago-
nal matrix A; determines the null space of graph Laplacian matrix £, and results
in a subsystem that does not satisfy the controllability condition. Therefore, we
apply another transformation ¢ = P where ¢ = [z7,0vT]T and P € R2V*2N
is a row switching matrix that results in & = [, &7, & = [vr1,vr]T, and
&q = [col{zr;}T, col{vp;}T]" fori € {2,3, ..., N}. The subscript , stands for agree-
ment subspace which is uncontrollable, and 4 indicates disagreement controllable

subspace. The transformed system can be written as follows:

0 1 0 0 0
. 0 —ay 0 0 K+ Cy
£ = £+ orp (4.11)
0 O 0 In_y 0
| 0 0 kchld kchld - avIN—l ] _(ch + Cd) & IN—l_

in which the agreement and disagreement dynamics are decoupled from each other.

The vector zp, = [z}, 274]7 is a re-arranged vector of disturbances according to

the row switching rule of P~!. The unobservable agreement dynamics show their

effects on the (stationary) consensus value, and will be discussed later in Corol-

lary 4.1.1 and Lemma 4.1.1. However, the controllable disagreement dynamics are

made by N — 1 heterogeneous networked vehicle models for i € {2,3,..., N}:
e (4.12)
Uri = Aikea®ri + (Nikew — aw)vri + (Keg + Ca) 21
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where the heterogeneity is due to the nonzero eigenvalues \; of £, and the word
“networked” is used with the same interpretation as in (4.9).

We now rely on the networked local dynamics (4.9) and (4.12), and charac-
terize the relative output feedback stationary consensus problem (4.3) as output
feedback stabilization task using heterogeneously-scaled absolute measurements
(due to p; and J;), and establish three equivalent conditions for consensus gains
to ensure stationary agreement (4.3) in multi-vehicle system (4.1) using dynamic

relative output feedback algorithm (4.4)-(4.5).

Proposition 4.1.1. The dynamic distributed algorithm (4.4)-(4.5) guarantees
leaderless stationary consensus (4.3) among vehicles (4.1) in the presence of per-
sistent disturbances (4.2) whenever Assumption 4.1.1 is satisfied and the following

vehicle-level conditions are guaranteed:

1. The disturbance control gain K.q should accommodate the effect of unknown

heterogeneous disturbances on the networked vehicle dynamics (4.12).

2. Verifying the observability of (C,, A,), a single (Luenberger) observer gain

K, = [kom,kov,Kg;l]T should be designed for the following networked error

dynamics:
€xTi 01 0 €xTi CuTs
Eri| = |0 0 Cqf |evri Yri = |f%’gl ig2 0] eori | (4.13)
€.Ti 0 0 Ay €:Ti a: €:Ti
A
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with N heterogeneous measurements where the heterogeneity is due to the

positive eigenvalues p; of H.

3. For any arbitrarily selected scalar o, > 0, the control gain K. = [keg, ke

should stabilize the networked vehicle dynamics for i € {2,...,N}:

Tpp =vpi Ui =urpi — oV Uy = Keyr
TTi (4.14)
yri = Ai
Uri
with N — 1 heterogeneous measurements where heterogeneity is the effect of

positive eigenvalues \; of L. (The effect of v, on final position of vehicles

will be discussed at the end of this section.)

The proof of this proposition is immediate based on the aforementioned deriva-
tions noticing the fact that, satisfying Part 1 of proposition, separation principle
holds for designing observer and controller gains (see the structure of (4.7)). Al-
though the first part of this proposition is independent of the multi-vehicle sys-
tem’s dimension, we need to examine the observer gains k.., k., and K,; for N
nonzero eigenvalues p; of H, and control gains k.., k., for N — 1 nonzero eigenval-
ues \; of £. This fact puts question on the feasibility of using Proposition 4.1.1
for a multi-vehicle system with a high-number of vehicles.

We follow follow the ideas of Chapter 3 and, by reformulating the static out-
put feedback problem (4.14) as a state-feedback robust control challenge for the
nominal networked vehicles’ model subject to fictitious uncertainties, provide a

systematic approach to find appropriate control and observer gains that guaran-
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tee stationary consensus in a multi-vehicle system operating in unknown environ-
ments. At first, we investigate the control design problem in Parts 1 and 3 of

Proposition 4.1.1 and, later, we will discuss the observer gain design problem.

Design procedure 4.1.1. 1. Disturbance control gain K. should minimize the
norm ||(K.+ Cq)zri|| where, based on the definition of disturbance generator

model (4.2), K.q = —Cy accommodates all persistent disturbances.

2. Robust state feedback gains k.. and k., should be designed to stabilize net-
worked robot dynamics:

T = Uy

. 4.1
Up; = —auUr; + Aour + A E(N)ur; (4.15)
—_———

Modeling uncertainties

where E(\;) = 2—2 — 1 > 0 are (communication graph-induced) factitious

modeling uncertainties fori € {2,3,..., N}.

We emphasize that all eigenvalues \; might be known due to the knowledge
about communication topology G, but we only use the algebraic connectivity
A2 and consider the rest as the sources of modeling uncertainties in order to
propose a one-step design procedure and find consensus gains in (4.4). (This is
the reason to call Ao E(\;)up; “fictitious” modeling uncertainties.) Now, we define
a second-order state space model & = A& + Bug; for the nominal networked

vehicle dynamics in (4.15):

jjTi 0 1 XTi 0
_ o (4.16)
Uri 0 —ay| |vr A2
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and let Q. = QT € R**2 = 0 be a design matrix and r. > 0 be a design scalar
to respectively weigh state and control input variables. In the next theorem, we
systematically derive two static consensus gains k., and k., that stabilize uncertain

dynamics in Step 2 of Design procedure 4.1.1 for all i € {2,3, ..., N}.

Theorem 4.1.1. Let up; = K& be the signal that minimizes the quadratic cost
function (4.17) where Ur; is the set of all (admissible) stabilizing signals ur;.

Then, K. = [kez, key] 18 the required gain to stabilize uncertain networked-vehicle

dynamics (4.15).

Juin - J(6(0) = Jo (6 Quli + reuty)dt @17)

subject to & = A& + Bup; in (4.16)
Proof. This proof is available at Subsection 4.5.1. [

Now, we introduce the networked observer’s nominal dynamics:
711' = AoTi; Y, = Co,uluoi (418>

where A, is defined in (4.13) and C,,, = p[g1,92,0]. Also, let Q, = QI €
RE+n=)x(2+n2) o 0 be a design matrix and r, > 0 be a design scalar. In the next
theorem, we systematically find the required observer gain K, = [koz, kov, Kg;l]T €

R"*2 to be used in (4.5).

Theorem 4.1.2. Let u,; = KI'7; be the minimizer of (4.19) subject to a com-
pletely known dynamical system and U,; denote the set of admissible control signals
for uy. Then, K, is the required observer gains for dynamical system (4.13) in

Step 2 of Proposition 4.1.1.
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min J(1:(0)) = fOOO(TZTQoTi + reul;)dt

uoieuoi (419)
subject to 7 = Al7; + C’g;”um-
Proof. This proof is available at Subsection 4.5.2. O

Now that the required control and observer gains of Proposition 4.1.1 are
designed, we know all trajectories of the closed-loop multi-vehicle system (4.1)
with consensus algorithm (4.4)-(4.5) converge to an agreement subspace which is
determined by the nullity of graph Laplacian matrix £ (e.g., the subspace created
by agreement dynamics corresponding to the first row in (4.11)). In the next
corollary, we find the agreement value assuming that all vehicles measure their
relative variables and use the observer-free stationary consensus algorithm:

U = ke (i — ) + key (v; —vj) — ayv; — d; (4.20)
GEN; JEN;
where the last term is changed from K.;z; to —d; since we know d;. Then, in

Lemma 4.1.1, we generalize it to the observer-based approach of this section.

Corollary 4.1.1. The observer-free consensus algorithm (4.20), with perfect state
and disturbance measurements, will result in the following stationary agreement

values in multi-vehicle system (4.1):

lim ool'it =1 ]\L$ZO+L Ai’UlO
praill) =k T 0(0)+ 2y T, ul0) o
limy oo vi(t) =0
Proof. This proof is given at Subsection 4.5.3. [
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Lemma 4.1.1. The observer-based output feedback stationary consensus algo-

rithm (4.4)-(4.5) results in an agreement on the following point:

limy oo 25(t) = 5 Ef\il zi(0) + ﬁ Zf\il vi(0)

+% fooo e wo fOU e Zfil(—avem(ﬂ + Kegeoi(1))drdo

(4.22)
vt =0
Proof. The proof is written at Subsection 4.5.4. m

In summary, based on the formulation (4.14) (also (4.15)), Theorem 4.1.1
guarantees that the stability of disagreement dynamics in (4.11) is achieved for
any “arbitrarily” selected a,, > 0, and Lemma 4.1.1 shows this «, adds a level of
flexibility to tune the internal behavior of multi-vehicles agreement dynamics (al-
though they remain “cooperatively” uncontrollable according to the partitioning
in (4.11)). Additionally, as expected, the last term in 2% indicates that the agree-
ment value depends on the average of velocity and disturbance state estimation

errors’ transient behavior. This will be discussed in simulations of Section 4.3.

4.2 Leader-follower stationary consensus

We adopt the result of Section 4.1 and develop a systematic approach to design
a leader-follower stationary consensus algorithm. Furthermore, we analytically

find the solution for consensus gains based on the design variables.
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4.2.1 Problem statement

In this section, we consider a multi-vehicle system where the followers are

modeled by second-order dynamics for i € {1,2,..., N}:

N N (4.23)

yi = (O (@i — ) + b — x0)) + 923252, (vi — v)) + bivy)
Here, b; = 1 whenever the i*" vehicle can is aware of its relative distance to
the reference position and is potentially aware of its absolute velocity (depending
on go), and b; = 0 otherwise. All variables w;, vy, u;, Yl , d;, g1, 92 € R are defined

similar to the leaderless consensus problem in Section 4.1, and we emphasize that

g1 # 0. The reference point is commanded by a stationary leader:
to=0 (4.24)

which, unlike followers, is described by a first-order model and its adjustable initial
state value xo(t) = xo(to) denotes the desired position for all ¢ > ty. Now, we

define the leader-follower stationary consensus as follows:

lim x;(t) = xo(to) and  limv;(t) =0 (4.25)

t—o0 t—o0
where tg > 0 denotes the time of change in the reference command. Before
proposing the main result of this section, we make an assumption on the leader-

follower communication graph topology G-

Assumption 4.2.1. The leader-follower graph Gy has a spanning tree with the

leader node i = 0 as the root.
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4.2.2 Main result

In this subsection, we propose a dynamic distributed leader-follower station-
ary consensus algorithm in order to ensure agreement (4.25) in a multi-vehicle

system (4.23)-(4.24):

N N
i = k(Y (85 — &5) + bi(#; — 20)) + keo( D> (05 — B5) + bidy) + KeaZi  (4.26)
7=1

Jj=1

where 2;,0; € R respectively denote position and velocity of the i** vehicle esti-
mated by the following distributed observer:

A~

i = 0 + kou (Y} — 0 0 = u; + di + kou(y; — 97)

& = Adki + Koa(y, — 0

97 = g1 (00 (8 — &) + bi(@: — 0)) + g2 (320 (6 — D) + bidy)
di = Cy%i

(4.27)

We define observer error variables e,; = ; — x;, €, = U; — v;, €,; = Z; — 2z;, and

find observer error dynamics:

ézi = €ui — kor(gl(Zj‘V:l (emi - 6zj> + bzem) + 92(2;‘\[:1(6111' - evj) + biem‘))
Cpi = Caesi — kov(gl(zé\[zl(em’ —ey5) + biegi) + 92(2?:1(€vi — €y;) + biey;))

€xi = Agesi — Kod(g1(2§~v:1(€m‘ — €yj) + bi€yi) + 92(2?7:1(61)1‘ — €yj) + biewi))
(4.28)
Furthermore, the leader-follower tracking error dynamics are written as:

v = kca:(Z;‘Vzl(ewi - Exj) + bi€zi) + kjcv(Z?le(vi - Uj) + biv;)
+k02(2j\f:1 (e:m' - emj) + bzerm> + kcv(zyzl(evi - evj) + bievi)

+chezi

(4.29)
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where €,; = z; — xg € R is the leader-follower position tracking error (recall that
the leader is modeled as a first-order system). Thus, the aggregated leader-follower

tracking and observation error dynamics are represented as follows:

¢ Ayl A ¢ B
_ 11 | A L [Bal, (4.30)
e 0 A.22 € 0
where ¢ = [l WT]T € R¥™ ¢, = col{es} € RY, v = col{v;} € RN, e =

x

[el el eTT € R2NHN: o = col{e,} € RY, e, = col{e,i} € RN, e, = col{e.;} €

T Tvy Tz

RN and z = col{z} € RN™ for all i € {1,2,..., N}, and the sub-matrices are

as follows:
0 Iy 0 0 0
A= A =
kcacH kch kc:(:H kCUH ch & Id
_glkoxH _QQkomH 0
0
A22 = _glkovH _g2kOUH Cd ® IN Bdl =

_glKod X H _g2Kod (9 H Ad ® ]N

Based on the augmented system (4.30), we conclude the separation principle
holds and, thus, consensus and observer gains can be designed independent of each
other. For the observer design purpose, we find the following networked observer
dynamics:

éari = —Hig1kowCori + (1 — pigakor)eurs
évri = —pigrkoveari — fig2koveuri + Cae.ri (4.31)

exri = —ig1 K oaluri — pigaKoaori + Aderi
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which show the proposed leader-follower stationary consensus algorithm (4.26)-
(4.27) has resulted in the same problem as the leaderless consensus scenario
in (4.13). For the control gain design problem, since H is a symmetric positive-

definite matrix, we find a completely controllable diagonal representation:

é;vT 0 ]N €ExT O

Up kexAp, koA | | vr (Keg +Cq) @ Iy

based on €,7 = Th_lex, vp = Th_lv, and zp = (I,. ® Th_l)z where T}, € RV*N is
defined such that T,HT, ' = A, = diag{;} for i € {1,2,...,N}. The trans-
formed dynamics (4.32) are in fact composed by N heterogenecous networked

leader-follower tracking error systems:

€27 = VT
(4.33)
Ui = pikea€ri + pikewvri + (Kea + Cq)2ri
in which p; > 0 for all i € {1,2,..., N}. Therefore, the following proposition holds

in this section.

Proposition 4.2.1. Suppose Assumption 4.2.1 is satisfied by communication
graph Gig. The dynamic distributed algorithm (4.26)-(4.27) ensures leader-follower
stationary agreement (4.25) in a multi-vehicle system (4.23) in the presence of
unknown disturbances (4.2) whenever, in addition to Steps 1 and 2 of Propo-
sition 4.1.1, the control gain K. = |:k;cw kw} stabilizes the networked leader-

follower tracking error dynamics:
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Ur; = Kcyl
Vie{1,2,.., N} (4.34)
Mg 0 €xTi
Yi =
0w Ui

where p; > 0 are the eigenvalues of reduced-order Laplacian matriz H for all

i€{1,2,...,N}.

This proposition, along with the observer dynamics (4.31) and disturbance
component in (4.33), formulates the distributed stationary leader-follower algo-
rithm (4.26)-(4.27) such that the disturbance control gain can be found following
Step 1 in Design procedure 4.1.1, and the observer gain can be designed using
Theorem 4.1.2 in Section 4.1. In the next design procedure, we propose a system-
atic framework to find the consensus gains k., and k., based on a robust control
formulation for modified networked leader-follower tracking error dynamics with

a homogeneous nominal part and heterogeneous fictitious modeling uncertainties.

Design procedure 4.2.1. Design state feedback gains key, ke, € R that stabilize
the networked vehicle dynamics with homogeneous nominal model and heteroge-
neous fictitious modeling uncertainties:
Tr; = vUr;
Ui = paur; + o E(p)ur; (4.35)

Ur; = kcxxTi + kchTi

where E(p;) = /lj—; — 1 > 0 are the sources of heterogeneous modeling uncertainties.

Note that we originally proposed a dynamic output feedback stationary consen-

sus algorithm (4.26)-(4.27) using relative measurements; converted it to three sub-
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problems to design consensus, observer, and disturbance gains in Proposition 4.2.1
where the consensus gains k., and k., were the stabilizing solutions for N static
“output feedback” networked vehicles using N scaled absolute measurements; and,
eventually, reformulated the problem as N static “state feedback” robust stabiliza-
tion tasks using vehicles” absolute state measurements (Design procedure 4.2.1).
Now, we introduce a second-order state space realization & = AE; + Bup; which
models the nominal dynamics of (4.35):

LtTi 0 1 TTi 0

(0 0 Of |vp 1

Furthermore, we define Q. = Q7 € R**? = 0 as the state weighting, and r. > 0
as the control input weighting design matrices. In the next theorem, we propose a
systematic framework to find the required consensus gains as a single robust state

feedback problem.

Theorem 4.2.1. The solution up; = K& to the minimization problem (4.37),
where Up; denotes the set of all stabilizing state feedback controllers ur;, stabilizes

the heterogeneous networked vehicle dynamics (4.35) for all i € {1,2,...,N}.

Juim - J(E(0) = Jo(6 Quli + reuty)dt (437)

subject to & = A& + Bup; in (4.36)

Proof: We mention that, although system matrices (A, B) in (4.37) is different
from (4.17), the minimization problems are structurally the same such that the

fundamental properties (4.39) are still valid for any pairs &, up; of this leader-
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follower control theorem. Therefore, a detailed proof can be found by following

the steps of proof in Theorem 4.1.1 which is omitted for brevity. O
As discussed earlier, the leader-follower approach is formulated such the dis-

turbance control gain and observer gain design problems can be solved using

the ideas in leaderless stationary consensus of Section 4.1. However, due to

the special structure of (A, B) in (4.36), the 2 x 2 nonlinear matrix equation

ATP,+ PA+Q, — %PCBBTPC = 0 can be reduced to three scalar equations:

13 o i i

2 %
—Dio = 411, r_1p§2 = @22 + 2p12, r_1p12p22 = q12 + P11

TC c c

As a result, we find the following closed-form solution for the unique positive-

definite stabilizing matrix P:

2
\/2(111 + g2/ B — quo ;—EQM
P, = c Vi
A /;—%QH \/2;—% ;_%QH + ;_%QQQ

Consequently, we find closed-form solutions for the consensus gains k., and

k., explicitly based on the design matrix @., scalar r., and smallest eigenvalue of

reduced-order Laplacian matrix p; of H:

/1 2 1
kc:c = 74/ 49 kcv = _\/__kcx + —Qqo2
Te H1 Te

using the optimal gain formula K. = [ke, ko] = —’;—i[pw,ng] = —%BTP. We

note that P.(1,1) > 0 is guaranteed based on the observability and stabilizability

of ( Y A, B). As is seen, the position consensus gain k., is independent of the
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communication network G (or p;); however, a network-dependent fraction of it
appears in the velocity consensus gain k., (i.e., see _;%km that is added to r—lcqgg).
These closed-form solutions can be used in tuning of weighting matrices ). and
r., and also for the communication topology design purpose. We mention that
the tuning process can be further simplified by letting ¢1o = ¢21 = 0 or using

Q. = q.I, for a scalar tuning parameter q. > 0.

4.3 Simulation verification

In this section, we verify the feasibility of the proposed theoretical results
through various numerical simulations. The challenges of using conventional con-
sensus algorithms have been discussed in Examples 3.1.1, 3.1.2, and 3.1.5. How-

ever, we rebuild the setup for the sake of readability.

4.3.1 Problem setup

In the leaderless problem, we consider a group of 5 vehicles modeled by (4.1)
with ¢y = 1 and g» = 0, and assume nodes 1 and 2 have access to their absolute
position information (i.e., by = by = 1). Vehicles are at initial conditions z1(0) =
[—10,20]7, 25(0) = [15, —15]T, 23(0) = [10,15]7, 24(0) = [—30,20], and x5(0) =
20, —30]7 (which are unknown to the designer). Moreover, vehicles are subject
to heterogeneous constant disturbances dy = 2,dy = 5,d3 = 3,dy = 9 and d5 = 4.
We let vehicles to exchange information over the leaderless graph in Figure 4.1.

In the leader-follower scenario, we add a leader agent vy modeled by (4.24)

where its initial value can be commanded globally (and we will use a square
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Figure 4.1: Leaderless communication: By removing node vy and edges orig-
inating from it, nodes vi-vs and the associated edges represent an undirected
leaderless communication topology G with graph Laplacian matrix £. We as-
sume agents v; and vo have access to their absolute measurements. Leader—
Follower communication: vi-vs communicate over undirected graph G, v; and
v9 are aware of their relative distances to vg, vo-vs build a leader-follower com-
munication graph G;; with reduced-order Laplacian matrix H = £ + B where
B = diag{1,1,0,0,0}.
wave input in simulation), and let vehicles to communicate over G in Figure 4.1,

and vehicles are subject to unknown sinusoidal disturbances: d; = 7sin(0.5t),

dy = 5.5s5in(0.5t), d3 = 6sin(0.5t), dy = 2sin(0.5t), and ds = 4sin(0.5¢t).

4.3.2 Leaderless stationary consensus

At first, in Figure 4.2, we consider an observer-free algorithm and verify that
vehicles reach to zero and agree on the unknown position z¢ = 2 as expected by
Corollary 4.1.1. In Figure 4.3, we use the proposed observer-based algorithm (4.4)-
(4.5) where all observers are at initial rest condition, and show all vehicles reach
to a fixed-position agreement at z¢ = 2.9. Moreover, unlike the conventional
leaderless scenario of Example 3.1.2, all estimations are the same as actual position
and velocity variables of vehicles. We further note that the difference in agreement

position values of Figures 4.2 and 4.3 is expected based on Lemma 4.1.1.
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0 5 10 15
Time (s)

Figure 4.2: Observer-free stationary consensus algorithm to verify the result of
Corollary 4.1.1 in the presence of constant disturbances. All vehicles agree on
xd = 2.

5 5
% o & 0
-5 -5
0 5 10 15 ] 5 10 15
Time (s) Time (s)

Figure 4.3: Leaderless stationary consensus algorithm of Section 4.1 where all
observers are at initial rest condition and the agreement is on z¢ = 2.9. The
dashed line show the agreement value of Figure 4.2. This new agreement value
is expected based on Lemma 4.1.1.
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In Figure 4.4, we initialize the second observer at 5(0) = [—10,15,0]7 and
show the effect of observer error (trajectories) on the consensus value where, com-
pared to Figures 4.3, the agreement is on z{ = 2.4. Finally, based on Theo-
rem 4.1.2, we redesign observer gains by setting the state weighting matrix to
be 103 greater than the first design (see Figure 4.3), and find a new agreement,
on z¢ = 0.078 as is shown in Figure 4.5. In all of these simulation scenarios,

disturbances are eventually estimated precisely as is depicted in Figure 4.6.

o 93
-:I D[‘ Gf—;l 0
-5 -5
1] 5 10 15 1] 5 10 15
Time (s) Time (s)

Figure 4.4: Leaderless stationary consensus algorithm of Section 4.1. All ob-
servers are at initial rest condition except Z2(0). Different from Figure 4.3,
x¢ = 2.4 which shows the effect of observer error trajectories on the agreement
value (see Lemma 4.1.1).
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Figure 4.5: Leaderless stationary consensus algorithm of Section 4.1 with re—
tuned observer design matrices compared to Figure 4.3. All observers are at
initial rest condition. This verifies the effect of observer dynamics (error tra-
jectories) on the stationary agreement value.
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Figure 4.6: In all leaderless stationary consensus simulations, disturbances are

estimated precisely (with some differences in transient behavior). Top to bot-
tom are d; to ds (black) and their estimations (red).
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4.3.3 Leader-follower stationary consensus

In this subsection, we investigate the effectiveness of leader-follower stationary
algorithm (4.26)-(4.27) in ensuring a stationary consensus on a (desirable) position
with minimum information about the leader (as discussed in Section 4.2). We
now consider a leader-follower setup as introduced in Subsection 4.3.1 subject
to sinusoidal disturbances. For this setup, we use a square wave command to
determine the desired position of vehicles. As is shown in Figures 4.7 and 4.8,
all vehicles precisely estimate their positions and velocities, and agree on the
commanded stationary point while only a two vehicles are aware of their relative

distances to the desired reference point.

20 20
15 | 15 |
~ | B |
| | l |
5 L i 5 L U
0 0
0 50 100 0 50 100
10 10
g 0 *i_v_l _|r &0 v’ lr
-10 -10
0 50 100 0 50 100
Time (s) Time (s)

Figure 4.7: Leader-follower stationary consensus: State variables and their
estimations. The dashed back waves represent the leader’s command.
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Figure 4.8: Leader-Follower stationary consensus: Top to bottom are dy to ds
(black) and their estimations (red).

4.4 Summary and bibliography

In this chapter, we propose leaderless and leader-follower stationary consensus
algorithms which ensure all vehicles’ agreement on a fixed point in the presence of
unknown persistent disturbances and using only a few vehicles’ absolute measure-
ments. In both leaderless and leader-follower scenarios, we provide a systematic
framework that transform the high-order dynamic relative-output feedback sta-
tionary consensus challenge to three low-order subproblems to design disturbance,
consensus, and observer gains. We formulate the consensus and observer gain de-
sign tasks as two robust static feedback problems for modified vehicle dynamic
subject to fictitious modeling uncertainties which are induced by communica-
tion graph topology. In simulation, we discuss the challenges of applying non-

stationary disturbance rejection algorithms to multi-vehicle systems, and verify
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the feasibility of using proposed strategies for multi-vehicle systems in unknown
environments where vehicles might be subject to road profile and wind distur-
bances.

Control of vehicular systems has received a significant attention among policy
makers and researchers during the past two decades due to the increased demand
in transportation systems, advances in wireless communication devices, embedded
sensing and computation technologies (see [14] and [125]) such that the market
of autonomous vehicular systems will expectedly hit $42B by 2025 and, shortly
after that, $85B by 2030 [126].

Cooperative analysis and control of multi-vehicle systems have been done from
both the systems-theoretic and graph-theoretic viewpoints. In the first, the multi-
vehicle system is usually considered over a standard string or mesh topology ([6]
and [12]). Along with the advances in wireless and embedded technologies, graph-
theoretic tools have created a promising alternative viewpoint in which the behav-
ior of a multi-vehicle system can be analyzed over graphs where nodes represent
vehicles and edges indicate inter-vehicle communication. This approach allows
to consider more complicated topologies than the standard string or mesh multi-
vehicle system [127], and design the multi-vehicle cooperative algorithm indepen-
dently of the vehicle-level controllers.

Reference [44] developed a feedback linearization-like scheme to transform a
moving robot’s nonlinear dynamics to a double integrator model with the goal of
cooperative formation; [128] used double integrator models for the formation of
unmanned vehicles; single integrators were used in [11] to model a multi-robot
system, [127] proposed double integrators to study the relationship between com-
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munication topology and the stability of coordination algorithm, and [129] de-
signed vehicle level controllers for linear models of vehicles and a filtering-based
cooperative algorithm for multi-vehicle system.

Motivated by their wide applications in the cooperation of multi-vehicle and
multi-robot systems, significant theoretical research work has been devoted to the
distributed control of single and double integrators [30], [42] and [130]. Other than
multi-agent system of single integrators, it is known that distributed consensus
algorithms usually result in a dynamic agreement in which all trajectories evolve
during the time (e.g., see [127] for dynamic agreement in multi-vehicle systems).
References [131]-[134] introduced leaderless stationary consensus problem in which
agents agree to stop at the same (fixed) position. Nevertheless, multi-vehicle
systems are subject to unknown disturbances such as road profile [135]-[136] or
wind [137]-[139] which may degrade the performance of consensus algorithm or
destabilize it.

The conventional distributed disturbance rejection algorithms have been dis-
cussed in Section 3.3, and we do not review its literature for brevity. We mention
that, because persistent disturbances continuously excite the uncontrollable and
unobservable agreement dynamics, the leaderless disturbance rejection algorithms
are not able to guarantee stationary consensus in the multi-vehicle systems.

Additionally, note that the disturbance-free stationary leaderless consensus
algorithms of [131]-[134] require all vehicles’ access to their absolute velocity mea-
surements. However, in the proposed algorithm (4.4)-(4.5), depending on gs and
b;, only a few vehicles have access to their absolute output measurements. More-
over, we know the definition of adjacency (Laplacian) matrix does not admit
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self loops in the communication graph. Thus, we use the reduced-order (leader-
follower) Laplacian matrix H to analytically handle this situation in the leaderless

scenario (4.7).

4.5 Appendix: proofs

The proofs for theoretical results of this chapter are gathered in section.

4.5.1 Proof of Theorem 4.1.1 (page 131)

We first note that the control gain K. = i—fBTPc results in the minimum cost
function J(&;(0)) = ££(0)P.&(0) where P. € R?**? is the unique positive-definite
stabilizing solution of ARE (4.38) (existence and uniqueness of a stabilizing P, > 0
can be guaranteed by verifying controllability and observability of (Qi/ 2, A, \2B)
for the networked vehicle’s nominal dynamics (4.16) and QIPQY*? = Qe).

22
ATP,+ PA+Q.— 22P.BB"P. =0 (4.38)

Te

Furthermore, implementing ur; = K.§;, we know any pairs (&;, ur;) satisfy two
fundamental properties of optimal control theory:

& QLT +reuz; + JL(AG + Buri) = 0

QTCuTi -+ )\2JgB =0

(4.39)

where Jg, = g—g for all i € {2,3,..., N}. Now, in order to prove this theorem, we

introduce a candidate Lyapunov function:

V(fl) = gz'Tchi -0
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which satisfies V' (£;(0)) = J(&(0)) for any initial conditions, and find its time

deviation along the uncertain trajectories in (4.15):
V=V = - Q& — reudy — 2r E(\)uz; < 0

where we have used the fundamental properties (4.39) replacing J by V, E(\;) =

A

5 — 1 > 0, and negative definiteness of ().. Therefore, asymptotic stability of

origin in the networked vehicle model (4.15) is proved using two static control gains
that are designed based on homogeneous networked vehicle dynamics in (4.16).

Based on the Rayleigh-Ritz inequality, we further find:
)‘min(PC)Hfi‘P < V(f,) < )‘max(PC)Hfin
V(&) < =Amin(Qu) |G

that proves exponential stability of the origin for networked vehicle systems (4.15).

