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Abstract 

Tau fibrils are a pathological hallmark of over 20 neurodegenerative 

disorders, including Alzheimer’s disease. There currently is no cure for these 

diseases and treatments are limited. Once Tau fibrils form in the brain, they 

propagate down neuronal networks, and this spreading is linked to disease 

progression. Studying the behavior and structure of Tau monomer and Tau 

aggregates therefore may give insight into methods by which the spread of Tau 

fibrils can be inhibited. The structures of the Tau fibrils from different diseases 

are thought to vary, partially giving rise to the different disease phenotypes. Tau 

natively binds to microtubules by either three or four imperfect repeat regions, 

giving rise to the naming convention of 3R and 4R Tau. In solution, full-length 

Tau exists as a disordered monomer in dynamic conformational equilibrium. This 

solution-phase heterogeneity could, in part, explain conformational diversity of 

Tau fibrils. 

A homogeneous set of Tau fibrils transitioned to a new heterogeneous 

population of conformers after multiple cycles of seeding. The original fibrils were 

formed under stirring conditions, which enhanced the fragile population. Under 

the quiescent growth conditions of multiple cycles of seeding, the faster growing 

populations became the dominant set of conformers. This explains how a new 
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dominant fibril population can evolve from minor subpopulations. These findings 

demonstrate that changes in the selective pressures on Tau fibrils during fibril 

propagation could lead to the formation of polymorphs with differing clinical 

consequences. 

Microtubule associated protein 2 (MAP2) is a neuronal homologue to Tau 

and performs similar functions in the cell. MAP2 has not been shown to be a 

major antigenic component of the neurofibrillary tangles associated with disease. 

However, this does not exclude their presence in small quantities. Microtubule 

binding repeat regions from 3R and 4R MAP2 slow nucleation and block seeded 

aggregation of 4R Tau protein. Also, as few as a single MAP2 molecule bind to 

and cap the 4R Tau fibril end. This could account for the inhibition via disruption 

of the ability of Tau to subsequently bind to the capped fibril end. MAP2 inhibition 

of Tau fibril formation and progression could be a natural modulator of the fibril 

spreading in the brain.  
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Chapter 1 Introduction 

1.1 Alzheimer’s disease 

Alzheimer’s disease (AD) is a neurodegenerative disease inflicting 

approximately 5.4 million people in the US alone, according to the Centers for 

Disease Control (as of Feb 2018). This number is projected to increase 

dramatically with the aging baby-boomer population. AD manifests itself in the 

form of dementia and can cause symptoms such as memory loss, difficulty with 

time and space, and challenges completing every-day tasks at home. This 

disease is histopathologically hallmarked by inclusions comprised of two different 

protein aggregates [1]. The first type of aggregate is called a senile plaque, and 

is composed of a protein fragment named amyloid beta (Aβ) [2]. This fragment is 

the product of abnormal proteolytic processing of the amyloid precursor protein 

(APP) [3]. The other proteinaceous component that is associated with AD is 

called a neurofibrillary tangle (NFT) [4]. NFTs are part of a larger structure called 

an intraneuronal lesion [5]. These lesions are comprised primarily of amyloid 

fibrils made of phosphorylated Tau protein [4]. 

In AD, Tau pathology begins in the locus coeruleus in the entorhinal cortex 

and spreads through the brain to eventually be found in nearly every region in the 

later stages [6]. This pathology and subsequent neurodegeneration can be 
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accelerated by genetic mutation [7], trauma [8] ̶ [9], and unknown mechanisms. 

The stages of the NFT spread are described as Braak Stages [1], [10]. Braak 

stages I and II are when NFT involvement is primarily in the entorhinal cortex 

region of the brain. Stages III and IV possess the characteristics of earlier stages 

as well as the spread to limbic regions such as the hippocampus. The final 

stages V and VI are used to describe the extensive neocortical NFT deposition in 

the advanced disease state. 

1.2 Tauopathies: a class of protein misfolding diseases 

Deposition of aggregated Tau protein is also found in over twenty other 

neurodegenerative diseases (besides AD), collectively named Tauopathies. The 

list of Tauopathies includes diseases such as; chronic traumatic encephalopathy 

(CTE) [11], corticobasal degeneration, progressive supranuclear palsy (PSP), 

and a type of Frontotemporal Dementia also known as Pick’s disease (for a 

thorough review see [12]). AD is the best studied and most common variant of 

these diseases. CTE received more attention recently due to the fact that several 

high-profile professional athletes have been diagnosed post-mortem with the 

disease [13]–[15]. This emergent disease demonstrates our fundamental lack of 

knowledge in this area and how traumatic brain injury can lead to unusual 

pathology in the brain. 

1.3 Microtubule associated proteins 

Proteins are comprised of linear chains of amino acid building blocks that 

typically fold into biologically important three-dimensional (3D) structures. These 
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3D structures can perform very specific reactions in the cell, but not all 

biologically important proteins are folded. There is a class of proteins called 

intrinsically disordered proteins (IDPs). These proteins contain no regular 

structured regions and are less common than their folded or partially folded 

counterparts. Disorder in proteins is common, however. For example, 97% of 

proteins are predicted to have disorder in the first or last five residues in the 

chain [16]. An example of this are histone proteins that bind and organize DNA in 

eukaryotes [17]. 

Although the two-main microtubule associated proteins (MAPs) discussed 

here, MAP Tau and MAP2 are considered IDPs, they are not completely devoid 

of structure. Studies show that MAP Tau monomer is not a random coil but rather 

a loosely associated hairpin structure [18] ̶ [19]. Structural studies have utilized 

Förster resonance energy transfer (FRET) experiments to demonstrate that the 

N-terminus and C-terminus of Tau are in close proximity to each other, and to 

other key residues tested in the microtubule binding repeat (MTBR) region [20]. 

Due to the apparent backfolding of the ends of the protein, Tau resembles a 

paperclip. However, these regions do not have regular secondary structure in the 

traditional sense, except for small transient folds that do not persist for long 

periods of time in solution [19]  ̶[20].  

The other MAP of interest for this work, MAP2, is also considered 

intrinsically disordered, except for a small sequence in the amino terminal 
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domain that is implicated in binding to the regulatory subunit of protein kinase A 

[22].   

Native functions 

Microtubule associated proteins are a critically important set of proteins 

that have been shown to stabilize [23] and crosslink [22] ̶ [23] microtubules in a 

healthy mature neuron. This stabilization effect is attributed largely to the 

interaction of the microtubule binding repeat region (MTBR, Fig 1.1) with the 

negatively charged microtubule surface. Microtubule stabilization in the axon is 

very important as microtubules are one of the main structural components 

involved in membrane protrusion [25]. Tau and other MAPs are key regulators of 

microtubule dynamics. The interactions between Tau and microtubules are 

controlled in part by the phosphorylation state of Tau (see below). The most 

common amino acid in these repeats is the lysine residue which is a major 

contributor to the electropositive nature of these repeat regions. MAPs perform 

their native functions by binding to microtubules through electrostatic interactions 

in these MTBR regions. The charges are well distributed along the MAP 

backbone resulting in heat stability [26] and this contributes to the stable random-

coil structure required for function in the cell. 

Tau Isoforms and splicing 

The best studied of these MAPs is MAP Tau. The MTBRs are comprised 

of either 3 or 4 imperfect repeats consisting of either 31 or 32 amino acids and 

are present in all isoforms of MAPs expressed in humans [27]–[29]. This feature 
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is what gives rise to the naming half of the isoforms three-repeat (3R) and the 

other half the name four-repeat (4R). The presence of the second repeat is 

determined by alternative splicing of exon 10 in the MAPT gene. Tau protein can 

be further categorized by whether exons 2 and/or 3 are spliced. This results in 

zero, one, or two N-terminal inserts in the protein. (Fig 1). With either 3 or 4 

repeats and three different combinations of N-terminal inserts, there are 6 

isoforms of Tau protein. All 6 are present in the adult human brain [30]–[32].  

 

Figure 1.1  Scheme of Tau isoforms in humans. Tau protein exists in 6 splice 
variants in humans. The variation is determined by whether exons 2, 3 or 10 are 
expressed. Exons 2 and 3 encode the first and second inserts in the N-terminal 
regions, respectively. Exon 10 is responsible for the second repeat in the 
microtubule binding repeat region. K18 and K19 are constructs made of only the 
MTBRs. The MTBRs are the primary component of Tau fibrils.  

There are several other MAP homologues in humans including (but not 

limited to) MAP1 A and B, MAP2 C and D, and MAP4. The other MAPs have 

garnered less attention. This may in part be due to the isoform diversity. It has 
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been demonstrated that MAP2 C and MAP2 D are present in neurons and are 

localized primarily to the dendrites and cell body [33]–[35].  

Phosphorylation and hyperphosphorylation 

The phosphorylation state of MAP proteins has been shown to regulate 

the binding affinity for the microtubule surface [36]–[39]. This is controlled tightly 

in healthy cells by a variety of enzymes, such as microtubule associated protein 

kinase (MAPK) [48] ̶ [49] and glycogen synthase kinase 3-β (GSK3β) [42]–[44]. 

In healthy individuals the average phosphorylation state is 2-3 mol PO4
3-/mol Tau 

[45]. Tau becomes hyperphosphorylated [46]–[48] in disease (7-9 mol PO4
3-/mol 

Tau), which reduces the affinity of Tau for the negatively charged microtubule 

surface [49]. It is thought that the decreased net positive charge and higher 

soluble concentrations of Tau help to drive aggregation in the cell.  

1.4 Amyloids 

Structure of amyloids 

The amyloid structure is a class of protein fold often associated with 

disease. Over 25 amyloid-forming proteins have been identified and associated 

with serious diseases [50]. Amyloids are characterized as fibrillar protein 

structures, typically with a cross-β-sheet structure where parallel chains of β-

strands are arranged perpendicular to the fibril axis (Fig 1.2). X-ray fiber 

diffraction studies yielded basic information about the spacing between β-strands 

and β-sheets [51]–[53]. Continuous wave (CW) electron paramagnetic resonance 

(EPR) spectroscopy has given insight into the core structure of Tau fibrils [54]–
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[58] and other amyloids [59]–[61]  by demonstrating that the stacked monomers 

in the fibril adopt a parallel and in-register structure. Amino acids are stacked on 

identical residues from the next monomer layer along the fibril axis (Fig 1.2 B). 

 

Figure 1.2 Model of amyloid fibril structure. A Amyloid fibril structures are 
comprised of β sheets with sheet-sheet packing. Each monomer layer is 
separated by 4.8 Å. B Stacking of monomers is in parallel and in-register fashion. 
Individual residues are stacked in the fibril along the long fibril axis directly on top 
of the identical residue in the adjacent monomer (indicated by the blue star). 

Another EPR technique used in structural studies of amyloid fibrils is 

called double electron-electron resonance (DEER) spectroscopy [61]–[64]. This 

has been used to measure the distance between a fixed pair of nitroxide spin 

label radicals, introduced at known positions on the protein backbone [59] ̶ [61]. 

Multiple distances may arise in the analysis, which can be attributed to an 

ensemble of conformers [58], [63] ̶ [64], [66]. Nuclear magnetic resonance has 

had success in studying the structure of these fibrils [67]–[70]. CryoEM provided 

atomic-level resolution and illustrated which repeats in Tau are involved in the 

core of the fibrils from a patient with Alzheimer disease [71]. 
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Amyloid formation 

Conversion of soluble protein to insoluble fibrillar aggregates is still poorly 

understood. Amyloid formation generally comes with the loss of native function of 

the protein or peptide [72]–[75] and can include toxic species along the 

aggregation pathway [76]–[78]. Aggregation is thought to proceed through the 

formation of a nucleus that can turn into a small soluble oligomer, which can 

mature into an insoluble fibril (Fig 1.3) [79]–[83].  

 

Figure 1.3 Amyloid aggregation pathway scheme. Although the exact mechanism 
of action and structure of oligomers is unknown, studies show it is the small, still 
soluble species, that are toxic to cells [84]–[88].  

The structure of early pathway aggregates is difficult to study with 

techniques commonly applied to other proteins, such as X-ray crystallography. 

There have been attempts at studying the early stages of the Tau aggregation 

pathway, however [89]. In the case of oligomers, less is known about their 

structure, but it has been demonstrated that toxic species in the aggregation 
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pathway are oligomers [90]–[92]. One problem with the study of oligomers is 

trying to discern which size or stage of these oligomers are toxic but it has been 

shown that small aggregates can propagate through neuronal networks [93]–[96]. 

This leads to toxicity because the process of templating in a new cell can begin 

when the small fibrils are internalized in the neighboring cell [93], [97]–[99]. 

Therefore, a method by which to study these structures is essential. 

1.5 Conformation and conformational ensembles of Tau amyloids 

The conformation of amyloids depends on the initial nuclei that form [50]. 

These nuclei drive aggregation by templating the exact same misfolded state 

onto the endogenous population [55], [100]. It follows that different sets of nuclei 

may form in a disease, which could result in the pathology and progression of 

that disease. It has been shown that the conformation of Tau fibrils can be 

modulated by single mutations [58]. This means that conformational 

incompatibilities arising from sequence changes in monomers can drive the 

structure of these fibrils and that they can evolve over time. 

Under conditions in the lab it may be possible to form multiple fibril 

conformations simultaneously. There are usually a dominant species and sub-

species of conformers. These conformational ensembles can evolve resulting in 

new dominant species [58], [64]. Multiple conformers might also form in the 

brains of people afflicted with amyloid disease. As the fibrils spread from region-

to-region [94]  ̶[95], selection pressures exerted on the fibril species may change. 

