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Abstract
Many large-scale systems can be modeled as groups of individual dynamics,

e.g., multi-vehicle systems, as well as interconnected multiagent systems, power

systems and biological networks as a few examples. Due to the high-dimension

and complexity in configuration of these infrastructures, only a few internal vari-

ables of each agent might be measurable and the exact knowledge of the model

might be unavailable for the control design purpose. The collective objectives may

range from consensus to decoupling, stabilization, reference tracking, and global

performance guarantees. Depending on the objectives, the designer may choose

agent-level low-dimension or multiagent system-level high-dimension approaches

to develop distributed algorithms. With an inappropriately designed algorithm,

the effect of modeling uncertainty may propagate over the communication and cou-

pling topologies and degrade the overall performance of the system. We address

this problem by proposing single- and multi-layer structures. The former is used

for both individual and interconnected multiagent systems. The latter, inspired

by cyber-physical systems, is devoted to the interconnected multiagent systems.

We focus on developing a single control-theoretic tool to be used for the relative

information-based distributed control design purpose for any combinations of the

aforementioned configuration, objective, and approach. This systematic frame-
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work guarantees robust stability and performance of the closed-loop multiagent

systems. We validate these theoretical results through various simulation studies.
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Chapter 1

Introduction

“When I want to understand what is happening today or try to decide

what will happen tomorrow, I look back.”

Omar Khayyam — Mathematician, Astronomer, and Poet (1048-1131)

Looking back though history, we notice that the word “feedback”, in engineer-

ing, has been introduced during the 20th century in order to describe the parasitic

effect of an amplifier’s output on the input circuit. In fact, it is more than 2000

years that feedback control systems have been known as parts of human daily

life. An interesting point is that control systems are multidisciplinary topics, and

are heavily affected by theoretical and practical advances in many fields such as

electrical and mechanical engineering as well as mathematics. As an example, we

know that the modern control era emerged as a result of advances in (the state

space domain) mathematical analysis tools and digital computers. (See [1] for

further historical comments on control systems.)
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Rise in human population has resulted in the increased “size” of systems which,

consequently, increased the dimension of their mathematical models. Initial inves-

tigation was around direct generalization of existing control systems theories to

the high-dimension systems (previously developed for small-scale systems). This

was introduced under the name “centralized” control of “large-scale systems.”

Theoretical small- to large-scale generalizations could be done independently of

the size of large-scale system. However, in practice, some limitations were im-

posed by the existing computational power of a central digital computer, and

sensing, measurement, and communication abilities. Motivated by these practical

burdens, the (theoretically) conservative “decentralized” control ideas attracted

research interest. In the decentralized scenario, central powerful digital computer

of the centralized approach could be replaced by some “small” computing systems

receiving updates from the sensing tools at their own local subsystems. (See [2]-[3]

for further details on large-scale systems.) The success in decentralized control

ideas motivated researchers to think about the large-scale system as a “system of

(sub-) systems” or, in other words, a group of individuals.

In parallel, researchers were continuously trying to understand the logic behind

collective behavior of biological systems (for example, fish schooling and flocks of

bird). Specifically, scientists believed that any collective decision among travel-

ing animals highly depend on their inter-group communication ability which was

possibly guided by a leading animal that had some global information regarding

the target [4] (e.g., the food resource or geographical position of the destination).

An inspiring study was reported in [5] where the authors proposed a discrete-time

stochastic model to describe the behavior of some moving objects with differ-

2



ent initial headings, and numerically showed a simple heading-averaging rule in

each moving object’s neighborhood could lead all group members to move in the

same direction.

Researchers within the control system society were also trying to understand

these phenomena and use them in their own engineering problems. For example,

knowing about two hypotheses that the lateral position tracking of the preced-

ing bird results in aerodynamic advantages for each follower bird and improved

navigation capabilities, reference [6] studied the bird V-formation with a (control)

systems-theoretic viewpoint and used the result in automatic highway systems

and in-flight formation controls ([7] and [8]). Another research trend was created

by visualizing the communication topology using graphs, abstracting the infor-

mation in some graph-related matrices, and understanding the requirements for

achieving agreement among individual subsystems. Of those, we mention [9]-[10]

and, particularly, reference [11] that proposed a theoretical foundation for a deter-

ministic equivalent formulation of the numerical study in [5] and also connected

that result to graph theory1.

The outcome of these graph-theoretic ideas was astonishing. From a theoret-

ical viewpoint, the distributed design capability allowed researchers to guarantee

a global high-dimension design objective through local low-dimension sub-design

problems. From a practical viewpoint, a global behavior such as heading agree-

ment in [5] and [11] could be achieved using some cheap computing systems (com-

1Researchers are still following systems-theoretic viewpoints in order to explain their observa-
tions in some particular applications. For example, [12] discussed the disturbance propagation
in a string of vehicles using such a viewpoint. However, this has been less attractive than
graph-theoretic distributed control ideas.
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pared to the centralized control schemes), and based on local information exchange

within each agent’s neighborhood. This could eliminate the need for availability

of all agents’ absolute measurements with respect to the “same” global coordi-

nate (e.g., in decentralized rendezvous, all moving objects should be equipped

with a global positioning system (GPS) while this is not required in distributed

rendezvous).

These findings were in parallel to industrial improvements in computation,

communication, sensing, and monitoring devices. Specifically, it was possible to

integrate the sensing devices with computation and communication tools, and

have an enabling technology with a reasonable physical size. As a result of these

technological advances, a rapid progress was made in communication-based co-

operative control of unmanned systems (e.g., see [13] and [14]) which, inherently,

could be suitable applications for all distributed control objectives2.

All of these multidisciplinary advances, in addition to the wide range of po-

tential applications for the distributed control strategies [16] (e.g., ranging from

old-style multi-machine power systems [15] to the smart grid), attracted the re-

searchers’ attention to this topic. We further mention that the group “consensus”,

by itself, was a known fact among researchers [17]. Control systems society was

familiar with this topic through distributed decision making problems (see [18]).

Problems involving agents and multiagent systems in distributed computation

were also studied within the computer science society (see the discussion in [19]

and [20]). Thus, all together, this newly emerging topic was named “distributed

consensus in multiagent systems” (other names in the literature were very close

2The objectives will be discussed in Section 1.1.
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to this one). Moreover, successful implementation created new avenues for further

theoretical improvements and kept this research area alive and very active within

the control systems society as will be discussed in the rest of this Chapter. In

Section 1.1, we briefly introduce the terminology and team-based objectives that

have been commonly addressed in the literature of graph-theoretic distributed

multiagent control. In Section 1.2, we survey the literature of multiagent systems

control from the agent modeling and applied control theory viewpoints. In Sec-

tion 1.3, we discuss the contribution and structure of this dissertation. Finally, in

Section 1.4, we summarize this chapter.

1.1 Team-based objectives in cooperative con-

trol of multiagent systems: an overview

In this section, we overview main control goals that have been proposed as the-

oretical and practical team-based objectives. Detailed mathematical information,

if required, will be provided in other sections of this dissertation.

The word multiagent system refers to the fact that there are several (sub-)

systems working as a team toward a common goal. Each system is equipped with

its own measurement, sensing, computation, and communication tools. We clar-

ify that by “sensing”, we distinguish the agent’s ability to measure some aspects

of another system’s behavior. For example, the range sensor is a sensing tool.

(This is different from agent’s absolute measurement about its own behavior.)

Also, cooperation points to the fact that a team of agents are willingly sharing

their information in order to accomplish a global task (in addition to meeting
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their own local objectives). We have already mentioned that a main feature of

the distributed control algorithms is about the possibility of cooperation without

absolute measurements of agents’ variables. In some references, this is specified

by saying the design is based on some relative measurements in each neighbor-

hood. Here, the neighboring agents are those that share some information with a

specific agent3.

In all cases, with simple words, the objective is agreeing on a common value

among all agents. For example, in [5], the agreement was on the moving direction

(of all particles). This is named consensus in distributed control research studies

which, in fact, refers to “any” agreements among agents of a multiagent system

that have been achieved as the result of sharing information in agents’ neigh-

borhoods. In this sense, we focus on appropriately developing graph-theoretic

algorithms based on the relative measurements. These are known to be consensus

algorithms or protocols.

As a matter of fact, these consensus algorithms only ensure the agreement

among agents, without specifying the “agreement” value. The average consen-

sus algorithms, however, refer to those revised consensus protocols that ensure

agreement on the average of all agents’ initial status4. Although this value is still

unknown, these protocols provide a general sense on the agents’ agreed status

3In a proximity graph scenario, the neighboring agents are sufficiently close to an agent and
belong to its neighborhood area (open connected set), e.g., distance-wise in multi-robot systems,
all agents that are inside a circle with the host robot as the center and radius r > 0.

4By the word “status”, we simply point to any possible agreement variables which, for ex-
ample, could be the internal states of agents in the state space domain.
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(we are able to generalize this result to a weighted average consensus by pre-

determining the importance of agents’ information).

The rendezvous specifies the application of consensus algorithms for multi-

robot (-vehicle) systems with position of robots as the consensus variable [21].

Since (line-to-sight) sensors have a limited range of applicability and agents are

moving in space, the proximity graph plays an important role in a rendezvous of

mobile agents [22]. Furthermore, formation control refers to the case that agents

create a pre-defined geometrical shape. For these moving agents, the connectivity

maintenance is a topic of interest for researchers. It aims in ensuring the two

neighboring agents will remain each others’ neighbors during the cooperative task

completion. In distributed flocking or swarming, having some (man-made) moving

objects and some relative measurements, the algorithm tries to automatically

reproduce the observed behavior in nature, e.g., fish chooling and flocks of bird

(see [23]-[26]). Here, a main point is about the agents’ velocity matching. But,

since it usually includes a high-number of moving agents and particularly because

the inter-agent distance can be less that the length of each agent, the collision

avoidance capability has also been considered to enhance the overall reliability

of flocking algorithms. Furthermore, in the distributed attitude alignment, the

consensus variable is pre-specified to be the attitude of agents [27].

A distributed coverage algorithm tries to optimize the distribution of agents

in order to cover the maximum area “by all agents” based on some information

exchange within “each agent’s neighborhood.” Here, a main concern is about

the possible holes (areas not covered by agents). The wireless sensor network

design is about the best distribution of sensing devices to sense a distributed
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plant, for example, monitor a specific area [28]. Since these might be used in

remote (hazardous) areas and each sensor has a limited energy resource, the en-

ergy consumption is a main constraint that has been discussed in the literature.

Additionally, a sensor network may only provide a part of the required informa-

tion about a plant. Thus, the distributed estimation or (Kalman) filtering can be

used to discover the hidden behavior (or variables) of a distributed system. Those

challenges have been addressed using data fusion or decentralized techniques as

well as consensus-based ideas [29]. Sometimes, researchers deal with a large-scale

optimization problem with a high-number of decision variables. Whenever these

decision variables can be grouped into some subsets of variables, where each cor-

responds to an individual agent, the distributed optimization can be employed to

find the solution of a global optimization problem using some local information

exchange about the decision variables in each neighborhood. Moreover, synchro-

nization has also been investigated in the study of harmonic oscillators, where

the objective is achieving a synchronized oscillation frequency using some relative

measurements in each neighborhood.

In some cases, there exists an agent that is not willing to change its status

based on any of other agents in a multiagent system. This agent may further try to

dictate its own decision (or sequence of actions) to all other agents. This can hap-

pen by sending its status to other agents via “one-way” direct communication or

through some intermediate agents. In the literature, this reference agent is called

a leader, and all other agents are named followers. In this scenario, the objective

is designing a (leader-follower) consensus algorithm that ensures an agreement on

the leader’s status. The distributed containment control is proposed to address
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leader-follower consensus problems with multiple leaders. A multiagent system is

homogeneous when it is composed by a set of identical agents described by ex-

actly the same dynamics. Otherwise, we call it a heterogeneous, non-identical, or

non-homogeneous multiagent system.

Graphs are appropriate tools to model the communication or sensing capabili-

ties in multiagent systems where each node of the graph represents an (dynamical)

agent, and each edge stands for a relative measurement or information exchange

between the corresponding nodes (agents). The word connected graph refers to

the fact that the information flow can be completed over the communication

graph. This is required to achieve consensus, and simply means all agents are

aware of the multiagent systems’ global status through receiving updates from

one or more neighboring agents over an appropriately designed communication

topology. Various important properties of multiagent systems can also be under-

stood by studying the properties of matrices associated to the graph. This will

be discussed in next chapters.

1.2 Distributed control of multiagent systems: a

brief survey

Several tutorial and survey papers have been published to introduce this field

and update researchers about specific trends in the graph-theoretic distributed

control of multiagent systems (e.g., see [16] and [30]-[34]). In this section, we

provide our own story by observing that the dominant research ideas may fall

into the following categories:
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• Modeling:

– Agent-level: The complexity of the agent-level dynamical model can

increase the difficulties in designing distributed control algorithms. In

the literature, agents are described as scalar systems, low- and high-

order structured models, linear time-invariant, and nonlinear dynamics.

These models are described in both time- and frequency-domain and,

further, the time-domain models are reported in both continuous and

discrete forms. We mention that the model selection highly depends

on the team-level objective and the availability of required information

for cooperation.

– Multiagent system-level: Similar to the previous case, the complex-

ity of multiagent system-level model can also contribute in the design

procedure difficulties. In the existing literature, the agents are usually

loosely connected through the distributed control algorithm (we use

the “loosely-”connected to describe the connectedness in distributed

communication topology and, because it is by design, we can remove

it at any time). However, they can also be strongly coupled to each

other due to the physical interconnections in addition to the previous

loose connection. In both cases, any two agents can be connected in

a one-way or two-way manner which we call directed or undirected,

respectively.

10



• Control:

– Multiagent system-level (cooperative) objective: This is often moti-

vated by the practical need, although it can be also inspired by some

theoretical findings. We have already talked about this viewpoint in

Section 1.1 (e.g., rendezvous, formation control, flocking, and cover-

age), and do not re-state that discussion here.

– Applied theory: Depending on the model complexity and cooperative

objective, different control algorithms have been used in the literature

of distributed control. Essentially, all existing control theories can be

generalized to for the distributed control purpose. However, we point

out that the usage of relative-measurements imposes some new chal-

lenges compared to the centralized and decentralized control theories.

Depending on the cooperative objective in Section 1.1, there are many ways

to describe the dynamic behavior of the multiagent system by a set of differential

equations. The control approaches are also chosen based on the cooperative ob-

jective, complexity of the model, and the assumptions that have been made based

on the available information about multiagent systems. In the rest of this sec-

tion, we walk through the literature of distributed multiagent control and quickly

overview it from both modeling and control aspects. Since this is a broad topic,

we limit ourselves to the scope of this research.
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1.2.1 Multiagent systems: modeling aspect

The research on this topic was started with a multiagent system of single-

integrators:

ẋi = ui (1.1)

where i ∈ {1, 2, ..., N} denotes the agent’s number, and N is the total number

of agents; and xi ∈ R represents the agent’s state variable, and ui ∈ R indicates

the control input. We point out two reasons that indicate the usefulness of such

initial model selection. As the first point, this model describes the behavior of a

moving object whenever xi is chosen to be the ith agent’s 1− dimension position

along a line (e.g., in a rendezvous problem of Section 1.1). We can generalize this

to higher-dimension spaces, e.g., for the formation control purpose. The second

point is about the simplicity of the aggregated model which enables us to focus

on the effect of communication between agents.

The initial work was mainly focused on analysis strategies in intuitive manners.

Reference [35] proposed the concept of Laplacian potential associated to an undi-

rected graph, cost of communication, and agreement and disagreement subspaces.

This reference successfully established a connection between algebraic graph the-

ory to the well-known concepts in (linear) control systems theory 5. Reference [36]

established an alternative approach, and proved the results by proposing a novel

candidate Lyapunov function and using some special properties for the underlying

communication graph. For a set of integrator agents (1.1), [37] distinguished the

controllable and uncontrollable sets of communication topologies by investigating

5Algebraic graph theory is a study of matrices associated to each graph and their properties.
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the required conditions that a graph topology should satisfy in order to have a

controllable leader-follower multiagent system.

An extension to (1.1) was made in [38] that, inspired by the complex networks

(e.g., Internet and metabolic networks), proposed ẋi = f(xi) +ui where ui should

be designed with a global knowledge about all sub-dynamics (e.g., using any

approaches similar to the consensus algorithms). Furthermore, [39] proposed a

scalar nonlinear dynamical model ẋi = f(ui) with a deadzone nonlinearity f , and

addressed its consensus problem based on LaSalle’s invariance principle.

A direct generalization to (1.1) was made by proposing a multiagent system

of double-integrator agents (see [40]-[42]):

ẋi1 = xi2, ẋi2 = ui (1.2)

where, from a physical viewpoint, xi1 ∈ R denotes the ith agent’s position, and

xi2 ∈ R stands for its velocity. The consensus problem in a multiagent system

of (1.2) was also addressed in [43] by a two-component controller using absolute ve-

locity measurements of agents and, also, relative-state information. Depending on

the application and the cooperative task, these models may provide suitable linear

approximations of the nonlinear systems. For example, [44] showed that a robot’s

nonlinear dynamics can be appropriately transformed to a double-integrator model

for the purpose of formation control.

Reference [45] introduced a multiagent system of second-order nonlinear agents

ẋi1 = xi2 and ẋi2 = f(xi1, xi2, t) + ui and discussed the second-order consensus

limt→∞ ‖xi1 − xj1‖ = 0 and limt→∞ ‖xi2 − xj2‖ = 0 for i, j ∈ {1, 2, ..., N} with
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a nonlinear function f satisfying a Lipschitz-type inequality. The results were

based on the graph- and matrix-related definitions and some derivations based

on the multiagent system’s dynamics. For some locally Lipschitz nonlinearity in

velocity state equation ẋi2 = f(xi1, xi2, t) + ui +wi, [46] proposed a linear matrix

inequality-based robust H∞ control technique for the containment control in a

(multiple leader-based) second-order multiagent system with a scalar unknown

nonlinearity and under a bounded disturbance term. This reference guaranteed

a level of H∞ performance in asymptotic convergence of followers’ state variables

to a convex hull spanned by all leaders.

Also, with a globally Lipschitz nonlinearity and using LaSalle’s invariance

principle, [47] addressed the leader-follower consensus in a multiagent system

with followers ẋi1 = xi2 and ẋi2 = f(t, xi2) + ui, and a reference ẋ01 = x02 and

ẋ02 = f(t, x02). For the same model, [48] discussed a semi-global consensus prob-

lem where, proposing a special control structure, the semi-global consensus was

only guaranteeing limt→∞ ‖xi2 − x02‖ = 0 compared to a second-order consensus

problem in [45] (there are some additional conditions that we do not go through

for brevity). This reference proposed a special symmetric candidate Lyapunov

function and established its results.

The presence of (time-dependent) disturbance may prevent achieving consen-

sus in a multiagent system. In reference [49], a leader-follower consensus (coop-

erative tracking) problem was discussed for a set of heterogeneous second-order

nonlinear multiagent system under a bounded disturbance. In this reference the

agents’ dynamics were modeled by ẋi1 = xi2 and ẋi2 = fi(xi1, xi2) + ui +wi where

wi was an external disturbance, and fi were continuously differentiable. The
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approach was using a variable-structure controller that was a function of both

lumped relative-state measurements
∑

j∈Ni(xi1−xj1) in each neighborhood Ni of

the ith agent and their sign functions sgn(
∑

j∈Ni(xi1 − xj1)).

Using partial-state measurements (without any velocity measurements), this

reference also discussed a distributed observer design problem. In reference [50],

an adaptive leader-follower consensus problem was addressed assuming a leader

ẋ01 = x02 and ẋ02 = f0(x01, t). In this reference, the nonlinearities were unknown

but smooth, such that the neural network ideas could be used to approximate

fi(xi) = W T
i φi(xi) + εi with φi denoting basis function vectors, Wi vectors of

constant coefficients, and εi approximation errors.

There are some other types of integrator-based multiagent systems, for exam-

ple, [51] proposed a heterogeneous multiagent system including both single- and

double-integrator agents. However, an immediate extension to (1.2) was made

in [52] as a high-order integrator model of agent:

ẋi1 = xi2, ẋi2 = xi3, ..., ẋi(nx−1) = xinx , ẋinx = ui (1.3)

which can be interpreted as a vehicle’s model taking all position, speed, accelera-

tion, and higher-order jerks (limited by the model’s dimension) into consideration

in the state space model. This model can be viewed as a structured linear time-

invariant (LTI) model:

ẋi = Axi +Bui (1.4)
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where the state matrix A ∈ Rnx×nx and control input gain matrix B ∈ Rnx×nu

have the following control canonical structures:

A =



0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1

anx1 anx2 anx3 ... anxnx


and B =



0

0

...

0

1


with all anxj = 0 for j ∈ {1, 2, ..., nx}. Reference [53] further added a disturbance

term to the highest order integrator equation ẋinx = ui +wi and proposed an H∞

(high-order) consensus algorithm. Moreover, [54] proposed the dynamic nonlinear

agents ẋil = xi(l+1) + fil(yi, di), xk(ni+1) = ui, and yi = xi1 where only xi1 was

measurable and l ∈ {1, ..., ni}. Additionally, reference [55] discussed a leader-

follower output feedback-based consensus problem for a group of N+1 identical

single-input single-output agents:

ẋi,1 = xi,2 + f1(xi,1), ẋi,2 = xi,3 + f2(xi,1, xi,2), ..., ẋi,n = ui + fn(xi,1, ..., xi,n)

yi = xi,1

where subscript 0 denotes the leader and i ∈ {1, 2, ..., N} denote followers. In

this reference, the functions fi are sufficiently smooth and satisfy the Lipschitz

inequality with a fixed Lipschitz constant. Reference [56] used a similar multiagent

system, but fi were satisfying a time-varying Lipschitz-type inequality.
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A more general version of (1.4) with anxj 6= 0 has also been discussed in the

literature [57]. A multiagent system of (unstructured) LTI agents has also been

discussed in the literature. Reference [58] showed that consensus problem can

be solved through a set of N local stability problem depending on the eigenval-

ues of underlying communication graph Laplacian and dynamics of agents, and

addressed its formation control problem via Nyquist-based criteria. For such a

multiagent systems, [59] proposed a dynamic output feedback strategy to achieve

synchronization. Moreover, [60] found a necessary and sufficient condition to

achieve consensus using output feedback measurements in an LTI multiagent sys-

tem. Also, [61] used a reduced-order observer-based algorithm in order to achieve

consensus in a multiagent system of LTI agents using relative-output measure-

ments (we point out that, for example, references [43] and [58] are proposing

some output feedback approaches as well).

Although a closed-form solution for a nonlinear multiagent system (with an

arbitrary state space dimension) is still unknown to the researchers in this field,

some efforts have been made in the literature to address the consensus problem

for some special classes of nonlinear multiagent systems. Particularly, the state

equation (1.5) has been proposed in order to model a class of nonlinear multiagent

systems compose by Lur’e dynamical agents:

ẋi = Axi +Bui +Dfi(xi) (1.5)

where fi : Rnx → Rnx are some nonlinear functions. Reference [62] discusses an

average consensus problem for a multiagent system of (1.5) assuming a globally
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Lipschitz nonlinear function f . Furthermore, both (unconstrained) LTI and Lur’e

models of a multiagent system were discussed in [63] (using adaptive consensus

algorithm). Reference [64] investigated its adaptive leader-follower tracking idea

using a leader ẋ0 = Ax0 + Br, and N followers ẋi = Axi + B(f(xi) + ui) and

y = Cxi where r is an unknown input with a constant bound and f is an un-

known nonlinearity that can be parametrized as fi(xi) = W T
i φ(xi) + εi. Here, Wi

denotes the weight matrix (unknown and constant), φ indicates a known basis

vector, and ε represents an approximation error. With a known (homogeneous)

nonlinear function f(xi, t), [65] proposed an observer-based consensus protocol

using relative-output measurements (f was used in the observer dynamics).

A single-input single output agent model was introduced in [66] in order to

consider a nonlinear multiagent system:

ẋi = fi(xi) + gi(xi)ui, yi = hi(xi) + diui Followers

ẋ0 = f0(x0), y0 = h0(x0) Leader

in order to design a feedback linearization-based synchronization approach when

ui ∈ R, yi ∈ R. In this reference, the absolute state variables xi ∈ Rni were

measurable for i ∈ {1, 2, ..., N}. Reference [19] introduced Kuramoto coupled

oscillators as another nonlinear model to the literature of multiagent control:

θ̇i = κ
∑
Ni

sin(θi − θj) + wi
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where θi denotes the phase and wi indicates the frequency of the ith oscillator.

We may use κ = K
N

for the normalization purpose in a multiagent system of N

oscillators (see [67]).

The nonholonomic mobile robots can be described as follows:

ẋi1 = ui1cos(θi), ẋi2 = ui1sin(θi), θ̇i = ui2

where the pair (xi1, xi2) specifies the location of the robot that, together with the

angle θi, builds a state variable vector. Also, the pair (ui1, ui2) denotes the control

inputs (the translational and rotational velocity of the robot, respectively). Rigid

bodies have also been studied in the literature:

Mi(qi)q̈ + Ci(qi, q̇i)q̇i + gi(qi) = τi

in which qi ∈ Rn represents a vector of generalized coordinates, and Mi, Ci, and

gi are appropriately defined. We do not go through these very special nonlinear

model structures. Instead, in the rest of this subsection, we provide a quick

overview of the multiagent systems with modeling uncertainties, and provide a

short note about a few existing references that have considered consensus problems

for physically interconnected multiagent systems.

There are some studies that have addressed the effect of agent-level uncer-

tainties on the graph-theoretic distributed approaches. References [68] and [69]

proposed the following state space model:

ẋi(t) = (A+ ∆Ai(t))xi(t) +Bui(t)
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which could be interpreted as a homogeneous LTI multiagent system in the pres-

ence of heterogeneous modeling uncertainties in agents’ system state matrices,

where ∆Ai(t) = DFi(t)E and F T
i Fi ≤ δI were satisfied for known matrices D and

E, and a positive scalar δ.

Reference [70] addressed a similar issue for multiagent systems with ∆Ai(t) =

BEi(t) and ET
i Ei ≤ δI, and [71] discussed the case that ∆ATi ∆Ai ≤ δI. Also, [72]

proposed a consensus algorithm for high-order integrator agents subject to a set

of scalar nonlinearities. Reference [63] developed consensus algorithms for linear

multiagent systems subject to the Lipschitz nonlinearity, and [73] discussed the

consensus of multiagent systems under the state- and control input-dependent

norm bounded unknown matched nonlinearities. Nevertheless, in these studies,

each agent’s modeling uncertainty was a function of its own variables.

Reference [74] proposed the concept of coupled multiagent systems by intro-

ducing the state-dependent graphs where the dependency was a result of relative-

state information exchange in the distributed consensus algorithm. We mention

that this coupling is still by communication, and the same as [75] that will be

discussed in the next subsection. The coupled-state, -input, and -output mul-

tiagent systems has also been discussed in [76]. In this reference, the coupling

could be part of the system’s dynamics. Additionally, for a state-coupled mul-

tiagent system ẋi = Axi + Bui + F
∑
Ni(xi − xj), [77] proposed a distributed

control protocol in order to minimize the effect of disturbance on the agreement

value. Here, the state coupling structure could be different from the communica-

tion topology. However, these studies were limited to the completely known and

linearly coupled multiagent systems. In a different research, based on a linear
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matrix inequality (LMI) formulation, [78] introduced an algorithm to address a

leader-follower tracking problem in a multiagent system of linearly coupled linear

time-invariant agents. Here, the unmatched coupling strength was uncertain and

the communication graph was different from the coupling topology. Also, the size

of LMIs could increase depending on the number of agents. This reference mod-

ified its protocol and developed a gain-scheduled consensus algorithm depending

on a measurable variable θ in order to handle the effect of a parameter-dependent

state matrix A(θ) which was a function of the same θ for all agents (note that the

other state space matrices were constant values).

In the next section, we continue the literature survey by reviewing the litera-

ture from a control-theoretic viewpoint.

1.2.2 Multiagent systems: control aspect

Many control theories have already been applied in order to guarantee the

consensus in multiagent systems. In this subsection, within the scope of this

dissertation, we only focus on LQ-based approaches. We also provide a short note

on a recent application of adaptive control ideas in this field.

Due to its systematic structure, linear quadratic regulator-based control ideas

have received attention in the literature of multiagent systems. For a set of dy-

namically decoupled systems, [79] proposed a global quadratic cost function for a

set of individual agents, found a centralized optimal controller, and showed that a

sub-optimal stabilizing system could be found by some local tuning parameters in

the agent level sub-design problems. In our opinion, this reference could be viewed

as a leading research study on LQ-based distributed control systems (compare the
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derivations in [79] to [80], and see the usefulness of Kronecker product). Using

the name of multiple systems, reference [81] used LQ-based strategy to guarantee

an approximately optimal closed-loop system response. In more detail, with a

central control viewpoint, [81] found the optimal closed-loop response under an

all-to-all communication topology (which corresponds to a complete undirected

graph). Then, for an incomplete communication topology, a set of distributed

LQ-based control systems was designed such that the response could converge to

that of an all-to-all design. Reference [82] mainly focused on using LQ-based ideas

to handle a consensus stability problem in a multiagent system. It showed that

the consensus can be achieved using local LQ-based designs. Within this view-

point, [83] addressed an output feedback leader-follower consensus problem based

on an agent-level LQR-based Luenberger observer formulation. In this reference,

the focus was on developing a solution for the proposed consensus problem and

the global optimality of the multiagent system was not discussed.

Based on a similar problem to [79], references [84] and [85] addressed the

global optimality problem via their inverse optimal designs6. Reference [86] pro-

posed interaction-free and interaction-based cost functions in its linear quadratic

regulator formulations for the consensus purpose, where the interaction-related

cost function dependent on the graph Laplacian. This reference was limited to

a set of single-integrators. Thus, [87] proposed a mixed local (using absolute

6In the literature of optimal control, optimality is defined with respect to the given cost
function. Therefore, different solutions can be found for different optimal control problems
where each of them is optimal with respect to the corresponding cost function. However, in
the literature of multiagent systems, the definition is a little bit different. Here, the global
optimality refers to a solution of an optimal control problem with a coupled cost function, and
sub-optimality of a solution sometimes refers to the solution of an optimal control problem with
respect to a decoupled cost function.
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state measurements) and multiagent system-level (using relative state informa-

tion) control system, and guaranteed that a certain level of optimality could be

established using an interaction-related cost function subject to an LTI multi-

agent system. For single- and double-integrator agents, [88] further borrowed

the concept of LQR control to find the optimal communication graph topology

and weights. In [89], this has been re-investigated for a multiagent system of

single- and double-integrators. Reference [90] used an LQR formulation in its

leader-follower consensus problem and showed that the global optimality can be

achieved for a special choice of weighting matrices in the cost function, and if the

absolute measurements are available.

In the literature, the consensus convergence rate has also received attention

as an optimality criterion. For a group of single-integrator agents, this is de-

termined by the algebraic connectivity of communication graph (the smallest

non-zero eigenvalue of graph Laplacian). Over a fixed communication graph,

this can be changed by adjusting the weight of communication graph. Refer-

ence [75] proposed an optimization problem to appropriately weigh the commu-

nication topology (graph adjacency or Laplacian matrix) in a multiagent system

with state-dependent communication topology (also see [91]). In [92], the weights

of a communication graph were designed using a semi-definite convex program-

ming approach in order to maximize the consensus convergence speed by changing

the second smallest eigenvalue of the corresponding weighted graph. Moreover,

the convergence speed has been investigated in [57] for a group of LTI agents (with

a control canonical state space representation).
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In [58], an analysis approach was proposed to investigate the stability of a

formation system. Based on this result, one needs to separately verify the sta-

bility of some dynamical systems (with the same dimension as each agent) for

all non-zero eigenvalues of the graph Laplacian. In order to overcome this is-

sue, some researchers proposed a two-step design procedure. In [93], the relative

measurement was “corrected” by a coupling strength c > 0, and passed to the

distributed consensus protocol. By design, this coupling gain was greater than

a threshold value, but bounded within an area named “consensus region” (if we

choose a c within this region, then the consensus is guaranteed). Thus, the au-

thors introduced this region as a measure of robustness for their approach (a

larger region indicates a less sensitive consensus algorithm). In reference [83],

a consensus protocol was introduced where the consensus gain was modified by

such a coupling strength c > 0 (using the non-modified relative measurements).

This reference showed that an unbounded, yet limited from left, consensus region

could be obtained using local LQR designs. Thus, the robustness (as defined

in [93]) was significantly high. However, in both cases, the threshold on coupling

strength c dependent on the smallest non-zero eigenvalue of graph Laplacian ma-

trix. In other words, this global knowledge about the communication graph was

required to ensure agreement using these design approaches. This fact may restrict

the applicability of a distributed algorithm for a multiagent system including a

high-number of agents. Thus, some references proposed adaptive control ideas

in order to design fully distributed consensus algorithms7 (e.g., see [73] and [94]-

7We just clarify that the name “distributed control” was proposed based on the simplification
in implementation (versus the centralized approach, and since the decentralized was already used
by the literature of large-scale systems)(see the discussion at the beginning of this chapter).
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[95]). These approaches enable us to design some consensus algorithms purely

based on some local agent-level information, at the expense of added complexity

in implementation compared to the LQR-based ideas that have been discussed in

this subsection.

There are several other approaches that have been studied in the literature

of multiagent control. For example, model predictive control [96], back-stepping

control [97], and sliding mode control [98]. For brevity, we stop surveying the

literature at this point. However, when required, further references are introduced

in next chapters.

1.3 Contribution and structure of this disserta-

tion

The quick literature survey of this chapter shows that the distributed control

of multiagent system can be viewed as a multidisciplinary topic. In particular,

we introduce our research as a synergistic combination of three topics: systems

and control, graph theory, and optimization (see Figure 1.1). Based on such a

viewpoint, in this dissertation, we design a single control-theoretic tool that can

be used to address various problems in the control of multiagent systems. These

challenges might be due to the control objectives, e.g., consensus, decoupling,

stability, tracking, and performance requirements; due to the type of modeling

mismatch such as unknown disturbances, agent-level modeling uncertainties, and

However, the “fully distributed” points to a new level of localization in the design procedure (in
addition to the implementation).
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Systems and control

Graph
theory

Optimization

Distributed
control

Optimal
control

Network
optimization

Modified
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multi-layer

distributed control

Figure 1.1: Modified LQR-based multi-layer distributed control of physically
interconnected multiagent systems as a synergistic combination of three (well-s-
tudied) research topics: systems and control, graph theory, and optimization.
We skip showing the combination of systems and graph theory ends in intercon-
nected multiagent systems (the distributed control is the result of combining
graph theory and control).

linear and nonlinear physical interconnections; or due to the configuration, for

example, single- or multi-layer control ideas. These are categorized as follows:

1. Systems and control: The “systems” includes all possible models that have

been discussed in Section 1.2. We consider two fairly general classes of multi-

agent systems’ models that have been studied in the literature of multiagent

control (see Section 1.2):
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(a) Linear models: We model the dynamic behavior of agents by 1) linear

time-invariant state space realization subject to unknown disturbances,

and 2) linear parameter-varying state space realization where the vary-

ing parameters denote the operating points of agents, and are unknown.

The unknown varying parameters result uncertainty about the system

matrices as well as coupling gains.

(b) Nonlinear models: We focus on Lur’e nonlinear multiagent systems

which, up to this moment, are among the most complicated state space

realizations of multiagent systems. In fact, we introduce the physical

couplings through these nonlinear terms, and add the complexity by

assuming unknown nonlinearities and unknown interconnected topolo-

gies.

In summary, we consider some levels of modeling uncertainties which add

the complexity in control of multiagent systems. We discuss our control-

theoretic viewpoint under the optimization subject.

2. Graph theory: Similar to the literature, we use graph theory in order to

model the communication topology and design a distributed algorithm that

is based on some relative measurements. We follow the same idea and model

the physical interconnection using the graph notation.

3. Optimization: Based on the relative measurements in agents’ local neighbor-

hoods, we use our modified optimization-based formulation in four different

ways. The first three items refer to the control objective, and the last one
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mainly relies on the first three items to address the network optimization

challenge in Figure 1.1:

(a) Robust stability: We propose a modified LQR formulation which, along

with some fundamental concepts of the optimal control theory, enables

us to systematically design the required distributed control protocols

for all of the aforementioned models of multiagent systems in the pres-

ence of various sources of modeling mismatches. Unlike the literature,

we propose a one-step design approach to find the distributed control

gains (see the discussion about coupling strength at page 24). Borrow-

ing some tools from matrix algebra, it further enables us to propose

closed-form solutions for the control-layer (including the communica-

tion topology) in multiagent systems.

(b) Robust performance (guaranteed convergence rate): In one of our de-

signs, we reformulate the modified LQR formulation and ensure a min-

imum convergence rate in multiagent systems with unknown physical

coupling terms. This is one of the main performance criteria that have

been used in the literature of distributed control, yet without any mod-

eling uncertainties. (As will be seen, this formulation enables us to

easily guarantee the same behavior in all other designs.)

(c) Robust performance (guaranteed bound on linear quadratic regulatory

integral functions): In addition to the robust convergence of all trajec-

tories to the desired point of interest8 and guaranteed convergence rate

8In consensus, this is the agreement value. In stability, this point refers to the origin as
equilibrium point. In tracking, the reference signal is the common point for all agents.
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for all agents, we prove that the proposed modified LQR formulation

results in guaranteed bound on the given linear quadratic cost function.

(d) Multi-layer distributed control framework: Based on a cyber-physical

framework, we propose multi-layer configurations to handle the effect

of unknown physical coupling terms. We first propose some fixed-gain

fully distributed algorithms where the proofs of stability do not require

any global knowledge about coupling and communication or physical

coupling graphs. This modification enables us to independently change

the communication network at each run of the multiagent system with-

out being worried about the re-design or re-implementation of dis-

tributed controllers. In addition to robustness with respect to modeling

uncertainties in the agent-layer physical couplings’ dynamics, we use

this “control-layer” communication capability to guarantee an upper-

bound on the performance of closed-loop multiagent system and reduce

the implementation cost (i.e., the number of communication links can

be significantly less than the physical couplings in interconnected mul-

tiagent systems). This is done by reformulating cooperative reference

tracking problem to a communication graph topology challenge, and

systematically addressing it via the proposed modified LQR viewpoint.

The next chapters are organized as follows:

• Chapter 2: We review some topics in matrix analysis, graph theory, con-

trol systems, and optimal control theory (proofs can be found in the cited
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references). This quick overview is sufficient to support all developments in

next chapters.

• Chapter 3: We emphasize that in multiagent systems (with more compli-

cated dynamics than single-integrators), the distributed control designs are

affected by both “agent dynamics” and “information exchange topology.”

We consider two sources of uncertainties in the linear multiagent systems: 1)

unknown persistent disturbance, and 2) unknown varying operating point.

In the former case, the disturbances can have constant (step-like), ramp,

and sinusoidal shapes; and we address both leaderless and leader-follower

consensus problems. In the latter case, we show that the varying operating

point results in uncertainties in all of the state space realization matrices.

We find the required consensus protocols, and further prove that some addi-

tional requirements should be satisfied to achieve exponential agreement on

zero (i.e., after ensuring the consensus in a multiagent system with modeling

uncertainty).

• Chapter 4: We consider a multi-agent system of double-integrator agents

which is appropriate for motion coordination of multi-vehicle and multi-

robot systems that should operate in unknown environments subject to (the

road profile or wind). These disturbances persistently excite vehicles’ dy-

namics and prevent agreement among vehicles or robots. For this appli-

cation, although ensuring agreement, the distributed disturbance rejection

leaderless consensus algorithm of Chapter 3 results in an uncontrolled in-

crease in all vehicles’ (coordinated) speed. We propose a dynamic output
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feedback leaderless stationary algorithm based on the relative information

exchanges among vehicles and only a few vehicles’ absolute measurements.

We systematically design this distributed algorithm by transforming the

problem into a static feedback robust control design challenge for low-order

modified model of vehicles with fictitious modeling uncertainties. We further

propose dynamic leader-follower stationary consensus algorithms for multi-

vehicle systems with a static leader, and analytically find the consensus gains

based on the design matrices and communication graph topology.

• Chapter 5: Inspired by our observation in ensuring exponential agreement

on zero, which is equivalent to the global stabilization at the origin (equilib-

rium point), we propose the distributed stabilization problem. We discuss

that this new distributed stabilization problem can be an interesting topic

based on the literature of large-scale systems. We introduce physically cou-

pled modeling uncertainties in parameter-dependent linear and Lur’e non-

linear realizations of heterogeneous multiagent systems. In both cases, we

prove that the fixed-gain modified LQR-based distributed control gains can

efficiently address the distributed stabilization problem.

• Chapter 6: We propose two classes of multiagent systems: Lur’e nonlinear

multiagent systems with heterogeneous nonlinear state coupling terms, and

LTI multiagent systems with two different state and control input coupling

terms. We assume that the coupling topologies are unknown. Thus, we

introduce multi-layer control structures to handle the distributed stabiliza-

tion problem. In this chapter, we further propose fixed-gain fully distributed
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algorithms which are designed and implemented independent of any global

knowledge about communication and coupling graph topologies.

• Chapter 7: The result of previous chapters are based on multiagent systems

with heterogeneous agents’dynamics. However, we only have considered the

stability problem, the order of model is the same for all of agents, the agent-

layer dynamics are manipulable (i.e., we can implement local controllers at

agent-level subsystems), we left the usage of this additional design degree

of freedom (provided by that multi-layer structure) to the future, and the

robust performance based on the linear quadratic regulatory cost function

criterion is not discussed in those results. In this chapter, we consider the

reference tracking problem in mixed-order heterogeneous multiagent systems

with partially-known interconnected nonlinear agent-layer dynamics where,

unlike the traditional centralized and decentralized control schemes, only a

few agents have access to the reference command. We build a multi-layer

framework and, by treating each inter-agent communication link as a pro-

portional controller, propose linear distributed protocols and transform the

robust cooperative tracking problems to equivalent control-layer communica-

tion topology design challenges. Based on this class of multi-layer intercon-

nected multiagent systems, we systematically incorporate control-theoretic

concepts and matrix-algebraic tools in order to find analytical solutions for

the structurally non-symmetric control-layers that ensure robust stability

and performance of the closed-loop systems. We further provide sufficient

conditions to establish upper-bounds on the uncertainties in physical agent-

layers’ dynamics that can be tolerated by the given control-layer commu-

32



nication topologies. Also, we propose a performance-oriented control-layer

design approach based on the given upper-bound on the linear quadratic

regulatory integral functions.

• Chapter 8: We briefly overview this dissertation and propose some future

work ideas.

1.4 Summary

We start this chapter with a note on the emergence of graph-theoretic dis-

tributed control in multiagent systems. Without mathematically formulating the

problem, we introduce the multiagent system-level objectives that have been pro-

posed in the literature. We provide a discussion on the evolution of multiagent

systems’ models and, limiting the literature to the scope of this dissertation, we

briefly explain some theoretical trends on LQ-based approaches and fully dis-

tributed algorithms in the literature of multiagent control. We finally write about

the contribution and structure of this dissertation.
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Chapter 2

Preliminaries

“I was lucky. The one thing I did is to pull some things together that were

in the air to make dissipativity a concept of its own.”

In control, almost from the beginning until the day after tomorrow (2007)

Jan C. Willems — Control systems theoretician (1939-2013)

Along the concepts that have been discussed in Chapter 1, we need some tools

in order to attack on the challenges in distributed control of multiagent systems.

In particular, the developments of this research are based on matrix analysis,

algebraic graph theory, control systems theory, and optimal control theory. These

topics are briefly reviewed in this chapter.

This chapter is organized as follows: in Section 2.1, we overview the required

concepts in vector and matrix analyses; in Section 2.2, we provide some basic def-

initions and properties related to the graph theory; in Section 2.3, we present the

main concepts in stability analysis of dynamical systems; and, in Section 2.4, we

explain some fundamental properties of linear quadratic regulator-based control
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systems. Finally, in Section 2.5, we introduce some references that have been used

in this chapter.

2.1 Matrix analysis

Analysis of any multivariable (control) systems significantly depends on the

properties of matrices and vectors. In this section, we briefly introduce some main

tools of linear algebra that are required to analyze control systems.

We first introduce the notation. The symbol R denotes euclidean space, C

represents the set of complex numbers, and Rn×m indicates the set of real-valued

matrices. The symbol 1 stands for a matrix of all ones with appropriate dimension

(including non-square matrices), 0 stands for a matrix of all zeros, 1N represents

an N × 1 vector of all ones, and In denotes an n× n identity matrix.

The symbol |a| represents the absolute value of a scalar a ∈ R or the magnitude

of a scalar a ∈ C. The superscript T in yT denotes the transpose of a vector y, and

∗ in y∗ represents the conjugate transpose of y. Furthermore, x = col{xi} ∀i ∈=

{1, 2, ..., N} denotes x = [xT1 , x
T
2 , ..., x

T
N ]T , and diag{Ai} ∀i ∈ {1, 2, ..., N} repre-

sents a diagonal matrix with A1, A2, ..., and AN as its diagonal terms where Ai

can be some scalars and matrices.

A square matrix A ∈ Rn×n can be characterized by its eigenvalues and eigen-

vectors. Eigenvalues of A, denoted by λi ∈ C for i ∈ {1, 2, ..., n}, are the roots

of its characteristic polynomial p(λi) = det(λiIn − A), and the non-zero vectors

xi ∈ Cn give right eigenvectors of A corresponding to λi whenever Axi = λixi.

Also, yi ∈ Cn denote left eigenvectors of A if y∗iA = λiy
∗
i .
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For any symmetric matrices A = [aij] ∈ Rn×n, where aij = aji and i, j ∈

{1, 2, ..., n}, λi ∈ R and we sort them as follows:

λmin(A) = λ1(A) ≤ λ2(A) ≤ ... ≤ λn(A) = λmax(A) (2.1)

A symmetric matrix A is positive definite if xTAx > 0, and positive semi-

definite whenever xTAx ≥ 0 for all x ∈ Rn. These can be examined by λmin(A) >

0 and λmin(A) ≥ 0, respectively, and are shown by A � 0 and A < 0. We mention

that a positive definite matrix can be written as A = A
1
2
TA

1
2 with a square and

invertible matrix A
1
2 . Also, A � B indicates that A − B is a positive definite

matrix. Similarly, A < B represents a positive semi-definite matrix A−B.

For symmetric matrix A, we can use (2.1) to establish some bounds on a

quadratic term xTAx:

Fact 2.1.1. (Rayleigh-Ritz inequality) The following inequality is satisfied

for all symmetric matrices A ∈ Rn×n and vectors x ∈ Rn:

λmin(A)xTx ≤ xTAx ≤ λmax(A)xTx

We use the vector-norm operator ‖.‖ as a real-valued scalar metric for a vector

space V over R. A vector-norm satisfies: a) ‖x‖ ≥ 0 for any x ∈ Rn, and ‖x‖ = 0 if

and only if x = 0, b) ‖ax‖ = |a|‖x‖ for all scalar a ∈ C, and c) ‖x+y‖ ≤ ‖x‖+‖y‖

for any x, y ∈ Rn. Particularly, the p−norm of a vector x = col{xi} is defined as:

‖x‖p = (
n∑
i=1

|xi|p)1/p, ∀p ∈ [1,∞) (2.2)
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We can further define the following special norms:

‖x‖1 =
n∑
i=1

|xi|, ‖x‖2 = (
n∑
i=1

|xi|2)1/2, ‖x‖∞ = max
i∈{1,...,n}

|xi|

Similarly, for a matrix A ∈ Rn×m, we define the matrix-norm:

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

(2.3)

which is also known as an induced norm that is induced by the vector norm (2.2).

The induced 2-norm is defined by:

‖A‖2 =
√
|λmax(ATA)| (2.4)

where λmax(A
TA) ∈ R denotes the maximum eigenvalue of the (symmetric)

matrix ATA. The Kronecker product A ⊗ B ∈ R(nanb)×(mamb) of two matrices

A = [aij] ∈ Rna×ma and B ∈ Rnb×mb is defined as follows:

A⊗B =



a11 a12 . . . a1na

a21 a22 . . . a2na

...
...

. . .
...

ama1 ama2 . . . amana


⊗B =



a11B a12B . . . a1naB

a21B a22B . . . a2naB

...
...

. . .
...

ama1B ama2B . . . amanaB


(2.5)

and satisfies the following properties:
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• Basics :

A⊗ (B ⊗ C) = (A⊗B)⊗ C, (A⊗B)(C ⊗D) = AC ⊗BD

(A+B)⊗ (C +D) = A⊗ C + A⊗D +B ⊗ C +B ⊗D

(A⊗B)T = AT ⊗BT , (A⊗B)−1 = A−1 ⊗B−1, ‖A⊗B‖ = ‖A‖‖B‖

• Eigenvalues and eigenvectors : Let (λAi , x
A
i ) be the ith eigen-structure (eigen-

spectrum or eigenvalue-eigenvector pair) of A ∈ Rna×na for i ∈ {1, 2, ..., na},

and (λBj , x
B
j ) be the jth eigen-structure of B ∈ Rnb×nb for j ∈ {1, 2, ..., nb}.

Then, (λAi λ
B
j , x

A
i ⊗ xBj ) give all eigenvalue-eigenvector pairs of A⊗B.

• Whenever A and B are symmetric matrices, A⊗ B is a symmetric matrix;

A and B are positive (semi-) definite, A⊗B is positive (semi-) definite; and

A and B are nonsingular, A⊗B is nonsingular.

At the end of this subsection, we provide the statement of Gershgorin disk

theorem which can be used to find some bounded regions for the eigenvalues of

the given matrix.

Theorem 2.1.1. (Gershgorin disk theorem) Let A = [aij] ∈ Cn×n be a matrix

where i, j ∈ {1, 2, ..., n}. Then, eigenvalues of A are located inside or on n circles

C(aii, ri) with centers aii and radius lengths ri =
∑

j 6=i |aij| which are known as

Gershgorin discs.

For a matrix A ∈ Rm×n, the range space is defined by the set of all linear

combinations of the columns in matrix A, which is written as R(A) = {Ax|x ∈

Rn}. The null space or kernel of A is simply N(A) = {x ∈ Rn|Ax = 0}. It can
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be seen that R(A) = Rm if and only if A has full row rank, and N(A) = {0} if

and only if A has full column rank.

We mention that a row permutation matrix P ∈ Rn×n is an In with switched

rows. Multiplying a matrix A ∈ Rn×n to P , from left, results in a new matrix As

with a similar row switching.

Finally, we note that the following fact is always true:

Fact 2.1.2. For any two vectors x, y ∈ Rn,and a positive definite matrix M ∈

Rn×n, we find:

(x+ y)TM(x+ y) ≤ 2xTMx+ 2yTMy

2.2 Graph theory

Graph-based ideas have been used in different aspects of the control systems

(e.g., to find an input-output transfer function using Mason’s rule, or in multivari-

able control systems). Apart from that, graph theory is now playing a significant

role in the distributed control of multiagent systems. Particularly, graphs provide

a “nice” way to visualize interconnections in multiagent systems, and, further-

more, the graph’s associated matrices and their algebraic properties provide a

unified framework to analysis or synthesis (closed-loop) controlled multiagent sys-

tems. In this subsection, we borrow some basic concepts and definitions from

(algebraic) graph theory to build a foundation for our graph-theoretic develop-

ments in the next chapters.

A graphs G(V , E) is a set of nodes V = {ν1, ν2, ..., νN} which are connected

to each other through a set of edges E = {(νi, νj)|νi, νj ∈ V} ⊆ V × V . A graph
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with no node denotes a null graph, with no edge represents an empty graph, and

with only one node gives a trivial graph; and we ignore them in this research.

In fact, the edge set E includes pairwise combinations of all nodes. An edge

can be directed (also known as an arc) which results in a set of ordered pairs

(νi, νj) ∈ E , or undirected that ends in a set of unordered pairs where (νi, νj) ∈ E

implies (νj, νi) ∈ E . Associated to each node νi, depending on the direction

of edge, we define the node’s in-degree and out-degree as the number of edges

entering and exiting that node, respectively. All information can be lumped in

some appropriate matrices, namely, the adjacency matrix A = [aij] ∈ RN×N ,

degree matrix D = [degi] = diag{A1N} ∈ RN×N where degi denotes the degree of

the ith node νi (after specifying whether it is in-degree or out-degree of a node),

and Laplacian matrix L = [lij] ∈ RN×N which are defined as follows:

A =



0 a12 . . . a1N

a21 0 . . . a2N

...
...

. . .
...

aN1 aN2 . . . 0


, D =



∑N
j=1 a1j 0 . . . 0

0
∑N

j=1 a2j . . . 0

...
...

. . .
...

0 0 . . .
∑N

j=1 aNj



L = D −A =



∑N
j=1 a1j −a12 . . . −a1N

−a21

∑N
j=1 a2j . . . −a2N

...
...

. . .
...

−aN1 −aN2 . . .
∑N

j=1 aNj


where aij ∈ {0, 1} shows the existence of an edge (νj, νi) with νj as the tail and

νi as the head whenever aij = 1, and no edge from νj to νi if aij = 0. We
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assume that there exists no self-loop, therefore, aii = 0. Based on the in-degree

definition, a node νj is a neighbor of νi whenever there exists a directed edge from

νj to νi. Over an undirected graph, νi and νj are each other’s neighbors whenever

they share an edge. We let Ni be the neighboring set of the ith agent. Then,

based on the “in-degree” definition of A, the degree matrix can be rewritten as

D = diag{
∑

j∈Ni aij} where the ith diagonal term represents the number of edges

entering to the ith node (a similar change of notation can be readily seen for the

diagonal terms in L). The following example shows the relation of these matrices

for both directed and undirected graphs.

Example 2.2.1. Based on the typical graph in Figure 2.1, we find the adjacency

Ad, in-degree Dd, and Laplacian Dd matrices. The edge between ν1 and ν2 rep-

resents (ν1, ν2) ∈ E, and the edge between ν2 and ν3 means (ν2, ν3), (ν3, ν2) ∈ E.

Removing the directions on edges, we find an undirected graph with the adjacency

Au, degree Du, and Laplacian Du matrices.

Ad =



0 0 0 0 0

1 0 1 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


, Dd =



0 0 0 0 0

0 3 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, Ld =



0 0 0 0 0

−1 3 −1 −1 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1


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ν1

ν2 ν3

ν5 ν4

Figure 2.1: A digraph for example 2.2.1 with (Ad,Dd,Ld). Removing all direc-
tions on edges, we find an undirected graph with (Au,Du,Lu).

Au =



0 1 0 0 0

1 0 1 1 0

0 1 0 1 0

0 1 1 0 1

0 0 0 1 0


, Du =



1 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 1


,Lu =



1 −1 0 0 0

−1 3 −1 −1 0

0 −1 2 −1 0

0 −1 −1 3 −1

0 0 0 −1 1


We further mention that a graph with no parallel edge and no self-loop is

called a simple graph. Also, a simple graph with all possible pairs of nodes

represents a complete graph. A graph Gsub = (Vsub, Esub) is a subgraph of G if

Vsub ⊆ V and Esub ⊆ E . A walk with length m on G is a finite sequence of nodes

νi0 , νi1 , ..., νim−1 , νim whenever the edges (νik , νik+1
) ∈ E for all k ∈ {0, 1, ...,m−1}.

A walk with no repeated edge is called a trail, and a trail with no repeated node

is a path. Whenever there exists at least one walk between all pairs of nodes,

the graph is connected. A tree is a connected graph with no circuit where, by

circuit, we mean a path that starts from a node and ends in the same node. A

directed graph is strongly connected if there exists a directed path from any nodes

to all others. A directed graph is quasi-strongly connected if one of the following

conditions holds for every pair of nodes νi and νj: a) νi = νj, b) there exists a
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directed path νi − νj, or c) there exist some intermediate nodes νl to create a

walk from νi to νj b (e.g., with one intermediate node, there exist a path νi − νl

and a path νl − νj). A node is called a root if it receives no information from

other nodes (i.e., its in-degree is zero). A directed tree is a walk over G (thus, a

subgraph of G) where each node, except the root, has an in-degree equal to one;

and, the directed spanning tree of G is a strongly connected tree that covers all

nodes of G (it is defined over a digraph, and includes the minimum number of

directed edges that passes through all nodes). A digraph has a directed spanning

tree if and only if it is quasi-strongly connected. Note that a connected graph has

at least one spanning tree.

For any (di-) graphs, 1N is a right eigenvector of L and zero is its corresponding

eigenvalue, i.e., L1N = 0 which means 1N ∈ N(L). Based on the Gershgorin disk

Theorem 2.1.1, we find that all eigenvalues of a graph Laplacian L lie in some disks

(degi,
∑

j∈Ni aij) for all i ∈ {1, 2, ..., N}. Due to the fact that degi =
∑

j∈Ni aij,

we conclude that all eigenvalues of L are inside and on a “big” disk with center

c = maxi(degi) and radius r = maxi(degi). For an undirected graph, we further

know that L = LT < 0 and 1N is both right and left eigenvectors corresponding

to the eigenvalue zero, and all of its eigenvalues are some real-valued numbers. As

a result, these scalars lie on a line connecting the origin to 2 maxi(degi).