4.5.2 Proof of Theorem 4.1.2 (page 131)

A sketch of this poof can be given by noticing that the dynamical system
in (4.19) is dual to (4.18). We can similarly find the dual representation for (4.13).
Then, this theorem is proved following the steps in the proof of Theorem 4.1.1 for

the dual problem and based on the next ARE:

2
AP+ PAT +Q, - ML Pt 0, Py =0
TO

op
where the unique stabilizing P, € RZ+7:)x(2+n2) . ( exists by verifying observ-

ability and controllability of (Qs/%, AT, Cy,,) for ol =g,
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4.5.3 Proof of Corollary 4.1.1 (page 132)

Based on (4.11), we know agreement dynamics are decoupled from the dis-
agreement dynamics (respectively determined by &, and &;). The agreement
dynamics are modeled by #r; = vy and 07y = —a,vr, and we write the so-

1

lution of these differential equations as x71(t) = z71(0) — ;-(e7** — 1)vr(0) and

vr1 = e~ 71 (0) which result in the following limit behavior:

T 1= |2r(0) 271(0)

- = by
vy 0 0] |vr(0) vr1(0)

because o, > 0 and e ' — 0 as t — oo (this «, is a design scalar and can
be tuned to achieve desirable consensus behavior). Note that the superscript ¢
denotes the “agreement” value as t — oco. Let T, = I, ® T; where T; = [%,Td]
is the diagonalizing unitary transformation such that £ = T, 'A;T;. We rewrite

this result based on the agreement and disagreement variables and use the fact

limy o €4(t) = 0 (based on Theorem 4.1.1) and find:

1 0 P 0
x° 0q |0 x(0 0 0]0 O (0
N PT, ! © =T, T, ! ©
v° 0|0 v(0) 0 0[]0 O v(0)
000 O
| Atk | 2k | e
0 0 v(0)

which completes the proof noticing that x(0) = col{z;(0)}, v(0) = col{v;(0)},

x®* = limy o col{z;(t)}, and v* = limy_, col{v;(t)}.
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4.5.4 Proof of Lemma 4.1.1 (page 132)

We begin from the augmented multi-vehicle and observer error dynamics (4.7),

substitute K.4 by —Cy, and find:

¢(r| | Du D, <
in| | 0 | (bew 9T ) A @T) | fen
0 Iy 0 0 0
Dll - ) D12 -
kex\i kew\i — Iy kee\i keo\i —aply Keoq® In

in which (7, = (I ® T, ")¢ and e, = (Iayn, ® T, ')e. Based on a row switching
transformation P; = diag{P, Ionnp. } € RUNFNn)XANFNR:) where P € R2¥2N

is defined in (4.11), we write the disagreement dynamics as follows:

€271
jITl 0 1 TT1 0 0 0
= + €vT1
le 0 —QYy U1 0 —Qy ch
€211

The solution of second equation is as follows:
t
vr1(t) = e "o (0) + eo‘“t/ e T (—apeyr1(T) + Kegeor1 (T))dT
0

where, as t — o0, the integral converges to a constant 5; € R (because the
error variables go to zero). Thus, a, > 0 results in v}, = lim; o v71(t) = 0.
Furthermore, we have the following position response xr1(t) = @71 (0) — (e~ —

Do (0) + fot e foa e T (—ayeyr1(T) + Kegeor1(T))drdo.
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We follow the steps of Corollary 4.1.1 to find:

x| ¥Inly oplnly]| |(0)
v® 0 0 v(0)
T K T ex(7)
o 0 —%1]\[1 Clel
+ limy oo fg e~ fo e’ N NN N ey(T) drdo
0 0
e(7)

which results in equation (4.22). Now, we let ¢, be the time that both errors

converges to zero. We introduce §;(t,) = Zf\;l Ot* e T (— ey (T) + Kegeri(T))dT

and find [ e~ fg* e SN (—anen(T) + Kegeni(T))dodr = B’OS*) which is a

constant. Thus, the position agreement

R IS R WA
=y L0+ o D u0)+ 2

will be a constant value as well.
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Chapter 5

Distributed Stabilization of
Physically Coupled Multiagent

Systems with Known Coupling

Structures!

In Chapter 3, we established a framework to study distributed control prob-
lems. Particularly, we considered the consensus problem in a multiagent system
of dynamical agents that were described by linear state space models under mod-
eling uncertainties. We proposed a modified LQR-based formulation enabling us
to find appropriate consensus gains without being worried about the selection of

coupling strength (see Subsection 1.2.2, page 24). In Section 3.1, we proposed

IPart of the introductory materials has been reported in [140]. The theoretical developments
are based on the results of [141] and [142]. Each section has its own parameters and variables
which are (re-) defined appropriately.
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a linear time-invariant multiagent system subject to persistent disturbances. In
Section 3.2, we proposed another scenario by introducing an (unknown) operating
point-dependent linear model of a multiagent system. This scenario resulted in
a multiagent systems where the modeling uncertainty of each agent was a func-
tion of its own state and input variables. For this case, we proved the unknown
agreement value will depend on all agents’ initial values as well as the modeling
uncertainties. We further showed that an agreement on zero could be guaran-
teed whenever an additional sufficient condition is satisfied. Motivated by this
(theoretical) observation, we propose a different scenario which is distributed sta-
bilization (agreement on zero) of physically coupled (interconnected) multiagent
systems where the modeling uncertainty of each agent is a function of that agent’s
as well as its physical neighbors’ variables.

In this chapter, we propose two classes of these systems: 1) parameter-varying
physically coupled linear multiagent system which is an extension to the proposed
model in Subsection 3.2, and 2) Lur’e multiagent system with nonlinear physical
couplings. Both scenarios result in heterogeneous multiagent systems and, with
appropriate modified LQR formulations, we prove that the optimal control con-
cepts of Section 2.4 can be used to find the required static feedback gains in order
to address the distributed stabilization problems.

This chapter is organized as follows: in Section 5.1, we introduce the dis-
tributed stabilization and decoupling problems for an interconnected multiagent
system. In Section 5.2, we address the distributed decoupling problem for an oper-
ating point-dependent physically coupled heterogeneous linear multiagent system
based on a leaderless consensus approach. The result of this section enables us to
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guarantee a level of convergence rate. In Section 5.3, we address the same problem
for Lur’e-type physically coupled nonlinear multiagent systems based on a leader-
follower consensus approach. In Section 5.4, we summarize the result and provide

some references for this chapter. Finally, we gather all proofs in Section 5.5.

5.1 Distributed stabilization in physically cou-
pled multiagent systems: revisiting a prob-
lem

In many applications, linear time-invariant model of a large-scale system, com-

posed by N subsystems, is realized by the following state space model:

t = Ax+ Bu (5.1)
y =Cx
where, for i € {1,2,..., N}, x = col{x;} denotes the aggregated state vector,
u = col{u;} represents the aggregated control input, y = col{y;} stands for the
aggregated output vector; and x; € R"*, u; € R™, and y; € R™ respectively
indicate state, input, and output vectors of i subsystem. For a symmetric large-

scale system, A, B, and C are defined as follows:

A A AL B" B. .. B. ¢ C. ... C.

A, AL AL B. B" .. B, c. ¢ ... C.
A = B = C=

A. A, A B. B, B’ c. C. C’




In the literature of large-scale systems, two approaches have been proposed to
control (5.1). The first approach is the centralized control where a central proces-
sor gathers information from all subsystems, calculates a global control signal, and
sends an appropriate control command back to each subsystem. The practicality
of this approach depends on several factors. Of those, we point to 1) the required
computational complexity for the central processor, and 2) implementation cost.

Regarding the first potential limitation, there are several research studies
where the central processor’s task is limited to some simple calculations. For
example, calculating the average of all subsystems’ state and input variables does
not impose any computation problems for the central processor and, also, does
not require a very high-bandwidth communication channel; thus, can be viewed
as a cost efficient approach for implementation. However, centralized schemes are
usually inefficient considering the cost of communication and, furthermore, the
delay in receiving the measurements, calculating an appropriate global control
command using a central processor, and sending the (sub-) commands back to
subsystems maybe significant (particularly, when subsystems are geographically
located far from each others).

As the second approach, decentralized control has been proposed to handle
these difficulties. In fact, this is a semi-local controller that 1) only uses the cor-
responding subsystems’ measurements and, in this sense, operates similar to a
local controller, and 2) different from a (purely) local control approach, it is de-
signed based on our knowledge about the global requirements (e.g., whenever the
stability of an interconnected system is the control objective, we use our knowledge
about the effect of interconnection on each subsystem, and design a controller to
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handle it). In summary, we use our knowledge about the physical couplings and
design a set of decentralized controllers which will be implemented locally. Since
each individual controller uses only its own subsystem’s information, the com-
putation and implementation costs can be significantly less than the centralized
approach (potentially, at the expense of reduced performance). Figure 5.1 shows
centralized and decentralized control structures for a typical large-scale system
with non all-to-all physical couplings.

Stabilization of a large-scale system is a global objective and can be achieved
using global knowledge about all subsystems’ measurements in a centralized man-
ner. On the other hand, decentralized control techniques prove this objective
can be achieved by only sending local absolute measurements to each subsystem’s

controller. However, we need to notice two points:

1. The performance of a closed-loop large-scale system with a centralized con-
troller can be theoretically higher than a closed-loop system with a set of
decentralized controllers. (The word “theoretically” refers to a scenario

without any long unknown communication delays.)

2. A large-scale system might be characterized by some “decentralized fixed
modes” that cannot be changed using any linear time-invariant decentralized
controllers. Additionally, we know that “quotient fixed modes” of a large-
scale system are not controllable by any decentralized controllers (including
the time-varying and nonlinear approaches). There are several methods to
handle the problem of these (potentially unstable) fixed modes and stabilize

a large-scale system. In particular interest of this dissertation, we mention
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the structured control systems which can be designed following these steps:
find the fixed modes, impose a special structure to share a few (additional)
measurements among subsystems, transform the structured control design
problem to a decentralized control problem, use a suitable decentralized
control design technique, and find the structured controller by transferring

back to the original coordinate. (See [146].)

Thus, based on the literature of large-scale system, we know sharing infor-
mation might be required to stabilize a large-scale system. On the other hand,
based on our knowledge about distributed consensus in multiagent systems, we
note that a large-scale system can be stabilized by cooperatively sharing agents’
information in some neighborhoods (e.g., see the agreement on zero in a physically
decoupled multiagent systems of Section 3.2). Thus, we propose the stabilization
of large-scale systems as another team-based objective that could exist in Sec-
tion 1.1. Here, the neighboring sets can be defined in different manners. Based on
the literature of network design, they can be found based on some optimization
criteria (see Section 1.3). However, using the literature of large-scale systems, a
minimum number of communications (and their locations) can be established to
deal with decentralized or quotient fixed modes of the system. Also, based on the
literature of multiagent system, we impose some connectedness requirements on

the communication graph topology?.

’Finding fixed modes of a large-scale system can be a tedious task. Thus, we follow a
multiagent systems viewpoint to define the communication graphs in Chapters 4 and 5. Also,
by imposing a connectedness requirement, we will be able to stabilize both linear time invariant
and Lur’e nonlinear time-varying interconnected multiagent systems using LQR-based linear
time-invariant (static feedback) controllers.

160



Figure 5.1: The main existing control approaches in the literature of large-s-
cale systems: Top) centralized, and Bottom) decentralized controls. The let-
ters ss and c respectively stand for subsystem and controller. Subsystems are
numbered from 1 to 5, and controllers are specified by the subscript . which
represents centralized, and 4 where d denotes decentralized and i € {1,2,...,5}
specifies the controller’s number. The blue circles indicate subsystems, and blue
arrows show the physical coupling between them. The black circles indicate
the control systems, and dashed red lines represent the subsystem-controller
communication which, in the decentralized scenario, is implemented at the cor-
responding subsystem’s location.
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Having this background knowledge, we use our graph-theoretic modeling ideas,

and rewrite the elements of state space matrices in (5.1) as follows:

A" = A+ |NF| Ao, Acij = —ai;Ao
B’ = By + IN?|By, Beij = —ai;Bo
C' =C+|NFCy, Ceij = —aj;Co

where |N{| denotes the in-degree of i subsystem, and a; represents (i, j)* com-
ponent of the adjacency matrix over an agent-layer coupling graph G,; A, Ay €
R xn= B By € R™*™ and C, Cy € R™*™ . Note that there exists a freedom in
choosing ag; € {0,1}. When all af; = 1 for4,j € {1,2,..., N}, we can convert it to
a complete undirected graph which is equal to all-to-all physical couplings in (5.1).

This new graph-theoretic formulation realizes a class of multiagent systems
where agents, individually, are modeled by homogeneous linear time-invariant
dynamics; and, cooperatively, are subjected to homogeneous state, input, and

output linear interconnections over an agent-layer coupling graph G,:

j}i = Al’z + A(] ZjeNia(xi — .73]') + Bmuz -+ B(] ZjeNia(ui — Uj>
y; = Cx; + Cy ZjeMa(xi —zj)

(5.2)

In the rest of this chapter and also in Chapter 5, inspired by this discussion,
we introduce different types of the physically coupled multiagent system (5.2),
propose a (global) stabilization problem, reformulate it as leaderless and leader-
follower consensus tasks, and show this objective can be systematically guaranteed

based on appropriate linear quadratic regulator formulations using some relative
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measurements. In fact, we consider two different scenarios that are indirectly

related to the availability of local measurements:

1. Without interconnections, agents can be described by some stable dynamics.
However, the instability may arise due to the physical coupling terms. For
example, in (5.2), A is Hurwitz but A, zjeMa (z;—x;) and By Zje/\fi“ (wi—uy)
can result in an unstable behavior. Thus, we need to design a distributed de-
coupling control system to cancel the de-stabilization effects of the coupling
terms on each agent, and globally stabilize the physically coupled multiagent

system using some relative measurements in each neighborhood.

2. Without interconnections, agents’ dynamics are unstable. In this case, the
control system should deal with both local and global (interconnected) un-
stable behavior of a physically coupled multiagent system. We call it a
distributed stabilization problem which includes the distributed decoupling

as a special case.

By further thinking about the required measurements for an (locally and glob-
ally) unstable multiagent system, we prove that the distributed stabilization prob-
lem can be solved whenever at least one agent provides its absolute measurement
to the distributed stabilization system (this will be discussed in Chapter 5). As
a special case, when all agents provide their absolute measurements, we locally
stabilize agents using them, and design a distributed decoupling system based on
some relative measurements.

We can also think about the structure of controllers based on the required

information. For clarity, we do it through an example.
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Example 5.1.1. Assume there is a large scale system with four subsystems. Then,
the structure of static feedback centralized and decentralized controllers can be

described by the following matrices:

1 1 11 1 0 0 0 1 0 01

1 111 01 0 0 01 0 0
Kc = s Kd - ) Ksc -

1 1 11 0 01 0 1 01 0

1 111 0 0 01 0 0 01

where, based on the literature of large-scale systems, each entry 1 indicates the
presence of the j*" subsystem’s absolute measurement in the i" subsystem’s con-
trol signal for i,j € {1,2,3,4}. The subscripts ., 4, and s respectively denote
centralized, decentralized, and structurally constrained (to control fized modes of
a large-scale system). In the distributed approaches of this chapter, based on the
notation of graph theory, we show the available information’s structure using ad-

jacency matrix:

1 100 1100

1 110 1 010
.Add - 5 Ads =

01 11 01 01

0 011 0010

where the off diagonal terms indicate the presence of relative information between

corresponding agents, and diagonal terms represent self-loops®. The subscripts qq

3Each self-loop indicates an agent is a neighbor of itself. Based on the preliminary discussed
in Section 2.2, we need to avoid this situation in our graph-theoretic designs. In the rest of
this dissertation, we address self loops by proposing a hierarchical framework in distributed
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and 45 stand for distributed decoupling and distributed stabilization, respectively.
Looking at these structures, it is clear that the distributed decoupling system has
access to all information that are required to design a decentralized control system?®.
However, this is not true about the distributed stabilization system. At the same
time, compared to a centralized controller, both of these distributed algorithms can

be designed with a set of fewer measurements.

5.2 Distributed decoupling of linear multiagent
systems with state and output couplings

In this section, we investigate our distributed decoupling control ideas for a

group of interconnected parameter-dependent agents.

5.2.1 Problem statement

We consider the following heterogeneous parameter-dependent model of a

physically coupled multiagent system:

2i(t) = A(0:(t))i(t) + B(0:i(t))ui(t) + F(0:(t) 2 e (@i(t) — (1))
yi(t) = Cui+ Codjen (i(t) — (1))

decoupling problem, or adding a virtual leader in distributed stabilization problem.

(5.3)

4In this example, the same thing happens with the structurally constrained controller K.,
however it is not required. Also, in K., the communication is disconnected and the shared
information is an absolute measurement.
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where, compared to the linear time-invariant model (5.2), we have changed: A «
A(0;), By, < B(0;), and Ay < F(0;). Here, i € {1,2,..., N} denotes the agent’s
number; z; € R™ represents the i agent’s state variable deviation and u; € R™
indicates the control input deviation from an operating point®; A € R *"e stands
for the state matrix, B € R™*™ represents the input gain matrix, /' € R"=*"
denotes the state-coupling matrix, and C' € R™*" gives the output gain matrix.
In this state space realization, A(0;(t)), B(6;(t)), and F(6;(t)) are functions of
an independent time-varying parameter 6;(t) that can uniquely characterize the

it" agent’s operating condition. For m € {0,1}, these matrices are modeled by

A(Gl(t)) = AO + Alﬁl(t) where Am € Rnxxnx7 B(@Z(t)) = BO + Bﬂz(t) where
B, € R"™=*™ and F(0;(t)) = Fy + F10;(t) where F,, € R™*" . The matrices C'
and Cp model a set of sensors, and are independent of 6;(¢). Furthermore, the

following assumptions are satisfied:

Assumption 5.2.1. Fori € {1,2,..., N}, the unknown independent parameters
0;(t) satisfy 0; € [0, Orr] with a known lower-bound 6,, and a known upper-bound

Or. Also, Ay, B, C, and Cy are some known matrices for m € {0,1}.
Assumption 5.2.2. The fized graph G is known and connected.

Remark 5.2.1. As a result of Assumption 5.2.1, a group of agents (5.3) repre-
sents a “partially-unknown” heterogeneous interconnected multiagent system where
both agent-level matrices A(6;) and B(60;) with known A,, and B,,, and multiagent

system-level interconnection matriz F(6;) with a known F,, vary in time depending

act __ ,.0pt

g z;m and u; =

) represents the value at a

5These deviation variables are defined as difference variables z; = =
t t ¢
udet — uP" where (¢ u2“') denotes the actual value and (z{¥", u;?

given operating point.
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on the it agent’s unknown parameters 0;. The term F(6;) > jen; (wi—x;) indicates
a physical state coupling, and ;- (yi—y;) = Co D_jen; (zi—x;) represents either
a physical output coupling or a lumped relative-output measurement for it" agent.
While we assume completely known C' and Cy, the results of this section can be

modified to include parameter-dependent version of these output gain matrices.

We consider a hierarchical control structure for uncertain interconnected mul-
tiagent system (5.3) where a lower-level controller stabilizes the decoupled residual
agents using local output measurements C'z; (or a lookup-table-based scheduling
system enforces agents to operate at a desired operating point). The residual
dynamics are given by:

where A, and B, are two constant matrices to be determined using our partial
knowledge about the operating point-dependent uncertainties. Then, a higher-
level controller decouples agents using only coupled-state or -output measure-
ments.

We only focus on designing the higher-level decoupling system, and skip the
lower-level local control system by proposing an assumption on stability of the
residual system (5.4) (note that the local controller can be designed using any
static feedback control techniques for a single agent). The following assumption

holds true in the rest of this section:

Assumption 5.2.3. a) The matriz A, is Hurwitz, b) the pair (A, By) is control-

lable, and c) the pair (Cy, A,) is observable.
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Remark 5.2.2. Note that the assumption on having a Hurwitz A, is made with-
out loss of generality. Whenever this condition is not satisfied, we can take the
local control design procedure into account and introduce t; = Aj.x; + Byu; instead
of (5.4). Here, Aj. = A, + B.K; is (by design) a Hurwitz matriz that has been
obtained by locally closing a static feedback loop around each residual system us-
ing a local control gain K;. Then, we also rewrite Assumption 5.2.3 based on a
controllable (A,., By) and an observable (Co, Aj.). Since the results of this section
are based on the “properties” of a Hurwitz matriz A,, they will remain valid by

switching to another Hurwitz matriz Aj..

Based on these discussion and assumption, from this point, we consider the

following model for the (higher-level) decoupling control design purpose:

i(t) = A(0;(£))wi(t) + B(0:(1))ui(t) + F(0:(£)) D jen; (zit) — 2;5(t))
yit) = Co_jen; (xi(t) — x;(1))

where we mention that, using some coupled measurements (relative-output mea-

(5.5)

surements), the control objective is exponentially mitigating the effect of agents’
partially-known state-couplings such that a multiagent system of agents (5.5) be-
haves as a multiagent system of NV decoupled agents (5.4). Since, by definition, z;
and u; are some deviation variables; from each (locally stabilized) interconnected
agent’s point of view, the effect of interconnections are damped whenever (5.6) is

guaranteed for all ¢ € {1,2,..., N}:

lim z;(t) =0 (5.6)

t—o00
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An immediate idea is designing a centralized decoupling control scheme that
uses the information about all agents. However, as discussed earlier, we are in-
terested in “distributed” algorithms where this objective can be achieved using
some coupled (relative) measurements in each neighborhood. Thus, we propose

the following distributed decoupling problems:

Problem 5.2.1. (State feedback decoupling) Design a distributed decoupling con-
trol algorithm that solves (5.6) based on coupled-state measurements in (5.5) with

Co=1I,,.

Problem 5.2.2. (Output feedback decoupling) Address Problem 5.2.1 using the

coupled-output measurements in (5.5).

Now, we reformulate (5.6) as a leaderless consensus task:

lim (z;(t) — x;(t)) =0 (5.7)

t—00

where we need to ensure an agreement on zero by designing a state-agreement pro-
tocol for heterogeneous agents in (5.5). This objective should be achieved in the
presence of operating point-dependent (time-varying) physical interconnections
and under any initial conditions. Note that, in general, as found in Chapter 3,
consensus protocols just guarantee an agreement that depends on the initial con-
ditions of agents.

Before proposing any decoupling control systems that address Problems 5.2.1
and 5.2.1, we use our partial knowledge about varying operating points of agents,

and find A, and B,. Let 0;(t) be rewritten as follows:
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0;(t) = 0 + pod;(t) (5.8)

with O + 0, Orr — O

9 ) Do = 9 )

where § and py are two known constant scalars, and d;(t) are unknown scalar

0= 0 ()] < 1

variables for ¢ € {1,2,..., N}. As a result, we find:

i = AqugTi + Bavgtli + Faug ZjeM(l'i — ;) (5.9)
+Asé;x; + Bsou; + Fs6; ZjeNi(xi — ;)
where
Ay = A(0) = Ag+ A10 Buyy = B(0) = By + B Foy=F(0) = F, + F,0
As = A(po) = Aips Bs = B(ps) = Bipe Fs = F(pg) = Fipo
Referring to Assumption 5.2.3, we emphasize that A,,, =: A, and B,y =: B,
represent a controllable pair (Agyg, Bawg) and an observable pair (Agyy, Co) (this

is valid in its general sense, including Cy = I,,,), and A,,, is Hurwitz. (Also, see

Remark 5.2.2.) Now we are ready to discuss the main results of this section.

5.2.2 Leaderless consensus-based decoupling: main results
5.2.2.1 State Feedback Distributed Decoupling

In this subsection, we address Problem 5.2.1 using some coupled (relative-)
state measurements. In this subsection, we further consider a structural assump-

tion F,,q = BaygGavg on agent’s dynamics. Thus, we find:

i = AawgTi + Bavg (Ui + Gavg D je v (T — 2;5))
+A55ixi —+ B(;(Siui + F55¢ ZjEM (l‘, — ZEj)

(5.10)

and, furthermore, propose the distributed decoupling signal:
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u; = Koy = K. Z(wl — ;) (5.11)
JEN;

where K, € R™*"* denotes a static distributed decoupling gain. Now, the aggre-

gated multiagent system’s dynamics over G are given by:

&= ((IN @ Auug) + (£ ® BangGuaug))x + (In @ Buyg)u
+((A® As) + (AL ® Fy))z + (A ® Bs)u

(5.12)

where A = diag{d;} and u = (L ® K.)z. Therefore, the closed-loop multiagent
system dynamics are written as follows:

i(t) = A.x(t)  + Ap()z(2) (5.13)
—_———

Closed-loop nominal dynamics ~ Closed-loop modeling uncertainty
where A. = ((Iy ® Auvg) + (£ ® Baug(Gavg + Ke))), Aalt) = (A(t) ® I,,,) Ay, and
Ay = (In®As)+ (LD (Fs+ BsK.)). We rewrite the closed-loop nominal dynamics
as follows (We distinguish the effect of uncertainty on the closed-loop multiagent
system by using closed-loop “nominal dynamics” and “modeling uncertainty.” ):
T = (IN ® Auwg)T + (IN ® Bawg)t + (£ ® BaygGavg)T (5.14)
with the aggregated decoupling control (consensus) signal v = (£ ® K.)z that
should be designed. Here, u is a coupled signal of all agents’ control signals u; due
to the presence of £. We decomposing it to a coupled part v = (L ® I,,,)v and a
decoupled part v = (Iy ® K.)z, and pass the coupled component to the dynamics
of multiagent system: & = (In ® Auyg)T + (L @ Bayg)V + (L ® BaygGavg)r. Now,

using a transformation matrix 7" as defined in Fact 2.2.1, we find:

l"T = (IN ® Aavg)xT —I— (A ® Bavg)VT —|— (A ® Bangavg)xT (515)
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where 27 = (T7' ® I,,, )7, vp = (T7' ® I,,)v, and T and A £ diag{[0, A4]} with
Ay = diag{[)\2, ..., \n]}. (We can find vy = (Iy ® K.)zr.) Hence, we have the

following partitioned representation:

ftTa Aavg 0 TTq 0 0 UTq
= +
de 0 Aavg TT1d 0 Ad ® Bavg Vrd
s (5.16)
0 0 TTa
+
0 Ad X Bangavg Xrd

where A,y = In—1 @ Auvg; Tra = 211 € R™ and vr, = vp1 € R™ respectively
denote state variable and control input of the agreement dynamics, and zry =
col{wr;} € RN=Ym and vpy = col{vp;} € RW=Hmu regpectively stand for state
variable and control input of the disagreement dynamics® for i € {2,3,..., N}.
Note that vy = (Iy_1 ® K.)zra.

This representation gives uncontrollable agreement dynamics:
J}Ta - Aavnga

and controllable disagreement dynamics:

j:Td - AangTd + (Ad X Bavg)VTd + (Ad X Bangavg>de

In order to design a consensus gain K. (or distributed decoupling control gain),

we rewrite the disagreement dynamics as follows:

Trd = Aavngd + BangTd + Bavg<EVTd + Gavngd) (517>
\- - - -
Vv Vv
Network-level nominal dynamics Network-level modeling uncertainty

6See the footnote at page 67 for a discussion on agreement and disagreement dynamics.
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where By = In_1 ® MoBayg, B = ET = ((ﬁ—; —Iny1)®1,,) = 0, and G,y =
/;—Z ® Gavg. Note that, although Ay is completely known, we consider it as a
fictitious source of modeling uncertainties in order to find a homogeneous network-
level nominal model for all agents (with heterogeneous modeling uncertainties),
and find a “single” decoupling gain K, that works for all agents”. Similarly, we
consider the known éavg as another fictitious source of modeling uncertainties to
find known homogeneous network-level nominal dynamics.

Now, we propose the network-level shifted dynamics:

g‘de == /Zl'yde + BangTci + \Bavg(EVTd + Gavngd)J (518)

TV TV
Network-level shifted nominal dyn  Network-level modeling uncertainty
where A, = In ® Ay, A, = Agpg + 71y, , and v > 0 is a design parameter. Before
designing a consensus gain K., let P; be the solution of an algebraic Riccati

equation (ARE):

ATP,+ P,A, + Qs — NP Ba,R'B,, P, =0 (5.19)

avg” S

where Qy = Q + Ry, Ry = 3¥GT, RGpy, and Q = Q7 = 0 and R = RT »
2
0 are two design matrices. Since the pair (A, Bay,) is controllable due to the

controllability of (A(wg,B,wg)8, existence of the stabilizing P, is guaranteed for

"See Remark 3.1.2 at page 70 about the network-level modeling uncertainty. Also, note that
the known A4 acts as a source of heterogeneity, thus we pass G4y, to the uncertain (unwanted)
part of (5.17).

8Based on the controllability Definition 2.3.2 at page 48, a pair (A, Bayg) is controllable if
and only if there exist no nonzero complex vector z and scalar A, such that both z*A, = A, z*
and 2*Bgyy = 0 are simultaneously satisfied. Substituting A, by Agug + 7In,, we need to
check whether a nonzero z and a A exist to satisfy z*A,,q = Az* and 2* By, = 0 or not (here,
A=Ay, — 7). This is in fact the controllability condition of a pair (Aqug, Bavg)-
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1 1p 1
any observable pairs (QZ, A) where we have used Qs = Qs?TQS?. Furthermore, let

— \/\)\max(fl%fhv)] where Ay is defined in (5.13).
Using these preliminary derivations, we now propose a systematic approach
to design a K. that ensures distributed decoupling in a multiagent system of

partially-unknown heterogeneous interconnected agents (5.10).

Theorem 5.2.1. Let vp; = K,axpy = — Mo RIBL P.xr; be the control signal that

avg
achieves the minimum of a linear quadratic requlatory cost function (5.20) subject
to the networked agent dynamics (5.21) fori € {2,...,N}?. Then, the leaderless
consensus problem (5.7) is solved for the multiagent system dynamics (5.14) with a
state-agreement on zero. If there exist a. and B, such that the inequality o, < g—i

is satisfied for HeAct < e Pt then the state feedback distributed decoupling

problem 5.2.1 is also solved for a partially-unknown interconnect multiagent system

of agents (5.10).

vri 0
jfTi = A'yxTi + /\QB(MJQVTi (521)
Proof. This proof is given at Subsection 5.5.1. n

Note that the design parameter v can be used either as a degree of freedom in
order to find a K, that satisfies the exponential decoupling condition o, < g— or

as a tuning parameter to adjust the convergence rate. Note that Theorem 5.2.1

9Due to the presence of As, we use the word “networked” in order to distinguish this system
from the single agent dynamics.
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addresses a scenario based on heterogeneous 6;(t) while the formulation of Sec-

tion 3.2 was only able to deal with a homogeneous 6(t) for all agents.

5.2.2.2 Observer-Based Output Feedback Distributed Decoupling

In this subsection, we address Problem 5.2.2 using some coupled-output mea-
surements (or relative-output measurements). We still use our partial-knowledge
about the operating point parameter, as given by (5.8), and find a similar re-
sult to (5.9) without any restrictions on Fy,,. We propose a dynamic distributed

decoupling system:
up = Ky (5.22)

where g; is the estimated output of multiagent system (5.5), and is found by a

state- and output-coupled Luenberger observer:

A

Ty = Aavgi’z’ + Bavgui + Favg ZjeM (fz - j‘jj) + Ko(yi - yz)
g = Co EjeM (iz - i’j)
where K, € R"*™ indicates the observer gain. We define ¢; £ g, — &, as the

observer error and, substituting u; by (5.22), we find:

éi = Aupgei + (Fung — K,Co) Zj€M<€i —e;) + Asdiz;
+ (Fs + BsK.)d; zje/\fi (z; — xj) — BsK.6; Zje/\/i(ei —€j)

i = Aavgi + (Favg + BavgKe) D25 n, (41 = 5) = BavgKe D2 je v (€5 — €5)
+ Asbiw; + (F5 + BsKe)0i )i (T — 5) — BsKedi ) jep (€ — €5)

Now, we define £ = [T, eT]|T and find the aggregated system dynamics over G:

§t)=AL(t)  + Aa(t)E() (5.23)
—_——

Closed-loop nominal dynamics  Closed-loop modeling uncertainty
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AC _ Acll 11}012 ’ ~
0 A622
121012 = _(ﬁ X Bangc)a 4
) At ® I, 0 )
AA = AN?
0 Alt)® 1,
Ayt = Iy ® 4s) + (L ® (Fs + BsK.,)),

AN21 = ANll; AN22 = AN12

Acll = ([N & Aavg) + (‘C & (Favg + Bangc))

A022 - (]N ® Aavg + ('C ® (Favg - KOCO)))

ANll AN12

Ay -

AN21 AN22

Aniy = — (£ @ BsK,)

In the rest, based on the principle of separation Lemma 2.3.2, we design a

control gain K. and an observer gain K, for the decoupled nominal multiagent

system’s dynamics £ = A.&; and, later, we establish a sufficient condition in order

to address the output feedback decoupling Problem 5.2.2. Based on the Fact 2.2.1,

we define xp = (T7' @ I,,,)r and er = (T~! ® I, )e, and rewrite the closed-loop

nominal dynamics of (5.23) as follows:

«iT - ((]N ® Aavg) + (A X (Favg + Bangc)))«rT - (A ® Bangc)eT

éT - (IN X Aavg + (A X (Favg - KOOO)>>€T

or in the following partitioned form:

(5.24)

(5.25)

_Agl 00 o
gl | o azlo & ||a
g | o o lar oo ||

| 0 0|0 A¥
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Ail = Aavg 12132 = (]N—l & Aavg) + (Ad ® <F‘w9 + B(ngc))
Ag4 = —(Ad X BangC) Aiﬁ = Am’g

AZCM = (IN—l ® Aavg) + (Ad ® (Favg - KOCO))
Note that we have partitioned & = [€F |€5 )T = [2f,, 21|l L, ]T where the

subscripts , and 4 respectively stand for agreement and disagreement. There exists

a row permutation matrix P such that the transformation £p = P& results in:

A0 |0 O

- 0 A®| 0 0 .
i R B (5.27)
&4 0 0 |A2 A2 | |¢g

0 0| 0 A

where &p = [E7[ETT = [2, el |2L,, €L |7, and we have the following partitions:

A11 122 A24
. |Ar o . |A2 A2
ga = - é a 5 d — N fd
33 44
0 A 0 A
Vv - ~ Vv
Unobservable agreement dynamics Observable disagreement dynamics

We limit the design of our observer-based strategy to the second (observable)

partition. Since all A2, A?* and A* are block-diagonal matrices, we find the

following networked agent dynamics for ¢ € {2,3,..., N }:
i = (Agwg + Ni(Favg + BavgKKe)) i — NiBavgKceri (5.28)
and networked observer error dynamics:
éri = (Aavg + Ni(Favg — KoCuvg))eri (5.29)

At this point, We find a control-gain K. such that vp; = K.zp; stabilize (5.30):
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T = (Agvg + NiFavg)Tri + A Bayglri (5.30)

and design an observer-gain K, to be used in (Luenberger) observers (5.31) for

i€{2,3,..,N}: ' (Ao MFons)
i = av i avg ) TTi
’ ‘ ot (5.31)
yri = NCorr;
We first rewrite (5.30) as follows:
. Ai
T = Agug®ri + Ao Bawglri + )‘2Bcwg()\_ — Dvpi + NiFapgr
2
and aggregate them for i € {2,3,..., N }:
j:Td = Aavngd + BangTd + BangVTd + Favngd (532)

TV TV
Network-level nominal dynamics Network-level modeling uncertainty
where Auug, Bavg, and E are defined as in (5.17); and Fiy, = (Ag ® Fuyy). We

introduce the following shifted dynamics:

g.}Td = AWCJ;Td + BangT(i + -\BangVTd + Favngd (533)

vV vV
Network-level shifted nominal dyn  Network-level modeling uncertainty
where A, = Iy_1®A,,, Ay, = Agg+ Veln,, and the non-negative scalar 7. > 0 is
a design parameter. Let Fi,, = FrAg where F. = Iy_1 ® Fypg and Ay = Ag® I,

Now, we propose the following auxiliary multiagent system model:
j:Td = A’yCde + BangTd + FTT (534)

where the fictitious control signal 7 = col{r;}, for i € {2,3,...,N}, is added
to handle the fictitious modeling uncertainty Agzrq. We should mention that
the numbering of 7 matches the numbering of zpq (or vry), and, in fact, 7

does not exist. Also, using Rayleigh-Ritz inequality Lemma 2.1.1 and proper-

178



ties of the Kronecker product in Section 2.1, we find the quadratic upper bound
oL AgWehgrrg < ok ,(ZNAW.)arq on Agrrg where W, = Iy 1 @ W,, and W, =
WT ~ 0 is a design matrix.