Although the mechanism is unclear, selection pressures may change with 
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respect to post-translational modifications [48], [87] or mutations of endogenous 

protein [57], [96]  ̶[97], for example. This may result in an altered conformational 

ensemble that favors the new conditions.  

1.6 Diagnosing, preventing, and treating AD 

There is no cure for AD on the market. Many treatments are ineffective by 

the time the disease is diagnosed. Although recent developments show promise 

[103] ̶ [104], there are no antemortem diagnosis methods for AD or other 

Tauopathies besides neurological examinations[107] and cognitive testing [108]–

[111]. The onset of Tau hyperphosphorylation and mild cognitive decline [112] is 

years before these diagnostic methods can provide an accurate diagnosis. The 

focus of treatment has been in the development of inhibitors to aggregation 

[113]–[115]. Drugs are generally administered late in progression and are not 

effective at reversing the disease [116]–[118]. These critical areas of research 

have been slowed by the lack of structural data available and by the sheer 

challenge of the problem. Treatment would likely be more effective if 

administered early, highlighting the need for a rapid and early detection method. 

1.7 The scope of my research 

I examined several aspects of MAP Tau aggregation. These topics cover 

monomeric Tau protein and its conversion into Tau protein aggregates. Explicitly 

the topics include: monomer conformational heterogeneity, aggregation of Tau 

monomers into fibrils, a study of Tau fibril conformation and conformational 

selection processes and concludes with a study demonstrating that MAP2 is 
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capable of capping and blocking Tau aggregation in-vitro. These topics are 

interlinked in that they all provide insight into the process in which healthy 

monomeric Tau protein is converted into disease state-related Tau protein fibrils.  

 In Chapter 3 I examined the behavior of monomer species in solution. 

This is important to understand because a conformational change in the 

monomer is responsible for the nucleation behavior of Tau. Probing the structure 

and elucidating monomer behavior may enable investigators to better understand 

how the initial formation of fibrils occurs. I performed experiments in Chapter 4 

which are evidence for the hypothesis that multiple conformations of Tau fibrils 

exist in-vitro and that amyloid conformational ensembles can evolve. It is thought 

that different conformations of Tau may form in different diseases, which could 

drive their specific pathology. Tau fibril conformations may be the result of 

different monomer conformations during the nucleation and oligomerization 

process. If the various states of Tau in solution can be characterized, it may be 

possible to elucidate which structure or structures contribute to various 

Tauopathies, such as AD. In Chapter 5 I examined the stability of fibrils and their 

associated cofactors once aggregation has taken place. Dissociative properties 

of Tau monomers from the fibril must be such that the fibrils do not dissociate 

upon breakage. If Tau fibrils dissociated spontaneously, it seems unlikely that 

they would be capable of spreading. Lastly, understanding that Tau fibrils impart 

their structure onto endogenous monomers may enable researchers to develop 

therapeutics. One possible therapeutic avenue is to block the Tau monomers 
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from becoming incorporated on the fibril end. It is possible to block Tau 

aggregation at the end of the fibril using a capping mechanism in-vitro. Lastly, I 

demonstrate in Chapter 6 that the microtubule binding repeats of 3R and 4R 

MAP2 block Tau aggregation and also that MAP2 is binding to the end of the Tau 

fibril. Investigations of this blockage effect are being investigated in a cellular 

system now. The study of the conversion of soluble Tau monomer to fibril 

aggregates is one that is ongoing. 
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Chapter 2 Methods 

2.1 Tau constructs 

The longest human 4R isoform, hT40wt, and the shortest 3R isoform, 

hT23wt, were previously cloned into pET-28b plasmids using the NcoI/XhoI 

restriction sites in the plasmid. Truncated constructs, K18wt and K19wt, were 

also generated previously [56]. All mutagenesis was performed using the 

QuikChange method to introduce different amino-acid substitutions. K18 with a 

single cysteine on the N-terminus was synthesized and cloned by Biomatik using 

NcoI/XhoI restriction sites in a pET-28 vector. Aligned constructs used for this 

work can be found in Appendix A. 

2.2 MAP2 constructs 

Sequences for the microtubule binding repeats of MAP2 C and MAP2 D 

(Uniprot #P11137 variant 5) were synthesized by Biomatik and cloned into pET-

28 vector using NcoI/XhoI restrictions sites. These constructs had the natural 

cysteines replaced with serines (C404S and C444S). Constructs containing the 

cysteines were generated using site-directed mutagenesis as per manufacturer’s 

instructions as previously described. Also, a 4R truncated MAP2 N-terminal 

cysteine construct was synthesized and cloned by Biomatik into a pET-28 vector 
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using NcoI/XhoI restriction. Aligned constructs used for this work can be found in 

Appendix A. 

2.3 Plasmid transformation and DNA purification 

Plasmid DNA was transformed into BL21 (DE3) cells (Agilent) or XL1-Blue 

cells (Agilent) for protein expression or DNA amplification purposes, respectively. 

Transformation was performed as follows, cells were thawed on ice and 25 µL of 

thawed material was transferred to a 14 mL round bottom polypropylene tube 

(Corning Falcon). Two microliters of pure DNA were combined with cells and 

allowed to sit on ice for 30 minutes. Cells were permeabilized by heat shock at 

42 °C for 45 seconds and then placed on ice for 2 minutes, then 500 µL of NZY+ 

(10 g/L NZ-amine, 12.5 mM MgCl2, 12.5 mM MgSO4, 20 mM glucose) media was 

added and the cells were allowed to incubate at 37 °C for 45 - 60 minutes. 

Volumes of incubated material were plated on kanamycin plates at either 25-50 

µL for purified DNA or 250-500 µL for PCR product. 

Plasmid MIDI preparations were performed according to the 

manufacturers (QIAGEN) instructions. High-copy XL1-Blue cells were 

transformed with DNA, as above, from either site-directed mutagenesis reactions 

(Agilent) or previously purified DNA. 

Mammalian plasmid MIDI preparations were performed according to 

manufactures instructions (Omega). DNA was eluted with prewarmed (40 °C) 

PCR grade H2O. Eluent was repassed through column to achieve the highest 
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concentration. DNA was quantified using A280 nm and purity assessed via the ratio 

of A260 nm / A280 nm. 

2.5 Recombinant protein expression 

Protein expression was performed as follows; previously transformed 

BL21 (DE3) cells were scraped from either a kanamycin plate or a previously 

prepared glycerol stock and added to 50 mL of LB (20 g/L, Difco) with 20 µg/mL 

Kanamycin (Gold Bio). The solution was incubated at 200 RPM and 37 °C for 16-

18 hours to produce a starter culture. The resultant culture was mixed with 1.5 L 

of LB at a ratio of 1:100 supplemented with 20 mg/L Kanamycin (Gold Bio) and 

incubated at 200 rpm and 37 °C until the OD600 nm = 0.8 - 1.0. Protein expression 

was induced with 0.5-1 mM IPTG for 3.5 hours at 37 °C and 200 rpm. The cells 

were harvested at 5500 x g for 10 minutes. Pellets were taken up in 500 mM 

NaCl, 20 mM piperazine-N,N’-bis(2-ethanesulfonic acid  (PIPES, JT Baker or 

RPI) pH 6.5, 5 mM ethylenediaminetetraacetic acid (EDTA, Fisher), 50 mM 2-

mercaptoethanol (Fisher, electrophoresis grade), and stored at -80 °C. 

2.6 Protein purification 

Bacterial pellets from previous step were thawed for 20 minutes at 80 °C 

to precipitate heat insoluble protein. Samples were sonicated on ice at 50% 

power for 1 minute with a tip sonicator to lyse the cells and release soluble 

protein. Lysis solution was centrifuged at 20,000 x g for 30 minutes to remove the 

insoluble cellular material. The supernatant was adjusted to 55% (w/v) 

ammonium sulfate and rocked for 1-16 hours in order to precipitate the remaining 
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soluble protein. Precipitated protein was collected by centrifugation at 4,000 x g 

for 10 minutes. The supernatants were discarded, and the pellets were respun at 

the same settings. The remaining supernatant was pipetted off and the pellets 

were taken up in 8 mL of either nanopure water (Tau) or 10 mM PIPES pH 6.5 

150 mM NaCl 2 M urea (MAP2 proteins) both supplemented with 4 mM DTT. 

Additional buffer, salt, and urea was added due to low MAP2 solubility. Samples 

were combined and sonicated for 1 minute at 50% power to shear DNA and 

disrupt any small aggregates. These sonicated samples were syringe filtered 

(Pall Acrodisc 0.45 µM) to remove any particulate and diluted until conductivity 

was below 20 mS/cm. Protein was loaded onto a cation exchange column (Mono 

S 10/100 GL, GE Healthcare) using 50 mM NaCl, 20 mM PIPES, 0.5 mM EDTA 

and eluted with a linear gradient of 1 M NaCl, 20 mM PIPES, and 0.5 mM EDTA. 

Protein was pooled based on an SDS-PAGE, adjusted to 3 mM DTT, and stored 

at 4 °C for immediate use or -80 °C for future use. Samples were loaded onto a 

S75 column (GE Healthcare) for truncated Tau or an S200 column (GE 

Healthcare) for full length Tau or MAP2 proteins to separate proteins by size. 

Fractions containing protein were pooled based on UV trace and precipitated 

overnight as follows; truncated Tau was mixed 1:4 with Acetone (Fisher, Optima 

Grade) and full length Tau was mixed 1:1 with methanol (Fisher Optima Grade), 

all were adjusted to 4 mM DTT and incubated overnight at 4 °C. Precipitated 

protein was collected by centrifugation at 12,000 x g for 10 minutes. Protein 

pellets were stored at -80 °C under 2 mM DTT (acetone or methanol for 
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truncated and full-length Tau, respectively) until further use. Representative 

chromatograms for purification of K18 and MAP2 are attached in Appendix C. 

2.7 Protein monomerization 

Pellets from previous step were washed three times with either acetone 

(truncated proteins) or methanol (full length proteins) devoid of DTT and all 

supernatant was removed each time with a gel loading tip. Protein was dissolved 

in 8 M guanidinium HCl (Thermo) for 2-24 hours. No more than 300 µL of 

dissolved protein was loaded onto a PD-10 desalting column (Ge Healthcare) 

equilibrated with assembly buffer (10 mM HEPES pH 7.4 100 mM NaCl 0.1 mM 

NaN3), and 2.0 mL of this assembly buffer less volume of dissolved protein was 

added and allowed to flow completely through. To elute protein, 2.0 mL of 

assembly buffer was added to the column and collected for BCA (Pierce) 

quantification which was performed according to manufacturer’s instructions. 

2.8 Protein (cysteine residue) conjugation reactions 

Cysteines in Tau or MAP2 were covalently conjugated with a variety of 

labels for this work. Either a single natural residue (C291 or C322 in Tau or C409 

or C440 in MAP2, numbered according to Uniprot # P11137, variant 5) or an 

unnatural cysteine introduced through site-directed mutagenesis or in a construct 

ordered commercially (Biomatik) were labeled using maleimide (PEG-Biotin, 

Alexa, and Atto conjugates) conjugation reactions. Briefly, cysteine containing 

protein pellets dissolved completely in 8 M guanidinium HCl were conjugated by 

adding a 10:1 molar excess of dye to protein. This reaction was mixed thoroughly 
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and allowed to proceed for 2-24 hours in the dark. Excess dye and guanidinium 

was removed using a PD-10 desalting column (GE) and protein eluted as 

described above. Protein concentration was determined using BCA (Pierce) 

according to manufacturer’s instructions. Fluorescent labeling efficiency was 

determined using protein diluted to 1 µM according to BCA and measuring dye 

absorbance in a Cary 100 UV-vis spectrophotometer. Absorbencies were 

converted to concentrations using the Beer-Lambert Law. Extinction coefficients 

that were used are as follows: Atto 647N (1.5 x 105 M-1cm-1), Atto 633 (1.3 x 105 

M-1cm-1), Alexa 488 (7.3 x 104 M-1cm-1), Alexa 594 (9.2 x 104 M-1cm-1). 

2.9 Fibril formation 

Fibrils were formed by combining 25 µM Tau and 50 µM heparin (Celsus, 

average MW 4400 kDa) in 100 mM NaCl 10 mM HEPES pH = 7.4 (referred to as 

assembly buffer from here on) to induce aggregation of monomer. 0.5 mM TCEP 

was included if cysteines were present to provide a reducing environment. 

Solutions were made at volumes of at least 500 µL and were stirred for 3 days for 

truncated Tau and 8 days for full length Tau at room temperature (22 °C) using a 

Barnstead Thermolyne stir plate set to 220 RPM.  

2.10 Seeded reaction 

Stirred fibril material was sonicated using a Fisher Sonic Dismembrator 

Model 100 with power set to 20% for 30 – 120 seconds, depending on the 

application. Seeded reactions were performed by combining 10 µM fresh 

monomer and 20 µM heparin to induce aggregation (and 0.5 mM TCEP if 
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cysteines were present in monomers) with 2 – 10% monomer molar equivalents 

of sonicated preformed fibrils added to serve as seeds. Monomers were allowed 

to template and elongate the fibrils for 6 hours. Reactions were ultracentrifuged 

at 130,000 x g. Pellets (insoluble fraction) and supernatants (soluble fraction) 

were separated, pellets were resuspended in equivolume (with respect to 

reaction volume) of 1 X Laemmli sample buffer, and both were analyzed using 

SDS PAGE (15% for truncated and 12% for full length).  