We now summarize some main points about an undirected graph as a fact:

Fact 2.2.1. a) All eigenvalues of the graph Laplacian L are nonnegative, b)

the graph G is connected if and only if zero is a simple eigenvalue of L, c)

1 is the right and left eigenvector corresponding to the eigenvalue zero of L

(λ1 = 0), and d) since L is a symmetric matrix, there always exists a unitary

43



transformation T ∈ RN×N such that T−1LT = Λ where Λ = Diagb{[λ1,Λd]},

Λd = diag{[λ2, λ3, ..., λN ]}, and λi ∈ R denotes the ith eigenvalue of L. For a

connected graph, only λ1 = 0, and Λd � 0.

Remark 2.2.1. It is straightforward to generalize these results to a weighted graph

denoted by G(V , E ,W) where W represents a set of weights associated to the edges

in E. Then, the graph-related matrices can be modified appropriately with exactly

the same properties. For example, the graph Laplacian matrix can be rewritten

as Lii =
∑

j∈Ni wij and Lij = −wij ∀j 6= i. In fact, the non-weighted scenario

can be viewed as a weighted graph with a threshold operation an the wights (i.e.,

aij = 1 if wij > wth and aij = 0 otherwise where wth denotes a threshold value).

However, except Chapter 7, all results are limited to the non-wighted graph defi-

nitions.

2.3 Control systems theory

In this section, we overview some basic concepts of the control systems theory

that have been used for the stability analysis in the next chapters. We start by

introducing a state space model of a nonlinear system:

ẋ(t) = f(x, u, t), y(t) = h(x, u, t), x(0) = x0

where x ∈ Rnx denotes the state variable, u ∈ Rnu represents the control input,

and y ∈ Rny indicates the measurement output. For the analysis purpose, we

usually substitute u = k(x) and find the following closed-loop system:

ẋ = f(x, t), x(0) = x0 (2.6)
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In fact, it should be f ′(x, t) = f(x, k(x), t). This misuse of notation will not

have any adverse effects on the rest of this chapter, but simplifies the notation.

This also can be viewed as an unforced state equation whenever u = 0 (with full

state information). The function f : D → Rnx is piecewise continuous in time1,

and satisfies the Lipschitz condition locally around the point xL over a domain

D = B(xL, r) = {‖x−xL‖ < r} ⊂ Rnx . The later condition indicates the existence

of a positive Lipschitz constant γL such that:

‖f(x, t)− f(y, t)‖ ≤ γL‖x− y‖, x, y ∈ D (2.7)

The global Lipschitz condition refers to the case D = Rnx . This global property

ensures existence and uniqueness of the solution of state equation (2.6) over any

time intervals.

As a special case, we know ẋ = f(x, u) and y = h(x, u) as an autonomous

(time invariant) nonlinear system. This system may have several equilibrium

points which are the solutions of:

f(xeq) = 0 (2.8)

The stability of a nonlinear system should be (separately) analyzed for all

equilibrium points. In the following definition, we discuss the stability of an

equilibrium point at the origin for a nonlinear system (otherwise, we transfer the

origin of dynamical system to the non-zero equilibrium point using appropriate

change of variables, and use the same results).

1By piecewise continuous, we mean f can be discontinuous at finitely many points, and the
left and right limits exist at each discontinuity point.
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Definition 2.3.1. (δ − ε stability definition) The xeq = 0 is a locally stable

equilibrium point of (2.6), with a locally Lipschitz f over a domain D including

the origin and f(0) = 0, whenever ∀ε > 0 ∃ δ > 0 3 ‖x‖ ≤ δ =⇒ ‖f(x)‖ ≤ ε; it

is a locally asymptotically stable equilibrium point, if it is stable and ‖x− xeq‖ ≤

δ =⇒ limt→∞ ‖f(x)‖ = 0. These results are globally valid whenever the initial

condition can be arbitrarily selected, i.e., δ →∞.

It is a hard task, if not an impossible one, to ensure stability of a complex

dynamical system using this δ − ε definition. Fortunately, the Lyapunov stability

results provide some useful tools to verify the stability of a dynamical system with-

out solving the nonlinear differential equation. The following theorem summarizes

the Lyapunov’s findings.

Theorem 2.3.1. (Lyapunov stability) Let conditions of Definition 2.3.1 be

satisfied. Let V (x) be a continuously differentiable function over D and satisfy:

V (x) ≥ 0 ∀x ∈ D with V (x) = 0 if and only if x = 0 (2.9)

Then, the origin of (2.6) is a stable equilibrium point if:

V̇ (x) ≤ 0 ∀ x ∈ D (2.10)

Furthermore, the origin is an asymptotically stable equilibrium point if:

V̇ (x) < 0 ∀ x ∈ D and x 6= 0 (2.11)

Rewording these results, a candidate Lyapunov function V satisfying (2.9)-

(2.10) is called a positive semi-definite function, and is shown by V < 0; a V

satisfying (2.9) and (2.11) is called a positive definite function, and is specified by

V � 0; and a V satisfying V (x) → ∞ whenever ‖x‖ → ∞ is named a radially
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unbounded Lyapunov function. The results of Theorem 2.3.1 are globally valid if

the candidate Lyapunov function is radially unbounded. The Lyapunov function-

based analysis can also be used to establish the exponential stability of a nonlinear

system. We discuss the required conditions in the next theorem.

Theorem 2.3.2. (Exponential stability) Assume that conditions of Theo-

rem 2.3.1 are satisfied. The origin is an exponentially stable equilibrium point

of the nonlinear system ẋ = f(x) whenever there exists a Lyapunov candidate

function that satisfies:

a1‖x‖b ≤ V (x) ≤ a2‖x‖b, and V̇ (x) ≤ −a3‖x‖b (2.12)

for some positive constants a1, a2, a3, and b.

As a special case, a strictly proper linear time-invariant dynamical system is

given by the following model in the state space domain:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2.13)

where A ∈ Rnx×nx stands for the state matrix, B ∈ Rnx×nu denotes the input gain

matrix, and C ∈ Rny×nx specifies the measurement gain matrix. The solution of

this first-order differential state equation is given by:

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ (2.14)

and, thus, y(t) = CeA(t−t0)x(t0) + C
∫ t
t0
eA(t−τ)Bu(τ)dτ .

A linear system has only one equilibrium point located at the origin such that

the stability of origin is equivalent to the stability of the system. A complete

statement on stability of the linear systems (based on the state space domain

notation) depends on the definition of Jordan blocks which we do not need in this
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research. In the next theorem, we only characterize the exponential stability of a

linear system.

Theorem 2.3.3. The linear system (2.13) is globally exponentially stable if and

only if all eigenvalues of A have strictly negative real parts. This result is equiva-

lent to the existence of a solution P � 0 for the following Lyapunov equation for

any Q � 0:

ATP + PA = −Q (2.15)

Note that, whenever all eigenvalues of Ac in ẋ = Acx have strictly negative

real part, ‖x‖ ≤ αe−σt‖x(0)‖ is satisfied, and A is called a Hurwitz matrix. In this

case, asymptotic stability and exponential stability are equivalent to each other.

Controllability or the weaker condition stabilizability, and observability or the

weaker requirement detectability play important roles in designing a controller and

stability analysis of a closed-loop system. In the rest, we overview these topics.

For a system at t0 = 0, we first emphasize that the state equation in (2.13)

has a response of the form (2.14) where the first term eAtx(0) is not affected by

the control input u. Thus, the state response for an input u under a zero initial

condition is given by x(t) =
∫ t
t0
eA(t−τ)Bu(τ)dτ . Then, a reachable set R = RT

of the state equation in (2.13) at a time T > 0 is defined as the set of all state

variables x(T ) that can be reached from initial rest condition (at t = 0) by a

continuous control input u. Now, the controllability is defined as follows:

Definition 2.3.2. (Controllability) The pair (A,B) represents a controllable

linear time-invariant system (2.13) if R = Rnx. This controllability property is

satisfied if and only if the controllability matrix C is a full row rank matrix:
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Rank(C) = Rank([B,AB,A2B, ..., Anx−1B]) = nx

or, equivalently (if and only if), there exist no nonzero z ∈ Cnx and λ ∈ C to

simultaneously satisfy the following conditions:

z∗A = λz∗ and z∗B = 0

In summary, this definition says that there always exists a trajectory to move

from an initial state x(0) to a final state x(tf ) at a finite time tf > 0. There

always exists a similarity transformation which results in a staircase representa-

tion of (2.13):  ẋc
ẋuc

 =

Ac A12

0 Auc


 xc
xuc

+

Bc

0

u

y =

[
Cc Cuc

] xc
xuc


(2.16)

where (Ac, Bc) represents a controllable pair, and Auc includes all uncontrollable

modes of (A,B) in (2.13). This simply says that xc can be controlled from any

initial condition xc(0) to any final condition xc(tf ) at a finite time tf > 0 in the

presence of an extra term A12xuc(t). Now, we have the following definition:

Definition 2.3.3. (Stabilizability) A linear time-invariant system (2.13) is sta-

bilizable if and only if all of its uncontrollable modes are located in the open left-half

plane (i.e., Auc is a Hurwitz matrix). Mathematically, this can be verified by en-

suring that the matrix [A − sInx , B] has full row rank for all eigenvalues of A

where s ∈ {λ(A)|<(λ) ≥ 0}.
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The uncontrollability may have different reasons including the insufficient

number of inputs. However, close to the topics of this research on multiagent

systems, an interestingly uncontrollable system can be obtained after connecting

some controllable systems (each serial, parallel, or feedback scenario may result

in an uncontrollable coupled dynamical system).

The complete state space model (2.13) includes an output equation y = Cx

that models a set of measurements and, under some conditions, can be used to

reconstruct all state variables x (we may use them in a feedback framework in

order to control a system). The following definition formalize the observability of

a linear time-invariant system:

Definition 2.3.4. (Observability) The pair (C,A) represents an observable

state space model (2.13) whenever it is possible to uniquely reconstruct all state

variables x(t) ∀t ∈ [0, tf ], with tf > 0, using only u(t) and y(t) measurements in

that time interval. This property can be verified by a full column rank test of the

observability matrix O:

rank(O) = rank(



C

CA

...

CAnx−1


) = nx (2.17)

or, equivalently (if and only if), there exist no nonzero x ∈ Cnx and λ ∈ C to

simultaneously satisfy the following conditions:

Ax = λx and Cx = 0
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Similar to the controllability discussion, we always can find a transformed rep-

resentation which separates observable and unobservable modes of a system (2.13):

 ẋo
ẋuo

 =

Ao 0

A21 Auo


 xo
xuo

+

Bo

Buo

u
y =

[
Co 0

] x0

xuo


(2.18)

Then, the detectability is defined as follows:

Definition 2.3.5. (Detectability) A linear time-invariant system (2.13) is de-

tectable if and only if all of its unobservable modes are located in the open left-half

plane (i.e., Auo is a Hurwitz matrix). Mathematically, this can be verified by en-

suring that the matrix

A− sInx
B

 has full column rank for all eigenvalues s of A

with s ∈ {λ(A)|<(λ) ≥ 0}.

Also, we introduce the duality property in establishing controllability and

observability of state space model (2.13):

Lemma 2.3.1. (Controller and observer duality) The controllability of a

triple (C,A,B) is equivalent to the observability of a triple (BT , AT , CT ), and

vice versa.

Based on these insights, we provide a statement of the Kalman decomposition

in the next theorem:
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Theorem 2.3.4. (Kalman decomposition) Every state space model (2.13)

can be transformed to an equivalent canonical form:



ẋco

ẋcuo

ẋuco

ẋucuo


=



Aco 0 A13 0

A21 Acuo A23 A24

0 0 Auco 0

0 0 A43 Aucuo





xco

xcuo

xuco

xucuo


+



Bco

Bcuo

0

0


u

y =

[
Cco 0 Cuco 0

]


xco

xcuo

xuco

xucuo



(2.19)

which is shown in Figure 2.2. Moreover, the following state space equation gives

the completely controllable and observable (sub-) dynamics of (2.13):

ẋco = Acoxco +Bcou

y = Ccoxco

(2.20)

In practice, sometimes, we do not have access to all state information x. There-

fore, we need to design a state observer to estimate this information. We have

shown that the design of an observer can be transformed to a dual stabilization

problem based on the Lemma 2.3.1. Now, we provide a statement of the sepa-

ration principle in designing controller and observer gains for an observer-based

output feedback control problem.
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co

cuo

uco

ucuo

u(t) y(t)

Figure 2.2: A conceptual presentation of the Kalman decomposition. Whenever
all modes of cuo, uco, and ucuo are in the left complex half-plane, we say
the system does not have any unstable hidden modes in the sense of Kalman
decomposition.

Lemma 2.3.2. (Separation principle) The estimated state x̂ of (2.13) can be

found by a Luenberger observer using measurements u and y:

˙̂x = Ax̂+Bu+Ko(y − ŷ)

ŷ = Cx̂
(2.21)

where Ko ∈ Rnx×ny denotes an observer gain. Then, u = Kcx̂, where Kc ∈ Rnu×nx

represents the feedback control gain, stabilizes (2.13) whenever Kc results in a

Hurwitz matrix A−BKc, and, separately, Ko does the same with A−KoC.

We now explain a statement of the Bellman-Gronwall lemma that will be used

in the next chapters:
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Lemma 2.3.3. (Bellman-Gronwall lemma) Let z(t), g(t), and h(t) be non-

negative piecewise continuous functions of time t. If a function w(t) satisfies the

inequality w(t) ≤ z(t) + g(t)
∫ t
t0
h(τ)w(τ)dτ, ∀t ≥ t0 ≥ 0; then, we find:

w(t) ≤ z(t) + g(t)

∫ t

t0

(z(s)h(s)e
∫ t
s (h(τ)g(τ))dτ )ds, ∀t ≥ t0 ≥ 0.

2.4 Optimal control theory

The results of Section 2.3 are useful to analyze properties of closed-loop (feed-

back) system. In parallel, many theoretical research studies have been devoted to

the controller synthesis problem. The optimal control is one of the oldest theo-

retical research topics that, in addition to the stability, guarantees a desired level

of performance for the closed-loop system. Particularly, linear quadratic regular-

based (LQR-based) ideas have received significant attention in the literature. In

this section, we overview the procedure to design an LQR (control) system for a

linear time-invariant model (2.13), introduce some basic definitions related to the

proposed algorithm, and mention some of the most fundamental properties of the

resulting closed-loop system with an LQR optimal controller in the loop.

Specifically, we introduce (2.22) as a performance (integral) cost function to

simultaneously quantify the degree of stability and control effort (closeness of x

to the origin and size of u, respectively):

J(x(0)) =

∫ ∞
0

(xTQx+ uTRu)dt (2.22)
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where Q < 0 and R � 0 denote the state and input weighting matrices, respec-

tively. We define U as a set of admissible (linear static state feedback) control sig-

nals that stabilize the state equation in (2.13). Then, the optimal linear quadratic

regulator problem is defined as the following minimization problem:

minimize
u∈U

J(x(0))

subject to ẋ = Ax+Bu.

(2.23)

For any selection of the design matrices Q and R, J(x(0)) = xT (0)Px(0) gives

a lower bound (solution) on the cost function (2.22) for all u ∈ U , where the

matrix P = P T is the solution of an algebraic Riccati equation:

ATP + PA+Q− PBR−1BTP = 0 (2.24)

We assume that the pair (A,B) is stabilizable, and (Q
1
2 , A) is observable.

Then, u? = Kcx = −R−1BTPx gives the minimizer of (2.23) with a unique

stabilizing solution P < 0 for the ARE (2.24), i.e., the matrix A − BR−1BTP

is Hurwitz (note that if Q � 0, then P � 0). A closed-loop system with this

LQ-based control signal has many “nice” properties. We mention the gain margin

(robustness) which is, with Kc as the optimal LQ-gain αKc is still a stabilizing

controller for any α ∈ (0.5,∞), and phase margin (robustness) that means ejβKc

is still a stabilizing controller for any β ∈ (−60, 60) degrees. Particularly, we

define the Hamiltonian:

H = xTQx+ uTRu+ JTx (Ax+Bu) (2.25)
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where Jx = ∂J
∂x

is calculated along the state trajectory of the system. Moreover,

we know that the optimal control signal u? satisfies the Hamilton-Jacobi-Bellman

(HJB) equation 0 = J?t + minu{xTQx+ u?TRu? + J?Tx (Ax+Bu)} = 0 which, for

an infinite horizon LQR problem subject to a linear time-invariant system can be

reduced to H = 0 as follows:

xTQx+ uTRu+ JTx (Ax+Bu) = 0 (2.26)

where we have used J = J? and u = u? for simplicity. This can be related

to the algebraic Riccati equation (2.24) as 0 = xTQx + xTKTRKx + xTP (A +

BK)x+xT (AT +KTBT )Px = xT (Q+KTRK+PA+PBK+ATP+KTBTP )x =

xT (ATP+PA+Q−PBR−1BTP )x. Based on the necessary condition of optimality

∂H/∂u = 0, we further find that the following condition is satisfied implementing

an optimal control signal:

2uTR +
∂J

∂x

T

B = 0 (2.27)

When we apply an optimal control signal, the optimal sequence of actions (deci-

sions or policies) will still be the same if we skip part of the sequence and start

at any later time on the trajectory. This is known as the principle of optimality.

These fundamental results play important roles in the developments of this re-

search. We now introduce finite-horizon LQR problem as a more general case

than (2.23):

min
u∈U

J = xT (tf )Hx(tf ) +
∫ tf

0
(x(t)TQx(t) + u(t)TRu(t))dt

subject to ẋ(t) = Ax(t) +Bu(t)
(2.28)
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where H = HT < 0 is a terminal cost matrix. In this case, the necessary condi-

tions of optimality are satisfied by u(t) = −R−1BTL(t) where x(t) and L(t) are

solutions of the following matrix differential equation:

ẋ(t)

L̇(t)

 =

 A −BR−1BT

−Q −AT


x(t)

L(t)

 =: HM

x(t)

L(t)

 (2.29)

in which HM denotes Hamiltonian matrix. The optimal control signal is then

rewritten as follows:

u(t) = −R−1BTP (t)x(t) (2.30)

based on the fact that L(t) = P (t)x(t) and P (t) is the solution of Riccati equa-

tion Ṗ (t) = −ATP (t)− P (t)A−Q+ P (t)BR−1BTP (t) with boundary condition

P (tf ) = H. In the next chapters, since P = limt→∞P (t), we use (2.28)-(2.30)

and establish a relationship between the pattern of zeros in steady solution P of

ARE (2.24) and design matrices Q and R in (2.23).

2.5 Bibliography

In this chapter, we have touched the surface of different theoretical concepts

ranging from the mathematics to control systems. This brief can be used as a

quick reference for the developments in the next chapters. Further details on

matrix analysis are available in [99]. Particularly, some main properties of the

Kronecker product can be found in [100], and a systems-theoretic viewpoint on

norms (of signals and systems) is explained in [101]. References [102]-[103] are
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good references to find the usefulness of graphs in the old theoretical developments

within the control systems society. But, in our research, a graph visualizes the

communication in a multiagent system, and the properties of its associated matri-

ces are used for the distributed control design purpose. In this sense, [104] provides

a sufficiently detailed discussion on graph theory that can be used for the analysis

of multiagent systems. We just mention that this research is limited to the graphs

with non-negative weights (versus the signed graph in [105]). The basic definitions

and results about nonlinear systems are explained in [106], and similar findings

about linear systems are reported in [107]. Some basic concepts and handy tools

in the control systems, including the well-known Bellman-Gronwall lemma, are

reviewed in [108]. Reference [109] is a rich source of fundamental concepts in the

optimal control theory. Moreover, [110] nicely summarizes some existing research

topics and trends about the linear quadratic-based control systems.
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Chapter 3

Distributed Consensus in

Physically Decoupled Multiagent

Systems1

“Essentially all models are wrong, but some are useful. ... The practical

question is how wrong do they have to be to not be useful.”

Empirical model-building and response surfaces (1987)

George E. P. Box — Statistician (1919-2013)

Consensus algorithms have been widely designed to manage the collective be-

havior among a set of individual agents. Shortly, we recall that the initial research

studies focused on proposing some graph-theoretic ideas in order to: 1) localize the

information exchange in multiagent systems and use the relative-measurements,

1This chapter is based on the results of [111] and [112]. Each section has its own parameters
and variables which are (re-) defined appropriately.
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2) analyze the effect of communication topology on the stability and performance

of the closed-loop multiagent systems, and 3) understand the effect of agent’s

(high-order) dynamics on completing the cooperative task. However, in practice,

these models are insufficient to precisely describe the behavior of each individual

agent and, also, the collective behavior of a multiagent system.

In this chapter, our primary objective is to study the challenges that have

been imposed by relative measurements in the the consensus problem (compared

to centralized and decentralized control techniques which are based on the abso-

lute measurements of each subsystem). An overview of the literature in Chapter 1

indicated a trend on more realistic scenarios by adding agent-level modeling uncer-

tainties. Thus, to increase the challenge, we consider two sources of uncertainties

in the state-space realization of agents’ dynamics: 1) agent-level unknown external

disturbances, and 2) multiagent system-level unknown varying operating condi-

tion. We use our (incomplete) knowledge about these sources of uncertainties, and

find some appropriate models which are useful to design the consensus algorithms

ensuring agreement among agents of a physically decoupled multiagent system.

We assume that only relative-information is available for each distributed algo-

rithm which results in some coupled-by-communication consensus algorithms2.

We further mention that our modified LQR formulation results in guaranteed

consensus without being worried about the selection of coupling strength (see

Subsection 1.2.2, page 24).

2The word “coupled-by-communication” refers to the fact that this coupling is added by
design and can be manipulated accordingly. Such a coupling does not exist in decentralized
control.
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This chapter is organized as follows: in Section 3.1, we address the leaderless

and leader-follower consensus problems in the presence of unknown persistent

disturbances. In Section 3.2, we handle the leaderless consensus problem for a

multiagent system with multiagent system-level varying operation condition. We

summarize our findings and provide some references in Section 3.3. Finally, we

collect all proofs in Section 3.4.

3.1 Distributed consensus of linear multiagent

systems under persistent disturbances

In this section, we address the consensus problem in the presence of persistent

disturbances with unknown magnitudes, and using only relative-output measure-

ments in each agent’s neighborhood. The proposed model can handle all constant

(step-like), ramp, or sinusoidal disturbances (also, a combination of them). We

discuss both leaderless and leader-follower communication topologies, and we fur-

ther calculate the agreement value of the multiagent system in the leaderless

consensus scenario.

3.1.1 Leaderless consensus

3.1.1.1 Problem statement

We consider a multiagent system with the following dynamical agents:

ẋi = Axi +Bui + Γwi

yri =
∑

j∈Ni C(xi − xj)
(3.1)
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where i ∈ {1, 2, ..., N} indicates the agent’s number over an undirected communi-

cation topology (graph) G; xi ∈ Rnx denotes the system state variable, ui ∈ Rnu

represents the control input vector, wi ∈ Rnw stands for the persistent distur-

bance vector, and yri ∈ Rny indicates the lumped relative-output measurement

of the ith agent with respect to its neighbors; A ∈ Rnx×nx represents the system

state matrix, B ∈ Rnx×nu indicates the control input matrix, Γ ∈ Rnx×nw stands

for the unmatched disturbance input matrix, and C ∈ Rny×nx denotes the out-

put matrix. (In general, Γ is not in the range of B, so we call it an unmatched

disturbance input matrix. However, the results are valid for the matched case

as well.) Each unknown persistent disturbance wi is modeled by the following

disturbance generator:

żwi = Fzwi with zwi(0) = z0
wi

wi = θzwi

(3.2)

where zwi ∈ Rnzw stands for the disturbance state, z0
wi represents the unknown

initial value of zwi, and F ∈ Rnzw×nzw and θ ∈ Rnw×nzw are two known constant

matrices that determine the disturbance shape. Some appropriate pairs of (F, θ)

are given in Table 3.1 in order to generate a constant (step-like), ramp, or si-

nusoidal disturbance (we can also consider F (1, 2) = 1 and F (2, 1) = −Ω2 to

generate a sinusoidal disturbance with a frequency equal to Ω rad/s). A combi-

nation of these disturbances can also be created by augmenting these models.

Now, the leaderless consensus is achieved whenever (3.3) is satisfied in the

presence of unknown heterogeneous disturbances wi, for all initial conditions of

agents, and over the given undirected graph topology G:
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Table 3.1: Examples of persistent disturbances modeled by (3.2).

Type of disturbance F θ
Constant 0 1

Ramp

[
0 1
0 0

] [
1 0

]
Sinusoidal (Ω rad/s)

[
0 Ω
−Ω 0

] [
1 0

]

lim
t→∞

(xi(t)− xj(t)) = 0 ∀i, j ∈ {1, 2, ..., N} (3.3)

The following assumption holds in the rest of this subsection:

Assumption 3.1.1. (a) the pair (A,B) represents a stabilizable state space real-

ization, (b) the pair (

[
C 0

]
,

A Γθ

0 F

) characterizes an observable augmented

system and disturbance state space realization, and (c) the Moore-Penrose pseudo-

inverse B† exists, (d) the graph G is connected.

Let λi ∈ R be the ith eigenvalue of the graph Laplacian matrix L corresponding

to G for all i ∈ {1, ..., N}. Then, we emphasize that an (distributed) observability

condition is required for (

[
λiC 0

]
,

A Γθ

0 F

). We decompose this to an unob-

servable mode with λ1 = 0, and observable modes corresponding to the rest of

eigenvalues λi 6= 0 and i 6= 1. Then, focusing on observable modes, the condition

is simplified to Assumption 3.1.1.b.
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3.1.1.2 Main results

In order to guarantee the leaderless consensus (3.3) for a multiagent system of

agents (3.1)-(3.2), we propose the following consensus algorithm:

ui = Kx
c

∑
j∈Ni

(x̂i − x̂j) +Kw
c ẑwi (3.4)

where Kx
c ∈ Rnu×nx denotes the system state feedback gain, and Kw

c ∈ Rnu×nzw

stands for the disturbance control gain. The estimated system state x̂i ∈ Rnx and

the estimated disturbance state ẑwi ∈ Rnzw are obtained using the observer (3.5):

˙̂xi = Ax̂i +Bui + Γŵi +Kx
o (yri − ŷri )

˙̂zwi = F ẑwi +Kw
o (yri − ŷri )

ŷri = C
∑

j∈Ni(x̂i − x̂j)

ŵi = θẑwi

(3.5)

where Kx
o ∈ Rnx×ny represents the system state observer gain, and Kw

o ∈ Rnzw×ny

indicates the disturbance state observer gain.

Remark 3.1.1. We re-emphasize that the pair (F, θ) is known and the distur-

bances’ initial values are unknown (possibly, there are N different initial values,

one for each individual agent’s disturbance generator model). Thus, in multiagent

system (3.1)-(3.2), agents are subject to persistent disturbances with a similar

waveform but different magnitudes. Therefore, although the disturbances are het-

erogeneous, we can (and do) propose a homogeneous observer (3.5) using the same

F and θ matrices.

We define the system state estimation errors x̃i = x̂i− xi and the disturbance

state estimation errors z̃wi = ẑwi − zwi. Also, in order to analyze this multiagent
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system over G, let x = col{xi} and zwi = col{zwi} be the aggregated system state

and disturbance state vectors, respectively; and x̃ = col{x̃i} and z̃w = col{z̃wi}

be the aggregated system state and disturbance state estimation error vectors for

i ∈ {1, 2, .., N}, respectively. Furthermore, let eo , [x̃T , z̃Tw ]T be the aggregated

estimation error over G. Now, we find the matrix representation (3.6) for a closed-

loop multiagent system of (3.1)-(3.2) and (3.4)-(3.5):

 ẋ
ėo

 =

M11 M12

0 M22


x
eo

+

N1

0

 zw (3.6)

where the submatrices are defined as follows:

M11 = (IN ⊗ A) + (L ⊗BKx
c ), M12 = [(L ⊗BKx

c ), (IN ⊗BKw
c )]

M22 =

(IN ⊗ A)− (L ⊗Kx
oC) (IN ⊗ Γθ)

−(L ⊗Kw
o C) (IN ⊗ F )

 , N1 = IN ⊗ (Γθ +BKw
c )

Because L is a symmetric matrix, there always exists a unitary transformation

T that converts L to a completely diagonal matrix Λ (see Fact 2.2.1, page 43).

We define x̃T = (T−1 ⊗ Inx)x, eoT = diag{[T−1 ⊗ Inx , T−1 ⊗ Inzw ]}eo, and zwT =

(T−1 ⊗ Inzw )zw, and find:

 ẋT
ėoT

 =

M̃11 M̃12

0 M̃22


xT
eoT

+

Ñ1

0

 zwT (3.7)

with the following submatrices:
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M̃11 =

A 0

0 (IN−1 ⊗ A) + (Λd ⊗BKx
c )



M̃12 =

0 0 BKw
c 0

0 Λd ⊗BKx
c 0 IN−1 ⊗BKw

c

 M̃22 =

M̃11
22 M̃12

22

M̃21
22 M̃22

22



M̃11
22 =

A 0

0 (IN−1 ⊗ A)− (Λd ⊗Kx
oC)

 , M̃21
22 =

0 0

0 −Λd ⊗Kw
o C


M̃12

22 = IN ⊗ Γθ, M̃22
22 = IN ⊗ F Ñ1 = IN ⊗ (Γθ +BKw

c )

We introduce a row permutation matrix P such that η = [ηT1 , η
T
2 ]T can be

written as η = P [xTT , x̃
T
T , z̃

T
wT ]T . Applying this P to (3.7), as a transformation

matrix, separates the unobservable and uncontrollable mode (corresponding to

λ1 = 0) from observable and controllable modes (corresponding to Λd 6= 0). In

this transformed case, η1 = [xTT,1, x̃
T
T,1, z̃

T
wT,1]T and η2 = [xTd , x̃

T
d , z̃

T
wd] where xd,

x̃d, and z̃wd are some variables that can be found after removing the first agent’s

variables respectively from xT , x̃T , and z̃wT . The result of this transformation is

written as follows: η̇1

η̇2

 =

 P11 0

0 P22


η1

η2

+

Q1

Q2

 zwT (3.8)
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where the first row represents the unobservable and uncontrollable agreement dy-

namics and the second row gives the observable and controllable disagreement

dynamics3, and the submatrices are partitioned as follows:

P11 =


A 0 BKw

c

0 A Γθ

0 0 F

 P22 =


P 11

22 P 12
22 P 13

22

0 P 22
22 P 23

22

0 P 32
22 P 33

22



Q1 =


Γθ +BKw

c

0

0

 Q2 =


IN−1 ⊗ (Γθ +BKw

c )

0

0


P 11

22 = (IN−1 ⊗ A) + (Λd ⊗BKx
c ), P 12

22 = Λd ⊗BKx
c

P 13
22 = (IN−1 ⊗BKw

c ), P 22
22 = (IN−1 ⊗ A)− (Λd ⊗Kx

oC)

P 23
22 = IN−1 ⊗ Γθ, P 32

22 = −(Λd ⊗Kw
o C), P 33

22 = IN−1 ⊗ F

Since the observer-based consensus algorithm does not receive information

about the unobservable mode, we limit the consensus algorithm design to the

observable dynamics:

3The agreement and disagreement dynamics (and subspaces) are two terms that have been
taken from the literature of multiagent systems [104]. Briefly, in this dissertation, they specify
the effect of λ1 (determines the null space of L in a connected graph) and Λd � 0 that includes
nonzero eigenvalues of L. Based on the discussion after Assumption 3.1.1, part of the dynamics
of the transformed system which is affected by λ1 = 0 is not observable (and not controllable).
However, the other part can be observed, manipulated, stabilized, and have a convergent be-
havior η2 → 0 in the transformed multiagent system (3.8). Thus, when the consensus (3.3) is
achieved for the non transformed multiagent system (3.6), xi are affected by the unobservable
(uncontrollable) dynamics corresponding to η1 (note that x = col{xi} can be found by trans-
forming back from (3.8) to (3.6) using two transformation matrices P and T ). Since the limit
behavior xi = xj shows an agreement, the unobservable (uncontrollable) dynamics of the trans-
formed multiagent system are called “agreement dynamics,” and the rest of them are named
“disagreement dynamics.”
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
ẋd

˙̃xd

˙̃zwd

 =


P 11

22 P 12
22 P 13

22

0 P 22
22 P 23

22

0 P 32
22 P 33

22


︸ ︷︷ ︸

P22


xd

x̃d

z̃wd

+


IN−1 ⊗ (Γθ +BKw

c )

0

0


︸ ︷︷ ︸

Q2

zwd (3.9)

which include N-1 dynamical systems of the form (3.10) ∀i ∈ {2, 3, ..., N}:

ẋdi = Axdi + λiBK
x
c x̂di +BKw

c ẑwdi + Γθzwdi, (3.10)

and another N-1 dynamical systems given by:

˙̃xdi = (A− λiKx
oC)x̃di + Γθz̃wdi

˙̃zwdi = −λiKw
o Cx̃di + F z̃wdi

(3.11)

The effect of unobservable and uncontrollable mode (corresponding to λ1 = 0)

on the agreement value will be discussed in Lemma 3.1.1. In the next theorem,

we convert the “global” (collective) consensus problem (3.3) over graph G to a

set of equivalent “local” stability analysis problems that are affected by non-zero

eigenvalues of L.

Theorem 3.1.1. Let Assumption 3.1.1 be satisfied by multiagent system (3.1)-

(3.2) over G. An observer-based consensus algorithm (3.4)-(3.5) solves the con-

sensus problem (3.3) if for all i ∈ {2, ..., N}:
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1. The Luenberger observer gain Ko =

Kx
o

Kw
o

 results in the Hurwitz (closed-

loop) matrix

A− λiKx
oC Γθ

−λiKw
o C F

 with appropriate eigenvalues, sufficiently

far from the imaginary axis. This matrix corresponds to the observer error

dynamics (3.11).

2. The control-gain Kc =

[
Kx
c Kw

c

]
stabilizes (3.12) for all nonzero λi, and

rejects the unknown disturbances wdi = θzwdi.

ẋdi = Axdi +Budi + Γθzwdi

ydi = λixdi

udi = Kx
c ydi +Kw

c zwdi

(3.12)

Proof. This proof is given at Subsection 3.4.1.

Theorem 3.1.1 characterizes some conditions for the stability analysis of agree-

ment (consensus) dynamics. But, this theorem is not useful for the synthesis

purpose, because it should be “verified” for “all N-1 nonzero eigenvalues” of L.

Hence, we rewrite (3.12) as follows:

ẋdi = Axdi + λiBK
x
c xdi + (BKw

c + Γθ)zwdi (3.13)

and propose the following design procedure:

Design procedure 3.1.1. The control gains in (3.13) can be designed in two steps:

1. Disturbance gain Kw
c : this gain is designed to minimize ‖BKw

c +Γθ‖. Based

on the Assumption 3.1.1.c, we find Kw
c = −B†Γθ.

69



2. State feedback gain Kx
c : using Kw

c of Step 1, we design a feedback gain Kx
c

that solves the robust control problem (3.14) with a fictitious uncertainty in

Bλ , BD(λi) where D(λi) , λiInu:

ẋdi = Axdi +Bλudi

udi = Kx
c xdi

(3.14)

We rewrite the state equation in (3.14) as follows:

ẋdi = Axdi +BDλ2udi︸ ︷︷ ︸
Nominal model

+ BDλ2E(λi)udi︸ ︷︷ ︸
Network-induced uncertainty

(3.15)

where we have defined Dλ2 , λ2Inu , such that 0 ≺ Dλ2 4 D(λi), D(λi) = λiInu ,

and E(λi) , D−1
λ2
D(λi)− Inu < 0 are satisfied. In the next remark, we clarify the

reason to introduce a robust control problem with a (fictitious) network-induced

uncertainty in the state space realization of agents. Also, in the next theorem, we

address the design problem in Design procedure 3.1.1.2.

Remark 3.1.2. In state equation (3.15), we know all B, Dλ2, E(λi), and udi.

However, we consider it as a network-induced uncertainty. As a result, we can

find a single consensus protocol that works for all agents. Otherwise, there are

N − 1 nonzero eigenvalues of L which can be different scalar values. Thus, we

may need up to N − 1 different consensus protocols. As another result, based

on this formulation, we propose a one-step design without calculating the coupling

strength (see Subsection 1.2.2 at page 24 to find about the two-step design procedure

in the literature).
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Theorem 3.1.2. The solution udi = Kx
c xdi = −R−1DT

λ2
BTPxdi of the modified

LQR optimal control problem (3.16) subject to the nominal model in (3.15) solves

the robust control problem of Design procedure 3.1.1.2. The matrix P represents

the solution of algebraic Riccati equation (ARE) (3.17), and Q = QT � 0 and

R = RT � 0 are the state and control input weighting matrices, respectively. This

Kx
c provides the required gain in the consensus protocol (3.4).

min
udi∈Rnu

∫ ∞
0

(xTdiQxdi + udiRudi)dt (3.16)

ATP + PA+Q− PBDλ2R
−1DT

λ2
BTP = 0 (3.17)

Proof. This proof is provided at Subsection 3.4.2.

Theorem 3.1.2 gives the required control gains in Design procedure 3.1.1.2,

and so we have found the required result for Theorem 3.1.1.2. The reason to

name (3.16) a “modified” LQR problem is that the minimization should be solved

subject to a modified model of agents (affected by the communication topology

through λ2). In the next theorem, we address the first part of Theorem 3.1.1 by

finding the required observer gains in (3.5) using a modified LQR formulation.

Theorem 3.1.3. Let ua = KT
o xa = −R−1

a Da,λ2C
c
aPaxa be the signal that solves

the optimal control problem (3.18) subject to (3.19). Then, this Ko = [KxT
o , KwT

o ]T

denotes the observer gain in Theorem 3.1.1.1. The matrix Pa indicates the solution

of ARE (3.20), Qa = QT
a � 0 and Ra = RT

a � 0 are two constant matrices,

Cc
a = [C, 0], Da,λ2 = λ2Iny , Ea(λi) = D−1

a,λ2
Da(λi)− Iny � 0, and Da(λi) = λiIny .
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min
ua∈Rnu

∫ ∞
0

(xTaQaxa + uaRaua)dt (3.18)

ẋa = ATa xa + CcT
a DT

a,λ2
ua (3.19)

AaPa + PaA
T
a +Qa − PaCcT

a DT
a,λ2

R−1
a Da,λ2C

c
aPa = 0 (3.20)

Proof. This proof is given at Subsection 3.4.3.

Based on the above results, the consensus protocol 3.4 results in a closed-

loop multiagent system with stable disagreement dynamics (3.9) while rejecting

persistent disturbances in the disagreement subspace. The remaining question is

about the final agreement value in the presence of persistent disturbances, and

under the effect of unobservable and uncontrollable agreement dynamics. Once

the multiagent system’s trajectory enters to its agreement subspace, the following

lemma is valid (note that the disagreement dynamics are already stabilized).

Lemma 3.1.1. For a multiagent system of (3.1)-(3.2), if Assumption 3.1.1 is sat-

isfied, the proposed consensus algorithm (3.4)-(3.5) results in the following agree-

ment values:

xai (t) = 1
N
φA00

∑N
i=1 xi(0) + 1

N
φ13

11

∑N
i=1 z̃wi(0)

x̃ai (t) = 1
N
φA00

∑N
i=1 x̃i(0) + 1

N
φ23

11

∑N
i=1 z̃wi(0)

z̃awi(t) = 1
N
φ33

11

∑N
i=1 z̃wi(0)

where the superscript a stands for the agreement value of each variable, and other

parameters are defined as follows:
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φA00 = eAt, φ13
11 = −

∫ t

0

(eA(t−τ)ΓθeFτ )dτ, φ23
11 =

∫ t

0

(eA(t−τ)ΓθeFτ )dτ, φ33
11 = eFt

Proof. This proof is given in Subsection 3.4.4.

Now, we summarize some observations about the result of previous lemma.

Remark 3.1.3. Few points about the agreement values in Lemma 3.1.1 are:

• We need to note that Lemma 3.1.1 provides the agreement values of “estima-

tion errors” x̃ai = x̂ai −xai and z̃awi = ẑawi−zawi. This fact reflects the definition

of closed-loop multiagent system (3.6). Then, we find that the final “esti-

mated” values are x̂ai = xai + 1
N
φA00

∑N
i=1 x̃i(0)+ 1

N
φ23

11

∑N
i=1(ẑawi(0)−zwi(0)) =

1
N
φA00

∑N
i=1 xi(0) + 1

N
φA00

∑N
i=1 x̃i(0) = 1

N
φA00

∑N
i=1 x̂i(0). In fact, x̂ai = 0

whenever x̂(0) = 0. Also, ẑawi = zawi + 1
N
φ33

11

∑N
i=1(ẑawi(0)− zwi(0)).

• For a Hurwitz A, φA00 → 0 as t→∞. Thus, the results of Lemma 3.1.1 can

be simplified to the following values:

xai = limt→∞
1
N
φ13

11

∑N
i=1 z̃wi(0)

x̃ai = limt→∞
1
N
φ23

11

∑N
i=1 z̃wi(0)

z̃awi = limt→∞
1
N
φ33

11

∑N
i=1 z̃wi(0)

which end in the final estimated values x̂ai = xai +limt→∞
1
N
φ23

11

∑N
i=1(ẑawi(0)−

zwi(0)) = 0 independent of x̂(0), and ẑawi = zawi+limt→∞
1
N
φ33

11

∑N
i=1(ẑawi(0)−

zwi(0)).
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3.1.1.3 Simulation verification

Now, we implement our leaderless consensus algorithm over an undirected

graph in Figure 3.1 with the following graph Laplacian:

L =



3 −1 0 −1 −1

−1 3 −1 0 −1

0 −1 2 −1 0

−1 0 −1 3 −1

−1 −1 0 −1 3


In the next examples, we limit ourselves to the constant persistent disturbances

(i.e., F = 0 and θ = 1 in the disturbance generator model (3.5)). Then, starting

from time t = 0s, the consensus signal (3.4) can be written as follows:

ui(t) = Kx
c x̂

r
i (t) +Kw

c K
w
o C

∫ t

0

xri (τ)− x̂ri (τ)dτ

that is essentially a state-feedback control signal with integral actions on the

differences of lumped relative-state measurements xri =
∑

j∈Ni(xi − xj) and their

ν1

ν2 ν3

ν5

ν4

Figure 3.1: An undirected leaderless communication topology G
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estimated values x̂ri =
∑

j∈Ni(x̂i− x̂j). In other words, for a constant disturbance,

based on our knowledge about integral control or observer, the tracking error

between the estimated lumped relative estimations and the actual lumped relative

state variables will converge to zero.

In all cases, we initialize the system and disturbance (generator) state space

models by x1(0) = [−10, 20]T , x2(0) = [15,−15]T , x3(0) = [10, 15]T , x4(0) =

[−30, 20]T , x5(0) = [20,−30]T , z1(0) = 2, z2(0) = 5, z3(0) = 3, z4(0) = 9, z5(0) =

4. Also, the disturbance state estimator is initialized by ẑi = 0 for all i ∈

{1, 2, 3, 4, 5}. We design the control gains using Design procedure 3.1.1.1 and

Theorem 3.1.2, and the observer gains based on Theorem 3.1.3. Then, we calcu-

late our expectations based on the Lemma 3.1.1 and Remark 3.1.3.

In the next example, we consider an unstable multiagent system with a nonzero

initial state estimator value.

Example 3.1.1. (Unstable agent dynamics) Consider the multiagent system (3.1)

that realizes double-integrator agents by the following state space matrices:

A =

0 1

0 0

 , B =

0

1

 ,Γ =

 0

0.4

 , C =

[
1 0

]

Furthermore, assume that all estate estimators are initialized at zero except x̂3 =

[10,−15]T . Using the results of Lemma 3.1.1 and Remark 3.1.3, we find:
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xai (t) = 1
5
eAt
∑5

i=1 xi(0)− 1
5

∫ t
0
eA(t−τ)Γdτ

∑5
i=1 z̃wi(0)

= 1
5

1 t

0 1

∑5
i=1 xi(0)− 8

100

∫ t
0

t− τ
1

 dτ∑5
i=1 z̃wi(0)

=

0.92t2 + 2t+ 1

1.84t+ 2


x̂ai (t) = 1

5
eAt
∑5

i=1 x̂i(0) =

1 t

0 1


 2

−3

 =

2− 3t

−3


ẑawi = zawi − 1

5

∑5
i=1 ẑwi(0)

where the last term results in ẑaw1 = −2.6, ẑaw1 = 0.4, ẑaw1 = −1.6, ẑaw1 = 4.4,

ẑaw1 = −0.6. Figures 3.2 and 3.3 depict the simulation verification results.

Figure 3.2: The time-varying leaderless agreement in a multiagent system of
double-integrators in Example 3.1.1. From Top to bottom, Left: xi1 and xi2,
and Right: x̂i1 and x̂i2 for i ∈ {1, 2, ..., 5}. The thick light-blue curves show
the expected trajectories which are calculated in Example 3.1.1.
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Figure 3.3: Final values of the estimated disturbances in leaderless Exam-
ple 3.1.1. Top to bottom are ŵ1 to ŵ5. Along with the Remark 3.1.3, this
confirms achieving agreement for some constant disturbances. (Note that the
result of this section is focused on the steady-state agreement values, not the
transient repose. In solving the proposed LQR problems, our emphasizes was
on fast consensus. Thus, we omit the transient response and show the accu-
racy in calculating the final agreement values. Of course, different responses
can be achieved by different trade-offs in selection of state and input weighting
matrices.)

Now, we let all state estimators’ initial values be zero, and investigate our

claim about the state estimators’ agreement value in Remark 3.1.3.

Example 3.1.2. (Unstable agent dynamics) In Example 3.1.1, let x̂3(0) = 0.

Now, the simulation result in Figure 3.4 verifies x̂ai = 0 which could be expected

based on the discussion in Remark 3.1.3.

In the next example, we consider a stable multiagent system and observe the

discussion in Remark 3.1.3.
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Figure 3.4: The time-varying leaderless agreement in a multiagent system of
double-integrators under the same scenario as Example 3.1.1; however, with
x̂3(0) = 0. From Top to bottom, Left: xi1 and xi2, and Right: x̂i1 and x̂i2 for
i ∈ {1, 2, ..., 5}.

Example 3.1.3. (Stable agent dynamics) Assume a stable multiagent system of

agents (3.1) specified by the following state space realization:

A =

 0 1

−5 −3

 , B =

0

1

 ,Γ =

 0

0.4

 , C =

[
1 0

]

We expect

xai =
1

5
A−1Γθ

5∑
i=1

zwi(0) =

0.368

0

 , x̂ai = 0, ẑawi = zwi −
1

5

5∑
i=1

zwi(0)

which are confirmed by the simulation result in Figure 3.5 (the ẑawi are the same

as the previous examples and are not re-presented here).
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Figure 3.5: Final values of leaderless agents’ states and their estimations. From
Top to bottom, Left: xi1 and xi2, and Right: x̂i1 and x̂i2 for i ∈ {1, 2, ..., 5}.

3.1.2 Leader-follower consensus

3.1.2.1 Problem statement

In the leaderless consensus problem of Subsection 3.1.1, we could ensure agree-

ment on a common value that was a function of initial state and disturbance values.

We showed that all state trajectories could converge to the agreement subspace

which was built by the unobservable and uncontrollable disagreement dynam-

ics. In this section, we propose a special communication topology and discuss

the leader-follower consensus (tracking) problem. An example of this topology is

shown in Figure 3.6 where, without loss of generality, we have added a new agent

ν0 to the simulation scenario of Figure 3.1. In this case, a leader agent with the

following dynamics is added to the multiagent system:
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ẋ0 = Ax0

y0 = Cx0

(3.21)

where the x0 ∈ Rnx denotes the state vector and the y0 ∈ Rny indicates the output

of the leader agent. Assume that follower agents are similar to (3.1) in Subsec-

tion 3.1.1. We let these followers communicate to each other over an undirected

graph G (similar to the leaderless scenario in Section 3.1). However, the leader

is connected to a set of few followers over some directed edges where this leader

and follower communication information (also known as pinning information) is

lumped in B = diag{[b1, b2, ..., bN ]} where bi = 1 when the ith follower receives

information from the leader and bi = 0 otherwise, and i ∈ {1, 2, ..., N}.. Hav-

ing this special leader-follower communication topology Glf , we let H = L+ B be

its reduced-order Laplacian matrix. Now, the leader-follower problem is solved

when (3.22) is achieved by all follower agents i ∈ {1, 2, ..., N} under the unknown

disturbances wi, and any initial conditions over the given graph topology Glf :

lim
t→∞

(xi(t)− x0(t)) = 0 (3.22)

The following fact is known about any reduced-order Laplacian matrix H:

Fact 3.1.1. The reduced-order graph Laplacian H is positive definite if Glf has a

spanning tree with leader agent as the root.

Furthermore, the following assumption is satisfied in this subsection:

Assumption 3.1.2. There exists a directed path from the leader to each follower,

and x0 is known for those followers connected to the leader.
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Remark 3.1.4. Let Llf ∈ R(N+1)×(N+1) be the graph Laplacian matrix for a

leader-follower communication topology Glf with one leader and N followers. With

the leader agent as the root of a spanning tree, this Llf has a simple zero eigen-

value, and Llf can be partitioned as follows:

Llf =

 0 0

−b H


where H = L + B ∈ RN×N , with L ∈ RN×N as the graph Laplacian matrix of N

followers’ undirected graph G, and B ∈ RN×N as defined previously. Therefore, we

call H a reduced-order Laplacian matrix because the communication topology can

be re-constructed knowing this matrix. Note that, by definition, Llf has only one

zero eigenvalue, and that corresponds to the first row. Also, we already see that H

is a symmetric matrix with real-valued eigenvalues. Thus, we sort all eigenvalues

ν0

ν1

ν2 ν3

ν5

ν4

b1

b2

Figure 3.6: A special type of directed leader-follower communication topology
Glf where all followers ν1-ν5 communicate over an undirected graph G with a
graph Laplacian matrix L, and few followers (here, ν1 and ν2) receive infor-
mation from the leader ν0 over some directed edges with non-zero bi (here,
b1 and b2). This leader and follower connections can be lumped in a vector
b = [b1, ..., b5]T . Then, H = L+ B represents a reduced-order graph Laplacian
matrix for Glf where B = diag{b}.
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of H as 0 < µ1 ≤ µ2 ≤ ... ≤ µN . Moreover, we can find a unitary transformation

matrix that can convert H to a completely diagonal matrix Λ = diag{µi}.

3.1.2.2 Main results

Here, we consider a leader-follower multiagent system with a leader (3.21) and

N followers (3.1)-(3.2) where the followers’ output measurements are changed sa

follows:

yri = C(
∑
j∈Ni

(xi − xj) + bi(xi − x0))

which include the leader’s output whenever bi 6= 0. We propose a dynamic con-

sensus algorithm:

ui = Gx
c{
∑
j∈Ni

(x̂i − x̂j) + bi(x̂i − x0)}+Gw
c ẑwi (3.23)

using the following observers:

˙̂xi = Ax̂i +Bui + Γŵi +Gx
o(y

r
i − ŷri )

˙̂zwi = F ẑwi +Gw
o (yri − ŷri )

ŷri =
∑

j∈Ni(ŷi − ŷj) + bi(ŷi − y0)

ŵi = θẑwi

(3.24)

where ŷi = Cx̂i, G
x
c ∈ Rnu×nx and Gw

c ∈ Rnu×nzw denote the state-feedback

and disturbance control gain, respectively; and Gx
o ∈ Rnx×ny and Gw

o ∈ Rnzw×ny

represent the state- and disturbance-observer gains, respectively.

Let εi = xi − x0 be the leader-follower tracking error. Then, ε = col{εi}

denotes the aggregated leader-follower tracking error vector over Glf . Now, we

find the augmented leader-follower tracking error, system state estimation error,

and disturbance state estimation error dynamics:
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ε̇ = [(IN ⊗A)+(H⊗BGx
c )]ε+[H⊗BGx

c ]x̃+[IN ⊗BGw
c ]z̃w +[IN ⊗ (BGw

c +Γθ)]zw

and
˙̃x = [(IN ⊗ A)− (H⊗Gx

oC)]x̃+ [IN ⊗ Γθ]z̃w

˙̃zw = −[H⊗Gw
o C]x̃+ [IN ⊗ F ]z̃w

(3.25)

We follow an idea similar to Subsection 3.1.1.2, and find the following trans-

formed diagonalized representation: ε̇T
ėoT

 =

M̄11 M̄12

0 M̄22


 εT
eoT

+

N̄1

0

 zwT (3.26)

where εT , (T−1 ⊗ Inx)ε, and:

M̄11 = (IN ⊗ A) + Λ⊗BGx
c , M̄12 = [(Λ⊗BGx

c ), (IN ⊗BGw
c )]

M̄22 =

M̄11
22 M̄12

22

M̄21
22 M̄22

22

 , N̄1 = IN ⊗ (BGw
c + Γθ)

M̄11
22 = (IN ⊗ A)− (Λ⊗Gx

oC), M̄12
22 = IN ⊗ Γθ

M̄21
22 = −Λ⊗Gw

o C, M̄22
22 = IN ⊗ F

Based on the Remark 3.1.4, all eigenvalues of H are positive real numbers

(compared to the leaderless consensus where λ1 = 0). Thus, we take all (diagonal)

subsystems of (3.26) to get (3.27) and (3.28):

ε̇T i = AεT i +BuT i + ΓθzwTi

yεi = µiεT i

uT i = Gx
cyεi +Gw

c ẑwTi

(3.27)
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 ˙̃xT i

˙̃zwTi

 = (

A Γθ

0 F

−
Gx

o

Gw
o

[µiC 0

]
)

 x̃T i
z̃wTi

 (3.28)

Now, in the next theorem, we convert the leader-follower consensus task to a

stability problem.

Theorem 3.1.4. Suppose that Assumption 3.1.1.a to c, and Assumption 3.1.2 are

satisfied for a leader-follower multiagent system of this subsection. The closed-loop

multiagent system with an observer-based consensus algorithm (3.23)-(3.24) solves

the leader-follower consensus problem (3.22) if:

1. The observer gain Go =

Gx
o

Gw
o

 results in a Hurwitz matrix

A− λiGx
oC Γθ

−λiGw
o C F


with eigenvalues in left half plane, sufficiently far away the imaginary axis.

2. The control-gain Gc =

[
Gx
c Gw

c

]
stabilizes (3.27) for all eigenvalues of H,

and rejects the unknown persistent disturbance wT i = θzwTi.

Proof. Since µi > 0 for all i ∈ {1, 2, ..., N}, this proof is similar to that of

Theorem 3.1.1 (corresponding to λi 6= 0 for i ∈ {2, ..., N}), and we skip it

for brevity.

Also, the design procedure to find appropriate control gains can be summarized

as follows:

Design procedure 3.1.2. The control gains in (3.23) can be designed in two steps:

1. Disturbance gain Gw
c : this gain is designed to minimize the ‖BGw

c + Γθ‖.

Based on the Assumption 3.1.1.c, the Gw
c = −B†Γθ rejects the unknown

disturbance.
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2. State feedback gain Gx
c : using a Gw

c of the previous step, we design a feedback

gain Gx
c that solves the robust control problem (3.29) for a fictitious modeling

uncertainty due to Bµ , BD(µi) where D(µi) , µiInu.

ε̇T i = AεT i +BλuT i

uT i = Gx
c εT i

. (3.29)

Now, we propose two theorems in order to find these “appropriate” state-

feedback and -observer gains. These theorems complete the design of our relative

output-based leader-follower consensus protocol.

Theorem 3.1.5. Assume that uT i = Gx
cxT i with Gx

c = −R−1
ε DT

µB
TPε solves

the modified LQR problem (3.30) subject to a dynamical system (3.31) where Pε

denotes solution of ARE (3.32), Qε = QT
ε � 0 and Rε = RT

ε � 0 are two constant

matrices, Dµ = µ1Inu, and E(µi) , D−1
µ D(µi) − Inu � 0. Then, this uT i also

stabilizes the uncertain system (3.33) which indicates solving the leader-follower

consensus problem (3.22) using full state feedback measurement.

min
uTi∈Rnu

∫ ∞
0

(εTT iQεεT i + uT iRεuT i)dt (3.30)

ε̇T i = AεT i +BDµuT i (3.31)

ATPε + PεA+Qε − PεBDµR
−1DT

µB
TPε = 0 (3.32)

ε̇T i = AεT i +BDµuT i +BDµE(µi)uT i (3.33)

Proof. This proof is similar to the proof of Theorem 3.1.2. Also, see the discussion

in proof of Theorem 3.1.4.

Theorem 3.1.6. Let uεa = GT
εaxεa = −R−1

εa Dεa,µCεaPεaxεa be the signal that solves

the minimize problem (3.34) subject to (3.35) where Pεa denotes the solution of
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ARE (3.36), Qεa = QT
εa � 0 and Rεa = RT

εa � 0 are two constant matrices, Cεa =

[C, 0], Dεa,µ = µ1Iny , Eεa(µi) = D−1
εa,µ1

Dεa(µi) − Iny � 0, and Dεa(µ) = µiIny .