As another preliminary definition for this section, let P. denote the solution

of the following ARE:

-1
c

o wi

Cc

AT P+ P.A, +Q.— P.B, B'P.=0 (5.35)
where B, = |:)\2Bavg Favg], Qe=Q+ oW, and Q=QT =0, R.=Rl' =0
are two design matrices. (Existence of the stabilizing P, can be discussed similar
to the ARE (5.19) in Subsection 5.2.2.1.)

Next theorem characterizes the required conditions to systematically find a

control-gain K. (for all agents).

Theorem 5.2.2. Let vy, = K.axp; = —MNR B Par and 7, = Hoxp =

c avg

—~WIF, aTngca:Ti respectively be the control signal and fictitious control signal that
results in the minimum of a cost function (5.36) subject to the auziliary agent
dynamics (5.37) for i € {2,..., N}. Then, the aggregated agents in (5.24) reach a

state-agreement if (5.38) is satisfied.

Ji(x7;(0)) = min / (JJ%QC:ETZ- + U%iRCVTi + TZ-TWCTi)dt (5.36)
vriTi 0

j:Ti = A70$Ti + )\QBangTi + Fangi (537)

Q+K'R.K.—2H'W_.H, -~ 0 (5.38)
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Proof. This proof is given at Subsection 5.5.2. [

Now that we have designed a control gain, we start designing an observer gain.

We introduce:
tr; = (Ay, + NiFag)zri and  yr; = N\Coxrp;

as the shifted dynamics of (5.31), where A, = Ay +70ln,, and 7, > 0 is a design

parameter. We further propose the following Luenberger observer dynamics:

sz' = (A, + NiFog)Zri + Ko(yri — Uri)

(5.39)
uri = NColr
Also, let P, be the solution of ARE:
~1
Ay Pyt PAT +Q,— P,BY | 7 B,P,=0 (5.40)

o w;!

o

where B, = [A\Cy, Fil) 1", Qo = Q + A3 W, and Q = Q" = 0 and W, = W] - 0
are two design matrices (The discussion on existence of the stabilizing solution P,
is similar to that of ARE (5.19)).

In the next theorem, we characterize a systematic (LQR-based) procedure to

design an observer-gain K.

Theorem 5.2.3. Let wy; = Kngi = — MR, 'CoP,xr; be the control signal and
N = ngTi = —Wc_lFMgPoxTi be the fictitious control signal that achieves the

minimum of a cost function (5.41) subject to (5.42) such that the condition (5.43)

180



is satisfied for i € {2,..., N}. Then, the required observer gain K, for the consen-

sus purpose is found.

Ji(x71:(0)) = r?in_ /Oo(x%QoxTi + wiy Rowri + ] Won;)dt (5.41)
vrimi Jo
Ty = Azoxﬂ + )\QCgVTZ‘ + F(;";gm (5.42)
Q+ K,R,KI' —2H,W,H! = 0 (5.43)
Proof. A sketch of the proof is provided at Subsection 5.5.3. n

Based on the results of Theorems 5.2.2 and 5.2.3, we propose Lemma 5.2.1 in

order to address Problem 5.2.2. In this Lemma, o, = \/ |)\mar(f~1ﬁle)| where Ay
is defined in (5.23).

Lemma 5.2.1. Using K. of Theorem 5.2.2 and K, of Theorem 5.2.3, the closed-
loop nominal dynamics in (5.23) reach an agreement on zero. Furthermore, Prob-

lem 5.2.2 is solved if there exist positive scalars a. and (. such that ||6A0t < agelet

Be

and 0. < == are satisfied.

Proof: This proof follows Steps 2 and 3 of Theorem 5.2.1 for an output feed-

back problem.
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5.3 Distributed decoupling of linear multiagent
systems with state-coupled nonlinearities

In this section, we propose two distributed decoupling control algorithms for a
group of Lur’e nonlinear multiagent systems with (multiagent system-level) non-

linear coupling terms.

5.3.1 Problem statement

We already have discussed that a (conventional consensus-based) distributed
controller, which is designed based on the decoupled nominal linear models of
agents, does not necessarily guarantee the stabilization of entire multiagent sys-
tem in the presence of modeling uncertainties or interconnections of agents. At
the beginning of this chapter, we modeled a linear time-invariant large-scale sys-
tem using graph-theoretic ideas (see (5.2)), and named it an interconnected or a
physically coupled multiagent system. Based on a hierarchical framework, in Sec-
tion 5.2, we designed two graph-theoretic ideas to systematically find distributed
decoupling systems. In this section, we propose a Lur’e nonlinear version of phys-

ically coupled multiagent system:
jfz‘ = AZL‘Z + Bmul + wi(xi,J\/;-“) (544)

where, now, the effect of physical couplings appear through an (partially-) un-
known nonlinearities w; which are functions of state variables x; in neighborhoods

N over an agent-layer graph G,. In this section, we assume that the coupling
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structure is completely known, and the communication happens over the same
topology. Thus, we consider a single graph G, with neighboring sets N;.

We focus on two scenarios: 1) the nonlinearity w; is in the range space of
the input matrix B,,, we write w; = B,,¢;, and call ¢; a matched nonlinearity or
nonlinear modeling uncertainty; and 2) this w; is not in the range space of B,,, we
write is as w; = B,;, and name 1; an unmatched nonlinearity (B, is not in the
range of B,,). Note that we have introduced B,, without loss of generality as it can
be the identity matrix which results in ¢; = w;. We are interested in modifying our
state-feedback distributed control ideas in Subsection 5.2, systematically find new
static state feedback linear time-invariant algorithms which use relative-state mea-
surements agents’ neighborhoods, and decouple physically (state) coupled Lur’e
nonlinear multiagent systems'®. We emphasize that, although each model includes
a homogeneous linear part, we deal with a class of heterogeneous nonlinear mul-
tiagent systems due to the presence of a set of heterogeneous nonlinearities w;.

The following definitions are used in this section:

Definition 5.3.1. For a vector x = [z, T, ..., )T € R", an entry-wise absolute-

value is defined to be |x| = [|x1], |xal, .., |a|]F where |z;| indicates the absolute-

value of x; € R fori € {1,2,...,n}.

Definition 5.3.2. For any vectors x and y € R"™, we define the inequality |x| <

10For simplicity, we confine this section to time-invariant nonlinear scenarios. However, the
same results are valid for time-varying nonlinearities (assuming piecewise continuous time-
dependency). This fact will be clarified in Chapter 6.
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5.3.1.1 Lur’e multiagent systems with matched nonlinear interconnec-

tion

We rewrite (5.44) as a multiagent system with homogeneous linear dynamics
and matched heterogeneous nonlinear interconnections over an undirected graph

G (we refer to (5.45) as the i’ follower’s dynamics):

t; = Ax; + Bp(u; + ¢i(z:))

Zp = Cz ZjENi(xi - l'j)

(5.45)

where z; € R™ stands for the state deviation from the operating-point and u; €
R™ indicates the control input deviation from the operating-point; and A €
R"™*"e and B,, € R%*"_ Also, z; € R™ denotes the input to the it follower’s

nonlinearity ¢; € R™, and C, € R™*" indicates the coupling matrix.

Assumption 5.3.1. The nonlinear functions ¢;(z;) : R™ — R™ Vie {1,..,N}

satisfy the followings:
1. Fach function ¢;(z;) is composed by separate nonlinearities:
i(2i) £ col{dim(zim)}
in which ¢im(zim) : R = R and z; = col{zy,} form = {1,2,...,n,}.
2. Fach separate nonlinearity ¢y, (2;) satisfies a sector condition:
—Yim|Zim| < Gim (2im) < Yim|2im|

where Yim > 0 such that —Ty;|z;| < ¢i(zi;t) < Tyilzi| where Uy = diag{~im}-

184



Remark 5.3.1. The Assumption 5.5.1 will be specifically used in this section.
However, we further need to assume that the nonlinearities ¢; satisfy the Lips-
chitz condition. While we do not use the Lipschitz inequality (2.7) in derivations
of equations, it is inherently required to prove the results based the statement of

Lyapunov Theorem 2.5.1.
5.3.1.2 Lur’e multiagent systems with unmatched nonlinear intercon-
nection
In this scenario, we introduce the (follower) agents’ dynamics with unmatched

heterogeneous nonlinear interconnections:

&; = Ax; + Bpu; + Bui(y:)

Yi =0y ien, (@i — x5)

(5.46)

where B, € R"*™ and C, € R™*"; and y; € R™ and 9;(y;) € R™.

Assumption 5.3.2. The nonlinear functions ¥;(y;) : R™ — R™ Vie {1,...,N}
satisfy similar conditions to the Assumption 5.3.1 substituting ¢; by Vi, ny, by ny,

and I'y; by Ty, (also see Remark 5.3.1).

5.3.1.3 Leader-Follower Consensus Formulation

Briefly, we want to design a (distributed) decoupling controller in order to ex-
ponentially mitigate the effect of interconnected unknown nonlinearities in (5.45)

or (5.46) such that they behave as a group of N decoupled agents'!:

U Here, we exactly know these nominal dynamics. Thus, compared to the results of Section 5.2,
these residual dynamics are the same as the homogeneous nominal part of the interconnected
agents.
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This global decoupling objective should be achieved using only relative-state
measurements. We already have discussed that, because the variables z; and u;
are defined as state and control input deviations from the operating-point values
of the " agent, this decoupling task is achieved whenever the following condition

is satisfied under any initial conditions and over a fixed-graph G:

lim z;(t) = 0 (5.48)

t—o0

In each matched or unmatched scenario, we further assume that there exists
one agent that is not physically affected by other agents (but may have some
physical effects on others). We call this special agent a leader. We introduce a

leader agent (5.49) for the matched case:

g = Axo + By (uo + ¢o(20))

(5.49)
zg = C.xg
and a leader agent (5.50) for the unmatched scenario:
iy = Az + Bpuo + Butbo(yo) (5.50)

Y = nyO

where zg € R™ and ug € R™ are defined similar to the variables in (5.45). The
functions ¢g(z9) € R™ and 1g(yo) € R™ satisfy the Assumption 5.3.1 and As-
sumption 5.3.2 for i = 0, respectively. We further adopt the follower models (5.45)
and (5.46) as (5.51) and (5.52), respectively:
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;. = Az + By (u; + 04(2:))

zp = CZ(ZjGM (2 — xj) + bi(w; — x0))

(5.51)

t; = Ax; + Byu; + B,yi(yi)
Yi = Cy(zj'e,/\/'i<xi — x;) + bi(z; — 20))

Now, the distributed decoupling task (5.48) for (5.45) or (5.46) is accomplished

(5.52)

when the leader-follower consensus problem (5.53) is solved for (5.49) and (5.51),
or (5.50) and (5.52):

lim (2:(t) — @o(t)) = 0 (5.53)

t—o00

by setting a new control objective to be finding the control signals uy and wu;
that simultaneously stabilize the uncertain leader dynamics (5.49) (or (5.50)) and
derive the followers’ states x; in (5.51) (or (5.52)) to the leader state z(, under
any initial state conditions and over a fixed graph G;.

The following assumptions are satisfied in this section:

Assumption 5.3.3. The matriz A is Hurwitz, (A, B) characterizes a stabilizable
model, there exists a direct path from the leader to each follower over Gi¢, and x

s known but ug s unknown to the followers connected to the leader.

Assumption 5.3.4. Nonlinear functions ¢;(z;) and V;(y;) are unknown, T'y; in
Assumption 5.5.1 and Iy, in Assumption 5.3.2 are known matrices, there exists
a local (agent-level) lookup-table scheduling system or feedback tracking controller
such that each agent’s nominal model (5.47) operates at the desired operating-point

opt  opt

(z?" ul™"), and the distributed controller does not have access to (" u?").

K3 »
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5.3.2 Leader-follower consensus-based decoupling: main

results
5.3.2.1 Matched nonlinear interconnection

In order to achieve the consensus in a multiagent system of (5.49) and (5.51),
we propose the following control signals ug and u;:
uy = Koxrg and wu; = K(Z(mZ —xj) + bi(x; — x0)) (5.54)
JEN;
where Ky € R™ " represents the leader’s control gain and K € R™*"* stands
for the followers’ control gain. By introducing the leader-follower tracking error

€ = x; — zo, we find the leader-follower tracking error dynamics:
¢ = Ae; + B + B ®i(uo, 20, 2:)

and ‘Di(uo, 205 Zz) = sz(zz) - Qbo(zo) — Up

z = G jen (6 — ) +bile — @)

U; = K(ZJEM(Q - Ej) + bzez)
where b; € {0,1} is defined based on a special type of leader-follower digraphs in

page 80.

We further define € = col{¢;} as the aggregated tracking error vector, u =
col{u;} be the aggregated control-input, ® = col{®;} = ¢(2) — (An ® I,,,)do(20) —
(1y®1,,)ug be the aggregated unknown matched nonlinearity, ¢(z) = col{¢;(z;)},

and 7 € {1,2,...N}. Now, over G, we have:

z=(H®C))e
up = Korg and u=(H® K)e
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where the reduced order Laplacian matrix H is defined in Subsection 3.1.2.1 at

page 79. We decompose the followers’ aggregated control signal as follows:
u=(HoIL,)r and v=Ke=Iy®K)e

and pass the communication-induced (relative measurement-induced) coupling

term H ® I,,, to the augmented leader-follower multiagent system dynamics:

§= A+ Byt + B.ET + Bun(ug, 20, 2) (5.55)
—— N ~~ -
Networked nominal dynamics Modeling uncetainty

where &€ = (21,77, 7 = [ul,VT]" = K¢, K = diag{[K,, K|}, n = (05, @], and
®, = L&, Also, A = diag{[A, A]}, A = Iy ® A, B,, = diag{[B,, B,]}, B, =
In ® By, E = diag{[0, E]}, and E = ET = ((%7—[ —Iy)®1,,) = 0. We further
define I'y, £ diag{[Yu1, Yu2s - Yun,]} Where Yum = max;{vim} for m € {1,...,n,}
and i € {1,2,..., N}.

We know that @, (u, 20, 2) < #ilCI)M(uO, 20, z) where the upper bound function

®,, is given by (5.56):
Prr = (In@T)|2| + (1y @ Two)|20| + (1y @ I, |uo] (5.56)

Moreover, using the Rayleigh-Ritz inequality Lemma 2.1.1 and Fact 2.2.1, a

quadratic upper bound on the unknown nonlinearity 7 is given by:
n" Ry < €' R + xl R*xy 4+ ul R"uy =: nt Ry (5.57)

where R = RT = diag{[R;, R]}, R, = Rl ~ 0, Ry = Iy ® Ry, Ry = R} =

ril, = 0, R = Iy ® R, R* = Ry = 2rf"¥CIT2C., R = R} + R} =
1

CIT wRiT C. + 4NTf%CZF%LOCZ, and RY = leﬁo = 4Nrf%1nu. (Note that
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n]ﬂRnM is a symbol to specify the upper-bound on nTRn. In fact, it is a function
o, g, and e. We may read it as 01, Riay (2o, uo, €).)

Now, in next Theorem, we provide a sufficient condition to achieve the leader-
follower consensus (5.53) using (5.55), and, consequently, to solve (5.48) for a

multiagent system of (5.45).

Theorem 5.3.1. Let ug = Korg = —RilBﬁPuxo be the control signal that
achieves the minimum cost (5.58) subject to (5.59) satisfying a condition (5.60),
where Py denotes solution of the ARE (5.61), Qu = Q, + R™, R*™ = R* + R°,
Ry = R+ R*™, Rw* = CTT , R“T,,C, = 4N7’ful%CzTFﬁoCz, and Q= Qf = 0

and Ry = R » 0 are two design matrices.

Jo(z0(0)) = min/ (xOTquo + uOTRUuO)dt (5.58)
ug 0

l"o = Al’o + BmU() (559)

Q — R — K{R" K, >~ 0 (5.60)

ATPy + PyA+ Qu— PyB,R'BL Py =0 (5.61)

Also, let v; = Ke; = —,ulRl_leﬁPlfei Vi € {1,2,...,N} be the i'" follower’s
control signal that achieves the minimum cost (5.62) subject to (5.63), where Py
represents solution of the ARE (5.64), Q1 = Qf + R, Riy = Ry, and Qy =

Q? = 0 and Ry = R}F =1¢l,, = 0 forry >0 are two design matrices.

Ji(e:(0)) = min/ (6] Quyei + vl Ryyvy)dt (5.62)
Vi 0
ATPij+ PigA+ Qi — i PiyBm Ry Bl Py = 0 (5.64)

190



Then, the closed-loop system (5.55) is exponentially stable and the distributed
decoupling problem (5.48) is solved in the presence of heterogeneous matched in-

terconnected nonlinear modeling uncertainties.

Proof. This proof is given at Subsection 5.5.4 n

5.3.2.2 Unmatched nonlinear interconnection

In this subsection, we consider the unmatched nonlinear uncertainty scenario.
We only introduce new variables and the rest can be found in Subsection 5.3.2.1.
We propose the control signals ug and u;:
JEN;
where, for a leader-follower tracking error €¢; = x; — xg, the followers’ control signal
can be rewritten as:
U; = G(Z(El - Ej) + bzez)
JEN;
Here, Gy € R™*" denotes the leader’s control gain, and G € R™*"* indicates

the followers’ control gain. Also, the leader-follower tracking error dynamics are

given by:
é; = Ae; + Byu; — Bpug + BuVi(yo, i)

where the unknown nonlinear functions V;(yo, y) = ¥ (y;) — ¥o(yo) satisfy:

U,(yo, 2) < Tylyil + Tyolvol

for a I'y, that is defined similar to I', in Subsection 5.3.2.1.

Over G, the augmented leader-follower dynamics are as follows:

Networked ;Taminal dyn. Modeling\urncertainty
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where ¢ = [z, 7], 0 = [ul,V7T]T = G¢ = diag{Go,G}¢, G = Iy ® G, uy =
—(Iy ® In,Jug € RY™ Wy = [yhg, UITT, W(yo, y) = col{W(y:)} = (y) — (Iy &
L) vo(yo), ¥(y) = col{vi(y:)}, and y = (H @ Cy)e. Also, By, = [07, B]]",
By, = In ® B, B, = diag{B,, B,}, and B, = Iy ® B,,.

We further find that the following inequality is satisfied:
U< (In®@Ty)lyl + (1n @ Lyo)lyol

Now, we define the following auxiliary leader-follower multiagent system’s dy-

namics:

{ = AC + B,o + B0+ Byf (5.67)
where 0 = [0F, ..., 0%]" € R¥™ and 8 = [pL, 5T, ..., BL]T € RV*+D™ are two aux-
iliary control inputs corresponding to two unmatched uncertainties u, (unknown
to followers) and W;(yo, y), respectively. The quadratic (upper) bounds on these

uncertainties are given by (5.68) and (5.69), respectively:
ul Sul = ul (NS)u, (5.68)

UTWw, < 'Wee + alWoozy = 0L, Wy, (5.69)
where S = Iy® S, S = ST = 0, W = diag{W,;, W;}, W, = WT = 0, W; =
In@ Wy, Wy =W} =0, W =W = Iy @ Wj, Wy = 2u3,CI T W,T',C,, and
W = Wi + W = CTTy Wil Gy + 2NCI Ty Wy Ty, Gy,

In the next theorem, we systematically find the required control gains in (5.65)
and characterize some sufficient conditions for stabilization of (5.66). Equiva-
lently, we guarantee the leader-follower consensus (5.53) for (5.50) and (5.52) or,
equivalently, solve (5.48) for (5.46).
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Uo G() —R;llB;‘,;LPQl
Theorem 5.3.2. Let = To = xo be the control signal
Bo Lo —WﬂBZ Py

that achieves the minimum cost (5.70) subject to the auxiliary system (5.71) where
the condition (5.72) or (5.73) is satisfied. The matriz Py denotes solution of the
ARE (5.74); Qu = Q+ W™, Ry = R+ NS; Q, = Q] = 0, R, = R} »
0, and Wy, = WiI' = 0 are three design matrices, By, = [Bm, Bu), and Ry =

diag{[Ro, W] }.

Toio0)) = i / (27 Quiro + uT Rovg + BT Wi Bo)dt (5.70)
u0,50 J0
io = ALEO + BmUO + Buﬁo (571)
Q1 —2Lg WLy = 0 (5.72)
Qi+ GIRGy —2LEW Ly = 0 (5.73)
A" Py + Py A+ Qu — PyBui Ry By Py = 0 (5.74)
v; G _NIRQ_J}BEPQJ”
Also, let || = |L|& = _Wjleszzf €; be the control signal that
0; H —S_lnggf

achieves the minimum cost (5.75) subject to the auziliary system (5.76) where

the condition (5.77) or (5.78) is satisfied. The matriz Pyy stands for the solution

Of the ARE (579), ng = Qf + WG, and Rgf = Rf. AZSO, Qf = Q? - 0,

Ry = R} =1yl = 0 forrg € RY, Wy = W[ = 0, and S = ST = 0 are four

design matrices. Moreover, By = [ft1Bm, Bu, Bn| and Ry = diag{[Rar, Wy, S|}.
vi,Bis0i J
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Qf —2L"W;L —2H"SH =~ 0 (5.77)

Qr+G'R;G —2L"W;L —2H"SH = 0 (5.78)

ATPyg + PysA+ Qo — PosBusRy (Bl Poy = 0 (5.79)

Then, the closed-loop system (5.66) is exponentially stable and the distributed

decoupling problem (5.48) is solved.
Proof. This proof is provided at Subsection 5.5.5. n

Remark 5.3.2. The condition (5.73) is essentially an alternative version of (5.72)
with an added term Gt RiGy (similarly, see (5.78) and (5.77)).

5.3.3 Simulation Verification

In this section, we investigate the feasibility of our ideas through simulation
studies over a coupling and control graph topology G;s that is depicted in Fig. 5.2.
The follower’s graph Laplacian matrix £ corresponding to G, the pinning vector

b (to find B), and the reduced-order graph Laplacian matrix #H are given below:

3 -1 0 -1 -1 1 4 -1 0 -1 -1
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Let agents be described by a stable nominal local part in the state space

domain, specified by the following pair of matrices:

0 1
A= and B, =

-5 =3 1

and be initialized as follows where z? = z;(0) for i € {0,1,...,5}:

15 20 —15 15 20

5.3.3.1 Matched nonlinear modeling uncertainty

In the matched scenario, we let C, = [0,1.5], and use the following nonlinear-

ities in simulation (unknown in design process):

(bo(Zo) = 0.18in(20), ¢1(Zl) = 0.721, ¢2(22) = —0.25in(22),

¢3(2z3) = 0.5tanh(z3), ¢4(z4) = —0.5tanh(zs), ¢5(z5) = —0.3sin(z5)

Figure 5.2: The (physical) coupling and communication topology G;¢. The fol-
lowers’ undirected graph G can be found by removing the node vy and directed

edges originating from that.
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Figure 5.3: Matched scenario: State deviation variables of all agents without
the distributed decoupling controller (see the definition in (5.45)) where x;;
and z;o denote the first and second state deviation variables of the i** agent,
respectively.

2000

Ko
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-2000

where tanh(.) refers to the hyperbolic tangent. By removing the node vy and
its edges in Figure 5.2, we first simulate the open-loop interconnected multiagent
system over the leaderless graph G without the distributed decoupling controller
of Subsection 5.3.2.1. The unstable behavior of the interconnected multiagent
system in Figure 5.3 indicates the need for a (distributed) decoupling controller.
Figure 5.4 represents the stable closed-loop multiagent system behavior using the
controllers of Theorem 5.3.1, in terms of the state variables’ deviations from the

operating-point.

5.3.3.2 Unmatched nonlinear modeling uncertainty

In this subsection, we implement the controllers of Theorem 5.3.2 for a mul-

tiagent system with C, = [0.5,1.5] and B, = [0.2,1]". Substituting z; variables
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Figure 5.4: Matched scenario: State deviation variables of all agents with
distributed decoupling controller, respectively.
by v;, the nonlinear functions are the same as Subsection 5.3.3.1. The unsta-
ble open-loop behavior of the multiagent system over G is depicted in Fig. 5.5.
The simulation result of a closed-loop multiagent system with controllers of The-
orem 5.3.2 is shown in Figure 5.6 which indicates that agents can independently

operate at their desired operating points.

5.4 Summary and bibliography

In this chapter, we overview the main approaches in the control of large-scale
systems along with a brief discussion on their disadvantages with respect to each
others. We propose graph-theoretic ideas as intermediate approaches to model
and stabilize physically interconnected multiagent systems (large-scale systems).
We need to mention that the change from “large-scale” to “physically interconnect

multiagent” systems is made to convey that our approaches are based on graph-
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Figure 5.5: Unmatched scenario: State deviation variables of all agents without
distributed decoupling controller.
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Figure 5.6: Unmatched scenario: The first actual state variables z%* of all
agents with distributed decoupling controller.
theoretic ideas and the availability of relative-measurements. We acknowledge
that the symmetric linear time-invariant large-scale model is taken from [143],
and the discussion on control of large-scale systems can be inspired by any stan-

dard references such as [2]-[3]. In our opinion, [144] provides a good example of
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“practical” centralized control approaches that have been reported in the litera-
ture. The notion of decentralized fixed mode was introduced in [145]. Thereafter,
many research studies have been done to find decentralized fixed modes, and to
control a large-scale system with decentralized fixed modes (e.g., see the struc-
turally constrained control approach in [146]). By further walking through the
literature of large-scale systems, we mention that the models that we introduce
in this chapter are sometimes called “large-scale systems with strong interconnec-
tions” (e.g., see [147] with a single-input single-output model of subsystems in a
large-scale system).

Regarding the topic of this chapter, we further clarify that the word “decou-
pling” in the distributed decoupling problems emphasizes on the fact that the
control protocol is using relative measurements to damp the (adverse) effects of
physical couplings while the residual (local) dynamics of agents are stabilized
using some local measurements in a hierarchical manner.

In Section 5.2, we generalize the model of Section 3.2 to a heterogeneously
(operating point) parameter-dependent physically coupled uncertain multiagent
system, and propose both state and output feedback distributed decoupling prob-
lems. The distributed stabilization problem is addressed via a leaderless consensus
(re-) formulation. We use the well-known parametric robust control ideas of the
reference [148] to deal with the unknown operating point parameters of agents.
Importantly, we mention that the structural (simplification) assumptions on the
state-feedback model of Subsection 5.2.2.1 are made based on the results of [77]
which was limited to the constant homogeneous state space matrices. Specifi-
cally, using our notation, that reference was assuming a state coupling matrix
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Fovg = BawgK. with K. denoting the consensus gain (our research work proposes
a more realistic scenario because Gy, can be different from the control gain K.).
This structural assumption is relaxed in the output feedback decoupling of Sub-
section 5.2.2.2. Moreover, in the output feedback case, our formulation allows
using the separation principle Lemma 2.3.2 in the presence of modeling uncer-
tainties. Although we do not focus on any special applications, these distributed
decoupling ideas can be used to damp the inter-area oscillation in a multi-machine
power system.

In Section 5.3, we propose Lur’e models of multiagent systems with unknown
physically coupled nonlinear terms. We assume that the nonlinearities are sep-
arable. This is in fact a common assumption in the literature and, specifically,
we borrow it from [149] (it can also be referred to the materials of [106]). In
this section, we propose a leader-follower viewpoint to address the distributed
stabilization problem under two different scenarios: the matched and unmatched
nonlinear interconnections. We design two linear time-invariant static distributed
decoupling algorithms in order to cancel the adverse effects of these unknown
nonlinear interconnections on physically coupled agents. Based on the simulation
verification results, a decoupling system enables agents to operate at their desired
operating-points using their own local control systems, and independent of their
neighbors.

Finally, we mention that the proposed distributed decoupling challenges in-
clude many of the distributed consensus problems as special cases (see the liter-
ature survey in Section 1.2 to find about the existing results on the distributed
consensus of multiagent systems). For example, regarding the results of Sec-
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tion 5.3, we could simply assume a leader with no control input and no modeling
uncertainties o = Az (as is usually the case in the literature), and propose a
leader-follower consensus problem for a set of physically coupled Lur’e nonlin-
ear followers. However, we assume that the leader is a new physical agent such
that up and ¢y (or ) appear in (5.49) (or (5.50)). The case where the leader
has a bounded control input, without any modeling uncertainties and physical
interconnections, has been addressed in the literature via adaptive control tech-
niques (e.g., see [94] for a set of linear time-invariant agents) whereas our solutions

provide fixed-gain LQR-based distributed consensus algorithms.

5.5 Appendix: proofs

We have proposed the main results of this chapter through several theorems.
For the sake of readability, we have not discussed their proofs within the main
body of this chapter, and, instead, have collected all of them in this Appendix

section.

5.5.1 Proof of Theorem 5.2.1 (page 174)

We prove this theorem in 3 steps: 1) K. ensures a state-agreement, 2) the
agreement is on zero, and 3) the distributed decoupling problem of uncertain
interconnected multiagent system is solved whenever o. < g—z is satisfied by a

closed-loop multiagent system with a static decoupling feedback gain K..
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Step 1) We aggregate the control signals vp;, cost functions (5.20), and
dynamics (5.21) for i € {2,3,..., N} and find that vy achieves the minimum of
following aggregated cost function:

J(de(O)) = Hlln/ (xngSde + I/%dRVTd)dt
0

vrd

subject to the network-level shifted nominal dynamics in (5.18) where Q, = Iy_®
Qs and R = (Iy_, ® R).
By optimality of vy = v7,; and thus z7q = 27,;, we have the following results
satisfied for the aggregated closed-loop system:
2, Qevra + vh Rurg + JL (A 214 + Bavgvra) =0

o ) ) (5.80)
205 R+ JL Buyy =0

TTd

where J,.,,(x7q4) = %""E‘). Although the optimal control gain K. is designed

subject to the shifted “nominal” dynamics in (5.18), in the rest of this step, we
prove that vp, stabilizes the entire uncertain non-shifted multiagent system (5.17).