2.11 Consecutive seeding cycle experiment 

Consecutive seeding cycles were performed as follows. Fibrils stirring for 

three days were sonicated 30 seconds at 20% power using a Fisher Sonic 

Dismembrator Model 100 to generate small fibrillar seeds and added in 10% 

monomer molar equivalents to 25 µM Tau, 50 µM Heparin in assembly buffer at 

a final volume of 500 µL. Cycle one was incubated for 1 hour at 37 °C and 

subsequently sonicated and used as seeds in the second reaction. This process 

was repeated until the ninth or fourteenth cycle was reached at which point the 

monomer concentration was increased to 50 µM Tau, heparin concentration was 

reduced to 12.5 µM, and seeds were added at 5% molar monomer equivalents. 

50 µM reactions of cycle 1 (from original seeds), cycle 5 (from cycle 4), cycle 10 

(from cycle 9), and cycle 15 (from cycle 14) were allowed to reach completion 

overnight at 37 °C. 
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2.12 Breakage sensitivity 

50 µM overnight reactions of cycle 1 or cycle 10 samples from consecutive 

seeding cycle experiments (above) were subjected to 60 seconds of sonication in 

a QSonica bath sonicator at 5% power, subsequent fibril fragments were diluted 

to 10 µM and prepared for transmission electron microscopy analysis (below). 

2.13 Transmission electron microscopy sample preparation and ImageJ 

analysis 

Concentration of Tau was adjusted to 10 µM total protein using assembly 

buffer and loaded onto Formvar carbon coated Cu grids by resting the grid on a 

10 µL droplet of protein on parafilm for 60 seconds. Excess protein was blotted 

gently on Whatman filter paper and the grid was placed on a 10 µL droplet of 2% 

uranyl acetate (Electron Microscopy Sciences) for 60-120 seconds. Grids were 

blotted and allowed to dry for 10 minutes on filter paper. Images were taken on a 

Tecnai F12 Biotwin scope using 100 kV high tension on a Gatan camera at 

University of Colorado, Boulder. 

Fibrils were analyzed by ImageJ (NIH version 1.8.0) for length, width, and 

helical periodicity. The scale was set by measuring the length of the scale bar 

(153 pixels) and setting the scale in ImageJ to 100 nm. Data sets were collected 

in ImageJ, sorted in Excel (Version 1801) and plotted in GraphPad (Version 

7.04). 
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2.14 Fibril dissociation experiments 

Fibrils formed with RNA were made by stirring 25 µM Tau and 12.5 µg/mL 

PolyA RNA (Sigma, product number P9403, lot 084M4144V) in assembly buffer 

for three days at 22 °C. Fibrils were subsequently diluted 1:5, 1:10, 1:20, and 

1:40 with assembly buffer and incubated for 12 hours in the absence or presence 

of 50 µg/mL PolyA RNA. 

Fibrils formed with RNA were adjusted to 500 mM NaCl and incubated for 

15 minutes at room temperature. The reaction was ultracentrifuged in order to 

separate insoluble pellet (fibril) from soluble supernatant (monomer). The pellets 

were then either taken up in 1 X Laemmli buffer for SDS PAGE analysis or taken 

up in 60 µL 2% sodium dodecyl sulfate (SDS). Pellet samples dissolved in 2% 

SDS and supernatants were brought up to 1250 µL in assembly buffer (10 mM 

HEPES pH 7.4 and 100 mM NaCl) and measured on a Cary 100 for absorbance 

at 280 nm. Triplicates were measured, averaged and standard deviation was 

plotted in Excel. 

2.15 ThioflavinT kinetics 

ThioflavinT (ThT) kinetics were measured by combining 10 µM monomeric 

Tau, 20 µM heparin, 0.5 mM TCEP (if cysteines present), 5-20 µM ThT, and 2-

10% seeds (monomer molar equivalent) in assembly buffer and measured on a 

Tecan M1000 or Omega Fluorstar fluorescent plate reader. Excitation was 

performed at 440 nm and emission of ThT was monitored at 480 nm for 3 - 10 
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hours. Data were exported to, and averages of replicates were plotted in, Excel 

showing either SD or SEM error bars. 

To measure ThT kinetics of nucleation, fluorescence was measured in an 

Omega Fluorostar plate reader. Excitation was performed at 440 nm and 

emission of ThT was monitored at 480 nm. 25 µM Tau monomer and 50 µM 

heparin cofactor mixtures were incubated quiescently in a sealed 96 well plate at 

37 °C. To ensure the reactions were fully mixed, plates were shaken once for 3 

seconds at 100 RPM at the beginning of the experiment.  

2.16 Proteinase K sensitivity assay (limited proteolysis) 

Reactions of cycle 1 or cycle 10 fibrils formed in consecutive seeding 

cycle experiment (above) were subjected to limited proteolysis by 7 nM or 70 nM 

proteinase K for 1 hour at 22 °C. Proteolysis was stopped by addition of 4 mM 

phenylmethyl sulfonyl fluoride (PMSF) and Laemmli sample buffer to a final 

concentration of 1x. 

2.17 Turbidity analysis 

Consecutive seeding cycle reactions of K18 or K19 (above) were 

measured at 340 nm for light scattering on a Cary 100 UV-vis 

spectrophotometer. Measurements were taken in biological triplicate and 

averages plotted with SEM reported. 

2.18 MAP2 blockage experiment 

Seeded reactions were performed as above with the addition of 

monomeric MAP2 proteins at substoichiometric concentrations. Briefly, 10 µM 
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Tau protein and 20 µM heparin were added to serially diluted MAP2 protein at 

either 5, 2.5, or 1.3 µM final concentration and 10% seeds were added to induce 

Tau aggregation. Reactions were incubated at 37 °C for 6 hours and thereafter 

centrifuged at 130,000 x g for 30 minutes. Pellets were separated from 

supernatants and dissolved in equivolume (with respect to supernatant) of 1 x 

Laemmli sample buffer and run on 15% SDS-PAGE with pellets and 

supernatants. Gels were stained with Coomassie-R250. Scanned gels were 

analyzed by band densitometry on ImageJ and quantified band intensities were 

plotted in GraphPad. Plotted data was analyzed by one-way ANOVA in 

GraphPad. 

2.19 Atto 647N and 633 fluorescence anisotropy of MAPs 

Fluorescence anisotropy of truncated Tau and MAP2 was performed with 

protein labeled at the natural cysteine in the third repeat (322 for Tau or 440 for 

MAP2 (numbering described above)) with Atto 647N and 633 (AttoTek). 50 µM 

Tau monomer was added to 5% preformed K18 fibrils with 6.3 µM Heparin (8:1 

ratio) were incubated for 16 hours overnight and sonicated for 2 minutes at 20% 

power and these fibrils were titrated into a solution containing 100 nM Atto 

labeled protein. When vertically polarized light is used to excite a fluorophore, 

fluorescence anisotropy (r) can be determined by the following equation[119] :   

𝑟 =
𝐼𝑉𝑉 − 𝐼𝑉𝐻

𝐼𝑉𝑉 + 2𝐼𝑉𝐻
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Equation 1 Fluorescence anisotropy. IVV is the intensity of vertically polarized 
fluorescence emission and IVH is the intensity of horizontally polarized 
fluorescence emission.  

 
Fluorescence emission intensities are measured using parallel (IVV) and 

perpendicular (IVH) filters, with respect to the excitation. Polarization biases 

introduced by the instrument can be accounted for by applying a grating factor, or 

G-factor. The G-factor is determined by the following quotient: 

𝐺 =  
𝐼𝐻𝑉
𝐼𝐻𝐻

 

Applying the G-factor to the previous equation gives: 

𝑟 =
𝐼𝑉𝑉 − 𝐺𝐼𝑉𝐻

𝐼𝑉𝑉 + 2𝐺𝐼𝑉𝐻
 

 Fluorescence was initiated with excitation of polarized light at 610 nm (slit 

width = 2 nm). Fluorescence emission anisotropy readings were measured at 

630 nm (slit width = 4 nm). This process was repeated 10 times and averaged on 

a Horiba Jovan Fluorolog spectrometer for each sample. Each data point was 

performed in triplicate using independent batches of seeds and those values 

were averaged and plotted with SD in GraphPad. Fits were added in GraphPad 

for one site total binding and KD values were taken from this analysis. 

2.20 Alexa 488/594 Förster resonance energy transfer  

50 µM Tau monomer was added to 5% seeds and 6.2 µM heparin and 

incubated at 37 °C for 16 hours. 500 µL of this reaction was sonicated for 2 

minutes at 20% power to produce small fibril seeds. 10 µM seeds were added to 
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1 µM K18 labeled on the N-terminus with Alexa 488 and incubated at 37 °C for 1 

hour to allow for templating of labeled protein on the fibril. The samples were 

measured by excitation at 450 nm and collecting emission spectra from 500-675 

nm.  Excitation and emission slit widths were set to 5 nm. This was followed by 

addition of 1 µM protein labeled on the N-terminus with Alexa 594 as an acceptor 

dye (Tau Alexa 594, truncated 3R MAP2 Alexa 594, or truncated 4R MAP2 Alexa 

594). These reactions were incubated for another 1 hour at 37 °C. Following 

incubation with the acceptor species, samples were measured again by 

excitation at 450 nm and collecting the emission spectra of the samples from 

500-675 nm. Spectra were averaged in biologic triplicate and plotted with SEM 

reported in Excel.   

2.21 Streptavidin-conjugated magnetic bead pulldown 

250 µL of 20 µM PEG-Biotinylated (Thermo product # PI21911) Tau or 

MAP2 was rotated at 40 rpm with 200 µg of hydrophilic streptavidin conjugated 

magnetic beads (NEB product number S1421S) for 60 minutes. Beads were 

pulled to bottom of tube with a powerful magnet (see appendix B). Bead pellet 

was rinsed thoroughly with 1000 µL of assembly buffer and beads were pulled to 

the bottom of the tube again. The beads were then resuspended in 250 µL 

assembly buffer containing 5 µM preformed K18 fibrils and rotated again for 60 

minutes. Beads were collected and washed again with 1000 µL of assembly 

buffer. Finally, beads were taken up in 50 µL of 1x Laemmli sample buffer and 

heated at 95 °C for 10 minutes. Heating at 95 °C unfolds streptavidin and 
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releases the biotinylated monomer and seed complex. Resultant sample buffer 

solutions were run on 15% SDS PAGE and stained with Coomassie R250. 

2.22 Gold nanoparticle labeling for TEM 

25 µM K18 fibrils were sonicated for 60 seconds at 20% power and mixed 

with 5 µM biotinylated MAP2 and allowed to incubate for 24 hours at  

37 °C. Resultant solution was mixed 1:1 with streptavidin coated gold 

nanoparticles (Aurion) at a final dilution of 1:40 for 90 minutes. These samples 

were subsequently prepared for TEM analysis as described above. 

2.23 Mammalian cell culture 

Human embryonic kidney cells (HEK 293) were cultured in Dulbecco’s 

Modified Eagle Medium (DMEM, Gibco) supplemented with 10% fetal bovine 

serum (FBS, Gibco) at 37 °C and 5% CO2. For cells undergoing selection 400 

µg/mL G418 (Gibco) was included in the media. Cells were subjected to a serial 

dilution of G418 initially to establish a kill curve. Cells were dead within 7 days at 

concentrations over 400 µg/mL. At 800 µg/mL cells died within 3 days. 

In order to maintain cell cultures long term, the cells must be unadhered 

from the plate and split. To achieve this, cells were washed with phosphate 

buffered saline (PBS, Gibco) and enough trypsin reagent (TrypLE, Gibco) was 

added to cover the plate. Cells were allowed to incubate for 3-5 minutes with 

trypsin reagent and then were observed under an inverted microscope to assess 

detachment. To break up any clumps, cells were forced through a pipette tip 
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against the flask or dish bottom. The resultant solution of cells is split and either, 

plated or put in a container with bleach for destruction. 

In order to freeze mammalian cells, cryopreservant must be used to 

prevent cellular damage during freezing. A 37 °C solution of 5% (v/v) sterile 

dimethylsulfoxide (DMSO, Fisher Certified ACS grade, autoclaved) in FBS is 

added to the suspension of unadhered cells, mixed, and aliquoted in 1 mL 

cryogenic vials (Fisher # 10-500-25). These samples were slowly cooled to -80 

°C by placing the tubes containing cells inside a Styrofoam container inside the 

freezer. Once frozen, the cryobox (containing tubes) was placed in liquid nitrogen 

for long term storage. 

2.24 Transfection of human cells 

Untransfected cells were grown to 20-40% confluency and media was 

changed to 1% FBS DMEM 2-4 hours before transfection. Low serum media 

proved to improve transfection efficiency without sacrificing health of cells during 

incubation with the media. Transfection was achieved by using Lipofectamine 

(Invitrogen) according to manufactures instructions. After 4-16 hours cells were 

washed with PBS and placed back into DMEM containing 10% FBS for continued 

culture. 

2.25 Imaging transfected cells 

Previously transfected cells were washed with PBS and placed in 

OptiMEM. Imaging of cells was performed in 8 well plates (CellTreat), 96 well 

plates (Corning Nunc), and 384 well plates (Greiner Bio). Cells were imaged for 

https://www.fishersci.com/shop/products/fisherbrand-externally-internally-threaded-cryogenic-storage-vials-10/1050025
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2-4 hours at a time and then placed back under 10% FBS DMEM to continue 

culture. 