This uεa stabilizes the uncertain models (3.37), and, thus, Gεa gives the observer

gain in Theorem 3.1.4.1.

min
uεa∈Rnu

∫ ∞
0

(xTεaQεaxεa + uεaRεauεa)dt (3.34)

ẋεa = ATa xεa + CT
εaD

T
εa,µuεa (3.35)

AaPεa + PεaA
T
a +Qεa − PεaCT

εaD
T
εa,µR

−1
εa Dεa,µCεaPεa = 0 (3.36)

ẋεa = ATa xεa + CT
εaD

T
εa,µuεa + CT

εaDεa,µ1Eεa(µi)uεa (3.37)

Proof. This proof is similar to the proof of Theorem 3.1.3. Also, see the discussion

in proof of Theorem 3.1.4.

3.1.2.3 Simulation verification

Here, we consider the leader-follower communication topology of Figure 3.6

with the following reduced-order Laplacian matrix:

H =



4 −1 0 −1 −1

−1 4 −1 0 −1

0 −1 2 −1 0

−1 0 −1 3 −1

−1 −1 0 −1 3


Example 3.1.4. (Stable agent dynamics) Consider the state space model of Exam-

ple 3.1.3. Assume there exists a leader with an initial condition x0(0) = [15, 15]T .
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Figure 3.7: Leader-follower tracking problem in Example 3.1.4. From Top to
Bottom, Left: xi1 and xi2, and Right) x̂i1 and x̂i2 for i ∈ {0, 1, 2, ..., 5}. The
thick black curves correspond to the leader agent.

However, now, we assume that followers are subjected to w1 = sin(0.5t), w2 =

1.5sin(0.5t), w3 = 2sin(0.5t), w4 = 0.5sin(0.5t), and w5 = sin(0.5t). We use

Design procedure 3.1.2.1, Theorem 3.1.5, and Theorem 3.1.6 to find the control

and observer gains. The simulation results are depicted in Figures 3.7 and 3.8

that indicate the leader-follower consensus problem (3.22) is solved, and the dis-

turbances are estimated precisely. In this example, we note that there exists no

L-induced null space (unobservable agreement dynamics) to degrade the distur-

bance estimation performance.

Example 3.1.5. (Unstable agent dynamics) Consider an unstable multiagent sys-

tem with the following state matrix and leave other matrices the same as previous

examples in this chapter:

87



Figure 3.8: Disturbances (solid blue) and their estimated values (dashed red)
in leader-follower tracking problem Example 3.1.4. From top to bottom corre-
spond to the disturbances w1, w2, w3, w4, and w5.

A =

 0 1

−1 0


which results in an oscillatory time-response by the leader. The leader-follower

tracking capability of our algorithm, and disturbance estimation results are de-

picted in Figure 3.9 and Figure 3.10, respectively.

Example 3.1.6. (Unstable agent dynamics) Now, consider the example 3.1.1

under a leader-follower tracking scenario. Here, the leader’s initial condition is

x0 = [0, 5]T . As is depicted in Figure 3.11, followers agree on the leader’s position

x01(t) = 5t and follow it with the leader’s velocity x02 = 5. Moreover, the state

estimators are able to precisely estimate the agents’ state variables using only

lumped relative-measurements in their neighborhood. Additionally, Figure 3.12
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shows that the disturbances can also be estimated precisely. We mention that in

Example 3.1.1, the constant disturbance was persistently exciting the unobservable

(uncontrollable) agreement dynamics and, therefore, we observed an increased ve-

locity in all agents (with constant acceleration which was not shown, but could

easily be guessed based on the calculated velocity).

Figure 3.9: Leader-follower tracking problem with an unstable leader in Exam-
ple 3.1.5. From Top to Bottom, Left: xi1 and x̂i1, and Right: x̂i1 and x̂i2 for
i ∈ {0, 1, 2, ..., 5}.
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Figure 3.10: Disturbances (solid blue) and their estimated values (dashed red)
in leader-follower tracking problem with an unstable leader in Example 3.1.5.
From top to bottom correspond to the disturbances w1, w2, w3, w4, and w5.

Figure 3.11: Leader-follower tracking problem with an unstable leader in Ex-
ample 3.1.6. From Top to Bottom, Left: xi1 and xi2, and Right: x̂i1 and x̂i2
for i ∈ {0, 1, 2, ..., 5}.
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Figure 3.12: Disturbances (solid blue) and their estimated values (dashed red)
in leader-follower tracking problem with an unstable leader in Example 3.1.6.
From top to bottom correspond to the disturbances w1, w2, w3, w4, and w5.

3.2 Distributed leaderless consensus of operat-

ing point-dependent linear multiagent sys-

tems

The existing consensus algorithms are mainly about completely known lin-

ear time-invariant agent models. However, the linear time-invariant model of a

dynamical system usually is an approximations of a nonlinear dynamic behavior

at some fixed operating conditions. Under a more realistic scenario, the state

space realization (2.13) can be generalized to a model with a time-varying triple

(A(t), B(t), C(t)). In some circumstances, we are able to approximate a nonlinear

model with a set of linear models that are characterized by some independent vari-

ables that determine, or depend on, the operating condition of a system. Then,
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the state space realization (2.13) is rewritten as a parameter-dependent model

with the triple (A(θ(t)), B(θ(t)), C(θ(t))).

In this section, we consider a multiagent system where all agents can be char-

acterized by the same unknown independent parameter θ(t), and propose two

linear quadratic regulator formulations which address the leaderless consensus

problem based on some fundamental concepts from the optimal control theory in

Section 2.4.

3.2.1 Problem statement

Consider a group of agents communicating over an undirected graph G:

ẋi = A(θ(t))xi +B(θ(t))ui (3.38)

where i ∈ {1, 2, ..., N} indicates the agent number, xi ∈ Rnx denotes the state

vector, ui ∈ Rnu represents the control input vector, A(θ) ,
∑nθ

m=0(Amθ
m) ∈

Rnx×nx stands for the parameter-dependent state matrix, B(θ) ,
∑nθ

m=0(Bmθ
m) ∈

Rnx×nu refers to the parameter-dependent control input matrix, Am ∈ Rnx×nx and

Bm ∈ Rnx×nu denote some known coefficient matrices, and the real-valued scalar

parameter θ(t) ∈ [θmin, θmax] indicates an independent-parameter that determines

the operating condition of the multiagent system. The parameter θ is unknown

but the lower bound θmin ∈ R and the upper bound θmax ∈ R are two known

constants. Thus, the state space model (3.38) represents a partially-unknown

multiagent system where the unknown independent parameter θ(t) specifies the

multiagent system-level operating point. Proposing a high-order polynomial of
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θ(t) in modeling of state-space realization matrices, enables us to handle the

nonlinear dependency of the linearized model to the operating point4.

In the rest of this section, the objective is achieving the leaderless consensus

among a set of N agents (3.38), which is repeated here:

lim
t→∞

(xi(t)− xj(t)) = 0 (3.39)

We consider two different scenarios:

1. For m ∈ {1, 2, ..., nθ}, assume that neither Am nor Bm is in the range space

of B0. As a result, we find the following state space model:

ẋi = A0xi +B0ui + wi(xi, ui)

wi(xi, ui) = CUixi +DUiui

(3.40)

where wi ∈ Rnx captures the effect of unknown operating condition in (3.38)

and acts as a state- and control input-dependent perturbation. Also, CUi =∑nθ
m=1(Amθ

m) and DUi =
∑nθ

m=1(Bmθ
m).

2. For m ∈ {1, 2, ..., nθ}, assume Bm = 0, and Am be in the range space of B0:

ẋi = A0xi +B0(ui + zi(xi))

zi(xi) = CMixi

(3.41)

where zi ∈ Rnu denote the matched uncertain term, due to an unknown

operating-point, and CMi = B†0
∑nθ

m=1(Amθ
m).

4To provide a physical sense, we may imagine a group of aircraft flying at the same altitude
θ(t) that may change during the time. Specifically, this scenario can be the case for the flight
formation control problem. Also, in a wind farm of similar wind turbines, assuming all wind
turbines are subjected to the same wind speed, we can show that a first-order polynomial of θ
is sufficient to model the wind-dependent behavior of wind turbine in region 3, for the purpose
of generator speed or electrical power regulation. However, the high-order polynomial matrices
might be required to capture wind turbine’s wind-dependent behavior in entire regions 2, 2.5,
and 3.
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Remark 3.2.1. Equivalently, instead of assuming the existence of B†0, we could

impose the structural assumption A(θi) =
∑nθ

m=0(A′mθ
m
i ) where A′0 = A0 and

A′m = B0Am for m ∈ {1, 2, ..., nθ} in order to find a similar multiagent system

with a matched uncertainty.

We design a distributed consensus signal ui such that the leaderless consensus

problem (3.39) is achieved by agents (3.38) (rewritten as (3.40) or (3.41)). The

following assumption holds true in this section:

Assumption 3.2.1. (a) The pair (A0, B0) characterizes a stabilizable state space

realization, and (b) the graph G is connected.

3.2.2 Main results

3.2.2.1 Equivalent multiagent system with unmatched modeling un-

certainty

We first rewrite the ith agent’s model (3.40) as follows:

ẋi = A0xi +B0ui + wi(xi, ui)

wi(xi, ui) =
∑nθ

m=1 wmi(xi, ui) wmi(xi, ui) = Amθ
mxi +Bmθ

mui

(3.42)

We propose the following distributed consensus protocol:

ui = KU

∑
j∈Ni

(xi − xj) (3.43)

where KU ∈ Rnu×nx denotes the consensus gain for a multiagent system with

unmatched uncertainties. Let x = col{xi} be the aggregated state vector and

u = diag{ui} be the aggregated control input. We further define wm(x, u) =
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col{wm(xi, ui)} and introduce w(x, u) = col{wi(xi, ui)} :=
∑nθ

m=1wm(x, u) as the

aggregated unmatched uncertainty. Then, we find:

ẋ = (IN ⊗ A0)x+ (IN ⊗B0)u+ w(x, u)

wm(x, u) = (IN ⊗ Am)θmx+ (IN ⊗Bm)θmu
(3.44)

where we have a coupled-by-communication consensus algorithm over G:

u = (L ⊗KU)x (3.45)

which means, we need to design a distributed consensus signal u that is coupled

through L. We decompose this coupled consensus signal as follows:

u = (L ⊗ Inu)ν and ν = (IN ⊗KU)x (3.46)

and, by passing the coupled term into the system’s dynamics, find a new repre-

sentation for the aggregated multiagent system:

ẋ = (IN ⊗ A0)x+ (L ⊗B0)ν + w(x, ν)

wm(x, ν) = (IN ⊗ Am)θmx+ (L ⊗Bm)θmν
(3.47)

which is coupled by two terms L⊗B0 (known) and
∑nθ

m=1(L⊗Bm)θm (unknown).

Compared to (3.46), we now focus on designing a “decoupled” control signal:

ν = (IN ⊗KU)x (3.48)

Let xT , (T−1 ⊗ Inx)x, νT , (T−1 ⊗ Inu)ν, and wmT , (T−1 ⊗ Inx)wm such that

wT , (T−1 ⊗ Inx)w =
∑nθ

m=1 wmT (xT , νT ). Based on the Fact 2.2.1, we find a

partitioned multiagent system model as follows:
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ẋT1

ẋTd

 =

A0 0

0 IN−1 ⊗ A0


xT1

xTd

+

0 0

0 Λd ⊗B0


νT1

νTd

+

 wT1(xT1)

wTd(xTd, νTd)


(3.49)

Now, we need to design a decoupled consensus signal νT = (IN ⊗KU)xT for

the decoupled multiagent system model (3.49). Here, xT = [xTT1, x
T
Td]

T , νT =

[νTT1, ν
T
Td]

T , and wT (xT , νT ) = [wTT1(xT1), wTTd(xTd, νTd)]
T . The (disagreement)

aggregated variable xTd is defined by xTd = [xTT2, ..., x
T
TN ]T ; similarly, we find

νTd = [νTT2, ..., ν
T
TN ]T and wTd = [wTT2, ..., w

T
TN ]T . Furthermore, note that we have

used a partitioned diagonal matrix Λ = diag{[0,Λd]} where Λd = diag{λi}, and

λi denote nonzero eigenvalues of G for i ∈ {2, 3, .., N}.

There is no control on the first row of (3.49) that corresponds to the agree-

ment space. (The effect of agreement dynamics will be discussed in Lemma 3.2.1

and Lemma 3.2.2.) The second row of (3.49) corresponds to the controllable

disagreement dynamics, and is rewritten as follows:

ẋTd = Ā0xTd + B̄0νTd︸ ︷︷ ︸
Network-level nominal multiagent system

+ B̄0ĒνTd + wTd(xTd, νTd)︸ ︷︷ ︸
Network-level uncertainty

(3.50)

where Ā0 = IN−1⊗A0, B̄0 = IN−1⊗λ2B0, and Ē = (Λd
λ2
−IN−1)⊗Inu (A discussion

similar to Remark 3.1.2 at page 70 can be made for introducing the network-level

uncertainty in state equation (3.50)). We limit the synthesis of consensus gain KU

to the disagreement dynamics by introducing the reduced-order consensus signal

νTd ∈ R(N−1)nu with K̄U = (IN−1 ⊗KU):

νTd = K̄UxTd (3.51)
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We now propose an auxiliary multiagent system:

ẋTd = Ā0xTd + B̄0νTd + τ (3.52)

where τ = [τT2 , ..., τ
T
N ]T ∈ R(N−1)nx denotes a fictitious control input5 that has

been added to handle the effect of wTd(xTd, νTd) ∈ R(N−1)nx .

We briefly re-state that the distributed consensus algorithm design objective

was to steer disagreement dynamics’ trajectory toward the agreement subspace

using the consensus protocol (3.51). To design an appropriate consensus gain KU ,

we have proposed a disagreement dynamics stabilization problem, and we further

have proposed an auxiliary multiagent system model in order to handle the effect

of unmatched modeling uncertainties.

Let R̄τ = IN−1 ⊗ Rτ and Rτ = rτInx where rτ > 0 is a design parameter. We

always can find a quadratic upper bound on wTd:

wTTdR̄τwTd ≤ xTTdR̄
x
τxTd + νTTdR̄

ν
τνTd =: wTTdM R̄τwTdM (3.53)

using Fact 2.1.2, and Rayleigh-Ritz inequality in Fact 2.1.1. Here, R̄x
τ = IN−1⊗Rx

τ ,

R̄ν
τ = IN−1 ⊗ Rν

τ , R
ν
τ = rντ Inu , and rxτ , r

ν
τ > 0. An example is provided to clarify

successive use of Fact 2.1.2 at page 39.

Example 3.2.1. Let nθ = 2. We write wTd = wTd1 +wTd2 where wTd1 = (IN−1⊗

A1)θxTd+(IN−1⊗A)θ
2xTd and wTd2 = (IN−1⊗B1)θνTd+(IN−1⊗B2)θ2νTd. Then,

a way to calculate the upper bound (3.53) is as follows:

5The numbering matches that of νTd and, in fact, τ1 does not exist.
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wTTdR̄τwTd = (wTd1 + wTd2)T R̄τ (wTd1 + wTd2)

≤ 2wTTd1R̄τwTd1 + 2wTTd2R̄τwTd2

≤ xTTd(IN−1 ⊗ AT1 )(4θ2R̄τ )(IN−1 ⊗ A1)xTd

+ xTTd(IN−1 ⊗ AT2 )(4θ4R̄τ )(IN−1 ⊗ A2)xTd

+ νTTd(IN−1 ⊗ AT1 )(4θ2R̄τ )(IN−1 ⊗ A1)νTd

+ νTTd(IN−1 ⊗ AT2 )(4θ4R̄τ )(IN−1 ⊗ A2)νTd

≤ xTTd(IN−1 ⊗ 4(θ2AT1RτA1 + θ4AT2RτA2))xTd

+ νTTd(IN−1 ⊗ 4(θ2BT
1 RτB1 + θ4BT

2 RτB2))νTd

≤ xTTdR̄
x
τxTd + νTTdR̄

ν
τνTd

where the last term can be easily found by Fact 2.1.1

In Theorem 3.2.1, we provide sufficient conditions to systematically find an

appropriate KU .

Theorem 3.2.1. Let the signals νT i = KUxT i = −λ2R
−1
νf B

T
0 PxT i and τi =

GxT i = −R−1
τ PxT i solve the minimization problem (3.54) subject to the auxil-

iary system (3.55) such that the condition (3.56) or (3.57) is satisfied. Then, the

control signal (3.51) exponentially stabilizes the uncertain disagreement dynam-

ics (3.50). The matrix P denotes the solution of ARE (3.58), Bf =

[
λ2B0 Inx

]
,

Rf = Diagb{[Rνf , Rτ ]}, Qf = Q+Rx
τ , and Rνf = Rν +Rν

τ . Moreover, Q = QT �

0, Rν = RT
ν = rνInu � 0, Rτ = RT

τ = rτInx � 0, and rν , rτ > 0 are design

parameters.

Ji(xT i(0)) = min
νTi,τi

∫ ∞
0

(xTT iQfxT i + νTT iRνfνT i + τTi Rττi)dt (3.54)
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ẋT i = A0xT i + λ2B0νT i + τi (3.55)

Q− 2GTRτG+KT
URνKU � 0 (3.56)

Q− 2GTRτG � 0 (3.57)

AT0 P + PA0 +Qf − PBfR
−1
f BT

f P = 0 (3.58)

Proof. This proof is discussed at Subsection 3.4.5.

We point out that, in LQR formulation (3.54), the effect of modeling uncer-

tainty wTd appears in both Qf and Rνf . Also, note that post-processing is required

to find a suitable control gain KU , because the conditions (3.56) and (3.57) depend

on the control gains KU and G that should be designed (and are not available at

the beginning). Moreover, although we have proved that the disagreement dynam-

ics are exponentially stable, we still are interested in knowing about the agreement

value. To do this, we propose a new lemma and specialize it in Remark 3.2.2.

Lemma 3.2.1. Assume that conditions of Theorem 3.2.2 are satisfied. Then,

agents of (3.44) reach the following state agreement value for i ∈ {1, 2, ..., N}:

xfi (t) =
1

N
(eAt

N∑
i=1

xi(0) +

∫ t

0

eA0(t−σ)

N∑
i=1

wi(xi(σ), ui(σ))dσ) (3.59)

where the superscript f denotes the final (time-varying) value.

Proof. This proof is available at Subsection 3.4.6.
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Remark 3.2.2. For a Hurwitz A, the agreement value is given by:

xfi = lim
t→∞

1

N

∫ t

0

(eA0(t−σ)

N∑
i=1

wi(xi(σ), ui(σ)))dσ (3.60)

because eAt → 0 as t→∞.

In Theorem 3.2.1, we established a sufficient condition to ensure an (unknown)

agreement among agents (3.44). In Lemma 3.2.1, we found the agreement value

and, assuming a Hurwitz A, we derived a simplified agreement value in Re-

mark 3.2.2. Now, in Lemma 3.2.2, we further establish a sufficient condition

that guarantees a state agreement on zero for multiagent system (3.44).

Lemma 3.2.2. State variables of (3.44) agrees on zero if q < β
α

where q ,∑nθ
m=1 κm, κm ,

√
|µm,M ||θmmax|, µm,M denotes the maximum eigenvalue of ATmAm,

and α, β > 0 satisfy ||eA0t|| ≤ αe−βt.

Proof. This proof is given at Subsection 3.4.7.

3.2.2.2 Equivalent multiagent system with matched uncertainty

Now, we solve the consensus problem (3.39) for multiagent systems of (3.41).

We show that this simplified structure, compared to (3.40) that has been discussed

in previous section, relaxes the post-processing requirement (3.56) or (3.57) in

finding an appropriate consensus gain.
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For brevity, we only introduce new variables and parameters, and others can

be found in previous subsection. We first rewrite (3.41) as follows:

ẋi = A0xi +B0(ui + zi(xi))

zi(xi) =
∑nθ

m=1 zmi(xi)

zmi(xi) = B†0Amθ
mxi

(3.61)

and propose a distributed consensus protocol:

ui = KM

∑
j∈Ni

(xi − xj) (3.62)

where KM ∈ Rnu×nx denotes consensus gain in the presence of matched modeling

uncertainty B0zi(xi). Let z = col{zi} be the aggregated matched uncertainty

vector. Now, over G, we model the multiagent system as follows:

ẋ = (IN ⊗ A)x+ (IN ⊗B0)(u+ z(x))

zm(x) = (IN ⊗B†0Am)θmx
(3.63)

where z(x, u) :=
∑nθ

m=1 zm(x, u). In this case, the aggregated consensus protocol

appears as a coupled signal:
u = (L ⊗KM)x (3.64)

We decompose this coupled consensus signal as u = (L ⊗ Inu)ν and ν =

(IN ⊗KM)x, and pass the coupled term to the multiagent system’s dynamics:

ẋ = (IN ⊗ A0)x+ (L ⊗B0)ν + (IN ⊗B0)z(x)

zm(x) = (IN ⊗B†0Am)θmx

ν = (IN ⊗KM)x
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which results in a coupled dynamics due to L⊗B0, and a decoupled (consensus)

signal ν. Applying the diagonalization transformation of Proposition 2.2.1 results

in a partitioned transformed multiagent system:ẋT1

ẋTd

 =

A0 0

0 IN−1 ⊗ A0


xT1

xTd

+

0 0

0 Λd ⊗B0


νT1

νTd


+

B0 0

0 IN−1 ⊗B0


zT1(xT1)

zTd(xTd)


(3.65)

where zT , (T−1 ⊗ Inu)z. Letting zmT , (T−1 ⊗ Inu)zm, the uncertain term is

defined by:

zT (xT ) :=

nθ∑
m=1

zmT (xT ), where zmT (xT ) = (IN ⊗B†0Am)θmxT

The first row of (3.65) represents the uncontrollable agreement dynamics, and

the second row models the controllable disagreement dynamics. The design of con-

sensus algorithm is limited to the second row of (3.65) that is rewritten as (3.66)-

(3.67) (the potential effects of agreement dynamics, with modeling uncertainty,

will be discussed in Lemma 3.2.3 and Lemma 3.2.4):

ẋTd = Ā0xTd + B̄0νTd︸ ︷︷ ︸
Network-level nominal multiagent system

+ B̄0ĒνTd + B̄0zTdλ(xT )︸ ︷︷ ︸
Network-level uncertainty

(3.66)

νTd = K̄MxTd (3.67)

where K̄M = IN−1 ⊗KM and zTdλ(xT ) = 1
λ2
zTd(xT ).
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Also, defining R̄ = IN−1 ⊗ R, R = rIN−1, and r > 0, we always can find a

quadratic upper bound on zTdλ as is given below (see Example 3.2.1 at page 97):

zTTdλR̄zTdλ ≤ xTTdR̄
xxTd =: zTTdλM R̄zTdλM (3.68)

Theorem 3.2.2 provides sufficient conditions to stabilize the uncertain disagree-

ment dynamics (3.66) and, equivalently, to derive the transformed multiagent

system (3.65) to its agreement subspace.

Theorem 3.2.2. Let νT i = KMxT i = −λ2R
−1BT

0 PmxT i be the control signal that

solves the LQR minimization problem (3.69) subject to the ith agent’s networked

nominal dynamics (3.70). Then, νTd = col{νT i} exponentially stabilizes the uncer-

tain disagreement dynamics (3.66). Here, Pm denotes the solution of ARE (3.71),

and Qm = Q + Rx. Furthermore, Q = QT � 0, R = RT = rInu � 0, and r > 0

are design parameters.

Ji(xT i(0)) = min
νTi

∫ ∞
0

(xTT iQmxT i + νTT iRνT i)dt (3.69)

ẋT i = A0xT i + λ2B0νT i (3.70)

AT0 Pm + PmA0 +Qm − λ2PmB0R
−1BT

0 Pm = 0 (3.71)

Proof. This proof is provided at Subsection 3.4.8.

In the next lemma, we find the agreement value of a multiagent system (3.63):

Lemma 3.2.3. Assume that conditions of Theorem 3.2.2 are satisfied. Then,

multiagent system (3.63) reaches a state agreement on the following value:
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xfi (t) =
1

N
(eAt

N∑
i=1

xi(0) +

∫ ∞
0

eA0(t−σ)B0

N∑
i=1

zi(xi(σ))dσ) (3.72)

where i ∈ {1, 2, ..., N} and the superscript f denotes the final (time-varying) value.

Proof. The proof follows that of Lemma 3.2.1.

Remark 3.2.3. For a Hurwitz A0, we know that eAt → 0 as t → ∞, and a

state-agreement is achieved on the following value:

xfi = limt→∞
1

N

∫ ∞
0

eA0(t−σ)B0

N∑
i=1

zi(xi(σ))dσ (3.73)

The next lemma provides a sufficient condition which ensures a state agreement

on zero among all agents (3.41).

Lemma 3.2.4. The agreement value of a multiagent system (3.63) is zero if

s < β
α||B0|| where s ,

∑nθ
m=1 ρm, ρm ,

√
|ςm,M ||θmmax|, ςm,M denotes the maximum

eigenvalue of ATmB
†T
0 B†0Am, and α, β > 0 are such that the Hurwitz matrix A0

satisfies the exponential bound ||eA0t|| ≤ αe−βt.

Proof. This proof can be derived based on the proof of Lemma 3.2.2.

3.3 Summary and bibliography

In this chapter, we consider linear multiagent systems subject to different

sources of uncertainties. The first case is discussed for both leaderless and leader-

follower (communication) topologies using some relative-output measurements.

These designs guarantee consensus under different types of unknown disturbances:
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constant (step-like), ramp, or sinusoidal (and a combination of them). In the sec-

ond case, we assume that the operating condition of the multiagent system varies

in time, and results in a parameter-varying model of the multiagent system. We

propose a leaderless consensus problem, and establish a state agreement that de-

pends on all agents’ initial state values, and further found the required condition to

achieve a state agreement on zero (which is equivalent to the exponential stability

of an uncertain multiagent system model using “relative-state” measurements).

We show that all of these results can be systematically guaranteed borrowing some

fundamental concepts from the optimal control theory.

Localizing the dynamics of closed-loop multiagent systems, with distributed

consensus algorithms in the loop, results in heterogeneous sub-models that de-

pend on non-zero eigenvalues of communication graph Laplacian matrix. In the

literature, various viewpoints have been proposed to overcome such a problem and

design the same (non-heterogeneous) control gain for all agents. The dominant

approaches are based on a two-step procedure where the control gain is designed

based local dynamics to be multiplied by a scalar correction factor which depends

on the communication network topology. References [82] and [83] introduced a

correction factor to modify the algebraic Riccati equation-based control gain and

guarantee leaderless consensus in a multiagent system (e.g., based on the formu-

lation of this chapter, we need to implement ckcx, ckcv in consensus signal (4.4)

where c is a correction gain that should be designed independent of the actual

gains kcx and kcv), and [93] used the correction gain to modify its relative mea-

surements (e.g., in this viewpoint we need to use modified relative measurements

cyri in (4.4)-(4.5) with a modification factor c). In this chapter, we reformulate
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the problem as a state-feedback robust control challenge for the nominal net-

worked vehicles’ model (identical for al agents) subject to fictitious uncertainties

(in general, non-identical for agents). We then provide a systematic one-step ap-

proach to find appropriate control and observer gains that guarantee consensus in

multiagent systems.

The disturbance rejection (or cancellation), by itself, has received significant

attention in the literature of control systems. Particularly, with a known and

fixed waveform but unknown magnitude, the persistent disturbance rejection has

also been reported in the literature under different names, for example, distur-

bance accommodation control in [115] which can be combined with state feedback

algorithms (as we have done in conjunction with the optimal control ideas of

Section 2.4). Recently, this issue has also been discussed in the literature of mul-

tiagent systems considering a constant disturbance or integrator agent models

(e.g., see [116] and [117]). In a different research work, a leader-follower consensus

for a linear time-invariant multiagent system subject to constant disturbances has

also been investigated in [118]. Moreover, [119] proposed a consensus algorithm

to deal with the disturbances acting on a multiagent system of nonholonomic

moving agents.

The parameter-dependent model of Section 3.2 has been seen in many prac-

tical cases, including the wind turbine application (e.g., see the references in

Sec. III.F [120]). Moreover, the discussion on parameter-dependent aircraft mul-

tiagent system at page 93 is inspired by [121]. The proposed methods in this

chapter are applicable to the unknown and possibly time-varying operating point

scenarios. Alternatively, linear parameter varying and gain scheduling controls
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can be applied whenever the independent (scheduling) parameter is measurable.

Also, the frequency domain approaches are usually limited to the constant or

(practically) very slow-varying parameters. While our ideas are inspired by [122],

similar approaches can be found in the literature of control systems theory under

the name of guaranteed-cost control (e.g., see [110], [123], and [124] with a different

set of structural assumptions).

Finally, although it is straightforward to establish the positive definiteness of a

reduced-order graph Laplacian matrix H for a connected leader-follower commu-

nication graph (see the partitioning of graph Laplacian matrix in Remark 3.1.4,

page 81), a (different) proof is given in [114].

3.4 Appendix: proofs

We have proposed the main results of this chapter through several theorems,

lemmas, and propositions. For the sake of readability, we have not discussed their

proofs within the main body of this chapter, and, instead, have gathered all of

them in this Appendix section. Subsections 3.4.1, 3.4.2, 3.4.3, and 3.4.4 are related

to Section 3.1, and Subsections 3.4.5, 3.4.6, 3.4.7, and 3.4.8 focus on the results

of Section 3.2.

3.4.1 Proof of Theorem 3.1.1 (page 68)

We first mention that the multiagent system’s dynamics (3.6) can be trans-

formed to (3.8) using a similarity transformation that has been discussed in

Fact 2.2.1. Therefore, consensus of a closed-loop multiagent system of (2.13)-

107



(3.2) and (3.4)-(3.5) (or equivalently, the matrix form (3.6)) is the same as deriving

all states of (3.8) to the agreement space (described by the first row in (3.8)). In

other words, we need to asymptotically stabilize the disagreement dynamics (3.9).

Hence, we consider N-1 sub-systems in (3.10) to design control gains Kx
c and Kw

c ,

and N-1 sub-systems in (3.11) to design the observer gains Kx
o and Kw

o . These

issues are further detailed in the rest of this proof:

Part 1) Based on the observer error dynamics (3.11), we find that, in fact, we

need to design an observer gain Ko =

Kx
o

Kw
o

 for the following augmented system:

 ẋdi
żwdi

 =

A Γθ

0 F


︸ ︷︷ ︸

Aa

 xdi
zwdi

 , ydi =

[
λiC 0

]
︸ ︷︷ ︸

Ca

 xdi
zwdi


(3.74)

We propose a Luenberger observer as follows:

 ˙̂xdi

˙̂zwdi

 = Aa

 x̂di
ẑwdi

+Ka(ydi − ŷdi), ydi = Ca

 xdi
zwdi


in which, whenever Assumption 3.1.1.b is satisfied, an observer gain Ko can al-

ways be found to arbitrarily assign eigenvalues of the closed-loop matrix in The-

orem 3.1.1.1. Consequently, we can stabilize the observer dynamics (arbitrarily

fast).

Part 2) Because of Assumption 3.1.1.b, as is discussed in Part 1 of this proof,

the estimation error response in (3.11) converges to zero arbitrarily fast. We
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replace the estimated values in (3.10) with the actual variables to get (3.12).

Therefore, stabilizing this system for all i ∈ {2, ..., N} confirms our claim in

Theorem 3.1.1.2.

3.4.2 Proof of Theorem 3.1.2 (page 70)

All we need is proving that udi = Kx
c xdi, designed for the nominal model

in (3.15), stabilizes the closed-loop system with entire uncertain model (3.15)

where the uncertainty is induced by the communication topology (we have N − 1

possibly different eigenvalues, and introducing this fictitious modeling uncertainty

helps finding a homogeneous consensus protocol). We define the following candi-

date Lyapunov function:

V (xdi(t)) = xTdi(t)Pxdi(t)

where P � 0 is the solution of ARE (3.17). At time t = 0, V (xdi(0)) is equal to

the LQR cost functional J(xdi(0)) in (3.16):

V (xdi(0)) = J(xdi(0)) = min
udi∈Rnu

∫ ∞
0

(xTdiQxdi + uTdiRudi)dt
′ � 0

Therefore, P in the candidate Lyapunov function V is such that the following

Hamilton-Jacobi-Bellman equation is satisfied for the nominal dynamics in (3.15):

min
udi∈Rnu

(xTdiQxdi + uTdiRudi + V T
xdi

(Axdi +BDλ2udi)) = 0
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where V T
xdi

= ∂V
∂xdi

. In particular, implementing udi = Kx
c xdi with an optimal gain

Kx
c = −R−1DT

λ2
BTP , the pairs (xdi, udi) satisfy the following equalities:

xTdiQxdi + uTdiRudi + V T
xdi

(Axdi +BDλ2udi) = 0

2uTdiR + V T
xdi
BDλ2 = 0

because the algebraic Riccati equation (3.17) is satisfied and KxT
c = −PBDλ2R

−1

is implemented (the relation between the first equality and algebraic Riccati equa-

tion is discussed in Section 2.4). Now, we calculate the time deviation of this

candidate Lyapunov function along the uncertain trajectory (3.15) and find:

V̇ (xdi) = V T
xdi
ẋdi

= −xTdiQxdi − xTdiKxT
c RKx

c xdi − 2xTdiK
xT
c RE(λ)Kx

c xdi

4 −xTdiQxdi ≺ 0

where we have used the fact that RE(λi) = ( λi
λ2
− 1)R < 0 for all i ∈ {2, 3, ..., N}.

Now, based on the Lyapunov Theorem 2.3.1, the closed-loop system (3.14) is

asymptotically stable for all initial values of agents (and for all non-zero λi).

Based on Theorem 2.3.2, we can further conclude an exponential stability by

letting a1 = λmin(P ), a2 = λmax(P ), a3 = λmin(Q), and b = 2.
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3.4.3 Proof of Theorem 3.1.3 (page 71)

Based on the Theorem 2.3.1, as the dual to the observer design problem

for (3.74), we can find a control signal ua that stabilizes the following model:

ẋa = ATa xa + CT
a ua (3.75)

where CT
a = CcT

a Da(λi) create fictitious modeling uncertainties ∀i ∈ {2, 3, ..., N}.

This is straightforward to rewrite (3.75) and find:

ẋa = ATa xa + CcT
a DT

a,λ2
ua︸ ︷︷ ︸

Nominal model

+ CcT
a Da,λ2Ea(λi)ua︸ ︷︷ ︸

Network-induced uncertainty

using the Luenberger observer equation (3.75). Now, the problem is reduced to

Theorem 3.1.2 with a similar proof. Based on the duality Lemma 2.3.1, this

Ko = [KxT
o , KwT

o ]T gives the required observer gain in Theorem 3.1.1.1.

3.4.4 Proof of Lemma 3.1.1 (page 72)

Based on (3.8), dynamics of η1 and η2 are decoupled. Also, as a result of

Theorem 3.1.1, we know that P22 is Hurwitz. Thus, ηa2 = limt→∞η2(t) = 0.

Furthermore, the following time response can be found based on the first-order

state equation (3.8):

xaT,1 = eAtxT,1(0) +
∫ t

0
(eA(t−τ)BKw

c e
Fτ z̃wT,1(0))dτ

x̃aT,1 = eAtx̃T,1(0) +
∫ t

0
(eA(t−τ)ΓθeFτ z̃wT,1(0))dτ

z̃aT,1 = eFtz̃wT,1(0)

(3.76)
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Now, substituting Kw
c from Design procedure 3.1.1, we find:

ηa1 = φ00η1(0) + φ11η1(0) =


φA00 0 0

0 φA00 0

0 0 0



xT,1(0)

x̃T,1(0)

z̃wT,1(0)

+


0 0 φ13

11

0 0 φ23
11

0 0 φ33
11



xT,1(0)

x̃T,1(0)

z̃wT,1(0)



Therefore, for the entire partitioned model (3.8), ηa =

φ00 + φ11 0

0 0

 η(0) is

satisfied. Now, let Tb = diag{[T ⊗ Inx , T ⊗ Inx , T ⊗ Inzw ]} and P be the same as

the one that we have used to find (3.8). Then:


xa

x̃a

z̃aw

 = TbP−1

φ00 + φ11 0

0 0

PT−1
b


x(0)

x̃(0)

z̃w(0)


is achieved for the initial augmented model (3.6) (the augmented model, right

before the similarity transformation). This results in the following agreement

values for the system state and observer state estimation errors:


xa

x̃a

z̃aw

 =


ΦA

00 0 Φ13
11

0 ΦA
00 Φ23

11

0 0 Φ33
11



x(0)

x̃(0)

z̃w(0)


where ΦA

00 = ( 1
N

1 ⊗ φA00) ∀i ∈ {1, 2, 3}, and also Φi3
11 = ( 1

N
1 ⊗ φi311) ∀i ∈ {1, 2, 3}

where 1 ∈ RN×N denotes a matrix of all ones. Hence, the proof is completed.
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3.4.5 Proof of Theorem 3.2.1 (page 98)

We aggregate (3.54) for i ∈ {2, 3, ..., N} and use (3.53) in order to find the

augmented cost function (3.77):

J(xTd(0)) = min
νTd,τ

∫ ∞
0

(xTTdQ̄xTd + νTTdR̄ννTd + τT R̄ττ + wTTdM R̄τwTdM)dt

where R̄ν = IN−1 ⊗ Rν . The augmented control signals νTd = K̄UxTd and

τ = ḠxTd, where Ḡ = IN−1 ⊗ G, the augmented auxiliary system (3.52), and

conditions (3.77) and (3.78) can be found similarly.

Q̄− 2ḠT R̄τ Ḡ+ K̄T
U R̄νK̄U � 0 (3.77)

Q̄− 2ḠT R̄τ Ḡ � 0 (3.78)

In summary, the aggregated control signals νTd and τ minimize the augmented

cost function (3.77) subjected to the augmented auxiliary system (3.52) and, also,

the condition (3.77) or (3.78) is satisfied. In the rest, we prove that the uncertain

disagreement dynamics (3.50) can be asymptotically stabilized using only νTd in

the closed-loop configuration (i.e., without implementing the auxiliary control

signal τ).

We introduce a candidate Lyapunov function:

V (xTd(t)) = xTTd(t)P̄ xTd(t)
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where P̄ = IN−1 ⊗ P and P is the solution of ARE (3.58). We know that at time

t = 0, the relationship V (xTd(0)) = J(xTd(0)) is satisfied for

J(xTd(0)) = min
νTd,τ

∫ ∞
0

(xTTdQ̄xTd + νTTdR̄ννTd + τT R̄ττ + wTTdM R̄τwTdM)dt (3.79)

Thus, the Lyapunov function (3.79) satisfies the Hamilton-Jacobi-Bellman equa-

tion (3.80) (subject to the augmented auxiliary multiagent (3.52)):

min
νTd,τ
{xTTdQ̄xTd+νTTdR̄ννTd+τT R̄ττ+wTTdM R̄τwTdM+V T

xTd
(Ā0xTd+B̄0νTd+τ)} = 0

Specifically, implementing νTd = K̄UxTd and τ = ḠxTd, the triple (xTd, νTd, τTd)

satisfies the following equalities:

xTTdQ̄xTd + νTTdR̄ννTd + τT R̄ττ + wTTdM R̄τwTdM + V T
xTd

(Ā0xTd + B̄0νTd + τ) = 0

because the ARE (3.58) is satisfied (see the relation between this inequality and

an ARE in Section 2.4), and

2νTTdR̄νf + V T
xTd
B̄0 = 0

2τT R̄τ + V T
xTd

= 0

because the control gains are chosen to be K̄U = IN−1 ⊗ (−λ2R
−1
νf B

T
0 P ) and

Ḡ = IN−1 ⊗ (−R−1
τ P ). Here, VxTd = ∂V (xTd)

∂xTd
.
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The time deviation of V along the uncertain dynamics (3.50) results in the

followings:

V̇ = −xTTdQ̄xTd − νTTdR̄ννTd − (τ + wTd)
T R̄τ (τ + wTd)

− 2νTTdR̄νf ĒνTd − (wTTdM R̄τwTdM − wTTdR̄τwTd) + 2τT R̄ττ

where Ē = ĒT < 0 and we have −2νTTdR̄νf ĒνTd = −2(rν + rντ )νTTdĒνTd ≤ 0.

Therefore, V̇ can be written as either one of the followings:

V̇ ≤ −xTTdQ̄xTd − νTTdR̄ννTd + 2τT R̄ττ

V̇ ≤ −xTTdQ̄xTd + 2τT R̄ττ

Now, by substituting νTd and τ , we find V̇ ≺ 0 because (3.77) or (3.78) is satis-

fied. Thus, based on the Lyapunov Theorem 2.3.1, the closed-loop disagreement

dynamics (3.50) are asymptotically stable for all initial values of agents (and for

all non-zero λi). Based on Theorem 2.3.2, we can further conclude an exponential

stability by letting b = 2, a1 = λmin(P ), a2 = λmax(P ), a3 = λmin(M) where M

can be Q− 2GTRτG+KT
URνKU or Q− 2GTRτG.

3.4.6 Proof of Lemma 3.2.1 (page 99)

We know that Theorem 3.2.2 is satisfied, thus xfTd = limt→∞ xTd(t) = 0.

Based on the partitioned representation (3.49), the dynamics of (uncontrollable)

agreement space are given by:
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ẋT1 = A0xT1 + wT1(xT1) (3.80)

where we note that the (θ-dependent) uncertain function wT1 depends on neither

νT nor xTd. The solution of this differential equation is given by:

xT1(t) = eA0txT1(0) +

∫ t

0

eA0(t−σ)wT1(xT1(σ))dσ (3.81)

Therefore, we observe the following behavior for (3.49) after reaching to the

agreement subspace:

xfT =

xfT1

xfTd

 =

eA0txT1(0) +
∫ t

0
eA0(t−σ)wT1(xT1(σ))dσ

0


=

eA0t 0

0 0

xT (0) +
∫ t

0

eA0(t−σ) 0

0 0

wT (xT (σ), νT (σ))dσ

where νT is added as an input argument to wT to consider its effect on wTd. We

further partition the similarity transformation matrix T = [T1|Td] where T1 =

1√
N

1N (corresponding to λ1 = 0), and Td contains all other columns of T . This

transformation matrix was used to get (3.49). Now, we find:

xf = 1
N

(1⊗ eA0t)x(0) +
∫ t

0
1
N

(1⊗ eA0(t−σ))w(x(σ), u(σ))dσ

= 1
N

(1N ⊗ eA0t
∑N

i=1 xi(0)) +
∫ t

0
1
N

(1N ⊗ eA0(t−σ)
∑N

i=1wi(xi(σ), ui(σ)))dσ

where xf = [xfT1 , xfT2 , ..., xfTN ]T , and 1 is an N ×N matrix of all ones.
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3.4.7 Proof of Lemma 3.2.2 (page 100)

Based on the conditions of this lemma, we know the inequalities ||AmxT1|| ≤√
|µm,M |||xT1||, ||wmT1|| ≤ κm||xT1||, and ||wT1(xT , νT )|| ≤ q||xT1|| are achieved.

Using the solution (3.81) in Subsection 3.4.6, we further find:

||xT1(t)|| ≤ α||x0
T1||e−βt + αqe−βt

∫ t

0

(eβσ||xT1(σ)||)dσ

where x0
T1 , xT1(0). Based on the Bellman-Gronwall Lemma 2.3.3, by setting

w(t) = ||xT1(t)||, z(t) = α||x0
T1||e−βt, g(t) = αqe−βt, and h(t) = eβt, we find the

following inequality:

||xT1(t)|| ≤ α||x0
T1||e−(β−αq)t

Therefore, the condition q < β
α

guarantees exponential stabilization of the agree-

ment dynamics (3.80). Using the result of Theorem 3.2.1 for the disagreement

space, all states of (3.49) converge to the origin that means all states of (3.44)

reach to an agreement on zero. Thus, the proof is done.

3.4.8 Proof of Theorem 3.2.2 (page 103)

Aggregation of (3.70) for i ∈ {2, 3, ..., N} results in the network-level nominal

multiagent system in (3.66) where, for this nominal multiagent system, the control

signal νTd = K̄MxTd minimizes the following augmented cost function:

J(xTd(0)) = min
νTd

∫ ∞
0

(xTTdQ̄xTd + νTTdR̄νTd + zTTdλM R̄zTdλM)dt

where Q̄ = IN−1 ⊗ Q. In the rest, we prove that this νTd also stabilizes the

entire uncertain multiagent system (3.66). We propose the following candidate

Lyapunov function for t ≥ 0:
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V (xTd(t)) = xTTd(t)P̄ xTd(t)

where P̄ = IN−1 ⊗ P and P is the solution of ARE (3.71). We further no-

tice that the boundary condition V (xTd(0)) = J(xTd(0)) = minνTd
∫∞

0
(xTTdQ̄xTd +

νTTdR̄νTd+z
T
TdλM R̄zTdλM)ds � 0 is satisfied. Thus, we write the following Hamilton-

Jacobi-Bellman equation using the network-level nominal dynamics in (3.66):

min
νTd
{xTTdQ̄xTd + νTTdR̄νTd + zTTdλM R̃zTdλM + V T

xTd
(Ā0xTd + B̄0νTd)} = 0

Particularly, implementing νTd = K̄MxTd, the following equalities are guaran-

teed by the pair (xTd, νTd):

sxTTdQ̄xTd + νTTdR̄νTd + zTTdλM R̃zTdλM + V T
xTd

(Ā0xTd + B̄0νTd) = 0

2νTTdR̄ + V T
xTd
B̄0 = 0

(3.82)

because the ARE (3.71) is satisfied by P , and the control gain is selected as KM =

−λ2R
−1BT

0 Pm. Now, the time deviation of the candidate Lyapunov function along

the uncertain dynamics (3.66) gives the following result:

V̇ = V T
xTd
ẋTd

= −xTTdQ̄xTd − (zTTdλM R̄zTdλM − zTTdλR̄zTdλ)− 2νTTdR̄ĒνTd

− (zTdλ + νTd)
T R̄(zTdλ + νTd) ≤ −xTTdQ̄xTd ≺ 0

where Ē = ĒT < 0, we have −2νTTdR̄ĒνTd = −2rνTTdĒνTd ≤ 0. Thus, based

on the Lyapunov Theorem 2.3.1, the disagreement uncertain dynamics (3.66) are

asymptotically stable for all initial values of agent dynamics over the graph G.

Furthermore, using the Rayleigh-Ritz inequality in Fact 2.1.1, we can show that

the condition of Theorem 2.3.2 are also satisfied, and the closed-loop disagreement
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dynamics are exponentially stable by setting b = 2, a1 = λmin(P ), a2 = λmax(P ),

a3 = λmin(Q).
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Chapter 4

Distributed Stationary Consensus

in Multi-Vehicle/Multi-Robot

Systems1

In Chapter 1, we discussed that various distributed algorithms have already

been designed to ensure collective behavior among agents of multiagent systems.

In Chapter 3, we developed an optimal control-theoretic tool that ensured consen-

sus in multiagent systems subject to unknown disturbances or operating point-

dependent modeling uncertainties. In Examples 3.1.1 and 3.1.2, we showed the

proposed leaderless consensus algorithm ended in agreement on position and ve-

locity in which all vehicles continuously increase their speed. In this chapter,

we develop a dynamic output feedback leaderless stationary consensus algorithm

based on the relative output information of vehicles and only a few vehicles’ ab-

1This chapter is based on the reference [113].
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solute measurements. We propose a framework to transform this dynamic output

feedback problem into three low-order subproblems for disturbance rejection, con-

sensus, and observer gain design tasks. Independently of the number of vehicles,

consensus and observer gains are systematically found through two robust static

state feedback formulations for low-order dynamics subject to fictitious modeling

uncertainties. We further prove the proposed framework can be used to guarantee

leader-follower stationary consensus in multi-vehicle systems (with a leader whose

dynamics are not identical to the follower vehicles), and find analytical solutions

for the consensus gains based on the design parameters and inter-vehicle commu-

nication graph. We verify the feasibility of proposed leaderless and leader-follower

stationary consensus approaches in simulation.

The rest of this chapter is organized as follows. In Section 4.1, we propose a

distributed leaderless stationary consensus algorithm that ensure vehicles’ agree-

ment on a fixed point in the presence of unknown persistent disturbances. In

Section 4.2, we further prove the proposed framework for the leaderless scheme

can be generalized to the leader-follower stationary consensus in which the agree-

ment value is an adjustable command. In Section 4.3, we verify the effectiveness

of these approaches through various simulation studies. In Section 4.4, we sum-

marize these results and provide additional references that are related to the topic

of this chapter. All proofs are gathered in Section 4.5.

4.1 Leaderless stationary consensus

In this section, we develop a systematic framework to design output feedback

dynamic stationary consensus algorithm for leaderless multi-vehicle systems. The
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proposed strategy is based on the relative output measurements and a few vehicles

(potentially, only one vehicle) absolute output variables, and ensures agreement in

the presence of various unknown persistent disturbances. For such a multi-vehicle

system with limited information, we first show the relative information-based

dynamic consensus task can be reformulated as a set of local stability problems

using heterogeneous absolute measurements. Then, in order to have a scalable

design applicable to multi-vehicle systems with a high-number of vehicles, we

further recast it as three sub-problems to find disturbance cancellation, robust

feedback, and robust observer gains.

4.1.1 Problem statement

We consider a group of moving vehicles modeled by the following dynamics:

ẋi = vi v̇i = ui + di

yri = g1(
∑

j∈Ni(xi − xj) + bixi) + g2(
∑

j∈Ni(vi − vj) + bivi)

(4.1)

where xi ∈ R denotes position, vi ∈ R velocity, ui ∈ R control input, and yi ∈ R

output measurement of the ith vehicle. Also, g1 6= 0, g2 ∈ R are two output-gain

scalars where, e.g., when g2 = 0 reduces to a partial measurement scenario for the

multi-vehicle system. Moreover, whenever ith vehicle has access to its absolute

output measurement, we set bi = 1 and, otherwise, bi = 0.

Fact 4.1.1. The triple (C,A,B) is controllable and observable where:

A =

0 1

0 0

 , B =

0

1

 , C =

[
g1 g2

]
where g1 6= 0
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The effects of unknown environment, e.g., road profile or wind disturbance,

on the vehicles’ dynamics are modeled by a set of heterogeneous persistent dis-

turbances di ∈ R (also see (3.2)):

żi = Adzi, zi(0) = z0
i

di = Cdzi

(4.2)

where zi ∈ Rnz stands for the disturbance-state of ith vehicle, z0
i unknown initial

value of the disturbance-state, and Ad ∈ Rnz×nz and Cd ∈ Rnd×nz are two known

constant matrices that determine the shape of disturbance. For this multi-vehicle

system, the leaderless stationary consensus task is defined as follows which should

be achieved in the presence of unknown persistent disturbances:

limt→∞(xi(t)− xj(t)) = 0

limt→∞ vi(t) = 0
∀i, j ∈ {1, 2, ..., N} (4.3)

Based on the definitions in Chapter 3, the conventional leaderless consensus

for the multi-vehicle system can be defined as limt→∞(xi(t) − xj(t)) = 0 and

limt→∞(vi(t) − vj(t)) = 0 for i, j ∈ {1, 2, ..., N} (see (3.3)). This agreement can

be achieved whenever the stationary consensus (4.3) is satisfied; however, the

reveres direction is not necessarily true (for nonzero vi = vj). Moreover, the

formulation (4.2) generates various types of disturbances as given in Table 3.1. In

particular, the combination of constant and sinusoidal waveforms with unknown

amplitudes can be used to model the persistently constant (dc component) and

main harmonics of complicated disturbance waveforms, e.g., based on the (fast)

Fourier series decomposition of road profile and wind disturbance data.
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4.1.2 Main result

In order to guarantee the leaderless stationary consensus of multi-vehicle sys-

tem (4.1) in the presence of heterogeneous persistent disturbances (4.2), we pro-

pose a dynamic distributed stationary consensus algorithm:

ui = kcx
∑
j∈Ni

(x̂i − x̂j) + kcv
∑
j∈Ni

(v̂i − v̂j)− αvv̂i +Kcdẑdi (4.4)

where αv > 0 is a design scalar, and kcx, kcv ∈ R and Kcd ∈ R1×nz are the control

gains to be determined later in this section. The ith vehicle’s estimated position

x̂i ∈ R, velocity v̂i ∈ R, and disturbance state variable ẑdi ∈ Rnz are found using

a distributed observer:

˙̂xi = v̂i + kox(y
r
i − ŷri )

˙̂vi = ui + d̂i + kov(y
r
i − ŷri )

˙̂zdi = Adẑdi +Kod(y
r
i − ŷri )

ŷri = g1(
∑

j∈Ni(x̂i − x̂j) + bix̂i) + g2(
∑

j∈Ni(v̂i − v̂j) + biv̂i)

d̂i = Cdẑdi

(4.5)

in which the observer gains kov, kox ∈ R and Kod ∈ Rnz×1 will be designed later in

this section. Also, Ni denotes the neighboring set of ith vehicle over an undirected

graph G which satisfies the following assumption.

Assumption 4.1.1. The undirected communication graph G is connected.

We define observer error variables exi = x̂i − xi, evi = v̂i − vi, ezi = ẑdi − zdi

and find the observer error dynamics:
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ėxi = evi − kox(g1(
∑

j∈Ni(exi − exj) + biexi) + g2(
∑

j∈Ni(evi − evj) + bievi))

ėvi = Cdezi − kov(g1(
∑

j∈Ni(exi − exj) + biexi) + g2(
∑

j∈Ni(evi − evj) + bievi))

ėzi = Adezi −Kod(g1(
∑

j∈Ni(exi − exj) + biexi) + g2(
∑

j∈Ni(evi − evj) + bievi))

(4.6)

The augmented multi-vehicle system and observer error dynamics are modeled by:

ζ̇
ė

 =

 A11 A12

0 A22


ζ
e

+

Bd1

0

 z (4.7)

A11 =

 0 IN

kcxL kcvL − αvIN

 , A12 =

 0 0 0

kcxL kcvL − αvIN Kcd ⊗ IN



A22 =


−g1koxH IN − g2koxH 0

−g1kovH −g2kovH Cd ⊗ IN

−g1Kod ⊗H −g2Kod ⊗H Ad ⊗ IN

 , Bd1 =

 0

(Kcd + Cd)⊗ IN


where ζ = [xT , vT ]T ∈ R2N , x = col{xi} ∈ RN , v = col{vi} ∈ RN , e =

[eTx , e
T
v , e

T
z ]T ∈ R2N+Nnz , and ex = col{exi}, ev = col{evi} ∈ RN . Based on

the disturbance generator model (4.2) and Table 3.1, it is evident that the di-

mension nz of disturbance state variable zi depends on the shape of persistent

disturbance; thus, we define z = col{col{zli}, ..., col{znz}} ∈ RNnz and ez =

col{col{ez1i}, ..., col{eznzi}} ∈ RNnz where ezli = ẑli − zli for all l ∈ {1, ..., nz}.
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We now take the diagonal blocks of (4.7) and find two sets of differential equa-

tions corresponding to multi-vehicle and observer error dynamics. In particular,

ė = A22e results in the following transformed aggregated observer dynamics:


ėxT

ėvT

ėzT

 =


−g1koxΛh IN − g2koxΛh 0

−g1kovΛh −g2kovΛh Cd ⊗ IN

−g1Kod ⊗ Λh −g2Kod ⊗ Λh Ad ⊗ IN



exT

evT

ezT

 (4.8)

in which exT = T−1
h ex, evT = T−1

h ev, ezT = (Inz ⊗ T−1
h ), and Th ∈ RN×N is a

unitary transformation matrix that completely diagonalizes the symmetric matrix

H as ThHT−1
h = Λ = diag{µi} where µi > 0 are eigenvalues of H � 0 for

i ∈ {1, 2, ..., N}. We notice that these aggregated error dynamics are in fact

composed by N “networked” observer error models:

ėxT i = −µig1koxexT i + (1− g2µikox)evT i

ėvT i = −µig1kovexT i − µig2kovevT i + CdezT i

ėzT i = −µig1KodexT i − µig2KodevT i + AdezT i

(4.9)

where µi result in heterogeneity of the closed-loop networked observers (with

kox, kov and Kod in the loop).

Moreover, using the first row ζ̇ = A11ζ + Bd1z of (4.7), the multi-vehicle

system is written as follows:

ẋT
v̇T

 =

 0 IN

koxΛl kcvΛl − αvIN


xT
vT

+

 0

(Kcd + Cd)⊗ IN

 zT (4.10)
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in which xT = T−1
l x, vT = T−1

l v, zT = (Inz ⊗T−1)z where Tl ∈ RN×N is a unitary

transformation that completely diagonalizes the symmetric Laplacian matrix L

such that TlLT−1
l = Λl = diag{0, λ2, λ3, ..., λN}. As is seen, λ1 = 0 in the diago-

nal matrix Λl determines the null space of graph Laplacian matrix L, and results

in a subsystem that does not satisfy the controllability condition. Therefore, we

apply another transformation ξ = Pζ where ζ = [xT , vT ]T and P ∈ R2N×2N

is a row switching matrix that results in ξ = [ξa, ξd]
T , ξa = [xT1, vT1]T , and

ξd = [col{xT i}T , col{vT i}T ]T for i ∈ {2, 3, ..., N}. The subscript a stands for agree-

ment subspace which is uncontrollable, and d indicates disagreement controllable

subspace. The transformed system can be written as follows:

ξ̇ =



0 1 0 0

0 −αv 0 0

0 0 0 IN−1

0 0 kcxΛld kcvΛld − αvIN−1


ξ +



0

Kcd + Cd

0

(Kcd + Cd)⊗ IN−1


zTr (4.11)

in which the agreement and disagreement dynamics are decoupled from each other.