We introduce a candidate Lyapunov function:
V(%Td(t)) = x%d(t)Ps:L‘Td(t) =0

where P, = Iy_1 ® P,, and P, is the solution of ARE (5.19). Also, we find that

the following is satisfied:

Vrd

V(.CETd(O)) = J(de(O)) = mln/ (-T;deTd + V%dRI/Td + QfngIQTTd)dt/ =0
t
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where Q = Iy_; ® Q and R, = Iy_; ® R,. Since the control gain K, =
— X\ R'BT

avg s 13 implemented and algebraic Riccati equation (5.19) is satisfied,

we know that the conditions (5.80) are satisfied by this candidate Lyapunov func-
tion substituting J,,, by V,,,. Now, along the uncertain dynamics of the shifted

multiagent system (5.18), we find:

V(ZL’Td) = VT Zi’Td = VT

ZTd T

= _xngde - 2V%dREVTd — (vra + GavgﬂﬂTd)TR(VTd + Gavg$Td)

d<Aavngd + BangTd + Bavg(EVTd + Gavngd))

— (l‘%del’Td — I%ngngGavgl‘Td) S —l’ngl’Td =< 0

Based on the Lyapunov Theorem 2.3.1, the shifted linear disagreement dy-
namics (5.18) are asymptotically stable. Also, based on the Rayleigh-Ritz in-
equality 2.1.1, we find Apin(P)[|z7all> < V(27d) < Aaa(Bs) |74l and V' <
—Amin(@)]|zrall*. Thus, based on the exponential stability Theorem 2.3.2, we
conclude that the origin is exponentially stable.

Now, we know that all eigenvalues of (A, + (Ag ® Bayy(K. + Gang))) are in
the open left half plane (LHP). Consequently, the solutions of det(sI(y_1yn, —
A, — (Mg ® Buyg(Ke + Gavg)) = 0 satisfy R{s} < 0 for s € C. Thus, we further
conclude that the solutions of det(s'I(y_1yn, — Auvg — (Mg ® Bayg (K. 4 Gaug)) =0
satisfy R{s'} < —v where s’ £ s — 7. In other words, in addition to exponential
stability of the disagreement dynamics, the LQR-gain K, ensures a (desired) level
of consensus rate for the non-shifted disagreement dynamics (5.17).

Step 2) Based on the partitioned model (5.16) of multiagent system, agreement

dynamics are decoupled from disagreement dynamics. Then, based on Assump-
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tion 5.2.3.a and Step 1 of this proof, we conclude lim;_,, z(t) = lim;_, x7(t) =0
which proves the state-agreement on zero (for a model of multiagent system ex-
cluding the uncertainty A (t)z(t) in (5.13)).

Step 3) The solution of differential equation (5.13) is given by:
t e ~
z(t) = e'z(0) +/ (e2e(t=9) Ap(s)z(s)ds
0

< age Pt we can rewrite this state response as fol-

Hence, whenever ||e?<!

lows:
z(t)]] < cce™ !

t
SO+ [ (e a(s) s
0
where we have used ||Aaz(t)]] < o¢||z(t)||. Now, based on the Bellman-Gronwall

Lemma 2.3.3, we find:

(D) < ageBemomeon

|z(0)]]
which indicates that z(t) € RV exponentially converges to zero whenever o, <

g—z is satisfied. Thus, the distributed decoupling problem 5.2.1 is also solved in

this condition.

5.5.2 Proof of Theorem 5.2.2 (page 179)

By augmenting vr;, 7;, and also (5.36)-(5.37) for all i € {2,3,, ..., N}; we know

that vp4 and 7 achieves the minimum aggregated cost function value:

v, T

J(xrq(0)) = min/ (:B?dchTd + yngcqu + TTWCT)dt
0
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subject to (5.34), where Q. = In_1 ® Q. and R. = Ixy_1 ® R.. The aggregated

version of (5.38) is also found as follows:

TR.K,—2H'W_.H,. = 0 (5.81)

where K, = Iy_1 ® K, and H, = Iy_; ® H..

Similar to Step 1 in Theorem 5.2.1, we know the triple (z7q4, vrq, 7) satisfies:

T14Qctra + VigRevra + T Wer + JgTd(le%de + Bavgvra + Fr7) =0
20E Re + JL Ba,=0 (5.82)

TTd

2r"W.+JL F. =0

TTd

In the rest of this proof, we show that the uncertain non-shifted multiagent
system dynamics (5.32) are also stabilized using only the control signal vy (i.e.,

without implementing 7). We propose a candidate Lyapunov function:
V(de(t)) = Jigd(t)chTd(t) =0

where P, = Iy_; ® P, and P, is the solution of ARE (5.35). This candidate

Lyapunov function satisfies:

V(274(0)) = min / (:cng:UTd + V%dRCVTd +7TWor + :U::ﬁd()\?VWC)de)dt’ =0
¢

vra,T

Since the ARE (5.35) is satisfied by implementing the optimal control (and

fictitious control) gains of this theorem, the conditions (5.82) are hold true by this
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candidate Lyapunov function substituting J,,, by V,,,. Now, along the uncertain
shifted multiagent system’s dynamics (5.33), we find:
V=V ira < —27,(Q + KR, — 2H] W H.)wrq
= —at,Qurg — V5 Rovrg — 2vE R Evpg + 27" Wor — 7TWer — 27T W, Agarg
— x?d]\dWcAdITd — (x:_‘ﬁd(/\?\,Wc)de — x%d]\dWc]\de(D

< _33%1(@ + K'R.K.—2HTW_.H,)xrq

which indicates V' < 0 whenever (5.81) is satisfied. Thus, based on the Lya-
punov stability Theorem 2.3.1, the shifted uncertain disagreement dynamics (5.33)
are asymptotically stable. Moreover, setting a; < Apuin(P.), a2 < Apaz(P2),
a3 < Amin(Q + KI'R.K, — 2HT'W_H,), and b < 2 in Theorem 2.3.2, we are able
to guarantee exponential stability of the system which is a stronger result than
asymptotic stability.

Similar to Step 1 of Theorem 5.2.1, we further conclude that the design param-
eter 7. ensures a minimum level of consensus convergence rate for the non-shifted

uncertain multiagent system’s dynamics (5.32).

5.5.3 Proof of Theorem 5.2.3 (page 180)

A dual form to the observer design problem (5.39) is designing a control signal
Wr; = Kngi for

ir; = (Ay, + NiFuvg) 21 + MO wry

which can be rewritten as follows:
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. AZ
T = A,j;oxTi + M CTwr; + /\20T(/\_ — Dwr; + )‘tiz;ngi
2

that, for ¢ € {2,3, ..., N}, results in the following aggregated dynamics:

ZtTd = (IN X A:‘CO)ZETd + (IN X )\QOT)WTd + (]N X )\QCT)(([;—; — ]N—l) X Iny)wTd

"—([N (024 Fg;g)(/\d & Inz)de

where wyg = col{wr;} fori € {2,3,..., N}. We further propose an auxiliary shifted

multiagent system:
Trg= (In-1 ® Az;o)de + (Ino1 ® /\QCT)wTd + (In—1 ® Fapg)n

where n = col{n;} for i € {2,3,..., N} denotes a fictitious control signal corre-
sponding to the uncertainty (Ay ® I, )xrrq. Now, the rest follows the proof of

Theorem 5.2.2 (see Subsection 5.5.2).

5.5.4 Proof of Theorem 5.3.1 (page 190)

Using (5.58) and (5.62) for i € {1,2,..., N}, we find an aggregated cost func-
tion:

) =min [ (€7QE + 7 Rr -+ R

where Q = diag{[Q;,Q;]} and Q; = Iy ® Q;. Using (5.59) and (5.63) for
i € {1,2,...,N}, we find the networked nominal dynamics in (5.55). Hence,
the control signals ug = Kyzxo and v = Ke achieves the minimum aggregated

leader-follower cost function J(£(0)) subject to the networked nominal dynamics
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in (5.55). We need to show that the static feedback 7 = K¢ stabilizes the uncer-

tain dynamics (5.55). We propose the following Lyapunov candidate function:

where P, = diag{ Py, Pis}, Piy = Iy ® Piy, and P;; and Py are the positive

definite solutions of algebraic Riccati equations (5.61) and (5.64), respectively.

V(£(0)) = J(£(0)) = min / (G 4T R+ ol R )t = 0

T

We also have the following Hamilton-Jacobi-Bellman equation:
min{§" Q€ + 77 R7 + nyy R + Ve (A€ + Bur)} = 0

In fact, implementing the gains Ky and K of this theorem, the pair (£, 7)

satisfies the following equalities:
ErQ6+ 7" Rr + i Rnar + V(A + Byr) = 0
27r"(R+ R")+ VB, = 0

where R” = diag{[R",0]}. Now, we are ready to calculate the time deviation of

V(&(t)) along the uncertain dynamics (5.55):

V. =VI¢=—TQ¢ — "R — Ry — 27T (R+ RT)ET — 277 (R + R™)n
< —¢7Q¢ + af R + ug R*uo — (nyy (R + R7)nar — 0" (R + R7)n)
—(+ 1) (B+R)(+7)

IA

—2i Qurg — €7 Q e + xl R™™ g + uf R"uy

< —xg(@l — RuvoTo KgRuOKQ)$0 — ETQfE <0
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where the first inequality is found based on the completion of squares by adding
and subtracting zf R“0*zy + ul R*uy + (R 4+ R™)n. We further mention that
E = ET 3= 0 such that —277(R+ R")Er = —2r;v"Ev < 0 and (R + R")n <
nt Ry + o Romozg = nT (R 4+ R™)ny.

Based on the Lyapunov theorem 2.3.1, the leader-follower multiagent system’s
dynamics (5.55) are asymptotically stable for all initial state values and over the
fixed-graph G;y. We further show that the conditions of Theorem 2.3.2 are satis-
fied by b < 2, ay = min{A\pin(P11), Amin(Pif) }, a2 = min{ Az (Pr1), Amaz(Pif) },
and a3 = min{\pnin(Qy), Anin(Q1 — R™™ — KI'R™Kj,)}. Thus, using a static
feedback gain, we are able to guarantee exponential stability of the origin for an
uncertain Lur’e nonlinear multiagent system. Now, based on the reformulation in

Subsection 5.3.1.3, the distributed decoupling of agents is also achieved.

5.5.5 Proof of Theorem 5.3.2 (page 192)

We find (5.67) using (5.71) and (5.76). Also, based on (5.70) and (5.75), we

find an aggregated leader-follower cost function:
7(¢(0)) = min / (CTOC + 0 Ro + 0750 + BTW B + ul Sug + W, Ty, Yt
P Jo

The optimal control signals o, #, and 8 achieves the minimum J(¢(0)) subject
to (5.67). We need to show that the uncertain closed-loop system (5.66) will
be stabilized using o (i.e., there is no need for § and S for the implementation

purpose). We propose the following Lyapunov candidate function for ¢ > 0:
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where P, = diag{ Pa, Pas}, Poy = In ® Pyy, and Py and Py are respectively the
positive definite solutions of AREs in (5.74) and (5.79). Also, we observe that the
equality V(¢(0)) = J(¢(0)) = min, g5 [ {¢TQC+0T Ro+67 S0+ BT W B+ul Suy+
UL, W, }dt' = 0 is satisfied subject to the augmented auxiliary system (5.67)
for which the Hamilton-Jacobi-Bellman equation mingﬁ’ﬁ{CTQC + 0T Ro 4 050 +
ul Sug + BTWB + U W + VI (AC + Buo + By, + Byf)} = 0 holds.

We further know that implementing the control and fictitious control gains
Go, Lo, G, L, and H of this theorem, the quadruple (¢, 0,0, 3) satisfies ¢(TQ¢ +
0T Ro + 6750+ BTW B +ul Sul’ + WT, W+ VI(AC+ Buo + B0+ ByB) = 0

and
207 (R+ R7)+VIB, =0

20”5+ VB, =0
28"W +VIBy, =0
where R = diag{[N S,0]}. Using these equalities, we calculate V along the

uncertain trajectory (5.66):
V() <—CTQC—0"Ro+28TWp3+207560
< —(T"(Q+ GTRG — 2L"WL —2HTSH)(¢
Alternatively, we can find:
V() < —CTQC+28"WB+ 20780 < —¢T(Q — 2L"WL — 2HTSH)(¢

where L = diag{Lo, Iy ® L}, H = diag{0, Iy ® H}, and S = diag{0, Iy ® S}.
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Based on the conditions (5.72)-(5.73) and (5.77)-(5.78), we find V' < 0. Hence,
using the Lyapunov Theorem 2.3.1, the closed-loop multiagent system (5.66) is
asymptotically stable. Furthermore, it is straightforward to see that the condi-
tions of Theorem 2.3.2 are also satisfied by a3 = min{)\mm(Q—kéTRé— 2LTW L —
2HTSH), Apin(Q —2L"W L —2HTSH)}. Thus, the origin is exponentially stable
which, equivalently, indicates exponential distributed decoupling of an intercon-

nected Lur’e multiagent system (with nonlinear modeling uncertainty).
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Chapter 6

Distributed Stabilization of
Physically Coupled Multiagent

Systems with Unknown Coupling

Structures!

Based on the introduction in Chapter 1, we know that graph-theoretic dis-
tributed control algorithms have been widely designed to accomplish cooperative
tasks using a group of individual agents. We further are aware of some references
that, following the same viewpoint on achieving agreement on unknown values,
consider multiagent systems with interconnected agents via linear state-coupling
terms (over known coupling graph). Also, based on the results of Chapter 3,

we know that the agreement on zero (independent of agents’ initial values) may

LA major part of this chapter has been published in [140] and [150]. Each section has its own
parameters and variables which are (re-) defined appropriately.
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need sanctification of additional conditions in an agreed multiagent system (after
reaching agreement in multiagent system).

In Chapter 5, we interpreted achieving “agreement on zero independent of
agents’ initial conditions” as a “distributed stabilization” problem. Then, inspired
by the literature of both large-scale and multiagent systems, we introduced some
models of “physically interconnected multiagent systems” using graph-theoretic
ideas which were equivalent to the large-scale systems’ models. In each scenario,
we assumed a known (connected) physical coupling structure, and designed a
distributed control algorithm over the same graph topology. Assuming a known
coupling structure and designing a distributed controller with exactly the same
communication topology as the coupling structure could restrict the applicability
of ideas in Chapter 5.

In this chapter, we assume agents are physically coupled over unknown “agent-
layer coupling graphs”, and design distributed protocols over a second graph layer
to share agents’ information in their neighborhood. We name it control-layer com-
munication graph. In Section 6.1, we mix the models of Section 5.3 and propose a
fixed-gain fully distributed decoupling strategy for a Lur’e multiagent system with
mixed matched and unmatched time-varying interconnected nonlinearities. While
the decoupling allows agents to operate in their stand-alone modes, availability
of all agents” absolute measurements could bea restrictive assumption in ensuring
the stability of interconnected multiagent system. Therefore, in Section 6.2, we
propose a distributed stabilization problem where we only a few agents provide
their absolute measurements to the control-layer operator (potentially, only one
agent shares its absolute information).
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The rest of this Chapter is organized as follows. In Section 6.1 we propose a
multi-layer distributed decoupling structure. This is essentially an extension to
the results of 5.3 by proposing a Lur’e multiagent system with mixed matched and
unmatched state-coupled time-varying nonlinear uncertainties over an unknown
coupling graph. In this section, we further introduce a fixed-gain fully-distributed
decoupling approach which can be designed without any global knowledge about
coupling and communication graphs. In Section 6.2, we assume a limited access to
the absolute state information for a set of only few agents, and propose a multi-
layer distributed stabilization problem. In fact, this is based on our two-layer
viewpoint in Section 6.1 where the agent-layer coupling graph is further modeled
by two subgraphs for state and input coupling terms. In Section 6.3, we discuss
the fully distributed alternatives to the decoupling algorithms of Chapter 4. We
summarize this chapter and provide some references in Section 6.4. Finally, We

collect all proofs in Section 6.5.

6.1 Distributed decoupling of multiagent systems
with mixed matched and unmatched nonlin-
ear state couplings

In this section, we propose a class of Lur’e nonlinear multiagent systems with
homogeneous linear nominal dynamics subject to heterogeneous state-dependent
time-varying nonlinear couplings. Compared to the results of Section 5.3, from the

modeling aspect, we assume that these nonlinearities appear as mixed matched
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and unmatched modeling uncertainties, and the coupling graph is unknown and
possibly disconnected (i.e., with a less restrictive structural assumption compared
to Chapter 4); and from the control aspect, we propose a multi-layer structure.

This new viewpoint enables us to overcome the lack of knowledge about the
physical coupling graph and, mainly, provides an additional degree of freedom
to design a control-layer graph in order to guarantee some further (optimization-
based) criteria for a closed-loop physically coupled multiagent system. Since our
fully distributed decoupling algorithm allows post-designing the control-layer net-
work at a later time, we do not go through the communication graph design prob-
lem.

We consider a group of N +1 linear time-invariant agents which are coupled to
each other over a graph G, through some heterogeneous time-varying nonlinear un-
certainty functions which, all together, build a heterogeneous Lur’e time-varying

nonlinear multiagent system:

i; = A'z; + B, + B fi(zi;1) + Bugi(yi; 1) (6.1)
¢i(z;, Yist)

where i € {0,1,2,..., N} denotes the agent number; z; € R™ represents the
state variable and u; € R™ indicates the control input; and A’ € R™*"= B, €
R™ "= and B, € R™*™ are some known constant matrices. The nonlinear
functions ¢;(z;, y;; t) are written as sum of two unknown nonlinearities. The terms
B fi(z;t) are in the range space of B, and we call f;(z;t) € R™ the matched
nonlinearities, and the terms B,g;(y;;t) € R™ do not satisfy this condition and
we name ¢;(y;;t) the unmatched nonlinearities. The input vectors z; € R™ and
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y; € R™ into these nonlinear functions are the following lumped state-dependent
signals:
7z =C, Zjej\/f ({L’l - xj)

yi =0y Zje/\/g (i — ;)

(6.2)

where C, € R™*" and C, € R™*"and N denotes the i" agent’s neighboring
set over G,. The following assumptions are satisfied in this section. In theses
assumptions, R denotes the set of positive real numbers, and R%* represents the

set of non-negative real numbers.

Assumption 6.1.1. The pair (A', B,,) represents a stabilizable state space real-

T ,
wation ©; = A'x + B,,u;.

Assumption 6.1.2. The nonlinear functions f; : R x R — R V j ¢

{0,1,..., N} are not exactly known, but satisfy the quadratic upper-bound:

Gz t)Rfi(zit) < 27 (4 R)2;

where R = RT = 0 for R € R™*": and o; € RT. Moreover, f;(0;t) = 0, and

a = max{a;} Vi € {1,2,..., N} is a known constant.

Assumption 6.1.3. The nonlinear functions g; : R™ x R — R™ V i ¢
{0,1,..., N} satisfy the Assumption 6.1.2 substituting R by S € R™*™  and «
by B € RT.

Remark 6.1.1. Since these findings are proved based on the Lyapunov Theo-
rem 2.3.1, we also need the nonlinearities f; and g; be piecewise continuous in

time and globally Lipschitz (if they are locally Lipschitz, the result will be valid in
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a neighborhood around the origin). However, we do not directly use the Lipschitz

inequality (2.7) in the derivations of this chapter.
Regarding the (unknown) agent-layer coupling graph G,, we assume:

Assumption 6.1.4. There exists at least one connected component over G, (at

least two agents are coupled to each other).

We need to note that the disconnected graph G, represents a decoupled mul-
tiagent system which is preferred (reduces to the existing results in Section 1.2).
However, we propose Assumption 6.1.4 in order to have meaningful “decoupling”

ideas. In this section, we introduce a multi-layer (two-layer) control structure:

e An undirected agent-layer coupling graph G, with £, = LT = 0 as its graph
Laplacian matrix. We define a leader indexed by subscripts ¢, and let others
be some followers. We further define G,; as an undirected agent-layer cou-
pling graph among N followers with £,y = L,y = 0 as its graph Laplacian
matrix. Furthermore, we let by, = [ba1,baz, ..., bany]? be such that b, = 1
whenever the leader and the i** follower communicate over an undirected
edge, and b,; = 0 otherwise. We also define a diagonal matrix B, = diag{b, }
in order to lump all leader-followers’ physical coupling information. We par-

tition the agent-layer Laplacian matrix as follows:

Eﬁil bai _b:{
—b, Ha

L, =

where H, = HL € RV*V is defined by H, = Las + B,.
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e A directed control-layer communication graph G. with a graph Laplacian ma-
trix £.. Similar to the agent-layer graph, we define G,y and L.y = L.y = 0
for the undirected control-layer communication graph among N followers.
However, over G,., the leader agent does not receive information from fol-
lowers. Thus, b. = [be1, bea, -, ben]” is defined such that b,; = 1 when the
ith follower receives information from the leader over a directed edge, and
bai = 0 otherwise. Also, we let B, = diag{b.} be a diagonal matrix that
provides information about leader-to-follower communication. As a result,

the following partitioning is valid for the control-layer Laplacian matrix:

0 O
L. =

—b. H.

where H, = HI € RNV is defined by H. = L.; + B..
The control-layer communication graph satisfies the following assumption:

Assumption 6.1.5. The control-layer communication graph G. has a directed

spanning tree with the node i = 0 as the root.

As a result of Assumption 6.1.5, we know that H. = 0 such that 0 < p. <
tea < ... < pen where g denote eigenvalues of H, for [ € {1,2,..., N}.

We now clarify our multi-layer viewpoint in Figure 6.1 for a typical physically
interconnected multiagent system. In this figure, the black rectangle represents
the agent-layer multiagent system, and the blue rectangle shows the control-layer

communication.
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Figure 6.1: An example of the proposed structure where all agents and agen-
t-layer physical coupling are shown in black; all decoupling control systems and
control-layer communication are given in blue; letters a and c¢ stand for agent
and controller; and agent-controller correspondence are clarified by dashed red
lines.

Similar to the results of Chapter 4, we consider a hierarchical control structure
where a local controller stabilizes the i** agent’s local model, and a global decou-
pling controller cancels the adverse effects of the nonlinear modeling uncertainties
¢; in (6.1). We first write u; = u; + u; where the local control signal w; can be
designed using any control techniques such that, for example by using the optimal

LQR strategy, u; = K;x; results in a new model:
¥y = Az + Bui + B fi(2it) + Bugs(yi; t) (6.3)

where A = A'+ B,, K; € R"™*"* denotes a Hurwitz matrix (see Assumption 6.1.1).
In the rest of this section, we only focus on designing the global control signal u;
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such that a multiagent of agents (6.3) asymptotically behaves as N + 1 decoupled

dynamical systems:

We are interested in distributed decoupling controllers (vs. centralized and

decentralized control systems). Thus, we reformulate this decoupling task and

propose a leader-follower consensus problem:

lim (z;(t) — zo(t)) =0 (6.5)

t—o00

where the new control objective is finding the control signals ug and wu; that
simultaneously stabilize the uncertain leader dynamics, i.e., g — 0 (leader is
coupled to followers over G,), and derive all followers’ states x; to the leader state
xg, l.e., x; = o as t — oo (followers are coupled to each other and to the leader
over G,). This objective should be achieved under any initial state conditions

while the fixed graph G. can be different from the fixed graph G,.

Remark 6.1.2. While A denotes a Hurwitz matriz by itself (e.g., after using a
local controller): (a) the Assumption 6.1.1 indicates a stabilizable pair (A, By,)
as well, and (b) the entire multiagent system of (6.3) can be unstable due to the

state-dependent coupling terms.

6.1.1 Distributed decoupling based on the smallest posi-

tive eigenvalue of the control-layer graph

In order to achieve the objective (6.5) in a multiagent system of (6.3), we

propose the following control signals ug and wu;:
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wo = Kozo  w; = K( Y (x; — a;) + bi(z; — 0)) (6.6)

jeNTs
where Ky € R™*™ denotes the leader’s control gain, K € R™*™ represents
the followers’ control gain, and ./\fff indicates the neighboring set of i** follower
over G.¢r. We introduce the leader-follower tracking error e; £ 1, —zo and find the

following error dynamics:
é; = Ae; + Bpu; + By Fi(uo, 20, 2i5 ) + BuGi(Yo, yis t)

where for i € {1,2,..., N}. Now, the followers’ control signals can be rewritten as

follows:

U; = K( Z (ei — €j> + bzel)
JENTT
Here, we have defined:

F, = fi(zi;t) — folzo;t) —uo  and  Gi(yo,yi; t) = 9i(yis t) — go(yo; t)

Furthermore, let e = col{e;} be the augmented leader-follower tracking er-
ror, u = col{w;} augmented control input, F(uo, z;t) = col{F;} = f(z;t) — (1y ®
L) fo(20; 1) — (1N ® 1, )up the augmented matched uncertainty where z = 21, 2717
for z = col{z}, and G(y;t) = col{G;} = g(y:t) —(An® 1y, )g0(yo; t) the augmented
unmatched uncertainty where y = [y¢, y*]* for y = col{y;}. Thus, we find an aug-

mented multiagent system with some physically coupled terms F' and G over G,:
¢=Iy®A)e+ (In® By)u+ (Iy ® By)F + (In ® B,)G

We also decompose the control signal u = (H. ® K)e as follows:
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u=H.®1I, )y, and v= Iy K)e.
Now, we find a revised version of the augmented error dynamics:
ée=In®Ae+ (H.® Bp)v+ (In® Bp)F + (In ® B,)G (6.7)

where, in this new model, the coupling appears due to both G, and G.. We rewrite

these error dynamics as follows:

¢ = Ae + B,v + B,,Ev + B,,F,, + B,G (6.8)

Where A = IN ®A, Bm == ]N ®M01Bm7 Bu — ]N®Bu7 a’nd E = ET = (LHC_

Hel
In) @ I, = 0 is satisfied; and F, = - F.

Hel

Now, we introduce an augmented model that includes all leader and leader-

follower tracking error dynamics:
£ = A& + Byym 4 BnET + B F, + B,G, (6.9)

where £ = [zl eT]", 7 = [ul V)T, F, = [fg,F#T]T, and G; = [¢¢,GT]"; and
A = Diagy{[A, A]}, By, = Diagy{[Bm, Bn]}, E = ET = Diag,{[0, E]} = 0, and
B, = Diagy{[B., B.]}.

We mention that f; and g; are such that the origin is an equilibrium point of
the unforced (6.9) setting 7 = 0. Moreover, along with the partitioning of £, in

this section, (6.2) can be rewritten as follows:

20 =—(I ®C,)e z2=(H,®C,)e
yo = — (b @ Cye y=(H,®Cye
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Therefore, we find the following quadratic upper bounds on the nonlinear
functions F; and G, in (6.9):
FT'RF, <eTRe+ulR"ug=: F},RF,y (6.10)
GTSG, < eS¢ =:Gl,;SGu
where we emphasize that FtJJ;/IRFtM is a quadratic function of ug and e, and
GT,SGyy is a quadratic function of e. Also, R = Diagy{[Ro, R]}, Ry = R > 0,
R=(Iy®R), R° = (Iy ® R®), R® = R¢ + R+ R§, Rg = Q0 Amaz (b.0T)CT Ry C.,

dop? 200 N Amaz (babT
Re = XManOTRCO. Re = 200NAmaelbebs) 0T Ry and R% = N R Moreover
f w4 z ’ fo o z ) 1 )

cl cl

g = Diagb{[So,S’]}, So = Sg — 0, S = (IN ®S), Se = (IN & Se) where
S¢ = S5+ 85+ S5, S¢ = ﬁo)\max(babaT)CgSoCy, Se = ZB,uZNCyTSCy, and 5§ =
QNBO)\max(babg)CyTSCy. (See Assumptions 6.1.2 and 6.1.3, Fact 2.1.1, and prop-

erties of Kronecker product.)

We propose an auzxiliary leader-follower multiagent system:

£ = A¢ + B,,m + Byo (6.11)
where the fictitious control signal o = [of,07,...,0%]7 € RO+ deals with

the augmented unmatched uncertainty G;(y;t). In the rest of this subsection, we
provide some basic results and definitions, and propose Theorem 6.1.1.

Let Ky = —Ry'BL Py and Ly = —S;;' BI' Py, be the leader’s control and fic-
titious control gains, respectively, where Pj; denotes the positive definite solution

of an algebraic Riccati equation (ARE):

ATPy + PyA+Qq — PU(B,Z;Rflle + BESfllBu)PU =0 (6.12)
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where Q1 = Qo = QF = 0, Ry = Ry + R*™, and S; = Sp. We use Qo, Ry, and Sy
as three design matrices.

Also, let K = —uclRl_leﬁPlf and L = —S;lef Py; be followers’ control
and fictitious control gains, respectively, where P;¢ denotes the positive definite

solution of another ARE:
ATP 4+ Py A+ Qi — Plf(ulemR;;B;Q + B{Sl;lBu)Plf =0 (6.13)

in which Qi = @ + R°+ S°, Riy = R, and Siy = S. Similar to the previous
paragraph, Q = Q7 = 0, R, and S are three design matrices.

In order to ensure the existence of a positive definite stabilizing solution
for each ARE, the pair (Cy,, A) should be observable where CTLC), =: Q.
and x € {l,f}. Note that Assumption 6.1.5 and Remark 6.1.2.a already im-
ply stabilizable pairs (A, [B,, B,]) and (A, [ttc1 By, By]). We further define R™ =
A0 Amaz(bab} )CT R™C., R™ = Diag,{[R™,0]}, and @ = Diag,{[Qo, Iv ® Q]}.
Now, we characterize some sufficient conditions in order to achieve the distributed

decoupling in a physically coupled multiagent system of agents described by (6.3).

Theorem 6.1.1. Let ug = Koxg and o9 = Loxg be such that the minimum
cost (6.14) is achieved subject to an auxiliary system (6.15) while satisfying the
condition (6.16). Also, fori € {1,2,..., N}, let v; = Ke; and o; = Le; be such that
the minimum cost (6.17) is achieved subject to auziliary systems (6.18) while the
condition (6.19) is satisfied. Then, the exponential distributed decoupling problem

1s solved implementing two static feedback gains Ko and K.

Jo(l’(](())) = mln/ <$5Q11$0 + UgRllUQ + Ugslon)dt (614)
0

u0,00
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i‘g = AJ]O + BmuO + BuUO (615)

Qo — Kl R“Ky —2LYSoLo = 0 (6.16)
Ji(€i(0)) = min /Oo(eiTQlfei + vl Ryjvi + o Sypoy)dt (6.17)
vioi Jo
é; = Ae; + 1 Bpvi + Byo; (6.18)
Q- R*—2L"SL - 0 (6.19)
Proof. This proof is given at Subsection 6.5.1. n

6.1.2 Distributed decoupling based on the largest positive

eigenvalue of the control-layer graph

We start this subsection from (6.7) for the proposed decoupling control algo-
rithms in (6.6). However, now, we define F), = ﬁF and rewrite the augmented

multiagent system’s dynamics as follows:

¢ = Ae + Byv + B, Ev + B, F, + B,G

where B,, = Iy ® jten Bm. Also, E = ET = (:‘; —Iy)®1I,, < 0 where eigenvalues

of E belong to the interval (—1,0] using the properties of Kronecker product in

Chapter 1. We introduce the augmented leader-follower dynamics:
£ = A¢ + B,,7 + B, ET + B, F, + B,G, (6.20)

where F, = [f¢, F/]" with a new F), that hs been introduced in this Subsec-
tion, and Diagy{[0, —Inn.]} < E = ET = Diag,{[0, E]} < 0 where eigenval-

ues of E belong to (—1,0]. Also, we find two quadratic upper-bounds similar
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to (6.10) with some new matrices R® = apAmaz(babl)CT RoC, + —2—(2ap2y +

Hn
0N e (bab))CTRC:, R = 4R,

We propose the following leader-follower auxiliary multiagent system model:

&= A¢ + B, + B,b0 (6.21)
where the fictitious control signal 6 = [02,67,...,0%])7 € ROV handles the
effect of Gy.