2.26 Monoclonal line selection 

Transfected cells were grown under selection media containing 400 µg/mL 

G418 until 60-80% confluent. Cells were then passaged 1:20 and grown again 

until 60-80% confluency (2-3 days) and then passaged 1:200 or 1:400 and plated 

on 8 cm sterile glass petri dishes. Individual cells could be observed after several 

days having grown into small (20-100 cells) colonies. These colonies were 

observed under an inverted microscope and manually detached using a pipette 

and placed into a 24 well polystyrene dish containing media and allowed to grow 

for 0.5-2 weeks or until a large mat of cells developed. Cells were then split 1:6 

and 5 x 1 mL aliquots were frozen using the technique described above. The last 

1.0 mL was further diluted 1:1 with selection media and placed in either a T25 

flask or split amongst wells of a plate for imaging.  

These HEK cell experiments are ongoing and at the time of writing had not 

produced final data. It is for this reason that the methods are included but there is 

not representative data for these methods. The cell experiments were taken over 

by Justin Shady. 
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Chapter 3 Tau monomers exhibit conformational variation in solution 

It has been previously shown that the toxic species in the aggregation 

pathway of Tau protein is the soluble oligomer species [113] ̶ [114]. Studying the 

conversion of monomeric Tau into toxic oligomers is therefore critically important 

in order to understand the earliest stages of disease.  

Monomeric Tau protein has been shown to be structurally dynamic in 

solution. Circular dichroism measurements have shown Tau monomer adopts a 

random coil structure [122]. Other studies show that Tau molecules have 

intramolecular distances shorter than what would be predicted for a true random 

coil. These results have led to a model where the regions flanking the 

microtubule binding repeats fold back and adopt a paperclip-like structure [20]. 

These studies typically examine freely-diffusing proteins in solution. The 

measurements are typically characterized by poor signal-to-noise and short 

windows of measurement. In order to overcome this limitation, we established a 

collaboration with the Goldsmith group at the University Wisconsin, Madison. 

This group employs an antibrownian electrokinetic (ABEL) trap [123]–[125] to 

monitor individual molecules for timescales on the order of seconds. The ABEL 

trap, a microfluidic fluorescence measurement instrument is capable of tracking 
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the position of single fluorophores and utilizes real-time feedback voltages to 

push individual molecules (here proteins) back to the center of the measurement 

cell. This allows for fluorescence measurements to be taken for multiple seconds 

[120] ̶ [121]. Histograms of fluorescence anisotropy data are subsequently 

detailed enough to represent monomeric conformational heterogeneity in 

solution. Here an ABEL trap is used to examine Tau monomer for conformational 

variability in solution. This represents the first use of an ABEL trap on an IDP 

[127]. 

Fluorescence anisotropy measurements can be used to examine the 

rotational freedom of fluorescent molecules in solution. When the fluorophore is 

attached to a protein, it is possible to study the solution-phase behavior of the 

protein. Polarized light can be used to selectively excite electrons in fluorescent 

molecules whose excitation dipole is aligned with the incoming polarized light. 

Fluorescence anisotropy is a measurement of the depolarization of the emission 

dipole in a fluorescent molecule, relative to the polarization of the incident light 

used to excite the molecules. As molecules rotate and diffuse in solution, the 

emission dipole’s position in space will change relative to the original 

directionality of the dipole when it was excited. Fluorescence anisotropy can be 

calculated by measuring the emission spectra intensities using parallel and 

perpendicularly aligned polarizers with respect to the polarized light used for the 

excitation (see equation in section 2.19). Because fluorescence is a short-lived 

process (on the order of ns), anisotropy measurements can provide a snapshot 
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of the tumbling of fluorescent molecules. If the molecules are not rotating in the 

time frame of fluorescence emission, the maximum value for anisotropy is 0.4. 

Molecules whose emission dipole dephases 90° (that is, aligns with the 

perpendicularly aligned polarizer) during the fluorescence lifetime, have a 

minimum value of -0.2.  

Fluorescence anisotropy measurements were taken of full-length human 

Tau protein (hTau40). In order to utilize maleimide chemistry (and only label 1 

position), the two native cysteines were removed and replaced with serines 

(C291S/C322S). A cysteine was introduced with site-directed mutagenesis at 

position 310 (Y310C). This single cysteine mutant was labeled with Atto 647N 

and Atto 633 for fluorescence anisotropy measurements in the ABEL trap. 

Additionally, the Goldsmith group at UWM labeled commercially available 

microbial transglutaminase (MTG) with ATTO 647N. This globular enzyme 

contains one native cysteine in its active site and has a relatively similar 

molecular weight (Fig 3.1 A – B).  
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Figure 3.1 Structure for proteins used in this work. A hT40 based on [20], [21] 
and B Microbial transglutaminase (MTG) based on [128]. 

In order to study the aggregation pathway of Tau monomer using the 

ABEL trap, it first must be shown that the protein can be studied using this 

instrument and methodology. The ABEL trap measurements begin with the 

feedback voltages off (left side of Fig 3.2 A-E, denoted by off). Feedback 

voltages are responsible for pushing charged species in the microfluidic 

measurement in order to trap them for prolonged measurement. Then, upon 

application of the feedback voltages, fluorescence intensity and anisotropy 

measurements are taken (Fig 3.2 A – E black trace with red fit trace). 

Fluorescence anisotropy measurements of Atto 647N conjugated to hT40 were 

recorded (Figure 3.2 A scale on the right of the graph). Anisotropy of trapped 

hT40 was observed to be approximately 0.2 (Figure 3.2 A blue trace) and 

anisotropy for trapped MTG labeled with 647N was 0.3 (Figure 3.2 B blue trace). 

These results initially contradict intuition. The globular folded nature of MTG 

would suggest it should be more compact than Tau and should rotate more 

A B 
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quickly than the unfolded Tau molecule. The only native cysteine in MTG exists 

inside the folded protein structure. The fluorophore is conjugated to this cysteine 

inside the core of the folded protein. This results in limited rotational freedom of 

the dye and its C5 linker. Therefore, reduced depolarization and higher 

anisotropy are observed despite the protein being in a compact, freely rotating, 

and folded state. Upon denaturation in 6 M guanidinium HCl (GdmCl), the MTG 

molecule had a marked decrease in anisotropy (0.2), nearly identical for the 

unfolded Tau molecule (Figure 3.2 C). This is a result of the increased rotational 

freedom allowed by the unfolding of the protein. Several components can 

contribute to the reduced anisotropy observed for fluorescent molecules attached 

to unfolded proteins. The C5 linker which separates the fluorophore and protein 

backbone would have increased rotational freedom in an unfolded protein. This 

results in greater depolarization than in the case for the folded enzyme. 

Additionally, the increase in random motion of the protein backbone would add to 

the depolarization of the fluorescence emission. This is because solvent exposed 

fluorophores will have additional freedom to rotate when compared to the active 

site of the folded enzyme. This result supports previous observations that Tau is 

largely unfolded. Finally, it was shown that free dye (hydrolyzed) in 50% glycerol 

has a similar anisotropy to that of the denatured proteins (Figure 3.2 D). These 

results suggest the fluorescence anisotropy being measured is not an artifact 

caused by the dye binding to the inner walls of the microfluidic device or other 

proteins. Protein clumping can be eliminated as a cause for the fluorescence 
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anisotropy values observed. Emission values would be multiplied by n, where n 

is the number of proteins clumped together. This was not observed, however. 

 

Figure 3.2  Representative  traces for molecules in the ABEL trap. A) htau40‐
ATTO647N, B) MTG‐ATTO647N, and C) MTG‐ATTO647N denatured with 6 M 
guanidinium chloride (GdmCl) were trapped in solutions with 25 % glycerol. D) 
Hydrolyzed ATTO647N was trapped in buffer with 50 % glycerol. Fitting change 
points in the trapping data are shown in red (left axis), and anisotropy is shown in 
blue (right axis). Feedback voltages off (left of bar at 2 seconds) and on (right). 
Trapping data was collected by Lydia Manger at UWM. 

The results of many trapping events were binned and plotted as 

histrograms of anisotropy vs frequency (Fig 3.3). Anisotropic values of 679 

trapping events for fluorescently labeled hT40 were fit with Gaussian functions. 

Tau data was best fit with two Gaussian functions and is bimodal (Fig 3.3 A). The 

fluorscent anisotropy data for Tau suggests there are at least two populations in 
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solution, compact and extended forms. 253 trapping events for MTG were fit with 

one narrow Gaussian function and these results are consistent with a single 

globular fold for the enzyme (Fig 3.3 B). Tau and MTG were then measured in 

the presence of 6 M GdmCl. Addition of denaturant should disrupt the folded 

protein structure in solution. Upon denaturation, the bimodal distribution for Tau 

becomes a wide single-distribution and the peak for MTG shifts to lower 

anisotropy (Figure 3.3 C and D). The results match expectations since Tau has 

been shown to adopt a paperclip-like structure in solution [20], and upon addition 

of denaturant, the loose structure of Tau should be peturbed. The unfolded 

proteins exhibit higher rotational freedom around the C5-linkers between the dye 

and the protein backbone. This allows for lower anisotropy values despite the 

protein backbone becoming unfolded and tumbling more slowly. It is necessary 

to add glycerol to these samples in order to improve trapping by slow molecular 

diffusion. The fluorescence anisotropy of hydrolyzed (free) dye was determined 

to be 0.18 in 50% glycerol (Figure 3.3). By addition of 80% glycerol (v/v), 

anisotropy increased to 0.29, indicating the more viscous solution slowed 

rotational freedom. This slowing is demosntrated by the decrease in emission 

dipole depolarization, which is due to the increased viscocity of the 80% glycerol 

solution.This anisotropic behavior models the folded and unfolded states of the 

proteins. This also suggests the dye is freely diffusing and its diffusion was 

slowed by the additional solution viscocity. 
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Figure 3.3 Single molecule anisotropy histograms vs probability showing bimodal 
distribution for only hT40. A hT40 Atto647N exhibits two populations in the 
fluorescence anisotropy measurements. B Folded microbial transglutaminase 
(MTG) exhibits one tightly distributed fluorescence anisotropy histogram. C hT40 
in the presence of 6 M guanidinium HCl (GdmCl) no longer exhibits two 
populations. This suggests that intermolecular interactions were disrupted upon 
addition of the denaturant. D MTG in the presence of 6 M GdmCl has a wider 
distribution and a lower anisotropy suggesting that the unfolded state has greater 
emission depolarization due to an increase in rotational freedom of the attached 
dye. E Hydrolyzed (free) dye in solution at two different glycerol concentrations. 
This suggests the shift in anisotropy is not due to trapping artifacts. Histograms 
were prepared Lydia Manger. 
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These results are indicative that Tau possesses at least two solution-

phase families of structures. It is likely the Tau monomer is capable of sampling 

various transient states within these families. This is demonstrated by broadening 

of the fluorescence anisotropy distributions of Tau monomer. Whereas the folded 

MTG distribution is narrow due to limited conformational sampling and 

compactness of the enzyme’s active site. The families of Tau monomer 

structures can be broadly defined as compact and extended. This data also 

suggests that Tau exists in dynamic equilibrium between the two states. The 

structures of Tau monomer interconvert from one population to the other, but not 

on the timescales observed here. The Gaussian fit distributions are broad and 

overlapping suggesting that the interconversion is likely a result of conformational 

sampling of the monomer in solution. The Tau monomers exist in solution in a 

varying set of structures between the two states, compact and extended. Upon 

denaturation, Tau loses this bimodal characteristic and adopts a fully loosened 

random coil structure. This result further suggests the two distinct distributions of 

Tau structures are a result of solution-phase protein structure.  

These experiments are the first to be performed using an ABEL trap to 

measure Tau. Additional work in this area to elucidate whether or not the 

intramolecular interactions observed in other studies [20], [129] are long lived 

(order of seconds) or transient, is planned. These results illustrate that Tau 

protein is conformationally heterogeneous in solution. The ability of Tau 



 

38 
 

monomers to adopt a variety of transient folds could contribute to its ability to 

nucleate and form aggregates in disease. 
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Chapter 4 Generating and analyzing different Tau conformations 

4.1 Successive seeding cycles result in a change in conformational 

ensemble in K18 but not K19 

It has been demonstrated that for other amyloidigenic proteins, that 

multiple structurally-distinct conformers could be formed in-vitro [56], [130]–[133]. 

For example, it has been shown that Aβ aggregates formed under either different 

conditions can evolve from one conformer to another, over the course of time 

[70]. These studies lead us to wonder if it were possible to generate multiple 

conformers of Tau in individual samples, and if these conformers were capable of 

evolving their structure over multiple cycles of seeding. This was observed and 

could suggest that as Tau fibrils spread through the brain, evolutionary pressures 

may cause particular structures to propagate in a particular set of conditions. 

By stirring Tau monomers and cofactors in solution for several days, 

nuclei form and mature into amyloid fibrils. Once a fibril nucleus has formed, it 

will mature and elongate the fibril structure through a process called templating 

[54]. The formation of the nucleus is the rate-limited step in this process.  