The vector zTr = [zTTa, zTd]
T is a re-arranged vector of disturbances according to

the row switching rule of P−1. The unobservable agreement dynamics show their

effects on the (stationary) consensus value, and will be discussed later in Corol-

lary 4.1.1 and Lemma 4.1.1. However, the controllable disagreement dynamics are

made by N − 1 heterogeneous networked vehicle models for i ∈ {2, 3, ..., N}:

ẋT i = vT i

v̇T i = λikcxxT i + (λikcv − αv)vT i + (Kcd + Cd)zT i

(4.12)
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where the heterogeneity is due to the nonzero eigenvalues λi of L, and the word

“networked” is used with the same interpretation as in (4.9).

We now rely on the networked local dynamics (4.9) and (4.12), and charac-

terize the relative output feedback stationary consensus problem (4.3) as output

feedback stabilization task using heterogeneously-scaled absolute measurements

(due to µi and λi), and establish three equivalent conditions for consensus gains

to ensure stationary agreement (4.3) in multi-vehicle system (4.1) using dynamic

relative output feedback algorithm (4.4)-(4.5).

Proposition 4.1.1. The dynamic distributed algorithm (4.4)-(4.5) guarantees

leaderless stationary consensus (4.3) among vehicles (4.1) in the presence of per-

sistent disturbances (4.2) whenever Assumption 4.1.1 is satisfied and the following

vehicle-level conditions are guaranteed:

1. The disturbance control gain Kcd should accommodate the effect of unknown

heterogeneous disturbances on the networked vehicle dynamics (4.12).

2. Verifying the observability of (Co, Ao), a single (Luenberger) observer gain

Ko = [kox, kov, K
T
od]

T should be designed for the following networked error

dynamics:


ėxT i

ėvT i

ėzT i

 =


0 1 0

0 0 Cd

0 0 Ad


︸ ︷︷ ︸

Ao


exT i

evT i

ezT i

 yT i =

[
µig1 µig2 0

]
︸ ︷︷ ︸

Co


exT i

evT i

ezT i

 (4.13)
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with N heterogeneous measurements where the heterogeneity is due to the

positive eigenvalues µi of H.

3. For any arbitrarily selected scalar αv > 0, the control gain Kc = [kcx, kcv]

should stabilize the networked vehicle dynamics for i ∈ {2, ..., N}:

ẋT i = vT i v̇T i = uT i − αvvT i uT i = KcyT i

yT i = λi

xT i
vT i

 (4.14)

with N − 1 heterogeneous measurements where heterogeneity is the effect of

positive eigenvalues λi of L. (The effect of αv on final position of vehicles

will be discussed at the end of this section.)

The proof of this proposition is immediate based on the aforementioned deriva-

tions noticing the fact that, satisfying Part 1 of proposition, separation principle

holds for designing observer and controller gains (see the structure of (4.7)). Al-

though the first part of this proposition is independent of the multi-vehicle sys-

tem’s dimension, we need to examine the observer gains kox, kov and Kod for N

nonzero eigenvalues µi of H, and control gains kcx, kcv for N − 1 nonzero eigenval-

ues λi of L. This fact puts question on the feasibility of using Proposition 4.1.1

for a multi-vehicle system with a high-number of vehicles.

We follow follow the ideas of Chapter 3 and, by reformulating the static out-

put feedback problem (4.14) as a state-feedback robust control challenge for the

nominal networked vehicles’ model subject to fictitious uncertainties, provide a

systematic approach to find appropriate control and observer gains that guaran-
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tee stationary consensus in a multi-vehicle system operating in unknown environ-

ments. At first, we investigate the control design problem in Parts 1 and 3 of

Proposition 4.1.1 and, later, we will discuss the observer gain design problem.

Design procedure 4.1.1. 1. Disturbance control gain Kc should minimize the

norm ‖(Kc+Cd)zT i‖ where, based on the definition of disturbance generator

model (4.2), Kcd = −Cd accommodates all persistent disturbances.

2. Robust state feedback gains kcx and kcv should be designed to stabilize net-

worked robot dynamics:

ẋT i = vT i

v̇T i = −αvvT i + λ2uT i + λ2E(λi)uT i︸ ︷︷ ︸
Modeling uncertainties

(4.15)

where E(λi) = λi
λ2
− 1 ≥ 0 are (communication graph-induced) factitious

modeling uncertainties for i ∈ {2, 3, ..., N}.

We emphasize that all eigenvalues λi might be known due to the knowledge

about communication topology G, but we only use the algebraic connectivity

λ2 and consider the rest as the sources of modeling uncertainties in order to

propose a one-step design procedure and find consensus gains in (4.4). (This is

the reason to call λ2E(λi)uT i “fictitious” modeling uncertainties.) Now, we define

a second-order state space model ξ̇i = Aξi + BuT i for the nominal networked

vehicle dynamics in (4.15):

ẋTi
v̇T i

 =

0 1

0 −αv


xT i
vT i

+

 0

λ2

uT i (4.16)
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and let Qc = QT
c ∈ R2×2 � 0 be a design matrix and rc > 0 be a design scalar

to respectively weigh state and control input variables. In the next theorem, we

systematically derive two static consensus gains kcx and kcv that stabilize uncertain

dynamics in Step 2 of Design procedure 4.1.1 for all i ∈ {2, 3, ..., N}.

Theorem 4.1.1. Let uT i = Kcξi be the signal that minimizes the quadratic cost

function (4.17) where UT i is the set of all (admissible) stabilizing signals uT i.

Then, Kc = [kcx, kcv] is the required gain to stabilize uncertain networked-vehicle

dynamics (4.15).

min
uTi∈UTi

J(ξi(0)) =
∫∞

0
(ξTi Qcξi + rcu

2
T i)dt

subject to ξ̇i = Aξi +BuT i in (4.16)

(4.17)

Proof. This proof is available at Subsection 4.5.1.

Now, we introduce the networked observer’s nominal dynamics:

τ̇i = Aoτi, yi = Coµ1uoi (4.18)

where Ao is defined in (4.13) and Coµ1 = µ1[g1, g2, 0]. Also, let Qo = QT
o ∈

R(2+nz)×(2+nz) � 0 be a design matrix and ro > 0 be a design scalar. In the next

theorem, we systematically find the required observer gain Ko = [kox, kov, K
T
od]

T ∈

Rnz+2 to be used in (4.5).

Theorem 4.1.2. Let uoi = KT
o τi be the minimizer of (4.19) subject to a com-

pletely known dynamical system and Uoi denote the set of admissible control signals

for uoi. Then, Ko is the required observer gains for dynamical system (4.13) in

Step 2 of Proposition 4.1.1.
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min
uoi∈Uoi

J(τi(0)) =
∫∞

0
(τTi Qoτi + rcu

2
oi)dt

subject to τ̇i = ATo τi + CT
oµ1
uoi

(4.19)

Proof. This proof is available at Subsection 4.5.2.

Now that the required control and observer gains of Proposition 4.1.1 are

designed, we know all trajectories of the closed-loop multi-vehicle system (4.1)

with consensus algorithm (4.4)-(4.5) converge to an agreement subspace which is

determined by the nullity of graph Laplacian matrix L (e.g., the subspace created

by agreement dynamics corresponding to the first row in (4.11)). In the next

corollary, we find the agreement value assuming that all vehicles measure their

relative variables and use the observer-free stationary consensus algorithm:

ui = kcx
∑
j∈Ni

(xi − xj) + kcv
∑
j∈Ni

(vi − vj)− αvvi − di (4.20)

where the last term is changed from Kcdzi to −di since we know di. Then, in

Lemma 4.1.1, we generalize it to the observer-based approach of this section.

Corollary 4.1.1. The observer-free consensus algorithm (4.20), with perfect state

and disturbance measurements, will result in the following stationary agreement

values in multi-vehicle system (4.1):

limt→∞ xi(t) = 1
N

∑N
i=1 xi(0) + 1

αvN

∑N
i=1 vi(0)

limt→∞ vi(t) = 0
(4.21)

Proof. This proof is given at Subsection 4.5.3.
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Lemma 4.1.1. The observer-based output feedback stationary consensus algo-

rithm (4.4)-(4.5) results in an agreement on the following point:

limt→∞ xi(t) = 1
N

∑N
i=1 xi(0) + 1

αvN

∑N
i=1 vi(0)

+ 1
N

∫∞
0
e−αvσ

∫ σ
0
eαvτ

∑N
i=1(−αvevi(τ) +Kcdezi(τ))dτdσ

(4.22)

lim
t→∞

vi(t) = 0

Proof. The proof is written at Subsection 4.5.4.

In summary, based on the formulation (4.14) (also (4.15)), Theorem 4.1.1

guarantees that the stability of disagreement dynamics in (4.11) is achieved for

any “arbitrarily” selected αv > 0, and Lemma 4.1.1 shows this αv adds a level of

flexibility to tune the internal behavior of multi-vehicles agreement dynamics (al-

though they remain “cooperatively” uncontrollable according to the partitioning

in (4.11)). Additionally, as expected, the last term in xai indicates that the agree-

ment value depends on the average of velocity and disturbance state estimation

errors’ transient behavior. This will be discussed in simulations of Section 4.3.

4.2 Leader-follower stationary consensus

We adopt the result of Section 4.1 and develop a systematic approach to design

a leader-follower stationary consensus algorithm. Furthermore, we analytically

find the solution for consensus gains based on the design variables.
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4.2.1 Problem statement

In this section, we consider a multi-vehicle system where the followers are

modeled by second-order dynamics for i ∈ {1, 2, ..., N}:

ẋi = vi v̇i = ui + di

yri = g1(
∑N

j=1(xi − xj) + bi(xi − x0)) + g2(
∑N

j=1(vi − vj) + bivi)
(4.23)

Here, bi = 1 whenever the ith vehicle can is aware of its relative distance to

the reference position and is potentially aware of its absolute velocity (depending

on g2), and bi = 0 otherwise. All variables xi, vi, ui, y
r
i , di, g1, g2 ∈ R are defined

similar to the leaderless consensus problem in Section 4.1, and we emphasize that

g1 6= 0. The reference point is commanded by a stationary leader:

ẋ0 = 0 (4.24)

which, unlike followers, is described by a first-order model and its adjustable initial

state value x0(t) = x0(t0) denotes the desired position for all t ≥ t0. Now, we

define the leader-follower stationary consensus as follows:

lim
t→∞

xi(t) = x0(t0) and lim
t→∞

vi(t) = 0 (4.25)

where t0 ≥ 0 denotes the time of change in the reference command. Before

proposing the main result of this section, we make an assumption on the leader-

follower communication graph topology Glf .

Assumption 4.2.1. The leader-follower graph Glf has a spanning tree with the

leader node i = 0 as the root.
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4.2.2 Main result

In this subsection, we propose a dynamic distributed leader-follower station-

ary consensus algorithm in order to ensure agreement (4.25) in a multi-vehicle

system (4.23)-(4.24):

ui = kcx(
N∑
j=1

(x̂i − x̂j) + bi(x̂i − x0)) + kcv(
N∑
j=1

(v̂i − v̂j) + biv̂i) +Kcdẑi (4.26)

where x̂i, v̂i ∈ R respectively denote position and velocity of the ith vehicle esti-

mated by the following distributed observer:

˙̂xi = v̂i + kox(y
r
i − ŷri ) ˙̂vi = ui + d̂i + kov(y

r
i − ŷri )

˙̂zi = Adẑi +Kod(y
r
i − ŷri )

ŷri = g1(
∑N

j=1(x̂i − x̂j) + bi(x̂i − x0)) + g2(
∑N

j=1(v̂i − v̂j) + biv̂i)

d̂i = Cdẑi

(4.27)

We define observer error variables exi = x̂i−xi, evi = v̂i− vi, ezi = ẑi− zi, and

find observer error dynamics:

ėxi = evi − kox(g1(
∑N

j=1(exi − exj) + biexi) + g2(
∑N

j=1(evi − evj) + bievi))

ėvi = Cdezi − kov(g1(
∑N

j=1(exi − exj) + biexi) + g2(
∑N

j=1(evi − evj) + bievi))

ėzi = Adezi −Kod(g1(
∑N

j=1(exi − exj) + biexi) + g2(
∑N

j=1(evi − evj) + bievi))

(4.28)
Furthermore, the leader-follower tracking error dynamics are written as:

ε̇xi = vi

v̇i = kcx(
∑N

j=1(εxi − εxj) + biεxi) + kcv(
∑N

j=1(vi − vj) + bivi)

+kcx(
∑N

j=1(exi − exj) + biexi) + kcv(
∑N

j=1(evi − evj) + bievi)

+Kcdezi

(4.29)
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where εxi = xi − x0 ∈ R is the leader-follower position tracking error (recall that

the leader is modeled as a first-order system). Thus, the aggregated leader-follower

tracking and observation error dynamics are represented as follows:ζ̇
ė

 =

 A11 A12

0 A22


ζ
e

+

Bd1

0

 z (4.30)

where ζ = [εTx , v
T ]T ∈ R2N , εx = col{εxi} ∈ RN , v = col{vi} ∈ RN , e =

[eTx , e
T
v , e

T
z ]T ∈ R2N+Nnz , ex = col{exi} ∈ RN , ev = col{evi} ∈ RN , ez = col{ezi} ∈

RNnz , and z = col{zi} ∈ RNnz for all i ∈ {1, 2, ..., N}, and the sub-matrices are

as follows:

A11 =

 0 IN

kcxH kcvH

 A12 =

 0 0 0

kcxH kcvH Kcd ⊗ Id



A22 =


−g1koxH −g2koxH 0

−g1kovH −g2kovH Cd ⊗ IN

−g1Kod ⊗H −g2Kod ⊗H Ad ⊗ IN

 Bd1 =

 0

(Kcd + Cd)⊗ IN


Based on the augmented system (4.30), we conclude the separation principle

holds and, thus, consensus and observer gains can be designed independent of each

other. For the observer design purpose, we find the following networked observer

dynamics:

ėxT i = −µig1koxexT i + (1− µig2kox)evT i

ėvT i = −µig1kovexT i − µig2kovevT i + CdezT i

ėzT i = −µig1KodexT i − µig2KodevT i + AdezT i

(4.31)
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which show the proposed leader-follower stationary consensus algorithm (4.26)-

(4.27) has resulted in the same problem as the leaderless consensus scenario

in (4.13). For the control gain design problem, since H is a symmetric positive-

definite matrix, we find a completely controllable diagonal representation:

ε̇xT
v̇T

 =

 0 IN

kcxΛh kcvΛh


εxT
vT

+

 0

(Kcd + Cd)⊗ IN

 zT (4.32)

based on εxT = T−1
h εx, vT = T−1

h v, and zT = (Inz ⊗ T−1
h )z where Th ∈ RN×N is

defined such that ThHT−1
h = Λh = diag{µi} for i ∈ {1, 2, ..., N}. The trans-

formed dynamics (4.32) are in fact composed by N heterogeneous networked

leader-follower tracking error systems:

ε̇xT i = vT i

v̇T i = µikcxεT i + µikcvvT i + (Kcd + Cd)zT i

(4.33)

in which µi > 0 for all i ∈ {1, 2, ..., N}. Therefore, the following proposition holds

in this section.

Proposition 4.2.1. Suppose Assumption 4.2.1 is satisfied by communication

graph Glf . The dynamic distributed algorithm (4.26)-(4.27) ensures leader-follower

stationary agreement (4.25) in a multi-vehicle system (4.23) in the presence of

unknown disturbances (4.2) whenever, in addition to Steps 1 and 2 of Propo-

sition 4.1.1, the control gain Kc =

[
kcx kcv

]
stabilizes the networked leader-

follower tracking error dynamics:
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ε̇xT i = vT i, v̇T i = uT i

uT i = Kcyi

yi =

µi 0

0 µi


εxT i
vT i


∀i ∈ {1, 2, ..., N} (4.34)

where µi > 0 are the eigenvalues of reduced-order Laplacian matrix H for all

i ∈ {1, 2, ..., N}.

This proposition, along with the observer dynamics (4.31) and disturbance

component in (4.33), formulates the distributed stationary leader-follower algo-

rithm (4.26)-(4.27) such that the disturbance control gain can be found following

Step 1 in Design procedure 4.1.1, and the observer gain can be designed using

Theorem 4.1.2 in Section 4.1. In the next design procedure, we propose a system-

atic framework to find the consensus gains kcx and kcv based on a robust control

formulation for modified networked leader-follower tracking error dynamics with

a homogeneous nominal part and heterogeneous fictitious modeling uncertainties.

Design procedure 4.2.1. Design state feedback gains kcx, kcv ∈ R that stabilize

the networked vehicle dynamics with homogeneous nominal model and heteroge-

neous fictitious modeling uncertainties:

ẋT i = vT i

v̇T i = µ1uT i + µ1E(µi)uT i

uT i = kcxxT i + kcvvT i

(4.35)

where E(µi) = µi
µ1
−1 ≥ 0 are the sources of heterogeneous modeling uncertainties.

Note that we originally proposed a dynamic output feedback stationary consen-

sus algorithm (4.26)-(4.27) using relative measurements; converted it to three sub-
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problems to design consensus, observer, and disturbance gains in Proposition 4.2.1

where the consensus gains kcx and kcv were the stabilizing solutions for N static

“output feedback” networked vehicles using N scaled absolute measurements; and,

eventually, reformulated the problem as N static “state feedback” robust stabiliza-

tion tasks using vehicles’ absolute state measurements (Design procedure 4.2.1).

Now, we introduce a second-order state space realization ξ̇i = Aξi + BuT i which

models the nominal dynamics of (4.35):

ẋT i
v̇T i

 =

0 1

0 0


xT i
vT i

+

 0

µ1

uT i (4.36)

Furthermore, we define Qc = QT
c ∈ R2×2 � 0 as the state weighting, and rc > 0

as the control input weighting design matrices. In the next theorem, we propose a

systematic framework to find the required consensus gains as a single robust state

feedback problem.

Theorem 4.2.1. The solution uT i = Kcξi to the minimization problem (4.37),

where UT i denotes the set of all stabilizing state feedback controllers uT i, stabilizes

the heterogeneous networked vehicle dynamics (4.35) for all i ∈ {1, 2, ..., N}.

min
uTi∈UTi

J(ξi(0)) =
∫∞

0
(ξTi Qcξi + rcu

2
T i)dt

subject to ξ̇i = Aξi +BuT i in (4.36)

(4.37)

Proof: We mention that, although system matrices (A,B) in (4.37) is different

from (4.17), the minimization problems are structurally the same such that the

fundamental properties (4.39) are still valid for any pairs ξi, uT i of this leader-
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follower control theorem. Therefore, a detailed proof can be found by following

the steps of proof in Theorem 4.1.1 which is omitted for brevity. �

As discussed earlier, the leader-follower approach is formulated such the dis-

turbance control gain and observer gain design problems can be solved using

the ideas in leaderless stationary consensus of Section 4.1. However, due to

the special structure of (A,B) in (4.36), the 2 × 2 nonlinear matrix equation

ATPc + PcA+Qc − 1
rc
PcBB

TPc = 0 can be reduced to three scalar equations:

µ2
1

rc
p2

12 = q11,
µ2

1

rc
p2

22 = q22 + 2p12,
µ2

1

rc
p12p22 = q12 + p11

As a result, we find the following closed-form solution for the unique positive-

definite stabilizing matrix P :

Pc =


√

2q11 + q22

√
µ21
rc
q11 − q12

√
rc
µ21
q11√

rc
µ21
q11

√
2 rc
µ21

√
rc
µ21
q11 + rc

µ21
q22


Consequently, we find closed-form solutions for the consensus gains kcx and

kcv explicitly based on the design matrix Qc, scalar rc, and smallest eigenvalue of

reduced-order Laplacian matrix µ1 of H:

kcx = −
√

1

rc
q11 kcv = −

√
− 2

µ1

kcx +
1

rc
q22

using the optimal gain formula Kc = [kcx, kcv] = −µ1
rc

[p12, p22] = − 1
rc
BTP . We

note that Pc(1, 1) > 0 is guaranteed based on the observability and stabilizability

of (Q
1/2
c , A,B). As is seen, the position consensus gain kcx is independent of the

140



communication network G (or µ1); however, a network-dependent fraction of it

appears in the velocity consensus gain kcv (i.e., see − 2
µ1
kcx that is added to 1

rc
q22).

These closed-form solutions can be used in tuning of weighting matrices Qc and

rc, and also for the communication topology design purpose. We mention that

the tuning process can be further simplified by letting q12 = q21 = 0 or using

Qc = qcI2 for a scalar tuning parameter qc > 0.

4.3 Simulation verification

In this section, we verify the feasibility of the proposed theoretical results

through various numerical simulations. The challenges of using conventional con-

sensus algorithms have been discussed in Examples 3.1.1, 3.1.2, and 3.1.5. How-

ever, we rebuild the setup for the sake of readability.

4.3.1 Problem setup

In the leaderless problem, we consider a group of 5 vehicles modeled by (4.1)

with g1 = 1 and g2 = 0, and assume nodes 1 and 2 have access to their absolute

position information (i.e., b1 = b2 = 1). Vehicles are at initial conditions x1(0) =

[−10, 20]T , x2(0) = [15,−15]T , x3(0) = [10, 15]T , x4(0) = [−30, 20]T , and x5(0) =

[20,−30]T (which are unknown to the designer). Moreover, vehicles are subject

to heterogeneous constant disturbances d1 = 2, d2 = 5, d3 = 3, d4 = 9 and d5 = 4.

We let vehicles to exchange information over the leaderless graph in Figure 4.1.

In the leader-follower scenario, we add a leader agent v0 modeled by (4.24)

where its initial value can be commanded globally (and we will use a square
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ν0

ν1

ν2 ν3

ν5

ν4

b1

b2

Figure 4.1: Leaderless communication: By removing node v0 and edges orig-
inating from it, nodes v1-v5 and the associated edges represent an undirected
leaderless communication topology G with graph Laplacian matrix L. We as-
sume agents v1 and v2 have access to their absolute measurements. Leader–
Follower communication: v1-v5 communicate over undirected graph G, v1 and
v2 are aware of their relative distances to v0, v0-v5 build a leader-follower com-
munication graph Glf with reduced-order Laplacian matrix H = L + B where
B = diag{1, 1, 0, 0, 0}.

wave input in simulation), and let vehicles to communicate over Glf in Figure 4.1,

and vehicles are subject to unknown sinusoidal disturbances: d1 = 7sin(0.5t),

d2 = 5.5sin(0.5t), d3 = 6sin(0.5t), d4 = 2sin(0.5t), and d5 = 4sin(0.5t).

4.3.2 Leaderless stationary consensus

At first, in Figure 4.2, we consider an observer-free algorithm and verify that

vehicles reach to zero and agree on the unknown position xai = 2 as expected by

Corollary 4.1.1. In Figure 4.3, we use the proposed observer-based algorithm (4.4)-

(4.5) where all observers are at initial rest condition, and show all vehicles reach

to a fixed-position agreement at xai = 2.9. Moreover, unlike the conventional

leaderless scenario of Example 3.1.2, all estimations are the same as actual position

and velocity variables of vehicles. We further note that the difference in agreement

position values of Figures 4.2 and 4.3 is expected based on Lemma 4.1.1.
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Figure 4.2: Observer-free stationary consensus algorithm to verify the result of
Corollary 4.1.1 in the presence of constant disturbances. All vehicles agree on
xai = 2.

Figure 4.3: Leaderless stationary consensus algorithm of Section 4.1 where all
observers are at initial rest condition and the agreement is on xai = 2.9. The
dashed line show the agreement value of Figure 4.2. This new agreement value
is expected based on Lemma 4.1.1.

143



In Figure 4.4, we initialize the second observer at x̂2(0) = [−10, 15, 0]T and

show the effect of observer error (trajectories) on the consensus value where, com-

pared to Figures 4.3, the agreement is on xai = 2.4. Finally, based on Theo-

rem 4.1.2, we redesign observer gains by setting the state weighting matrix to

be 103 greater than the first design (see Figure 4.3), and find a new agreement

on xai = 0.078 as is shown in Figure 4.5. In all of these simulation scenarios,

disturbances are eventually estimated precisely as is depicted in Figure 4.6.

Figure 4.4: Leaderless stationary consensus algorithm of Section 4.1. All ob-
servers are at initial rest condition except x̂2(0). Different from Figure 4.3,
xai = 2.4 which shows the effect of observer error trajectories on the agreement
value (see Lemma 4.1.1).
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Figure 4.5: Leaderless stationary consensus algorithm of Section 4.1 with re–
tuned observer design matrices compared to Figure 4.3. All observers are at
initial rest condition. This verifies the effect of observer dynamics (error tra-
jectories) on the stationary agreement value.

Figure 4.6: In all leaderless stationary consensus simulations, disturbances are
estimated precisely (with some differences in transient behavior). Top to bot-
tom are d1 to d5 (black) and their estimations (red).
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4.3.3 Leader-follower stationary consensus

In this subsection, we investigate the effectiveness of leader-follower stationary

algorithm (4.26)-(4.27) in ensuring a stationary consensus on a (desirable) position

with minimum information about the leader (as discussed in Section 4.2). We

now consider a leader-follower setup as introduced in Subsection 4.3.1 subject

to sinusoidal disturbances. For this setup, we use a square wave command to

determine the desired position of vehicles. As is shown in Figures 4.7 and 4.8,

all vehicles precisely estimate their positions and velocities, and agree on the

commanded stationary point while only a two vehicles are aware of their relative

distances to the desired reference point.

Figure 4.7: Leader-follower stationary consensus: State variables and their
estimations. The dashed back waves represent the leader’s command.
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Figure 4.8: Leader-Follower stationary consensus: Top to bottom are d1 to d5

(black) and their estimations (red).

4.4 Summary and bibliography

In this chapter, we propose leaderless and leader-follower stationary consensus

algorithms which ensure all vehicles’ agreement on a fixed point in the presence of

unknown persistent disturbances and using only a few vehicles’ absolute measure-

ments. In both leaderless and leader-follower scenarios, we provide a systematic

framework that transform the high-order dynamic relative-output feedback sta-

tionary consensus challenge to three low-order subproblems to design disturbance,

consensus, and observer gains. We formulate the consensus and observer gain de-

sign tasks as two robust static feedback problems for modified vehicle dynamic

subject to fictitious modeling uncertainties which are induced by communica-

tion graph topology. In simulation, we discuss the challenges of applying non-

stationary disturbance rejection algorithms to multi-vehicle systems, and verify
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the feasibility of using proposed strategies for multi-vehicle systems in unknown

environments where vehicles might be subject to road profile and wind distur-

bances.

Control of vehicular systems has received a significant attention among policy

makers and researchers during the past two decades due to the increased demand

in transportation systems, advances in wireless communication devices, embedded

sensing and computation technologies (see [14] and [125]) such that the market

of autonomous vehicular systems will expectedly hit $42B by 2025 and, shortly

after that, $85B by 2030 [126].

Cooperative analysis and control of multi-vehicle systems have been done from

both the systems-theoretic and graph-theoretic viewpoints. In the first, the multi-

vehicle system is usually considered over a standard string or mesh topology ([6]

and [12]). Along with the advances in wireless and embedded technologies, graph-

theoretic tools have created a promising alternative viewpoint in which the behav-

ior of a multi-vehicle system can be analyzed over graphs where nodes represent

vehicles and edges indicate inter-vehicle communication. This approach allows

to consider more complicated topologies than the standard string or mesh multi-

vehicle system [127], and design the multi-vehicle cooperative algorithm indepen-

dently of the vehicle-level controllers.

Reference [44] developed a feedback linearization-like scheme to transform a

moving robot’s nonlinear dynamics to a double integrator model with the goal of

cooperative formation; [128] used double integrator models for the formation of

unmanned vehicles; single integrators were used in [11] to model a multi-robot

system, [127] proposed double integrators to study the relationship between com-
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munication topology and the stability of coordination algorithm, and [129] de-

signed vehicle level controllers for linear models of vehicles and a filtering-based

cooperative algorithm for multi-vehicle system.

Motivated by their wide applications in the cooperation of multi-vehicle and

multi-robot systems, significant theoretical research work has been devoted to the

distributed control of single and double integrators [30], [42] and [130]. Other than

multi-agent system of single integrators, it is known that distributed consensus

algorithms usually result in a dynamic agreement in which all trajectories evolve

during the time (e.g., see [127] for dynamic agreement in multi-vehicle systems).

References [131]-[134] introduced leaderless stationary consensus problem in which

agents agree to stop at the same (fixed) position. Nevertheless, multi-vehicle

systems are subject to unknown disturbances such as road profile [135]-[136] or

wind [137]-[139] which may degrade the performance of consensus algorithm or

destabilize it.

The conventional distributed disturbance rejection algorithms have been dis-

cussed in Section 3.3, and we do not review its literature for brevity. We mention

that, because persistent disturbances continuously excite the uncontrollable and

unobservable agreement dynamics, the leaderless disturbance rejection algorithms

are not able to guarantee stationary consensus in the multi-vehicle systems.

Additionally, note that the disturbance-free stationary leaderless consensus

algorithms of [131]-[134] require all vehicles’ access to their absolute velocity mea-

surements. However, in the proposed algorithm (4.4)-(4.5), depending on g2 and

bi, only a few vehicles have access to their absolute output measurements. More-

over, we know the definition of adjacency (Laplacian) matrix does not admit
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self loops in the communication graph. Thus, we use the reduced-order (leader-

follower) Laplacian matrix H to analytically handle this situation in the leaderless

scenario (4.7).

4.5 Appendix: proofs

The proofs for theoretical results of this chapter are gathered in section.

4.5.1 Proof of Theorem 4.1.1 (page 131)

We first note that the control gain Kc = λ2
rc
BTPc results in the minimum cost

function J(ξi(0)) = ξTi (0)Pcξi(0) where Pc ∈ R2×2 is the unique positive-definite

stabilizing solution of ARE (4.38) (existence and uniqueness of a stabilizing Pc � 0

can be guaranteed by verifying controllability and observability of (Q
1/2
c , A, λ2B)

for the networked vehicle’s nominal dynamics (4.16) and Q
T/2
c Q

1/2
c = Qc).

ATPc + PcA+Qc −
λ2

2

rc
PcBB

TPc = 0 (4.38)

Furthermore, implementing uT i = Kcξi, we know any pairs (ξi, uT i) satisfy two

fundamental properties of optimal control theory:

ξTi Qcξ
T
i + rcu

2
T i + JTξi(Aξi +BuT i) = 0

2rcuT i + λ2J
T
ξi
B = 0

(4.39)

where Jξi = ∂J
∂ξi

for all i ∈ {2, 3, ..., N}. Now, in order to prove this theorem, we

introduce a candidate Lyapunov function:

V (ξi) = ξTi Pcξi � 0
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which satisfies V (ξi(0)) = J(ξi(0)) for any initial conditions, and find its time

deviation along the uncertain trajectories in (4.15):

V̇ = V T
ξi
ξ̇i = −ξTi Qcξi − rcu2

T i − 2rcE(λi)u
2
T i ≺ 0

where we have used the fundamental properties (4.39) replacing J by V , E(λi) =

λi
λ2
− 1 ≥ 0, and negative definiteness of Qc. Therefore, asymptotic stability of

origin in the networked vehicle model (4.15) is proved using two static control gains

that are designed based on homogeneous networked vehicle dynamics in (4.16).

Based on the Rayleigh-Ritz inequality, we further find:

λmin(Pc)‖ξi‖2 ≤ V (ξi) ≤ λmax(Pc)‖ξi‖2

V̇ (ξi) ≤ −λmin(QV̇ )‖ξi‖2

that proves exponential stability of the origin for networked vehicle systems (4.15).

4.5.2 Proof of Theorem 4.1.2 (page 131)

A sketch of this poof can be given by noticing that the dynamical system

in (4.19) is dual to (4.18). We can similarly find the dual representation for (4.13).

Then, this theorem is proved following the steps in the proof of Theorem 4.1.1 for

the dual problem and based on the next ARE:

AoPo + PoA
T
o +Qo −

µ2
1

ro
PoC

T
oµ1
Coµ1Po = 0

where the unique stabilizing Po ∈ R(2+nz)×(2+nz) � 0 exists by verifying observ-

ability and controllability of (Q
1/2
o , ATo , C

T
oµ1

) for Q
T/2
o Q

1/2
o = Qo.
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4.5.3 Proof of Corollary 4.1.1 (page 132)

Based on (4.11), we know agreement dynamics are decoupled from the dis-

agreement dynamics (respectively determined by ξa and ξd). The agreement

dynamics are modeled by ẋT1 = vT1 and v̇T1 = −αvvT1, and we write the so-

lution of these differential equations as xT1(t) = xT1(0)− 1
αv

(e−αvt− 1)vT1(0) and

vT1 = e−αvtvT1(0) which result in the following limit behavior:

xaT1

vaT1

 =

1 1
αv

0 0


xT1(0)

vT1(0)

 =: φd

xT1(0)

vT1(0)


because αv > 0 and e−αvt → 0 as t → ∞ (this αv is a design scalar and can

be tuned to achieve desirable consensus behavior). Note that the superscript a

denotes the “agreement” value as t → ∞. Let Tb = I2 ⊗ Tl where Tl = [ 1N√
N
, Td]

is the diagonalizing unitary transformation such that L = T−1
l ΛlTl. We rewrite

this result based on the agreement and disagreement variables and use the fact

limt→∞ ξd(t) = 0 (based on Theorem 4.1.1) and find:

xa
va

 = TbP−1

 φd 0

0 0

PT−1
b

x(0)

v(0)

 = Tb



1 0 1
αv

0

0 0 0 0

0 0 0 0

0 0 0 0


T−1
b

x(0)

v(0)



=

 1
N

1N1TN
1

αvN
1N1TN

0 0


x(0)

v(0)


which completes the proof noticing that x(0) = col{xi(0)}, v(0) = col{vi(0)},

xa = limt→∞ col{xi(t)}, and va = limt→∞ col{vi(t)}.
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4.5.4 Proof of Lemma 4.1.1 (page 132)

We begin from the augmented multi-vehicle and observer error dynamics (4.7),

substitute Kcd by −Cd, and find:

ζ̇Tl
ėTl

 =

 D11 D12

0 (I2+nz ⊗ T−1
l )A22(I2+nz ⊗ Tl)


ζTl
eTl



D11 =

 0 IN

kcxΛl kcvΛl − αvIN

 , D12 =

 0 0 0

kcxΛl kcvΛl − αvIN Kcd ⊗ IN


in which ζTl = (I2 ⊗ T−1

l )ζ and eTl = (I2+nz ⊗ T−1
l )e. Based on a row switching

transformation Pl = diag{P , I2N+Nnz} ∈ R(4N+Nnz)×(4N+Nnz) where P ∈ R2n×2N

is defined in (4.11), we write the disagreement dynamics as follows:

ẋT1

v̇T1

 =

0 1

0 −αv


xT1

vT1

+

0 0 0

0 −αv Kcd



exT1

evT1

ezT1


The solution of second equation is as follows:

vT1(t) = e−αvtvT1(0) + e−αvt
∫ t

0

eαvτ (−αvevT1(τ) +KcdezT1(τ))dτ

where, as t → ∞, the integral converges to a constant βI ∈ R (because the

error variables go to zero). Thus, αv > 0 results in vaT1 = limt→∞ vT1(t) = 0.

Furthermore, we have the following position response xT1(t) = xT1(0)− 1
αv

(e−αvt−

1)vT1(0) +
∫ t

0
e−αvσ

∫ σ
0
eαvτ (−αvevT1(τ) +KcdezT1(τ))dτdσ.
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We follow the steps of Corollary 4.1.1 to find:

xa
va

 =

 1
N

1N1TN
1

αvN
1N1TN

0 0


x(0)

v(0)



+ limt→∞
∫ t

0
e−αvσ

∫ σ
0
eαvτ

0 −αv
N

1N1TN
Kcd
N

1N1TN

0 0 0



ex(τ)

ev(τ)

ez(τ)

 dτdσ

which results in equation (4.22). Now, we let t? be the time that both errors

converges to zero. We introduce βI(t?) =
∑N

i=1

∫ t?
0
eαvτ (−αvevi(τ) +Kcdezi(τ))dτ

and find
∫∞

0
e−αvσ

∫ t?
0
eαvτ

∑N
i=1(−αvevi(τ) + Kcdezi(τ))dσdτ = βI(t?)

αv
which is a

constant. Thus, the position agreement

xai =
1

N

N∑
i=1

xi(0) +
1

αvN

N∑
i=1

vi(0) +
βI
αv

(?)

will be a constant value as well.
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Chapter 5

Distributed Stabilization of

Physically Coupled Multiagent

Systems with Known Coupling

Structures1

In Chapter 3, we established a framework to study distributed control prob-

lems. Particularly, we considered the consensus problem in a multiagent system

of dynamical agents that were described by linear state space models under mod-

eling uncertainties. We proposed a modified LQR-based formulation enabling us

to find appropriate consensus gains without being worried about the selection of

coupling strength (see Subsection 1.2.2, page 24). In Section 3.1, we proposed

1Part of the introductory materials has been reported in [140]. The theoretical developments
are based on the results of [141] and [142]. Each section has its own parameters and variables
which are (re-) defined appropriately.
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a linear time-invariant multiagent system subject to persistent disturbances. In

Section 3.2, we proposed another scenario by introducing an (unknown) operating

point-dependent linear model of a multiagent system. This scenario resulted in

a multiagent systems where the modeling uncertainty of each agent was a func-

tion of its own state and input variables. For this case, we proved the unknown

agreement value will depend on all agents’ initial values as well as the modeling

uncertainties. We further showed that an agreement on zero could be guaran-

teed whenever an additional sufficient condition is satisfied. Motivated by this

(theoretical) observation, we propose a different scenario which is distributed sta-

bilization (agreement on zero) of physically coupled (interconnected) multiagent

systems where the modeling uncertainty of each agent is a function of that agent’s

as well as its physical neighbors’ variables.

In this chapter, we propose two classes of these systems: 1) parameter-varying

physically coupled linear multiagent system which is an extension to the proposed

model in Subsection 3.2, and 2) Lur’e multiagent system with nonlinear physical

couplings. Both scenarios result in heterogeneous multiagent systems and, with

appropriate modified LQR formulations, we prove that the optimal control con-

cepts of Section 2.4 can be used to find the required static feedback gains in order

to address the distributed stabilization problems.

This chapter is organized as follows: in Section 5.1, we introduce the dis-

tributed stabilization and decoupling problems for an interconnected multiagent

system. In Section 5.2, we address the distributed decoupling problem for an oper-

ating point-dependent physically coupled heterogeneous linear multiagent system

based on a leaderless consensus approach. The result of this section enables us to
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guarantee a level of convergence rate. In Section 5.3, we address the same problem

for Lur’e-type physically coupled nonlinear multiagent systems based on a leader-

follower consensus approach. In Section 5.4, we summarize the result and provide

some references for this chapter. Finally, we gather all proofs in Section 5.5.

5.1 Distributed stabilization in physically cou-

pled multiagent systems: revisiting a prob-

lem

In many applications, linear time-invariant model of a large-scale system, com-

posed by N subsystems, is realized by the following state space model:

ẋ = Ax+ Bu

y = Cx

(5.1)

where, for i ∈ {1, 2, ..., N}, x = col{xi} denotes the aggregated state vector,

u = col{ui} represents the aggregated control input, y = col{yi} stands for the

aggregated output vector; and xi ∈ Rnx , ui ∈ Rnu , and yi ∈ Rny respectively

indicate state, input, and output vectors of ith subsystem. For a symmetric large-

scale system, A, B, and C are defined as follows:

A =



A′ Ac ... Ac

Ac A′ ... Ac
...

...
. . .

...

Ac Ac ... A′


B =



B′ Bc ... Bc

Bc B′ ... Bc

...
...

. . .
...

Bc Bc ... B′


C =



C ′ Cc ... Cc

Cc C ′ ... Cc
...

...
. . .

...

Cc Cc ... C ′


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In the literature of large-scale systems, two approaches have been proposed to

control (5.1). The first approach is the centralized control where a central proces-

sor gathers information from all subsystems, calculates a global control signal, and

sends an appropriate control command back to each subsystem. The practicality

of this approach depends on several factors. Of those, we point to 1) the required

computational complexity for the central processor, and 2) implementation cost.

Regarding the first potential limitation, there are several research studies

where the central processor’s task is limited to some simple calculations. For

example, calculating the average of all subsystems’ state and input variables does

not impose any computation problems for the central processor and, also, does

not require a very high-bandwidth communication channel; thus, can be viewed

as a cost efficient approach for implementation. However, centralized schemes are

usually inefficient considering the cost of communication and, furthermore, the

delay in receiving the measurements, calculating an appropriate global control

command using a central processor, and sending the (sub-) commands back to

subsystems maybe significant (particularly, when subsystems are geographically

located far from each others).

As the second approach, decentralized control has been proposed to handle

these difficulties. In fact, this is a semi-local controller that 1) only uses the cor-

responding subsystems’ measurements and, in this sense, operates similar to a

local controller, and 2) different from a (purely) local control approach, it is de-

signed based on our knowledge about the global requirements (e.g., whenever the

stability of an interconnected system is the control objective, we use our knowledge

about the effect of interconnection on each subsystem, and design a controller to
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handle it). In summary, we use our knowledge about the physical couplings and

design a set of decentralized controllers which will be implemented locally. Since

each individual controller uses only its own subsystem’s information, the com-

putation and implementation costs can be significantly less than the centralized

approach (potentially, at the expense of reduced performance). Figure 5.1 shows

centralized and decentralized control structures for a typical large-scale system

with non all-to-all physical couplings.

Stabilization of a large-scale system is a global objective and can be achieved

using global knowledge about all subsystems’ measurements in a centralized man-

ner. On the other hand, decentralized control techniques prove this objective

can be achieved by only sending local absolute measurements to each subsystem’s

controller. However, we need to notice two points:

1. The performance of a closed-loop large-scale system with a centralized con-

troller can be theoretically higher than a closed-loop system with a set of

decentralized controllers. (The word “theoretically” refers to a scenario

without any long unknown communication delays.)

2. A large-scale system might be characterized by some “decentralized fixed

modes” that cannot be changed using any linear time-invariant decentralized

controllers. Additionally, we know that “quotient fixed modes” of a large-

scale system are not controllable by any decentralized controllers (including

the time-varying and nonlinear approaches). There are several methods to

handle the problem of these (potentially unstable) fixed modes and stabilize

a large-scale system. In particular interest of this dissertation, we mention
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the structured control systems which can be designed following these steps:

find the fixed modes, impose a special structure to share a few (additional)

measurements among subsystems, transform the structured control design

problem to a decentralized control problem, use a suitable decentralized

control design technique, and find the structured controller by transferring

back to the original coordinate. (See [146].)

Thus, based on the literature of large-scale system, we know sharing infor-

mation might be required to stabilize a large-scale system. On the other hand,

based on our knowledge about distributed consensus in multiagent systems, we

note that a large-scale system can be stabilized by cooperatively sharing agents’

information in some neighborhoods (e.g., see the agreement on zero in a physically

decoupled multiagent systems of Section 3.2). Thus, we propose the stabilization

of large-scale systems as another team-based objective that could exist in Sec-

tion 1.1. Here, the neighboring sets can be defined in different manners. Based on

the literature of network design, they can be found based on some optimization

criteria (see Section 1.3). However, using the literature of large-scale systems, a

minimum number of communications (and their locations) can be established to

deal with decentralized or quotient fixed modes of the system. Also, based on the

literature of multiagent system, we impose some connectedness requirements on

the communication graph topology2.

2Finding fixed modes of a large-scale system can be a tedious task. Thus, we follow a
multiagent systems viewpoint to define the communication graphs in Chapters 4 and 5. Also,
by imposing a connectedness requirement, we will be able to stabilize both linear time invariant
and Lur’e nonlinear time-varying interconnected multiagent systems using LQR-based linear
time-invariant (static feedback) controllers.
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Figure 5.1: The main existing control approaches in the literature of large-s-
cale systems: Top) centralized, and Bottom) decentralized controls. The let-
ters ss and c respectively stand for subsystem and controller. Subsystems are
numbered from 1 to 5, and controllers are specified by the subscript c which
represents centralized, and di where d denotes decentralized and i ∈ {1, 2, ..., 5}
specifies the controller’s number. The blue circles indicate subsystems, and blue
arrows show the physical coupling between them. The black circles indicate
the control systems, and dashed red lines represent the subsystem-controller
communication which, in the decentralized scenario, is implemented at the cor-
responding subsystem’s location.
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Having this background knowledge, we use our graph-theoretic modeling ideas,

and rewrite the elements of state space matrices in (5.1) as follows:

A′ = A+ |N a
i |A0, Ac,ij = −aaijA0

B′ = Bm + |N a
i |B0, Bc,ij = −aaijB0

C ′ = C + |N a
i |C0, Cc,ij = −aaijC0

where |N a
i | denotes the in-degree of ith subsystem, and aaij represents (i, j)th com-

ponent of the adjacency matrix over an agent-layer coupling graph Ga; A,A0 ∈

Rnx×nx , Bm, B0 ∈ Rnx×nu , and C,C0 ∈ Rny×nx . Note that there exists a freedom in

choosing aaij ∈ {0, 1}. When all aaij = 1 for i, j ∈ {1, 2, ..., N}, we can convert it to

a complete undirected graph which is equal to all-to-all physical couplings in (5.1).

This new graph-theoretic formulation realizes a class of multiagent systems

where agents, individually, are modeled by homogeneous linear time-invariant

dynamics; and, cooperatively, are subjected to homogeneous state, input, and

output linear interconnections over an agent-layer coupling graph Ga:

ẋi = Axi + A0

∑
j∈Nai

(xi − xj) +Bmui +B0

∑
j∈Nai

(ui − uj)

yi = Cxi + C0

∑
j∈Nai

(xi − xj)
(5.2)

In the rest of this chapter and also in Chapter 5, inspired by this discussion,

we introduce different types of the physically coupled multiagent system (5.2),

propose a (global) stabilization problem, reformulate it as leaderless and leader-

follower consensus tasks, and show this objective can be systematically guaranteed

based on appropriate linear quadratic regulator formulations using some relative
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measurements. In fact, we consider two different scenarios that are indirectly

related to the availability of local measurements:

1. Without interconnections, agents can be described by some stable dynamics.

However, the instability may arise due to the physical coupling terms. For

example, in (5.2), A is Hurwitz but A0

∑
j∈Nai

(xi−xj) and B0

∑
j∈Nai

(ui−uj)

can result in an unstable behavior. Thus, we need to design a distributed de-

coupling control system to cancel the de-stabilization effects of the coupling

terms on each agent, and globally stabilize the physically coupled multiagent

system using some relative measurements in each neighborhood.

2. Without interconnections, agents’ dynamics are unstable. In this case, the

control system should deal with both local and global (interconnected) un-

stable behavior of a physically coupled multiagent system. We call it a

distributed stabilization problem which includes the distributed decoupling

as a special case.

By further thinking about the required measurements for an (locally and glob-

ally) unstable multiagent system, we prove that the distributed stabilization prob-

lem can be solved whenever at least one agent provides its absolute measurement

to the distributed stabilization system (this will be discussed in Chapter 5). As

a special case, when all agents provide their absolute measurements, we locally

stabilize agents using them, and design a distributed decoupling system based on

some relative measurements.

We can also think about the structure of controllers based on the required

information. For clarity, we do it through an example.
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Example 5.1.1. Assume there is a large scale system with four subsystems. Then,

the structure of static feedback centralized and decentralized controllers can be

described by the following matrices:

Kc =



1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


, Kd =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, Ksc =



1 0 0 1

0 1 0 0

1 0 1 0

0 0 0 1


where, based on the literature of large-scale systems, each entry 1 indicates the

presence of the jth subsystem’s absolute measurement in the ith subsystem’s con-

trol signal for i, j ∈ {1, 2, 3, 4}. The subscripts c, d, and sc respectively denote

centralized, decentralized, and structurally constrained (to control fixed modes of

a large-scale system). In the distributed approaches of this chapter, based on the

notation of graph theory, we show the available information’s structure using ad-

jacency matrix:

Add =



1 1 0 0

1 1 1 0

0 1 1 1

0 0 1 1


, Ads =



1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0


where the off diagonal terms indicate the presence of relative information between

corresponding agents, and diagonal terms represent self-loops3. The subscripts dd

3Each self-loop indicates an agent is a neighbor of itself. Based on the preliminary discussed
in Section 2.2, we need to avoid this situation in our graph-theoretic designs. In the rest of
this dissertation, we address self loops by proposing a hierarchical framework in distributed
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and ds stand for distributed decoupling and distributed stabilization, respectively.

Looking at these structures, it is clear that the distributed decoupling system has

access to all information that are required to design a decentralized control system4.

However, this is not true about the distributed stabilization system. At the same

time, compared to a centralized controller, both of these distributed algorithms can

be designed with a set of fewer measurements.

5.2 Distributed decoupling of linear multiagent

systems with state and output couplings

In this section, we investigate our distributed decoupling control ideas for a

group of interconnected parameter-dependent agents.

5.2.1 Problem statement

We consider the following heterogeneous parameter-dependent model of a

physically coupled multiagent system:

ẋi(t) = A(θi(t))xi(t) +B(θi(t))ui(t) + F (θi(t))
∑

j∈Ni(xi(t)− xj(t))

yi(t) = Cxi + C0

∑
j∈Ni(xi(t)− xj(t))

(5.3)

decoupling problem, or adding a virtual leader in distributed stabilization problem.

4In this example, the same thing happens with the structurally constrained controller Ksc,
however it is not required. Also, in Ksc, the communication is disconnected and the shared
information is an absolute measurement.
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where, compared to the linear time-invariant model (5.2), we have changed: A←

A(θi), Bm ← B(θi), and A0 ← F (θi). Here, i ∈ {1, 2, ..., N} denotes the agent’s

number; xi ∈ Rnx represents the ith agent’s state variable deviation and ui ∈ Rnu

indicates the control input deviation from an operating point5; A ∈ Rnx×nx stands

for the state matrix, B ∈ Rnx×nu represents the input gain matrix, F ∈ Rnx×nx

denotes the state-coupling matrix, and C ∈ Rny×nx gives the output gain matrix.

In this state space realization, A(θi(t)), B(θi(t)), and F (θi(t)) are functions of

an independent time-varying parameter θi(t) that can uniquely characterize the

ith agent’s operating condition. For m ∈ {0, 1}, these matrices are modeled by

A(θi(t)) = A0 + A1θi(t) where Am ∈ Rnx×nx , B(θi(t)) = B0 + B1θi(t) where

Bm ∈ Rnx×nu , and F (θi(t)) = F0 + F1θi(t) where Fm ∈ Rnx×nx . The matrices C

and C0 model a set of sensors, and are independent of θi(t). Furthermore, the

following assumptions are satisfied:

Assumption 5.2.1. For i ∈ {1, 2, ..., N}, the unknown independent parameters

θi(t) satisfy θi ∈ [θm, θM ] with a known lower-bound θm and a known upper-bound

θM . Also, Am, Bm, C, and C0 are some known matrices for m ∈ {0, 1}.

Assumption 5.2.2. The fixed graph G is known and connected.

Remark 5.2.1. As a result of Assumption 5.2.1, a group of agents (5.3) repre-

sents a “partially-unknown” heterogeneous interconnected multiagent system where

both agent-level matrices A(θi) and B(θi) with known Am and Bm, and multiagent

system-level interconnection matrix F (θi) with a known Fm vary in time depending

5These deviation variables are defined as difference variables xi = xacti − xopti and ui =
uacti − u

opt
i where (xacti , uacti ) denotes the actual value and (xopti , uopti ) represents the value at a

given operating point.
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on the ith agent’s unknown parameters θi. The term F (θi)
∑

j∈Ni(xi−xj) indicates

a physical state coupling, and
∑

j∈Ni(yi−yj) = C0

∑
j∈Ni(xi−xj) represents either

a physical output coupling or a lumped relative-output measurement for ith agent.

While we assume completely known C and C0, the results of this section can be

modified to include parameter-dependent version of these output gain matrices.

We consider a hierarchical control structure for uncertain interconnected mul-

tiagent system (5.3) where a lower-level controller stabilizes the decoupled residual

agents using local output measurements Cxi (or a lookup-table-based scheduling

system enforces agents to operate at a desired operating point). The residual

dynamics are given by:

ẋi = A?xi +B?ui (5.4)

where A? and B? are two constant matrices to be determined using our partial

knowledge about the operating point-dependent uncertainties. Then, a higher-

level controller decouples agents using only coupled-state or -output measure-

ments.

We only focus on designing the higher-level decoupling system, and skip the

lower-level local control system by proposing an assumption on stability of the

residual system (5.4) (note that the local controller can be designed using any

static feedback control techniques for a single agent). The following assumption

holds true in the rest of this section:

Assumption 5.2.3. a) The matrix A? is Hurwitz, b) the pair (A?, B?) is control-

lable, and c) the pair (C0, A?) is observable.
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Remark 5.2.2. Note that the assumption on having a Hurwitz A? is made with-

out loss of generality. Whenever this condition is not satisfied, we can take the

local control design procedure into account and introduce ẋi = Alcxi+B?ui instead

of (5.4). Here, Alc = A? + B?Kl is (by design) a Hurwitz matrix that has been

obtained by locally closing a static feedback loop around each residual system us-

ing a local control gain Kl. Then, we also rewrite Assumption 5.2.3 based on a

controllable (Alc, B?) and an observable (C0, Alc). Since the results of this section

are based on the “properties” of a Hurwitz matrix A?, they will remain valid by

switching to another Hurwitz matrix Alc.

Based on these discussion and assumption, from this point, we consider the

following model for the (higher-level) decoupling control design purpose:

ẋi(t) = A(θi(t))xi(t) +B(θi(t))ui(t) + F (θi(t))
∑

j∈Ni(xi(t)− xj(t))

yi(t) = C0

∑
j∈Ni(xi(t)− xj(t))

(5.5)

where we mention that, using some coupled measurements (relative-output mea-

surements), the control objective is exponentially mitigating the effect of agents’

partially-known state-couplings such that a multiagent system of agents (5.5) be-

haves as a multiagent system of N decoupled agents (5.4). Since, by definition, xi

and ui are some deviation variables; from each (locally stabilized) interconnected

agent’s point of view, the effect of interconnections are damped whenever (5.6) is

guaranteed for all i ∈ {1, 2, ..., N}:

lim
t→∞

xi(t) = 0 (5.6)
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An immediate idea is designing a centralized decoupling control scheme that

uses the information about all agents. However, as discussed earlier, we are in-

terested in “distributed” algorithms where this objective can be achieved using

some coupled (relative) measurements in each neighborhood. Thus, we propose

the following distributed decoupling problems:

Problem 5.2.1. (State feedback decoupling) Design a distributed decoupling con-

trol algorithm that solves (5.6) based on coupled-state measurements in (5.5) with

C0 = Inx.

Problem 5.2.2. (Output feedback decoupling) Address Problem 5.2.1 using the

coupled-output measurements in (5.5).

Now, we reformulate (5.6) as a leaderless consensus task:

lim
t→∞

(xi(t)− xj(t)) = 0 (5.7)

where we need to ensure an agreement on zero by designing a state-agreement pro-

tocol for heterogeneous agents in (5.5). This objective should be achieved in the

presence of operating point-dependent (time-varying) physical interconnections

and under any initial conditions. Note that, in general, as found in Chapter 3,

consensus protocols just guarantee an agreement that depends on the initial con-

ditions of agents.

Before proposing any decoupling control systems that address Problems 5.2.1

and 5.2.1, we use our partial knowledge about varying operating points of agents,

and find A? and B?. Let θi(t) be rewritten as follows:
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θi(t) = θ̄ + pθδi(t) (5.8)

with
θ̄ =

θM + θm
2

, pθ =
θM − θm

2
, |δi(t)| ≤ 1

where θ̄ and pθ are two known constant scalars, and δi(t) are unknown scalar

variables for i ∈ {1, 2, ..., N}. As a result, we find:

ẋi = Aavgxi +Bavgui + Favg
∑

j∈Ni(xi − xj)

+Aδδixi +Bδδiui + Fδδi
∑

j∈Ni(xi − xj)
(5.9)

where

Aavg = A(θ̄) = A0 + A1θ̄ Bavg = B(θ̄) = B0 +B1θ̄ Favg = F (θ̄) = F0 + F1θ̄

Aδ = A(pθ) = A1pθ Bδ = B(pθ) = B1pθ Fδ = F (pθ) = F1pθ

Referring to Assumption 5.2.3, we emphasize that Aavg =: A? and Bavg =: B?

represent a controllable pair (Aavg, Bavg) and an observable pair (Aavg, C0) (this

is valid in its general sense, including C0 = Inx), and Aavg is Hurwitz. (Also, see

Remark 5.2.2.) Now we are ready to discuss the main results of this section.