Before proposing the main result of this subsection, let Ky, = —R;B};Pm,

Ly = —S;B;FP% Qo= Q= Qg > 0 be a design matrix, Ry = Ry + R" where
Ry = ROT > 0 is a design matrix, Sy = Sy = Sg > 0 be a design matrix, and Py

be the positive definite solution of an ARE:
AT Py + PyA+ Qu — Py(BL Ry By + BL'Sy,' B,) Py = 0

Also, let K = —/LZNR;J}BZ;PQJC, L= —S;le?;PQf, Q2 = Q + R° + S where
Q=Q" = 0, Ryy = R=R" > 0 be a design matrix, Soy =S = ST = 0 be a

design matrix, and P,y be the positive definite solution of the following ARE:
AT Pys + PosA+ Qop — Po(pZy By, Ryf B + By, Sy By)Pay = 0

Existence of a stabilizing solution for each ARE follows the discussion in Sub-
section 6.1.1 (e.g., for the pair (A, [tten Bm, By]). Note that the matrices R™ =
QoA maz (00D )CT R*C, and R = Diagy{[R",0]} were defined previously. Next

theorem provides the main result of this subsection.

Theorem 6.1.2. Let the leader’s control signal uy = Koxo and the fictitious con-

trol signal 6y = Lozo be such that achieved the minimum cost (6.22) subject to the
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auziliary system (6.23) while the condition (6.24) is satisfied. Fori € {1,2,..., N},

let the followers’ control signals v; = Ke; and fictitious control signals 6; = Le;

be such that the minimum costs (6.25) are obtained subject to the auxiliary sys-

tems (6.26) while satisfying the condition (6.27). Then, the exponential distributed

decoupling problem is solved implementing two static feedback gains Ko and K.

Jo(x0(0)) = 121913 /Ooo(ngmxo + ugRgluo + GOTSngO)dt
o = Axg + Bnuo + Bubo
Qo — KIR“Ky —2LYSoLo = 0
Ji(e:(0)) = rymen /Ooo(engfei + v Rogv; + 0] So40;)dt
é; = Ae; + pen By + Bub;

Q—R*—-2K"RK —2L"SL = 0

Proof. This proof is provided at Subsection 6.5.2.

6.1.3 Fully distributed decoupling algorithm

(6.22)
(6.23)
(6.24)
(6.25)
(6.26)
(6.27)

]

Up to this point, although these distributed algorithms can be locally im-

plemented, all designs depend on the availability of global knowledge about the

multiagent system. To clarify the word “global knowledge”, we note that smallest

and largest positive eigenvalues of a graph Laplacian are unknown unless after

being aware of the entire graph topology (which is a global knowledge). Thus, we

propose the next corollary to have a fixed-gain fully distributed decoupling system
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based on the result of Subsection 6.1.2. This way, we are able to independently
design the distributed decoupling system and control-layer communication graph
and, independently, take the advantages of both control and optimization ideas

in Figure 1.1.

Corollary 6.1.1. Based on Theorem 6.1.2, a distributed decoupling system is
achieved whenever pqay is substituted by 2N — 1, piey by 2N — 1, and \pag(bab?)

by N where N + 1 denotes the number of agents in the coupled multiagent system.
Proof. This proof is given at Subsection 6.5.3. [

Remark 6.1.3. In Corollary 6.1.1, we do not need any global information about
G. and G, other than the number of agents N +1. In the rare case of an unknown
number of agents, as can bee seen in the proof of this corollary, we can substitute

N by an estimated upper-bound N (i.e., N > N ).

6.2 Distributed stabilization of linear multiagent
systems with state and input couplings

The results on the distributed decoupling algorithms are based on the avail-
ability of agents’ absolute measurements (in hierarchical manners). This might be
unrealistic in some circumstances, particularly, while agents might be willing to
cooperatively contribute toward a common global task completion (by providing
some relative information) they could be worried about their own privacy (by do
not sharing their absolute measurements to any control operator). Therefore, in

this section, we assume having access to the absolute measurements of a set of
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only few agents (possibly just one agent), and address the distributed stabilization
problem through a revised formulation. Compared to the previous sections, now
we also consider the potential physical coupling terms in the control input gain
matrix B of the model (5.1). Thus, in this section, we introduce a linear time-

invariant multiagent system with heterogeneous coupled state and input terms:

z; = Ax; + Bu; + B,D; Z (wi —u;) + B F; Z (; — ;) (6.28)
jeNau jeNu
where N and N denote the neighboring set of i agent over agent-layer
coupling graphs G,, and G,,, respectively; A € R" Bl B, € R"™*™  and
B, € R and F; € R™*"= and D; € R™*™ uniquely characterize i*" agent?.
We assume that B, and B, are not in the range space of B,,.

In this section, we focus on heterogeneous coupling terms over directed agent-
layer coupling graphs G,, and G,, that can be different from each other (i.e.,
N# e {N N}). We assume that at least one agent is providing its local
state information to the distributed control system, and only lumped relative-
state information is measurable for all other agents. Moreover, for the control

design purpose, the following Assumption is satisfied in the rest of this section:

Assumption 6.2.1. The pair (A, By,) is stabilizable. Matrices D; and F; are
unknown, but satisfy max;||D;lle =: ||D||xm and max; ||Fi|le =: [|[F||lm for i €

{1,2,..., N}. Also, both graphs G.. and G, are unknown, directed in the general

2We only need to assume that By; = B,D; € R™%*™ and Ay; = B,F; € R%*"_ Other
than this, without loss of generality, we have selected n,, as the internal dimension for both of
these matrix products in order to minimize the number of new parameters and symbols.
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sense, and each one includes at least one connected component; max; || Laz|l2 =:

| Lozl v and max; | Lawll2 =: [|[Laullm are known.

Now, for a partially-heterogeneous asymmetrically interconnected multiagent
system of agents (6.28), the distributed stabilization problem is formulated as

exponentially achieving (6.29) using some lumped relative-state information:

limz =0 (6.29)

t—0

which also indicates lim;_,o x; = 0 for agents i € {1,2,..., N}.

6.2.1 Main Result

In order to achieve the distributed exponential stability (6.29) for a multiagent
system of agents (6.28), we add a virtual leader to the interconnected multiagent

system (6.28) (this name is taken from [152]):
.fil'o = A.xo + BmUO (630)

that is indexed by i = 0; and xy € R", uy € R™, and (A, B,,) realizes the
nominal dynamics of (6.28). We refer to this virtual leader as “leader” and to
all agents i € {1,2,..., N} as “followers”, and propose the following distributed

control algorithm over the control-layer communication graph G.:

uy = Koxg

u;, = K(ZjENicf (i — x;) + b (x; — x0))

(6.31)

where ./\/;Cf denotes the neighboring set of i agent over G/ corresponding to all

followers. Note that G. denotes a special directed graph where all followers com-
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municate over an undirected graph G/, that is a subgraph of G, and can be found
by removing the leader and all directed edges originating from that node. Now,
we need to design a Ky € R™*"* that stabilizes the leader, and a K € R™*"* that
ensures the leader-follower tracking errors e; £ x; — xo exponentially converge to
zero for all i € {1,2,..., N}. We also emphasize that G, can be different from G,
and G,, which are unknown. Moreover, note that the (virtual) leader should be
connected to those followers that provide their local state information, and those
particular followers should make a leader-follower graph G. which includes a di-
rected spanning tree. Since the control-layer graph G. can be arbitrarily designed,
this connectedness requirement does not restrict the applicability of our design.

We rewrite (6.28) as follows:

where §,;(u) = D; Z].GN_M (ui —u;) and d,(z) = F; ZjeNgz(:l?i — z;). Figure 6.2
shows an example for the final closed-loop multiagent system (6.30)-(6.32).

We now find the leader-follower tracking error dynamics:

éi = Aei -+ Bmuz -+ Bu(5m (U) + B:p6m<€) + Bm5uOi(u0)

Oui(u) = Di ) jenan (Ui — ;)

(6.33)
Ooi(€) = Fi ) e (€i — €5)
dugi(uo) = —up
and control signals:
Uy = K()ZL'O
(6.34)

u; = K(ZjEJ\/'ff (ei — Ej) + bfez)
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Figure 6.2: An example for the proposed two-layer structure by (6.30)-(6.32).

Letters a and c stand for agent and controller, respectively. Blue: agen-

t-layer items, green arrows input couplings, and magenta arrows state cou-

plings; Black: control-layer items (note that the virtual leader agent ag is part

of the control-layer communication graph and is shown in black). Dashed red

lines: agent-controller correspondence. Moreover, the gray nodes c¢; and co

provide their absolute state information to the distributed control algorithm.
where we should mention that the subscript ; is added to d,,;(ug) only for the
purpose of consistency in notation. We also change the input argument of d,; from
x to e in order to simply emphasize this change of variables while the subscript ,
shows the origin of this “state coupling” term d,;(e).

We define e = col{e;}T and find the coupled term u = (H.® K)e as followers’
control signals where this coupling appears because of having a “distributed”

control algorithm in (6.34), and H. denotes the reduced-order Laplacian matrix

of G.. We propose the next decomposition:

u=H.® I, )v v=(Iy®K)e (6.35)
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where v = col{v;} € RV™. Now, we find an augmented tracking error model that

includes the effect of G. as well as G,,, and G,

¢ = Ae+ B+ B Env + By + Bpdy + Buyou,
0w = D(LawMe @ In, )V
0 = F(Low ® Iy, )e
Oy = —(In ® I, )ug

where A= IN®A, Bm = [N®ﬂclea Em = (Ztcl _]N)®[nu> Bu = IN®Bu7 Bx =
Iy ® By, D = diag{ Dy, ..., Dy}, and F = diag{F}, ..., Fx}. Also, §, = col{d.:},
0y = col{d.;}, and 0., = col{dyyi} = —(Iny ® I,,,)ug; and L,, and L,, denote the

Laplacian matrices of G,, and G,,, respectively.

We further propose an augmented dynamical system of all leader and followers:

§ = Aé+ Bno  + BuEno + Bydy + Bydy + Buyou, (6.36)
—— ~ ~
Nominal decoupled dynamics Coupling term

where A = diag{A, A}, B,, = diag{Bm, By}, En = diag{0, E,,}, B, = [0, BT]",
B, =1[0,B1", and B,, = [0, BL]"; and ¢ = [z, e"]7, and o = [uf,v7]". This
model is divided into a decoupled part and a coupled part. The decoupled term
is partially affected by G, due to the presence of fi. in B,,. The coupling term
includes F,, that interconnects followers to each other and to the leader over G,;
0, and 0, that couple some followers to each others over G,,, and G,., respectively;
and 9,, that couples all followers to the leader and appears after introducing
the leader-follower error dynamics. Some properties of these coupling terms are
explained as follows:

Property 6.2.1. The following properties hold by multiagent system (6.36):
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o [, = ET = diag{0, (:’:‘i —Iy)®1,,} is a “positive semidefinite” matriz,

® 0y, 0y, and 0,, satisfy the following inequalities with known quadratic up-
per bounds 535’(% < ISy =: 53M§5HM, 5;W§x < eTWee =: 5ZMW5JUM7
and 0L Vo, < ufV™uy =: 6L ,Viym where X = Iy @ X and X €
{S,W,V,S*, We}. We introduce S = slI,, for s > 0, W = wl,, for
w >0, and V = VT = 0 as three design matrices. Additionally, we find

S* = 1N IDIRAN Laull s In,, W = FI3 | Laallipwln, . and Vo = NV.

In the rest of this section, we focus on finding an augmented control signal
o that stabilizes (6.36) (i.e., solves (6.29)). At first, we propose an augmented
auxiliary model:

£ = A¢ + B0 + B,m + B0 + Buop (6.37)

where the fictitious control signals 7 = col{7;} € RY™ 0 = col{0;} € RN and
p = col{p;} € RN™ are added to respectively handle the coupled modeling uncer-
tainties d,,, 0, and d,,. Now, in Design procedure 6.2.1, we provide a systematic

approach to find o, 7, 6, and p.

Design procedure 6.2.1. Find the LQR control signal ug = Kyxg that achieves
the minimum value Jy in (6.38) (subject to (6.39)), where Royy = Ry + V"™ ; and

Qo= QL = 0 and Ry = R} = 0 are two design matrices:

J()(J?()(O)) = mm/ (ngoxo -+ UgRoqu)dt (638)
0

uo
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Also, find v; = Kgye; that result in (6.40) (subject to (6.41)) fori € {1,2,...,N},
where v; = (v, 75,07 pf1T; Ry = R+ S5, and Q; = Q4+ W¢ and Q = QT = 0

and R = RT = rl,, = 0 for r > 0 are two design matrices in addition to

S=8T=0 W=WT=0, andV =VT = 0 in Property 6.2.1:
i Jo

As a result, we find Kg = —RglerTnPoxg, and K,y = =Y 'BTP for the aggregated
matrices B = [fic1 By, Bu, By, By] and Y = diag{ Ry, S,W,V'}. Equivalently, v; =
Ke;, 7, = Ge;, 0; = He;, and p; = Le;; with K = —uclRJTlB%P, G=-S"'BTPpP,
H = -W™'B'P and L = —V'BLP. The matrices Py = P} = 0 and P =
PT = 0 are the solutions of the algebraic Riccati equations (6.42) and (6.43),
respectively:

ATPy+ PA— PyBn Ry By, Py + Qo = 0 (6.42)

AP+ PA—-PBY'BTP+Q;=0 (6.43)

Stability and optimality of this design for an auxiliary multiagent system
model (6.37) are guaranteed based on the LQR optimal control formulation (with
respect to a global cost function that will be shown in Property 6.2.2). Note that
the pair (A, B,,) represents a stabilizable state space realization (6.39). Thus,
existence of the stabilizable solution Py in (6.42) is guaranteed whenever the pair
(Qé , A) is observable where @y = QéTQé . Furthermore, due to stabilizability of

(A, B,,) and because . # 0, the pair (A, B) provides a stabilizable state space
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realization (6.41). Hence, existence of the stabilizable solution P in (6.43) can be
similarly discussed for a state weighting matrix Q).

Let us rewrite (6.37) as follows:
¢ = A¢+ BB (6.44)

where 3 = [0, B]]T denotes a vector of all control signal o and fictitious control
signals 85 = [77,67, pT|7: and B = [B,,, Bs] and By = [B,, By, By,]. Moreover,
let Qf = diag{Qo, Q;} where Q; = Ix ® Qy, Yy = dz’ag{fx’f,g, W, V}, ]%f =
diag{Ros, R;}, and Ry = Iy ® R;. Now, we characterize some main properties
of the closed-loop auxiliary system (6.37) using the control and fictitious control

gains of Design procedure 6.2.1.

Property 6.2.2. Let § = [* be the aggregated control signal that results in the

minimum augmented cost function J(&(0)) in (6.45) subject to (6.44):

T(€(0)) = min /0 T(€0¢ + 5TV B (6.45)

The corresponding Hamiltonian function to this LQR cost function minimization

problem s defined by:

H=¢"Q+ 8"V + (g—‘g)T(Ag + BA). (6.46)

Then, the equalities in (6.47) and (6.48) are satisfied as optimality conditions for
the infinite horizon LQR control problem (6.45) subject to LTI dynamics (6.44)

by setting H=0 and ‘?d—g = 0, respectively (see Sec. 3.11 in [109)):
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rQse+ 8YY B+ (Z—‘é)%& +BB)=0 (6.47)

oJ

25TY+<35

Y'B=0 (6.48)

Remark 6.2.1. We rewrite (6.47) as

¢T'Q¢ + 0" Ro + 77St+ 0TWO + p"Vp + 6186, + 6LW6, + 6L Vi,

+(3—J) (A€ + B,,o 4 Byt + By + By,p) = 0

Also, based on (6.48), we find the following four equalities:

S S S O

Now, we provide a sufficient condition that ensures the global exponential
stabilization of an interconnected multiagent system of agents (6.28) with state-

and input-coupled modeling uncertainties using the distributed algorithm (6.31).

Theorem 6.2.1. The distributed control algorithm (6.31) solves the exponential
stabilization problem (6.29) for a multiagent system of agents (6.28) with asym-
metric heterogeneous state- and input-coupled modeling uncertainties, if the con-
trol gain K and fictitious control gains G, H, and L of Design procedure 6.2.1

satisfy the following condition:
Q+K'RK —2G"SG —2H"WH —2L"VL ~ 0 (6.49)

Proof. This proof is provided at Subsection 6.5.4. O
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Remark 6.2.2. Note that the communication graph G. has the same topology as
that of Section 6.1. Thus, a fully distributed version of Theorem 6.2.1 can be

established following the ideas of Section 6.1.

6.2.2 Simulation Verification

In this section, we verify the feasibility of our virtual leader-based distributed
control algorithm to achieve (6.29) for a multiagent system of four agents in Fig 6.2
(these agents are shown by blue circles). Each agent is modeled by a state space

realization (6.28) with the following state and input matrices:

0 1 0 0.02 0.01
B B
2 -1 1 0 0.9

where A is a non-Hurwitz matrix. In simulation, we assume that all agents are
in initial rest condition. However, at time ¢, = 25s, a perturbation in 3" agent
changes its state variables to z3(t,) = [10, 15]7.

We first assume that there is no distributed controller (i.e., remove all black
symbols in Fig 6.2) and local state information is available to each agent. We
design a local LQR control gain Kj,., such that each closed-loop local agent has a
stable state space realization with a Hurwitz matrix Ay = A+ B,, Kjpeq- Without
any agent-layer couplings, the 3" agent should damp this state perturbation, and,
furthermore, we expect no reactions in other agents because z;(t,) = 0 Vi # 3. In
order to show the insufficiency of this blind local design for the global stabilization

purpose, interconnection parameters and matrices D; and F; for i € {1,2,3,4} are
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Figure 6.3: Simulation result over the agent-layer coupling graph of Fig. 6.2

with 4 agents, where x;1 and x;2 stand for the first and second state variables of

agents (6.28) locally equipped with LQR controllers u; = Kjpeqizi to stabilize

the local (decoupled) dynamics ; = Az; + Bpu; for i € {1,2,3,4}. We do

implement the block control-layer symbols in Fig. 6.2 since we do not use any

distributed stabilizing systems.
chosen such that the interconnected multiagent system of locally stabilized agents
has two eigenvalues in the right half plane. As is depicted in Fig. 6.3, while only
the 3¢ agent is nominally perturbed, the entire multiagent system’s response is
unbounded due to the presence of agent-layer physical couplings. This indicates
the need for a multiagent system-level (distributed) stabilizing system.

Now, we assume that the previously designed local control gain K., does
not exist any more (i.e., we deal with locally unstable agents). Based on the
Design procedure 6.2.1, we design the control gain K together with all virtual and
fictitious control gains Ky, G, H, and L satisfying the sufficient condition (6.49).

The simulation result is presented in Fig. 6.4 assuming the same interconnection

matrices and excitation scenario as Fig. 6.3. It shows the entire multiagent system
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Figure 6.4: Simulation result after using the distributed stabilizing algorithm
in Design procedure 6.2.1 and Theorem 6.2.1 over the proposed structure of
Fig. 6.2. The simulation scenario is the same as Fig. 6.3; however, we no longer
use the locally stabilizing control gain Kj,eq.

has a stable behavior in response to the 3" agent’s perturbation at time ¢, = 25s.

This verifies the claim of Theorem 6.2.1.

6.3 Revisiting the results of Chapter 4

In Chapter 4, we designed two distributed decoupling algorithms for physi-
cally coupled multiagent systems. In those designs, the control-layer communi-
cation graphs were the same as the agent-layer coupling graphs. In Section 5.2,
the coupling (also communication) was described over an undirected graph. In
Section 5.3, we designed two distributed algorithms over a special type of directed

leader-follower graph. In Section 6.1, we discussed the need for a global knowledge
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in the distributed decoupling strategies of Chapter 4, and proposed a fixed-gain
fully distributed decoupling strategy in order to relax this requirement.

By following the steps of Section 6.1, it is possible to revise the results of
Section 5.3 and find two fixed-gain fully distributed decoupling algorithms. In
next corollary, we address the fully distributed problem for the state and output

feedback scenarios in Section 5.2 over an undirected (leaderless) graph:

Corollary 6.3.1. Based on the leaderless state and output feedback algorithms of
Section 5.2, the fixed-gain fully distributed decoupling problem is solved whenever

Ay is substituted by 2(1 — cos(§;)), and Ay by 2(N —1).

Proof. This proof is available at Subsection 6.5.5. [

6.4 Summary and bibliography

In this Chapter, we propose multi-layer distributed control structures for two
classes of physically interconnected multiagent systems. In Section 6.1, we con-
sider a class of partially-unknown Lur’e time-varying nonlinear multiagent sys-
tems where agents are coupled to each other by some state-dependent nonlinear
functions. These nonlinear functions are unknown but satisfy some known norm
bounded conditions, and the state-dependent interconnection is explained by an
(unknown) agent-layer coupling graph. Controllers are allowed to communicate
over a control-layer communication graph that can be different from the agent-
layer physical coupling graph. We propose two modified LQR-based formulations
and design some distributed decoupling systems using only relative-state measure-

ments. Furthermore, we re-think about the proposed formulation and develop
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a fixed-gain fully distributed LQR-based decoupling system without any global
information about graph topologies. This enables us using the network design
techniques to optimize the communication topology independent of the control
protocol at a later time (and also, in each start, replace the control-layer commu-
nication network without being worried about its effect on the distributed control
algorithm’s gains).

In the distributed decoupling control, we assume that agents’ absolute infor-
mation is measurable. This is not an unrealistic assumption as has been justified
in [11], [58], [66], [79], and [151]. However, in some instances, agents might not be
willing to share their absolute information to the distributed control-layer while
participating in a cooperative task completion by sharing their (lumped) relative
information in each neighborhood. In Section 6.2, we propose a class of multiagent
systems with unknown physical interconnections that appear through some het-
erogeneous coupled-state and coupled-input terms in the state space model which
are described over two different unknown coupling graphs. In fact, this class of
multiagent systems resembles the asymmetric large-scale systems with unknown
coupling terms. We assume that only a few agents provide their absolute state
information, introduce a distributed stabilization problem, add a virtual leader
(this name is taken from [152]), re-state the problem as a leader-follower consen-
sus task, and systematically design the distributed control gain using the modified
LQR approach for an auxiliary multiagent system model. We show that the global
exponential stability of the closed-loop system is guaranteed if a sufficient condi-

tion is satisfied.
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6.5 Appendix: proofs

We have proposed the main results of this chapter through several theorems
and corollaries. For the sake of readability, we have not discussed their proofs
within the main body of this chapter. In this Appendix section, we go through

these proofs.

6.5.1 Proof of Theorem 6.1.1 (page 224)

We aggregate (6.15) and (6.18) for ¢ € {1,2,..., N}, and find (6.11). More-
over, an aggregated leader-follower cost function can be obtained based on (6.14)

and (6.17):
J(E(0) = / (706 + 7T Rr + 0780 + FL RE s + Gt SGony Yt
0

The optimal control signal 7 = 7* and fictitious control signal ¢ = o* of
this theorem achieves the minimum cost J(£(0)) subject to (6.11). We need to
show the exponential stability of the closed-loop system (6.9) in the presence of
modeling uncertainties by implementing only 7 (i.e., without the fictitious control

signal o). We introduce the following candidate Lyapunov function for ¢ > 0:

where P = diag{ Py, Pis}, Piy = Iy ® Py, and Py and Py; are respectively the

positive definite solutions of AREs (6.12) and (6.13). We notice that V(£(0)) =

J(£(0)) = min,, [{T Q¢+ 7T Rr+ 0T So+ FL RE + Gy SGur}dt = 0 is sat-
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isfied subject to the augmented auxiliary system (6.11). The following Hamilton-

. . . . _av(e).
Jacobi-Bellman equation holds substituting J¢ by Vi = %.

min{¢"Q¢ + 7" Rr + 0" So + F REn + G SGoy + VI (A& + Byr + Buo)} = 0

Consequently, implementing the optimal gains Ky and K, and fictitious gains Lg

and L, the followings are satisfied by triple (&, 7,0):

TQ¢ + 7TRr + 0TS0 + FEMRF,:M + GrSGias + VgT(fl{ + B, 7+ Eua) =0
21" (R+ R+ V!B, =0
2075 +VIB, =0

Now, the time deviation of this candidate Lyapunov function along the uncer-

tain trajectory (6.9) results in the following inequality:

V(E) < —€TQ¢ 4207 So + ul RFwouy + eT R™e
< -2l (Qy — KIR“ Ky — 2LE Sy Lo)zo — Zﬁil{e?(Q — R™ —2LTSL)e;}

where, in order to find this upper-bound on V', we need to use =277 (R+R™)ET =
—20TREv <0 and F'(R+ R")F, < Fh RF;y + €T (Iy © R™)e.

Because (6.16) and (6.19) are satisfied, we find V' < 0. Now, based on
the Lyapunov Theorem 2.3.1, the closed-loop Lur’e nonlinear multiagent sys-
tem (6.9) (subject to the modeling uncertainties) is globally asymptotically sta-
ble?. We know a1 = min(Apin (Pi1), Amin(Pif)), az = maz(Apmaz(Pi)y Amaz(Piy)),

3Note that, since there is no hidden “undamped” mode in the sense of Kalman decomposition,
asymptotic stability around the equilibrium point origin is achievable for this type of systems.
(See Figure 2.2.)
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az = min(Apin(Qo — KFR“ Ky — 2LY SoLo), Amin(Q — R™ — 2LTSL)), and b = 2
to prove the exponential stability based on Theorem 2.3.2. Finally, based on the
proposed reformulation of this section, we conclude that the distributed decou-
pling of agents (6.3) in the presence of mixed matched and unmatched unknown
nonlinear couplings is achieved over two fixed graphs G, and G., and using two

static gains Ky and K.

6.5.2 Proof of Theorem 6.1.2 (page 226)

We aggregate (6.23) and (6.26) Vi € {1,2,..., N}, and find (6.21). More-
over, the aggregated leader-follower cost function can be obtained based on (6.22)

and (6.25):
J(£(0)) = / {7Q¢ + 7" Rr + 6750 + FL,RFE, + GL,SGL Yt
0

We know that the optimal control and fictitious control signals 7 = 7* and 6 = 6*
achieves the minimum J(£(0)) subject to (6.21) such that the Hamilton-Jacobi-
Bellman equation min, ¢ {¢7 Q¢ +77 Rr+07 S0+ Fi REn +Gh SGh Y+ JE (Ag+
B, 7 + B,0)} = 0 is satisfied where Je = 8‘(;—2?). In the rest, we show that,
in the presence of nonlinearly interconnected modeling uncertainties, the closed-
loop system (6.20) will be stabilized using only 7 (i.e., without implementing the

fictitious control signal 0).

We introduce a candidate Lyapunov function for ¢t > 0:



V(£(0)) = J(£(0)) = min / T{ETQE + 7T R + 0780 + Fh RFg + Gh,SGH, Yt
7 Jo

subject to (6.21) (where V(£(0)) = J(£(0))). Hence, the control and fictitious
control gains of this theorem are such that the triple (¢, 7, 0) satisfies the following

three equalities:

§TQ6+ 7T RT + 0750 + F} RE\ + GH,SGh, + VI (A + Byr + Buf) = 0
27"(R+ R)+ VIB,, = 0
2075+ VIB,= 0

Now, along the uncertain trajectory (6.20), we find:

V(€) < —a3(Qo— K§ R" Ko — L§'SyLo)o
— SN eT(Q - R —2KTRK — 2L SL)e;

i=1"1

where we have used the definition of E, given by (6.20), to find =277 (R+R")ET <
20T Ru.

We know that V(£) < 0 whenever the conditions (6.24) and (6.27) are satisfied.
Therefore, based on the Lyapunov Theorem 2.3.1, and recalling the fact that there
is no hidden undamped mode (see the proof of Theorem 6.5.1), the origin of closed-
loop multiagent system (6.20) (with interconnected nonlinear modeling uncertain-
ties) is asymptotically stable. If we set a; = min( A (Amin(Par), AminPay)), a2 =
max(Amaz (Par), Amaz (Paf)), a3 = min( Ay, (Qo — KOTR“OKO - LgSOLO), Amin (Q —
R™ —2KTRK — 2LTSL)), and b = 2 in theorem 2.3.2, we can prove the expo-
nential stability of the origin. Equivalently, based on the proposed reformulation

of this section, we conclude that the distributed decoupling of agents (6.3) is also
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guaranteed in the presence of mixed matched and unmatched unknown nonlinear
couplings is achieved over two fixed graphs G, and G., and using two static gains

Ky and K.

6.5.3 Proof of Corollary 6.1.1 (page 228)

Based on the Gershgorin disk Theorem 2.1.1 we know that p,y < 2N — 1,
peny < 2N — 1, and A\pae (b)) < N. Still all eigenvalues of the symmetric matrix

E = ET = ((z3= — Iy) ® I,,.) in (6.20) belong to the interval (—1,0] (a zero

eigenvalue exists only if p.y = 2N — 1). Therefore, in the proof of Theorem 6.1.2,

the inequality VETBmET < 20T Ry is still satisfied. Thus, the rest remains valid.

6.5.4 Proof of Theorem 6.2.1 (page 237)

We already have designed the required control gain K in (6.31) for a multiagent
system of (6.28). Moreover, we do not need to “physically” implement the leader’s
controller ug, because it is a virtual agent. Thus, the main claim of this theorem
is about globally achieving exponential stability of the closed-loop multiagent
system in the presence of coupled modeling uncertainties 6, and 4, in (6.28),
without implementing the fictitious controllers 7, 6, and p as either physical or
virtual controllers. In order to prove this claim, we propose a candidate Lyapunov

function:

Q(¢) =€ (1) PE(t) = 0 (6.50)

where P = diag{ Py, P}, P = Iy ® P, and Py and P are positive definite solutions
of AREs in Design procedure 6.2.1.
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In order to use (6.50) as the required Lyapunov function, we need to find
its time deviation along the uncertain trajectory (6.36). We use the fact that
Q(£(0)) = J(£(0)) is satisfied as a boundary condition and J(£(0)) is given in
Property 6.2.2. Thus, using the gains in Design procedure 6.2.1, the triple the

conditions of Remark 6.2.1 are satisfied, and we find:

E1Qe+0" Ro+1" ST+0TWO+p"V p+00 1 S6uns+0 W oans+0m 11V Sugns+QEE = 0

(6.51)

where Q¢ = g—?, and € = A¢ + By,o + By + B,0 + B,,p based on the auxiliary

dynamics (6.37) (we re-emphasize that Property 6.2.2 is satisfied for the auxiliary
model (6.44) that is the same as (6.37)). Also, we know:

207R; + QI B, =0, 2r7S+QfB, =0

- - - - (6.52)
20°W +Qf{B, =0, 2"V +Q{B, =0

Consequently, along the uncertain trajectory (6.36), we write Q(€) as follows:

Q) < —€TQ¢ — oTRo 4 21781+ 20TWH + 29" Vp
— (74 0,)"S(T + 6u) — (050 S0unr — 0, 56,)
—(0+08,)"W(O+6,) — (61, Woan — 6TW6,)
— (0 + 0u0) "V (0 + Oug) = (00 2sVOuors — 0 3V Ougr)
< —2lQoxo — SN eT(Q + KTRK — 2GTSG — 2HTWH — 2LTV L)e;

=1 "1

which has been found based on some manipulations using (6.51) and (6.52), and

noting that —20"R;E,,0 = —20TRE,v < 0 (see Property 6.2.1.a and recall
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that Ry = Iy ® Ry = 0). Thus, whenever (6.49) is satisfied, we can show that
the exponential stability is achieved for a multiagent system agents (6.28) with
state- and input-coupled modeling uncertainties, and independent of the agents’
initial state values. (In Theorem 2.3.2, set az = min(Ain(Qo), Amin(Q + KT RK —
2GTSG — 2HTWH — 2LTV'L)). Other parameters are easy to find.)

6.5.5 Proof of Corollary 6.3.1 (page 241)

We use Gershgorin disk Theorem 2.1.1 to find that the maximum eigenvalue
of an undirected graph’s Laplacian matrix satisfies Ay < 2(N — 1). Additionally,
we know that its smallest positive eigenvalue satisfies Ay > 21(G)(1 —cos(%)) (see
Section III in [79] about the spectrum of graphs*). Here, n(G) denotes the edge
connectivity of G which is the minimum number of edges whose removal results
in a disconnected graph. For an unknown graph, we take n(G) = 1 and substitute
A2 by 2(1 —cos(%;)) to find a fixed-gain fully distributed algorithm. We note that
E = ((#‘;(%)) —In1)®1,,) = ((/;—2”’ —In_1)®I,,) = 0. Thus, the results of

Section 5.2 are still valid.