To overcome the rate-limiting step in Tau aggregation, fibrils are 

preformed over the course of three days under stirring conditions at room 
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temperature. Sonicated fibrils are then added to the reaction (#1) containing 25 

µM Tau and 50 µM heparin cofactor is incubated at 37 °C for 1 hour. The 

sonicated fibrils will serve as a template to accelerate the aggregation of 

monomer dramatically (Figure 4.1). The reaction is sonicated on ice and then 

used to seed the next reaction (#2), which again contains monomer and cofactor. 

This process is repeated until 14 cycles have been completed. At this point the 

original seed (3 day stirred material), the 4th cycle, 9th cycle, and 14th cycle are 

used to seed 50 µM Tau and 12.5 µM heparin containing reactions (#1, #5, #10, 

and #15) for 16 hours at 37 °C for further analysis. The same method of 

successive cycles of seeding was applied to K19.  

 

Figure 4.1 Successive seeding cycles scheme. K18 monomers are mixed with a 
2-fold molar excess of heparin and allowed to form fibrils for 3 days while stirring. 
After sonication, the fibril seeds are mixed with fresh K18 monomers to produce 
a new generation of fibrils referred to as cycle 1. The procedure is repeated up to 
15 times. In these templated reactions, fibrils are grown quiescently. At distinct 
cycles, seeds are removed and used to form an independent set of fibrils for 
structural analysis. 
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It has been previously shown that after 5 consecutive cycles of Tau 

seeding reactions, there is a heterogeneous ensemble of K18 conformers. This 

was reported by use of double electron-electron resonance (DEER) spectroscopy 

[63]. DEER spectroscopy can be used to measure distances between unpaired 

electrons in radicals such as the nitroxide MTSL [58], [63]–[65], [134]. Different 

conformations of Tau protein will have subtle differences in their folding, which 

results in changes in the distance measured between the two radicals. One 

possible explanation for the heterogeneity is that under the conditions provided, 

multiple amyloid nuclei can form simultaneously.  

After one cycle of seeding, measurements showed the sample to be 

homogeneous [64]. Additional cycles of seeding produced an increasingly 

heterogeneous ensemble of conformers, which reached an end point at around 

10 cycles [64]. The fact that the same protein sequence can form several unique 

conformations and faithfully template this structure, suggests that Tau monomer 

exhibits a high degree of structural plasticity in solution.  

 
4.2 Analysis of Tau morphology 

Fibrils of differing morphologies have been observed in disease [135]–

[137]. In Alzheimer’s disease two distinct fibril types have been noted. Tau fibrils 

possess two monomers per layer stacked in the fibril core. These indivually 

stacked monomers form a protofilament [71], with two protofilaments associated 

in the mature fibril [71]. The morphology of AD fibrils is described as either 
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straight filaments (SF) or paired helical filaments (PHF). Straight filaments have 

been characterized as flat ribbon-like structures. PHFs are fibrils in which a 

helical structure has been observed resulting in a characteristic twisted 

appearance. These morphological differences have been reported on by 

techniques such as atomic force microscopy (AFM) [138]–[141] and transmission 

electron microscopy (TEM) [64], [141]–[143]. Using AFM it was previously shown 

that Aβ fibril morphology and structure coevolved over successive cycles of 

seeding [144]. Since it was observed using DEER that the structure of Tau fibrils 

was evolving over multiple cycles of seeding, a question arose. Were these 

structural changes accompanied by changes in morphology? It was observed 

that K18 fibril samples from differing cycles did display morphological changes 

(Fig 4.2 A – D). 

Cycle 1 fibrils were observed to have two or more distinct protofilaments 

(Fig 4.2 A). These protofilamets were straight and had a flat striated-ribbon 

appearance. These protofilaments were observed to possess variation in the 

number of parallel filaments, but most often were observed to have 2-3 lateral 

associations. Cycle 10 fibrils were then analyzed for differences with respect to 

the Cycle 1 data. Cycle 10 fibrils were characterized by a more heterogeneous 

mixture of fibrils, consisting of mostly helical filaments (Fig 4.2 C). These 

filaments were observed to have a helical periodicity of 90 -180 nm (n = 50 for 

cycle 5 and n = 40 for cycle 10) with a diameter of ~14 nm (n = 100, measured at 
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the widest part). Cycle 5 samples were observed to have intermediate 

characteristics with both structures being observed to some extent. 

 

Figure 4.2  Evolution of morphology of K18 fibrils by TEM. TEM analysis of K18 
fibrils. Cycle 1 fibrils have a distinct striated ribbon appearance (blue arrows) with 
varying numbers of parallel filaments (diameter per filament = 7–8 nm), 
highlighted in the inset. Fibrils at later cycles are dominated by a typical twisted 
appearance (red arrows, diameter ≈ 14 nm, helix periodicity = 90–180 nm). Scale 
bars, 100 nm. Panels from left to right represent data for fibrils from cycle 1, cycle 
5, cycle 10, and cycle 15, respectively. 

The same consecutive cycles of seeding were performed for K19 and the 

morphology of these fibrils was also examined using TEM. These experiments 

were done less exhaustively because K19 exhibited a high degree of 

conformational stability and was not observed to change structure when 

subjected to multiple cycles of seeding. K19 fibrils were characteristically ribbon-

like and within a sample had differing degrees of lateral associations (Fig 4.3). 

The average number of protofilament associations was fairly consistent amongst 

differing cycles, however. The individual filaments within the analyzed samples 

had average diameters ± SD of 26 ± 13 nm (n = 71), 33 ± 11 nm (n = 69), and 32 

± 12 nm (n = 31) for cycles 1, 5, and 10, respectively. The wide distributions and 
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similar numbers suggest a variety of, but similar distribution of, parallel filament 

arrangements. 

 

 

Figure 4.3 Conformational stability of K19 fibrils revealed by TEM. Fibrils were 
stained with uranyl acetate and analyzed by transmission electron microscopy. 
Electron micrographs of fibrils from cycle 1 (A), cycle 5 (B), and cycle 10 (C). 
Scale bars, 100 nm. All K19 fibril ensembles measured (cycles 1, 5, and 10) 
exhibited similar ribbon-like morphology. Individual protofilaments within these 
ensembles have a diameter of 7–8 nm with 3-7 protofilaments per fibril. 

4.3 Changes in light scattering and proteolytic sensitivity accompany 

conformational changes 

Upon ultracentrifugation, the pellets of fibrils from K18 cycle 1 and cycle 

10 samples were visually distinct. The pellets of cycle 1 fibrils were white and 

tightly packed whereas the fibrils produced after 10 cycles of seeding were 

translucent and gelatinous. This implies a changing in the packing of the fibrils 

upon centrifugation which could have resulted from a change in fibril structure. 

To quantify these observations, a light scattering assay was developed. Turbidity 

measurements at 340 nm were taken for cycle 1 through cycle 10 samples for 
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K18 and K19. K18 exhibited a decrease in turbidity over successive seeding 

cycles (Fig 4.4 A) despite equal amounts of fibrils in solution during each step. 

These results suggest a change in the packing of the monomers in the fibrils, 

which resulted in a decrease in light scattering. 

In order to support the other data which suggested that the structures of 

K18 fibrils were changing over multiple cycles of seeding, a proteolysis 

experiment was designed. It has been demonstrated in the literature that fibrils of 

differing structures have different proteolytic degradation rates [140]  ̶[141]. A 

commonly used protease for this is proteinase K (PK). Proteolytic sensitivity 

differences are suggestive of changes in the packing of the monomers in fibrils of 

unique structures. The changes in monomer packing result in the accessibility of 

individual protease cleavage sites within the fibril structure to be more or less 

accessible. The differences in accessibilities can result in changes in kinetics of 

proteolytic cleavage. To test for this, fibrils formed from an identical concentration 

of cycle 1 and cycle 10 samples (Figure 4.4 B, lanes in the gel labeled none) 

were proteolytically digested. After addition of protease inhibitor to stop the 

reaction, the samples were run on SDS-PAGE to assess the degree to which the 

fibrils were digested using PK. It was observed that cycle 10 fibrils consistently 

degraded faster (Figure 4.4 B). This is evidenced by the appearance of a lower 

molecular weight band in the cycle ten 10 sample upon addition of 7 nM 

proteinase K (Fig 4.4 B). With higher concentrations of protease added, a 

complete disappearance of the original molecular weight band (undigested K18) 
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is observed for cycle 10 but not cycle 1 (Fig 4.4 B) This suggests the cycle 10 

fibrils have different protease accessibilities and therefore different rates of 

cleavage. A change in the cleavage rate therefore implies a change in structure 

has occurred. These results demonstrating the change in dominant structure 

were also supported by DEER measurements [147]. 
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Figure 4.4 Turbidity and limited proteolysis for K18 samples. A Cycle 1 samples 
possessed the highest turbidity and over several cycles turbidity was observed to 
decrease. This data is supportive of the fact that conformational changes were 
occurring over the course of several cycles and the changes in structural 
diversity were completed before the 10th cycle. Turbidity was measured in 
Triplicate with SD reported. B Proteinase K (PK) treatment of cycle 1 and cycle 
10 fibrils yielded differing digestion products when exposed to protease treatment 
for 1 hour. Cycle 1 is less sensitive than cycle 10 is more sensitive to this 
treatment. These results support that the two samples contain different 
conformational ensembles. (M = molecular weight marker) 

Upon ultracentrifugation, the pellets of K19 samples from cycle 1 and 10 

both appeared similar. In order to support this quantitatively, light scattering 

experiments with K19 cycle 1 and cycle 10 fibrils were performed. No changes in 

turbidity were observed over the course of multiple cycles of seeding (Fig 4.5 A). 
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To further substantiate that K19 did not undergo structural evolution upon 

multiple cycles of seeding, protease sensitivity was measured for cycles 1 

through 10. However, no changes in proteolytic cleavage were observed (Fig 4.5 

B), implying the structure of the dominant species in the sample is not changing 

in these respects, as described for K18. This supports the previous results that 

K19 is conformationally stable under these conditions. Proteolysis of K19 cycle 1 

and cycle 10 samples was also examined. K19 was more resistant to proteolytic 

degradation, which necessitated higher (14 and 140 nM instead of 7 and 70 nM) 

proteinase K concentrations. DEER measurements also suggested that the K19 

dominant structures were not evolving over multiple cycles of seeding. Taken 

together, this data helps to further suggest K19 was not changing dominant 

structures over multiple cycles of seeding. 
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Figure 4.5 Turbidity and limited proteolysis for K19 samples. A K19 samples 
were also measured for turbidity changes with respect to cycle number. No 
change in turbidity was observed for K19, supportive of the fact that the 
conformational ensembles were not observed to evolve with cycles of seeding. 
Turbidity was measured in triplicate with SD reported. B K19 cycles 1 and 10 
were also subjected to Proteinase K digestion. Again, supportive of the data 
showing no change in structure was occurring, no change in protease sensitivity 
was observed for the fibrils. 

4.4 Fragility and growth rates drive conformational evolution 

It was hypothesized that the change occurs over these cycles is due to a 

difference in the fragility of fibrils. A difference in fragility would result in 

accelerated growth for fragile fibrils during the period when elongation is 

occurring under the initial stirring conditions (220 RPM for 3 days at 22 °C). This 

is because the more fragile fibrils will tend to break more often under agitated 
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conditions. More broken Tau fibrils lead to more ends, to which Tau can be 

recruited. To test this, fibrils were sonicated relatively gently (5% power, in a bath 

sonicator (QSonica) for 1 minute). Electron microscopy samples were prepared, 

and micrographs were collected. Representative micrographs for each sample 

(Figure 4.6 A) show that the fibril lengths are very different for cycle 1 and cycle 

10 samples after bath sonication. The micrographs were then quantitatively 

analyzed for fibril length using ImageJ. The cycle 1 sample broke to a greater 

extent (average = 126 nm, n = 255) than did the cycle 10 sample (average 228 

nm, n = 260, Figure 4.6 B).  
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Figure 4.6 K18 fibril fragilities determined using TEM. A cycle 1 and cycle 10 
fibrils are analyzed by negative stain EM before (upper panels) and after 
sonication (lower panels). The fibrils are fractured under mild conditions in a bath 
sonicator. Scale bars, 200 nm. When subjected to identical stress, cycle 1 fibrils 
are distinctly shorter than cycle 10 fibrils. B, length distributions for sonicated 
fibrils from cycle 1 (left panel) and cycle 10 (right panel). The results indicate that 
cycle 1 fibrils are more fragile than cycle 10 fibrils. 
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This suggests that selection processes may take place during the stirring 

step, when fibrils are being initially formed. This selection results in large 

enhancement of the fragile population. A mechanism of other fibril population 

enhancement was left to be elucidated. It was hypothesized that the other 

populations (enhanced in later cycles) grew faster. Quantitative kinetics 

experiments could demonstrate this hypothesis. Cycle 1 and cycle 10 needed to 

be sonicated until they were equal size. This would allow for equimolar amounts 

of fibrils (and therefore ends) to be added in seeded kinetics experiments, in 

order to evaluate the growth rates of cycle 1 and cycle 10 samples. To test this, 

the cycle 1 and cycle 10 samples were subjected to 2 minutes of sonication on 

ice with a tip sonicator set to 20% power. Electron micrographs were collected, 

and fibril lengths were assessed after tip sonication. The lengths of fibril seeds 

were quantified using ImageJ. Representative micrographs with the resulting 

length distributions from the fibril samples are shown (Fig 4.7 A – D). 
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Figure 4.7 Quantified Tau fibril breakage under harsh sonication conditions. 
Negative stain EM images of cycle 1 (A) and cycle 10 (B) fibrils subjected to 
harsh sonication conditions with the sonicator tip immersed in the fibril solution. 
Scale bars, 200 nm. Length distributions of cycle 1 (C) and cycle 10 (D) fibrils. 
The lengths of 526 fibrils from cycle 1 and 493 fibrils from cycle 10 were 
measured. The average lengths of cycle 1 and cycle 10 fibrils were 64.2 nm and 
60.4 nm, respectively. 