5.2.2 Leaderless consensus-based decoupling: main results

5.2.2.1 State Feedback Distributed Decoupling

In this subsection, we address Problem 5.2.1 using some coupled (relative-)

state measurements. In this subsection, we further consider a structural assump-

tion Favg = BavgGavg on agent’s dynamics. Thus, we find:

ẋi = Aavgxi +Bavg(ui +Gavg

∑
j∈Ni(xi − xj))

+Aδδixi +Bδδiui + Fδδi
∑

j∈Ni(xi − xj)
(5.10)

and, furthermore, propose the distributed decoupling signal:
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ui = Kcyi = Kc

∑
j∈Ni

(xi − xj) (5.11)

where Kc ∈ Rnu×nx denotes a static distributed decoupling gain. Now, the aggre-

gated multiagent system’s dynamics over G are given by:

ẋ = ((IN ⊗ Aavg) + (L ⊗BavgGavg))x+ (IN ⊗Bavg)u

+((∆⊗ Aδ) + (∆L ⊗ Fδ))x+ (∆⊗Bδ)u
(5.12)

where ∆ = diag{δi} and u = (L ⊗ Kc)x. Therefore, the closed-loop multiagent

system dynamics are written as follows:

ẋ(t) = Ãcx(t)︸ ︷︷ ︸
Closed-loop nominal dynamics

+ Ã∆(t)x(t)︸ ︷︷ ︸
Closed-loop modeling uncertainty

(5.13)

where Ãc = ((IN ⊗Aavg) + (L⊗Bavg(Gavg +Kc))), Ã∆(t) = (∆(t)⊗ Inx)ÃN , and

ÃN = (IN⊗Aδ)+(L⊗(Fδ+BδKc)). We rewrite the closed-loop nominal dynamics

as follows (We distinguish the effect of uncertainty on the closed-loop multiagent

system by using closed-loop “nominal dynamics” and “modeling uncertainty.”):

ẋ = (IN ⊗ Aavg)x+ (IN ⊗Bavg)u+ (L ⊗BavgGavg)x (5.14)

with the aggregated decoupling control (consensus) signal u = (L ⊗ Kc)x that

should be designed. Here, u is a coupled signal of all agents’ control signals ui due

to the presence of L. We decomposing it to a coupled part u = (L ⊗ Inu)ν and a

decoupled part ν = (IN ⊗Kc)x, and pass the coupled component to the dynamics

of multiagent system: ẋ = (IN ⊗ Aavg)x + (L ⊗ Bavg)ν + (L ⊗ BavgGavg)x. Now,

using a transformation matrix T as defined in Fact 2.2.1, we find:

ẋT = (IN ⊗ Aavg)xT + (Λ⊗Bavg)νT + (Λ⊗BavgGavg)xT (5.15)
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where xT = (T−1 ⊗ Inx)x, νT = (T−1 ⊗ Inu)ν, and T and Λ , diag{[0,Λd]} with

Λd , diag{[λ2, ..., λN ]}. (We can find νT = (IN ⊗ Kc)xT .) Hence, we have the

following partitioned representation:

ẋTa
ẋTd

 =

Aavg 0

0 Āavg


xTa
xTd

 +

0 0

0 Λd ⊗Bavg


νTa
νTd


+

0 0

0 Λd ⊗BavgGavg


xTa
xTd


(5.16)

where Āavg = IN−1 ⊗ Aavg; xTa = xT1 ∈ Rnx and νTa = νT1 ∈ Rnu respectively

denote state variable and control input of the agreement dynamics, and xTd =

col{xT i} ∈ R(N−1)nx and νTd = col{νT i} ∈ R(N−1)nu respectively stand for state

variable and control input of the disagreement dynamics6 for i ∈ {2, 3, ..., N}.

Note that νTd = (IN−1 ⊗Kc)xTd.

This representation gives uncontrollable agreement dynamics:

ẋTa = AavgxTa

and controllable disagreement dynamics:

ẋTd = ĀavgxTd + (Λd ⊗Bavg)νTd + (Λd ⊗BavgGavg)xTd

In order to design a consensus gain Kc (or distributed decoupling control gain),

we rewrite the disagreement dynamics as follows:

ẋTd = ĀavgxTd + B̄avgνTd︸ ︷︷ ︸
Network-level nominal dynamics

+ B̄avg(ĒνTd + ḠavgxTd)︸ ︷︷ ︸
Network-level modeling uncertainty

(5.17)

6See the footnote at page 67 for a discussion on agreement and disagreement dynamics.
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where B̄avg = IN−1 ⊗ λ2Bavg, Ē = ĒT = ((Λd
λ2
− IN−1) ⊗ Inu) < 0, and Ḡavg =

Λd
λ2
⊗ Gavg. Note that, although Λd is completely known, we consider it as a

fictitious source of modeling uncertainties in order to find a homogeneous network-

level nominal model for all agents (with heterogeneous modeling uncertainties),

and find a “single” decoupling gain Kc that works for all agents7. Similarly, we

consider the known Ḡavg as another fictitious source of modeling uncertainties to

find known homogeneous network-level nominal dynamics.

Now, we propose the network-level shifted dynamics:

ẋTd = ĀγxTd + B̄avgνTd︸ ︷︷ ︸
Network-level shifted nominal dyn

+ B̄avg(ĒνTd + ḠavgxTd)︸ ︷︷ ︸
Network-level modeling uncertainty

(5.18)

where Āγ = IN ⊗Aγ, Aγ = Aavg + γInx , and γ ≥ 0 is a design parameter. Before

designing a consensus gain Kc, let Ps be the solution of an algebraic Riccati

equation (ARE):

ATγPs + PsAγ +Qs − λ2
2PsBavgR

−1BT
avgPs = 0 (5.19)

where Qs = Q + Rx, Rx =
λ2N
λ22
GT
avgRGavg, and Q = QT � 0 and R = RT �

0 are two design matrices. Since the pair (Aγ, Bavg) is controllable due to the

controllability of (Aavg, Bavg)
8, existence of the stabilizing Ps is guaranteed for

7See Remark 3.1.2 at page 70 about the network-level modeling uncertainty. Also, note that
the known Λd acts as a source of heterogeneity, thus we pass Gavg to the uncertain (unwanted)
part of (5.17).

8Based on the controllability Definition 2.3.2 at page 48, a pair (Aγ , Bavg) is controllable if
and only if there exist no nonzero complex vector z and scalar λγ such that both z∗Aγ = λγz

∗

and z∗Bavg = 0 are simultaneously satisfied. Substituting Aγ by Aavg + γInx
, we need to

check whether a nonzero z and a λ exist to satisfy z∗Aavg = λz∗ and z∗Bavg = 0 or not (here,
λ = λγ − γ). This is in fact the controllability condition of a pair (Aavg, Bavg).
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any observable pairs (Q
1
2
s , A) where we have used Qs = Q

1
2
T

s Q
1
2
s . Furthermore, let

σc ,
√
|λmax(ÃTN ÃN)| where ÃN is defined in (5.13).

Using these preliminary derivations, we now propose a systematic approach

to design a Kc that ensures distributed decoupling in a multiagent system of

partially-unknown heterogeneous interconnected agents (5.10).

Theorem 5.2.1. Let νT i = KcxT i = −λ2R
−1BT

avgPsxT i be the control signal that

achieves the minimum of a linear quadratic regulatory cost function (5.20) subject

to the networked agent dynamics (5.21) for i ∈ {2, ..., N}9. Then, the leaderless

consensus problem (5.7) is solved for the multiagent system dynamics (5.14) with a

state-agreement on zero. If there exist αc and βc such that the inequality σc <
βc
αc

is satisfied for ‖eÃct‖ ≤ αce
−βct, then the state feedback distributed decoupling

problem 5.2.1 is also solved for a partially-unknown interconnect multiagent system

of agents (5.10).

Ji(xT i(0)) = min
νTi

∫ ∞
0

(xTT iQsxT i + νTTiRνT i)dt (5.20)

ẋT i = AγxT i + λ2BavgνT i (5.21)

Proof. This proof is given at Subsection 5.5.1.

Note that the design parameter γ can be used either as a degree of freedom in

order to find a Kc that satisfies the exponential decoupling condition σc <
βc
αc

or

as a tuning parameter to adjust the convergence rate. Note that Theorem 5.2.1

9Due to the presence of λ2, we use the word “networked” in order to distinguish this system
from the single agent dynamics.

174



addresses a scenario based on heterogeneous θi(t) while the formulation of Sec-

tion 3.2 was only able to deal with a homogeneous θ(t) for all agents.

5.2.2.2 Observer-Based Output Feedback Distributed Decoupling

In this subsection, we address Problem 5.2.2 using some coupled-output mea-

surements (or relative-output measurements). We still use our partial-knowledge

about the operating point parameter, as given by (5.8), and find a similar re-

sult to (5.9) without any restrictions on Favg. We propose a dynamic distributed

decoupling system:
ui = Kcŷi (5.22)

where ŷi is the estimated output of multiagent system (5.5), and is found by a

state- and output-coupled Luenberger observer:

˙̂xi = Aavgx̂i +Bavgui + Favg
∑

j∈Ni(x̂i − x̂j) +Ko(yi − ŷi)

ŷi = C0

∑
j∈Ni(x̂i − x̂j)

where Ko ∈ Rnx×ny indicates the observer gain. We define ei , xi − x̂i as the

observer error and, substituting ui by (5.22), we find:

ėi = Aavgei + (Favg −KoC0)
∑

j∈Ni(ei − ej) + Aδδixi

+ (Fδ +BδKc)δi
∑

j∈Ni(xi − xj)−BδKcδi
∑

j∈Ni(ei − ej)

ẋi = Aavgxi + (Favg +BavgKc)
∑

j∈Ni(xi − xj)−BavgKc

∑
j∈Ni(ei − ej)

+ Aδδixi + (Fδ +BδKc)δi
∑

j∈Ni(xi − xj)−BδKcδi
∑

j∈Ni(ei − ej)

Now, we define ξ = [xT , eT ]T and find the aggregated system dynamics over G:

ξ̇(t) = Ãcξ(t)︸ ︷︷ ︸
Closed-loop nominal dynamics

+ Ã∆(t)ξ(t)︸ ︷︷ ︸
Closed-loop modeling uncertainty

(5.23)
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Ãc =

Ãc11 Ãc12

0 Ãc22

 , Ãc11 = (IN ⊗ Aavg) + (L ⊗ (Favg +BavgKc))

Ãc12 = −(L ⊗BavgKc), Ãc22 = (IN ⊗ Aavg + (L ⊗ (Favg −KoC0)))

Ã∆ =

∆(t)⊗ Inx 0

0 ∆(t)⊗ Inx

 ÃN , ÃN =

ÃN11 ÃN12

ÃN21 ÃN22


ÃN11 = (IN ⊗ Aδ) + (L ⊗ (Fδ +BδKc)), ÃN12 = −(L ⊗BδKc)

ÃN21 = ÃN11, ÃN22 = ÃN12

In the rest, based on the principle of separation Lemma 2.3.2, we design a

control gain Kc and an observer gain Ko for the decoupled nominal multiagent

system’s dynamics ξ̇ = Ãcξ; and, later, we establish a sufficient condition in order

to address the output feedback decoupling Problem 5.2.2. Based on the Fact 2.2.1,

we define xT = (T−1 ⊗ Inx)x and eT = (T−1 ⊗ Inx)e, and rewrite the closed-loop

nominal dynamics of (5.23) as follows:

ẋT = ((IN ⊗ Aavg) + (Λ⊗ (Favg +BavgKc)))xT − (Λ⊗BavgKc)eT (5.24)

ėT = (IN ⊗ Aavg + (Λ⊗ (Favg −KoC0)))eT (5.25)

or in the following partitioned form:

ξ̇TTx
ξ̇TTe

 =



Ã11
c 0 0 0

0 Ã22
c 0 Ã24

c

0 0 Ã33
c 0

0 0 0 Ã44
c


ξTTx
ξTTe

 (5.26)

176



Ã11
c = Aavg Ã22

c = (IN−1 ⊗ Aavg) + (Λd ⊗ (Favg +BavgKc))

Ã24
c = −(Λd ⊗BavgKc) Ã33

c = Aavg

Ã44
c = (IN−1 ⊗ Aavg) + (Λd ⊗ (Favg −KoC0))

Note that we have partitioned ξT = [ξTTx|ξTTe]T = [xTTa, x
T
Td|eTTa, eTTd]T where the

subscripts a and d respectively stand for agreement and disagreement. There exists

a row permutation matrix P such that the transformation ξP = PξT results in:

ξ̇a
ξ̇d

 =



Ã11
c 0 0 0

0 Ã33
c 0 0

0 0 Ã22
c Ã24

c

0 0 0 Ã44
c


ξa
ξd

 (5.27)

where ξP = [ξTa |ξTd ]T = [xTTa, e
T
Ta|xTTd, eTTd]T , and we have the following partitions:

ξ̇a =

Ã11
c 0

0 Ã33
c

 ξa
︸ ︷︷ ︸

Unobservable agreement dynamics

ξ̇d =

Ã22
c Ã24

c

0 Ã44
c

 ξd
︸ ︷︷ ︸

Observable disagreement dynamics

We limit the design of our observer-based strategy to the second (observable)

partition. Since all Ã22
c , Ã24

c , and Ã44
c are block-diagonal matrices, we find the

following networked agent dynamics for i ∈ {2, 3, ..., N}:

ẋT i = (Aavg + λi(Favg +BavgKc))xT i − λiBavgKceT i (5.28)

and networked observer error dynamics:

ėT i = (Aavg + λi(Favg −KoCavg))eT i (5.29)

At this point, We find a control-gain Kc such that νT i = KcxT i stabilize (5.30):

177



ẋT i = (Aavg + λiFavg)xT i + λiBavgνT i (5.30)

and design an observer-gain Ko to be used in (Luenberger) observers (5.31) for

i ∈ {2, 3, ..., N}:
ẋT i = (Aavg + λiFavg)xT i

yT i = λiC0xT i

(5.31)

We first rewrite (5.30) as follows:

ẋT i = AavgxT i + λ2BavgνT i + λ2Bavg(
λi
λ2

− 1)νTi + λiFavgxT i

and aggregate them for i ∈ {2, 3, ..., N}:

ẋTd = ĀavgxTd + B̄avgνTd︸ ︷︷ ︸
Network-level nominal dynamics

+ B̄avgĒνTd + F̄avgxTd︸ ︷︷ ︸
Network-level modeling uncertainty

(5.32)

where Āavg, B̄avg, and Ē are defined as in (5.17); and F̄avg = (Λd ⊗ Favg). We

introduce the following shifted dynamics:

ẋTd = ĀγcxTd + B̄avgνTd︸ ︷︷ ︸
Network-level shifted nominal dyn

+ B̄avgĒνTd + F̄avgxTd︸ ︷︷ ︸
Network-level modeling uncertainty

(5.33)

where Āγc = IN−1⊗Aγc , Aγc = Aavg +γcInx , and the non-negative scalar γc ≥ 0 is

a design parameter. Let F̄avg = F̄τ Λ̄d where F̄τ = IN−1⊗Favg and Λ̄d = Λd⊗ Inx .

Now, we propose the following auxiliary multiagent system model:

ẋTd = ĀγcxTd + B̄avgνTd + F̄ττ (5.34)

where the fictitious control signal τ = col{τi}, for i ∈ {2, 3, ..., N}, is added

to handle the fictitious modeling uncertainty Λ̄dxTd. We should mention that

the numbering of τ matches the numbering of xTd (or νTd), and, in fact, τ1

does not exist. Also, using Rayleigh-Ritz inequality Lemma 2.1.1 and proper-
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ties of the Kronecker product in Section 2.1, we find the quadratic upper bound

xTTdΛ̄dW̄cΛ̄dxTd ≤ xTTd(λ
2
NW̄c)xTd on Λ̄dxTd where W̄c = IN−1 ⊗ Wc, and Wc =

W T
c � 0 is a design matrix.

As another preliminary definition for this section, let Pc denote the solution

of the following ARE:

ATγcPc + PcAγc +Qc − PcBc

R−1
c 0

0 W−1
c

BT
c Pc = 0 (5.35)

where Bc =

[
λ2Bavg Favg

]
, Qc = Q + λ2

NWc, and Q = QT � 0, Rc = RT
c � 0

are two design matrices. (Existence of the stabilizing Pc can be discussed similar

to the ARE (5.19) in Subsection 5.2.2.1.)

Next theorem characterizes the required conditions to systematically find a

control-gain Kc (for all agents).

Theorem 5.2.2. Let νT i = KcxT i = −λ2R
−1
c BT

avgPcxT i and τi = HcxT i =

−W−1
c F T

avgPcxT i respectively be the control signal and fictitious control signal that

results in the minimum of a cost function (5.36) subject to the auxiliary agent

dynamics (5.37) for i ∈ {2, ..., N}. Then, the aggregated agents in (5.24) reach a

state-agreement if (5.38) is satisfied.

Ji(xT i(0)) = min
νTi,τi

∫ ∞
0

(xTT iQcxT i + νTT iRcνT i + τTi Wcτi)dt (5.36)

ẋT i = AγcxT i + λ2BavgνT i + Favgτi (5.37)

Q+KT
c RcKc − 2HT

c WcHc � 0 (5.38)
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Proof. This proof is given at Subsection 5.5.2.

Now that we have designed a control gain, we start designing an observer gain.

We introduce:

ẋT i = (Aγo + λiFavg)xT i and yT i = λiC0xT i

as the shifted dynamics of (5.31), where Aγo = Aavg+γoInx , and γo ≥ 0 is a design

parameter. We further propose the following Luenberger observer dynamics:

˙̂xT i = (Aγo + λiFavg)x̂T i +Ko(yT i − ŷT i)

ŷT i = λiC0x̂T i

(5.39)

Also, let Po be the solution of ARE:

AγoPo + PoA
T
γo +Qo − PoBT

o

R−1
o 0

0 W−1
o

BoPo = 0 (5.40)

where Bo = [λ2C
T
0 , F

T
avg]

T , Qo = Q+ λ2
NWo, and Q = QT � 0 and Wo = W T

o � 0

are two design matrices (The discussion on existence of the stabilizing solution Po

is similar to that of ARE (5.19)).

In the next theorem, we characterize a systematic (LQR-based) procedure to

design an observer-gain Ko.

Theorem 5.2.3. Let ωT i = KT
o xT i = −λ2R

−1
o C0PoxT i be the control signal and

ηi = HT
o xT i = −W−1

c FavgPoxT i be the fictitious control signal that achieves the

minimum of a cost function (5.41) subject to (5.42) such that the condition (5.43)
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is satisfied for i ∈ {2, ..., N}. Then, the required observer gain Ko for the consen-

sus purpose is found.

Ji(xT i(0)) = min
νTi,τi

∫ ∞
0

(xTT iQoxT i + ωTT iRoωT i + ηTi Woηi)dt (5.41)

ẋT i = ATγoxT i + λ2C
T
0 νT i + F T

avgηi (5.42)

Q+KoRoK
T
o − 2HoWoH

T
o � 0 (5.43)

Proof. A sketch of the proof is provided at Subsection 5.5.3.

Based on the results of Theorems 5.2.2 and 5.2.3, we propose Lemma 5.2.1 in

order to address Problem 5.2.2. In this Lemma, σc ,
√
|λmax(ÃTN ÃN)| where ÃN

is defined in (5.23).

Lemma 5.2.1. Using Kc of Theorem 5.2.2 and Ko of Theorem 5.2.3, the closed-

loop nominal dynamics in (5.23) reach an agreement on zero. Furthermore, Prob-

lem 5.2.2 is solved if there exist positive scalars αc and βc such that ‖eÃct‖ ≤ αce
βct

and σc <
βc
αc

are satisfied.

Proof : This proof follows Steps 2 and 3 of Theorem 5.2.1 for an output feed-

back problem.
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5.3 Distributed decoupling of linear multiagent

systems with state-coupled nonlinearities

In this section, we propose two distributed decoupling control algorithms for a

group of Lur’e nonlinear multiagent systems with (multiagent system-level) non-

linear coupling terms.

5.3.1 Problem statement

We already have discussed that a (conventional consensus-based) distributed

controller, which is designed based on the decoupled nominal linear models of

agents, does not necessarily guarantee the stabilization of entire multiagent sys-

tem in the presence of modeling uncertainties or interconnections of agents. At

the beginning of this chapter, we modeled a linear time-invariant large-scale sys-

tem using graph-theoretic ideas (see (5.2)), and named it an interconnected or a

physically coupled multiagent system. Based on a hierarchical framework, in Sec-

tion 5.2, we designed two graph-theoretic ideas to systematically find distributed

decoupling systems. In this section, we propose a Lur’e nonlinear version of phys-

ically coupled multiagent system:

ẋi = Axi +Bmui + wi(xi,N a
i ) (5.44)

where, now, the effect of physical couplings appear through an (partially-) un-

known nonlinearities wi which are functions of state variables xi in neighborhoods

N a
i over an agent-layer graph Ga. In this section, we assume that the coupling
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structure is completely known, and the communication happens over the same

topology. Thus, we consider a single graph Ga with neighboring sets Ni.

We focus on two scenarios: 1) the nonlinearity wi is in the range space of

the input matrix Bm, we write wi = Bmφi, and call φi a matched nonlinearity or

nonlinear modeling uncertainty; and 2) this wi is not in the range space of Bm, we

write is as wi = Buψi, and name ψi an unmatched nonlinearity (Bu is not in the

range of Bm). Note that we have introduced Bu without loss of generality as it can

be the identity matrix which results in ψi = wi. We are interested in modifying our

state-feedback distributed control ideas in Subsection 5.2, systematically find new

static state feedback linear time-invariant algorithms which use relative-state mea-

surements agents’ neighborhoods, and decouple physically (state) coupled Lur’e

nonlinear multiagent systems10. We emphasize that, although each model includes

a homogeneous linear part, we deal with a class of heterogeneous nonlinear mul-

tiagent systems due to the presence of a set of heterogeneous nonlinearities wi.

The following definitions are used in this section:

Definition 5.3.1. For a vector x = [x1, x2, ..., xn]T ∈ Rn, an entry-wise absolute-

value is defined to be |x| = [|x1|, |x2|, .., |xn|]T where |xi| indicates the absolute-

value of xi ∈ R for i ∈ {1, 2, ..., n}.

Definition 5.3.2. For any vectors x and y ∈ Rn, we define the inequality |x| ≤

|y| ⇔ |xi| ≤ |yi| ∀ i ∈ {1, 2, ..., n}.
10For simplicity, we confine this section to time-invariant nonlinear scenarios. However, the

same results are valid for time-varying nonlinearities (assuming piecewise continuous time-
dependency). This fact will be clarified in Chapter 6.
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5.3.1.1 Lur’e multiagent systems with matched nonlinear interconnec-

tion

We rewrite (5.44) as a multiagent system with homogeneous linear dynamics

and matched heterogeneous nonlinear interconnections over an undirected graph

G (we refer to (5.45) as the ith follower’s dynamics):

ẋi = Axi +Bm(ui + φi(zi))

zi = Cz
∑

j∈Ni(xi − xj)
(5.45)

where xi ∈ Rnx stands for the state deviation from the operating-point and ui ∈

Rnu indicates the control input deviation from the operating-point; and A ∈

Rnx×nx and Bm ∈ Rnx×nu . Also, zi ∈ Rnu denotes the input to the ith follower’s

nonlinearity φi ∈ Rnu , and Cz ∈ Rnu×nx indicates the coupling matrix.

Assumption 5.3.1. The nonlinear functions φi(zi) : Rnu → Rnu ∀ i ∈ {1, ..., N}

satisfy the followings:

1. Each function φi(zi) is composed by separate nonlinearities:

φi(zi) , col{φim(zim)}

in which φim(zim) : R→ R and zi = col{zim} for m = {1, 2, ..., nu}.

2. Each separate nonlinearity φim(zi) satisfies a sector condition:

−γim|zim| ≤ φim(zim) ≤ γim|zim|

where γim ≥ 0 such that −Γui|zi| ≤ φi(zi; t) ≤ Γui|zi| where Γui = diag{γim}.
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Remark 5.3.1. The Assumption 5.3.1 will be specifically used in this section.

However, we further need to assume that the nonlinearities φi satisfy the Lips-

chitz condition. While we do not use the Lipschitz inequality (2.7) in derivations

of equations, it is inherently required to prove the results based the statement of

Lyapunov Theorem 2.3.1.

5.3.1.2 Lur’e multiagent systems with unmatched nonlinear intercon-

nection

In this scenario, we introduce the (follower) agents’ dynamics with unmatched

heterogeneous nonlinear interconnections:

ẋi = Axi +Bmui +Buψi(yi)

yi = Cy
∑

j∈Ni(xi − xj)
(5.46)

where Bu ∈ Rnx×nψ and Cy ∈ Rnψ×nx ; and yi ∈ Rnψ and ψi(yi) ∈ Rnψ .

Assumption 5.3.2. The nonlinear functions ψi(yi) : Rnψ → Rnψ ∀ i ∈ {1, ..., N}

satisfy similar conditions to the Assumption 5.3.1 substituting φi by ψi, nu by nψ,

and Γui by Γψi (also see Remark 5.3.1).

5.3.1.3 Leader-Follower Consensus Formulation

Briefly, we want to design a (distributed) decoupling controller in order to ex-

ponentially mitigate the effect of interconnected unknown nonlinearities in (5.45)

or (5.46) such that they behave as a group of N decoupled agents11:

11Here, we exactly know these nominal dynamics. Thus, compared to the results of Section 5.2,
these residual dynamics are the same as the homogeneous nominal part of the interconnected
agents.
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ẋi = Axi +Bmui (5.47)

This global decoupling objective should be achieved using only relative-state

measurements. We already have discussed that, because the variables xi and ui

are defined as state and control input deviations from the operating-point values

of the ith agent, this decoupling task is achieved whenever the following condition

is satisfied under any initial conditions and over a fixed-graph G:

lim
t→∞

xi(t) = 0 (5.48)

In each matched or unmatched scenario, we further assume that there exists

one agent that is not physically affected by other agents (but may have some

physical effects on others). We call this special agent a leader. We introduce a

leader agent (5.49) for the matched case:

ẋ0 = Ax0 +Bm(u0 + φ0(z0))

z0 = Czx0

(5.49)

and a leader agent (5.50) for the unmatched scenario:

ẋ0 = Ax0 +Bmu0 +Buψ0(y0)

y0 = Cyx0

(5.50)

where x0 ∈ Rnx and u0 ∈ Rnu are defined similar to the variables in (5.45). The

functions φ0(z0) ∈ Rnu and ψ0(y0) ∈ Rnψ satisfy the Assumption 5.3.1 and As-

sumption 5.3.2 for i = 0, respectively. We further adopt the follower models (5.45)

and (5.46) as (5.51) and (5.52), respectively:
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ẋi = Axi +Bm(ui + φi(zi))

zi = Cz(
∑

j∈Ni(xi − xj) + bi(xi − x0))
(5.51)

ẋi = Axi +Bmui +Buψi(yi)

yi = Cy(
∑

j∈Ni(xi − xj) + bi(xi − x0))
(5.52)

Now, the distributed decoupling task (5.48) for (5.45) or (5.46) is accomplished

when the leader-follower consensus problem (5.53) is solved for (5.49) and (5.51),

or (5.50) and (5.52):

lim
t→∞

(xi(t)− x0(t)) = 0 (5.53)

by setting a new control objective to be finding the control signals u0 and ui

that simultaneously stabilize the uncertain leader dynamics (5.49) (or (5.50)) and

derive the followers’ states xi in (5.51) (or (5.52)) to the leader state x0, under

any initial state conditions and over a fixed graph Glf .

The following assumptions are satisfied in this section:

Assumption 5.3.3. The matrix A is Hurwitz, (A,B) characterizes a stabilizable

model, there exists a direct path from the leader to each follower over Glf , and x0

is known but u0 is unknown to the followers connected to the leader.

Assumption 5.3.4. Nonlinear functions φi(zi) and ψi(yi) are unknown, Γui in

Assumption 5.3.1 and Γψi in Assumption 5.3.2 are known matrices, there exists

a local (agent-level) lookup-table scheduling system or feedback tracking controller

such that each agent’s nominal model (5.47) operates at the desired operating-point

(xopti , uopti ), and the distributed controller does not have access to (xopti , uopti ).
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5.3.2 Leader-follower consensus-based decoupling: main

results

5.3.2.1 Matched nonlinear interconnection

In order to achieve the consensus in a multiagent system of (5.49) and (5.51),

we propose the following control signals u0 and ui:

u0 = K0x0 and ui = K(
∑
j∈Ni

(xi − xj) + bi(xi − x0)) (5.54)

where K0 ∈ Rnu×nx represents the leader’s control gain and K ∈ Rnu×nx stands

for the followers’ control gain. By introducing the leader-follower tracking error

εi , xi − x0, we find the leader-follower tracking error dynamics:

ε̇i = Aεi +Bmui +BmΦi(u0, z0, zi)

and
Φi(u0, z0, zi) = φi(zi)− φ0(z0)− u0

zi = Cz(
∑

j∈Ni(εi − εj) + bi(εi − ε0))

ui = K(
∑

j∈Ni(εi − εj) + biεi)

where bi ∈ {0, 1} is defined based on a special type of leader-follower digraphs in

page 80.

We further define ε = col{εi} as the aggregated tracking error vector, u =

col{ui} be the aggregated control-input, Φ = col{Φi} = φ(z)− (1N ⊗ Inu)φ0(z0)−

(1N⊗Inu)u0 be the aggregated unknown matched nonlinearity, φ(z) = col{φi(zi)},

and i ∈ {1, 2, ...N}. Now, over Glf , we have:

z = (H⊗ Cz)ε

u0 = K0x0 and u = (H⊗K)ε
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where the reduced order Laplacian matrix H is defined in Subsection 3.1.2.1 at

page 79. We decompose the followers’ aggregated control signal as follows:

u = (H⊗ Inu)ν and ν = K̄ε = (IN ⊗K)ε

and pass the communication-induced (relative measurement-induced) coupling

term H⊗ Inu to the augmented leader-follower multiagent system dynamics:

ξ̇ = Ãξ + B̃uτ︸ ︷︷ ︸
Networked nominal dynamics

+ B̃uẼτ + B̃uη(u0, z0, z)︸ ︷︷ ︸
Modeling uncetainty

(5.55)

where ξ = [xT0 , ε
T ]T , τ = [uT0 , ν

T ]T = K̃ξ, K̃ = diag{[K0, K̄]}, η = [φT0 ,Φ
T
µ ], and

Φµ = 1
µ1

Φ. Also, Ã = diag{[A, Ā]}, Ā = IN ⊗ A, B̃m = diag{[Bu, B̄u]}, B̄u =

IN ⊗µ1Bu, Ẽ = diag{[0, Ē]}, and Ē = ĒT = (( 1
µ1
H− IN)⊗ Inu) < 0. We further

define Γu , diag{[γu1, γu2, ..., γunu ]} where γum , maxi{γim} for m ∈ {1, ..., nu}

and i ∈ {1, 2, ..., N}.

We know that Φµ(u0, z0, z) ≤ 1
µ1

ΦM(u0, z0, z) where the upper bound function

ΦM is given by (5.56):

ΦM , (IN ⊗ Γu)|z|+ (1N ⊗ Γu0)|z0|+ (1N ⊗ Inu)|u0| (5.56)

Moreover, using the Rayleigh-Ritz inequality Lemma 2.1.1 and Fact 2.2.1, a

quadratic upper bound on the unknown nonlinearity η is given by:

ηT R̃η ≤ εT R̄εε+ xT0R
x0x0 + uT0R

u0u0 =: ηTM R̃ηM (5.57)

where R̃ = R̃T = diag{[Rl, R̄f ]}, Rl = RT
l � 0, R̄f = IN ⊗ Rf , Rf = RT

f =

rfInu � 0, R̄ε = IN ⊗ Rε, Rε = Rε
f = 2rf

µ2N
µ21
CT
z Γ2

uCz, R
x0 = Rx0

l + Rx0
f =

CT
z Γu0RlΓu0Cz + 4Nrf

1
µ21
CT
z Γ2

u0Cz, and Ru0 = Ru0
f = 4Nrf

1
µ21
Inu . (Note that
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ηTM R̃ηM is a symbol to specify the upper-bound on ηT R̃η. In fact, it is a function

x0, u0, and ε. We may read it as ηTM R̃ηM(x0, u0, ε).)

Now, in next Theorem, we provide a sufficient condition to achieve the leader-

follower consensus (5.53) using (5.55), and, consequently, to solve (5.48) for a

multiagent system of (5.45).

Theorem 5.3.1. Let u0 = K0x0 = −R−1
1l B

T
mP1lx0 be the control signal that

achieves the minimum cost (5.58) subject to (5.59) satisfying a condition (5.60),

where P1l denotes solution of the ARE (5.61), Q1l = Ql +Rx0, Rx0 = Rx0
l +Rx0

f ,

R1l = Rl + Ru0, Ru0x0 = CT
z Γu0R

u0Γu0Cz = 4Nrf
1
µ21
CT
z Γ2

u0Cz, and Ql = QT
l � 0

and Rl = RT
l � 0 are two design matrices.

J0(x0(0)) = min
u0

∫ ∞
0

(xT0Q1lx0 + uT0R1lu0)dt (5.58)

ẋ0 = Ax0 +Bmu0 (5.59)

Ql −Ru0x0 −KT
0 R

u0K0 � 0 (5.60)

ATP1l + P1lA+Q1l − P1lBmR
−1
1l B

T
mP1l = 0 (5.61)

Also, let νi = Kεi = −µ1R
−1
1f B

T
mP1fεi ∀i ∈ {1, 2, ..., N} be the ith follower’s

control signal that achieves the minimum cost (5.62) subject to (5.63), where P1f

represents solution of the ARE (5.64), Q1f = Qf + Rε, R1f = Rf , and Qf =

QT
f � 0 and Rf = RT

f = rfInu � 0 for rf > 0 are two design matrices.

Ji(εi(0)) = min
νi

∫ ∞
0

(εTi Q1fεi + νTi R1fνi)dt (5.62)

ε̇i = Aεi + µ1Bmνi (5.63)

ATP1f + P1fA+Q1f − µ2
1P1fBmR

−1
1f B

T
mP1f = 0 (5.64)
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Then, the closed-loop system (5.55) is exponentially stable and the distributed

decoupling problem (5.48) is solved in the presence of heterogeneous matched in-

terconnected nonlinear modeling uncertainties.

Proof. This proof is given at Subsection 5.5.4

5.3.2.2 Unmatched nonlinear interconnection

In this subsection, we consider the unmatched nonlinear uncertainty scenario.

We only introduce new variables and the rest can be found in Subsection 5.3.2.1.

We propose the control signals u0 and ui:

u0 = G0x0 and ui = G(
∑
j∈Ni

(xi − xj) + bi(xi − x0)) (5.65)

where, for a leader-follower tracking error εi = xi−x0, the followers’ control signal

can be rewritten as:
ui = G(

∑
j∈Ni

(εi − εj) + biεi)

Here, G0 ∈ Rnu×nx denotes the leader’s control gain, and G ∈ Rnu×nx indicates

the followers’ control gain. Also, the leader-follower tracking error dynamics are

given by:
ε̇i = Aεi +Bmui −Bmu0 +BuΨi(y0, yi)

where the unknown nonlinear functions Ψi(y0, y) = ψi(yi)− ψ0(y0) satisfy:

Ψi(y0, z) ≤ Γψ|yi|+ Γψ0|y0|

for a Γψ that is defined similar to Γu in Subsection 5.3.2.1.

Over Glf , the augmented leader-follower dynamics are as follows:

ζ̇ = Ãζ + B̃uσ︸ ︷︷ ︸
Networked nominal dyn.

+ B̃uẼσ + B̃u0u0 + B̃ψΨt(y0, y)︸ ︷︷ ︸
Modeling uncertainty

(5.66)
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where ζ = [xT0 , ε
T ]T , σ = [uT0 , ν

T ]T = G̃ζ = diag{G0, Ḡ}ζ, Ḡ = IN ⊗ G, u0 =

−(1N ⊗ Inu)u0 ∈ RNnu , Ψt = [ψT0 ,Ψ
T ]T , Ψ(y0, y) = col{Ψi(yi)} = ψ(y) − (1N ⊗

Inu)ψ0(y0), ψ(y) = col{ψi(yi)}, and y = (H ⊗ Cy)ε. Also, B̃u0 = [0T , B̄T
u0

]T ,

B̄u0 = IN ⊗Bm, B̃u = diag{Bu, B̄u}, and B̄u = IN ⊗Bu.

We further find that the following inequality is satisfied:

Ψ ≤ (IN ⊗ Γψ)|y|+ (1N ⊗ Γψ0)|y0|

Now, we define the following auxiliary leader-follower multiagent system’s dy-

namics :
ζ̇ = Ãζ + B̃uσ + B̃u0θ + B̃ψβ (5.67)

where θ = [θT1 , ..., θ
T
N ]T ∈ RNnu and β = [βT0 , β

T
1 , ..., β

T
N ]T ∈ R(N+1)nψ are two aux-

iliary control inputs corresponding to two unmatched uncertainties u0 (unknown

to followers) and Ψt(y0, y), respectively. The quadratic (upper) bounds on these

uncertainties are given by (5.68) and (5.69), respectively:

uT0 S̄u
T
0 = uT0 (NS)u0 (5.68)

ΨT
t W̃Ψt ≤ εT W̄ εε+ xT0W

x0x0 =: ΨT
tMW̃ΨtM (5.69)

where S̄ = IN ⊗ S, S = ST � 0, W̃ = diag{Wl, W̄f}, Wl = W T
l � 0, W̄f =

IN ⊗Wf , Wf = W T
f � 0, W̄ ε = W̄ ε

f = IN ⊗W ε
f , W ε

f = 2µ2
NC

T
y ΓψWfΓψCy, and

W x0 = W x0
l +W x0

f = CT
y Γψ0WlΓψ0Cy + 2NCT

y Γψ0WfΓψ0Cy.

In the next theorem, we systematically find the required control gains in (5.65)

and characterize some sufficient conditions for stabilization of (5.66). Equiva-

lently, we guarantee the leader-follower consensus (5.53) for (5.50) and (5.52) or,

equivalently, solve (5.48) for (5.46).
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Theorem 5.3.2. Let

u0

β0

 =

G0

L0

x0 =

−R−1
2l B

T
mP2l

−W−1
l BT

u P2l

x0 be the control signal

that achieves the minimum cost (5.70) subject to the auxiliary system (5.71) where

the condition (5.72) or (5.73) is satisfied. The matrix P2l denotes solution of the

ARE (5.74); Q2l = Ql + W x0, R2l = Rl + NS; Ql = QT
l � 0, Rl = RT

l �

0, and Wl = W T
l = 0 are three design matrices, BUl = [Bm, Bu], and RUl =

diag{[R2l,Wl]}.

J0(x0(0)) = min
u0,β0

∫ ∞
0

(xT0Q2lx0 + uT0R2lu0 + βT0 Wlβ0)dt (5.70)

ẋ0 = Ax0 +Bmu0 +Buβ0 (5.71)

Ql − 2LT0WlL0 � 0 (5.72)

Ql +GT
0RlG0 − 2LT0WlL0 � 0 (5.73)

ATP2l + P2lA+Q2l − P2lBUlR
−1
UlB

T
UlP2l = 0 (5.74)

Also, let


νi

βi

θi

 =


G

L

H

 εi =


−µ1R

−1
2f B

T
u P2f

−W−1
f BT

ψP2f

−S−1BT
u P2f

 εi be the control signal that

achieves the minimum cost (5.75) subject to the auxiliary system (5.76) where

the condition (5.77) or (5.78) is satisfied. The matrix P2f stands for the solution

of the ARE (5.79), Q2f = Qf + W ε, and R2f = Rf . Also, Qf = QT
f � 0,

Rf = RT
f = rfInu � 0 for rf ∈ R+, Wf = W T

f � 0, and S = ST � 0 are four

design matrices. Moreover, BUf = [µ1Bm, Bu, Bm] and RUf = diag{[R2f ,Wf , S]}.

Ji(εi(0)) = min
νi,βi,θi

∫ ∞
0

(εTi Q2fεi + νTi R2fνi + βTi Wfβi + θTi Sθ)dt (5.75)

ε̇i = Aεi + µ1Bmνi +Buβi +Bmθi (5.76)
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Qf − 2LTWfL− 2HTSH � 0 (5.77)

Qf +GTRfG− 2LTWfL− 2HTSH � 0 (5.78)

ATP2f + P2fA+Q2f − P2fBUfR
−1
UfB

T
UfP2f = 0 (5.79)

Then, the closed-loop system (5.66) is exponentially stable and the distributed

decoupling problem (5.48) is solved.

Proof. This proof is provided at Subsection 5.5.5.

Remark 5.3.2. The condition (5.73) is essentially an alternative version of (5.72)

with an added term GT
0RlG0 (similarly, see (5.78) and (5.77)).

5.3.3 Simulation Verification

In this section, we investigate the feasibility of our ideas through simulation

studies over a coupling and control graph topology Glf that is depicted in Fig. 5.2.

The follower’s graph Laplacian matrix L corresponding to G, the pinning vector

b (to find B), and the reduced-order graph Laplacian matrix H are given below:

L =



3 −1 0 −1 −1

−1 3 −1 0 −1

0 −1 2 −1 0

0 0 −1 2 −1

−1 −1 0 −1 3


, b =



1

1

0

0

0


, H =



4 −1 0 −1 −1

−1 4 −1 0 −1

0 −1 2 −1 0

0 0 −1 2 −1

−1 −1 0 −1 3


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Let agents be described by a stable nominal local part in the state space

domain, specified by the following pair of matrices:

A =

 0 1

−5 −3

 and Bm =

0

1


and be initialized as follows where x0

i = xi(0) for i ∈ {0, 1, ..., 5}:

x0
0 =

15

15

 x0
1 =

−10

20

 x0
2 =

 15

−15

 x0
3 =

10

15

 x0
4 =

−30

20

 x0
5 =

 20

−30


5.3.3.1 Matched nonlinear modeling uncertainty

In the matched scenario, we let Cz = [0, 1.5], and use the following nonlinear-

ities in simulation (unknown in design process):

φ0(z0) = 0.1sin(z0), φ1(z1) = 0.7z1, φ2(z2) = −0.2sin(z2),

φ3(z3) = 0.5tanh(z3), φ4(z4) = −0.5tanh(z4), φ5(z5) = −0.3sin(z5)

ν0

ν1

ν2 ν3

ν5

ν4

b1

b2

Figure 5.2: The (physical) coupling and communication topology Glf . The fol-
lowers’ undirected graph G can be found by removing the node v0 and directed
edges originating from that.
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Figure 5.3: Matched scenario: State deviation variables of all agents without
the distributed decoupling controller (see the definition in (5.45)) where xi1
and xi2 denote the first and second state deviation variables of the ith agent,
respectively.

where tanh(.) refers to the hyperbolic tangent. By removing the node ν0 and

its edges in Figure 5.2, we first simulate the open-loop interconnected multiagent

system over the leaderless graph G without the distributed decoupling controller

of Subsection 5.3.2.1. The unstable behavior of the interconnected multiagent

system in Figure 5.3 indicates the need for a (distributed) decoupling controller.

Figure 5.4 represents the stable closed-loop multiagent system behavior using the

controllers of Theorem 5.3.1, in terms of the state variables’ deviations from the

operating-point.

5.3.3.2 Unmatched nonlinear modeling uncertainty

In this subsection, we implement the controllers of Theorem 5.3.2 for a mul-

tiagent system with Cy = [0.5, 1.5] and Bu = [0.2, 1]T . Substituting zi variables
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Figure 5.4: Matched scenario: State deviation variables of all agents with
distributed decoupling controller, respectively.

by yi, the nonlinear functions are the same as Subsection 5.3.3.1. The unsta-

ble open-loop behavior of the multiagent system over G is depicted in Fig. 5.5.

The simulation result of a closed-loop multiagent system with controllers of The-

orem 5.3.2 is shown in Figure 5.6 which indicates that agents can independently

operate at their desired operating points.

5.4 Summary and bibliography

In this chapter, we overview the main approaches in the control of large-scale

systems along with a brief discussion on their disadvantages with respect to each

others. We propose graph-theoretic ideas as intermediate approaches to model

and stabilize physically interconnected multiagent systems (large-scale systems).

We need to mention that the change from “large-scale” to “physically interconnect

multiagent” systems is made to convey that our approaches are based on graph-
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Figure 5.5: Unmatched scenario: State deviation variables of all agents without
distributed decoupling controller.

Figure 5.6: Unmatched scenario: The first actual state variables xacti1 of all
agents with distributed decoupling controller.

theoretic ideas and the availability of relative-measurements. We acknowledge

that the symmetric linear time-invariant large-scale model is taken from [143],

and the discussion on control of large-scale systems can be inspired by any stan-

dard references such as [2]-[3]. In our opinion, [144] provides a good example of
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“practical” centralized control approaches that have been reported in the litera-

ture. The notion of decentralized fixed mode was introduced in [145]. Thereafter,

many research studies have been done to find decentralized fixed modes, and to

control a large-scale system with decentralized fixed modes (e.g., see the struc-

turally constrained control approach in [146]). By further walking through the

literature of large-scale systems, we mention that the models that we introduce

in this chapter are sometimes called “large-scale systems with strong interconnec-

tions” (e.g., see [147] with a single-input single-output model of subsystems in a

large-scale system).

Regarding the topic of this chapter, we further clarify that the word “decou-

pling” in the distributed decoupling problems emphasizes on the fact that the

control protocol is using relative measurements to damp the (adverse) effects of

physical couplings while the residual (local) dynamics of agents are stabilized

using some local measurements in a hierarchical manner.

In Section 5.2, we generalize the model of Section 3.2 to a heterogeneously

(operating point) parameter-dependent physically coupled uncertain multiagent

system, and propose both state and output feedback distributed decoupling prob-

lems. The distributed stabilization problem is addressed via a leaderless consensus

(re-) formulation. We use the well-known parametric robust control ideas of the

reference [148] to deal with the unknown operating point parameters of agents.

Importantly, we mention that the structural (simplification) assumptions on the

state-feedback model of Subsection 5.2.2.1 are made based on the results of [77]

which was limited to the constant homogeneous state space matrices. Specifi-

cally, using our notation, that reference was assuming a state coupling matrix
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Favg = BavgKc with Kc denoting the consensus gain (our research work proposes

a more realistic scenario because Gavg can be different from the control gain Kc).

This structural assumption is relaxed in the output feedback decoupling of Sub-

section 5.2.2.2. Moreover, in the output feedback case, our formulation allows

using the separation principle Lemma 2.3.2 in the presence of modeling uncer-

tainties. Although we do not focus on any special applications, these distributed

decoupling ideas can be used to damp the inter-area oscillation in a multi-machine

power system.

In Section 5.3, we propose Lur’e models of multiagent systems with unknown

physically coupled nonlinear terms. We assume that the nonlinearities are sep-

arable. This is in fact a common assumption in the literature and, specifically,

we borrow it from [149] (it can also be referred to the materials of [106]). In

this section, we propose a leader-follower viewpoint to address the distributed

stabilization problem under two different scenarios: the matched and unmatched

nonlinear interconnections. We design two linear time-invariant static distributed

decoupling algorithms in order to cancel the adverse effects of these unknown

nonlinear interconnections on physically coupled agents. Based on the simulation

verification results, a decoupling system enables agents to operate at their desired

operating-points using their own local control systems, and independent of their

neighbors.

Finally, we mention that the proposed distributed decoupling challenges in-

clude many of the distributed consensus problems as special cases (see the liter-

ature survey in Section 1.2 to find about the existing results on the distributed

consensus of multiagent systems). For example, regarding the results of Sec-
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tion 5.3, we could simply assume a leader with no control input and no modeling

uncertainties ẋ0 = Ax0 (as is usually the case in the literature), and propose a

leader-follower consensus problem for a set of physically coupled Lur’e nonlin-

ear followers. However, we assume that the leader is a new physical agent such

that u0 and φ0 (or ψ0) appear in (5.49) (or (5.50)). The case where the leader

has a bounded control input, without any modeling uncertainties and physical

interconnections, has been addressed in the literature via adaptive control tech-

niques (e.g., see [94] for a set of linear time-invariant agents) whereas our solutions

provide fixed-gain LQR-based distributed consensus algorithms.

5.5 Appendix: proofs

We have proposed the main results of this chapter through several theorems.

For the sake of readability, we have not discussed their proofs within the main

body of this chapter, and, instead, have collected all of them in this Appendix

section.

5.5.1 Proof of Theorem 5.2.1 (page 174)

We prove this theorem in 3 steps: 1) Kc ensures a state-agreement, 2) the

agreement is on zero, and 3) the distributed decoupling problem of uncertain

interconnected multiagent system is solved whenever σc <
βc
αc

is satisfied by a

closed-loop multiagent system with a static decoupling feedback gain Kc.

201



Step 1) We aggregate the control signals νT i, cost functions (5.20), and

dynamics (5.21) for i ∈ {2, 3, ..., N} and find that νTd achieves the minimum of

following aggregated cost function:

J(xTd(0)) = min
νTd

∫ ∞
0

(xTTdQ̄sxTd + νTTdR̄νTd)dt

subject to the network-level shifted nominal dynamics in (5.18) where Q̄s = IN−1⊗

Qs and R̄ = (IN−1 ⊗R).

By optimality of νTd = ν?Td and thus xTd = x?Td, we have the following results

satisfied for the aggregated closed-loop system:

xTTdQ̄sxTd + νTTdR̄νTd + JTxTd(ĀγxTd + B̄avgνTd) = 0

2νTTdR̄ + JTxTdB̄avg = 0
(5.80)

where JxTd(xTd) = ∂J(xTd)
∂xTd

. Although the optimal control gain Kc is designed

subject to the shifted “nominal” dynamics in (5.18), in the rest of this step, we

prove that νTd stabilizes the entire uncertain non-shifted multiagent system (5.17).

We introduce a candidate Lyapunov function:

V (xTd(t)) = xTTd(t)P̄sxTd(t) � 0

where P̄s = IN−1 ⊗ Ps, and Ps is the solution of ARE (5.19). Also, we find that

the following is satisfied:

V (xTd(0)) = J(xTd(0)) = min
νTd

∫ ∞
t

(xTTdQ̄xTd + νTTdR̄νTd + xTTdR̄xxTd)dt
′ � 0
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where Q̄ = IN−1 ⊗ Q and R̄x = IN−1 ⊗ Rx. Since the control gain Kc =

−λ2R
−1BT

avgPs is implemented and algebraic Riccati equation (5.19) is satisfied,

we know that the conditions (5.80) are satisfied by this candidate Lyapunov func-

tion substituting JxTd by VxTd . Now, along the uncertain dynamics of the shifted

multiagent system (5.18), we find:

V̇ (xTd) = V T
xTd
ẋTd = V T

xTd
(ĀavgxTd + B̄avgνTd + B̄avg(ĒνTd + ḠavgxTd))

= −xTTdQ̄xTd − 2νTTdR̄ĒνTd − (νTd + ḠavgxTd)
T R̄(νTd + ḠavgxTd)

− (xTTdR̄xxTd − xTTdḠT
avgR̄ḠavgxTd) ≤ −xTTdQ̄xTd ≺ 0

Based on the Lyapunov Theorem 2.3.1, the shifted linear disagreement dy-

namics (5.18) are asymptotically stable. Also, based on the Rayleigh-Ritz in-

equality 2.1.1, we find λmin(Ps)‖xTd‖2 ≤ V (xTd) ≤ λmax(Ps)‖xTd‖2 and V̇ ≤

−λmin(Q)‖xTd‖2. Thus, based on the exponential stability Theorem 2.3.2, we

conclude that the origin is exponentially stable.

Now, we know that all eigenvalues of (Āγ + (Λd ⊗ Bavg(Kc + Gavg))) are in

the open left half plane (LHP). Consequently, the solutions of det(sI(N−1)nx −

Āγ − (Λd ⊗ Bavg(Kc + Gavg)) = 0 satisfy <{s} < 0 for s ∈ C. Thus, we further

conclude that the solutions of det(s′I(N−1)nx − Āavg − (Λd⊗Bavg(Kc +Gavg)) = 0

satisfy <{s′} < −γ where s′ , s − γ. In other words, in addition to exponential

stability of the disagreement dynamics, the LQR-gain Kc ensures a (desired) level

of consensus rate for the non-shifted disagreement dynamics (5.17).

Step 2) Based on the partitioned model (5.16) of multiagent system, agreement

dynamics are decoupled from disagreement dynamics. Then, based on Assump-

203



tion 5.2.3.a and Step 1 of this proof, we conclude limt→∞ x(t) = limt→∞ xT (t) = 0

which proves the state-agreement on zero (for a model of multiagent system ex-

cluding the uncertainty Ã∆(t)x(t) in (5.13)).

Step 3) The solution of differential equation (5.13) is given by:

x(t) = eÃctx(0) +

∫ t

0

(eÃc(t−s)Ã∆(s)x(s)ds

Hence, whenever ‖eÃct‖ ≤ αce
−βct, we can rewrite this state response as fol-

lows:
‖x(t)‖ ≤ αce

−βct‖x(0)‖+

∫ t

0

(αcσce
−βc(t−s)‖x(s)‖)ds

where we have used ‖Ã∆x(t)‖ ≤ σc‖x(t)‖. Now, based on the Bellman-Gronwall

Lemma 2.3.3, we find:

‖x(t)‖ ≤ αce
−(βc−σcαc)t‖x(0)‖

which indicates that x(t) ∈ RNnx exponentially converges to zero whenever σc <

βc
αc

is satisfied. Thus, the distributed decoupling problem 5.2.1 is also solved in

this condition.

5.5.2 Proof of Theorem 5.2.2 (page 179)

By augmenting νT i, τi, and also (5.36)-(5.37) for all i ∈ {2, 3, , ..., N}; we know

that νTd and τ achieves the minimum aggregated cost function value:

J(xTd(0)) = min
νT ,τ

∫ ∞
0

(xTTdQ̄cxTd + νTTdR̄cνTd + τT W̄cτ)dt
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subject to (5.34), where Q̄c = IN−1 ⊗ Qc and R̄c = IN−1 ⊗ Rc. The aggregated

version of (5.38) is also found as follows:

Q̄+ K̄T
c R̄cK̄c − 2H̄T

c W̄cH̄c � 0 (5.81)

where K̄c = IN−1 ⊗Kc and H̄c = IN−1 ⊗Hc.

Similar to Step 1 in Theorem 5.2.1, we know the triple (xTd, νTd, τ) satisfies:

xTTdQ̄cxTd + νTTdR̄cνTd + τT W̄cτ + JTxTd(ĀγcxTd + B̄avgνTd + F̄ττ) = 0

2νTTdR̄c + JTxTdB̄avg = 0

2τT W̄c + JTxTdF̄τ = 0

(5.82)

In the rest of this proof, we show that the uncertain non-shifted multiagent

system dynamics (5.32) are also stabilized using only the control signal νTd (i.e.,

without implementing τ). We propose a candidate Lyapunov function:

V (xTd(t)) = xTTd(t)P̄cxTd(t) � 0

where P̄c = IN−1 ⊗ Pc, and Pc is the solution of ARE (5.35). This candidate

Lyapunov function satisfies:

V (xTd(0)) = min
νTd,τ

∫ ∞
t

(xTTdQ̄xTd + νTTdR̄cνTd + τT W̄cτ + xTTd(λ
2
NW̄c)xTd)dt

′ � 0

Since the ARE (5.35) is satisfied by implementing the optimal control (and

fictitious control) gains of this theorem, the conditions (5.82) are hold true by this
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candidate Lyapunov function substituting JxTd by VxTd . Now, along the uncertain

shifted multiagent system’s dynamics (5.33), we find:

V̇ = V T
xTd
ẋTd ≤ −xTTd(Q̄+ K̄T

c R̄cK̄c − 2H̄T
c W̄cH̄c)xTd

= −xTTdQ̄xTd − νTTdR̄cνTd − 2νTTdR̄cĒνTd + 2τT W̄cτ − τT W̄cτ − 2τT W̄cΛ̄dxTd

− xTTdΛ̄dW̄cΛ̄dxTd − (xTTd(λ
2
NW̄c)xTd − xTTdΛ̄dW̄cΛ̄dxTd)

≤ −xTTd(Q̄+ K̄T
c R̄cK̄c − 2H̄T

c W̄cH̄c)xTd

which indicates V̇ ≺ 0 whenever (5.81) is satisfied. Thus, based on the Lya-

punov stability Theorem 2.3.1, the shifted uncertain disagreement dynamics (5.33)

are asymptotically stable. Moreover, setting a1 ← λmin(Pc), a2 ← λmax(Pc),

a3 ← λmin(Q + KT
c RcKc − 2HT

c WcHc), and b← 2 in Theorem 2.3.2, we are able

to guarantee exponential stability of the system which is a stronger result than

asymptotic stability.

Similar to Step 1 of Theorem 5.2.1, we further conclude that the design param-

eter γc ensures a minimum level of consensus convergence rate for the non-shifted

uncertain multiagent system’s dynamics (5.32).