4This is a standard property of undirected graphs and was taken from Bollobas B, Modern
Graph Theory, Springer, 2002. However, we have found it in [79].
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Chapter 7

Distributed Tracking in
Physically Coupled Multiagent
Systems with Unknown Coupling

Structures

In Chapters 3, we proposed a one-step control-theoretic strategy to design
distributed consensus algorithms ensuring leaderless and leader-follower collective
behavior in multiagent systems in the presence of various sources of modeling
mismatch. While agents could reach agreement, in simulation, we showed that
ensuring leaderless consensus was not sufficient for the control of multi-vehicle and
multi-robot systems in the presence of (road profile or wind) disturbances which,
by persistently exciting the null space of multi-agent system’s collective dynamics

(agreement subspace), resulted in continuous increase in the vehicle’s speed. To
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overcome this issue using the same tool, in Chapter 4, we further developed sta-
tionary consensus algorithms by which all vehicles or robots could reach agreement
on velocity and position, and stop at a fixed point. In Chapter 5, we used this
tool for the distributed stabilization purpose in multiagent systems with linear
interconnected modeling uncertainties. In Chapter 6, we further generalized this
approach for the stabilization problem in multiagent systems with interconnected
nonlinear modeling uncertainties. The ideas of Chapter 6 could be viewed as
the two-layer distributed control of multiagent systems with uncertain agent-layer
model and a-priori known control-layer communication topology among agents.
In fact, although we did not use it, this latter layer provided a design degree of
freedom to improve the closed-loop interconnected multiagent systems’ behavior.

In this chapter, we consider robust cooperative tracking problem (vs. the sta-
bility problem in Chapters 5 and 6) for three classes of heterogeneous nonlinear
multiagent systems: first-, second-, and mixed first- and second-order agents in
which each subsystem is equipped with appropriate sensing, computation, and
communication technologies. Based on a cyber-physical viewpoint where assum-
ing a completely-known system is unrealistic, we propose a multi-layer frame-
work in which the physical agent-layer’s interconnected dynamics are described
by partially-known time-varying nonlinearities, and the control-layer should be de-
signed to track a reference command that is sent to only a few agents. We propose
three linear cooperative tracking problems and, by treating each inter-agent com-
munication link as a proportional gain (controller), reformulate them as control-
layer topology and communication strength co-design challenges to be addressed
based on the modified LQR problems with globally coupled cost functions. At
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first, we use matrix-algebraic tools and derive analytical solution for the control-
layer communication topology of multiagent systems with first-order agent-layer
interconnected dynamics. Then, for multiagent systems with physically-coupled
second- or mixed-order agents, we use this result and find closed-form solutions
for the multi-layer communication topology design challenges. In particular, we
show that each communication (sub-) topology of the control-layer can be de-
signed based on a nonlinear matrix equation that has the same structure as in the
first-order problem.

We also provide several algorithms to systematically find the structurally non-
symmetric graph topologies to be used in the proposed linear cooperative tracking
protocols. In addition to robust tracking, we prove the proposed multi-layer linear
distributed protocols guarantee an upper-bound on quadratic cost functions and
provide degrees of freedom to adjust tracking convergence rate as performance cri-
teria. For the existing (known) communication digraphs, we further unify these
results and propose systematic approaches to find bounds on the maximum tol-
erable nonlinear uncertainties in the agent-layer dynamics. We also investigate
guaranteed-cost control-layer design problems relying on the results of this chap-
ter.

The rest of this chapter is organized as follows. In Section 7.1, although we
rely on the preliminaries of Chapter 2, we introduce a few definitions and symbols
which are devoted to only this chapter. In Section 7.2, we propose the main results
of this chapter on multi-layer distributed tracking for first-, second-, and mixed-
order interconnected multiagent systems. In Section 7.3, we verify the feasibility
of these theoretical results through simulation studies. In Section 7.4, along with
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some relevant references from the literature, we provide concluding remarks on

the proposed viewpoint of this chapter.

7.1 Notation

The symbol [A]s,m = A+2AT represents the symmetric component of matrix
A, and exp denotes exponential function. For vector x € R"”, the element-wise
inequality x > 0 means all entries of x are positive scalars, and = > 0 represents
a vector with non-negative entries and at least one positive value. A nonsingular
M-matrix A = [a;;] € R"" is defined by the property A = sI,, — B where
s > p(B) and p is the spectral radius of B > 0 (all entries of B are non-negative
real numbers). Inverse of an M-matrix A satisfies A=! > 0. The principal square
root of matrix A € R™*", that has no eigenvalue in the left-hand side of complex
plane, is denoted by A'/? with all eigenvalues in the right half of complex plane.
The principal square root of a nonsingular M-matrix is a nonsingular M-matrix
with positive eigenvalues.

This chapter is based on the weighted digraph G(V, &, .A) with a node set
V, edge set &£, and weighted adjacency matrix A = [a;;] where a;; > 0 denotes
the weight of edge (j,i) € &€ for i,j € V, and a;; = 0 (this definition does not
admit self loops). A weighted digraph G is structurally symmetric whenever the
corresponding 0 — 1 adjacency matrix is symmetric. A 0 — 1 adjacency matrix can
be found if we replace a;; > 0 by 1 in the adjacency matrix A. A graph Laplacian
matriz L € RNnodes*Nnodes ig determined by Lij = —a;; and L;; = ijz"lod“ Qjj.

In particular, based on the reference-agent tracking problem of this chapter with
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Nyodges = N, + 1 and N, agents, G"* is abstracted by graph Laplacian matrix

L7 € RWat)x(Nat1) which ig partitioned as follows:

LM = 00 , H*=L'+B* B*=diag{b"}
_pa Ha
where the first row corresponds to the reference generator, £ € RNa*Na denotes
the inter-agent graph Laplacian matrix, b = col{b¢} € R« and b¢ represents the
directed edge from reference generator to i’* agent. Since, the condition L1y, = 0
holds in any graphs with N, nodes, we can completely characterize G™* based on
our knowledge about H® € R¥«*Na and, therefore, we name H® a reduced-order

Laplacian matriz (note that H,1y = b%).

Remark 7.1.1. We consider two agent- and control-layer graphs which are spec-
ified by sub- or super-script a and c, respectively. Fach layer may include various
graphs for the agents’ first and second state variables x and v that are respectively
distinguished by sub- or super-script x and v. Let x € {x,v}. We do not need
to completely know the topologies of G,, in the proposed algorithms; however, we
assume the induced 2-norms ||La|l2 > 0 are known scalars in which L4, € RV*N
denotes the Laplacian matriz corresponding to G, and N is the total number of
agents. The agent-layer graph Gu, visualizes interconnection in multiagent systems
and the physical neighboring set N includes the list of agents that share their
variables with the i*" agent. The control-layer digraphs G., are initially unknown

and left to be determined. O
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7.2 Main results

In this section, we first investigate first- and second-order distributed cooper-
ative tracking problems in physically coupled heterogeneous multiagent systems
with unknown time-varying nonlinear agent-layer dynamics. Then, we generalize
these results to the cooperative tracking for mixed-order interconnected multi-
agent systems. In each scenario, we first propose a control-theoretic approach
to design fixed control-layer communication digraph G, or G., with structurally
symmetric topologies. We then extend the result and systematically design struc-
turally non-symmetric fixed digraphs that guarantee robust stability and per-
formance of the closed-loop multiagent system. Finally, we discuss the maximum
tolerable interconnected time-varying nonlinear uncertainties by the given commu-
nication digraph to be used in the proposed linear distributed tracking algorithms,
and also investigate guaranteed-cost design challenges for the given upper-bound

on the linear quadratic cost function.

7.2.1 First-order cooperative tracking

In this subsection, we consider a multiagent system of N physically coupled
first-order agents with heterogeneous time-varying nonlinear agent-layer dynam-

ics:

Ti(t) = fi(zi(t), 1) +uni(t),  2i(t) = Cu Z agi (xi(t) — ;(t)) (7.1)

J=1
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where i € {1,2, ..., N} denotes agent number, and aii > 0 represents (i, )" entry
of the adjacency matrix corresponding to the agent-layer z-variable (physical)
coupling digraph G..; z; € R indicates the i** agent’s state variable, u, € R
control input, and z; € R coupling variable. The nonlinear functions f; and

coupling matrices C; are unknown but satisfy the following conditions.

Assumption 7.2.1. The nonlinear functions f; : R x R — R are piecewise con-
tinuous in time and Lipschitz in state variable!, satisfy norm-bounded conditions
f2(2i,t) < ;22(t) where a; > 0 are known real-valued scalars, and f;(0,t) = 0 are
satisfied such that the origin is an equilibrium point of agents’ unforced nonlinear

dynamics. Moreover, Cy; < Yewi for known real-valued scalars veq; > 0.

We consider a constant reference tracking problem for ¢ € {1,2,..., N}:

lim (z;(t) — ) = 0 (7.2)

t—o00

where the reference signal r € R is sent to only a few agents. This reference r can

be generated by a command generator or virtual leader:

do(t) =0 (7.3)

which is initialized at 2¢(0) = r, and xy € R denotes the command generator’s
state variable. We need to design a communication algorithm such that all agents
cooperatively track the reference signal or, equivalently, agree on the command

generator’s state variable: lim; . (x;(t) — zo(t)) = 0.

"We do not directly use Lipschitz condition in this chapter’s derivations. But it is required
to ensure the existence and uniqueness of solutions.
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We propose a cooperative tracking algorithm:

(1) = = (D @i (i) — a5(1)) + 07 (2:(t) — o(t))) (7.4)

CcT
where aff,

bi* > 0 denote the weights of control-layer z-variable communication
(information exchange) graph, and should be designed to ensure robust first-order
tracking (7.2) with a guaranteed upper-bound on the following quadratic cost

function?:
T (ex(())) - /Ow(eg(t)Qmex(t> + ug(t>RmUx(t))dt < 6£(O>Plem(0) (75)

where e, = col{e,;} € RN and e,; = x; — xy denotes the i'" agent’s x-variable
reference tracking error, and u, = col{u,} € RY. Also, the M —matrix Q, =
QY € RV*N » 0 and R, = RT = diag{r,;} € RV = 0 (with real-valued
scalars r,; > 0) are two design matrices to respectively weight the state tracking
error and control input variables. The constant matrix P; = PI € RV*N = 0 is
either unknown (to be found) or given a-priori as will be discussed later in this

subsection. We drop the time variable ¢ for the sake of readability.

Remark 7.2.1. In this subsection, we seek robust cooperative tracking and per-
formance in time-varying nonlinear multiagent systems of first-order intercon-
nected agents based on the linear protocol (7.4). This is a multiagent system-

level design problem and includes conventional node-wise consensus algorithm

2Due to the presence of coupled modeling uncertainties, we cannot explicitly find the exact
minimum value of this cost. Thus, we propose a guaranteed cost problem.
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Ui (t) = —kee (SNl (i) — 2;()) 4 Vi(x:(t) — xo(t))) as a special case (with

wi j=1 %ij

known ai;, b; > 0 and unknown consensus gain k., to be designed). U

In order to design a control-layer graph topology G.., we first rewrite the

agent’s dynamics (7.1) based on the x-variable tracking error:
N
i = fi(zi) tuz and z = Cyy Z aii (eqi — €qj)
j=1

and, similarly, find a new representation for the cooperative tracking protocol (7.4):

ey = = (Y a5 (€0 — €2j) + b7ess)

Over the agent-layer coupling digraph G,., we find the aggregated tracking
error dynamics:

ér = f(2) +u, and z=C,Lye, (7.6)

where z = col{z;}, f(z) = col{fi(z)}, and C, = diag{C,;}. We also find the

aggregated cooperative tracking signal over G,,:
Uy = —Hezls (7.7)

in which H., denotes the reduced-order Laplacian matrix corresponding to G,
which should be appropriately designed.

In the following design procedure, we propose a control-theoretic approach
and find candidate communication graph topology G., to be used in distributed
tracking algorithm (7.4). Let Q. = QL. = Q. + R,y = 0 be an M-matrix,

Ryp = rofln, and 1y = maxi{rya;y2,; H Laz||* for i € {1,2,..., N}.
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Design procedure 7.2.1. Let Uy, be the set of all admissible stabilizing con-
trol signals for a completely known dynamical system in the modified LQR prob-
lem (7.8), and u, = K,e, be the control signal that minimizes this quadratic cost
function. The reduced-order Laplacian matriz H., = —K, = R,;'P character-
1zes the candidate communication-layer graph topology G.. for first-order tracking
problem (7.2) if the solution P = PT € RYN*N = 0 of N x N nonlinear matrix

equation (7.9) satisfies the condition (7.10).

min  Ji(e,(0)) = [77(eXQumel + ul Ryuy,)dt

Uz EULmM (78)
subject to €r = Uy
Piy >0 (7.10)

The reason to impose an additional condition (7.10) on the positive definite
M —matrix P will be clarified later in this subsection. In the next remark, we

explain a few facts about Design procedure 7.2.1.

Remark 7.2.2. In the standard LQR problem (2.23), both state and input weight-
ing matrices can be arbitrarily tuned as two design degrees of freedom. We name
the minimization (7.8) a “modified LQR” problem because, although Q. > 0 and
R, > 0 are still two design matrices, we should necessarily use a modified state
weighting matriz Q ., which depends on R, and our partial knowledge about inter-
connected nonlinearities (see Remark 7.1.1 and Assumption 7.2.1). Furthermore,

note that the quadratic cost function (7.8) is minimized subject to a completely
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known physically “decoupled” multiagent system of integrators, although the origi-
nal cost function (7.5) is given based on the unknown trajectories of interconnected
agents (7.1). This modified LQR problem can be solved based on the nonlinear ma-
triz equation (7.9) that is a “standard” ARE for which powerful numerical solvers
exist. Finally, the existence of a unique stabilizing P > 0 depends on observability

and stabilizability of the triple (Cypm, 0, In) where CL, Com = Q- O

It is possible to directly solve ARE (7.9) using existing software packages and
recommend a candidate H.,. However, we further propose an analytical represen-
tation for the candidate G., which handles computational complexities in solving
this ARE for multiagent systems with a high number of agents. This closed-form
solution can also be used to appropriately select state and input weighting matri-
ces Q, and R, that ensure robust cooperative tracking (7.2) with a desired-level
of robust performance in (7.5). From a matrix-algebraic viewpoint, the unique
symmetric positive definite stabilizing solution of nonlinear matrix equation (7.9)

can be written as follows:
P = RY*(R;*QumR; ) ? R}/ (7.11)

where RY? = diag{/Tz}, and the principal square root of R, Y Qme 2% can
be calculated using the approach in Subsection 7.1 and necessarily is a positive
definite symmetric M-matrix. Thus, based on Design procedure 7.2.1, we suggest
the following reduced-order Laplacian matrix as the candidate graph topology G..

of this subsection:

Hew = RV (R;VQum R, VPP RY? (7.12)
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This candidate H., is obtained based on a non-diagonal N x N matrix (), which
corresponds to a global coupled cost function Jy,, in (7.8). Alternatively, we may
consider a set of N decoupled cost functions by letting Q. = diag{q,;} with ¢,; > 0
and, consequently, Qum = diag{qumi} With @umi = qu; + 7 for i € {1,2,...,N}.
We define A = 0 and B = Iy, and use the matrix differential equation (2.29) to
decompose the optimal control signal u, of Design procedure 7.2.1 into a set of
N decoupled control gains K, = diag{%} where P, = |/Tiqzm; € R > 0 are the

solutions of N scalar ARESs ¢gp; — 7:P? = 0. Then, we find:

M., = diag] q:j"fi} (7.13)

T

Indeed, in the sense of the modified LQR problem in Design procedure 7.2.1,
this proves our initial guess that Jin,(e(0)) = SV Jimi(exs(0)) subject to & = u,
with a set of N local cost functions Jyn(€4:(0)) = [ (qumi€2; + reiuZ;)dt (subject
to completely known decoupled integrators @; = u,;) could be minimized inde-
pendently using N scalar modified LQR problems. By the definition of reduced
order Laplacian matrix in Subsection 7.1 , we know H., = L., + B... Since the
off-diagonal terms of H,, in (7.13) are equal to zero, we conclude the inter-agent
graph Laplacian matrix L., is zero. Thus, He, = Be, = diag{b¢;} where b¢, € RY
represents directed edge from the command generator to i*" agent weighed by

% for i € {1,2,...,N}.

Independent of the structure of @,,, and R, in Design procedure 7.2.1, we

know G., satisfies the next property which is adapted based on the fundamental

properties of infinite horizon optimal control design.
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Property 7.2.1. The candidate graph topology G.. in Design procedure 7.2.1,
formulated by the reduced-order Laplacian matriz He,, results in a pair (eg, u,)

with u, = —Hepe, that satisfies the following equalities:

T T «T _
ey Quemes + Uy Rouy + Jime Uz =0

2ul'R, + ;L. =0

m,ex

where J}% is the optimal cost in (7.8), and J3,, . = %.

We now need to discuss the feasibility of these analytical solutions as reduced-
order graph Laplacian matrix by verifying that H., is an M-matrix, all of its
eigenvalues are in the right half plane, and it has non-negative row sums with
at least one positive entry (i.e., He1nx > 0). The reduced-order Laplacian ma-
trix (7.13) satisfies all requirements and is necessarily a feasible star topology
for the control-layer communication graph whenever all agents have access to the
reference command. Regarding the candidate topology (7.12), we note that the
unique solution of ARE (7.9) can be “represented” in various equivalent man-
ners: P = Qun(R;'Qum) % and P = (QumR;") " 2Quy in addition to the
apparently symmetric representation (7.11). We choose the design M-matrices
Q. and R, such that all eigenvalues of R 'Q,,, are in the right half plane. Then
P = Qum(R;'Qum) Y2 results in Hep = (R;'Qum)/? which is necessarily an M-
matrix with all eigenvalues in right-half plane (by definition of principal square
root for M-matrices). The third requirement on row sums is already guaranteed
by condition (7.10) and noticing the fact H., = R;'P. Based on this discussion,

we can discuss the effect of design matrices on the candidate topology G.. based

262



on the closed-form solution of ARE (7.9). We first use P = (QunRs") " ?Qum
and find Hep = RN QumRyY) ™ V2Q,m that indicates He1y > 0 for any M-
matrices that satisfy Qumly > 0 because (Q.nR;')""/2 > 0 (a property of
M-matrices); nevertheless, this means a directed communication link exists be-
tween the reference generator to each agent. On the other hand, we can look at
Ply = (QumR;Y) ™ ?(Qumly) > 0 as a non-negative matrix times a vector with
"a few negative entries” and iteratively search for a positive definite M-matrix
(), that results in the row-sum vector of modified state weighting matrix Q..
has a few zero or negative values as its entries. Although we can follow this idea
and iteratively search for an H., = R,;'P with a few reference-to-agent connec-
tions, it is still a heuristic approach rather than a systematic one and, further,
is limited to structurally symmetric control-layer topology G... In the next al-
gorithm, we address these issues by proposing a systematic framework to design
structurally non-symmetric weighted digraph G., to be used in the first-order co-
operative tracking algorithm (7.4). We further find the associated cost function

in modified LQR problem (7.8).

Algorithm 7.2.1. Select an arbitrary symmetric reduced-order Laplacian matriz

H9 € RY*N and a diagonal input weighting matriz R, € RN*N . Then,

1. Structurally symmetric control-layer: H29 = R VHY minimizes quadratic
cost function (7.8) with weighting matrices Qum = (HY)T R, HY™ and R,.
If the modified state weighting matriz can be decomposed as Qzm = Qz+ Ry
with Q, = QL = 0, then H., = HY represents the required candidate graph
topology G.. of this subsection associated to quadratic cost function (7.8)

with a pair (Qum, Ry:). This candidate topology satisfies Property 7.2.1.
263



2. Structurally non-symmetric control-layer: define the modification matrix
Helom e RN*N with non-zero elements at entries corresponding to these
undesirable edges such that He, = HY9 + HUI™ characterizes the desir-
able communication graph topology®. Then, the matriz He, represents struc-
turally non-symmetric candidate communication graph G.. if the condition
Qr + 2[(HUNT R, HY™)ym = O is satisfied. Note that Property 7.2.1 is

satisfied by only H9 of Step 1. O

The candidate G, of this subsection has been designed based on a completely-
known multiagent system of integrators. In the next theorem, we prove the pro-
posed cooperative tracking protocol (7.4) over the fixed structurally non-symmetric
candidate communication digraph G., of Algorithm 7.2.1 ensures first-order ro-
bust cooperative tracking (7.2) with an exponential behavior, and guarantees
an upper-bound on quadratic cost function (7.5) subject to a multiagent system

of first-order agents (7.1) with unknown coupled time-varying nonlinear agent-

)\min (Qz +2[(Hgig)TRzH(cligm]sym)
2Amaz (P)

Amaz (P)

layer dynamics. We define k = and 0 =

e.(t) < kexp ?e,(0), and:

2

Pr = P+ (o ()T RAH + ()T RAHE™) Ly - 0.

Theorem 7.2.1. Let Assumption 7.2.1 be satisfied by agents (7.1). The struc-

turally non-symmetric candidate topology G.., with static weights given by H., in

3As an example, we might be interested in implementing a one-way communication from
node i to j. In this case, edge (j,4) should be removed by letting all entries of H39™ be zero
except HE™ (1, §) = —HE? (i,5) > 0 and HEI™ (i, ) = HE2 (i, ) < 0.
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Step 2 of Algorithm 7.2.1, ensures robust exponential cooperative tracking (7.2)

and performance (7.5) specified by k, o, and P;.
Proof. The proof is available at Subsection 7.5.1. O

This proof remains valid for structurally symmetric topology G., of Design
procedure 7.2.1 or Algorithm 7.2.1-Step 1 by setting H™ = 0 and H + H,,

(i.e., Tom = 0 and u, = 7, in the proof at Subsection 7.5.1).

Remark 7.2.3. In this subsection, the matrix Py is found purely based on the
design matrices Q). and R,, and our partial knowledge about nonlinearities and
physical coupling graphs. A similar discussion holds for the exponential conver-
gence parameters k and o. This provides a guideline to systematically choose a
set of design matrices that guarantee a desired level of performance in terms of
“quadratic cost function minimization” and “exponential convergence rate mazi-
mization”. In fact, using this latter case as a performance criterion, we address a
similar challenge to that of [153]-[156] for first-order multiagent systems, yet in

the presence of unknown time-varying interconnected nonlinearities. 0

Remark 7.2.4. Whenever the topology of agent-layer coupling graph G, is known
(see Remark 7.1.1), we can incorporate Ryy = RL, = max{ryi72,} L1, Las = 0
in Design procedure 7.2.1, rewrite the results of this subsection based on a new
Qum = Qo+ Ryp = 0, and follow the discussion in this subsection in order to find
an appropriate control-layer communication graph. (Regarding the first inequality,
we know 2T LT L2 = || Lazx||? > 0 and, regarding the second inequality, note that

Q. > 0.) 0
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In the literature, distributed control of nonlinear multiagent systems has usu-
ally been addressed based on nonlinear techniques [50]. However, we have pro-
posed a modified LQR problem which ensures agreement solely by sharing infor-
mation over appropriately designed fixed control-layer communication topology
with static weights. At this point, a question may arise about the ability of find-
ing a bound on maximum tolerable time-varying interconnected nonlinearities f;
in (7.1) by the given fixed communication digraph G., to be used in linear static
cooperative protocol (7.4). In the next corollary, we unify the results of this sub-
section and find such a bound in terms of R,; defined in Design procedure 7.2.1.
For a special scenario, based on the quadratic cost function (7.5), we further pro-
pose a sufficient condition to be used in performance-oriented (guaranteed-cost)

communication topology design problem.

Corollary 7.2.1. Let the structurally non-symmetric leader-follower communica-
tion digraph G., be represented by a constant reduced-order Laplacian matrix H.,.
The time-varying interconnected nonlinearities f; in multiagent system (7.1) are
tolerable by information exchange algorithm (7.4) if the reduced-order Laplacian
matriz of communication topology G., can be decomposed as Hey = Hews + Hewrs
and there exists a diagonal R, > 0 such that the structurally symmetric reduced-
order Laplacian matrizx He, s and residual matriz He,, satisfy the following con-

ditions:
1. Ry Hcers 1s a symmetric positive definite matriz,

2. Hly RoHews — Rop + 2[HY, (ReMewr)sym >~ 0,

cz,s

3. HT

cx,s

Ry Hews = Ry where Ry5 is defined in Design procedure 7.2.1.
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Furthermore, for a given upper-bound matriz Py in (7.5), a guaranteed-cost com-
munication digraph Ge, with Hey = Hews + Hewr can be designed by searching
for Hep s and Hey, that satisfy the aforementioned robust tracking and one robust

performance conditions:

4- Rchams + %Amax(Hg;7sRa:ch,s + %T RIHcm,T>IN < 7)1

cx,r

or the exponential tracking convergence e;(t) < rexp te;(0) with constant scalars
4 g ) p

k,o0 >0 andi€ {1,2,..,N}. O

The proof is immediate based on the analyses in this subsection. We further
mention that x and o can be conservatively estimated based on the results of
Theorem 7.2.1 for any H., s and H,,. Moreover, in addition to the degrees of
freedom in decomposing H., into H, s and H.,,, the design matrix R, can be
used to find a higher tolerable bound in terms of R,;. This observation indicates
the sufficiency of conditions in this corollary and can be viewed as a foundation

for future work on this topic.

7.2.2 Second-order cooperative tracking

In this subsection, we generalize the result of Subsection 7.2.1 to the second-
order distributed cooperative tracking problem. For brevity, unless it is unclear
from the text, we only introduce new variables and the rest can be found in the

previous subsection.
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We consider a multiagent system with interconnected time-varying nonlinear

agent-layer dynamics:

Ti(t) = vi(t),  0it) = gi(wi(t), 1) + uwi(t)

yillt) = Cui Y500 @ (2a(t) — (1)) + Cui 25, aff (vi(t) — v5(t))

(7.14)

where @i > 0 denotes the (7, j )t entry of adjacency matrix corresponding to the
v-variable coupling digraph G,,; v; € R indicates the second state variable, and
Uy € R represents the control input of " agent; and nonlinear functions g;, and

coupling matrices C; and C,; satisfy the next assumption.

Assumption 7.2.2. The unknown nonlinear functions ¢g; : R x R — R satisfy
the same conditions as in Assumption 7.2.1 replacing f; by g;, o; by B;, and z; by
yi. Sitmilarly, we consider the replacement of Yezi by Vevi for the unknown coupling

matrices Cy;. Moreover, Cp; < Yewi 15 also satisfied.

We consider two types of reference commands r.,.(tf) and r, with constant
and ramp waveforms, and propose the following cooperative reference tracking
problem:

lim (z;(t) — e () =0 and tlirgo(vi(t) —Tep) =0 (7.15)

t—o00

that should be satisfied by all agent i € {1,2,..., N}, although each command
might be sent to only a few agents over its own control-layer communication graph.
We note that these commands can be generated by the reference generator (virtual
leader):

To(t) = vo(t) and vo(t) =0 (7.16)
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in which the initial state values are two manipulable variables: vy(t) = v(to) = 7,
and xo(t) = re(t) = zo(to) + ry[t — to] for any initial time ¢y > 0. We propose the
following distributed tracking algorithm based on the state variables of (virtual)

reference generator:

wni(t) = — (3000, ah(wit) — (1)) + b (wi(£) — wo(t)))

(7.17)
—(320 @y (vilt) — vi(£)) + b (vi(t) — vo(t)))

Now, in addition to the z-variable communication topology a7, 0" > 0, we

need to determine a v-variable graph by a7,bf > 0 to ensure robust second-

order cooperative tracking (7.15) with guaranteed upper-bound on the following

quadratic cost function:
J2(e(0)) = /Ooo(eT(t)Qe(t) + ul (t) Ryu, (t))dt < e'(0)P2e(0) (7.18)

where e = col{e,,e,} € R*MN e, = col{e,;} € RY, and e,; = v; — vy denotes
the " agent’s second state variable’s tracking error. Here, the positive-definite
Q = QT = [Qu] € R*M*2N is an M-matrix, Qi € RYN Qs = QF,, and
I,k € {1,2}. Also, R, = diag{r,;} € R"*" = 0 is a diagonal matrix with real-
valued scalars r,; > 0. The constant matrix P, = PI € R*V*2N » 0 will be
discussed later in this subsection. We drop the time variable ¢ for the sake of

readability.
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Over two sub-layers G,, and G,,, we find the aggregated the agent-layer track-

ing error dynamics:
by =€y, and é,=g(y) + u,
Yy = O:cﬁa;reac + Cvﬁavev

(7.19)

where y = col{y;} € RY, g = col{g;} € RY, and C, = diag{C,;} € RV*¥. Also,
we find the aggregated control signal over control-layer graphs G., and G, (to be
designed):

Uy = —Hezlsr — Heny (7.20)

Now, we propose a control-theoretic design procedure and find two fixed can-
didate graph topologies G., and G., to be used in multi-layer linear cooperative
protocol (7.17). Let @, = [Qmi] = Q@ + Ry > 0 where Ry = diag{R.s, Rys},
Ryp = 1oy and rpp = 2max;(ryiBiv2) | Lazl|?, and Ry = ryply and rpp =

2max; (i 87 2:) | Lao ||

Design procedure 7.2.2. Design u = Ke = [K,, K,|e that solves modified LQR
problem (7.21) subject to a multiagent system of N double-integrator dynamics.
Then, H., = K, = R;le; and H., = K, = R;'Py characterize two candi-
date control-layer communication topologies G., and G.,, respectively, if condi-
tion (7.22) is satisfied. The matriz P = [Py] € R*>2N w0 with I,k € {1,2} is

the solution of ARE (7.23) where Py = PJ,.

min Jom ((0)) = [ (T Qe + ul Ryu,)dt
uEUarm Jo (7.21)

subject to €r = €y €y = Uy
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PLiy >0 and  Pply>0 (7.22)

are(1,1) are(1,2) 0 (7.23)
are(2,1) are(2,2)
are(1,1) = Qi1 — Pra R, P,
are(1,2) = Qmiz + P11 — PiaR, ' Pay
are(2,1) = QT |, + Piy — Py R, 'PL
are(2,2) = Pio + PL + Quaoz — Pos Ry 1 Pyy

The reason to name (7.21) a “modified” LQR problem can be explained similar
to Remark 7.2.2. Also, it is straightforward to discuss the existence of a unique
positive definite stabilizing P = 0 in ARE (7.23) based on a joint stabilizability
and observability condition for the completely-known LTT multiagent system of
double integrators and the modified state weighting matrix in (7.21).

An advantage of this approach is that the two candidate graphs are obtained
independent of the time-varying nonlinearly coupled agent-layer dynamics. How-
ever, this requires solving 2N x 2N ARE (7.23) for a multiagent system of N
agents. Noticing the fact that P;; does not directly appear in the candidate
reduced-order Laplacian matrices H., and H,, we use are(1,2)-are(2,1) and find
Py, = PL whenever Q2 = QL,. Based on are(1,1) and are(2,2), we transform

the original 2N x 2N ARE (7.23) to two reduced-order N x N (sub-) AREs:
Qmin — PaR,'Pio =0  and  (2Pig + Quaa) — PoaR, ' Poa = 0 (7.24)

in order to find two candidate graph topologies G., and G.,. Note that P can
be found using the first ARE at the left side of (7.24); thus, we treat it as a
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known matrix in the second ARE at right-hand side. Since these AREs have the
same structure as ARE (7.9) in first-order tracking problem, we use the result
of Subsection 7.2.1 as the main foundation and propose the following apparently

symmetric analytical solutions:

Py = RyY*(Ry Qi1 Ry /)2 RY

(7.25)
Py = Rzl)/2(R;1/2(2P12 + szz)Rle/Z)l/QRzl;m
which result in two candidate reduced-order Laplacian matrices:
T R/ ;1/2Qm RV 12 gl/?
( ufe ) (7.26)

Heo = Ry (B2 (2Pi2 + Quan) Ry *) V2 RY

These representations enable us to describe the candidate G., and G, explic-
itly based on the modified state and input weighting matrices in Design proce-
dure 7.2.2. Equivalent formulations He, = (R;'Quu11)"? and He, = (R, (2P12 +
Qma22))"/? are also valid for the z- and v-variable control-layer communication
graphs, respectively (see Subsection 7.2.1).