Since it was possible to generate nearly identical sizes of preformed fibrils 

with different conformations, it became possible to quantitatively analyze the 

samples for seeded kinetic growth rates. To test whether or not the differences in 

growth rate for cycle 1 and cycle 10 samples were contributing to conformational 

heterogeneity, thioflavin T kinetics were performed. Thioflavin T is an amyloid 
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specific dye that binds to β-sheets [142]  ̶[143]. Upon binding the fluorescence 

emission spectra red shifts and increases in emission intensity [150]–[152]. 

Monitoring the increase in fluorescence emission intensity of thioflavin T versus 

time allows for the rates of growth to be monitored. Fibril concentrations were 

quantified (using the BCA assay) after sonication and therefore the same amount 

of fibril could be added to each reaction. It was shown that the kinetics of seeded 

growth were different for cycle 1 and cycle 10 fibril samples (Fig 4.8). Cycle 10 

samples (Fig 4.8, red trace) reached completion 2 times faster than the cycle 1 

(Fig 4.8, blue trace). The t50 was 17 and 8 minutes for cycle 1 and cycle 10, 

respectively. The results of these experiments were reproduced in triplicates, 

from independent batches of seeds, which ensured reproducibility and rigor. This 

data allows for a more complete understanding of the mechanism of selection 

taking place in the multicycle seeding experiment with K18. Since K19 was not 

observed to change structure over successive seeding cycles, this analysis of 

breakage and kinetics was not performed. 
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Figure 4.8 Differences in growth rates of K18 conformations. 2% seeds 
(monomer equivalents) were mixed with 25 μM K18 monomers and 50 
μM heparin. Fibril growth of cycle 1 fibrils (blue trace) and cycle 10 fibrils (red 
trace) was monitored by thioflavin T fluorescence. All values represent average ± 
SEM (n = 6 replicates).  

 
4.5 3R Tau cannot grow on cycle 1 or cycle 10 material 

It has been previously demonstrated that Tau fibrils composed of the 

MTBRs of 4R Tau cannot recruit 3R Tau. This results in an asymmetric seeding 

barrier [57], [63], [130]. This phenomenon was first observed using material that 

was stirred for three days to generate Tau fibrils. Using ultracentrifugation and 

SDS-PAGE it is possible to separately analyze Tau protein found in the pellet 

(fibril) or in the supernatant after a seeded reaction. These experiments allow for 

the examination of whether or not K19 (3R Tau) was being recruited onto the 

K18 (4R Tau) fibril. Would the cycle 10 conformational ensemble be able to 
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recruit and template K19? When seeds generated from cycle 1 and cycle 10 

were added to K18, both samples fully recruited the K18 monomers (Fig 4.9 A). 

This demonstrates the seeding competency of the fibrils added to the reaction. 

Despite their ability to recruit K18, the cycle 1 and cycle 10 samples were not 

shown to incorporate K19 to an appreciable degree (Fig 4.9). These results 

suggest the seeding barrier previously observed is robust and does not become 

diminished after the conformational change (of the K18 seed) produced here 

(Figure 4.9). 

 

Figure 4.9 Examination of Tau seeding barrier for distinct conformations. 5% 
seeds (monomer equivalents) from cycle 1 and cycle 10 fibrils were mixed with 
25 μM K18 or K19 monomers and 50 μM heparin. Fibrils were allowed to grow 
for 24 h at 37 °C. Equivalent amounts of pellets (P) and supernatants (S) were 
analyzed by SDS-PAGE and Coomassie Blue staining. Whereas K18 monomers 
grow onto K18 seeds (A), K19 monomers do not (B). The arrow in B refers to 
K18 protein bands that originate from the seeds. The data highlight that both 
populations of K18 fibril conformers are unable to recruit K19 monomers. 

4.6 Fragility and growth rates govern fibril selection 

One possible explanation as to why fragile fibrils are enriched in mild 

stirring conditions could be that if certain populations are more fragile, they will 

break more often than their less fragile counterparts. Since the end of the fibril is 

the site of new amyloidogenic growth, the fragile fibrils which generate more 
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ends, therefore exhibit more growth in these conditions. Long fibrils do not 

elongate efficiently [153], [154]. Over several days, the dominant species in 

solution becomes the one which will break the most under the given conditions. 

Under tip sonication, both fibril species break similarly. This means whichever 

grows faster in quiescent conditions will evolve as the dominant species through 

several cycles of templating new monomer onto fibrils from the previous reaction. 

Over repetitive cycles of fracture and growth this conformer will become 

the dominant species (upper reaction path) (Fig 4.10). Inefficient breakage 

selectively fractures the more fragile conformer (L-shape) (Fig 4.10). If repeated 

over multiple cycles (continuous stirring) this conformer will become the dominant 

species (lower reaction path). Note that the depicted conformers are only 

models. The real structures of Tau fibrils will be more complex and include 

additional β-sheets. The number of cycles required for evolving a dominant 

species will depend on the structural composition of the original ensemble and 

the specific parameters of fracture and growth. In cases where the fragilities and 

growth rates of different conformers are similar, the populations may have 

multiple dominant fibril species. It is conceivable that within neuronal cells, 

molecular chaperones or other machineries could facilitate the breakage of fibrils 

and influence growth. 
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Figure 4.10 Conformational selection based on fracture and growth. In a 
heterogeneous mixture of Tau fibril conformers, depicted as stacks of β-stranded 
segments (green arrows) in U- and L-shape conformations, efficient breakage 
(intense sonication) results in seeds with identical extensions along the fibril axis. 
Under these conditions the number of fibril ends that can recruit soluble 
monomers is the same for the different conformers giving the faster growing seed 
(U-shape) a selective advantage.  

It was shown that K18 fibrils can form multiple nuclei under stirring 

conditions in-vitro. Upon changes in the growth conditions, selection processes 

can evolve the dominant population. Other possible explanations for the change 

in dominant fibril species do exist, however. Such explanations include 

secondary nucleation [155]–[157] and strain switching [50], [144], [158]. These 

results demonstrate a model for how breakage and growth rates may play an 

important role in disease, and how this process could allow certain populations to 

become enriched in particular brain regions. Biophysical properties of amyloid 
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fibrils could drive pathology and subsequently enable the phenotypic diversity 

found in Tauopathies [159].  
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Chapter 5 Stability of Tau fibrils 

5.1 Limited dilution of Tau fibrils does not cause dissociation 

Thermodynamic stability is an important aspect to study when trying to 

understand protein aggregates. Tau protein is very electropositive at neutral pH. 

The positive charges in Tau are what allows Tau to perform its native functions of 

binding to and stabilizing negatively charged microtubules. To induce Tau 

aggregation in-vitro, a polyanionic cofactor must be added to compensate for the 

many positive charges in Tau. This cofactor has been shown to bind to the Tau 

monomer [160], change its conformation [129], and stabilize the fibril [57]. 

Therefore, it follows that understanding the interaction between the cofactor and 

the Tau fibril is critical to our understanding how these aggregates form. 

It has been suggested in the literature that cofactor molecules may be only 

required for the initial steps of nucleation [160]. However, it has also been 

demonstrated that without addition of cofactor, seeded templating of Tau was not 

observed [57]. Additionally, utilizing a fluorescence anisotropy experiment, it was 

observed that it was possible to exchange cofactors, which demonstrates the 

surface accessibility of cofactors. It was observed that not all of the cofactors 

associated with Tau filaments could become displaced, however [57]. Molecular 

exchange can only occur with cofactors decorating the outside of the fibril. Some
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 of the cofactor may be inaccessible to the solvent which suggests some of the 

cofactors associated with Tau fibrils may be buried in the interior of the fibril core.  

In order to test whether the cofactor mediated fibril stabilization was driven 

by thermodynamic equilibrium, fibril dilution experiments were performed. The 

experiments below were performed by diluting preformed fibrils in the presence 

or absence of cofactor, and sedimenting the fibrils after 12 hours of incubation at 

37 °C. These results demonstrate that with limited dilution, regardless of whether 

RNA cofactor was included in the dilution, the fibrils do not dissociate (Figure 5.1, 

top and bottom). 

 

 

Figure 5.1 Limited dilution of Tau fibrils. Upon dilution in the presence or absence 
of cofactor, K19 and K18 fibrils were not observed to dissociate. This result 
suggests that once formed, Tau fibrils are stable and resistant to concentration-
dependent depolymerization. 
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These results are important because they highlight the stability of Tau 

fibrils, even in the absence of cofactors. Stability is essential for fibrils during cell-

to-cell transmission, for example.  

5.2 Adding high salt does not dissociate RNA cofactors or Tau fibrils 

It was observed that it is possible to inhibit growth of seeded Tau reactions 

by addition of either 0.5 M or 1.0 M NaCl, depending on the cofactor used [57]. 

This effect is likely in part due to the increased competition between the 

polyanionic cofactors (polyRNA or heparin sulfate) and the salt for the positively 

charged fibril surface. Additionally, it is likely that increased salt concentration 

could enhance the hydrophobic interaction between monomers in the fibril. This 

would therefore disfavor fibril dissociation. It is not clear what the contribution of 

these two effects to fibril elongation are at this time. To understand if cofactors 

bound to the fibril surface are capable of becoming displaced by salt, fibrils 

formed with RNA at 100 mM NaCl were adjusted to 500 mM NaCl, incubated for 

10 minutes at 37 °C, and sedimented via centrifugation. RNA bound to fibrils was 

co-sedimented into the insoluble pellets fraction (which contained Tau fibrils and 

associated RNA). The pellets were taken up in 2% SDS and subsequently 

adjusted to 1250 µL with assembly buffer. RNA concentration was then 

quantified in samples using the absorbance at 260 nm (using the following 

equation: A260 nm = 1 = 40 µg/mL). It was shown that the cofactor/fibril interaction 

was not diminished significantly by the increase in the salt concentration (Figure 
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5.2 A). These results are important because they suggest the cofactor/fibril 

interactions are strong and specific. 

It could be possible for fibrils to dissociate upon addition of high salt, 

despite maintaining a majority of the ionic interactions with cofactors. To test this, 

fibrils previously formed with RNA and adjusted to 500 mM NaCl for 15 minutes 

were sedimented, and protein content was compared using SDS PAGE. It was 

also shown that upon addition of high salt concentrations, the sedimentable 

material was unchanged (Fig 5.2 B). This result suggests that once the fibrils are 

formed, that the various interactions between monomers in the fibril are sufficient 

to disfavor dissociation under these conditions. Although 500 mM salt 

concentrations are not found in-vivo these results are important contributions to 

understanding the stability of Tau fibrils and their associated cofactors.  
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Figure 5.2  Addition of high salt does not dissociate cofactors or monomers. A 
Normalized intensity of RNA UV280 nm absorbance for K18 and K19. Fibrils 
were formed at 100 mM NaCl and upon addition of 500 mM NaCl, the RNA 
cofactor was observed to marginally dissociate (~20% for K18 and 10% for K19). 
B Identical samples were ultracentrifuged (130,000 x g) and pellets were taken 
up in 1X Laemmli Sample Buffer and analyzed by 15% SDS PAGE. The results 
indicate that fibrils do not dissociate upon addition of high salt. 

There are alternative explanations that would explain why the higher salt 

concentrations were unable to dissociate cofactors. For example, any cofactors 

buried in the fibril’s interior would not likely be dissociated from fibrils. These 
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buried cofactors would be unable to be exchanged and also could contribute to 

the stability observed for the fibrils in the limited dilution experiments. 

Cofactor molecules have been shown to be associated with NFT in-vivo. 

Gaining a deeper understanding of how fibrils associate with cofactors will likely 

contribute to our understanding of the pathology involving Tau fibrils. For 

example, it has been shown that sulfonated polysaccharides (such as heparin) 

are found conjugated to some extracellular membrane proteins, and these can 

help mediate internalization and transmission of fibrils [161] 

These results are important because they suggest that Tau fibrils are 

stably folded. This is relevant for seeding assays, which rely on fibril stability. 

Fibrils cannot spontaneously dissociate or fibril seeding experiments would not 

be possible. This is because as a small amount of seeds are added to a reaction 

there is a large dilution. If Tau fibrils spontaneously dissociated upon dilution they 

would be incapable of acting as seeds and would not template new Tau 

monomer. 
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Chapter 6 MAP2 Binds to the end of Tau fibrils; Preventing Seeded 

Aggregation and slows nucleation-Based aggregation 

6.1 Sequence similarity between MTBRs of Tau and MAP2 

Microtubule associated proteins have been shown to perform similar 

functions in healthy cells. These functions include binding to and stabilizing or 

crosslinking the microtubules in neurons [162]–[164]. The semiconserved 

functions of MAP2 and Tau are due to the high sequence identity in the 

microtubule binding repeat regions (Fig 6.1).  

 

Figure 6.1 Comparison of MAP sequences in MTBRs. MTBRs for 3R (K19) and 
4R (K18) Tau and MAP2. Native cysteines are marked by a blue star and red 
residue letter. Identical regions are boxed in red. 