5.5.3 Proof of Theorem 5.2.3 (page 180)

A dual form to the observer design problem (5.39) is designing a control signal

ωT i = KT
o xT i for

ẋT i = (Aγo + λiFavg)
TxT i + λiC

TωT i

which can be rewritten as follows:
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ẋT i = ATγoxT i + λ2C
TωT i + λ2C

T (
λi
λ2

− 1)ωT i + λiF
T
avgxT i

that, for i ∈ {2, 3, ..., N}, results in the following aggregated dynamics:

ẋTd = (IN ⊗ ATγo)xTd + (IN ⊗ λ2C
T )ωTd + (IN ⊗ λ2C

T )((Λd
λ2
− IN−1)⊗ Iny)ωTd

+(IN ⊗ F T
avg)(Λd ⊗ Inx)xTd

where ωTd = col{ωT i} for i ∈ {2, 3, ..., N}. We further propose an auxiliary shifted

multiagent system:

ẋTd = (IN−1 ⊗ ATγo)xTd + (IN−1 ⊗ λ2C
T )ωTd + (IN−1 ⊗ Favg)η

where η = col{ηi} for i ∈ {2, 3, ..., N} denotes a fictitious control signal corre-

sponding to the uncertainty (Λd ⊗ Inx)xTd. Now, the rest follows the proof of

Theorem 5.2.2 (see Subsection 5.5.2).

5.5.4 Proof of Theorem 5.3.1 (page 190)

Using (5.58) and (5.62) for i ∈ {1, 2, ..., N}, we find an aggregated cost func-

tion:

J(ξ(0)) = min
τ

∫ ∞
0

(ξT Q̃ξ + τT R̃τ + ηTM R̃ηM)dt

where Q̃ = diag{[Ql, Q̄f ]} and Q̄f = IN ⊗ Qf . Using (5.59) and (5.63) for

i ∈ {1, 2, ..., N}, we find the networked nominal dynamics in (5.55). Hence,

the control signals u0 = K0x0 and ν = K̄ε achieves the minimum aggregated

leader-follower cost function J(ξ(0)) subject to the networked nominal dynamics
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in (5.55). We need to show that the static feedback τ = K̃ξ stabilizes the uncer-

tain dynamics (5.55). We propose the following Lyapunov candidate function:

V (ξ(t)) = ξT (t)P̃1ξ(t) � 0

where P̃1 = diag{P1l, P̄1f}, P̄1f = IN ⊗ P1f , and P1l and P1f are the positive

definite solutions of algebraic Riccati equations (5.61) and (5.64), respectively.

V (ξ(0)) = J(ξ(0)) = min
τ

∫ ∞
0

(ξT Q̃ξ + τT R̃τ + ηTM R̃ηM)dt′ � 0

We also have the following Hamilton-Jacobi-Bellman equation:

min
τ
{ξT Q̃ξ + τT R̃τ + ηTM R̃ηM + V T

ξ (Ãξ + B̃uτ)} = 0

In fact, implementing the gains K0 and K of this theorem, the pair (ξ, τ)

satisfies the following equalities:

ξT Q̃ξ + τT R̃τ + ηTM R̃ηM + V T
ξ (Ãξ + B̃uτ) = 0

2τT (R̃ + R̃τ ) + V T
ξ B̃u = 0

where R̃τ = diag{[Ru0 ,0]}. Now, we are ready to calculate the time deviation of

V (ξ(t)) along the uncertain dynamics (5.55):

V̇ = V T
ξ ξ̇ = −ξT Q̃ξ − τT R̃τ − ηTM R̃ηM − 2τT (R̃ + R̃τ )Ẽτ − 2τT (R̃ + R̃τ )η

≤ −ξT Q̃ξ + xT0R
u0x0x0 + uT0R

u0u0 − (ηTM(R̃ + R̃τ )ηM − ηT (R̃ + R̃τ )η)

− (η + τ)T (R̃ + R̃τ )(η + τ)

≤ −xT0Qlx0 − εT Q̄fε+ xT0R
u0x0x0 + uT0R

u0u0

≤ −xT0 (Ql −Ru0x0 −KT
0 R

u0K0)x0 − εT Q̄fε ≺ 0
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where the first inequality is found based on the completion of squares by adding

and subtracting xT0R
u0x0x0 + uT0R

u0u0 + ηT (R̃ + R̃τ )η. We further mention that

Ē = ĒT < 0 such that −2τT (R̃ + R̃τ )Ẽτ = −2rfν
T Ēν ≤ 0 and ηT (R̃ + R̃τ )η ≤

ηTM R̃ηM + xT0R
u0x0x0 =: ηTM(R̃ + R̃τ )ηM .

Based on the Lyapunov theorem 2.3.1, the leader-follower multiagent system’s

dynamics (5.55) are asymptotically stable for all initial state values and over the

fixed-graph Glf . We further show that the conditions of Theorem 2.3.2 are satis-

fied by b ← 2, a1 = min{λmin(P1l), λmin(P1f )}, a2 = min{λmax(P1l), λmax(P1f )},

and a3 = min{λmin(Qf ), λmin(Ql − Ru0x0 − KT
0 R

u0K0)}. Thus, using a static

feedback gain, we are able to guarantee exponential stability of the origin for an

uncertain Lur’e nonlinear multiagent system. Now, based on the reformulation in

Subsection 5.3.1.3, the distributed decoupling of agents is also achieved.

5.5.5 Proof of Theorem 5.3.2 (page 192)

We find (5.67) using (5.71) and (5.76). Also, based on (5.70) and (5.75), we

find an aggregated leader-follower cost function:

J(ζ(0)) = min
σ,θ,β

∫ ∞
0

{ζT Q̃ζ + σT R̃σ + θT S̄θ + βT W̃β + uT0 S̄u0 + ΨT
tMW̃ΨtM}dt

The optimal control signals σ, θ, and β achieves the minimum J(ζ(0)) subject

to (5.67). We need to show that the uncertain closed-loop system (5.66) will

be stabilized using σ (i.e., there is no need for θ and β for the implementation

purpose). We propose the following Lyapunov candidate function for t ≥ 0:
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V (ζ(t)) = ζT (t)P̃2ζ(t) � 0

where P̃2 = diag{P2l, P̄2f}, P̄2f = IN ⊗ P2f , and P2l and P2f are respectively the

positive definite solutions of AREs in (5.74) and (5.79). Also, we observe that the

equality V (ζ(0)) = J(ζ(0)) = minσ,θ,β
∫∞

0
{ζT Q̃ζ+σT R̃σ+θT S̄θ+βT W̃β+uT0 S̄u0+

ΨT
tMW̃ΨtM}dt′ � 0 is satisfied subject to the augmented auxiliary system (5.67)

for which the Hamilton-Jacobi-Bellman equation minσ,θ,β{ζT Q̃ζ + σT R̃σ + θS̄θ+

uT0 S̄u0 + βT W̄β + ΨT
tMW̃ΨtM + V T

ζ (Ãζ + B̃uσ + B̃u0θ + B̃ψβ)} = 0 holds.

We further know that implementing the control and fictitious control gains

G0, L0, G, L, and H of this theorem, the quadruple (ξ, σ, θ, β) satisfies ζT Q̃ζ +

σT R̃σ+ θT S̄θ+βT W̃β+uT0 S̄u
T
0 + ΨT

tMW̃ΨtM +V T
ζ (Ãζ + B̃uσ+ B̃u0θ+ B̃ψβ) = 0

and

2σT (R̃ + R̃σ) + V T
ζ B̃u = 0

2θT S̄ + V T
ζ B̃u0 = 0

2βT W̃ + V T
ζ B̃ψ = 0

where R̃σ = diag{[NS,0]}. Using these equalities, we calculate V̇ along the

uncertain trajectory (5.66):

V̇ (ζ) ≤ −ζT Q̃ζ − σT R̃σ + 2βT W̃β + 2θT S̄θ

≤ −ζT (Q̃+ G̃T R̃G̃− 2L̃T W̃ L̃− 2H̃T S̃H̃)ζ

Alternatively, we can find:

V̇ (ζ) ≤ −ζT Q̃ζ + 2βT W̃β + 2θT S̄θ ≤ −ζT (Q̃− 2L̃T W̃ L̃− 2H̃T S̃H̃)ζ

where L̃ = diag{L0, IN ⊗ L}, H̃ = diag{0, IN ⊗H}, and S̃ = diag{0, IN ⊗ S}.
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Based on the conditions (5.72)-(5.73) and (5.77)-(5.78), we find V̇ ≺ 0. Hence,

using the Lyapunov Theorem 2.3.1, the closed-loop multiagent system (5.66) is

asymptotically stable. Furthermore, it is straightforward to see that the condi-

tions of Theorem 2.3.2 are also satisfied by a3 = min{λmin(Q̃+G̃T R̃G̃−2L̃T W̃ L̃−

2H̃T S̃H̃), λmin(Q̃− 2L̃T W̃ L̃− 2H̃T S̃H̃)}. Thus, the origin is exponentially stable

which, equivalently, indicates exponential distributed decoupling of an intercon-

nected Lur’e multiagent system (with nonlinear modeling uncertainty).
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Chapter 6

Distributed Stabilization of

Physically Coupled Multiagent

Systems with Unknown Coupling

Structures1

Based on the introduction in Chapter 1, we know that graph-theoretic dis-

tributed control algorithms have been widely designed to accomplish cooperative

tasks using a group of individual agents. We further are aware of some references

that, following the same viewpoint on achieving agreement on unknown values,

consider multiagent systems with interconnected agents via linear state-coupling

terms (over known coupling graph). Also, based on the results of Chapter 3,

we know that the agreement on zero (independent of agents’ initial values) may

1A major part of this chapter has been published in [140] and [150]. Each section has its own
parameters and variables which are (re-) defined appropriately.
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need sanctification of additional conditions in an agreed multiagent system (after

reaching agreement in multiagent system).

In Chapter 5, we interpreted achieving “agreement on zero independent of

agents’ initial conditions” as a “distributed stabilization” problem. Then, inspired

by the literature of both large-scale and multiagent systems, we introduced some

models of “physically interconnected multiagent systems” using graph-theoretic

ideas which were equivalent to the large-scale systems’ models. In each scenario,

we assumed a known (connected) physical coupling structure, and designed a

distributed control algorithm over the same graph topology. Assuming a known

coupling structure and designing a distributed controller with exactly the same

communication topology as the coupling structure could restrict the applicability

of ideas in Chapter 5.

In this chapter, we assume agents are physically coupled over unknown “agent-

layer coupling graphs”, and design distributed protocols over a second graph layer

to share agents’ information in their neighborhood. We name it control-layer com-

munication graph. In Section 6.1, we mix the models of Section 5.3 and propose a

fixed-gain fully distributed decoupling strategy for a Lur’e multiagent system with

mixed matched and unmatched time-varying interconnected nonlinearities. While

the decoupling allows agents to operate in their stand-alone modes, availability

of all agents’ absolute measurements could bea restrictive assumption in ensuring

the stability of interconnected multiagent system. Therefore, in Section 6.2, we

propose a distributed stabilization problem where we only a few agents provide

their absolute measurements to the control-layer operator (potentially, only one

agent shares its absolute information).
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The rest of this Chapter is organized as follows. In Section 6.1 we propose a

multi-layer distributed decoupling structure. This is essentially an extension to

the results of 5.3 by proposing a Lur’e multiagent system with mixed matched and

unmatched state-coupled time-varying nonlinear uncertainties over an unknown

coupling graph. In this section, we further introduce a fixed-gain fully-distributed

decoupling approach which can be designed without any global knowledge about

coupling and communication graphs. In Section 6.2, we assume a limited access to

the absolute state information for a set of only few agents, and propose a multi-

layer distributed stabilization problem. In fact, this is based on our two-layer

viewpoint in Section 6.1 where the agent-layer coupling graph is further modeled

by two subgraphs for state and input coupling terms. In Section 6.3, we discuss

the fully distributed alternatives to the decoupling algorithms of Chapter 4. We

summarize this chapter and provide some references in Section 6.4. Finally, We

collect all proofs in Section 6.5.

6.1 Distributed decoupling of multiagent systems

with mixed matched and unmatched nonlin-

ear state couplings

In this section, we propose a class of Lur’e nonlinear multiagent systems with

homogeneous linear nominal dynamics subject to heterogeneous state-dependent

time-varying nonlinear couplings. Compared to the results of Section 5.3, from the

modeling aspect, we assume that these nonlinearities appear as mixed matched
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and unmatched modeling uncertainties, and the coupling graph is unknown and

possibly disconnected (i.e., with a less restrictive structural assumption compared

to Chapter 4); and from the control aspect, we propose a multi-layer structure.

This new viewpoint enables us to overcome the lack of knowledge about the

physical coupling graph and, mainly, provides an additional degree of freedom

to design a control-layer graph in order to guarantee some further (optimization-

based) criteria for a closed-loop physically coupled multiagent system. Since our

fully distributed decoupling algorithm allows post-designing the control-layer net-

work at a later time, we do not go through the communication graph design prob-

lem.

We consider a group of N+1 linear time-invariant agents which are coupled to

each other over a graph Ga through some heterogeneous time-varying nonlinear un-

certainty functions which, all together, build a heterogeneous Lur’e time-varying

nonlinear multiagent system:

ẋi = A′xi +Bmu
′
i +Bmfi(zi; t) +Bugi(yi; t)︸ ︷︷ ︸

φi(zi, yi; t)

(6.1)

where i ∈ {0, 1, 2, ..., N} denotes the agent number; xi ∈ Rnx represents the

state variable and ui ∈ Rnz indicates the control input; and A′ ∈ Rnx×nx , Bm ∈

Rnx×nz , and Bu ∈ Rnx×ny are some known constant matrices. The nonlinear

functions φi(zi, yi; t) are written as sum of two unknown nonlinearities. The terms

Bmfi(zi; t) are in the range space of Bm and we call fi(zi; t) ∈ Rnz the matched

nonlinearities, and the terms Bugi(yi; t) ∈ Rny do not satisfy this condition and

we name gi(yi; t) the unmatched nonlinearities. The input vectors zi ∈ Rnz and
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yi ∈ Rny into these nonlinear functions are the following lumped state-dependent

signals:

zi = Cz
∑

j∈Nai
(xi − xj)

yi = Cy
∑

j∈Nai
(xi − xj)

(6.2)

where Cz ∈ Rnz×nx and Cy ∈ Rny×nx , and N a
i denotes the ith agent’s neighboring

set over Ga. The following assumptions are satisfied in this section. In theses

assumptions, R+ denotes the set of positive real numbers, and R0+ represents the

set of non-negative real numbers.

Assumption 6.1.1. The pair (A′, Bm) represents a stabilizable state space real-

ization ẋi = A′x+Bmu
′
i.

Assumption 6.1.2. The nonlinear functions fi : Rnz × R0+ → Rnz ∀ i ∈

{0, 1, ..., N} are not exactly known, but satisfy the quadratic upper-bound:

fTi (zi; t)Rfi(zi; t) ≤ zTi (αiR)zi

where R = RT � 0 for R ∈ Rnz×nz , and αi ∈ R+. Moreover, fi(0; t) = 0, and

α , maxi{αi} ∀i ∈ {1, 2, ..., N} is a known constant.

Assumption 6.1.3. The nonlinear functions gi : Rny × R0+ → Rny ∀ i ∈

{0, 1, ..., N} satisfy the Assumption 6.1.2 substituting R by S ∈ Rny×ny , and α

by β ∈ R+.

Remark 6.1.1. Since these findings are proved based on the Lyapunov Theo-

rem 2.3.1, we also need the nonlinearities fi and gi be piecewise continuous in

time and globally Lipschitz (if they are locally Lipschitz, the result will be valid in
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a neighborhood around the origin). However, we do not directly use the Lipschitz

inequality (2.7) in the derivations of this chapter.

Regarding the (unknown) agent-layer coupling graph Ga, we assume:

Assumption 6.1.4. There exists at least one connected component over Ga (at

least two agents are coupled to each other).

We need to note that the disconnected graph Ga represents a decoupled mul-

tiagent system which is preferred (reduces to the existing results in Section 1.2).

However, we propose Assumption 6.1.4 in order to have meaningful “decoupling”

ideas. In this section, we introduce a multi-layer (two-layer) control structure:

• An undirected agent-layer coupling graph Ga with La = LTa < 0 as its graph

Laplacian matrix. We define a leader indexed by subscripts 0, and let others

be some followers. We further define Gaf as an undirected agent-layer cou-

pling graph among N followers with Laf = Laf < 0 as its graph Laplacian

matrix. Furthermore, we let ba = [ba1, ba2, ..., baN ]T be such that bai = 1

whenever the leader and the ith follower communicate over an undirected

edge, and bai = 0 otherwise. We also define a diagonal matrix Ba = diag{ba}

in order to lump all leader-followers’ physical coupling information. We par-

tition the agent-layer Laplacian matrix as follows:

La =

∑N
i=1 bai −bTa

−ba Ha


where Ha = HT

a ∈ RN×N is defined by Ha = Laf + Ba.
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• A directed control-layer communication graph Gc with a graph Laplacian ma-

trix Lc. Similar to the agent-layer graph, we define Gcf and Lcf = Lcf < 0

for the undirected control-layer communication graph among N followers.

However, over Gc, the leader agent does not receive information from fol-

lowers. Thus, bc = [bc1, bc2, ..., bcN ]T is defined such that bci = 1 when the

ith follower receives information from the leader over a directed edge, and

bai = 0 otherwise. Also, we let Bc = diag{bc} be a diagonal matrix that

provides information about leader-to-follower communication. As a result,

the following partitioning is valid for the control-layer Laplacian matrix:

Lc =

 0 0

−bc Hc


where Hc = HT

c ∈ RN×N is defined by Hc = Lcf + Bc.

The control-layer communication graph satisfies the following assumption:

Assumption 6.1.5. The control-layer communication graph Gc has a directed

spanning tree with the node i = 0 as the root.

As a result of Assumption 6.1.5, we know that Hc � 0 such that 0 < µc1 ≤

µc2 ≤ ... ≤ µcN where µcl denote eigenvalues of Hc for l ∈ {1, 2, ..., N}.

We now clarify our multi-layer viewpoint in Figure 6.1 for a typical physically

interconnected multiagent system. In this figure, the black rectangle represents

the agent-layer multiagent system, and the blue rectangle shows the control-layer

communication.
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Figure 6.1: An example of the proposed structure where all agents and agen-
t-layer physical coupling are shown in black; all decoupling control systems and
control-layer communication are given in blue; letters a and c stand for agent
and controller; and agent-controller correspondence are clarified by dashed red
lines.

Similar to the results of Chapter 4, we consider a hierarchical control structure

where a local controller stabilizes the ith agent’s local model, and a global decou-

pling controller cancels the adverse effects of the nonlinear modeling uncertainties

φi in (6.1). We first write u′i = uil + ui where the local control signal uil can be

designed using any control techniques such that, for example by using the optimal

LQR strategy, uil = Klxi results in a new model:

ẋi = Axi +Bmui +Bmfi(zi; t) +Bugi(yi; t) (6.3)

where A = A′+BmKl ∈ Rnx×nx denotes a Hurwitz matrix (see Assumption 6.1.1).

In the rest of this section, we only focus on designing the global control signal ui
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such that a multiagent of agents (6.3) asymptotically behaves as N + 1 decoupled

dynamical systems:

ẋi = Axi +Bmui (6.4)

We are interested in distributed decoupling controllers (vs. centralized and

decentralized control systems). Thus, we reformulate this decoupling task and

propose a leader-follower consensus problem:

lim
t→∞

(xi(t)− x0(t)) = 0 (6.5)

where the new control objective is finding the control signals u0 and ui that

simultaneously stabilize the uncertain leader dynamics, i.e., x0 → 0 (leader is

coupled to followers over Ga), and derive all followers’ states xi to the leader state

x0, i.e., xi → x0 as t→∞ (followers are coupled to each other and to the leader

over Ga). This objective should be achieved under any initial state conditions

while the fixed graph Gc can be different from the fixed graph Ga.

Remark 6.1.2. While A denotes a Hurwitz matrix by itself (e.g., after using a

local controller): (a) the Assumption 6.1.1 indicates a stabilizable pair (A,Bm)

as well, and (b) the entire multiagent system of (6.3) can be unstable due to the

state-dependent coupling terms.

6.1.1 Distributed decoupling based on the smallest posi-

tive eigenvalue of the control-layer graph

In order to achieve the objective (6.5) in a multiagent system of (6.3), we

propose the following control signals u0 and ui:
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u0 = K0x0 ui = K(
∑
j∈N cfi

(xi − xj) + bi(xi − x0)) (6.6)

where K0 ∈ Rnz×nx denotes the leader’s control gain, K ∈ Rnz×nx represents

the followers’ control gain, and N cf
i indicates the neighboring set of ith follower

over Gcf . We introduce the leader-follower tracking error ei , xi−x0 and find the

following error dynamics:

ėi = Aei +Bmui +BmFi(u0, z0, zi; t) +BuGi(y0, yi; t)

where for i ∈ {1, 2, ..., N}. Now, the followers’ control signals can be rewritten as

follows:

ui = K(
∑
j∈N cfi

(ei − ej) + biei)

Here, we have defined:

Fi = fi(zi; t)− f0(z0; t)− u0 and Gi(y0, yi; t) = gi(yi; t)− g0(y0; t)

Furthermore, let e = col{ei} be the augmented leader-follower tracking er-

ror, u = col{ui} augmented control input, F (u0, z̄; t) = col{Fi} = f(z; t)− (1N ⊗

Inz)f0(z0; t)−(1N⊗Inz)u0 the augmented matched uncertainty where z̄ = [zT0 , z
T ]T

for z = col{zi}, and G(ȳ; t) = col{Gi} = g(y; t)−(1N⊗Iny)g0(y0; t) the augmented

unmatched uncertainty where ȳ = [yT0 , y
T ]T for y = col{yi}. Thus, we find an aug-

mented multiagent system with some physically coupled terms F and G over Ga:

ė = (IN ⊗ A)e+ (IN ⊗Bm)u+ (IN ⊗Bm)F + (IN ⊗Bu)G

We also decompose the control signal u = (Hc ⊗K)e as follows:
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u = (Hc ⊗ Inz)ν, and ν = (IN ⊗K)e.

Now, we find a revised version of the augmented error dynamics:

ė = (IN ⊗ A)e+ (Hc ⊗Bm)ν + (IN ⊗Bm)F + (IN ⊗Bu)G (6.7)

where, in this new model, the coupling appears due to both Ga and Gc. We rewrite

these error dynamics as follows:

ė = Āe+ B̄mν + B̄mĒν + B̄mFµ + B̄uG (6.8)

where Ā = IN ⊗ A, B̄m = IN ⊗ µc1Bm, B̄u = IN ⊗ Bu, and Ē = ĒT = ( 1
µc1
Hc −

IN)⊗ Inz < 0 is satisfied; and Fµ = 1
µc1
F .

Now, we introduce an augmented model that includes all leader and leader-

follower tracking error dynamics:

ξ̇ = Ãξ + B̃mτ + B̃mẼτ + B̃mFt + B̃uGt (6.9)

where ξ = [xT0 , e
T ]T , τ = [uT0 , ν

T ]T , Ft = [fT0 , F
T
µ ]T , and Gt = [gT0 , G

T ]T ; and

Ã = Diagb{[A, Ā]}, B̃m = Diagb{[Bm, B̄m]}, Ẽ = ẼT = Diagb{[0, Ē]} < 0, and

B̃u = Diagb{[Bu, B̄u]}.

We mention that fi and gi are such that the origin is an equilibrium point of

the unforced (6.9) setting τ = 0. Moreover, along with the partitioning of La in

this section, (6.2) can be rewritten as follows:

z0 = −(bTa ⊗ Cz)e z = (Ha ⊗ Cz)e

y0 = −(bTa ⊗ Cy)e y = (Ha ⊗ Cy)e
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Therefore, we find the following quadratic upper bounds on the nonlinear

functions Ft and Gt in (6.9):

F T
t R̃Ft ≤ eT R̄ee+ uT0R

u0u0 =: F T
tM R̃FtM

GT
t S̃Gt ≤ eT S̄ee =: GT

tM S̃GtM

(6.10)

where we emphasize that F T
tM R̃FtM is a quadratic function of u0 and e, and

GT
tM S̃GtM is a quadratic function of e. Also, R̃ = Diagb{[R0, R̄]}, R0 = RT

0 � 0,

R̄ = (IN ⊗R), R̄e = (IN ⊗Re), Re = Re
0 +Re

f +Re
f0

, Re
0 = α0λmax(bab

T
a )CT

z R0Cz,

Re
f =

4αµ2aN
µ2c1

CT
z RCz, R

e
f0

= 2α0Nλmax(babTa )

µ2c1
CT
z RCz, and Ru0 = 4N

µ2c1
R. Moreover,

S̃ = Diagb{[S0, S̄]}, S0 = ST0 � 0, S̄ = (IN ⊗ S), S̄e = (IN ⊗ Se) where

Se = Se0 + Seg + Seg0 , S
e
0 = β0λmax(bab

T
a )CT

y S0Cy, S
e
g = 2βµ2

aNC
T
y SCy, and Seg0 =

2Nβ0λmax(bab
T
a )CT

y SCy. (See Assumptions 6.1.2 and 6.1.3, Fact 2.1.1, and prop-

erties of Kronecker product.)

We propose an auxiliary leader-follower multiagent system:

ξ̇ = Ãξ + B̃mτ + B̃uσ (6.11)

where the fictitious control signal σ = [σT0 , σ
T
1 , ..., σ

T
N ]T ∈ R(N+1)ny deals with

the augmented unmatched uncertainty Gt(y; t). In the rest of this subsection, we

provide some basic results and definitions, and propose Theorem 6.1.1.

Let K0 = −R−1
1l B

T
mP1l and L0 = −S−1

1l B
T
u P1l be the leader’s control and fic-

titious control gains, respectively, where P1l denotes the positive definite solution

of an algebraic Riccati equation (ARE):

ATP1l + P1lA+Q1l − P1l(B
T
mR

−1
1l Bm +BT

u S
−1
1l Bu)P1l = 0 (6.12)
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where Q1l = Q0 = QT
0 � 0, R1l = R0 +Ru0 , and S1l = S0. We use Q0, R0, and S0

as three design matrices.

Also, let K = −µc1R−1
1f B

T
mP1f and L = −S−1

1f B
T
u P1f be followers’ control

and fictitious control gains, respectively, where P1f denotes the positive definite

solution of another ARE:

ATP1f + P1fA+Q1f − P1f (µ
2
c1BmR

−1
1f B

T
m +BT

u S
−1
lf Bu)P1f = 0 (6.13)

in which Q1f = Q + Re + Se, R1f = R, and S1f = S. Similar to the previous

paragraph, Q = QT � 0, R, and S are three design matrices.

In order to ensure the existence of a positive definite stabilizing solution

for each ARE, the pair (C1?, A) should be observable where CT
1?C1? =: Q1?

and ? ∈ {l, f}. Note that Assumption 6.1.5 and Remark 6.1.2.a already im-

ply stabilizable pairs (A, [Bm, Bu]) and (A, [µc1Bm, Bu]). We further define Rτe =

α0λmax(bab
T
a )CT

z R
u0Cz, R̃

τ = Diagb{[Ru0 ,0]}, and Q̃ = Diagb{[Q0, IN ⊗ Q]}.

Now, we characterize some sufficient conditions in order to achieve the distributed

decoupling in a physically coupled multiagent system of agents described by (6.3).

Theorem 6.1.1. Let u0 = K0x0 and σ0 = L0x0 be such that the minimum

cost (6.14) is achieved subject to an auxiliary system (6.15) while satisfying the

condition (6.16). Also, for i ∈ {1, 2, ..., N}, let νi = Kei and σi = Lei be such that

the minimum cost (6.17) is achieved subject to auxiliary systems (6.18) while the

condition (6.19) is satisfied. Then, the exponential distributed decoupling problem

is solved implementing two static feedback gains K0 and K.

J0(x0(0)) = min
u0,σ0

∫ ∞
0

(xT0Q1lx0 + uT0R1lu0 + σT0 S1lσ0)dt (6.14)
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ẋ0 = Ax0 +Bmu0 +Buσ0 (6.15)

Q0 −KT
0 R

u0K0 − 2LT0 S0L0 � 0 (6.16)

Ji(ei(0)) = min
νi,σi

∫ ∞
0

(eTi Q1fei + νTi R1fνi + σTi S1fσi)dt (6.17)

ėi = Aei + µc1Bmνi +Buσi (6.18)

Q−Rτe − 2LTSL � 0 (6.19)

Proof. This proof is given at Subsection 6.5.1.

6.1.2 Distributed decoupling based on the largest positive

eigenvalue of the control-layer graph

We start this subsection from (6.7) for the proposed decoupling control algo-

rithms in (6.6). However, now, we define Fµ = 1
µcN

F and rewrite the augmented

multiagent system’s dynamics as follows:

ė = Āe+ B̄mν + B̄mĒν + B̄mFµ + B̄uG

where B̄m = IN⊗µcNBm. Also, Ē = ĒT = ( Hc
µcN
−IN)⊗Inz 4 0 where eigenvalues

of Ē belong to the interval (−1, 0] using the properties of Kronecker product in

Chapter 1. We introduce the augmented leader-follower dynamics:

ξ̇ = Ãξ + B̃mτ + B̃mẼτ + B̃mFt + B̃uGt (6.20)

where Ft = [fT0 , F
T
µ ]T with a new Fµ that hs been introduced in this Subsec-

tion, and Diagb{[0,−INnz ]} 4 Ẽ = ẼT = Diagb{[0, Ē]} 4 0 where eigenval-

ues of Ẽ belong to (−1, 0]. Also, we find two quadratic upper-bounds similar
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to (6.10) with some new matrices Re = α0λmax(bab
T
a )CT

z R0Cz + 2
µ2cN

(2αµ2
aN +

α0Nλmax(bab
T
a ))CT

z RCz, R
u0 = 4N

µ2cN
R.

We propose the following leader-follower auxiliary multiagent system model:

ξ̇ = Ãξ + B̃mτ + B̃uθ (6.21)

where the fictitious control signal θ = [θT0 , θ
T
1 , ..., θ

T
N ]T ∈ R(N+1)ny handles the

effect of Gt.

Before proposing the main result of this subsection, let K0 = −R−1
2l B

T
mP2l,

L0 = −S−1
2l B

T
u P2l, Q2l = Q0 = QT

0 � 0 be a design matrix, R2l = R0 +Ru0 where

R0 = RT
0 � 0 is a design matrix, S2l = S0 = ST0 � 0 be a design matrix, and P2l

be the positive definite solution of an ARE:

ATP2l + P2lA+Q2l − P2l(B
T
mR

−1
2l Bm +BT

u S
−1
2l Bu)P2l = 0

Also, let K = −µTcNR−1
2f B

T
mP2f , L = −S−1

2f B
T
u P2f , Q2f = Q + Re + Se where

Q = QT � 0, R2f = R = RT � 0 be a design matrix, S2f = S = ST � 0 be a

design matrix, and P2f be the positive definite solution of the following ARE:

ATP2f + P2fA+Q2f − P2f (µ
2
cNB

T
mR

−1
2f Bm +BT

u S
−1
2f Bu)P2f = 0

Existence of a stabilizing solution for each ARE follows the discussion in Sub-

section 6.1.1 (e.g., for the pair (A, [µcNBm, Bu]). Note that the matrices Rτe =

α0λmax(bab
T
a )CT

z R
u0Cz and R̃τ = Diagb{[Ru0 ,0]} were defined previously. Next

theorem provides the main result of this subsection.

Theorem 6.1.2. Let the leader’s control signal u0 = K0x0 and the fictitious con-

trol signal θ0 = L0x0 be such that achieved the minimum cost (6.22) subject to the
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auxiliary system (6.23) while the condition (6.24) is satisfied. For i ∈ {1, 2, ..., N},

let the followers’ control signals νi = Kei and fictitious control signals θi = Lei

be such that the minimum costs (6.25) are obtained subject to the auxiliary sys-

tems (6.26) while satisfying the condition (6.27). Then, the exponential distributed

decoupling problem is solved implementing two static feedback gains K0 and K.

J0(x0(0)) = min
u0,θ0

∫ ∞
0

(xT0Q2lx0 + uT0R2lu0 + θT0 S2lθ0)dt (6.22)

ẋ0 = Ax0 +Bmu0 +Buθ0 (6.23)

Q0 −KT
0 R

u0K0 − 2LT0 S0L0 � 0 (6.24)

Ji(ei(0)) = min
νi,θi

∫ ∞
0

(eTi Q2fei + νTi R2fνi + θTi S2fθi)dt (6.25)

ėi = Aei + µcNBmνi +Buθi (6.26)

Q−Rτe − 2KTRK − 2LTSL � 0 (6.27)

Proof. This proof is provided at Subsection 6.5.2.

6.1.3 Fully distributed decoupling algorithm

Up to this point, although these distributed algorithms can be locally im-

plemented, all designs depend on the availability of global knowledge about the

multiagent system. To clarify the word “global knowledge”, we note that smallest

and largest positive eigenvalues of a graph Laplacian are unknown unless after

being aware of the entire graph topology (which is a global knowledge). Thus, we

propose the next corollary to have a fixed-gain fully distributed decoupling system
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based on the result of Subsection 6.1.2. This way, we are able to independently

design the distributed decoupling system and control-layer communication graph

and, independently, take the advantages of both control and optimization ideas

in Figure 1.1.

Corollary 6.1.1. Based on Theorem 6.1.2, a distributed decoupling system is

achieved whenever µaN is substituted by 2N − 1, µcN by 2N − 1, and λmax(bab
T
a )

by N where N + 1 denotes the number of agents in the coupled multiagent system.

Proof. This proof is given at Subsection 6.5.3.

Remark 6.1.3. In Corollary 6.1.1, we do not need any global information about

Ga and Gc other than the number of agents N + 1. In the rare case of an unknown

number of agents, as can bee seen in the proof of this corollary, we can substitute

N by an estimated upper-bound N̄ (i.e., N̄ ≥ N).

6.2 Distributed stabilization of linear multiagent

systems with state and input couplings

The results on the distributed decoupling algorithms are based on the avail-

ability of agents’ absolute measurements (in hierarchical manners). This might be

unrealistic in some circumstances, particularly, while agents might be willing to

cooperatively contribute toward a common global task completion (by providing

some relative information) they could be worried about their own privacy (by do

not sharing their absolute measurements to any control operator). Therefore, in

this section, we assume having access to the absolute measurements of a set of

228



only few agents (possibly just one agent), and address the distributed stabilization

problem through a revised formulation. Compared to the previous sections, now

we also consider the potential physical coupling terms in the control input gain

matrix B of the model (5.1). Thus, in this section, we introduce a linear time-

invariant multiagent system with heterogeneous coupled state and input terms:

ẋi = Axi +Bmui +BuDi

∑
j∈Naui

(ui − uj) +BxFi
∑
j∈Naxi

(xi − xj) (6.28)

where N au
i and N ax

i denote the neighboring set of ith agent over agent-layer

coupling graphs Gau and Gax, respectively; A ∈ Rnx , Bnu
m , Bx ∈ Rnx×nu , and

Bu ∈ Rnx×nu ; and Fi ∈ Rnu×nx and Di ∈ Rnu×nu uniquely characterize ith agent2.

We assume that Bu and Bx are not in the range space of Bm.

In this section, we focus on heterogeneous coupling terms over directed agent-

layer coupling graphs Gax and Gau that can be different from each other (i.e.,

N a
i ∈ {N ax

i ,N au
i }). We assume that at least one agent is providing its local

state information to the distributed control system, and only lumped relative-

state information is measurable for all other agents. Moreover, for the control

design purpose, the following Assumption is satisfied in the rest of this section:

Assumption 6.2.1. The pair (A,Bm) is stabilizable. Matrices Di and Fi are

unknown, but satisfy maxi ‖Di‖2 =: ‖D‖M and maxi ‖Fi‖2 =: ‖F‖M for i ∈

{1, 2, ..., N}. Also, both graphs Gax and Gau are unknown, directed in the general

2We only need to assume that B0i = BuDi ∈ Rnx×nu and A0i = BxFi ∈ Rnx×nx . Other
than this, without loss of generality, we have selected nu as the internal dimension for both of
these matrix products in order to minimize the number of new parameters and symbols.

229



sense, and each one includes at least one connected component; maxi ‖Lax‖2 =:

‖Lax‖M and maxi ‖Lau‖2 =: ‖Lau‖M are known.

Now, for a partially-heterogeneous asymmetrically interconnected multiagent

system of agents (6.28), the distributed stabilization problem is formulated as

exponentially achieving (6.29) using some lumped relative-state information:

lim
t→0

x = 0 (6.29)

which also indicates limt→0 xi = 0 for agents i ∈ {1, 2, ..., N}.

6.2.1 Main Result

In order to achieve the distributed exponential stability (6.29) for a multiagent

system of agents (6.28), we add a virtual leader to the interconnected multiagent

system (6.28) (this name is taken from [152]):

ẋ0 = Ax0 +Bmu0 (6.30)

that is indexed by i = 0; and x0 ∈ Rnx , u0 ∈ Rnu , and (A,Bm) realizes the

nominal dynamics of (6.28). We refer to this virtual leader as “leader” and to

all agents i ∈ {1, 2, ..., N} as “followers”, and propose the following distributed

control algorithm over the control-layer communication graph Gc:

u0 = K0x0

ui = K(
∑

j∈N cfi
(xi − xj) + bci(xi − x0))

(6.31)

where N cf
i denotes the neighboring set of ith agent over Gfc corresponding to all

followers. Note that Gc denotes a special directed graph where all followers com-
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municate over an undirected graph Gfc , that is a subgraph of Gc and can be found

by removing the leader and all directed edges originating from that node. Now,

we need to design a K0 ∈ Rnu×nx that stabilizes the leader, and a K ∈ Rnu×nx that

ensures the leader-follower tracking errors ei , xi − x0 exponentially converge to

zero for all i ∈ {1, 2, ..., N}. We also emphasize that Gc can be different from Gau

and Gax which are unknown. Moreover, note that the (virtual) leader should be

connected to those followers that provide their local state information, and those

particular followers should make a leader-follower graph Gc which includes a di-

rected spanning tree. Since the control-layer graph Gc can be arbitrarily designed,

this connectedness requirement does not restrict the applicability of our design.

We rewrite (6.28) as follows:

ẋi = Axi +Bmui +Buδui(u) +Bxδxi(x) (6.32)

where δui(u) = Di

∑
j∈Naui

(ui − uj) and δxi(x) = Fi
∑

j∈Naxi
(xi − xj). Figure 6.2

shows an example for the final closed-loop multiagent system (6.30)-(6.32).

We now find the leader-follower tracking error dynamics:

ėi = Aei +Bmui +Buδui(u) +Bxδxi(e) +Bmδu0i(u0)

δui(u) = Di

∑
j∈Naui

(ui − uj)

δxi(e) = Fi
∑

j∈Naxi
(ei − ej)

δu0i(u0) = −u0

(6.33)

and control signals:

u0 = K0x0

ui = K(
∑

j∈N cfi
(ei − ej) + bciei)

(6.34)

231



Agent-L
ayer

a1

a2

a3

a4

a0

Contro
l-L

ayer

c0

c3

c4

c1

c2

Figure 6.2: An example for the proposed two-layer structure by (6.30)-(6.32).
Letters a and c stand for agent and controller, respectively. Blue: agen-
t-layer items, green arrows input couplings, and magenta arrows state cou-
plings; Black : control-layer items (note that the virtual leader agent a0 is part
of the control-layer communication graph and is shown in black). Dashed red
lines: agent-controller correspondence. Moreover, the gray nodes c1 and c2

provide their absolute state information to the distributed control algorithm.

where we should mention that the subscript i is added to δu0i(u0) only for the

purpose of consistency in notation. We also change the input argument of δxi from

x to e in order to simply emphasize this change of variables while the subscript x

shows the origin of this “state coupling” term δxi(e).

We define e = col{ei}T and find the coupled term u = (Hc⊗K)e as followers’

control signals where this coupling appears because of having a “distributed”

control algorithm in (6.34), and Hc denotes the reduced-order Laplacian matrix

of Gc. We propose the next decomposition:

u = (Hc ⊗ Inu)ν ν = (IN ⊗K)e (6.35)
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where ν = col{νi} ∈ RNnu . Now, we find an augmented tracking error model that

includes the effect of Gc as well as Gau and Gax:

ė = Āe+ B̄mν + B̄mĒmν + B̄uδu + B̄xδx + B̄u0δu0

δu = D(LauHc ⊗ Inu)ν

δx = F (Lax ⊗ Inx)e

δu0 = −(1N ⊗ Inu)u0

where Ā = IN⊗A, B̄m = IN⊗µc1Bm, Ēm = (Hc
µc1
−IN)⊗Inu , B̄u = IN⊗Bu, B̄x =

IN ⊗ Bx, D = diag{D1, ..., DN}, and F = diag{F1, ..., FN}. Also, δu = col{δui},

δx = col{δxi}, and δu0 = col{δu0i} = −(1N ⊗ Inu)u0; and Lau and Lax denote the

Laplacian matrices of Gau and Gax, respectively.

We further propose an augmented dynamical system of all leader and followers:

ξ̇ = Ãξ + B̃mσ︸ ︷︷ ︸
Nominal decoupled dynamics

+ B̃mẼmσ + B̃uδu + B̃xδx + B̃u0δu0︸ ︷︷ ︸
Coupling term

(6.36)

where Ã = diag{A, Ā}, B̃m = diag{Bm, B̄m}, Ẽm = diag{0, Ēm}, B̃u = [0, B̄T
u ]T ,

B̃x = [0, B̄T
x ]T , and B̃u0 = [0, B̄T

u0
]T ; and ξ = [xT0 , e

T ]T , and σ = [uT0 , ν
T ]T . This

model is divided into a decoupled part and a coupled part. The decoupled term

is partially affected by Gc due to the presence of µc1 in B̄m. The coupling term

includes Em that interconnects followers to each other and to the leader over Gc;

δu and δx that couple some followers to each others over Gau and Gax, respectively;

and δu0 that couples all followers to the leader and appears after introducing

the leader-follower error dynamics. Some properties of these coupling terms are

explained as follows:

Property 6.2.1. The following properties hold by multiagent system (6.36):
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• Ẽm = ẼT
m = diag{0, (Hc

µc1
− IN)⊗ Inu} is a “positive semidefinite” matrix,

• δu, δx, and δu0 satisfy the following inequalities with known quadratic up-

per bounds δTu S̄δu ≤ νT S̄νν =: δTuM S̄δuM , δTx W̄ δx ≤ eT W̄ ee =: δTxMW̄ δxM ,

and δTu0V̄ δu0 ≤ uT0 V
u0u0 =: δTu0M V̄ δu0M where X̄ = IN ⊗ X and X ∈

{S,W, V, Sν ,W e}. We introduce S = sInu for s > 0, W = wInx for

w > 0, and V = V T � 0 as three design matrices. Additionally, we find

Sv = µ2
cN‖D‖2

M‖Lau‖2
MsInu, W e = ‖F‖2

M‖Lax‖2
MwInx, and V u0 = NV .

In the rest of this section, we focus on finding an augmented control signal

σ that stabilizes (6.36) (i.e., solves (6.29)). At first, we propose an augmented

auxiliary model:

ξ̇ = Ãξ + B̃mσ + B̃uτ + B̃xθ + B̃u0ρ (6.37)

where the fictitious control signals τ = col{τi} ∈ RNnu , θ = col{θi} ∈ RNnx , and

ρ = col{ρi} ∈ RNnu are added to respectively handle the coupled modeling uncer-

tainties δu, δx, and δu0 . Now, in Design procedure 6.2.1, we provide a systematic

approach to find σ, τ , θ, and ρ.

Design procedure 6.2.1. Find the LQR control signal u0 = K0x0 that achieves

the minimum value J0 in (6.38) (subject to (6.39)), where R0f = R0 + V u0; and

Q0 = QT
0 � 0 and R0 = RT

0 � 0 are two design matrices:

J0(x0(0)) = min
u0

∫ ∞
0

(xT0Q0x0 + uT0R0fu0)dt (6.38)

ẋ0 = Ax0 +Bmu0. (6.39)
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Also, find γi = Kallei that result in (6.40) (subject to (6.41)) for i ∈ {1, 2, ..., N},

where γi = [νTi , τ
T
i , θ

T
i , ρ

T
i ]T ; Rf = R + Sν, and Qf = Q + W e; and Q = QT � 0

and R = RT = rInu � 0 for r > 0 are two design matrices in addition to

S = ST � 0, W = W T � 0, and V = V T � 0 in Property 6.2.1:

Ji(ei(0)) = min
βi

∫ ∞
0

(eTi Qfei + γTi Y γi)dt (6.40)

ėi = Aei +Bγi (6.41)

As a result, we find K0 = −R−1
0f B

T
mP0x0, and Kall = −Y −1BTP for the aggregated

matrices B = [µc1Bm, Bu, Bx, Bm] and Y = diag{Rf , S,W, V }. Equivalently, νi =

Kei, τi = Gei, θi = Hei, and ρi = Lei; with K = −µc1R−1
f BT

mP , G = −S−1BT
u P ,

H = −W−1BT
x P , and L = −V −1BT

mP . The matrices P0 = P T
0 � 0 and P =

P T � 0 are the solutions of the algebraic Riccati equations (6.42) and (6.43),

respectively:

ATP0 + P0A− P0BmR
−1
0f B

T
mP0 +Q0 = 0 (6.42)

ATP + PA− PBY −1BTP +Qf = 0 (6.43)

Stability and optimality of this design for an auxiliary multiagent system

model (6.37) are guaranteed based on the LQR optimal control formulation (with

respect to a global cost function that will be shown in Property 6.2.2). Note that

the pair (A,Bm) represents a stabilizable state space realization (6.39). Thus,

existence of the stabilizable solution P0 in (6.42) is guaranteed whenever the pair

(Q
1
2
0 , A) is observable where Q0 = Q

1
2
T

0 Q
1
2
0 . Furthermore, due to stabilizability of

(A,Bm) and because µc1 6= 0, the pair (A,B) provides a stabilizable state space
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realization (6.41). Hence, existence of the stabilizable solution P in (6.43) can be

similarly discussed for a state weighting matrix Qf .

Let us rewrite (6.37) as follows:

ξ̇ = Ãξ + B̃β (6.44)

where β = [σT , βTδ ]T denotes a vector of all control signal σ and fictitious control

signals βδ = [τT , θT , ρT ]T ; and B̃ = [B̃m, B̃δ] and B̃δ = [B̃u, B̃x, B̃u0 ]. Moreover,

let Q̃f = diag{Q0, Q̄f} where Q̄f = IN ⊗ Qf , Ỹ = diag{R̃f , S̄, W̄ , V̄ }, R̃f =

diag{R0f , R̄f}, and R̄f = IN ⊗ Rf . Now, we characterize some main properties

of the closed-loop auxiliary system (6.37) using the control and fictitious control

gains of Design procedure 6.2.1.

Property 6.2.2. Let β = β? be the aggregated control signal that results in the

minimum augmented cost function J(ξ(0)) in (6.45) subject to (6.44):

J(ξ(0)) = min
β

∫ ∞
0

(ξT Q̃fξ + βT Ỹ β)dt. (6.45)

The corresponding Hamiltonian function to this LQR cost function minimization

problem is defined by:

H = ξT Q̃fξ + βT Ỹ β + (
∂J

∂ξ
)T (Ãξ + B̃β). (6.46)

Then, the equalities in (6.47) and (6.48) are satisfied as optimality conditions for

the infinite horizon LQR control problem (6.45) subject to LTI dynamics (6.44)

by setting H = 0 and ∂H
∂β

= 0, respectively (see Sec. 3.11 in [109]):
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ξT Q̃fξ + βT Ỹ β + (
∂J

∂ξ
)T (Ãξ + B̃β) = 0 (6.47)

2βT Ỹ + (
∂J

∂ξ
)T B̃ = 0 (6.48)

Remark 6.2.1. We rewrite (6.47) as:

ξT Q̃ξ + σT R̃σ + τT S̄τ+ θT W̄θ + ρT V̄ ρ+ δTu S̄δu + δTx W̄ δx + δTu0V̄ δu0

+ (∂J
∂ξ

)T (Ãξ + B̃mσ + B̃uτ + B̃xθ + B̃u0ρ) = 0

Also, based on (6.48), we find the following four equalities:

2σT R̃f + (∂J
∂ξ

)T B̃m = 0

2τT S̄ + (∂J
∂ξ

)T B̄u = 0

2θT W̄ + (∂J
∂ξ

)T B̄x = 0

2ρT V̄ + (∂J
∂ξ

)T B̄u0 = 0

Now, we provide a sufficient condition that ensures the global exponential

stabilization of an interconnected multiagent system of agents (6.28) with state-

and input-coupled modeling uncertainties using the distributed algorithm (6.31).

Theorem 6.2.1. The distributed control algorithm (6.31) solves the exponential

stabilization problem (6.29) for a multiagent system of agents (6.28) with asym-

metric heterogeneous state- and input-coupled modeling uncertainties, if the con-

trol gain K and fictitious control gains G, H, and L of Design procedure 6.2.1

satisfy the following condition:

Q+KTRK − 2GTSG− 2HTWH − 2LTV L � 0 (6.49)

Proof. This proof is provided at Subsection 6.5.4.
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Remark 6.2.2. Note that the communication graph Gc has the same topology as

that of Section 6.1. Thus, a fully distributed version of Theorem 6.2.1 can be

established following the ideas of Section 6.1.

6.2.2 Simulation Verification

In this section, we verify the feasibility of our virtual leader-based distributed

control algorithm to achieve (6.29) for a multiagent system of four agents in Fig 6.2

(these agents are shown by blue circles). Each agent is modeled by a state space

realization (6.28) with the following state and input matrices:

A =

0 1

2 −1

 , Bm =

0

1

 , Bu =

0.02

0

 , Bx =

0.01

0.9


where A is a non-Hurwitz matrix. In simulation, we assume that all agents are

in initial rest condition. However, at time t? = 25s, a perturbation in 3rd agent

changes its state variables to x3(t?) = [10, 15]T .

We first assume that there is no distributed controller (i.e., remove all black

symbols in Fig 6.2) and local state information is available to each agent. We

design a local LQR control gain Klocal such that each closed-loop local agent has a

stable state space realization with a Hurwitz matrix Acl = A+BmKlocal. Without

any agent-layer couplings, the 3rd agent should damp this state perturbation, and,

furthermore, we expect no reactions in other agents because xi(t?) = 0 ∀i 6= 3. In

order to show the insufficiency of this blind local design for the global stabilization

purpose, interconnection parameters and matrices Di and Fi for i ∈ {1, 2, 3, 4} are
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Figure 6.3: Simulation result over the agent-layer coupling graph of Fig. 6.2
with 4 agents, where xi1 and xi2 stand for the first and second state variables of
agents (6.28) locally equipped with LQR controllers ui = Klocalxi to stabilize
the local (decoupled) dynamics ẋi = Axi + Bmui for i ∈ {1, 2, 3, 4}. We do
implement the block control-layer symbols in Fig. 6.2 since we do not use any
distributed stabilizing systems.

chosen such that the interconnected multiagent system of locally stabilized agents

has two eigenvalues in the right half plane. As is depicted in Fig. 6.3, while only

the 3rd agent is nominally perturbed, the entire multiagent system’s response is

unbounded due to the presence of agent-layer physical couplings. This indicates

the need for a multiagent system-level (distributed) stabilizing system.

Now, we assume that the previously designed local control gain Klocal does

not exist any more (i.e., we deal with locally unstable agents). Based on the

Design procedure 6.2.1, we design the control gain K together with all virtual and

fictitious control gains K0, G, H, and L satisfying the sufficient condition (6.49).

The simulation result is presented in Fig. 6.4 assuming the same interconnection

matrices and excitation scenario as Fig. 6.3. It shows the entire multiagent system
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Figure 6.4: Simulation result after using the distributed stabilizing algorithm
in Design procedure 6.2.1 and Theorem 6.2.1 over the proposed structure of
Fig. 6.2. The simulation scenario is the same as Fig. 6.3; however, we no longer
use the locally stabilizing control gain Klocal.

has a stable behavior in response to the 3rd agent’s perturbation at time t? = 25s.

This verifies the claim of Theorem 6.2.1.

6.3 Revisiting the results of Chapter 4

In Chapter 4, we designed two distributed decoupling algorithms for physi-

cally coupled multiagent systems. In those designs, the control-layer communi-

cation graphs were the same as the agent-layer coupling graphs. In Section 5.2,

the coupling (also communication) was described over an undirected graph. In

Section 5.3, we designed two distributed algorithms over a special type of directed

leader-follower graph. In Section 6.1, we discussed the need for a global knowledge
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in the distributed decoupling strategies of Chapter 4, and proposed a fixed-gain

fully distributed decoupling strategy in order to relax this requirement.

By following the steps of Section 6.1, it is possible to revise the results of

Section 5.3 and find two fixed-gain fully distributed decoupling algorithms. In

next corollary, we address the fully distributed problem for the state and output

feedback scenarios in Section 5.2 over an undirected (leaderless) graph:

Corollary 6.3.1. Based on the leaderless state and output feedback algorithms of

Section 5.2, the fixed-gain fully distributed decoupling problem is solved whenever

λ2 is substituted by 2(1− cos( π
N

)), and λN by 2(N − 1).

Proof. This proof is available at Subsection 6.5.5.

6.4 Summary and bibliography

In this Chapter, we propose multi-layer distributed control structures for two

classes of physically interconnected multiagent systems. In Section 6.1, we con-

sider a class of partially-unknown Lur’e time-varying nonlinear multiagent sys-

tems where agents are coupled to each other by some state-dependent nonlinear

functions. These nonlinear functions are unknown but satisfy some known norm

bounded conditions, and the state-dependent interconnection is explained by an

(unknown) agent-layer coupling graph. Controllers are allowed to communicate

over a control-layer communication graph that can be different from the agent-

layer physical coupling graph. We propose two modified LQR-based formulations

and design some distributed decoupling systems using only relative-state measure-

ments. Furthermore, we re-think about the proposed formulation and develop
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a fixed-gain fully distributed LQR-based decoupling system without any global

information about graph topologies. This enables us using the network design

techniques to optimize the communication topology independent of the control

protocol at a later time (and also, in each start, replace the control-layer commu-

nication network without being worried about its effect on the distributed control

algorithm’s gains).

In the distributed decoupling control, we assume that agents’ absolute infor-

mation is measurable. This is not an unrealistic assumption as has been justified

in [11], [58], [66], [79], and [151]. However, in some instances, agents might not be

willing to share their absolute information to the distributed control-layer while

participating in a cooperative task completion by sharing their (lumped) relative

information in each neighborhood. In Section 6.2, we propose a class of multiagent

systems with unknown physical interconnections that appear through some het-

erogeneous coupled-state and coupled-input terms in the state space model which

are described over two different unknown coupling graphs. In fact, this class of

multiagent systems resembles the asymmetric large-scale systems with unknown

coupling terms. We assume that only a few agents provide their absolute state

information, introduce a distributed stabilization problem, add a virtual leader

(this name is taken from [152]), re-state the problem as a leader-follower consen-

sus task, and systematically design the distributed control gain using the modified

LQR approach for an auxiliary multiagent system model. We show that the global

exponential stability of the closed-loop system is guaranteed if a sufficient condi-

tion is satisfied.
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6.5 Appendix: proofs

We have proposed the main results of this chapter through several theorems

and corollaries. For the sake of readability, we have not discussed their proofs

within the main body of this chapter. In this Appendix section, we go through

these proofs.

6.5.1 Proof of Theorem 6.1.1 (page 224)

We aggregate (6.15) and (6.18) for i ∈ {1, 2, ..., N}, and find (6.11). More-

over, an aggregated leader-follower cost function can be obtained based on (6.14)

and (6.17):

J(ξ(0)) =

∫ ∞
0

{ξT Q̃ξ + τT R̃τ + σT S̃σ + F T
tM R̃FtM +GtM S̃GtM}dt

The optimal control signal τ = τ ? and fictitious control signal σ = σ? of

this theorem achieves the minimum cost J(ξ(0)) subject to (6.11). We need to

show the exponential stability of the closed-loop system (6.9) in the presence of

modeling uncertainties by implementing only τ (i.e., without the fictitious control

signal σ). We introduce the following candidate Lyapunov function for t ≥ 0:

V (ξ(t)) = ξT (t)P̃ ξ(t) � 0

where P̃ = diag{P1l, P̄1f}, P̄1f = IN ⊗ P1f , and P1l and P1f are respectively the

positive definite solutions of AREs (6.12) and (6.13). We notice that V (ξ(0)) =

J(ξ(0)) = minτ,σ
∫∞
t
{ξT Q̃ξ+τT R̃τ+σT S̃σ+F T

tM R̃FtM +GtM S̃GtM}dt′ � 0 is sat-
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isfied subject to the augmented auxiliary system (6.11). The following Hamilton-

Jacobi-Bellman equation holds substituting Jξ by Vξ = ∂V (ξ)
∂ξ

:

min
τ,σ
{ξT Q̃ξ+ τT R̃τ +σT S̃σ+F T

tM R̃FtM +GtM S̃GtM +V T
ξ (Ãξ+ B̃mτ + B̃uσ)} = 0

Consequently, implementing the optimal gains K0 and K, and fictitious gains L0

and L, the followings are satisfied by triple (ξ, τ, σ):

ξT Q̃ξ + τT R̃τ + σT S̃σ + F T
tM R̃FtM +GtM S̃GtM + V T

ξ (Ãξ + B̃mτ + B̃uσ) = 0

2τT (R̃ + R̃τ ) + V T
ξ B̃m = 0

2σT S̃ + V T
ξ B̃u = 0

Now, the time deviation of this candidate Lyapunov function along the uncer-

tain trajectory (6.9) results in the following inequality:

V̇ (ξ) ≤ −ξT Q̃ξ + 2σT S̃σ + uT0R
Ftu0u0 + eT R̄τee

≤ −xT0 (Q0 −KT
0 R

u0K0 − 2LT0 S0L0)x0 −
∑N

i=1{eTi (Q−Rτe − 2LTSL)ei}

where, in order to find this upper-bound on V̇ , we need to use −2τT (R̃+R̃τ )Ẽτ =

−2νT R̄Ēν ≤ 0 and F T
t (R̃ + R̃τ )Ft ≤ F T

tM R̃FtM + eT (IN ⊗Rτe)e.