In a special case, if we are able to send the reference commands r, and 7,
to all agents, we may consider a set of N decoupled local cost functions with

Q = diag{@xv@v}a Qx = dzag{Qm} and Qv = dZ&g{sz} for qzi > 0 and Qui > 07

and recommend two diagonal candidate reduced-order Laplacian matrices:

Her = diag{ q;jml Hew = diag{\/Q, / q;ml + q;ml} (7.27)

where gpmi = Gui + 72 and @umi = Qui + Tvf, and 7,5 and 7,5 are defined before

Design procedure 7.2.2. Based on the diagonal structure of these candidates, we
know H., corresponds to a candidate star graph G., with N weighted directed

edges from the command generator’s first state variable to all agents’ first state
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variables, and H., models another candidate star topology G., with a set of N
weighted directed edges from the second state variable of reference generator to
that of all agents. In fact, this star topology indicates that additional inter-agent
communications are unnecessary whenever all of them have access to the reference
signal to be tracked.

For both coupled (7.26) and decoupled (7.27) scenarios, the fundamental prop-

erty of optimal control systems is satisfied.

Property 7.2.2. The following equalities are satisfied by any fived candidate

graphs G., and G., in Design procedure 7.2.2:

el Qe + ul Ryu, + J3F

2m,e

0
2ul'R, + J3F =0

m,e

In
where J3,, is the optimal cost in (7.21), J3,, . = %, and e = el elT.

Since each ARE in (7.24) is similar to ARE (7.9) in Design procedure 7.2.1, we
can generalize the discussion after Property 7.2.1 to second-order tracking prob-
lem. In particular, we know the candidate topologies G.. and G, are structurally
symmetric for any feasible choices of state and input weighting matrices in Design
procedure 7.2.2. We now propose a systematic approach to design control-layer
communication topologies with structurally non-symmetric weighted topologies.

The algorithm is of particular interests when we want to incorporate a-priori
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knowledge and impose a special structure on the communication layer in multi-

area multiagent systems where areas are geographically far from each others.

Algorithm 7.2.2. Select two arbitrary symmetric reduced-order Laplacian ma-
trices H9 € RVN and HY9 € RYN*N | and a diagonal input weighting matrix
R, € RV*N 0 such that (HX9)T R;VHY is a symmetric matriz and the follow-
ing condition is satisfied:
(Heio)T R Hels HLlo
-0 (7.28)
Hols Hols
1. If two structurally symmetric communication graphs Ge, and G., are ac-
ceptable: Reduced-order Laplacian matrices H9 = R;YHY and HY =
RYHY minimize the quadratic cost function in Design procedure 7.2.2
with Qmir = HITRHL and Quaz = HETR,HEY — 2HI9 if they can
be decomposed as Qmin = Q11 + Ryp and Qmae = Q2 + R, with positive
definite Q11, Q2 € RN*N and Qi3 = 0. Then, Hep = HY and He, = HY
represent the required candidate topologies of this subsection, and satisfy

Property 7.2.2.

2. To propose structurally non-symmetric graph topologies: Let HY™ € RN*N
and HY9™ € RN*N be two modification matrices such that He, = HLI +
HA™ and He, = HYI + HE™ represent two structurally non-symmetric
digraphs. These are the two candidate topologies to be used in (7.18) if
Q+2[(HH9)T RyHII™) gy = 0 is satisfied where HA9 = [H9 HU9| Halom =
[Helom Ham] - and Q is defined in Step 1. O
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In this algorithm, we have considered a special case with Q1o = 0 € RV*V
which results in two scenarios: HY = H9 or one of them is equal to cR,
where ¢ is a positive scalar. Alternatively, we can select two different struc-
turally non-symmetric H%9 and H9, and find a sign-indefinite Q15 # 0 for which
—Q1o+ (HY9)T R71H19 is a positive definite symmetric matrix, check the positive-
definiteness of Q = [Q;x] where Q2 = QL,, and positive definiteness of the follow-

ing matrix (instead of (7.28)):

—Q12+ (HY9)" RV Hs HYY <0 (7.29)
Helg Halg
in addition to Q+2[(H¥)T R,H9™ ,m = 0. However, we have found the benefits
of using two non-equal non-diagonal H9 and H29 are recoverable in Step 2 of
Algorithm 7.2.2 while verifying a set of simpler conditions.

In the next theorem, we prove multiagent systems with nonlinearly coupled
agent-layer dynamics (7.14) cooperatively track the reference command if they
communicate according to the multi-layer linear cooperative protocol (7.17) over
fixed candidate digraphs G., and G, of Algorithm 7.2.2 with static weights. We
further prove that this reference tracking is achieved with an exponential rate,
and find an upper-bound on quadratic cost function (7.18). We define P, = P +
g—jxmm((ﬂglg)TRnglg + (Ha9m™)T R, H9™) [, and let the exponential tracking

behavior e(t) < rexp ?'e(0) be specified by two scalars k = ,/’/\\m“—’“‘((]]j)) and 0 =

min

Amin (Q‘*‘Q[(HZZQ)TRnglgm} sym)
2Amaz (P) :
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Theorem 7.2.2. The fixed candidate control-layer communication digraphs G,
and G, in Step 2 of Algorithm 7.2.2 ensure exponential second-order cooperative
tracking (7.15) by agent-layer dynamics (7.14) with a guaranteed upper-bound on

quadratic cost function (7.18) specified by k, o, and Ps.

Proof. This proof is given at Subsection 7.5.2. n

A discussion similar to Remarks 7.2.3-7.2.4 can be adopted for the result of
Theorem 7.2.2, but it is omitted for brevity. In terms of R,s and R,; of Design
procedure 7.2.2, we propose the following corollary to establish a bound on the
tolerable interconnected time-varying nonlinear uncertainties in agent-layer dy-
namics by multi-layer linear cooperative tracking protocol (7.17) over the given
digraphs G., and G.,. For a special scenario, we further discuss guaranteed-cost
communication topology design problem based on the given upper-bound matrix

P, in cost function (7.18).

Corollary 7.2.2. Let the given fized communication digraphs G.. and G, be repre-
sented by known He, and He,, respectively. The static tracking protocol (7.17) can
tolerate norm-bounded time-varying nonlinearities g; in multiagent system (7.14)
if the reduced-order Laplacian matrices can be decomposed as Hey = Heps + Hear
and Hey = Hep,s + Heo,r, and there exists a diagonal input weighting matriz R, €
RN*N w0 such that the structurally symmetric reduced-order Laplacian matri-
ces Hep,s and Hey s, and residual matrices Heyr and He,,» satisfy the following con-
ditions:

1. There exists a symmetric positive definite Q = [Qx] € R*M*2N such that Q+

Q[HZSRUHC,T]Sym >~ 0 where Hc,s = [Hcm,57 Hcv,s} and HC,'I‘ = [ch,ra HC’UJ’:I'
276



2. RHeps, 2Ry Hew s + Qo + R,¢, Hz;,sRchv,s — Q12 are symmetric positive
definite and:
HT R’UHC’U,S - Q]_Z RU%CI,S

cx,s .0
RchLs RUHCU,S

3. HT

cx,s

RyHeps = Ryp and HT RyHeps = 2Ry Hep s + Ry are satisfied where

cv,s

R.s and R,y are defined in Design procedure 7.2.2,

For a given upper-bound cost matriz Py in (7.18), guaranteed-cost communica-
tion topologies G.. and G., can be found by searching for diagonal R, > O,
sign-indefinite Q1o € RV*N | and decomposition H., = Hews + Hezr and He, =

Hevs + Hevr that satisfy:

HZ; SRUHCU,S - QlZ Rchx,s
, +%)\maw(HZSRv%c7s +HZTR”UHC,T)I2N % 7)1

RU,HCQ?,S RU,HC'U,S
with exponential convergence parameters k,o > 0, and H.s = [Hew,s, Hevs| and
Hc,r = [ch,mHCU,T]- O

The proof can be discussed based on the derivations of this subsection, but is
omitted for brevity. Both xk and o can be conservatively estimated using Theo-
rem 7.2.2. Furthermore, the corollary is stated based on three robust cooperative
tracking requirements and a robust performance test which should be checked for
the given communication topologies H., and H.,. However, we can further sim-
plify this corollary assuming )1, = 0 for which the condition HZ;SRJ-[CW — Q12

is always satisfied because R, > 0.
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7.2.3 Mixed-order cooperative tracking

In the previous two subsections, we designed the single-layer and multi-layer
cooperative tracking problems in heterogeneous multiagent systems respectively
with first- and second-order agents. Now, we use those fundamental results to han-
dle robust cooperative tracking in mixed-order multiagent systems with physically-
coupled agent-layer dynamics. Here, M agents are modeled by second-order dy-

namics:

ai(t) = vi(t),  0i(t) = gi(wi(t), ) + uwi(t)
Yilt) = Coy 30y af (i) — (1)) + Cur S0ty al (vi(t) — (1))

foralli € V; = {1,...., M} where 1 < M < N, and N — M agents are described by:

(7.30)

N

$Z(t) = fz(zz(t)a t) + Um(t), Zl(t) = Cm Z aff(xl(t) — Ty (t)) (731)

j=1
foralli € Vo = {M +1,...,N}. In this multiagent system with unknown agent-

layer nonlinearities f; and g;, we propose a robust cooperative tracking problem:

lim (z;(t) —7r)=0 Vie VUV, and tlim vi(t)=0 Vie), (7.32)

t—o00

where r € R is a constant that can be created using the following reference

generator:
2o =10 (7.33)

with a manipulable initial condition x¢(0) = r. We are interested in enforcing all

agents (7.30)-(7.31) to track this reference r by allowing them to communicate

based on the following distributed tracking protocols:
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wi(t) = =250, agf (za(t) — 2;(8)) + b5 (@ilt) — 2o(t)))

VieV, (7.34)
—(2 L agy (uilt) = vy (1) + b vi(1)

and

N

ugi(t) = =D aff (wi(t) — a(8)) + b (wi(t) — (1)) Vi € V) (7.35)

j=1

We introduce a fictitious second state variable vy = 0 for the virtual com-
mand generator (7.33) and define tracking error variables e,; = v; — vy = v; for
second-order agents in V;. In the presence of unknown time-varying intercon-
nected nonlinearities f; and g;, scalars agf, bi*, a5}, b;" > 0 should be designed to

guarantee robust cooperative tracking (7.32) and provide an upper-bound on the

following quadratic cost function:
J3(e(0)) = /Ooo(eT(t)Qe(t) +u” (t)Ru(t))dt < e'(0)Pse(0) (7.36)

where e = col{e,,e,} € RNM e = col{ey} € RY, ey = 2y — 29 for i € VU
Vy, €, = col{e,} € RM e, = v; —vy = v; for i € Vi, u = col{u,,u,} €
RN, u, = col{u,} € R™ for i € Vi, and u, = col{u,} € R¥N"M for i € V,.
Furthermore, Q = Q7 = Q[Ik] € RWHMXINEM) 0 for [,k € {1,2,3}, R =
RT = diag{R,,R,} € RN = 0, R, € R® = 0, and R, € R"M = 0. Also,
Py =PI € RWHM)XIN+M) . ( is either an unknown or a-priori known constant
matrix which will be discussed later in this subsection.

Now, we prove the proposed framework for the first- or second-order multiagent
systems can be applied to the multi-layer cooperative tracking problem in mixed-

order multiagent systems with time-varying nonlinearly interconnected agent-layer
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dynamics. We find the aggregated tracking error dynamics for sub-multiagent

system of second-order agents:

Ery = €y and €, = Uy + , 1), Viey
Vi 9(y,t) 1 (7.37)

Y=Yz + Yo

where e, = v — 109 = v, g = col{g;}, and e,y,, €y, Uy, Yo, Yo € RM for i € V;.
We also build the aggregated tracking error dynamics for sub-multiagent system

of first-order agents:

Covy = Ug + f(2,1),  Vie Vs (7.38)

where e,y,, Uy, z for RN and f = col{f;} for i € V,. We further find:

Y
Yy = Cvﬁavev and ‘ = Cxﬁaxe:c

z

where C, = diag{C,;}Vi € Vi, and L,, € R™*M is the Laplacian matrix of agent-
layer v-variable coupling graph, e, = [el), el ] = col{e;}, Cp = diag{Cy;} for
i € VIUV,, and Ly, € RV*VN is the Laplacian matrix of agent-layer x-variable
coupling graph. With a lumped representation over G,, and G,,, the aggregated
multiagent system of mixed-order agents are written as é = Ae + Bu+ Bo(z,y,t)
where:

€y A A e Bi| |uy Bi| [g(y,t)

= + + (7.39)
€y Ag Ago €y By Uy By f(Z> t)
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Onrsenr Onrx(v—nn) Iy

Onv—nmyxm Ov—nnyx(N—n) ONv—nyxm
A21 = |Oprxms OMX(NM)] A22 = Onrxm (74())
Onrxm 0M><(N—M)
By = By = I Onx(v—n)
On—ayxvr In—m

Also, over G, and G,,, the aggregated tracking the aggregated tracking control

signal is given bycontrol signal is given by:

Uy Hcv
= —Herer — ey, =: —H.e (7.41)
Uy Ov—aryx
Let R,y = rypln and R,y = 7,51y where the two scalars are defined as

Top = max;(max;(28;Tyi, Qirzi) V) | Laz||* and ryp = 2max; (Birwiv2:) || Lav||? (note
that (; is only defined for ¢ € V; and «; is only given for i € V,). We introduce

Qm = Q + R where Q, Ry € RWHM*WN+M) are defined as follows:

Qu Onrx(N=n1) Q13
R,y Onxwm
Q= |On_rr)xm Q22 ON—nyxm Ry = (7.42)
T 0M><N va
13 Onrx(N—n1) Q33

and propose a control-theoretic design procedure to find two candidate reduced-
order Laplacian matrices He, € RV and H., € RM*M corresponding to the

required candidate topologies G., and G.,, respectively.
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Design procedure 7.2.3. Find u = Ke = [K,, K,|e that solves modified LQR
problem (7.43). Then, (7.44) represents the two candidate graph topologies G,
and Ge, if condition (7.45) is satisfied. Matriv P = [Py] € RWFTMXWNFM) g

is the partitioned solution of ARE (7.46) for I,k € {1,2,3} where P = 0 and

p23 - 0

min  Js3,(e(0)) = [(eT Qe + u” Ru)dt

u€lonm ’ (7.43)
subject to é = Ae+ Bu in (7.39)

Heo R;lPT 0 R;lp
ey = 1 33 (7.44)
0 0 R'Py| 0
PLixy >0, Pyply>0, Pyuly>0 (7.45)
are(1,1) 0 are(1,3)

0 are(2,2) 0 0 (7.46)

are(1,3)” 0 are(3,3)

are(1,1) = Qi1 + Ryy — PisR, ' Pl

are(1,3) = Q13+ P11 — Pi3R; ' P

are(2,2) = Qo + Ryp — Pao R, ' Pao
are(3,3) = Qs3 + Ryp + Pis + Py — Pyg R, Pay

Note that the existence of a unique stabilizing P > 0 can be guaranteed
based on the controllability and observability of ( %2,14, B), and we refer to
Remark 7.2.2 for a discussion on “modified” LQR problem. A question may arise

about the imposed structure on @ in (7.42). In the following remarks, we first
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connect this question to the proposed tracking protocol (7.34)-(7.35), and then

provide an optimal control-theoretical reason for it.

Remark 7.2.5. We first mention that assuming a complete matriz Q = QT =

[Qu] € RIWNHMIXINEM) esylts in ARE:

are(1,1) are(1,2) are(1,3)
are(1,2)T  are(2,2) are(2,3)| =0

are(1,3)T are(2,3)T are(3,3)

are(1,1) = Qi1 + Ryy — PiaR; ' Pia — PisR, ' PL
are(1,2) = Qi — Pia R, Py — PR, Py
are(1,3) = Qs + Pyy — PiaR, ' Pos — PisR, " P
are(2,2) = Qoo + Ry — P2zR;1P22 - P23R;1P2§
are(2,3) = Qo3 + PL — Py R ' Py3 — Py R Ps3
are(3,3) = Qa3 + Ryp + Pz + P — Pis R, Py — P33R, Pag
and the following reduced-order Laplacian matrices:
R'PL R;'PL | R, 'Ps3
o | -
RI'PL R 'Py | R 1Py
which, for Py # 0, requires using the cooperative algorithm (7.34) for all agents
in Vi UVy. We introduced the cooperative algorithm (7.35) because we could not
see any physical justifications to update x-variable of agents in Vo based on the
v-variable of second-order agents in Vy. Thus, we observe that Py3 = 0 is imposed

by cooperative algorithm (7.35) for first-order agents in V,. Based on the Design
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procedure 7.2.3, we further mention that the tracking protocol (7.34)-(7.35) can be

rewritten as follows:

Ui = _(ij\il agj (z; — x3) + b7 (2 — x0) + Zy 10 (vi = vg) + b)) Vie N

which means, if we do not update x-variable of first-order agents in Vs based on
the v-variable of second-order agents in Vi, the optimal topology will necessary be
composed by two sets of decoupled communication topologies: Gery, and Gepy, for

agents in Vi, and Gy, for agents in Vs. O

Remark 7.2.6. We now clarify the reason for proposing a special structure on
the state weighting matriz () that, in addition to Py = 0, results in P, = 0. We
know the solution P of this ARE (in Remark 7.2.5) is equal to lim;_,.P(t) where
P(t) is the solution of corresponding Riccati equation. In particular, zeros of this
P(t) (and P) can be found using matriz differential equation (2.29). Substituting
(A, B) from (7.39) and a complete matriz Q = [Qux] in the Hamiltonian matric

of (2.29), we find:

. - . 1
€xy; = €o, €y = _Ry LvV1
val = —Qn@asvl - Q12€zv2 — Q136
1 _ T T
LvVl = _Q1361V1 - Q23€xV2 - Q33€v - LxV1

for the second-order agents in Vy and

, _ —1
Cryy, = _Rm L:UZVQ
[ _ T
LxVQ - _Q126xV1 - Q22€xV2 - Q23ev
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for the first-order agents in V. Here, based on the notation of (2.29), we have

T T _TT T T
used T [ewl, Cavys e)]' and L + [Lmvl, Ly,

LT, 7. Because L(t) = P(t)e(t),
we notice that the proposed structure (7.42) (with Q12 = 0 and Qo3 = 0) is the
only way to ensure Pog = 0. We further observe that it consequently results in
P15 = 0. In this situation, the two set of equations for V, and Vs are independent

from each other, and we find:

Loy, () x 0 x| |ew,(t)
Lsz(t) =10 x 0 6$V2(t) = P<t)e<t>
Ly, (t) x 0 ey(t)

where the matrices 0 indicate those components of P(t) that are always equal to
zero (i.e., Pio = 0 and Pa3 = 0). This finding matches on the structure of (7.44).
The closed-form solutions for the remaining components of P in ARE (7.46) (cor-
responding to the x-components of P(t)) will be discussed in the rest of this sub-

section. [l

The candidate topologies G.py,, Gery,, and G, (see end of Remark 7.2.5) can
be designed using the existing software packages by solving (N + M) x (N + M)
nonlinear matrix equation (7.46). However, based on are(1,3) and are(3,1) for
Q13 = QL. we know PL = Pi3 which results in the following set of matrix equa-
tions:
(Qu1+ Ryp) — PisR,;'Pi3 =0 (Qa+ Ryp) — PoaR, ' Py = 0,
(Q33 + Ryp + 2P13) — Ps3sR; ' P33 =0

(7.47)
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These equations can be solved similar to the ARE (7.9) in Design proce-
dure 7.2.1 (we further know Py; = Pi3R; ! P33 — Q13 where its positive definiteness
is ensured based on a joint observability and stabilizability condition discussed af-
ter Design procedure 7.2.3). These explicit solutions are of particular interest for
multiagent systems with a high-number of agents, and allow splitting the original
(N+M)x (N+ M) ARE (7.46) into three matrix equations with low(er) dimen-
sions M x M, (N — M) x (N — M), and M x M. We now rely on the discussion
after Design procedure 7.2.1 and propose the following closed-form solutions for

the candidate communication topologies based on the known design matrices @),

R, and R,:

0 chvl

HCJ:VQ = ;1/2( 171/2(@11 + Rccf)R'LTl/Q)l/Qqu)/2
Heav, = R *(R"*(Qas + Rup) Ry /*)12R)/?

Heo = Ro12(Ry *(Qu1 + Rup) Ry )Y2 + Ry (Qs3 + Ryy) Ry ?)Y/2R)?
(7.48)

For this coupled cost scenario, various representations can be found follow-
ing the discussion in Subsection 7.2.1 which is omitted for brevity. We may
also consider a decoupled cost function in Design procedure 7.2.3 by introducing
Q = diag{gwvil L1, Govail Earsrs @il i} 0T guviis Govais @i > 0. This simplification
suggests N 4+ M decoupled scalar modified LQR problems, and results in two

candidate star topologies:
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T QovyitTzf | M QzVoitTaf | N
Her = diag{\/ =——*[11,\/ =2 la )
T QovyitTaf QuitTzf | M
Hew = dmg{\/Q\/ b+ et )

This in fact means, whenever all agents have access to the reference command,

(7.49)

no inter-agent communication is necessary to guarantee cooperative tracking in a
multiagent system of (7.30)-(7.31). Since vy is a fictitious state variable for the
virtual reference generator (i.e., e, = v; — vy = v;), star topology (7.49) requires
all agents in V; to measure the absolute value of their second state variable. We,
however, mention that the coupled cost scenario may result in communication

topology (7.48) with only a few absolute velocity measurements.

The following property is satisfied by candidate topologies in both coupled

and decoupled cost scenarios.

Property 7.2.3. The candidate graph topologies G., and G., in Design proce-

dure 7.2.3 (01 Geavy s Gewvy, and Gu,) satisfy the following equalities:

e’ Qme +u' Ru+ J3L (Ae+ Bu) =0 2u'R+J5E B=0

3m,e m,e

where J3,, is the optimal cost in (7.43), J3,, . = 8”(;%", and e, A, and B are defined

in (7.39).

In Remark 7.2.5, we discussed that the proposed cooperative tracking algo-
rithm (7.35) for first-order agents in V, has resulted in a block diagonal z-variable
reduced-order Laplacian matrix H.,. We also showed the high-order ARE (7.46)
could be solved by three low-order AREs (7.47) in which the first and third AREs

for V; are coupled to each other through Pj3, and the second ARE corresponds
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Vs, is decoupled from the other two AREs. Due to the properties of solutions to
ARE (7.46), we further know the resulting communication graphs are necessarily
structurally symmetric. In the next algorithm, we propose a systematic approach
to find structurally non-symmetric digraphs G, and G, to be used in multi-layer

cooperative tracking protocol (7.34)-(7.35).

Algorithm 7.2.3. The design problem of Gy and Gy (07 Geavys Gewvs, and Gey)

can be addressed in two independent steps:

1. For agents in Vy: Follow the steps of Algorithm 7.2.1 to design structurally

non-symmetric communication digraph G.,y, by finding Hepy, that satisfies

(N—M)x(N—M)4

the following condition for an arbitrarily selected R, € R

Qa2+ 2(HL3,) " BaHES Jaym - O (7.50)
2. For agents in Vy: Follow the steps of Algorithm 7.2.2 to design structurally
non-symmetric communication digraphs Ge,y, and G, by finding the two ma-

trices Hery, and Heyy, that satisfy the following condition for an arbitrarily

selected R, € RM*M5

Qll + 2[<Halg )TRvHalgm]sym Qli’) + 2[(Halg )TRvHalgm]sym

cxV1 cxV1 cxV1 (%1

Qly 4 2[(HX )T RyH S  sym Qs+ 2[(HES )T RAHES sy

cvVq cxV1 cvV cvV

-0

(7.51)

4In Algorithm 7.2.1, replace Q, by Q22 and name the result "

cx Vs "

5In Algorithm 7.2.2, replace Qa2 by Q33 and name the results #, and HZi‘{;l for Q13 = 0.

cx V1
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The outcome of this algorithm is given by

alg alg algm algm
H, = Hc:c]h 0 Hcvvl + HC?EVl 0 HCUVl _. Halg + %algm
+ The c
alg algm
0 Hcng 0 0 chvz 0

where we emphasize that Property 7.2.3 is satisfied only by structurally symmetric

components of G, and G, included in ’Hglg. O

We now prove that the multi-layer linear cooperative tracking protocol (7.34)-
(7.35) over two candidate communication topologies G., and G, of Algorithm 7.2.3
ensures robust tracking (7.32) while guaranteeing an upper-bound on cost func-

tion (7.36) for a mixed-order multiagent system with unknown interconnected

time-varying nonlinear agent-layer dynamics. We define k = ’/\\Lz((fj)), o =
al algm
Qin@EHE VL) and Py = P+ A (H29)T RS + (Halom)T RH2I™).

Theorem 7.2.3. The candidate control-layer communication graph topologies G,
and G., characterized by the aggregated reduced-order Laplacian matriz H. in Al-
gorithm 7.2.8 ensure exponential distributed cooperative tracking (7.32) with a
rate specified by k,o > 0, and an upper-bound matriz P3 on quadratic cost func-

tion (7.36).
Proof. The proof is passed to the Subsection 7.5.3. n

For the given communication digraphs G., and G, that fit on the structure
of (7.44), in the next corollary, we unify the findings of this subsection and estab-
lish a bound on the tolerable time-varying interconnected nonlinearities f; and g;
in agent-layer dynamics (7.30)-(7.31) by multi-layer linear cooperative tracking

protocol (7.34)-(7.35).
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Corollary 7.2.3. A bound on the maximum tolerable unknown interconnected
nonlinearities by distributed cooperative tracking protocol (7.34)-(7.35) can be es-
tablished as the minimum tolerance of the first-order closed-loop multiagent sys-
tem Vs based on Corollary 7.2.1 and second-order closed-loop multiagent system
V) based on Corollary 7.2.2. For the given upper-cost matriz Ps, let P} = Ps
be a matriz with the same pattern as @ in (7.42). Then, using P§, performance-
oriented topology design problem is also splittable into two independent parts based

on the Corollary 7.2.1 and Corollary 7.2.2. O

We emphasize that conditions of both Corollaries 7.2.1 and 7.2.2 should be si-
multaneously satisfied because, e.g., the agent-layer dynamics are physically cou-
pled over the z-variable digraph G,,. However, since the communication topolo-
gies can be independently designed, the complexity is not higher than each single

Corollary 7.2.1 or 7.2.2.

7.3 Simulation verification

We now verify the feasibility of proposed ideas in Section 7.2 through simula-
tion studies. We provide a comprehensive study on the robust first-order cooper-
ative tracking problem in Subsection 7.3.1. We study the results of second-order
cooperative tracking in Subsection 7.3.2. Finally, in Subsection 7.3.3, we discuss
a numerical example for the cooperative tracking in a mixed-order multiagent

system with unknown agent-layer dynamics.
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7.3.1 First-order cooperative tracking

In this subsection, we investigate the results of Subsection 7.2.1 based on a mul-
tiagent system with 5 agents and unknown interconnected time-varying nonlinear
dynamics f; = v/0.5sin(t)tanh(z,), fo = V0.4sin(zs), fs = V0.5z23, f1 = V/0.4z,
f5 = V0.5cos(t)tanh(zs). We let z = 043 epee(xi — ;) for i € {1,2,...,5}
where the physical neighborhoods of agents are shown using an agent-layer cou-
pling graph in the left-side plot of Figure 7.2. This agent-layer dynamics show
diverging response to the perturbation in 5* agent’s initial condition at time
to = 10s (see Figure 7.1).

In the first numerical study, we choose a symmetric reduced-order Lapla-
cian matrix @, and a diagonal R, = diag{0.5,1,0.5,1,0.5} in the Design pro-

cedure 7.2.1.

20000

15000 [

= 10000 F

5000 |

0 10 20 30 40 50
Time (s)

Figure 7.1: A multiagent system with agent-layer dynamics (7.1) and nonlin-
ear functions of Subsection 7.3.1 shows diverging behavior in response to a
perturbation in only agent 5’s initial condition at time tg = 10s. As seen, the
multiagent system can be sensitive to perturbations in any of its individual
components due to the physical couplings.
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Qz

3.5
—1.5

—-15 0
25 -1
-1 1
0 0
0 0

0 —1.5]
0 0
0 0
1 -1
125 |

As discussed before Algorithm 7.2.1, this results in control-layer communica-

tion topology G, with reduced-order Laplacian matrix H.,:

2.6410
—0.3761
Hew = | —0.0633
—0.0572

| -0.6315

—0.7522

1.5229
—0.6649
—0.0354
—0.1360

—0.0633
—0.3324

1.5625
—0.0087
—0.0238

—0.1144
—0.0354
—0.0174

1.0625
—0.6272

—0.6315)
—0.0680
—0.0238
—0.3136

2.2499 |

(7.52)

in which the inter-agent communication topology is complete and, furthermore, all

agents should directly receive the reference command. The two-layer closed-loop

multiagent system configuration and simulation result are shown in Figure 7.2.

In the second investigation, we verify the effectiveness of star topology based

on the diagonal weighted communication graph in (7.13). The result is shown in

Figure 7.3 where the left-side plot is obtained by taking the diagonal terms of @),

in all-to-all scenario (7.52) which results in the diagonal reduced-order Laplacian

matrix H., = diag{2.7690,1.6833,1.6332,1.1548,2.3806}, and the right-side plot

is achieved by using a four times greater state weighting matrix (compared to the

left-side) which ends in H., = diag{5.3542,3.2146,2.9440,2.0817,4.5461}. This
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in fact shows the flexibility of the proposed algorithm to adjust the exponential
convergence speed of multiagent systems with unknown time-varying nonlinear
dynamics (see Remark 7.2.3 in Subsection 7.2.1). In both cases, R, is the same
as that of all-to-all scenario in Figure 7.2.

In the third numerical result, we further investigate the effect of @), on the
overall topology of G... We again choose an incomplete state weighting matrix
(compare with the selection in (7.52)); however, the resulting reduced order Lapla-
cian matrix represents an incomplete inter-agent control-layer topology. For the
same R, as the previous two cases, (), and H,, are as follows, and the closed-loop

configuration and simulation result are depicted in Figure 7.4.

65 0 0 0 -3

-3 0 0 -2 5

_ - . (7.53)
3.5797 0 0 —0.1734 —0.9153
0 2.3278  —0.4556 0 0
Hew = 0 —0.9112  2.0621 0 0
—0.0867 0 0 1.3707  —0.4688
| —0.9153 0 0 —0.9377  3.0643 |

As is seen in Figure 7.4, still all agents must have access to the reference
command (based on the discussion before Algorithm 7.2.1, we could expect this

requirement because (15 > 0). However, we have already shown in Figure 7.3
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that the inter-agents communication is unnecessary whenever all agents have ac-
cess to the reference command. Additionally, these inter-agents communication
is still structurally symmetric (bi-direction) due to the symmetry of solution to
ARE (7.9). Therefore, in the fourth simulation, we verify the feasibility of Algo-
rithm 7.2.1 in finding an incomplete structurally non-symmetric communication
topology where only a few agents have access to the reference signal. The closed-
loop multiagent system and the corresponding simulation result are shown in

Figure 7.5 for R, = diag{0.2,0.4,0.2,0.4,0.2} and the following set of matrices:

175 —05 0 0 -05
05 1 —05 0 0
HM=| 0 —05 125 0 0
0 0 0 0.5 —0.5
05 0 0  —05 175
(875 —25 0 0 —25]
~125 25 -125 0 0
HY =1 0 —25 625 0 0
0 0 0 125 -1.25
|25 0 0 25 875
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(7875 —25 0 0 —25
1875 1875 0 0 0
He=| 0 —25 625 0 0
0 0 0 225 —2.25

—2.5 0 0 =25 7.875]

where H% is a design matrix, H29 is the result of Step 1, and H,, is a modified
result based on the Step 2 of Algorithm 7.2.1. (For such a setup, an alternative
incomplete digraph will be discussed in the fifth simulation.)