These proteins serve similar functions as monomers in the cell and bind to 

microtubules through a similar sequence called microtubule binding repeat 

regions [165]–[167]. NFTs are comprised mainly of phosphorylated Tau [4]. 
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MAP2 epitopes have been shown not to be present as a major component of 

NFTs. However, this does not exclude small amounts of MAP2 from being 

present in the mature NFT [188] ̶ [189]. 

Tau fibrils grow by recruiting monomeric Tau onto their ends. The Tau 

monomer adopts the structure of the fibril template and extends the fibril. The 

consequence of this is that identical residues of adjacent monomers, along the 

fibril axis are stacked on top of one another. The result of this is an elongation of 

the fibril along the long fibril axis [54], [130]. The templating process can result in 

different conformations of Tau fibrils being formed (as in Chapter 4). Previously, it 

was shown that a single point mutation can result in a selection of seed 

conformation [58]. An extreme case of sequence driven selection occurs with 3R 

Tau, which will not recruit onto the 4R fibril end. This results in an asymmetric 

seeding barrier [130]. These incompatibilities with growth might occur due to 

inability of monomers to adopt different conformations. The incompatibility could 

be due to subtle or extreme differences in sequence between the species. 

Considering that the fibrils are comprised of the MTBRs and that these regions in 

MAP2 and MAPT are highly homologous, it was hypothesized that MAP2 could 

bind to the end of the Tau fibril, cap it, and thereby inhibiting the recruitment of 

Tau monomers (Figure 6.2). 
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Figure 6.2 Hypothetical model of MAP2 binding to the end of Tau fibrils. A In the 
absence of MAP2, the Tau protein is capable of continuing the structure until the 
monomer or heparin is depleted. The structure of Tau fibrils is templated faithfully 
and the notches in the diagram represent this continuation of structure. B In the 
case where MAP2 has been added, the Tau fibrils are capable of recruiting one 
MAP2 molecule, on the end of the fibril, as it possesses the correct structural 
plasticity to adopt the conformation presented by the Tau fibril. Subsequent 
layers are incapable of incorporating due to some constraint on the Tau and 
MAP2 monomer that inhibits its ability to elongate the fibril beyond the initial 
deposition of a layer. 

6.2 Inhibition of seeded Tau fibril elongation 

To test whether or not MAP2 could inhibit Tau growth, K18 seeds were 

added to monomer and heparin to allow for growth that could be monitored by 

thioflavin T (ThT) fluorescence kinetics (as previously described in Chapter 4.6). 

The K18 in the absence of MAP2 efficiently aggregated and the aggregation was 

completed in 4 hours (Figure 6.3). By including either 3R or 4R MAP2 MTBR 

isoforms in seeded Tau experiments, a consistent and powerful blocking effect 
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was observed. This effect was demonstrated by sub stoichiometric 

concentrations of MAP2 (2.5 µM) with respect to Tau monomer (10 µM). It was 

shown that 3R MAP2 reduced ThT signal by 65% and 4R by 90% (Figure 6.3 A). 

These effects were measured in quadruplicate and plotted with SEM values. 

Fibril growth can also be monitored by sedimenting the insoluble material by 

ultracentrifugation after the reaction is complete. This fractionates fibrillar and 

monomeric Tau. By dissolving the pellets (insoluble fraction) in the same volume 

of 1 x Laemmli sample buffer as the original reaction, pellets can be directly 

compared to supernatants by SDS PAGE. It was shown that addition of 

substoichiometric concentrations of MAP2 MTBRs to the K18 seeded reaction, 

resulted in a dose-dependent blockage effect (Figure 6.3 B - D). The 

reproducibility of these experiments was demonstrated by use of three 

independent batches of seeds (biological triplicates) which were quantified by gel 

band densitometry using ImageJ. The resultant quantifications were analyzed in 

GraphPad using a one-way ANOVA test. The 3R MAP2 resulted in 60%-75% 

reduction (p < 0.0001) in K18 aggregation (Fig 6.3 B and C). 4R MAP2 was 

slightly more potent and resulted in 65-80% (p < 0.0001) reduction in K18 

aggregate formation (Figure 6.3 B and D). It was noticed that the MAP2 protein 

consistently ends up in the pellet fraction of these experiments (Fig 6.3 C -D, 

bands in pellet (P) lane below the K18 (3R MAP2) and above the K18 (4R 

MAP2). This would suggest that MAP2 is aggregating under the quiescent 

reaction conditions. However, the reduction in ThT signal (Figure 6.3 A) would 
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suggest the MAP2 is not forming fibrillar material in place of Tau. This is because 

the ThT assay measures the relative amount of β-sheet character of proteins in 

solution (and therefore the relative monomer to fibril conversion). MAP2 is not 

appreciably contributing to the ThT signal however (Fig 6.3 A). If it were, 

blockage would be obfuscated by the increase in fluorescence by MAP2. These 

results suggest that the MAP2 protein might be either binding to Tau aggregates 

(but not being incorporated into the fibril structure), or they might be forming non-

amyloidogenic aggregates, or both.  
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Figure 6.3 3R and 4R MTBRs of MAP2 block K18 growth in seeded reactions. A 
Thioflavin T kinetics of K18 growth in the absence or presence of 3R or 4R MAP2 
MTBRs. B One-way ANOVA analysis of MAP2 blockage in 3 sedimentation 
experiments (biological replicates). p < 0.0001 from one-way ANOVA for each of 
the different concentrations of MAP2 when compared to –MAP2 reactions. Band 
intensity was calculated by IP/(IP+IS), where IP and IS are the integrated band 
intensities measured in ImageJ from SDS PAGE gels for the pellet (IP) and 
supernatants (IS). C and D Representative SDS PAGE gels of 3R and 4R MAP2 
blocking K18 growth, respectively.  

6.3 Inhibition of K18 nucleation by MAP2 MTBRs 

Nucleation dependent kinetics can be monitored via ThT also. Once the 

nuclei form, they begin to elongate and consume monomer via the templating 

mechanism. This results in an initial lag phase in which the fluorescence 

emission intensity of ThT in solution is low. Once the nuclei have formed and 

begin to grow, the ThT binds and the emission intensity in solution increases. 
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Eventually, the monomer is fully incorporated in the fibril structure and the 

increase in ThT signal plateaus.  

The MAP2 blockage effect was so potent for a seeded reaction, it was 

hypothesized the MAP2 MTBRs may slow or inhibit nucleation dependent 

kinetics experiments also. It was shown that in the absence of MAP2 K18 

aggregated fully within 5 hours (Figure 6.4). By the addition of 3.2 µM MAP2 

MTBRs, a large increase in the time for K18 (25 µM) to aggregate in these 

reactions was observed (Fig 6.4). The K18 protein in the absence of MAP2, 

aggregates fully, and has a T50 of 2.5 hours. By inclusion of MAP2 protein, the 

nucleation of Tau slowed to have a T50 of 5.5 hours (Fig 6.4). This represents a 

doubling of the time required to nucleate. The overall signal intensity was also 

reduced indicating that it is not only slowed by this but the total amount of ThT 

positive Tau aggregates were reduced by as much as 20% (Fig 6.4). The 

reduction in ThT positive aggregates again suggests that MAP2 is not being 

incorporated into the fibril but is inhibiting the Tau protein from fully aggregating.  

The fact that the overall reduction in Tau aggregation is less potent than 

for a seeded experiment can be explained. In a nucleation experiment, K18 

monomers in the 96 well plate are shaken in order to induce aggregation. This 

shaking could break already formed fibrils, thereby negating the effect of MAP2 

blockage by exposing new ends to which K18 can grow. If MAP2 were templating 

onto the fibril, one would expect the signal for a + MAP2 experiment to be higher 

than for that of the K18 only samples. 
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Figure 6.4 MAP2 3R and 4R can slow nucleation of K18 in-vitro. Tau protein and 
heparin cofactor incubated under shaking conditions nucleates with a T50 of 3 
hours (red). MAP2 3R and 4R both slow the aggregation rate of Tau to T50 of 5.5 
hours (green and blue respectively). 

6.4 K19 does not block K18 aggregation 

K19 also has high sequence similarity to K18. It has been shown that K19 

is incapable of growing on K18 (Chapter 4, Figure 4.9). However, it had not been 

examined whether K19 could interfere with K18 aggregation. In the previous 

blockage experiments, MAP2 monomers were added at 5.0 µM final 

concentration. This concentration achieved the maximum decrease in K18 

aggregation. It was shown that in a seeded reaction in the absence of K19, K18 

fully aggregated (Fig 6.5). To a separate K18 seeded reaction, 5.0 µM K19 was 

added. It was shown that K19 was not capable of blocking K18 aggregation (Fig 

6.5). This result is important because it demonstrates that the inhibition of Tau is 
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caused by MAP2 sequence dissimilarity not the fact that its highly homologous. If 

homology were the only factor to consider, the K19 should have caused an 

obvious decrease in K18 aggregation since K19 shares 75% sequence identity 

with K18. Instead, this result suggests that the ability for MAP2 to block Tau 

aggregation is likely caused by the sequence dissimilarity between Tau and 

MAP2. 

 

 

Figure 6.5 K19 does not block K18 aggregation. SDS PAGE of K18 reactions 
demonstrate that K18 fully aggregates and K19 does not inhibit K18 aggregation 
appreciably. Upon ultracentrifugation, K18 is in the pellet (P) in both cases. K19 
remains soluble and does not grow on K18. P = pellet, S = supernatant  

6.5 Heparin sequestration does not account for blockage 

It was noticed that when MAP2 and heparin were combined, rapid 

aggregation of the MAP2 would occur, resulting in a cloudy solution. This 

occurred even in the absence of seeds. It was observed that if these solutions 
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are pelleted in the ultracentrifuge and the resultant pellets are analyzed by SDS 

PAGE, the white precipitate is MAP2. The MAP2 protein would consistently also 

become insoluble in the sedimentation experiments shown previously, but it was 

not appreciably increasing the ThT signal in either the seeded or nucleation 

experiments. These results together suggest that unlike Tau, MAP2 is forming 

aggregates in the presence of heparin which are not amyloidogenic. To examine 

the morphology of these aggregates K18, 3R MAP2, or 4R MAP2 were incubated 

with heparin and K18 seeds for 6 hours at 37 °C (identical to the seeded 

experiments shown in Chapter 6.2). MAP2 proteins produced white pellets, which 

resembled those of K18 monomer with seed. When these samples were 

prepared for TEM analysis, the morphology of the aggregates became evident. 

K18 produced long fibrils as expected (Fig 6.6 A). MAP2 containing samples 

were demonstrated to contain large amorphous aggregates rather than fibrils (Fig 

6.6 B and C). This result suggested that although MAP2 is capable of interacting 

with heparin – it seems to preferentially form amorphous aggregates instead of 

fibrils. 
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Figure 6.6 TEM of K18 and MAP2 aggregates. A Representative negatively 
stained electron micrograph of K18 WT fibrils formed after incubation overnight 
with heparin, cofactor, and seeds. B and C Representative micrograph of 
amorphous aggregates formed from 3R and 4R MAP2 monomers incubated 
overnight with heparin cofactor and seeds, respectively. 

Since it was observed that MAP2 could block Tau aggregation but also 

simultaneously aggregated with itself in the presence of heparin, the following 

question arose. Would it be possible to rescue the Tau fibrilization by additional 

heparin in the seeded experiments? To test this, experiments with identical 

conditions to the previous blockage experiments were performed. In addition, 

reactions in which the heparin concentration was doubled and quadrupled were 

performed in parallel. The previous experiments in which seeded Tau 

aggregation was blocked by MAP2 contain 20 µM heparin. This is a four-fold 

higher concentration than the MAP2 present (5 µM). In the next experiment, the 

heparin was doubled (40 µM, 8 x higher than MAP) and quadruped (80 µM, 16 x 

higher than MAP2) in order to determine if more aggregation of Tau would be 

observed. No increase in the aggregation of Tau upon addition of more heparin 

was observed for either 3R (Fig 6.7 A and C) or 4R MAP2 (Fig 6.7 B and D). 
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Heparin titration experiments were performed using three independent batches of 

K18 seeds (biological triplicates), and the resultant fibrils were ultracentrifuged as 

before. Pellets were dissolved in 1 x Laemmli sample buffer equal to that of the 

supernatant. The pellets and supernatants were analyzed on SDS PAGE and the 

protein bands in the gels were quantified using ImageJ. Band intensity found 

using gel densitometry was plotted in GraphPad. A one-way ANOVA test was 

performed to find p-values. The blockage in seeded experiments with 20, 40, or 

80 µM heparin by 5 µM of both MAP2 isoforms is very similar (Fig 6.7) to that of 

the blockage observed in the regular heparin (20 µM) regime (Fig 6.3). This 

result suggests that sequestration of heparin by spontaneous MAP2 aggregation 

is not likely responsible for the blockage effect observed for K18 seeded 

reactions. 
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Figure 6.7 Heparin titration does not rescue Tau aggregation. A and B 
Representative gels of 3R and 4R MAP2 heparin titration experiments, 
respectively. C and D One-way ANOVA analysis of ImageJ densitometry of 
heparin titration gels. Experiments were performed in triplicate (biological 
replicate). From one-way ANOVA, P < 0.0001 for each + MAP2 reaction 
compared to corresponding – MAP2 reaction. P = pellet, S = supernatant 

6.6 K18 inhibition by MAP2 is not caused by large aggregates of MAP2 

Through these experiments it became evident that MAP2 was not blocking 

the aggregation of Tau protein by way of binding the cofactor. It was not clear, 

however, if the aggregates of MAP2 themselves were somehow responsible for 

the blockage effect observed. So next, MAP2 was incubated in either the 

presence or absence of heparin for 16 hours at 37 °C. This material was 
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subsequently used in a K18 blockage experiment as before. K18 monomer and 

heparin was seeded. Blockage experiments including the MAP2 incubated with 

or without heparin were performed in parallel. Insoluble protein was sedimented 

and pellets were compared to supernatants using SDS PAGE. It was shown that 

if MAP2 is aggregated (Fig 6.8 the lanes labeled Agg) prior to being used as a 

blocking agent, the blockage effect is abolished nearly completely for both 

isoforms 3R and 4R, respectively (Figure 6.8 A – B). However, if MAP2 (3R or 

4R) was incubated without heparin in assembly buffer, then blockage was 

observed. This result would suggest the large amorphous aggregates observed 

under TEM are not responsible for the blockage of K18 seeded reactions. 