Because (6.16) and (6.19) are satisfied, we find V̇ ≺ 0. Now, based on

the Lyapunov Theorem 2.3.1, the closed-loop Lur’e nonlinear multiagent sys-

tem (6.9) (subject to the modeling uncertainties) is globally asymptotically sta-

ble3. We know a1 = min(λmin(P1l), λmin(P1f )), a2 = max(λmax(P1l), λmax(P1f )),

3Note that, since there is no hidden “undamped” mode in the sense of Kalman decomposition,
asymptotic stability around the equilibrium point origin is achievable for this type of systems.
(See Figure 2.2.)
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a3 = min(λmin(Q0 −KT
0 R

u0K0 − 2LT0 S0L0), λmin(Q− Rτe − 2LTSL)), and b = 2

to prove the exponential stability based on Theorem 2.3.2. Finally, based on the

proposed reformulation of this section, we conclude that the distributed decou-

pling of agents (6.3) in the presence of mixed matched and unmatched unknown

nonlinear couplings is achieved over two fixed graphs Ga and Gc, and using two

static gains K0 and K.

6.5.2 Proof of Theorem 6.1.2 (page 226)

We aggregate (6.23) and (6.26) ∀i ∈ {1, 2, ..., N}, and find (6.21). More-

over, the aggregated leader-follower cost function can be obtained based on (6.22)

and (6.25):

J(ξ(0)) =

∫ ∞
0

{ξT Q̃ξ + τT R̃τ + θT S̃θ + F T
tM R̃FtM +GT

tM S̃G
T
tM}dt

We know that the optimal control and fictitious control signals τ = τ ? and θ = θ?

achieves the minimum J(ξ(0)) subject to (6.21) such that the Hamilton-Jacobi-

Bellman equation minτ,θ{ξT Q̃ξ+τT R̃τ+θT S̃θ+F T
tM R̃FtM+GT

tM S̃G
T
tM}+JTξ (Ãξ+

B̃mτ + B̃uθ)} = 0 is satisfied where Jξ = ∂J(ξ)
∂ξ

. In the rest, we show that,

in the presence of nonlinearly interconnected modeling uncertainties, the closed-

loop system (6.20) will be stabilized using only τ (i.e., without implementing the

fictitious control signal θ).

We introduce a candidate Lyapunov function for t ≥ 0:

V (ξ(t)) = ξT (t)P̃2ξ(t) � 0
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V (ξ(0)) = J(ξ(0)) = min
τ,θ

∫ ∞
0

{ξT Q̃ξ + τT R̃τ + θT S̃θ + F T
tM R̃FtM +GT

tM S̃G
T
tM}dt′

subject to (6.21) (where V (ξ(0)) = J(ξ(0))). Hence, the control and fictitious

control gains of this theorem are such that the triple (ξ, τ, θ) satisfies the following

three equalities:

ξT Q̃ξ + τT R̃τ + θT S̃θ + F T
tM R̃FtM +GT

tM S̃G
T
tM + V T

ξ (Ãξ + B̃mτ + B̃uθ) = 0

2τT (R̃ + R̃τ ) + V T
ξ B̃m = 0

2θT S̃ + V T
ξ B̃u = 0

Now, along the uncertain trajectory (6.20), we find:

V̇ (ξ) ≤ −xT0 (Q0 −KT
0 R

u0K0 − LT0 S0L0)x0

−
∑N

i=1 e
T
i (Q−Rτe − 2KTRK − 2LTSL)ei

where we have used the definition of Ẽ, given by (6.20), to find −2τT (R̃+R̃τ )Ẽτ ≤

2νT R̄ν.

We know that V̇ (ξ) ≺ 0 whenever the conditions (6.24) and (6.27) are satisfied.

Therefore, based on the Lyapunov Theorem 2.3.1, and recalling the fact that there

is no hidden undamped mode (see the proof of Theorem 6.5.1), the origin of closed-

loop multiagent system (6.20) (with interconnected nonlinear modeling uncertain-

ties) is asymptotically stable. If we set a1 = min(λmin(λmin(P2l), λminP2f )), a2 =

max(λmax(P2l), λmax(P2f )), a3 = min(λmin(Q0 −KT
0 R

u0K0 − LT0 S0L0), λmin(Q −

Rτe − 2KTRK − 2LTSL)), and b = 2 in theorem 2.3.2, we can prove the expo-

nential stability of the origin. Equivalently, based on the proposed reformulation

of this section, we conclude that the distributed decoupling of agents (6.3) is also
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guaranteed in the presence of mixed matched and unmatched unknown nonlinear

couplings is achieved over two fixed graphs Ga and Gc, and using two static gains

K0 and K.

6.5.3 Proof of Corollary 6.1.1 (page 228)

Based on the Gershgorin disk Theorem 2.1.1 we know that µaN ≤ 2N − 1,

µcN ≤ 2N − 1, and λmax(bab
T
a ) ≤ N . Still all eigenvalues of the symmetric matrix

Ē = ĒT = (( Hc
2N−1

− IN) ⊗ Inz) in (6.20) belong to the interval (−1, 0] (a zero

eigenvalue exists only if µcN = 2N − 1). Therefore, in the proof of Theorem 6.1.2,

the inequality V T
ξ B̃mẼτ ≤ 2νT R̄ν is still satisfied. Thus, the rest remains valid.

6.5.4 Proof of Theorem 6.2.1 (page 237)

We already have designed the required control gain K in (6.31) for a multiagent

system of (6.28). Moreover, we do not need to “physically” implement the leader’s

controller u0, because it is a virtual agent. Thus, the main claim of this theorem

is about globally achieving exponential stability of the closed-loop multiagent

system in the presence of coupled modeling uncertainties δu and δx in (6.28),

without implementing the fictitious controllers τ , θ, and ρ as either physical or

virtual controllers. In order to prove this claim, we propose a candidate Lyapunov

function:

Ω(ξ) = ξT (t)P̃ ξ(t) � 0 (6.50)

where P̃ = diag{P0, P̄}, P̄ = IN ⊗P , and P0 and P are positive definite solutions

of AREs in Design procedure 6.2.1.
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In order to use (6.50) as the required Lyapunov function, we need to find

its time deviation along the uncertain trajectory (6.36). We use the fact that

Ω(ξ(0)) = J(ξ(0)) is satisfied as a boundary condition and J(ξ(0)) is given in

Property 6.2.2. Thus, using the gains in Design procedure 6.2.1, the triple the

conditions of Remark 6.2.1 are satisfied, and we find:

ξT Q̃ξ+σT R̃σ+τT S̄τ+θT W̄θ+ρT V̄ ρ+δTuM S̄δuM+δTxMW̄ δxM+δTu0M V̄ δu0M+ΩT
ξ ξ̇ = 0

(6.51)

where Ωξ = ∂Ω
∂ξ

, and ξ̇ = Ãξ + B̃mσ + B̃uτ + B̃xθ + B̃u0ρ based on the auxiliary

dynamics (6.37) (we re-emphasize that Property 6.2.2 is satisfied for the auxiliary

model (6.44) that is the same as (6.37)). Also, we know:

2σT R̃f + ΩT
ξ B̃m = 0, 2τT S̄ + ΩT

ξ B̄u = 0

2θT W̄ + ΩT
ξ B̄x = 0, 2ρT V̄ + ΩT

ξ B̄u0 = 0
(6.52)

Consequently, along the uncertain trajectory (6.36), we write Ω̇(ξ) as follows:

Ω̇(ξ) ≤ −ξT Q̃ξ − σT R̃σ + 2τT S̄τ + 2θT W̄θ + 2ρT V̄ ρ

− (τ + δu)
T S̄(τ + δu)− (δTuM S̄δuM − δTu S̄δu)

− (θ + δx)
T W̄ (θ + δx)− (δTxMW̄ δxM − δTx W̄ δx)

− (ρ+ δu0)
T V̄ (ρ+ δu0)− (δTu0M V̄ δu0M − δ

T
u0M

V̄ δu0M)

≤ −xT0Q0x0 −
∑N

i=1 e
T
i (Q+KTRK − 2GTSG− 2HTWH − 2LTV L)ei

which has been found based on some manipulations using (6.51) and (6.52), and

noting that −2σT R̃f Ẽmσ = −2νT R̄Ēmν ≤ 0 (see Property 6.2.1.a and recall
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that R̄f = IN ⊗ Rf � 0). Thus, whenever (6.49) is satisfied, we can show that

the exponential stability is achieved for a multiagent system agents (6.28) with

state- and input-coupled modeling uncertainties, and independent of the agents’

initial state values. (In Theorem 2.3.2, set a3 = min(λmin(Q0), λmin(Q+KTRK−

2GTSG− 2HTWH − 2LTV L)). Other parameters are easy to find.)

6.5.5 Proof of Corollary 6.3.1 (page 241)

We use Gershgorin disk Theorem 2.1.1 to find that the maximum eigenvalue

of an undirected graph’s Laplacian matrix satisfies λN ≤ 2(N − 1). Additionally,

we know that its smallest positive eigenvalue satisfies λ2 ≥ 2η(G)(1−cos( π
N

)) (see

Section III in [79] about the spectrum of graphs4). Here, η(G) denotes the edge

connectivity of G which is the minimum number of edges whose removal results

in a disconnected graph. For an unknown graph, we take η(G) = 1 and substitute

λ2 by 2(1− cos( π
N

)) to find a fixed-gain fully distributed algorithm. We note that

Ē = (( Λd
2(1−cos( π

N
))
− IN−1)⊗ Inu) < ((Λd

λ2
− IN−1)⊗ Inu) < 0. Thus, the results of

Section 5.2 are still valid.

4This is a standard property of undirected graphs and was taken from Bollobas B, Modern
Graph Theory, Springer, 2002. However, we have found it in [79].

249



Chapter 7

Distributed Tracking in

Physically Coupled Multiagent

Systems with Unknown Coupling

Structures

In Chapters 3, we proposed a one-step control-theoretic strategy to design

distributed consensus algorithms ensuring leaderless and leader-follower collective

behavior in multiagent systems in the presence of various sources of modeling

mismatch. While agents could reach agreement, in simulation, we showed that

ensuring leaderless consensus was not sufficient for the control of multi-vehicle and

multi-robot systems in the presence of (road profile or wind) disturbances which,

by persistently exciting the null space of multi-agent system’s collective dynamics

(agreement subspace), resulted in continuous increase in the vehicle’s speed. To
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overcome this issue using the same tool, in Chapter 4, we further developed sta-

tionary consensus algorithms by which all vehicles or robots could reach agreement

on velocity and position, and stop at a fixed point. In Chapter 5, we used this

tool for the distributed stabilization purpose in multiagent systems with linear

interconnected modeling uncertainties. In Chapter 6, we further generalized this

approach for the stabilization problem in multiagent systems with interconnected

nonlinear modeling uncertainties. The ideas of Chapter 6 could be viewed as

the two-layer distributed control of multiagent systems with uncertain agent-layer

model and a-priori known control-layer communication topology among agents.

In fact, although we did not use it, this latter layer provided a design degree of

freedom to improve the closed-loop interconnected multiagent systems’ behavior.

In this chapter, we consider robust cooperative tracking problem (vs. the sta-

bility problem in Chapters 5 and 6) for three classes of heterogeneous nonlinear

multiagent systems: first-, second-, and mixed first- and second-order agents in

which each subsystem is equipped with appropriate sensing, computation, and

communication technologies. Based on a cyber-physical viewpoint where assum-

ing a completely-known system is unrealistic, we propose a multi-layer frame-

work in which the physical agent-layer’s interconnected dynamics are described

by partially-known time-varying nonlinearities, and the control-layer should be de-

signed to track a reference command that is sent to only a few agents. We propose

three linear cooperative tracking problems and, by treating each inter-agent com-

munication link as a proportional gain (controller), reformulate them as control-

layer topology and communication strength co-design challenges to be addressed

based on the modified LQR problems with globally coupled cost functions. At
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first, we use matrix-algebraic tools and derive analytical solution for the control-

layer communication topology of multiagent systems with first-order agent-layer

interconnected dynamics. Then, for multiagent systems with physically-coupled

second- or mixed-order agents, we use this result and find closed-form solutions

for the multi-layer communication topology design challenges. In particular, we

show that each communication (sub-) topology of the control-layer can be de-

signed based on a nonlinear matrix equation that has the same structure as in the

first-order problem.

We also provide several algorithms to systematically find the structurally non-

symmetric graph topologies to be used in the proposed linear cooperative tracking

protocols. In addition to robust tracking, we prove the proposed multi-layer linear

distributed protocols guarantee an upper-bound on quadratic cost functions and

provide degrees of freedom to adjust tracking convergence rate as performance cri-

teria. For the existing (known) communication digraphs, we further unify these

results and propose systematic approaches to find bounds on the maximum tol-

erable nonlinear uncertainties in the agent-layer dynamics. We also investigate

guaranteed-cost control-layer design problems relying on the results of this chap-

ter.

The rest of this chapter is organized as follows. In Section 7.1, although we

rely on the preliminaries of Chapter 2, we introduce a few definitions and symbols

which are devoted to only this chapter. In Section 7.2, we propose the main results

of this chapter on multi-layer distributed tracking for first-, second-, and mixed-

order interconnected multiagent systems. In Section 7.3, we verify the feasibility

of these theoretical results through simulation studies. In Section 7.4, along with
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some relevant references from the literature, we provide concluding remarks on

the proposed viewpoint of this chapter.

7.1 Notation

The symbol [A]sym = A+AT

2
represents the symmetric component of matrix

A, and exp denotes exponential function. For vector x ∈ Rn, the element-wise

inequality x > 0 means all entries of x are positive scalars, and x ≥ 0 represents

a vector with non-negative entries and at least one positive value. A nonsingular

M -matrix A = [aij] ∈ Rn×n is defined by the property A = sIn − B where

s > ρ(B) and ρ is the spectral radius of B ≥ 0 (all entries of B are non-negative

real numbers). Inverse of an M -matrix A satisfies A−1 ≥ 0. The principal square

root of matrix A ∈ Rn×n, that has no eigenvalue in the left-hand side of complex

plane, is denoted by A1/2 with all eigenvalues in the right half of complex plane.

The principal square root of a nonsingular M -matrix is a nonsingular M -matrix

with positive eigenvalues.

This chapter is based on the weighted digraph G(V , E ,A) with a node set

V , edge set E , and weighted adjacency matrix A = [aij] where aij ≥ 0 denotes

the weight of edge (j, i) ∈ E for i, j ∈ V , and aii = 0 (this definition does not

admit self loops). A weighted digraph G is structurally symmetric whenever the

corresponding 0−1 adjacency matrix is symmetric. A 0−1 adjacency matrix can

be found if we replace aij > 0 by 1 in the adjacency matrix A. A graph Laplacian

matrix L ∈ RNnodes×Nnodes is determined by Lij = −aij and Lii =
∑Nnodes

j=1 aij.

In particular, based on the reference-agent tracking problem of this chapter with

253



Nnodes = Na + 1 and Na agents, Gra is abstracted by graph Laplacian matrix

Lra ∈ R(Na+1)×(Na+1) which is partitioned as follows:

Lra =

 0 0

−ba Ha

 , Ha = La + Ba, Ba = diag{ba}

where the first row corresponds to the reference generator, La ∈ RNa×Na denotes

the inter-agent graph Laplacian matrix, ba = col{bai } ∈ RNa , and bai represents the

directed edge from reference generator to ith agent. Since, the condition L1N? = 0

holds in any graphs with N? nodes, we can completely characterize Gra based on

our knowledge about Ha ∈ RNa×Na and, therefore, we name Ha a reduced-order

Laplacian matrix (note that Ha1N = ba).

Remark 7.1.1. We consider two agent- and control-layer graphs which are spec-

ified by sub- or super-script a and c, respectively. Each layer may include various

graphs for the agents’ first and second state variables x and v that are respectively

distinguished by sub- or super-script x and v. Let ? ∈ {x, v}. We do not need

to completely know the topologies of Ga? in the proposed algorithms; however, we

assume the induced 2-norms ‖La?‖2 ≥ 0 are known scalars in which La? ∈ RN×N

denotes the Laplacian matrix corresponding to Ga? and N is the total number of

agents. The agent-layer graph Ga? visualizes interconnection in multiagent systems

and the physical neighboring set N a?
i includes the list of agents that share their

variables with the ith agent. The control-layer digraphs Gc? are initially unknown

and left to be determined. �
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7.2 Main results

In this section, we first investigate first- and second-order distributed cooper-

ative tracking problems in physically coupled heterogeneous multiagent systems

with unknown time-varying nonlinear agent-layer dynamics. Then, we generalize

these results to the cooperative tracking for mixed-order interconnected multi-

agent systems. In each scenario, we first propose a control-theoretic approach

to design fixed control-layer communication digraph Gcx or Gcv with structurally

symmetric topologies. We then extend the result and systematically design struc-

turally non-symmetric fixed digraphs that guarantee robust stability and per-

formance of the closed-loop multiagent system. Finally, we discuss the maximum

tolerable interconnected time-varying nonlinear uncertainties by the given commu-

nication digraph to be used in the proposed linear distributed tracking algorithms,

and also investigate guaranteed-cost design challenges for the given upper-bound

on the linear quadratic cost function.

7.2.1 First-order cooperative tracking

In this subsection, we consider a multiagent system of N physically coupled

first-order agents with heterogeneous time-varying nonlinear agent-layer dynam-

ics:

ẋi(t) = fi(zi(t), t) + uxi(t), zi(t) = Cxi

N∑
j=1

aaxij (xi(t)− xj(t)) (7.1)
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where i ∈ {1, 2, ..., N} denotes agent number, and aaxij ≥ 0 represents (i, j)th entry

of the adjacency matrix corresponding to the agent-layer x-variable (physical)

coupling digraph Gax; xi ∈ R indicates the ith agent’s state variable, uxi ∈ R

control input, and zi ∈ R coupling variable. The nonlinear functions fi and

coupling matrices Cxi are unknown but satisfy the following conditions.

Assumption 7.2.1. The nonlinear functions fi : R× R→ R are piecewise con-

tinuous in time and Lipschitz in state variable1, satisfy norm-bounded conditions

f 2
i (zi, t) ≤ αiz

2
i (t) where αi ≥ 0 are known real-valued scalars, and fi(0, t) = 0 are

satisfied such that the origin is an equilibrium point of agents’ unforced nonlinear

dynamics. Moreover, Cxi ≤ γcxi for known real-valued scalars γcxi ≥ 0.

We consider a constant reference tracking problem for i ∈ {1, 2, ..., N}:

lim
t→∞

(xi(t)− r) = 0 (7.2)

where the reference signal r ∈ R is sent to only a few agents. This reference r can

be generated by a command generator or virtual leader:

ẋ0(t) = 0 (7.3)

which is initialized at x0(0) = r, and x0 ∈ R denotes the command generator’s

state variable. We need to design a communication algorithm such that all agents

cooperatively track the reference signal or, equivalently, agree on the command

generator’s state variable: limt→∞(xi(t)− x0(t)) = 0.

1We do not directly use Lipschitz condition in this chapter’s derivations. But it is required
to ensure the existence and uniqueness of solutions.
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We propose a cooperative tracking algorithm:

uxi(t) = −(
N∑
j=1

acxij (xi(t)− xj(t)) + bcxi (xi(t)− x0(t))) (7.4)

where acxij , b
cx
i ≥ 0 denote the weights of control-layer x-variable communication

(information exchange) graph, and should be designed to ensure robust first-order

tracking (7.2) with a guaranteed upper-bound on the following quadratic cost

function2:

J1(ex(0)) =

∫ ∞
0

(eTx (t)Qxex(t) + uTx (t)Rxux(t))dt ≤ eTx (0)P1ex(0) (7.5)

where ex = col{exi} ∈ RN and exi = xi − x0 denotes the ith agent’s x-variable

reference tracking error, and ux = col{uxi} ∈ RN . Also, the M−matrix Qx =

QT
x ∈ RN×N � 0 and Rx = RT

x = diag{rxi} ∈ RN×N � 0 (with real-valued

scalars rxi > 0) are two design matrices to respectively weight the state tracking

error and control input variables. The constant matrix P1 = PT1 ∈ RN×N � 0 is

either unknown (to be found) or given a-priori as will be discussed later in this

subsection. We drop the time variable t for the sake of readability.

Remark 7.2.1. In this subsection, we seek robust cooperative tracking and per-

formance in time-varying nonlinear multiagent systems of first-order intercon-

nected agents based on the linear protocol (7.4). This is a multiagent system-

level design problem and includes conventional node-wise consensus algorithm

2Due to the presence of coupled modeling uncertainties, we cannot explicitly find the exact
minimum value of this cost. Thus, we propose a guaranteed cost problem.
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u′xi(t) = −kcx(
∑N

j=1 a
′
ij(xi(t) − xj(t)) + b′i(xi(t) − x0(t))) as a special case (with

known a′ij, b
′
i ≥ 0 and unknown consensus gain kcx to be designed). �

In order to design a control-layer graph topology Gcx, we first rewrite the

agent’s dynamics (7.1) based on the x-variable tracking error:

ėxi = fi(zi) + uxi and zi = Cxi

N∑
j=1

aaxij (exi − exj)

and, similarly, find a new representation for the cooperative tracking protocol (7.4):

uxi = −(
N∑
j=1

acxij (exi − exj) + bcxi exi)

Over the agent-layer coupling digraph Gax, we find the aggregated tracking

error dynamics:

ėx = f(z) + ux and z = CxLaxex (7.6)

where z = col{zi}, f(z) = col{fi(zi)}, and Cx = diag{Cxi}. We also find the

aggregated cooperative tracking signal over Gcx:

ux = −Hcxex (7.7)

in which Hcx denotes the reduced-order Laplacian matrix corresponding to Gcx

which should be appropriately designed.

In the following design procedure, we propose a control-theoretic approach

and find candidate communication graph topology Gcx to be used in distributed

tracking algorithm (7.4). Let Qxm = QT
xm = Qx + Rxf � 0 be an M -matrix,

Rxf = rxfIN , and rxf = maxi{rxiαiγ2
cxi}‖Lax‖2 for i ∈ {1, 2, ..., N}.
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Design procedure 7.2.1. Let U1m be the set of all admissible stabilizing con-

trol signals for a completely known dynamical system in the modified LQR prob-

lem (7.8), and ux = Kxex be the control signal that minimizes this quadratic cost

function. The reduced-order Laplacian matrix Hcx = −Kx = R−1
x P character-

izes the candidate communication-layer graph topology Gcx for first-order tracking

problem (7.2) if the solution P = P T ∈ RN×N � 0 of N × N nonlinear matrix

equation (7.9) satisfies the condition (7.10).

min
ux∈U1m

J1m(ex(0)) =
∫∞

0
(eTxQxme

T
x + uTxRxux)dt

subject to ėx = ux

(7.8)

Qxm − PR−1
x P = 0 (7.9)

P1N ≥ 0 (7.10)

The reason to impose an additional condition (7.10) on the positive definite

M−matrix P will be clarified later in this subsection. In the next remark, we

explain a few facts about Design procedure 7.2.1.

Remark 7.2.2. In the standard LQR problem (2.23), both state and input weight-

ing matrices can be arbitrarily tuned as two design degrees of freedom. We name

the minimization (7.8) a “modified LQR” problem because, although Qx � 0 and

Rx � 0 are still two design matrices, we should necessarily use a modified state

weighting matrix Qxm which depends on Rx and our partial knowledge about inter-

connected nonlinearities (see Remark 7.1.1 and Assumption 7.2.1). Furthermore,

note that the quadratic cost function (7.8) is minimized subject to a completely
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known physically “decoupled” multiagent system of integrators, although the origi-

nal cost function (7.5) is given based on the unknown trajectories of interconnected

agents (7.1). This modified LQR problem can be solved based on the nonlinear ma-

trix equation (7.9) that is a “standard” ARE for which powerful numerical solvers

exist. Finally, the existence of a unique stabilizing P � 0 depends on observability

and stabilizability of the triple (Cxm,0, IN) where CT
xmCxm = Qxm. �

It is possible to directly solve ARE (7.9) using existing software packages and

recommend a candidate Hcx. However, we further propose an analytical represen-

tation for the candidate Gcx which handles computational complexities in solving

this ARE for multiagent systems with a high number of agents. This closed-form

solution can also be used to appropriately select state and input weighting matri-

ces Qx and Rx that ensure robust cooperative tracking (7.2) with a desired-level

of robust performance in (7.5). From a matrix-algebraic viewpoint, the unique

symmetric positive definite stabilizing solution of nonlinear matrix equation (7.9)

can be written as follows:

P = R1/2
x (R−1/2

x QxmR
−1/2
x )1/2R1/2

x (7.11)

where R
1/2
x = diag{√rxi}, and the principal square root of R

−1/2
x QxmR

−1/2
x can

be calculated using the approach in Subsection 7.1 and necessarily is a positive

definite symmetric M -matrix. Thus, based on Design procedure 7.2.1, we suggest

the following reduced-order Laplacian matrix as the candidate graph topology Gcx

of this subsection:

Hcx = R−1/2
x (R−1/2

x QxmR
−1/2
x )1/2R1/2

x (7.12)
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This candidateHcx is obtained based on a non-diagonalN×N matrixQx which

corresponds to a global coupled cost function J1m in (7.8). Alternatively, we may

consider a set of N decoupled cost functions by letting Qx = diag{qxi} with qxi > 0

and, consequently, Qxm = diag{qxmi} with qxmi = qxi + rf for i ∈ {1, 2, ..., N}.

We define A = 0 and B = IN , and use the matrix differential equation (2.29) to

decompose the optimal control signal ux of Design procedure 7.2.1 into a set of

N decoupled control gains Kx = diag{Pi
ri
} where Pi =

√
riqxmi ∈ R > 0 are the

solutions of N scalar AREs qxmi − riP 2
i = 0. Then, we find:

Hcx = diag{
√
qxmi
rxi
} (7.13)

Indeed, in the sense of the modified LQR problem in Design procedure 7.2.1,

this proves our initial guess that J1m(e(0)) =
∑N

1 J1mi(exi(0)) subject to ẋ = ux

with a set of N local cost functions J1mi(exi(0)) =
∫∞

0
(qxmie

2
xi + rxiu

2
xi)dt (subject

to completely known decoupled integrators ẋi = uxi) could be minimized inde-

pendently using N scalar modified LQR problems. By the definition of reduced

order Laplacian matrix in Subsection 7.1 , we know Hcx = Lcx + Bcx. Since the

off-diagonal terms of Hcx in (7.13) are equal to zero, we conclude the inter-agent

graph Laplacian matrix Lcx is zero. Thus, Hcx = Bcx = diag{bcxi} where bcxi ∈ RN

represents directed edge from the command generator to ith agent weighed by√
qxmi
rxi

for i ∈ {1, 2, ..., N}.

Independent of the structure of Qxm and Rx in Design procedure 7.2.1, we

know Gcx satisfies the next property which is adapted based on the fundamental

properties of infinite horizon optimal control design.
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Property 7.2.1. The candidate graph topology Gcx in Design procedure 7.2.1,

formulated by the reduced-order Laplacian matrix Hcx, results in a pair (ex, ux)

with ux = −Hcxex that satisfies the following equalities:

eTxQxmex + uTxRxux + J?T1m,exux = 0

2uTxRx + J?T1m,ex = 0

where J?T1m is the optimal cost in (7.8), and J?1m,ex =
∂J?1m
∂ex

.

We now need to discuss the feasibility of these analytical solutions as reduced-

order graph Laplacian matrix by verifying that Hcx is an M -matrix, all of its

eigenvalues are in the right half plane, and it has non-negative row sums with

at least one positive entry (i.e., Hcx1N ≥ 0). The reduced-order Laplacian ma-

trix (7.13) satisfies all requirements and is necessarily a feasible star topology

for the control-layer communication graph whenever all agents have access to the

reference command. Regarding the candidate topology (7.12), we note that the

unique solution of ARE (7.9) can be “represented” in various equivalent man-

ners: P = Qxm(R−1
x Qxm)−1/2 and P = (QxmR

−1
x )−1/2Qxm in addition to the

apparently symmetric representation (7.11). We choose the design M -matrices

Qx and Rx such that all eigenvalues of R−1
x Qxm are in the right half plane. Then

P = Qxm(R−1
x Qxm)−1/2 results in Hcx = (R−1

x Qxm)1/2 which is necessarily an M -

matrix with all eigenvalues in right-half plane (by definition of principal square

root for M -matrices). The third requirement on row sums is already guaranteed

by condition (7.10) and noticing the fact Hcx = R−1
x P . Based on this discussion,

we can discuss the effect of design matrices on the candidate topology Gcx based
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on the closed-form solution of ARE (7.9). We first use P = (QxmR
−1
x )−1/2Qxm

and find Hcx = R−1
x (QxmR

−1
x )−1/2Qxm that indicates Hcx1N > 0 for any M -

matrices that satisfy Qxm1N > 0 because (QxmR
−1
x )−1/2 ≥ 0 (a property of

M -matrices); nevertheless, this means a directed communication link exists be-

tween the reference generator to each agent. On the other hand, we can look at

P1N = (QxmR
−1
x )−1/2(Qxm1N) ≥ 0 as a non-negative matrix times a vector with

”a few negative entries” and iteratively search for a positive definite M -matrix

Qx that results in the row-sum vector of modified state weighting matrix Qxm

has a few zero or negative values as its entries. Although we can follow this idea

and iteratively search for an Hcx = R−1
x P with a few reference-to-agent connec-

tions, it is still a heuristic approach rather than a systematic one and, further,

is limited to structurally symmetric control-layer topology Gcx. In the next al-

gorithm, we address these issues by proposing a systematic framework to design

structurally non-symmetric weighted digraph Gcx to be used in the first-order co-

operative tracking algorithm (7.4). We further find the associated cost function

in modified LQR problem (7.8).

Algorithm 7.2.1. Select an arbitrary symmetric reduced-order Laplacian matrix

Halg
x ∈ RN×N and a diagonal input weighting matrix Rx ∈ RN×N . Then,

1. Structurally symmetric control-layer: Halg
cx = R−1

x Halg
x minimizes quadratic

cost function (7.8) with weighting matrices Qxm = (Halg
cx )TRxHalg

cx and Rx.

If the modified state weighting matrix can be decomposed as Qxm = Qx+Rxf

with Qx = QT
x � 0, then Hcx = Halg

cx represents the required candidate graph

topology Gcx of this subsection associated to quadratic cost function (7.8)

with a pair (Qxm, Rx). This candidate topology satisfies Property 7.2.1.
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2. Structurally non-symmetric control-layer: define the modification matrix

Halgm
cx ∈ RN×N with non-zero elements at entries corresponding to these

undesirable edges such that Hcx = Halg
cx + Halgm

cx characterizes the desir-

able communication graph topology3. Then, the matrix Hcx represents struc-

turally non-symmetric candidate communication graph Gcx if the condition

Qx + 2[(Halg
cx )TRxHalgm

cx ]sym � 0 is satisfied. Note that Property 7.2.1 is

satisfied by only Halg
cx of Step 1. �

The candidate Gcx of this subsection has been designed based on a completely-

known multiagent system of integrators. In the next theorem, we prove the pro-

posed cooperative tracking protocol (7.4) over the fixed structurally non-symmetric

candidate communication digraph Gcx of Algorithm 7.2.1 ensures first-order ro-

bust cooperative tracking (7.2) with an exponential behavior, and guarantees

an upper-bound on quadratic cost function (7.5) subject to a multiagent system

of first-order agents (7.1) with unknown coupled time-varying nonlinear agent-

layer dynamics. We define κ =
√

λmax(P )
λmin(P )

and σ = λmin(Qx+2[(Halgcx )TRxHalgmcx ]sym)

2λmax(P )
in

ex(t) ≤ κ exp−σtex(0), and:

P1 = P +
κ2

2σ
(λmax[(Halg

cx )TRxHalg
cx + (Halgm

cx )TRxHalgm
cx ])IN � 0.

Theorem 7.2.1. Let Assumption 7.2.1 be satisfied by agents (7.1). The struc-

turally non-symmetric candidate topology Gcx, with static weights given by Hcx in

3As an example, we might be interested in implementing a one-way communication from
node i to j. In this case, edge (j, i) should be removed by letting all entries of Halgmcx be zero
except Halgmcx (i, j) = −Halgcx (i, j) > 0 and Halgmcx (i, j) = Halgcx (i, j) < 0.
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Step 2 of Algorithm 7.2.1, ensures robust exponential cooperative tracking (7.2)

and performance (7.5) specified by κ, σ, and P1.

Proof. The proof is available at Subsection 7.5.1.

This proof remains valid for structurally symmetric topology Gcx of Design

procedure 7.2.1 or Algorithm 7.2.1-Step 1 by setting Halgm
cx = 0 and Halg

cx ← Hcx

(i.e., τxm = 0 and ux = τx in the proof at Subsection 7.5.1).

Remark 7.2.3. In this subsection, the matrix P1 is found purely based on the

design matrices Qx and Rx, and our partial knowledge about nonlinearities and

physical coupling graphs. A similar discussion holds for the exponential conver-

gence parameters κ and σ. This provides a guideline to systematically choose a

set of design matrices that guarantee a desired level of performance in terms of

“quadratic cost function minimization” and “exponential convergence rate maxi-

mization”. In fact, using this latter case as a performance criterion, we address a

similar challenge to that of [153]-[156] for first-order multiagent systems, yet in

the presence of unknown time-varying interconnected nonlinearities. �

Remark 7.2.4. Whenever the topology of agent-layer coupling graph Gax is known

(see Remark 7.1.1), we can incorporate Rxf = RT
xf = maxi{rxiαiγ2

cxi}LTaxLax < 0

in Design procedure 7.2.1, rewrite the results of this subsection based on a new

Qxm = Qx +Rxf � 0, and follow the discussion in this subsection in order to find

an appropriate control-layer communication graph. (Regarding the first inequality,

we know xTLTaxLaxx = ‖Laxx‖2 ≥ 0 and, regarding the second inequality, note that

Qx � 0.) �
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In the literature, distributed control of nonlinear multiagent systems has usu-

ally been addressed based on nonlinear techniques [50]. However, we have pro-

posed a modified LQR problem which ensures agreement solely by sharing infor-

mation over appropriately designed fixed control-layer communication topology

with static weights. At this point, a question may arise about the ability of find-

ing a bound on maximum tolerable time-varying interconnected nonlinearities fi

in (7.1) by the given fixed communication digraph Gcx to be used in linear static

cooperative protocol (7.4). In the next corollary, we unify the results of this sub-

section and find such a bound in terms of Rxf defined in Design procedure 7.2.1.

For a special scenario, based on the quadratic cost function (7.5), we further pro-

pose a sufficient condition to be used in performance-oriented (guaranteed-cost)

communication topology design problem.

Corollary 7.2.1. Let the structurally non-symmetric leader-follower communica-

tion digraph Gcx be represented by a constant reduced-order Laplacian matrix Hcx.

The time-varying interconnected nonlinearities fi in multiagent system (7.1) are

tolerable by information exchange algorithm (7.4) if the reduced-order Laplacian

matrix of communication topology Gcx can be decomposed as Hcx = Hcx,s +Hcx,r,

and there exists a diagonal Rx � 0 such that the structurally symmetric reduced-

order Laplacian matrix Hcx,s and residual matrix Hcx,r satisfy the following con-

ditions:

1. RxHcx,s is a symmetric positive definite matrix,

2. HT
cx,sRxHcx,s −Rxf + 2[HT

cx,sRxHcx,r]sym � 0,

3. HT
cx,sRxHcx,s � Rxf where Rxf is defined in Design procedure 7.2.1.
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Furthermore, for a given upper-bound matrix P1 in (7.5), a guaranteed-cost com-

munication digraph Gcx with Hcx = Hcx,s + Hcx,r can be designed by searching

for Hcx,s and Hcx,r that satisfy the aforementioned robust tracking and one robust

performance conditions:

4. RxHcx,s + κ2

2σ
λmax(HT

cx,sRxHcx,s +HT
cx,rRxHcx,r)IN 4 P1

for the exponential tracking convergence ei(t) ≤ κexp−σtei(0) with constant scalars

κ, σ > 0 and i ∈ {1, 2, ..., N}. �

The proof is immediate based on the analyses in this subsection. We further

mention that κ and σ can be conservatively estimated based on the results of

Theorem 7.2.1 for any Hcx,s and Hcx,r. Moreover, in addition to the degrees of

freedom in decomposing Hcx into Hcx,s and Hcx,r, the design matrix Rx can be

used to find a higher tolerable bound in terms of Rxf . This observation indicates

the sufficiency of conditions in this corollary and can be viewed as a foundation

for future work on this topic.

7.2.2 Second-order cooperative tracking

In this subsection, we generalize the result of Subsection 7.2.1 to the second-

order distributed cooperative tracking problem. For brevity, unless it is unclear

from the text, we only introduce new variables and the rest can be found in the

previous subsection.
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We consider a multiagent system with interconnected time-varying nonlinear

agent-layer dynamics:

ẋi(t) = vi(t), v̇i(t) = gi(yi(t), t) + uvi(t)

yi(t) = Cxi
∑N

j=1 a
ax
ij (xi(t)− xj(t)) + Cvi

∑N
j=1 a

av
ij (vi(t)− vj(t))

(7.14)

where avxij ≥ 0 denotes the (i, j)th entry of adjacency matrix corresponding to the

v-variable coupling digraph Gav; vi ∈ R indicates the second state variable, and

uvi ∈ R represents the control input of ith agent; and nonlinear functions gi, and

coupling matrices Cxi and Cvi satisfy the next assumption.

Assumption 7.2.2. The unknown nonlinear functions gi : R × R → R satisfy

the same conditions as in Assumption 7.2.1 replacing fi by gi, αi by βi, and zi by

yi. Similarly, we consider the replacement of γcxi by γcvi for the unknown coupling

matrices Cvi. Moreover, Cxi ≤ γcxi is also satisfied.

We consider two types of reference commands rcx(t) and rv with constant

and ramp waveforms, and propose the following cooperative reference tracking

problem:

lim
t→∞

(xi(t)− rcx(t)) = 0 and lim
t→∞

(vi(t)− rcv) = 0 (7.15)

that should be satisfied by all agent i ∈ {1, 2, ..., N}, although each command

might be sent to only a few agents over its own control-layer communication graph.

We note that these commands can be generated by the reference generator (virtual

leader):

ẋ0(t) = v0(t) and v̇0(t) = 0 (7.16)
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in which the initial state values are two manipulable variables: v0(t) = v(t0) = rv

and x0(t) = rcx(t) = x0(t0) + rv[t− t0] for any initial time t0 ≥ 0. We propose the

following distributed tracking algorithm based on the state variables of (virtual)

reference generator:

uvi(t) = −(
∑N

j=1 a
cx
ij (xi(t)− xj(t)) + bcxi (xi(t)− x0(t)))

−(
∑N

j=1 a
cv
ij (vi(t)− vj(t)) + bcvi (vi(t)− v0(t)))

(7.17)

Now, in addition to the x-variable communication topology acxij , b
cx
i ≥ 0, we

need to determine a v-variable graph by acvij , b
c
i ≥ 0 to ensure robust second-

order cooperative tracking (7.15) with guaranteed upper-bound on the following

quadratic cost function:

J2(e(0)) =

∫ ∞
0

(eT (t)Qe(t) + uTv (t)Rvuv(t))dt ≤ eT (0)P2e(0) (7.18)

where e = col{ex, ev} ∈ R2N , ev = col{evi} ∈ RN , and evi = vi − v0 denotes

the ith agent’s second state variable’s tracking error. Here, the positive-definite

Q = QT = [Qlk] ∈ R2N×2N is an M -matrix, Qlk ∈ RN×N , Q21 = QT
12, and

l, k ∈ {1, 2}. Also, Rv = diag{rvi} ∈ RN×N � 0 is a diagonal matrix with real-

valued scalars rvi > 0. The constant matrix P2 = PT2 ∈ R2N×2N � 0 will be

discussed later in this subsection. We drop the time variable t for the sake of

readability.
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Over two sub-layers Gax and Gav, we find the aggregated the agent-layer track-

ing error dynamics:

ėx = ev, and ėv = g(y) + uv

y = CxLaxex + CvLavev
(7.19)

where y = col{yi} ∈ RN , g = col{gi} ∈ RN , and Cv = diag{Cvi} ∈ RN×N . Also,

we find the aggregated control signal over control-layer graphs Gcx and Gcv (to be

designed):

uv = −Hcxex −Hcvev (7.20)

Now, we propose a control-theoretic design procedure and find two fixed can-

didate graph topologies Gcx and Gcv to be used in multi-layer linear cooperative

protocol (7.17). Let Qm = [Qmlk] = Q + Rf � 0 where Rf = diag{Rxf , Rvf},

Rxf = rxfIN and rxf = 2 maxi(rviβiγ
2
cxi)‖Lax‖2, and Rvf = rvfIN and rvf =

2 maxi(rviβiγ
2
cvi)‖Lav‖2.

Design procedure 7.2.2. Design u = Ke = [Kx, Kv]e that solves modified LQR

problem (7.21) subject to a multiagent system of N double-integrator dynamics.

Then, Hcx = Kx = R−1
v P T

12 and Hcv = Kv = R−1
v P22 characterize two candi-

date control-layer communication topologies Gcx and Gcv, respectively, if condi-

tion (7.22) is satisfied. The matrix P = [Plk] ∈ R2N×2N � 0 with l, k ∈ {1, 2} is

the solution of ARE (7.23) where P21 = P T
12.

min
u∈U2m

J2m(e(0)) =
∫∞

0
(eTQme+ uTvRvuv)dt

subject to ėx = ev ėv = uv

(7.21)
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P T
121N ≥ 0 and P221N ≥ 0 (7.22)are(1, 1) are(1, 2)

are(2, 1) are(2, 2)

 = 0 (7.23)

are(1, 1) = Qm11 − P12R
−1
v P T

12

are(1, 2) = Qm12 + P11 − P12R
−1
v P22

are(2, 1) = QT
m12 + P11 − P22R

−1
v P T

12

are(2, 2) = P12 + P T
12 +Qm22 − P22R

−1
v P22

The reason to name (7.21) a “modified” LQR problem can be explained similar

to Remark 7.2.2. Also, it is straightforward to discuss the existence of a unique

positive definite stabilizing P � 0 in ARE (7.23) based on a joint stabilizability

and observability condition for the completely-known LTI multiagent system of

double integrators and the modified state weighting matrix in (7.21).

An advantage of this approach is that the two candidate graphs are obtained

independent of the time-varying nonlinearly coupled agent-layer dynamics. How-

ever, this requires solving 2N × 2N ARE (7.23) for a multiagent system of N

agents. Noticing the fact that P11 does not directly appear in the candidate

reduced-order Laplacian matrices Hcx and Hcv, we use are(1, 2)-are(2, 1) and find

P12 = P T
12 whenever Q12 = QT

12. Based on are(1, 1) and are(2, 2), we transform

the original 2N × 2N ARE (7.23) to two reduced-order N ×N (sub-) AREs:

Qm11 − P12R
−1
v P12 = 0 and (2P12 +Qm22)− P22R

−1
v P22 = 0 (7.24)

in order to find two candidate graph topologies Gcx and Gcv. Note that P12 can

be found using the first ARE at the left side of (7.24); thus, we treat it as a
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known matrix in the second ARE at right-hand side. Since these AREs have the

same structure as ARE (7.9) in first-order tracking problem, we use the result

of Subsection 7.2.1 as the main foundation and propose the following apparently

symmetric analytical solutions:

P12 = R
1/2
v (R

−1/2
v Qm11R

−1/2
v )1/2R

1/2
v

P22 = R
1/2
v (R

−1/2
v (2P12 +Qm22)R

−1/2
v )1/2R

1/2
v

(7.25)

which result in two candidate reduced-order Laplacian matrices:

Hcx = R
−1/2
v (R

−1/2
v Qm11R

−1/2
v )1/2R

1/2
v

Hcv = R
−1/2
v (R

−1/2
v (2P12 +Qm22)R

−1/2
v )1/2R

1/2
v

(7.26)

These representations enable us to describe the candidate Gcx and Gcv explic-

itly based on the modified state and input weighting matrices in Design proce-

dure 7.2.2. Equivalent formulations Hcx = (R−1
v Qm11)1/2 and Hcv = (R−1

v (2P12 +

Qm22))1/2 are also valid for the x- and v-variable control-layer communication

graphs, respectively (see Subsection 7.2.1).

In a special case, if we are able to send the reference commands rx and rv

to all agents, we may consider a set of N decoupled local cost functions with

Q = diag{Qx, Qv}, Qx = diag{qxi} and Qv = diag{qvi} for qxi > 0 and qvi > 0,

and recommend two diagonal candidate reduced-order Laplacian matrices:

Hcx = diag{
√
qxmi
rvi
} Hcv = diag{

√
2

√
qxmi
rvi

+
qvmi
rvi
} (7.27)

where qxmi = qxi + rxf and qvmi = qvi + rvf , and rxf and rvf are defined before

Design procedure 7.2.2. Based on the diagonal structure of these candidates, we

know Hcx corresponds to a candidate star graph Gcx with N weighted directed

edges from the command generator’s first state variable to all agents’ first state
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variables, and Hcv models another candidate star topology Gcv with a set of N

weighted directed edges from the second state variable of reference generator to

that of all agents. In fact, this star topology indicates that additional inter-agent

communications are unnecessary whenever all of them have access to the reference

signal to be tracked.

For both coupled (7.26) and decoupled (7.27) scenarios, the fundamental prop-

erty of optimal control systems is satisfied.

Property 7.2.2. The following equalities are satisfied by any fixed candidate

graphs Gcx and Gcv in Design procedure 7.2.2:

eTQme+ uTvRvuv + J?T2m,e

ev
uv

 = 0

2uTvRv + J?T2m,e

 0

IN

 = 0

where J?2m is the optimal cost in (7.21), J?2m,e =
∂J?2m
∂e

, and e = [eTx , e
T
v ]T .

Since each ARE in (7.24) is similar to ARE (7.9) in Design procedure 7.2.1, we

can generalize the discussion after Property 7.2.1 to second-order tracking prob-

lem. In particular, we know the candidate topologies Gcx and Gcv are structurally

symmetric for any feasible choices of state and input weighting matrices in Design

procedure 7.2.2. We now propose a systematic approach to design control-layer

communication topologies with structurally non-symmetric weighted topologies.

The algorithm is of particular interests when we want to incorporate a-priori
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knowledge and impose a special structure on the communication layer in multi-

area multiagent systems where areas are geographically far from each others.

Algorithm 7.2.2. Select two arbitrary symmetric reduced-order Laplacian ma-

trices Halg
x ∈ RN×N and Halg

v ∈ RN×N , and a diagonal input weighting matrix

Rv ∈ RN×N � 0 such that (Halg
x )TR−1

v Halg
v is a symmetric matrix and the follow-

ing condition is satisfied:

(Halg
x )TR−1

v Halg
v Halg

x

Halg
x Halg

v

 � 0 (7.28)

1. If two structurally symmetric communication graphs Gcx and Gcv are ac-

ceptable: Reduced-order Laplacian matrices Halg
cx = R−1

v Halg
x and Halg

cv =

R−1
v Halg

v minimize the quadratic cost function in Design procedure 7.2.2

with Qm11 = HalgT
cx RvHalg

cx and Qm22 = HalgT
cv RvHalg

cv − 2Halg
x if they can

be decomposed as Qm11 = Q11 + Rxf and Qm22 = Q22 + Rvf with positive

definite Q11, Q22 ∈ RN×N and Q12 = 0. Then, Hcx = Halg
cx and Hcv = Halg

cv

represent the required candidate topologies of this subsection, and satisfy

Property 7.2.2.

2. To propose structurally non-symmetric graph topologies: Let Halgm
cx ∈ RN×N

and Halgm
cv ∈ RN×N be two modification matrices such that Hcx = Halg

cx +

Halgm
cx and Hcv = Halg

cv + Halgm
cv represent two structurally non-symmetric

digraphs. These are the two candidate topologies to be used in (7.18) if

Q+2[(Halg
c )TRvHalgm

c ]sym � 0 is satisfied where Halg
c = [Halg

cx ,Halg
cv ], Halgm

c =

[Halgm
cx ,Halgm

cv ], and Q is defined in Step 1. �
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In this algorithm, we have considered a special case with Q12 = 0 ∈ RN×N

which results in two scenarios: Halg
x = Halg

v or one of them is equal to cRv

where c is a positive scalar. Alternatively, we can select two different struc-

turally non-symmetric Halg
x and Halg

v , and find a sign-indefinite Q12 6= 0 for which

−Q12+(Halg
x )TR−1

v Halg
v is a positive definite symmetric matrix, check the positive-

definiteness of Q = [Qlk] where Q21 = QT
12, and positive definiteness of the follow-

ing matrix (instead of (7.28)):

−Q12 + (Halg
x )TR−1

v Halg
v Halg

x

Halg
x Halg

v

 � 0 (7.29)

in addition to Q+2[(Halg
c )TRvHalgm

c ]sym � 0. However, we have found the benefits

of using two non-equal non-diagonal Halg
cx and Halg

cv are recoverable in Step 2 of

Algorithm 7.2.2 while verifying a set of simpler conditions.

In the next theorem, we prove multiagent systems with nonlinearly coupled

agent-layer dynamics (7.14) cooperatively track the reference command if they

communicate according to the multi-layer linear cooperative protocol (7.17) over

fixed candidate digraphs Gcx and Gcv of Algorithm 7.2.2 with static weights. We

further prove that this reference tracking is achieved with an exponential rate,

and find an upper-bound on quadratic cost function (7.18). We define P2 = P +

κ2

2σ
λmax((Halg

c )TRvHalg
c + (Halgm

c )TRvHalgm
c )I2N , and let the exponential tracking

behavior e(t) ≤ κexp−σte(0) be specified by two scalars κ =
√

λmax(P )
λmin(P )

and σ =

λmin(Q+2[(Halgc )TRvHalgmc ]sym)

2λmax(P )
.
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Theorem 7.2.2. The fixed candidate control-layer communication digraphs Gcx

and Gcv in Step 2 of Algorithm 7.2.2 ensure exponential second-order cooperative

tracking (7.15) by agent-layer dynamics (7.14) with a guaranteed upper-bound on

quadratic cost function (7.18) specified by κ, σ, and P2.

Proof. This proof is given at Subsection 7.5.2.

A discussion similar to Remarks 7.2.3-7.2.4 can be adopted for the result of

Theorem 7.2.2, but it is omitted for brevity. In terms of Rxf and Rvf of Design

procedure 7.2.2, we propose the following corollary to establish a bound on the

tolerable interconnected time-varying nonlinear uncertainties in agent-layer dy-

namics by multi-layer linear cooperative tracking protocol (7.17) over the given

digraphs Gcx and Gcv. For a special scenario, we further discuss guaranteed-cost

communication topology design problem based on the given upper-bound matrix

P2 in cost function (7.18).

Corollary 7.2.2. Let the given fixed communication digraphs Gcx and Gcv be repre-

sented by known Hcx and Hcv, respectively. The static tracking protocol (7.17) can

tolerate norm-bounded time-varying nonlinearities gi in multiagent system (7.14)

if the reduced-order Laplacian matrices can be decomposed as Hcx = Hcx,s +Hcx,r

and Hcv = Hcv,s +Hcv,r, and there exists a diagonal input weighting matrix Rv ∈

RN×N � 0 such that the structurally symmetric reduced-order Laplacian matri-

ces Hcx,s and Hcv,s, and residual matrices Hcx,r and Hcv,r satisfy the following con-

ditions:

1. There exists a symmetric positive definite Q = [Qlk] ∈ R2N×2N such that Q+

2[HT
c,sRvHc,r]sym � 0 where Hc,s = [Hcx,s,Hcv,s] and Hc,r = [Hcx,r,Hcv,r].
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2. RvHcv,s, 2RvHcx,s + Q22 + Rvf , HT
cx,sRvHcv,s − Q12 are symmetric positive

definite and: HT
cx,sRvHcv,s −Q12 RvHcx,s

RvHcx,s RvHcv,s

 � 0

3. HT
cx,sRvHcx,s � Rxf and HT

cv,sRvHcv,s � 2RvHcx,s + Rvf are satisfied where

Rxf and Rvf are defined in Design procedure 7.2.2,

For a given upper-bound cost matrix P2 in (7.18), guaranteed-cost communica-

tion topologies Gcx and Gcv can be found by searching for diagonal Rv � 0,

sign-indefinite Q12 ∈ RN×N , and decomposition Hcx = Hcx,s + Hcx,r and Hcv =

Hcv,s +Hcv,r that satisfy:

4.

HT
cx,sRvHcv,s −Q12 RvHcx,s

RvHcx,s RvHcv,s

+ κ2

2σ
λmax(HT

c,sRvHc,s+HT
c,rRvHc,r)I2N 4 P1

with exponential convergence parameters κ, σ > 0, and Hc,s = [Hcx,s,Hcv,s] and

Hc,r = [Hcx,r,Hcv,r]. �

The proof can be discussed based on the derivations of this subsection, but is

omitted for brevity. Both κ and σ can be conservatively estimated using Theo-

rem 7.2.2. Furthermore, the corollary is stated based on three robust cooperative

tracking requirements and a robust performance test which should be checked for

the given communication topologies Hcx and Hcv. However, we can further sim-

plify this corollary assuming Q12 = 0 for which the condition HT
cx,sRvHcx,s −Q12

is always satisfied because Rv � 0.
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7.2.3 Mixed-order cooperative tracking

In the previous two subsections, we designed the single-layer and multi-layer

cooperative tracking problems in heterogeneous multiagent systems respectively

with first- and second-order agents. Now, we use those fundamental results to han-

dle robust cooperative tracking in mixed-order multiagent systems with physically-

coupled agent-layer dynamics. Here, M agents are modeled by second-order dy-

namics:

ẋi(t) = vi(t), v̇i(t) = gi(yi(t), t) + uvi(t)

yi(t) = Cxi
∑N

j=1 a
ax
ij (xi(t)− xj(t)) + Cvi

∑M
j=1 a

av
ij (vi(t)− vj(t))

(7.30)

for all i ∈ V1 = {1, ...,M} where 1 < M ≤ N , and N−M agents are described by:

ẋi(t) = fi(zi(t), t) + uxi(t), zi(t) = Cxi

N∑
j=1

aaxij (xi(t)− xj(t)) (7.31)

for all i ∈ V2 = {M + 1, ..., N}. In this multiagent system with unknown agent-

layer nonlinearities fi and gi, we propose a robust cooperative tracking problem:

lim
t→∞

(xi(t)− r) = 0 ∀ i ∈ V1 ∪V2 and lim
t→∞

vi(t) = 0 ∀ i ∈ V1 (7.32)

where r ∈ R is a constant that can be created using the following reference

generator:

ẋ0 = 0 (7.33)

with a manipulable initial condition x0(0) = r. We are interested in enforcing all

agents (7.30)-(7.31) to track this reference r by allowing them to communicate

based on the following distributed tracking protocols:
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uvi(t) = −(
∑N

j=1 a
cx
ij (xi(t)− xj(t)) + bcxi (xi(t)− x0(t)))

−(
∑M

j=1 a
cv
ij (vi(t)− vj(t)) + bcvi vi(t))

∀i ∈ V1 (7.34)

and

uxi(t) = −(
N∑
j=1

acxij (xi(t)− xj(t)) + bcxi (xi(t)− x0(t))) ∀i ∈ V2 (7.35)

We introduce a fictitious second state variable v0 = 0 for the virtual com-

mand generator (7.33) and define tracking error variables evi = vi − v0 = vi for

second-order agents in V1. In the presence of unknown time-varying intercon-

nected nonlinearities fi and gi, scalars acxij , b
cx
i , a

cv
ij , b

cv
i ≥ 0 should be designed to

guarantee robust cooperative tracking (7.32) and provide an upper-bound on the

following quadratic cost function:

J3(e(0)) =

∫ ∞
0

(eT (t)Qe(t) + uT (t)Ru(t))dt ≤ eT (0)P3e(0) (7.36)

where e = col{ex, ev} ∈ RN+M , ex = col{exi} ∈ RN , exi = xi − x0 for i ∈ V1 ∪

V2, ev = col{evi} ∈ RM , evi = vi − v0 = vi for i ∈ V1, u = col{uv, ux} ∈

RN , uv = col{uvi} ∈ RM for i ∈ V1, and ux = col{uxi} ∈ RN−M for i ∈ V2.