In the fifth simulation, we consider a multi-area large-scale system as depicted
in the left-side plot of Figure 7.6 where a cooperative algorithm should be design
to ensure reference command tracking in all areas. Here, agents 1 to 5, 6 to 10,
and 11 to 15 respectively belong to Area 1, 2, and 3. We assume that the ordered-
number agents in each area are described by the same time-varying nonlinearities
and inter-area physical couplings as in the first simulation, for example: agents
1, 6, and 10 are modeled by f;. However, the neighborhoods N in z; have been
modified to further include the intra-area couplings from agent 5 to 8, 10 to
13, and 15 to 3. We require the communication topologies of these areas be
independent from each other (e.g., due to the high implementation cost whenever
these areas are geographically far from each other). Therefore, we follow the two

steps of Algorithm 7.2.1 for H9 = (I3 @HW) and R, = I3® R,5 (Rys is the same

weighting matrix as in the fourth simulation scenario), and find H., = (I3@Heza):
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(2 05 0 0 —05] 4 -1 0 0 -1

05 1 —05 0 0 0505 0 0 0

HY =10 -05 15 0 0 Haa=] 0 -2 36 0 0
0 0 0 05 —05 0 0 0 1 -1

05 0 0 -05 2 | 1 0 0 0 3

The simulation result for this multi-area multiagent system is shown in the
right-plot of Figure 7.6. Note that we have considered the same inter-area com-
munications for brevity in the presentation, and Algorithm 7.2.1 is in fact valid
for three different communication structures: H., = diag{H..} for k € {1,2,3}.

The result of Corollary 7.2.1 can be verified by reverse engineering based on
the provided information for Figure 7.2 to Figure 7.6, and we do not present any
new results for brevity. We just mention that, for example, a 10-minute simulation
using incomplete structure of Figure 7.5 results in the cost 3.66 (left-hand side
of inequality (7.5)) and the analytical worst-case calculation provides guaranteed
bound 80.675 for approximated x = 1 and ¢ = 0.4 to be used in that corollary

(right-hand side of inequality (7.5)).
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Time (s)

Figure 7.2: An incomplete state weighting matrix ), in Design procedure 7.2.1
will not necessarily result in an incomplete communication topology G, (see the
discussion before Algorithm 7.2.1). Top) The two-layer closed-loop multiagent
system configuration using the all-to-all communication graph G., of (7.52).
Black items build the physically coupled multiagent system, and blue items
create the control-layer communication topology. The control-layer graph is
structurally symmetric with bi-directed communication links which have been
shown in two colors blue and cyan. Also, Magenta items correspond to the
(virtual) command generator which is physically decoupled from other agents
(to be interpreted as the main control room in large-scale systems). Bottom)
Distributed first-order cooperative tracking in a multiagent system of (7.1)
modeled by nonlinear functions of Subsection 7.3.1.
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0 5 10 15 20 25 30 0 5 10 15 20 25

Time (s) Time (s)

Figure 7.3: First-order cooperative tracking using star topology G., where all
agents receive the reference command over five directed edges (consider only
magenta arrows in the left-side plot of Figure 7.2). The norm of state weighting
matrix ), in the right-plot is four times greater than that of the left-plot
which, as expected from LQR optimal control theory, has resulted in a faster
convergence compared to the left-side plot with more aggressive control actions.
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0 5 10 15 20 25 30

Time (s)
Figure 7.4: The (incomplete) structure of control-layer communication topol-
ogy highly depends on the selection of state weighting matrix (), in Design
procedure 7.2.1: Top) Closed-loop multiagent system configuration using H,
in (7.53). Bottom) Numerical simulation results.
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Figure 7.5: Top) Closed-loop interconnected multiagent system configuration
with a structurally non-symmetric control-layer that is designed based on Al-
gorithm 7.2.1. Bottom) First-order cooperative tracking behavior using linear
distributed protocol with communication topology G, of the fourth simulation.
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2 L L L L
0 5 10 15 20

Time (s)

Figure 7.6: Top) In a high-dimension physically coupled multiagent system of
fifteen agents, we can use Algorithm 7.2.1 and divide the cooperative pro-
tocol design problem into three subproblems where, in each area, the five
agents exchange information over a communication graph similar to that of Fig-
ure 7.5-Top with a set of new edge-weights and no information exchange from
agent 4 to 5. Bottom) First-order cooperative tracking in multi-area multia-
gent system subject to unknown inter- and intra-area time-varying nonlinear

physical couplings.
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7.3.2 Second-order cooperative tracking

We now verify the results of Subsection 7.2.2 using a multiagent system of
second-order coupled agents where the time-varying nonlinearities are assumed to
be the same as in the first-order tracking scenario in Subsection 7.3.1 replacing
fi by ¢;, o by B, and z by y; = 0.4 ZjeMuw(xi —z;)+ 04 Zje/\/'i““<vi — vj) in
which the physical coupling neighborhoods N** and N are shown as agent-
layer graphs in Figure 7.7. This configuration models a multiagent system with
diverging trajectories which is not shown for brevity. In the rest of this subsection,
we discuss two design scenarios based on the Algorithm 7.2.2. A comprehensive
study can be made following the discussion in Subsection 7.3.1.

In the first simulation, we choose R, = diag{0.5,1,0.5,1,0.5}, HY = 2R,,

and H; and find H,, and H,, given by the aggregated matrix H..:

v

9 -2 0 0 -2
2 6 -4 0 0
HIY9 =10 —4 9 0 0

(2000 0[18 —4 0 0 —4]
02000[-2 6 —4 0 0
‘Hc=:[?um ?Qv}:: 00200[0 0 18 0 0 (7.54)
000200 0 0 4 —4
(00002/-4 0 0 -8 22
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where the left-side partition represents a star communication graph G., and the
right-side partition models a structurally non-symmetric communication topology
G to be used in cooperative tracking protocol (7.17). The closed-loop multiagent
system and simulation result are shown in Figure 7.7.

In the second simulation, we choose the aforementioned R, and H¥9, and set
H9 .= 1. Based on the first step of Algorithm 7.2.2, we find two reduced-
order Laplacian matrices H% and H29 and, based on the second step, we end in

Mo = (M2

HU =Hl = | o _12 22 0 0

He=1| 0 —-12 2 0 0|0 0 22 0 0 (7.55)

0 0 0O —-12 25, -6 0 0 —12 28

where the left- and right-side partitions of H,. correspond to G., and G, respec-
tively. The multi-layer closed-loop multiagent system and simulation result are
given by Figure 7.8 in which the initial state values of the (virtual) reference

generator have been manipulated to create the desired command.
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Figure 7.7: Multi-layer second-order cooperative tracking: 7Top) Closed-loop
configuration using communication topologies represented by H. in (7.54).
Over the agent-layers, black arrows represent z-variable physical couplings and
red arrows indicates v-variable interconnections. Over the control-layers, blue
arrows denotes z-variable communication topology and red/black arrows stand
for v-variable information exchange graph. Bottom) The corresponding numer-
ical simulation result to the left-side configuration.
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Figure 7.8: Multi-layer second-order cooperative tracking: Top) Closed-loop
configuration using communication topologies represented by H. in (7.55).
Symbols and colors are defined similar to Figure 7.7. Bottom) The simula-
tion result corresponding to the left-side multi-layer structure.
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7.3.3 Mixed-order cooperative tracking

In this subsection, we consider the mixed-order multiagent system of Subsec-
tion 7.2.3 with M = 2 second order agents (7.30) and N — M = 3 first-order
agents (7.31). The nonlinearities of second-order agents are the same as the first
two agents in Subsection 7.3.2 (i.e., i € V; = {1,2}), and those of first-order
agents are the same as the last three agents in Subsection 7.3.1 (i.e., i € {3,4,5}).
The physical couplings have been shown as agent-layer graphs in the left-side plot
of Figure 7.9.This physically coupled multiagent system shows unstable behavior
which is not shown in this chapter due to the space consideration. In the Algo-
rithm 7.2.3, we choose R, = diag{0.2,0.4}, R, = diag{0.2,0.4,0.2}, the following
H;iﬁ’l, ’H%"l, and H;lﬂz, and find structurally symmetric communication topologies

Gexvys Gexvy, and Gy, represented by Hglg :

17 —07 0
v w15 15 w
Hop, = Hyp, = Hyg, = |—07 07 0
15 35
0o 0 1
[ 75 —75 0 0 0| 75 —75]
375 875 0 0 0|-375 875
H = 0 0 85 =35 0| 0 0
0 0 —175 175 0] 0 0
0 0 0 0 5 0 0 |
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in which H% is partitioned according to (7.44). We further continue Algo-

rithm 7.2.3 and find three structurally non-symmetric communication topologies:

(675 675 0 0 0 |555 —5.55 |

0 5 0 0 0 | 0 45625

He=1| 0 0 4575 =35 0 | 0 0 (7.56)

0 0 —175 325 —15| 0 0
0

0 0 0 0 475 0

to be used in mixed-order cooperative tracking protocol (7.34)-(7.35) as depicted
in the left-side plot of Figure 7.9 and result in cooperative reference tracking

response shown by the right-side plot of this figure.

7.4 Summary and bibliography

We consider cooperative reference tracking problems for three classes of het-
erogeneous multiagent systems with interconnected nonlinear first-, second, and
mixed-order agent-layer dynamics. We introduce a multi-layer framework and
propose linear distributed cooperative protocols in which, by treating each com-
munication link as a proportional gain (controller), we appropriately design the
control-layer communication topologies to ensure robust tracking and performance
in the closed-loop interconnected multiagent system.

We develop optimal control-theoretic formulation to design these control lay-
ers, incorporate matrix-algebraic tools to solve the resulting nonlinear matrix

equations, and propose analytical solutions to the control-layers design problems
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Figure 7.9: Multi-layer cooperative tracking in mixed-order multiagent systems
of Subsection 7.3.3: Top) Closed-loop configuration where squares and circles
denote second-order and first-order agents, respectively. The colors have been
explained in Figure 7.7. Bottom) Numerical simulation result for the proposed

configuration in the left-side plot.

which relate the communication topologies to the multiagent system-level design
matrices and our partial knowledge about agent-layer interconnected dynamics.

We also develop several algorithms to systematically design structurally symmetric
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and non-symmetric control-layers which ensure robust tracking and guaranteed-
performance in the presence of partially-known agent-layer dynamics.

These algorithms, in particular, can be used to incorporate a-priori knowledge
about the required control-layer structures and find appropriate communication
strengths (e.g., due to the implementation cost of communication links whenever
agents are geographically far from each other). In each case, for the given control-
layer communication topologies, we further establish a bound on the uncertainties
in agent-layer dynamics that can be tolerated by this chapter’s linear distributed
protocol. Noticing the fact that nonlinear matrix equations in second- and mixed-
order tracking problems are decomposed into reduced-dimension equations with
the same structure as in the first-order tracking problem, the proposed ideas can be
used to address (mixed) high-order tracking problems based on the low-dimension
matrix equations corresponding to a multiagent system of single integrators.

The problems of this chapter are inspired by the reference tracking challenge
in large-scale systems (versus stability issues in Chapters 5 and 6) from a cyber-
physical viewpoint in which we assume the unknown agent-layer dynamics are
time-varying and interconnected. This viewpoint is inspired by [157], in part.
From a multi-agent systems’ viewpoint, compared to [73] and [158]-[159], we con-
sider an unknown communication topology and treat it as a design degree of
freedom, and each agent’s modeling uncertainty dependents on its own as well as
its neighbors’ internal variables.

Also, note that we consider the global performance of multiagent systems
that guarantee convergence rate maximization and quadratic cost function min-
imization in the presence of modeling uncertainties in the agent-layer dynamics.
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References [153]-[154] discussed numerical optimization approaches to find com-
munication graphs with maximum convergence rate as the performance metric.
Nevertheless, these references did not provide any closed-form solutions to rep-
resent their optimal communication topologies. Under various assumptions on
the number of nodes and edges in undirected graphs, [155] proposed several ana-
lytical solutions as the graphs with maximum consensus convergence rate. How-
ever, similar to [153]-[154], the result was limited to undirected graphs. Based on
globally coupled linear-quadratic cost function, [84] proposed an inverse-optimal
control technique to achieve cooperative tracking in multiagent systems. But the
result was limited to a-priori known “detailed balanced digraphs” and needed lo-
cal controller implementations. Reference [86] used a linear-quadratic regulatory
(LQR) formulation and proved the minimum of global cost could be achieved by
inter-agent communication over bi-directed complete digraphs. Additionally, for
a decoupled cost function (i.e., sum of agent-level local cost functions), [88]-[89]
derived star graph as the optimal communication topology assuming all followers’
access to the leader’s information. Nevertheless, all of these designs were lim-
ited to linear multiagent systems, without any sort of physical interconnections in
the open-loop (control communication-free) multiagent systems, and without any
modeling uncertainties. Furthermore, these results covered only undirected and
some special classes of digraphs to be used as communication topologies.
Nonlinearities in multiagent systems have also been investigated in the liter-
ature of distributed control. References [160]- [161] designed nonlinear protocols
to ensure consensus in linear multiagent systems. Reference[66] proposed a feed-
back linearizion-based approach in order to synchronize multiagent systems of
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nonlinear agents (see [73], [159], and [162] too). Although the result of applying
nonlinear control is theoretically strong, these techniques are still unpopular in
industries due to the extra complexity and unclarity compared to linear control
methods [163]. In the previous chapters, using linear techniques, we proposed dis-
tributed controllers for multiagent systems with Lur’e-type nonlinear agents. In
Section 5.3, we considered a special class of multiagent systems with unknown non-
linear physical couplings in the distributed decoupling problem where the result
was limited to completely known physical coupling topologies among agents and
communication graph was the same as the coupling topology. We addressed these
issues in Section 6.1; however, there was no discussion on the closed-loop mul-
tiagent system’s global performance and the method was still limited to a-priori
known undirected communication topology. Similar to the completely linear sce-
narios in [77]-[78], the designer required local agent-level control manipulations
for the implementation purpose. Additionally, there are some applications that
do not fit the proposed physical coupling structure of these references.

Although we do not cover any particular applications in this chapter, we men-
tion that the proposed approaches can be used for the coordination control purpose
in wind farms (see [144]) under the time-varying nonlinear effects of wake which
couple the down-stream turbines to the up-stream ones [164]. The large-scale
power system with inter-area couplings can be viewed as another application for
the proposed ideas of this chapter [165]. The proposed methods can be applied to
the cooperative tracking problem in multi-robot systems in the absence of physical
interconnections. In this case the nonlinearities are due to the inaccurate transfor-
mation that converts robot’s nonlinear dynamics to integrator (see [44]). Without
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any physical interconnections and nonlinearities, the results of this chapter can
be used to design optimal structurally non-symmetric directed communication
topologies which ensure consensus in linear multiagent systems with a guaranteed
convergence rate and linear quadratic cost (see [19] and [166] for the application
of consensus algorithms).

We acknowledge that the results of this chapter are based on the matrix-
algebraic definitions and findings in [99] and [167]. In particular, a comprehensive

discussions on M-matrices and functions of matrices are provided in [167].

7.5 Appendix: proofs

Proofs of all theorems are gathered in this section.

7.5.1 Proof of Theorem 7.2.1 (page 264)

We prove this theorem in two steps by showing u, = —H_.e of Step 2 in Algo-
rithm 7.2.1 ensures 1) robust exponential first-order cooperative tracking (7.2) for
multiagent systems of agents (7.1) with unknown physically-coupled time-varying
nonlinearities f;, and 2) robust performance by guaranteeing an upper-bound P;

on the quadratic cost function (7.5) subject to unknown trajectories of (7.1).

Step 1) We write the first part of this proof by letting the input of multiagent
system (7.6) be written as u, = 7, + Tpm Where 7, = —H%Ye,, Tpm = —HY™e,,
and HY and HY™ are defined in Step 2 of Algorithm 7.2.1. We propose a
candidate Lyapunov function V(e,) = el Pe, = 0 where P = 0 is the solution of
ARE (7.9). We first note that J;, = e (0)Pe,(0) is the optimal cost in Design

procedure 7.2.1. Thus, the pair (e, 7,) with 7, = —H%We, = —R_'Pe, satisfies
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Property 7.2.1 if we replace J7, by V, and u, by 7,. Now, along the uncertain

trajectories of (7.6), we find:

Vie,) = VI(f + 7o+ Tom) = —€LQumes — 7 RoTy — 27 Ro(f + Tam)
_eg(Qx + 2[(Hgglcg)TRchZ§:gm]sym)ex <0

where the inequality is obtained based on the condition in Step 2 of Algorithm 7.2.1
and the fact that fTR,f < el R,se,. Using Rayleigh-Ritz inequality, we further
find )‘min(P)HezH2 < V(er) < /\maZ(P)“exHZ and v(€x> < _)‘mm(Q>HewH2- Now,
global exponential stability of the origin in error dynamics (7.6) is proved in the
presence of unknown time-varying interconnected nonlinearities f. This further
indicates that the first-order distributed cooperative tracking problem (7.2) is
achieved by agents (7.1) with an exponential rate specified by positive scalars k

and o (defined before the main statement of this theorem).

Step 2) Based on the results in Step 1, we know V.I(f + u,) < —el(Q, +
2(HU)T R, HM™Ye,.  Substituting V! = 2elP and adding u! R,u, to both
sides of this inequality, we find el Q.e, + ul Ryu, < _E( el Pe,) + ul Ryu, —

2l (HUNT R, Hl9me,. Now, we integrate both sides over [0, 00) and find:

Ji(ex(0)) < eT(0)Pres(0) + [ (ul Ryu, — 2eT (HA9)T R, HA™e, ) dt
< e;(0)Pre;(0)
+ 5 (Amar [(HE9)T Ry HES + (Helom)T R, Helom™))el (0) e (0)
= €, (0)P1e,(0)
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where we use limy o €,(t) = 0, upy = —Hezey, |lec(t)]] < k expe,(0)|, and

the fact that:

ezﬂng,cher = ef((?—[gig)TRngig + (%Z;lzgm)TRx%(cligm + 2(Hgylcg>TR:ng:fcgm>ezv

7.5.2 Proof of Theorem 7.2.2 (page 275)

The detail of this proof is similar to that of Theorem 7.2.1. We briefly discuss
a two-step proof to show exponential reference tracking using the weighted infor-
mation exchange digraphs G., and G.,, and establish an upper-bound bound on
quadratic cost function (7.5).

Step 1) To prove exponentially cooperative second-order tracking, we introduce
V(e) = €T Pe = 0 as the candidate Lyapunov function where P > 0 is the solution
of ARE (7.23). We let u, = 7, + Tym, where 7, = —H%e and 7, = —H"e,
and H9 and H9™ are defined in Algorithm 7.2.2. We know any pairs (7,,¢)
satisfy Property 7.2.2 replacing w, by 7, and J3 by V (since the ARE of Design
procedure 7.2.2 is satisfied). Now, along the uncertain trajectories of (7.19) with

unknown interconnected nonlinearities g(y,t), we find:

Vie)= —eTQe— (tTRymy + 27T Ryg + 9" Ryg) — (e"Rse — g"Ryg)
—2eT(HY9)T R, H9me
< _eT(Q + 2[(%319>TRUHglgm]sym)e <0
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We know A (Plefe < V(e) < Mpaz(P)ele and the following inequality can be

established using Rayleigh-Ritz inequality:

V(e) < —Amin(Q + 2[(HI) T R/HZT | ym)e” e

This ensures global exponential stability of the origin in error dynamics (7.19)
with predefined converging behavior specified by e(t) < kexp~e(0), k and o.

Step 2) Based on the result of Step 1, we know:

VI( g+ ) < —e"(Q + 2(HM) " RyHI™ e

We further use the fact V7 = 2eTP in order to find 4(e”Pe) < —e'(Q +
2[(HY9)T Ry HA™],m )e and, by integrating over [0,00), we know [;*(e”Qe +
ul Ryu,)dt < €T (0)Pe(0) + [5°(ul Ryuy — 2(H9)T R,H™)dt because of the
limit behavior lim;_,..e(t) = 0. With some manipulation, we find J3(e(0)) <

e?'(0)P2e(0) where Ps is defined before the main statement of this Theorem.

7.5.3 Proof of Theorem 7.2.3 (page 289)

This proof follows that of Theorem 7.2.2. In the first step, we propose a
candidate Lyapunov function V(e) = e?' Pe = 0, decompose v = 7 + 7, where
uw=[ul, ul|" = He, 7= [T, 711" = H¥™e, and 7, = [7L,, 7L |7 = HY9™e are

defined based on Algorithm 7.2.3. Along the unknown trajectories of the coupled

error dynamics (7.39), we find:
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Vie)= —e'Qe — (u" Ru+2u"Rp + ¢"Rp) — (" Rpe — ¢" Re) — 277 Ry,
< —eT(Q+2[(H) T RHI™ gym)e < 0

and conclude exponential stationary tracking behavior in the closed-loop multia-

gent system of mixed-order agents (7.30)-(7.31). Note that:

(Halg )TRvHalgm 0 (Halg )TRUHalgm

cxV1 cxV1 cxV1 cvVq
alg\T algm __ alg \T algm
(%C ) RHC o 0 (chV2> Rchxvz 0
alg \T algm alg \T algm
(Hcvvl ) R’UHc:cvl 0 (chvl ) RUHcvvl

Thus, using the transformation e = TZe for a row permutation matrix 7 €
RWVHM)X(N+M) " thig condition can be rearranged as V < —eXAer < 0 in which
A = diag{(7.50), (7.51)}. Therefore, the positive definiteness of matrix @ +
2[(H9)T RH9],,, can be verified by two independent lower-order tests (7.50)

and (7.51) in Algorithm 7.2.3. In the second step, we find:

J3(e(0)) = fooo(eTQe + uT Ru)dt < eT(0)Pe(0)
+ J5 - (u" Ru — 2e" (H29)T RHA™)e)dt

which, substituting ©v = 7 + 7,, as defined in the first step, can be rewritten as

Js(e(0)) < eT(0)Pse(0) with the given Ps in this theorem.

316



Chapter 8

Overview and Future Work

“Do not be satisfied with the stories that come before you. Unfold your

own myth.”

Mawlana — Poet (1207-1273)

A comprehensive summary of results is included at the end of each chapter.
Now, at first, we provide a brief chapter-by-chapter overview of this dissertation
and, later, propose some theoretical and practical future work ideas.

In Chapter 3, we propose four distributed algorithms and study the challenges
of graph-theoretic consensus in physically decoupled multiagent systems. In that
chapter, the presence of modeling uncertainties increases the challenges compared
to the major part of the literature. We show the agreement is on an unknown
value that depends on the initial conditions of agents. After ensuring agreement
among agents of a multiagent system, we also prove that an agreement on zero
can be guaranteed by imposing some further requirements on the closed-loop

multiagent system.
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In Chapter 4, motivated by the results of Section 3.1 for multi-vehicle systems,
we propose a leaderless stationary consensus protocol which ensures all vehicles
agree on a position and come to stop in the presence of unknown persistent distur-
bances with a few absolute measurements. We further develop a leader-follower
stationary protocol which can be applied to the multi-vehicle and multi-robot
systems with second-order dynamics.

In Chapter 5, based on the results of Section 3.2, we interpret the agreement on
zero as the stabilization of a large-scale system around the origin. Particularly, we
discuss some benefits of using distributed algorithms to stabilize large-scale sys-
tems. We introduce the notion of physically coupled (interconnected) multiagent
systems, and propose two problems based on the structure of available information
about the multiagent system: distributed decoupling control and stabilization. In
that chapter, we only address the distributed decoupling problem and, moreover,
assume the physical coupling topology is completely known (although its effect
appears through some unknown linear or nonlinear functions).

In Chapter 6, we assume the physical coupling topology is unknown and
propose multi-layer distributed control configurations for both decoupling and
stabilization problems in physically interconnected multiagent systems. In this
formulation, agents interact over the agent-layer physical coupling topology and
controllers exchange information over the control-layer communication topology.

In the distributed decoupling, we have access to all absolute measurements of
agents and implement the decoupling algorithm in a hierarchical manner. We sta-
bilize some residual dynamics using lower-level local controllers, and use relative
measurements in order to design a higher-level distributed protocol to mitigate
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the adverse effects of physical couplings and stabilize the entire interconnected
multiagent system (see Sections 5.2, 5.3, and 6.1). In the distributed stabiliza-
tion, we assume only a few agents provide their absolute measurements. Thus, the
stabilization is guaranteed with less measurements compared to the distributed
control problem (see Section 6.2).

Although heterogeneous, in Chapters 5 and 6, all agents are modeled by dy-
namical systems with the same order and the results were limited to the decou-
pling and stability issues. In all cases, the control-layer communication graph
is structurally symmetric and we are able to manipulate the agent-layer dynam-
ics by implementing local controllers. In Chapter 7, we address these challenges
by considering the entire control-layer as a manipulable control variable to be
designed based on the unknown agent-layer’s time-varying nonlinearly intercon-
nected dynamics. By treating each inter-agent communication link as a propor-
tional gain, we use modified LQR formulation and find closed-form solutions for
the control-layer purely based on the design matrices and our partial information
about the agent-layer dynamics. We show the proposed approach can be used for
the performance-oriented design of multi-layer cooperative tracking protocols in
mixed-order multiagent systems and, further, establish bounds on the maximum
agent-layer modeling uncertainties that can be tolerated by the given communi-
cation topologies.

We can further think about the results of Chapters 5 to 7 based on the model
of multiagent systems and distributed control protocol. Regarding the modeling,
we consider heterogeneous multiagent systems in Chapters 5 to 7. In Section 5.2,
we use relative-output measurements, and design an observer-based distributed
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decoupling system for a parameter-dependent multiagent system where agents
could operate at different operating points. Another result is about the static
relative-state feedback approach. In Section 5.3, we consider time-invariant Lur’e
nonlinear multiagent systems with matched or unmatched state-coupled nonlin-
earities, and in Section 6.1, we generalize the model to another Lur’e multiagent
system with mixed matched and unmatched time-varying nonlinear modeling un-
certainties. In Section 6.2, we introduce a class of linear time-invariant multiagent
systems with both state- and input-coupled modeling uncertainties. In Section 7.2,
we consider three classes of multiagent systems with unknown interconnected non-
linear modeling uncertainties in their state-space realization.

Regarding the distributed formulation, we address the decoupling and sta-
bilization problems using leaderless consensus protocols (see Section 5.2), and
leader-follower consensus strategies (see Section 5.3, and Chapters 5-7). Regard-
ing the developments in Chapter 5, although they appear through some unknown
functions and result in modeling uncertainties, we completely know the physi-
cal coupling topology. Hence, we use the same topology to design distributed
decoupling system. In Chapter 6, we relax this assumption by proposing a multi-
layer distributed control framework. We further propose some fixed-gain fully
distributed algorithms that can be designed without any global knowledge about
the coupling and communication graph topologists. In Chapter 7, we propose a
set of linear cooperative tracking protocols to ensure robust exponential stability
and performance in interconnected multiagent systems. In this formulation, un-
like Chapters 5 and 6, the entire control-layer has been teated as the manipulable
variable for the control design purpose.
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An itemized summary of this Dissertation is given in Table 8.1. Note that,
in Section 5.1, we connect the literature of multiagent systems to that of large-
scale systems by proposing distributed decoupling and stabilization problems for
interconnected multiagent systems. Also, in Section 5.4, we discuss the proposed
distributed decoupling problem includes many of the existing distributed consen-
sus problems as special cases. We have considered modeling uncertainties in all
designs which can be interesting from practical viewpoints. Thus, we may imagine
many future work ideas that cover all theoretical and practical aspects of both
multiagent and large-scale systems along with the proposed synergistic foundation
in Figure 1.1, page 26. In the rest of this chapter, we discuss the future work ideas

under both theoretical and practical categories.

8.1 Theoretical aspect

There are many potential theoretical extensions to this dissertation. As a few
immediate ideas, we mention communication delay and quantization'. Addition-
ally, the distributed algorithm may receive imperfect noisy measurements. In this
case, we can propose stochastic models of interconnected multiagent systems and
(potentially) prove the same results “on average” (for a zero-mean noise). More-

over, based on the fully distributed developments in Chapter 5, we know that our

L A special quantization on a lumped relative-measurement has been discussed in [168]. Based
on that, we propose a logarithmic quantizer for a multiagent system of integrators, we write
it as &; = uj where u; = g4(3_;cn (¥i — 27)), gq(ui) denotes the quantization function which
satisfies |gq(ui) — wi] < 7glwi| with a constant v,. We rewrite it as &; = w; + f(u;) where
fq(ui) = gq(u;) — u;. Letting f,(u;) be a modeling uncertainty, the proposed approaches of this
dissertation can be used to handle the quantization problem. However, the general quantization
problem will remain as a future work idea.
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ideas have the following features: 1) The control gains are found independent of
graph topologies. Therefore, the design is robust with respect to both coupling
and communication topologies “as long as they are fixed and time-invariant in
each run,” and 2) They allow a post-design of the communication graph topology.
In fact, the initial communication network can be arbitrarily chosen to meet some
specific properties (e.g., at least it needs to be a connected graph). However,
depending on the optimality requirements, we may re-design and upgrade the
communication network to optimize it with respect to some new criteria without
being worried about its effects on the decoupling control gains.

In this sense, the proposed fully distributed ideas recover the interconnected
multiagent system after any failures in coupling and communication topologies
which cause (temporary) shut-downs. However, we emphasize this is different
from the switching-based scenarios that may happen in multiagent or large-scale
systems. To be clear, while the proposed approached may work under switching
scenarios, the proofs do not provide any theoretical guarantees for the stability
in any switching interconnected multiagent systems. Thus, switching control of
switched systems can be another future work direction (see [169]). Although we
have already found “closed-form” solution for a special class with quadratic cost
functions, we consider communication topology optimization problem with non-
quadratic cost functions as another future work idea. The coupling and commu-
nication faults can be discussed in a similar manner proposing a weighted graph
Laplacian (see Remark 2.2.1); however, resilient control of interconnected multi-
agent systems is left as a future challenge. Proposing a multi-layer LQR-based
formulation for the distributed consensus (or decoupling) of “uncertain” multi-
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agent systems over signed graphs where the adjacency matrix has both positive
and negative weights is another future work idea. In this case, the multiagent sys-
tem has antagonistic communication which results in a collaborative-competitive
condition [105]. Designing a multi-layer LQR-based formulation in the discrete-
time domain may open a new window to use the existing results and address
the aforementioned quantization, delay, switching, hybrid, and sampled-data con-
trol problems. Also, developing a modification of the proposed ideas to handle
completely nonlinear interconnected multiagent systems will definitely widen the

application of proposed ideas in this research work.

8.2 Practical aspect

In addition to the discussion in previous section, we note that 1) we have added
different sources of modeling uncertainties to each model of multiagent system
(unavoidable in real world applications), and 2) we have addressed our control
problems using the well-known LQR approach. The proofs might be less obvious,
or possibly complicated; however, the statements of final results are purely based
on the modified LQR formulations which should be understandable to a wide range
of control theoreticians and practitioners. Although we need some modifications
to systematically handle the presence of unknown interconnections in distributed
stabilization and decoupling problems, we still provide the conventional degrees of
freedom in tuning the system and control input matrices based on the well-known
existing rule-of-thumbs (e.g., see [110]). Therefore, we believe the ideas should be

sufficiently interesting for people with practical interests (see [163]).
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Note that the result of Chapter 3 is already developed with an application
viewpoint. However, we further mention that our distributed decoupling and sta-
bilization ideas are applicable to both multi-machine power systems and smart
grids. Thinking about the old-style multi-machine power systems, the proposed
approaches can be used instead of the existing decentralized techniques (e.g.,
compared to [15], the proposed LQR formulations in this dissertation need some
less-restrictive structural assumptions on the distributed generators’ state space
models). On the other hand, dealing with a (tomorrow’s) smart grid, we notice
two main points: 1) the presence of communication between smart grid’s build-
ing blocks (e.g., microgrids) fits the multi-layer viewpoint of this research, and 2)
each microgrid’s capability to operate in either islanded or grid-connected mode
shows the need for a hierarchical framework in the fully distributed decoupling
algorithms where agents can be locally stabilized using their absolute measure-
ments. Moreover, we may consider the distributed coordination of wind turbines

in the wind farm as another direct application of our ideas.
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