Furthermore, Q = QT = Q[lk] ∈ R(N+M)×(N+M) � 0 for l, k ∈ {1, 2, 3}, R =

RT = diag{Rv, Rx} ∈ RN×N � 0, Rv ∈ RM � 0, and Rx ∈ RN−M � 0. Also,

P3 = PT3 ∈ R(N+M)×(N+M) � 0 is either an unknown or a-priori known constant

matrix which will be discussed later in this subsection.

Now, we prove the proposed framework for the first- or second-order multiagent

systems can be applied to the multi-layer cooperative tracking problem in mixed-

order multiagent systems with time-varying nonlinearly interconnected agent-layer
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dynamics. We find the aggregated tracking error dynamics for sub-multiagent

system of second-order agents:

ėxV1 = ev and ėv = uv + g(y, t), ∀i ∈ V1

y = yx + yv

(7.37)

where ev = v − 1Mv0 = v, g = col{gi}, and exV1 , ev, uv, yx, yv ∈ RM for i ∈ V1.

We also build the aggregated tracking error dynamics for sub-multiagent system

of first-order agents:

ėxV2 = ux + f(z, t), ∀i ∈ V2 (7.38)

where exV2 , ux, z for RN−M and f = col{fi} for i ∈ V2. We further find:

yv = CvLavev and

yx
z

 = CxLaxex

where Cv = diag{Cvi}∀i ∈ V1, and Lav ∈ RM×M is the Laplacian matrix of agent-

layer v-variable coupling graph, ex = [eTxV1 , e
T
xV2 ] = col{exi}, Cx = diag{Cxi} for

i ∈ V1 ∪ V2, and Lax ∈ RN×N is the Laplacian matrix of agent-layer x-variable

coupling graph. With a lumped representation over Gax and Gav, the aggregated

multiagent system of mixed-order agents are written as ė = Ae+Bu+Bφ(z, y, t)

where: ėx
ėv

 =

A11 A12

A21 A22


ex
ev

+

B1

B2


uv
ux

+

B1

B2


g(y, t)

f(z, t)

 (7.39)
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A11 =

 0M×M 0M×(N−M)

0(N−M)×M 0(N−M)×(N−M)

 A12 =

 IM

0(N−M)×M


A21 =

[
0M×M 0M×(N−M)

]
A22 = 0M×M

B1 =

 0M×M 0M×(N−M)

0(N−M)×M IN−M

 B2 =

[
IM 0M×(N−M)

]
(7.40)

Also, over Gcx and Gcv, the aggregated tracking the aggregated tracking control

signal is given bycontrol signal is given by:

uv
ux

 = −Hcxex −

 Hcv

0(N−M)×M

 ev =: −Hce (7.41)

Let Rxf = rxfIN and Rvf = rvfIM where the two scalars are defined as

rxf = maxi(maxi(2βirvi, αirxi)γ
2
cxi)‖Lax‖2 and rvf = 2 maxi(βirviγ

2
cvi)‖Lav‖2 (note

that βi is only defined for i ∈ V1 and αi is only given for i ∈ V2). We introduce

Qm = Q+Rf where Q,Rf ∈ R(N+M)×(N+M) are defined as follows:

Q =


Q11 0M×(N−M) Q13

0(N−M)×M Q22 0(N−M)×M

QT
13 0M×(N−M) Q33

 Rf =

 Rxf 0N×M

0M×N Rvf

 (7.42)

and propose a control-theoretic design procedure to find two candidate reduced-

order Laplacian matrices Hcx ∈ RN×N and Hcv ∈ RM×M corresponding to the

required candidate topologies Gcx and Gcv, respectively.
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Design procedure 7.2.3. Find u = Ke = [Kx, Kv]e that solves modified LQR

problem (7.43). Then, (7.44) represents the two candidate graph topologies Gcx

and Gcv if condition (7.45) is satisfied. Matrix P = [Plk] ∈ R(N+M)×(N+M) � 0

is the partitioned solution of ARE (7.46) for l, k ∈ {1, 2, 3} where P12 = 0 and

P23 = 0.

min
u∈U3m

J3m(e(0)) =
∫∞

0
(eTQme+ uTRu)dt

subject to ė = Ae+Bu in (7.39)

(7.43)

Hcx

Hcv

0

 =

 R−1
v P T

13 0 R−1
v P33

0 R−1
x P22 0

 (7.44)

P T
131N ≥ 0, P221N ≥ 0, P331N ≥ 0 (7.45)

are(1, 1) 0 are(1, 3)

0 are(2, 2) 0

are(1, 3)T 0 are(3, 3)

 = 0 (7.46)

are(1, 1) = Q11 +Rxf − P13R
−1
v P T

13

are(1, 3) = Q13 + P11 − P13R
−1
v P33

are(2, 2) = Q22 +Rxf − P22R
−1
x P22

are(3, 3) = Q33 +Rvf + P13 + P T
13 − P33R

−1
v P33

Note that the existence of a unique stabilizing P � 0 can be guaranteed

based on the controllability and observability of (Q
1/2
m , A,B), and we refer to

Remark 7.2.2 for a discussion on “modified” LQR problem. A question may arise

about the imposed structure on Q in (7.42). In the following remarks, we first
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connect this question to the proposed tracking protocol (7.34)-(7.35), and then

provide an optimal control-theoretical reason for it.

Remark 7.2.5. We first mention that assuming a complete matrix Q = QT =

[Qlk] ∈ R(N+M)×(N+M) results in ARE:


are(1, 1) are(1, 2) are(1, 3)

are(1, 2)T are(2, 2) are(2, 3)

are(1, 3)T are(2, 3)T are(3, 3)

 = 0

are(1, 1) = Q11 +Rxf − P12R
−1
x P12 − P13R

−1
v P T

13

are(1, 2) = Q12 − P12R
−1
x P22 − P13R

−1
v P T

23

are(1, 3) = Q13 + P11 − P12R
−1
x P23 − P13R

−1
v P33

are(2, 2) = Q22 +Rxf − P22R
−1
x P22 − P23R

−1
v P T

23

are(2, 3) = Q23 + P T
12 − P22R

−1
x P23 − P23R

−1
v P33

are(3, 3) = Q33 +Rvf + P13 + P T
13 − P T

23R
−1
x P23 − P33R

−1
v P33

and the following reduced-order Laplacian matrices:

[
Hcx Hcv

]
=

 R−1
v P T

13 R−1
v P T

23 R−1
v P33

R−1
x P T

12 R−1
x P22 R−1

x P23


which, for P23 6= 0, requires using the cooperative algorithm (7.34) for all agents

in V1 ∪ V2. We introduced the cooperative algorithm (7.35) because we could not

see any physical justifications to update x-variable of agents in V2 based on the

v-variable of second-order agents in V1. Thus, we observe that P23 = 0 is imposed

by cooperative algorithm (7.35) for first-order agents in V2. Based on the Design
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procedure 7.2.3, we further mention that the tracking protocol (7.34)-(7.35) can be

rewritten as follows:

uvi = −(
∑M

j=1 a
cx
ij (xi − xj) + bcxi (xi − x0) +

∑M
j=1 a

cv
ij (vi − vj) + bcvi vi) ∀i ∈ V1

uxi = −(
∑N

j=M+1 a
cx
ij (xi − xj) + bcxi (xi − x0)) ∀i ∈ V2

which means, if we do not update x-variable of first-order agents in V2 based on

the v-variable of second-order agents in V1, the optimal topology will necessary be

composed by two sets of decoupled communication topologies: GcxV1 and GcvV1 for

agents in V1, and GcxV2 for agents in V2. �

Remark 7.2.6. We now clarify the reason for proposing a special structure on

the state weighting matrix Q that, in addition to P23 = 0, results in P12 = 0. We

know the solution P of this ARE (in Remark 7.2.5) is equal to limt→∞P (t) where

P (t) is the solution of corresponding Riccati equation. In particular, zeros of this

P (t) (and P ) can be found using matrix differential equation (2.29). Substituting

(A,B) from (7.39) and a complete matrix Q = [Qlk] in the Hamiltonian matrix

of (2.29), we find:

ėxV1 = ev, ėv = −R−1
v LvV1

L̇xV1 = −Q11exV1 −Q12exV2 −Q13ev

L̇vV1 = −QT
13exV1 −QT

23exV2 −Q33ev − LxV1

for the second-order agents in V1 and

ėxV2 = −R−1
x LxzV2

L̇xV2 = −QT
12exV1 −Q22exV2 −Q23ev
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for the first-order agents in V2. Here, based on the notation of (2.29), we have

used x ← [eTxV1 , e
T
xV2 , e

T
v ]T and L ← [LTxV1 , L

T
xV2 , L

T
vV1 ]

T . Because L(t) = P (t)e(t),

we notice that the proposed structure (7.42) (with Q12 = 0 and Q23 = 0) is the

only way to ensure P23 = 0. We further observe that it consequently results in

P12 = 0. In this situation, the two set of equations for V1 and V2 are independent

from each other, and we find:


LxV1(t)

LxV2(t)

LvV1(t)

 =


∗ 0 ∗

0 ∗ 0

∗ 0 ∗



exV1(t)

exV2(t)

ev(t)

 =: P (t)e(t)

where the matrices 0 indicate those components of P (t) that are always equal to

zero (i.e., P12 = 0 and P23 = 0). This finding matches on the structure of (7.44).

The closed-form solutions for the remaining components of P in ARE (7.46) (cor-

responding to the ∗-components of P (t)) will be discussed in the rest of this sub-

section. �

The candidate topologies GcxV1 , GcxV2 , and Gcv (see end of Remark 7.2.5) can

be designed using the existing software packages by solving (N +M)× (N +M)

nonlinear matrix equation (7.46). However, based on are(1, 3) and are(3, 1) for

Q13 = QT
13, we know P T

13 = P13 which results in the following set of matrix equa-

tions:

(Q11 +Rxf )− P13R
−1
v P13 = 0 (Q22 +Rxf )− P22R

−1
x P22 = 0,

(Q33 +Rvf + 2P13)− P33R
−1
v P33 = 0

(7.47)
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These equations can be solved similar to the ARE (7.9) in Design proce-

dure 7.2.1 (we further know P11 = P13R
−1
v P33−Q13 where its positive definiteness

is ensured based on a joint observability and stabilizability condition discussed af-

ter Design procedure 7.2.3). These explicit solutions are of particular interest for

multiagent systems with a high-number of agents, and allow splitting the original

(N +M)× (N +M) ARE (7.46) into three matrix equations with low(er) dimen-

sions M ×M , (N −M)× (N −M), and M ×M . We now rely on the discussion

after Design procedure 7.2.1 and propose the following closed-form solutions for

the candidate communication topologies based on the known design matrices Q,

Rx, and Rv:

Hcx =

HcxV2 0

0 HcxV1


HcxV2 = R

−1/2
v (R

−1/2
v (Q11 +Rxf )R

−1/2
v )1/2R

1/2
v

HcxV1 = R
−1/2
x (R

−1/2
x (Q22 +Rxf )R

−1/2
x )1/2R

1/2
x

Hcv = R
−1/2
v [2(R

−1/2
v (Q11 +Rxf )R

−1/2
v )1/2 +R

−1/2
v (Q33 +Rvf )R

−1/2
v ]1/2R

1/2
v

(7.48)

For this coupled cost scenario, various representations can be found follow-

ing the discussion in Subsection 7.2.1 which is omitted for brevity. We may

also consider a decoupled cost function in Design procedure 7.2.3 by introducing

Q = diag{qxV1i|Mi=1, qxV2i|Ni=M+1, qvi|Mi=1} for qxV1i, qxV2i, qvi > 0. This simplification

suggests N + M decoupled scalar modified LQR problems, and results in two

candidate star topologies:
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Hcx = diag{
√

qxV1i+rxf
rvi

|Mi=1,
√

qxV2i+rxf
rxi

|Ni=M+1}

Hcv = diag{
√

2
√

qxV1i+rxf
rvi

+
qvi+rxf
rvi
|Mi=1}

(7.49)

This in fact means, whenever all agents have access to the reference command,

no inter-agent communication is necessary to guarantee cooperative tracking in a

multiagent system of (7.30)-(7.31). Since v0 is a fictitious state variable for the

virtual reference generator (i.e., ev = vi − v0 = vi), star topology (7.49) requires

all agents in V1 to measure the absolute value of their second state variable. We,

however, mention that the coupled cost scenario may result in communication

topology (7.48) with only a few absolute velocity measurements.

The following property is satisfied by candidate topologies in both coupled

and decoupled cost scenarios.

Property 7.2.3. The candidate graph topologies Gcx and Gcv in Design proce-

dure 7.2.3 (or GcxV1, GcxV2, and Gcv) satisfy the following equalities:

eTQme+ uTRu+ J?T3m,e(Ae+Bu) = 0 2uTR + J?T3m,eB = 0

where J?3m is the optimal cost in (7.43), J?3m,e =
∂J?3m
∂e

, and e, A, and B are defined

in (7.39).

In Remark 7.2.5, we discussed that the proposed cooperative tracking algo-

rithm (7.35) for first-order agents in V2 has resulted in a block diagonal x-variable

reduced-order Laplacian matrix Hcx. We also showed the high-order ARE (7.46)

could be solved by three low-order AREs (7.47) in which the first and third AREs

for V1 are coupled to each other through P13, and the second ARE corresponds
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V2 is decoupled from the other two AREs. Due to the properties of solutions to

ARE (7.46), we further know the resulting communication graphs are necessarily

structurally symmetric. In the next algorithm, we propose a systematic approach

to find structurally non-symmetric digraphs Gcx and Gcv to be used in multi-layer

cooperative tracking protocol (7.34)-(7.35).

Algorithm 7.2.3. The design problem of Gcx and Gcv (or GcxV1, GcxV2, and Gcv)

can be addressed in two independent steps:

1. For agents in V2: Follow the steps of Algorithm 7.2.1 to design structurally

non-symmetric communication digraph GcxV2 by finding HcxV2 that satisfies

the following condition for an arbitrarily selected Rx ∈ R(N−M)×(N−M)4,

Q22 + 2[(Halg
cxV2)

TRxHalgm
cxV2 ]sym � 0 (7.50)

2. For agents in V1: Follow the steps of Algorithm 7.2.2 to design structurally

non-symmetric communication digraphs GcxV1 and Gcv by finding the two ma-

trices HcxV1 and HcvV1 that satisfy the following condition for an arbitrarily

selected Rv ∈ RM×M 5,

Q11 + 2[(Halg
cxV1)

TRvHalgm
cxV1 ]sym Q13 + 2[(Halg

cxV1)
TRvHalgm

cvV1 ]sym

QT
13 + 2[(Halg

cvV1)
TRvHalgm

cxV1 ]sym Q33 + 2[(Halg
cvV1)

TRvHalgm
cvV1 ]sym

 � 0

(7.51)

4In Algorithm 7.2.1, replace Qx by Q22 and name the result HalgcxV2 .

5In Algorithm 7.2.2, replace Q22 by Q33 and name the results HalgcxV1 and HalgcvV1 for Q13 = 0.
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The outcome of this algorithm is given by

Hc =

 Halg
cxV1 0 Halg

cvV1

0 Halg
cxV2 0

+

 Halgm
cxV1 0 Halgm

cvV1

0 Halgm
cxV2 0

 =: Halg
c +Halgm

c

where we emphasize that Property 7.2.3 is satisfied only by structurally symmetric

components of Gcx and Gcv included in Halg
c . �

We now prove that the multi-layer linear cooperative tracking protocol (7.34)-

(7.35) over two candidate communication topologies Gcx and Gcv of Algorithm 7.2.3

ensures robust tracking (7.32) while guaranteeing an upper-bound on cost func-

tion (7.36) for a mixed-order multiagent system with unknown interconnected

time-varying nonlinear agent-layer dynamics. We define κ =
√

λmax(P )
λmin(P )

, σ =

λmin(Q+(Halgc )TRHalgmc )
2λmax(P )

, and P3 = P + λmax((Halg
c )TRHalg

c + (Halgm
c )TRHalgm

c ).

Theorem 7.2.3. The candidate control-layer communication graph topologies Gcx

and Gcv characterized by the aggregated reduced-order Laplacian matrix Hc in Al-

gorithm 7.2.3 ensure exponential distributed cooperative tracking (7.32) with a

rate specified by κ, σ > 0, and an upper-bound matrix P3 on quadratic cost func-

tion (7.36).

Proof. The proof is passed to the Subsection 7.5.3.

For the given communication digraphs Gcx and Gcv that fit on the structure

of (7.44), in the next corollary, we unify the findings of this subsection and estab-

lish a bound on the tolerable time-varying interconnected nonlinearities fi and gi

in agent-layer dynamics (7.30)-(7.31) by multi-layer linear cooperative tracking

protocol (7.34)-(7.35).
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Corollary 7.2.3. A bound on the maximum tolerable unknown interconnected

nonlinearities by distributed cooperative tracking protocol (7.34)-(7.35) can be es-

tablished as the minimum tolerance of the first-order closed-loop multiagent sys-

tem V2 based on Corollary 7.2.1 and second-order closed-loop multiagent system

V1 based on Corollary 7.2.2. For the given upper-cost matrix P3, let P ′3 < P3

be a matrix with the same pattern as Q in (7.42). Then, using P ′3, performance-

oriented topology design problem is also splittable into two independent parts based

on the Corollary 7.2.1 and Corollary 7.2.2. �

We emphasize that conditions of both Corollaries 7.2.1 and 7.2.2 should be si-

multaneously satisfied because, e.g., the agent-layer dynamics are physically cou-

pled over the x-variable digraph Gax. However, since the communication topolo-

gies can be independently designed, the complexity is not higher than each single

Corollary 7.2.1 or 7.2.2.

7.3 Simulation verification

We now verify the feasibility of proposed ideas in Section 7.2 through simula-

tion studies. We provide a comprehensive study on the robust first-order cooper-

ative tracking problem in Subsection 7.3.1. We study the results of second-order

cooperative tracking in Subsection 7.3.2. Finally, in Subsection 7.3.3, we discuss

a numerical example for the cooperative tracking in a mixed-order multiagent

system with unknown agent-layer dynamics.
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7.3.1 First-order cooperative tracking

In this subsection, we investigate the results of Subsection 7.2.1 based on a mul-

tiagent system with 5 agents and unknown interconnected time-varying nonlinear

dynamics f1 =
√

0.5sin(t)tanh(z1), f2 =
√

0.4sin(z2), f3 =
√

0.5z3, f4 =
√

0.4z4,

f5 =
√

0.5cos(t)tanh(z5). We let zi = 0.4
∑

j∈Naxi
(xi − xj) for i ∈ {1, 2, ..., 5}

where the physical neighborhoods of agents are shown using an agent-layer cou-

pling graph in the left-side plot of Figure 7.2. This agent-layer dynamics show

diverging response to the perturbation in 5th agent’s initial condition at time

t0 = 10s (see Figure 7.1).

In the first numerical study, we choose a symmetric reduced-order Lapla-

cian matrix Qx and a diagonal Rx = diag{0.5, 1, 0.5, 1, 0.5} in the Design pro-

cedure 7.2.1.

T ime (s)
0 10 20 30 40 50

x
i

0

5000

10000

15000

20000

Figure 7.1: A multiagent system with agent-layer dynamics (7.1) and nonlin-
ear functions of Subsection 7.3.1 shows diverging behavior in response to a
perturbation in only agent 5’s initial condition at time t0 = 10s. As seen, the
multiagent system can be sensitive to perturbations in any of its individual
components due to the physical couplings.
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Qx =



3.5 −1.5 0 0 −1.5

−1.5 2.5 −1 0 0

0 −1 1 0 0

0 0 0 1 −1

−1.5 0 0 −1 2.5


As discussed before Algorithm 7.2.1, this results in control-layer communica-

tion topology Gcx with reduced-order Laplacian matrix Hcx:

Hcx =



2.6410 −0.7522 −0.0633 −0.1144 −0.6315

−0.3761 1.5229 −0.3324 −0.0354 −0.0680

−0.0633 −0.6649 1.5625 −0.0174 −0.0238

−0.0572 −0.0354 −0.0087 1.0625 −0.3136

−0.6315 −0.1360 −0.0238 −0.6272 2.2499


(7.52)

in which the inter-agent communication topology is complete and, furthermore, all

agents should directly receive the reference command. The two-layer closed-loop

multiagent system configuration and simulation result are shown in Figure 7.2.

In the second investigation, we verify the effectiveness of star topology based

on the diagonal weighted communication graph in (7.13). The result is shown in

Figure 7.3 where the left-side plot is obtained by taking the diagonal terms of Qx

in all-to-all scenario (7.52) which results in the diagonal reduced-order Laplacian

matrix Hcx = diag{2.7690, 1.6833, 1.6332, 1.1548, 2.3806}, and the right-side plot

is achieved by using a four times greater state weighting matrix (compared to the

left-side) which ends in Hcx = diag{5.3542, 3.2146, 2.9440, 2.0817, 4.5461}. This
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in fact shows the flexibility of the proposed algorithm to adjust the exponential

convergence speed of multiagent systems with unknown time-varying nonlinear

dynamics (see Remark 7.2.3 in Subsection 7.2.1). In both cases, Rx is the same

as that of all-to-all scenario in Figure 7.2.

In the third numerical result, we further investigate the effect of Qx on the

overall topology of Gcx. We again choose an incomplete state weighting matrix

(compare with the selection in (7.52)); however, the resulting reduced order Lapla-

cian matrix represents an incomplete inter-agent control-layer topology. For the

same Rx as the previous two cases, Qx and Hcx are as follows, and the closed-loop

configuration and simulation result are depicted in Figure 7.4.

Qx =



6.5 0 0 0 −3

0 5.5 −2 0 0

0 −2 2 0 0

0 0 0 2 −2

−3 0 0 −2 5



Hcx =



3.5797 0 0 −0.1734 −0.9153

0 2.3278 −0.4556 0 0

0 −0.9112 2.0621 0 0

−0.0867 0 0 1.3707 −0.4688

−0.9153 0 0 −0.9377 3.0643



(7.53)

As is seen in Figure 7.4, still all agents must have access to the reference

command (based on the discussion before Algorithm 7.2.1, we could expect this

requirement because Qxm15 > 0). However, we have already shown in Figure 7.3
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that the inter-agents communication is unnecessary whenever all agents have ac-

cess to the reference command. Additionally, these inter-agents communication

is still structurally symmetric (bi-direction) due to the symmetry of solution to

ARE (7.9). Therefore, in the fourth simulation, we verify the feasibility of Algo-

rithm 7.2.1 in finding an incomplete structurally non-symmetric communication

topology where only a few agents have access to the reference signal. The closed-

loop multiagent system and the corresponding simulation result are shown in

Figure 7.5 for Rx = diag{0.2, 0.4, 0.2, 0.4, 0.2} and the following set of matrices:

Halg
x =



1.75 −0.5 0 0 −0.5

−0.5 1 −0.5 0 0

0 −0.5 1.25 0 0

0 0 0 0.5 −0.5

−0.5 0 0 −0.5 1.75



Halg
cx =



8.75 −2.5 0 0 −2.5

−1.25 2.5 −1.25 0 0

0 −2.5 6.25 0 0

0 0 0 1.25 −1.25

−2.5 0 0 −2.5 8.75


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Hcx =



7.875 −2.5 0 0 −2.5

−1.875 1.875 0 0 0

0 −2.5 6.25 0 0

0 0 0 2.25 −2.25

−2.5 0 0 −2.5 7.875


where Halg

x is a design matrix, Halg
cx is the result of Step 1, and Hcx is a modified

result based on the Step 2 of Algorithm 7.2.1. (For such a setup, an alternative

incomplete digraph will be discussed in the fifth simulation.)

In the fifth simulation, we consider a multi-area large-scale system as depicted

in the left-side plot of Figure 7.6 where a cooperative algorithm should be design

to ensure reference command tracking in all areas. Here, agents 1 to 5, 6 to 10,

and 11 to 15 respectively belong to Area 1, 2, and 3. We assume that the ordered-

number agents in each area are described by the same time-varying nonlinearities

and inter-area physical couplings as in the first simulation, for example: agents

1, 6, and 10 are modeled by f1. However, the neighborhoods Ni in zi have been

modified to further include the intra-area couplings from agent 5 to 8, 10 to

13, and 15 to 3. We require the communication topologies of these areas be

independent from each other (e.g., due to the high implementation cost whenever

these areas are geographically far from each other). Therefore, we follow the two

steps of Algorithm 7.2.1 for Halg
x = (I3⊗Halg

xa ) and Rx = I3⊗Rx5 (Rx5 is the same

weighting matrix as in the fourth simulation scenario), and find Hcx = (I3⊗Hcxa):
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Halg
xa =



2 −0.5 0 0 −0.5

−0.5 1 −0.5 0 0

0 −0.5 1.5 0 0

0 0 0 0.5 −0.5

−0.5 0 0 −0.5 2


Hcxa =



4 −1 0 0 −1

−0.5 0.5 0 0 0

0 −2 3.6 0 0

0 0 0 1 −1

−1 0 0 0 3


The simulation result for this multi-area multiagent system is shown in the

right-plot of Figure 7.6. Note that we have considered the same inter-area com-

munications for brevity in the presentation, and Algorithm 7.2.1 is in fact valid

for three different communication structures: Hcx = diag{Hcxk} for k ∈ {1, 2, 3}.

The result of Corollary 7.2.1 can be verified by reverse engineering based on

the provided information for Figure 7.2 to Figure 7.6, and we do not present any

new results for brevity. We just mention that, for example, a 10-minute simulation

using incomplete structure of Figure 7.5 results in the cost 3.66 (left-hand side

of inequality (7.5)) and the analytical worst-case calculation provides guaranteed

bound 80.675 for approximated κ = 1 and σ = 0.4 to be used in that corollary

(right-hand side of inequality (7.5)).
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Figure 7.2: An incomplete state weighting matrix Qx in Design procedure 7.2.1
will not necessarily result in an incomplete communication topology Gcx (see the
discussion before Algorithm 7.2.1). Top) The two-layer closed-loop multiagent
system configuration using the all-to-all communication graph Gcx of (7.52).
Black items build the physically coupled multiagent system, and blue items
create the control-layer communication topology. The control-layer graph is
structurally symmetric with bi-directed communication links which have been
shown in two colors blue and cyan. Also, Magenta items correspond to the
(virtual) command generator which is physically decoupled from other agents
(to be interpreted as the main control room in large-scale systems). Bottom)
Distributed first-order cooperative tracking in a multiagent system of (7.1)
modeled by nonlinear functions of Subsection 7.3.1.
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Figure 7.3: First-order cooperative tracking using star topology Gcx where all
agents receive the reference command over five directed edges (consider only
magenta arrows in the left-side plot of Figure 7.2). The norm of state weighting
matrix Qx in the right-plot is four times greater than that of the left-plot
which, as expected from LQR optimal control theory, has resulted in a faster
convergence compared to the left-side plot with more aggressive control actions.
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Figure 7.4: The (incomplete) structure of control-layer communication topol-
ogy highly depends on the selection of state weighting matrix Qx in Design
procedure 7.2.1: Top) Closed-loop multiagent system configuration using Hcx
in (7.53). Bottom) Numerical simulation results.
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Figure 7.5: Top) Closed-loop interconnected multiagent system configuration
with a structurally non-symmetric control-layer that is designed based on Al-
gorithm 7.2.1. Bottom) First-order cooperative tracking behavior using linear
distributed protocol with communication topology Gcx of the fourth simulation.
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Figure 7.6: Top) In a high-dimension physically coupled multiagent system of
fifteen agents, we can use Algorithm 7.2.1 and divide the cooperative pro-
tocol design problem into three subproblems where, in each area, the five
agents exchange information over a communication graph similar to that of Fig-
ure 7.5-Top with a set of new edge-weights and no information exchange from
agent 4 to 5. Bottom) First-order cooperative tracking in multi-area multia-
gent system subject to unknown inter- and intra-area time-varying nonlinear
physical couplings.
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7.3.2 Second-order cooperative tracking

We now verify the results of Subsection 7.2.2 using a multiagent system of

second-order coupled agents where the time-varying nonlinearities are assumed to

be the same as in the first-order tracking scenario in Subsection 7.3.1 replacing

fi by gi, αi by βi, and zi by yi = 0.4
∑

j∈Naxi
(xi − xj) + 0.4

∑
j∈Navi

(vi − vj) in

which the physical coupling neighborhoods N ax
i and N av

i are shown as agent-

layer graphs in Figure 7.7. This configuration models a multiagent system with

diverging trajectories which is not shown for brevity. In the rest of this subsection,

we discuss two design scenarios based on the Algorithm 7.2.2. A comprehensive

study can be made following the discussion in Subsection 7.3.1.

In the first simulation, we choose Rv = diag{0.5, 1, 0.5, 1, 0.5}, Halg
x = 2Rv,

and Halg
v ; and find Hcx and Hcv given by the aggregated matrix Hc:

Halg
v =



9 −2 0 0 −2

−2 6 −4 0 0

0 −4 9 0 0

0 0 0 4 −4

−2 0 0 −4 11



Hc =

[
Hcx Hcv

]
=



2 0 0 0 0 18 −4 0 0 −4

0 2 0 0 0 −2 6 −4 0 0

0 0 2 0 0 0 0 18 0 0

0 0 0 2 0 0 0 0 4 −4

0 0 0 0 2 −4 0 0 −8 22


(7.54)
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where the left-side partition represents a star communication graph Gcx and the

right-side partition models a structurally non-symmetric communication topology

Gcv to be used in cooperative tracking protocol (7.17). The closed-loop multiagent

system and simulation result are shown in Figure 7.7.

In the second simulation, we choose the aforementioned Rv and Halg
v , and set

Halg
x := Halg

v . Based on the first step of Algorithm 7.2.2, we find two reduced-

order Laplacian matrices Halg
cx and Halg

cv and, based on the second step, we end in

Hc = [Halg
x |Halg

v ]:

Halg
cx = Halg

cv =



22 −6 0 0 −6

−3 9 −6 0 0

0 −12 22 0 0

0 0 0 6 −6

−6 0 0 −12 28



Hc =



16 −6 0 0 0 22 −6 0 0 −6

−3 9 −6 0 0 −3 9 −6 0 0

0 −12 22 0 0 0 0 22 0 0

0 0 0 6 −6 0 0 0 6 −6

0 0 0 −12 25 −6 0 0 −12 28


(7.55)

where the left- and right-side partitions of Hc correspond to Gcx and Gcv, respec-

tively. The multi-layer closed-loop multiagent system and simulation result are

given by Figure 7.8 in which the initial state values of the (virtual) reference

generator have been manipulated to create the desired command.
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Figure 7.7: Multi-layer second-order cooperative tracking: Top) Closed-loop
configuration using communication topologies represented by Hc in (7.54).
Over the agent-layers, black arrows represent x-variable physical couplings and
red arrows indicates v-variable interconnections. Over the control-layers, blue
arrows denotes x-variable communication topology and red/black arrows stand
for v-variable information exchange graph. Bottom) The corresponding numer-
ical simulation result to the left-side configuration.
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Figure 7.8: Multi-layer second-order cooperative tracking: Top) Closed-loop
configuration using communication topologies represented by Hc in (7.55).
Symbols and colors are defined similar to Figure 7.7. Bottom) The simula-
tion result corresponding to the left-side multi-layer structure.
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7.3.3 Mixed-order cooperative tracking

In this subsection, we consider the mixed-order multiagent system of Subsec-

tion 7.2.3 with M = 2 second order agents (7.30) and N − M = 3 first-order

agents (7.31). The nonlinearities of second-order agents are the same as the first

two agents in Subsection 7.3.2 (i.e., i ∈ V1 = {1, 2}), and those of first-order

agents are the same as the last three agents in Subsection 7.3.1 (i.e., i ∈ {3, 4, 5}).

The physical couplings have been shown as agent-layer graphs in the left-side plot

of Figure 7.9.This physically coupled multiagent system shows unstable behavior

which is not shown in this chapter due to the space consideration. In the Algo-

rithm 7.2.3, we choose Rv = diag{0.2, 0.4}, Rx = diag{0.2, 0.4, 0.2}, the following

Halg
xV1 , H

alg
vV1 , and Halg

xV2 , and find structurally symmetric communication topologies

GcxV1 , GcxV2 , and GcvV1 represented by Halg
c :

Halg
xV1 = Halg

vV1 =

 1.5 −1.5

−1.5 3.5

 Halg
xV2 =


1.7 −0.7 0

−0.7 0.7 0

0 0 1



Halg
c =



7.5 −7.5 0 0 0 7.5 −7.5

−3.75 8.75 0 0 0 −3.75 8.75

0 0 8.5 −3.5 0 0 0

0 0 −1.75 1.75 0 0 0

0 0 0 0 5 0 0


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in which Halg
c is partitioned according to (7.44). We further continue Algo-

rithm 7.2.3 and find three structurally non-symmetric communication topologies:

Hc =



6.75 −6.75 0 0 0 5.55 −5.55

0 5 0 0 0 0 4.5625

0 0 4.575 −3.5 0 0 0

0 0 −1.75 3.25 −1.5 0 0

0 0 0 0 4.75 0 0


(7.56)

to be used in mixed-order cooperative tracking protocol (7.34)-(7.35) as depicted

in the left-side plot of Figure 7.9 and result in cooperative reference tracking

response shown by the right-side plot of this figure.

7.4 Summary and bibliography

We consider cooperative reference tracking problems for three classes of het-

erogeneous multiagent systems with interconnected nonlinear first-, second, and

mixed-order agent-layer dynamics. We introduce a multi-layer framework and

propose linear distributed cooperative protocols in which, by treating each com-

munication link as a proportional gain (controller), we appropriately design the

control-layer communication topologies to ensure robust tracking and performance

in the closed-loop interconnected multiagent system.

We develop optimal control-theoretic formulation to design these control lay-

ers, incorporate matrix-algebraic tools to solve the resulting nonlinear matrix

equations, and propose analytical solutions to the control-layers design problems
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Figure 7.9: Multi-layer cooperative tracking in mixed-order multiagent systems
of Subsection 7.3.3: Top) Closed-loop configuration where squares and circles
denote second-order and first-order agents, respectively. The colors have been
explained in Figure 7.7. Bottom) Numerical simulation result for the proposed
configuration in the left-side plot.

which relate the communication topologies to the multiagent system-level design

matrices and our partial knowledge about agent-layer interconnected dynamics.

We also develop several algorithms to systematically design structurally symmetric
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and non-symmetric control-layers which ensure robust tracking and guaranteed-

performance in the presence of partially-known agent-layer dynamics.

These algorithms, in particular, can be used to incorporate a-priori knowledge

about the required control-layer structures and find appropriate communication

strengths (e.g., due to the implementation cost of communication links whenever

agents are geographically far from each other). In each case, for the given control-

layer communication topologies, we further establish a bound on the uncertainties

in agent-layer dynamics that can be tolerated by this chapter’s linear distributed

protocol. Noticing the fact that nonlinear matrix equations in second- and mixed-

order tracking problems are decomposed into reduced-dimension equations with

the same structure as in the first-order tracking problem, the proposed ideas can be

used to address (mixed) high-order tracking problems based on the low-dimension

matrix equations corresponding to a multiagent system of single integrators.

The problems of this chapter are inspired by the reference tracking challenge

in large-scale systems (versus stability issues in Chapters 5 and 6) from a cyber-

physical viewpoint in which we assume the unknown agent-layer dynamics are

time-varying and interconnected. This viewpoint is inspired by [157], in part.

From a multi-agent systems’ viewpoint, compared to [73] and [158]-[159], we con-

sider an unknown communication topology and treat it as a design degree of

freedom, and each agent’s modeling uncertainty dependents on its own as well as

its neighbors’ internal variables.

Also, note that we consider the global performance of multiagent systems

that guarantee convergence rate maximization and quadratic cost function min-

imization in the presence of modeling uncertainties in the agent-layer dynamics.
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References [153]-[154] discussed numerical optimization approaches to find com-

munication graphs with maximum convergence rate as the performance metric.

Nevertheless, these references did not provide any closed-form solutions to rep-

resent their optimal communication topologies. Under various assumptions on

the number of nodes and edges in undirected graphs, [155] proposed several ana-

lytical solutions as the graphs with maximum consensus convergence rate. How-

ever, similar to [153]-[154], the result was limited to undirected graphs. Based on

globally coupled linear-quadratic cost function, [84] proposed an inverse-optimal

control technique to achieve cooperative tracking in multiagent systems. But the

result was limited to a-priori known “detailed balanced digraphs” and needed lo-

cal controller implementations. Reference [86] used a linear-quadratic regulatory

(LQR) formulation and proved the minimum of global cost could be achieved by

inter-agent communication over bi-directed complete digraphs. Additionally, for

a decoupled cost function (i.e., sum of agent-level local cost functions), [88]-[89]

derived star graph as the optimal communication topology assuming all followers’

access to the leader’s information. Nevertheless, all of these designs were lim-

ited to linear multiagent systems, without any sort of physical interconnections in

the open-loop (control communication-free) multiagent systems, and without any

modeling uncertainties. Furthermore, these results covered only undirected and

some special classes of digraphs to be used as communication topologies.

Nonlinearities in multiagent systems have also been investigated in the liter-

ature of distributed control. References [160]- [161] designed nonlinear protocols

to ensure consensus in linear multiagent systems. Reference[66] proposed a feed-

back linearizion-based approach in order to synchronize multiagent systems of
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nonlinear agents (see [73], [159], and [162] too). Although the result of applying

nonlinear control is theoretically strong, these techniques are still unpopular in

industries due to the extra complexity and unclarity compared to linear control

methods [163]. In the previous chapters, using linear techniques, we proposed dis-

tributed controllers for multiagent systems with Lur’e-type nonlinear agents. In

Section 5.3, we considered a special class of multiagent systems with unknown non-

linear physical couplings in the distributed decoupling problem where the result

was limited to completely known physical coupling topologies among agents and

communication graph was the same as the coupling topology. We addressed these

issues in Section 6.1; however, there was no discussion on the closed-loop mul-

tiagent system’s global performance and the method was still limited to a-priori

known undirected communication topology. Similar to the completely linear sce-

narios in [77]-[78], the designer required local agent-level control manipulations

for the implementation purpose. Additionally, there are some applications that

do not fit the proposed physical coupling structure of these references.

Although we do not cover any particular applications in this chapter, we men-

tion that the proposed approaches can be used for the coordination control purpose

in wind farms (see [144]) under the time-varying nonlinear effects of wake which

couple the down-stream turbines to the up-stream ones [164]. The large-scale

power system with inter-area couplings can be viewed as another application for

the proposed ideas of this chapter [165]. The proposed methods can be applied to

the cooperative tracking problem in multi-robot systems in the absence of physical

interconnections. In this case the nonlinearities are due to the inaccurate transfor-

mation that converts robot’s nonlinear dynamics to integrator (see [44]). Without
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any physical interconnections and nonlinearities, the results of this chapter can

be used to design optimal structurally non-symmetric directed communication

topologies which ensure consensus in linear multiagent systems with a guaranteed

convergence rate and linear quadratic cost (see [19] and [166] for the application

of consensus algorithms).

We acknowledge that the results of this chapter are based on the matrix-

algebraic definitions and findings in [99] and [167]. In particular, a comprehensive

discussions on M -matrices and functions of matrices are provided in [167].

7.5 Appendix: proofs

Proofs of all theorems are gathered in this section.

7.5.1 Proof of Theorem 7.2.1 (page 264)

We prove this theorem in two steps by showing ux = −Hcxe of Step 2 in Algo-

rithm 7.2.1 ensures 1) robust exponential first-order cooperative tracking (7.2) for

multiagent systems of agents (7.1) with unknown physically-coupled time-varying

nonlinearities fi, and 2) robust performance by guaranteeing an upper-bound P1

on the quadratic cost function (7.5) subject to unknown trajectories of (7.1).

Step 1) We write the first part of this proof by letting the input of multiagent

system (7.6) be written as ux = τx + τxm where τx = −Halg
cx ex, τxm = −Halgm

cx ex,

and Halg
cx and Halgm

cx are defined in Step 2 of Algorithm 7.2.1. We propose a

candidate Lyapunov function V (ex) = eTxPex � 0 where P � 0 is the solution of

ARE (7.9). We first note that J?1m = eTx (0)Pex(0) is the optimal cost in Design

procedure 7.2.1. Thus, the pair (ex, τx) with τx = −Halg
cx ex = −R−1

x Pex satisfies
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Property 7.2.1 if we replace J?1m by V , and ux by τx. Now, along the uncertain

trajectories of (7.6), we find:

V̇ (ex) = V T
ex(f + τx + τxm) = −eTxQxmex − τTx Rxτx − 2τTx Rx(f + τxm)

≤ −eTx (Qx + 2[(Halg
cx )TRxHalgm

cx ]sym)ex ≺ 0

where the inequality is obtained based on the condition in Step 2 of Algorithm 7.2.1

and the fact that fTRxf ≤ eTxRxfex. Using Rayleigh-Ritz inequality, we further

find λmin(P )‖ex‖2 ≤ V (ex) ≤ λmax(P )‖ex‖2 and V̇ (ex) ≤ −λmin(Q)‖ex‖2. Now,

global exponential stability of the origin in error dynamics (7.6) is proved in the

presence of unknown time-varying interconnected nonlinearities f . This further

indicates that the first-order distributed cooperative tracking problem (7.2) is

achieved by agents (7.1) with an exponential rate specified by positive scalars κ

and σ (defined before the main statement of this theorem).

Step 2) Based on the results in Step 1, we know V T
ex(f + ux) ≤ −eTx (Qx +

2(Halg
cx )TRxHalgm

cx )ex. Substituting V T
ex = 2eTxP and adding uTxRxux to both

sides of this inequality, we find eTxQxex + uTxRxux ≤ − d
dt

(eTxPex) + uTxRxux −

2eTx (Halg
cx )TRxHalgm

cx ex. Now, we integrate both sides over [0,∞) and find:

J1(ex(0)) ≤ eTx (0)P1ex(0) +
∫∞

0
(uTxRxux − 2eTx (Halg

cx )TRxHalgm
cx ex)dt

≤ eTx (0)P1ex(0)

+κ2

2σ
(λmax[(Halg

cx )TRxHalg
cx + (Halgm

cx )TRxHalgm
cx ])eTx (0)ex(0)

= eTx (0)P1ex(0)
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where we use limt→∞ ex(t) = 0, ux = −Hcxex, ‖ex(t)‖ ≤ κ exp−σt‖ex(0)‖, and

the fact that:

eTxHT
cxRxHcxex = eTx ((Halg

cx )TRxHalg
cx + (Halgm

cx )TRxHalgm
cx + 2(Halg

cx )TRxHalgm
cx )ex

7.5.2 Proof of Theorem 7.2.2 (page 275)

The detail of this proof is similar to that of Theorem 7.2.1. We briefly discuss

a two-step proof to show exponential reference tracking using the weighted infor-

mation exchange digraphs Gcx and Gcv, and establish an upper-bound bound on

quadratic cost function (7.5).

Step 1) To prove exponentially cooperative second-order tracking, we introduce

V (e) = eTPe � 0 as the candidate Lyapunov function where P � 0 is the solution

of ARE (7.23). We let uv = τv + τvm where τv = −Halg
c e and τvm = −Halgm

c e,

and Halg
c and Halgm

c are defined in Algorithm 7.2.2. We know any pairs (τv, e)

satisfy Property 7.2.2 replacing uv by τv and J?2m by V (since the ARE of Design

procedure 7.2.2 is satisfied). Now, along the uncertain trajectories of (7.19) with

unknown interconnected nonlinearities g(y, t), we find:

V̇ (e) = −eTQe− (τTv Rvτv + 2τTv Rvg + gTRvg)− (eTRfe− gTRvg)

−2eT (Halg
c )TRvHalgm

c e

≤ −eT (Q+ 2[(Halg
c )TRvHalgm

c ]sym)e ≺ 0
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We know λmin(P )eT e ≤ V (e) ≤ λmax(P )eT e and the following inequality can be

established using Rayleigh-Ritz inequality:

V̇ (e) ≤ −λmin(Q+ 2[(Halg
c )TRvHalgm

c ]sym)eT e

This ensures global exponential stability of the origin in error dynamics (7.19)

with predefined converging behavior specified by e(t) ≤ κexp−σte(0), κ and σ.

Step 2) Based on the result of Step 1, we know:

V T
e (

 0

IN

 g +

ev
uv

) ≤ −eT (Q+ 2(Halg
c )TRvHalgm

c )e

We further use the fact V T
e = 2eTP in order to find d

dt
(eTPe) ≤ −eT (Q +

2[(Halg
c )TRvHalgm

c ]sym)e and, by integrating over [0,∞), we know
∫∞

0
(eTQe +

uTvRvuv)dt ≤ eT (0)Pe(0) +
∫∞

0
(uTvRvuv − 2(Halg

c )TRvHalgm
c )dt because of the

limit behavior limt→∞e(t) = 0. With some manipulation, we find J2(e(0)) ≤

eT (0)P2e(0) where P2 is defined before the main statement of this Theorem.

7.5.3 Proof of Theorem 7.2.3 (page 289)

This proof follows that of Theorem 7.2.2. In the first step, we propose a

candidate Lyapunov function V (e) = eTPe � 0, decompose u = τ + τm where

u = [uTv , u
T
x ]T = Hce, τ = [τTv , τ

T
x ]T = Halgm

c e, and τm = [τTvm, τ
T
xm]T = Halgm

c e are

defined based on Algorithm 7.2.3. Along the unknown trajectories of the coupled

error dynamics (7.39), we find:
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V̇ (e) = −eTQe− (uTRu+ 2uTRφ+ φTRφ)− (eTRfe− φTRφ)− 2τTRτm

≤ −eT (Q+ 2[(Halg
c )TRHalgm

c ]sym)e ≺ 0

and conclude exponential stationary tracking behavior in the closed-loop multia-

gent system of mixed-order agents (7.30)-(7.31). Note that:

(Halg
c )TRHalgm

c =


(Halg

cxV1)
TRvHalgm

cxV1 0 (Halg
cxV1)

TRvHalgm
cvV1

0 (Halg
cxV2)

TRxHalgm
cxV2 0

(Halg
cvV1)

TRvHalgm
cxV1 0 (Halg

cvV1)
TRvHalgm

cvV1


Thus, using the transformation eT = T T e for a row permutation matrix T ∈

R(N+M)×(N+M), this condition can be rearranged as V̇ ≤ −eTT∆eT ≺ 0 in which

∆ = diag{(7.50), (7.51)}. Therefore, the positive definiteness of matrix Q +

2[(Halg
c )TRHalg

c ]sym can be verified by two independent lower-order tests (7.50)

and (7.51) in Algorithm 7.2.3. In the second step, we find:

J3(e(0)) =
∫∞

0
(eTQe+ uTRu)dt ≤ eT (0)Pe(0)

+
∫∞

0
(uTRu− 2eT ((Halg

c )TRHalgm
c )e)dt

which, substituting u = τ + τm as defined in the first step, can be rewritten as

J3(e(0)) ≤ eT (0)P3e(0) with the given P3 in this theorem.
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Chapter 8

Overview and Future Work

“Do not be satisfied with the stories that come before you. Unfold your

own myth.”

Mawlana — Poet (1207-1273)

A comprehensive summary of results is included at the end of each chapter.

Now, at first, we provide a brief chapter-by-chapter overview of this dissertation

and, later, propose some theoretical and practical future work ideas.

In Chapter 3, we propose four distributed algorithms and study the challenges

of graph-theoretic consensus in physically decoupled multiagent systems. In that

chapter, the presence of modeling uncertainties increases the challenges compared

to the major part of the literature. We show the agreement is on an unknown

value that depends on the initial conditions of agents. After ensuring agreement

among agents of a multiagent system, we also prove that an agreement on zero

can be guaranteed by imposing some further requirements on the closed-loop

multiagent system.
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In Chapter 4, motivated by the results of Section 3.1 for multi-vehicle systems,

we propose a leaderless stationary consensus protocol which ensures all vehicles

agree on a position and come to stop in the presence of unknown persistent distur-

bances with a few absolute measurements. We further develop a leader-follower

stationary protocol which can be applied to the multi-vehicle and multi-robot

systems with second-order dynamics.

In Chapter 5, based on the results of Section 3.2, we interpret the agreement on

zero as the stabilization of a large-scale system around the origin. Particularly, we

discuss some benefits of using distributed algorithms to stabilize large-scale sys-

tems. We introduce the notion of physically coupled (interconnected) multiagent

systems, and propose two problems based on the structure of available information

about the multiagent system: distributed decoupling control and stabilization. In

that chapter, we only address the distributed decoupling problem and, moreover,

assume the physical coupling topology is completely known (although its effect

appears through some unknown linear or nonlinear functions).

In Chapter 6, we assume the physical coupling topology is unknown and

propose multi-layer distributed control configurations for both decoupling and

stabilization problems in physically interconnected multiagent systems. In this

formulation, agents interact over the agent-layer physical coupling topology and

controllers exchange information over the control-layer communication topology.

In the distributed decoupling, we have access to all absolute measurements of

agents and implement the decoupling algorithm in a hierarchical manner. We sta-

bilize some residual dynamics using lower-level local controllers, and use relative

measurements in order to design a higher-level distributed protocol to mitigate
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the adverse effects of physical couplings and stabilize the entire interconnected

multiagent system (see Sections 5.2, 5.3, and 6.1). In the distributed stabiliza-

tion, we assume only a few agents provide their absolute measurements. Thus, the

stabilization is guaranteed with less measurements compared to the distributed

control problem (see Section 6.2).

Although heterogeneous, in Chapters 5 and 6, all agents are modeled by dy-

namical systems with the same order and the results were limited to the decou-

pling and stability issues. In all cases, the control-layer communication graph

is structurally symmetric and we are able to manipulate the agent-layer dynam-

ics by implementing local controllers. In Chapter 7, we address these challenges

by considering the entire control-layer as a manipulable control variable to be

designed based on the unknown agent-layer’s time-varying nonlinearly intercon-

nected dynamics. By treating each inter-agent communication link as a propor-

tional gain, we use modified LQR formulation and find closed-form solutions for

the control-layer purely based on the design matrices and our partial information

about the agent-layer dynamics. We show the proposed approach can be used for

the performance-oriented design of multi-layer cooperative tracking protocols in

mixed-order multiagent systems and, further, establish bounds on the maximum

agent-layer modeling uncertainties that can be tolerated by the given communi-

cation topologies.

We can further think about the results of Chapters 5 to 7 based on the model

of multiagent systems and distributed control protocol. Regarding the modeling,

we consider heterogeneous multiagent systems in Chapters 5 to 7. In Section 5.2,

we use relative-output measurements, and design an observer-based distributed
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decoupling system for a parameter-dependent multiagent system where agents

could operate at different operating points. Another result is about the static

relative-state feedback approach. In Section 5.3, we consider time-invariant Lur’e

nonlinear multiagent systems with matched or unmatched state-coupled nonlin-

earities, and in Section 6.1, we generalize the model to another Lur’e multiagent

system with mixed matched and unmatched time-varying nonlinear modeling un-

certainties. In Section 6.2, we introduce a class of linear time-invariant multiagent

systems with both state- and input-coupled modeling uncertainties. In Section 7.2,

we consider three classes of multiagent systems with unknown interconnected non-

linear modeling uncertainties in their state-space realization.

Regarding the distributed formulation, we address the decoupling and sta-

bilization problems using leaderless consensus protocols (see Section 5.2), and

leader-follower consensus strategies (see Section 5.3, and Chapters 5-7). Regard-

ing the developments in Chapter 5, although they appear through some unknown

functions and result in modeling uncertainties, we completely know the physi-

cal coupling topology. Hence, we use the same topology to design distributed

decoupling system. In Chapter 6, we relax this assumption by proposing a multi-

layer distributed control framework. We further propose some fixed-gain fully

distributed algorithms that can be designed without any global knowledge about

the coupling and communication graph topologists. In Chapter 7, we propose a

set of linear cooperative tracking protocols to ensure robust exponential stability

and performance in interconnected multiagent systems. In this formulation, un-

like Chapters 5 and 6, the entire control-layer has been teated as the manipulable

variable for the control design purpose.
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An itemized summary of this Dissertation is given in Table 8.1. Note that,

in Section 5.1, we connect the literature of multiagent systems to that of large-

scale systems by proposing distributed decoupling and stabilization problems for

interconnected multiagent systems. Also, in Section 5.4, we discuss the proposed

distributed decoupling problem includes many of the existing distributed consen-

sus problems as special cases. We have considered modeling uncertainties in all

designs which can be interesting from practical viewpoints. Thus, we may imagine

many future work ideas that cover all theoretical and practical aspects of both

multiagent and large-scale systems along with the proposed synergistic foundation

in Figure 1.1, page 26. In the rest of this chapter, we discuss the future work ideas

under both theoretical and practical categories.

8.1 Theoretical aspect

There are many potential theoretical extensions to this dissertation. As a few

immediate ideas, we mention communication delay and quantization1. Addition-

ally, the distributed algorithm may receive imperfect noisy measurements. In this

case, we can propose stochastic models of interconnected multiagent systems and

(potentially) prove the same results “on average” (for a zero-mean noise). More-

over, based on the fully distributed developments in Chapter 5, we know that our

1A special quantization on a lumped relative-measurement has been discussed in [168]. Based
on that, we propose a logarithmic quantizer for a multiagent system of integrators, we write
it as ẋi = u′i where u′i = gq(

∑
j∈Ni

(xi − xj)), gq(ui) denotes the quantization function which
satisfies |gq(ui) − ui| ≤ γq|ui| with a constant γq. We rewrite it as ẋi = ui + fq(ui) where
fq(ui) = gq(ui)− ui. Letting fq(ui) be a modeling uncertainty, the proposed approaches of this
dissertation can be used to handle the quantization problem. However, the general quantization
problem will remain as a future work idea.
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ideas have the following features: 1) The control gains are found independent of

graph topologies. Therefore, the design is robust with respect to both coupling

and communication topologies “as long as they are fixed and time-invariant in

each run,” and 2) They allow a post-design of the communication graph topology.

In fact, the initial communication network can be arbitrarily chosen to meet some

specific properties (e.g., at least it needs to be a connected graph). However,

depending on the optimality requirements, we may re-design and upgrade the

communication network to optimize it with respect to some new criteria without

being worried about its effects on the decoupling control gains.

In this sense, the proposed fully distributed ideas recover the interconnected

multiagent system after any failures in coupling and communication topologies

which cause (temporary) shut-downs. However, we emphasize this is different

from the switching-based scenarios that may happen in multiagent or large-scale

systems. To be clear, while the proposed approached may work under switching

scenarios, the proofs do not provide any theoretical guarantees for the stability

in any switching interconnected multiagent systems. Thus, switching control of

switched systems can be another future work direction (see [169]). Although we

have already found “closed-form” solution for a special class with quadratic cost

functions, we consider communication topology optimization problem with non-

quadratic cost functions as another future work idea. The coupling and commu-

nication faults can be discussed in a similar manner proposing a weighted graph

Laplacian (see Remark 2.2.1); however, resilient control of interconnected multi-

agent systems is left as a future challenge. Proposing a multi-layer LQR-based

formulation for the distributed consensus (or decoupling) of “uncertain” multi-
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agent systems over signed graphs where the adjacency matrix has both positive

and negative weights is another future work idea. In this case, the multiagent sys-

tem has antagonistic communication which results in a collaborative-competitive

condition [105]. Designing a multi-layer LQR-based formulation in the discrete-

time domain may open a new window to use the existing results and address

the aforementioned quantization, delay, switching, hybrid, and sampled-data con-

trol problems. Also, developing a modification of the proposed ideas to handle

completely nonlinear interconnected multiagent systems will definitely widen the

application of proposed ideas in this research work.

8.2 Practical aspect

In addition to the discussion in previous section, we note that 1) we have added

different sources of modeling uncertainties to each model of multiagent system

(unavoidable in real world applications), and 2) we have addressed our control

problems using the well-known LQR approach. The proofs might be less obvious,

or possibly complicated; however, the statements of final results are purely based

on the modified LQR formulations which should be understandable to a wide range

of control theoreticians and practitioners. Although we need some modifications

to systematically handle the presence of unknown interconnections in distributed

stabilization and decoupling problems, we still provide the conventional degrees of

freedom in tuning the system and control input matrices based on the well-known

existing rule-of-thumbs (e.g., see [110]). Therefore, we believe the ideas should be

sufficiently interesting for people with practical interests (see [163]).
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Note that the result of Chapter 3 is already developed with an application

viewpoint. However, we further mention that our distributed decoupling and sta-

bilization ideas are applicable to both multi-machine power systems and smart

grids. Thinking about the old-style multi-machine power systems, the proposed

approaches can be used instead of the existing decentralized techniques (e.g.,

compared to [15], the proposed LQR formulations in this dissertation need some

less-restrictive structural assumptions on the distributed generators’ state space

models). On the other hand, dealing with a (tomorrow’s) smart grid, we notice

two main points: 1) the presence of communication between smart grid’s build-

ing blocks (e.g., microgrids) fits the multi-layer viewpoint of this research, and 2)

each microgrid’s capability to operate in either islanded or grid-connected mode

shows the need for a hierarchical framework in the fully distributed decoupling

algorithms where agents can be locally stabilized using their absolute measure-

ments. Moreover, we may consider the distributed coordination of wind turbines

in the wind farm as another direct application of our ideas.
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