 

 

Figure 6.8 Aggregated vs monomeric MAP2 blocking Tau aggregation. K18 WT 
and heparin with 10% seeds incubated for 6 hours grows fully (- = K18 seeded in 
the absence of MAP2). Inclusion of 3R (A) or 4R (B) MAP2 incubated with 
heparin overnight does not result in blockage when subsequently added to a K18 
seeded reaction (Agg = aggregated). However, if MAP2 was instead incubated in 
the absence of heparin overnight, blockage of Tau aggregation is observed for 
both 3R and 4R MAP2 (Mon = monomeric). P = pellet, S = Supernatant 
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These results taken together suggest that MAP2 can form aggregates 

under quiescent conditions, but these aggregates are not amyloids. Additionally, 

the blockage effect is quite potent when monomeric MAP2 is used but completely 

abolished with aggregated MAP2. This would suggest that monomeric MAP2 or 

small aggregates are blocking the Tau from elongating. It was still unclear at this 

point whether the MAP2 was interacting directly with the fibril or causing any 

elongation of the fibrils. 

6.7 MAP2 does not elongate Tau fibrils 

To understand if the MAP2 was interacting with the fibril, it first needed to 

be established whether or not the K18 fibrils were elongating in the presence of 

only MAP2 monomer.  

The next set of experiments were devised using TEM in order to 

understand whether or not truncated MAP2 3R and 4R isoforms could be 

recruited and extend Tau fibrils in-vitro. If the MAP2 monomers are extending the 

fibril length, it should be observable under TEM. K18 seeds were incubated at 

the same concentration, in the absence of additional monomers. This was 

important to set a baseline size for the seeds and would also ensure fibril 

dissociation wasn’t skewing the analysis. TEM samples of the seeds added to 

K18 monomer served as a positive control, to ensure the seeds are truly 

competent to induce aggregation. Samples of K18 seeds with MAP2 monomers 

added were then compared using TEM. 
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Samples of K18 seeds incubated with only buffer had an average size of 

108 nm (Figure 6.9 A), and representative micrographs are depicted (Fig 6.9 B). 

K18 fibrils were shown to increase to an average length of 326 nm (Fig 6.9 C) 

when incubated with K18 monomer. Fibrils were clearly longer in these samples 

(Fig 6.9 D). When either 3R or 4R MAP2 monomer was added in the experiment, 

instead of Tau, K18 fibrils were not observed to increase in size. These fibril 

samples were observed to be 108 and 106 nm long in the presence of MAP2 3R 

and 4R respectively (Fig 6.9 E and G). The micrographs of samples containing 

MAP2 monomers looked indistinguishable from the buffer control samples 

(compare Fig 6.9 B with F and H). These results indicate that MAP2 is unable to 

significantly extend the fibrils. This is consistent with the observations that MAP2 

is not considered a major component of Tau fibrils or NFTs in the brain[4] and 

that the ThT signal of K18 seeds did not increase in the presence of MAP2 

monomers.  
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Figure 6.9  Fibril length analysis of MAP monomers with seeds. A Quantification 
of fibril length measurements for K18 seed only sample. B Representative 
micrograph of K18 seed used in this experiment. C Quantification of K18 fibril 
length after seeds were incubated with 10 µM monomer and 20 µM heparin for 6 
hours at 37 °C. D Representative EM of K18 fibrils measured. E and G 
Quantification of K18 fibril length after seeds were incubated with 3R or 4R 
MAP2 respectively. F and H Representative EMs of seeds incubated with MAP2 
3R or 4R for six hours respectively. Scale bar is 100 nm. 
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6.8 MAP2 binds to Tau fibrils 

The previous results exclude large aggregates as being responsible for 

the MAP2s blocking effect observed. Additionally, the MTBRs of MAP2 isoforms 

were not observed to elongate Tau fibrils appreciably. Still, it needed to be 

established if MAP2 was physically binding to the Tau fibril. If Tau aggregation is 

being blocked by MAP2 interacting with the end of the fibril, it could be possible 

for the effect to be caused by only a single to a few layers of MAP2. This would 

not be sufficient increase in length to be observed using TEM. Binding of 

monomers to fibrils can be observed using fluorescence anisotropy. This is 

because as monomers bind to the relatively massive fibril, the tumbling of labeled 

protein in solution will slow. Decreased protein tumbling would reduce the rate of 

emission dipole depolarization and therefore increase anisotropy (according to 

equation in section 2.19). To test whether MAP2 was binding to the fibril, a single 

mutant for 4R MAP2 was generated by removal of the native cysteine found in 

the 2nd repeat (C409S). The natural cysteine in the 3rd repeat exists in both 3R 

and 4R MAPs. Both 3R and 4R isoforms of MAP2 and Tau were labeled with 

Atto 647N maleimide. Initially, anisotropic measurements vs time were taken to 

establish a rate of binding. When 100 nM of labeled MAP2 isoforms were mixed 

with 10 µM sonicated Tau fibrils, the labeled proteins were observed to have 

rapid binding kinetics and the reactions were complete well before the 15-minute 

collection time (data not shown).  
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Establishing a binding assay using fluorescence anisotropy would allow 

for examination of kinetics for MAP2 and K18 seeds. Fluorescence anisotropic 

increases were observed for K18, 3R MAP2, and 4R MAP2 (Fig 6.10 A – C). 

Experiments were performed using three independent batches of seeds 

(biological replicates) and averaged with SEM shown. K18 was used as a 

positive control and the K19 as a negative control. If the MAP2 is binding to the 

end of the fibril, an increase in fluorescence anisotropy for the MAP2 proteins 

and K18 should be observed. Since K19 is incapable of templating on K18, due 

to the asymmetric seeding barrier, the anisotropy for K19 should not change. The 

average maximum anisotropic value for experiments containing MAP2 were 

found to be 0.35 and 0.36 for 3R and 4R, respectively (Figure 6.10 A - B). These 

curves were plotted in GraphPad and apparent KD were found to be 2.8 µM and 

1.6 µM for 3R and 4R MAP2, respectively. The maximum change in anisotropy 

for labeled K18 incubated with seeds was observed to be an average of 0.26 with 

an apparent KD of 3.9 µM (Figure 6.10 C). The apparent KD for MAP2 being 

lower than for Tau could explain how the blocking effect may take place, in-vitro. 

The MAP2 can bind to the fibril more tightly than a Tau monomer would. This is 

indicative of strong binding to the fibril. The seeds used in these experiments 

were formed in the presence of heparin to induce aggregation. It is possible that 

some heparin in these reactions was not bound to the fibril. Unbound heparin 

could cause aggregation of MAP2, which could result in artifactually high 

anisotropy values. The seeds for these experiments were made with an 8 to 1 
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ratio of Tau to Heparin. This means that with 20 µM of K18 seeds added, and if 

all of the heparin in solution was not bound to the fibrils, 2.5 µM of free heparin 

would be have been added to the monomers in the anisotropy experiments. In 

order to test the degree to which this effected the change in anisotropy 2.5 µM of 

heparin was added to 3R and 4R MAP2 monomers. Very little to no change was 

observed for the anisotropy of the MAP2 proteins as compared to only buffer 

added (data not shown). These results demonstrate that the labeled MAP2 and 

K18 proteins are binding to the fibril and not to heparin or the cuvette. For K19, 

as expected, no change in anisotropy was observed for even the highest 

concentration of K18 seed (Fig 6.10 D). 
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Figure 6.10 Fluorescence anisotropy changes induced in monomers by titration 
of seed. 100 nM 3R (A) or 4R (B) MAP2 were titrated with 0.310 - 20 µM K18 
seeds. The seeds produce large changes in anisotropy for the monomers with KD 
values at 2.8 µM and 1.6 µM, respectively. C K18 seeds induce anisotropic 
changes for K18 also with an apparent KD of 3.9 µM. D K19 was used as a control 
since it does not template on K18, even at high seed concentrations. Experiments were 
performed using three independent batches of K18 seeds. Results are averaged, and 
SD reported. Curve fitting and KD analysis was performed in GraphPad. 

6.9 MAP2 captures Tau fibrils from solution 

The fluorescence anisotropy experiment was indirect evidence of MAP2 

binding to Tau fibrils. To support this further a bead-capture experiment was 

performed. In this experiment commercially-available magnetic beads conjugated 

to streptavidin (NEB) were purchased. Biotinylation of Tau and MAP2 monomers 

would allow for these biotinylated monomers to bind to the magnetic beads. By 
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placing the magnetic bead slurry in a magnetic field, the beads (which are 

attached to the monomers) can be pulled from solution and washed. If K18 seeds 

can bind to MAP2 monomers, then these magnetic beads with biotinylated 

monomers should be capable of capturing the fibril seeds from solution. If the 

monomers are binding to the fibril, then the beads should be capable of isolating 

fibrils attached to the biotinylated monomers by way of interaction with the 

streptavidin conjugated to the magnetic beads. The biotin-streptavidin bond can 

be disassociated by boiling the beads in 1 X SDS (Laemmli) sample buffer. 

Utilizing a PEG11-Biotin maleimide labeling reagent (Thermo Fisher), the 

monomers (K18, K19, 3R MAP2, and 4R MAP2) were labeled utilizing a single 

cysteine at the N-terminus of each protein. PEGylation is a useful characteristic 

of this label and is used in order to provide enough of a spacer such that the 

biotin molecule attached to the proteins can still interact as a ligand to 

streptavidin. 

K18, 3R MAP2, 4R MAP2, and K19, conjugated to biotin, bind to 

streptavidin coated magnetic beads (faint bands above arrow for K18 and 4R, or 

below the arrow for 3R and K19, Fig 6.11). K18, 3R MAP2, and 4R MAP2 are 

capable of binding to K18 seeds (Fig 6.11, the large band indicated with an 

arrow). K19 and hydrolyzed biotin label were each incapable of binding to K18 

(Fig 6.11). This result is important because it shows that the K18 and both 3R 

and 4R MAP2 tightly bind to seeds and are released upon boiling of beads in 1X 

Laemmli sample buffer. This experiment reconfirms the result that K19 does not 
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interact with K18 fibrils, which is the basis for the asymmetric seeding barrier. 

Also beads and hydrolyzed biotin label alone are insufficient to pull Tau seeds 

from solution.  

 

Figure 6.11 Streptavidin conjugated magnetic beads pull seeds out of solution by 
way of biotinylated monomers. Biotinylation at the N-terminus of K18, 3R MAP2, 
4R MAP2 resulted in an ability to bind to beads and K18 seeds. The bound 
seeds are eluted with biotinylated monomers during boiling in 1 X Laemmli 
sample buffer. Biotinylated K19 and hydrolyzed PEGBiotin reagent did not 
however demonstrate the ability to bind to seeds. Notice faint bands for 
streptavidin can be seen for all lanes (most prominent in 4R sample) at bottom of 
gel. This is a result of unfolding the tetrameric streptavidin complex. Some 
streptavidin is liberated during boiling in 1 X Laemmli buffer because only 1-2 
streptavidin molecules per tetramer is covalently conjugated to the bead. 

6.10 MAP2 binds to the end of Tau fibrils 

One way to demonstrate that proteins are within close proximity, is to 

utilize Forster resonance energy transfer (FRET) experiments. In order to 

perform FRET, a donor and acceptor fluorophore are required. FRET requires 

two fluorophores to have sufficient spectral overlap between the emission 

spectrum of the donor and excitation spectrum of the acceptor. If sufficient 

overlap exists, a non-radiative energy transfer can occur in which the energy of 

an excited electron in the donor fluorophore (high energy) is transferred to and 

excites an electron in the acceptor fluorophore (lower energy). Additionally, 
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because this phenomenon is non-radiative, it only occurs when fluorophores are 

in close proximity to one another (here 60 Å for Alexa488/Alexa 594). This 

phenomenon can be measured by exciting the donor fluorophore and monitoring 

emission for the acceptor. Due to the energy transfer phenomenon, the intensity 

of the donor species is reduced while the acceptor species intensity increases.  

If it is the case that MAP2 is binding specifically and tightly to the end of 

the fibril, it is expected that this phenomenon could be observed by FRET. In 

these experiments K18 Alexa 488 (donor) monomer was incorporated onto the 

fibril end. The samples were excited at 450 nm and emission was measured from 

500 – 675 nm. To these reactions, Alexa 594 (acceptor) labeled proteins (K18, 

3R MAP2, and 4R MAP2) were added to the previous reactions. The resultant 

emission spectra were measured again. It was shown that upon addition of K18, 

3R MAP2, or 4R MAP2, that donor intensity decreased (peak at 520 in Figure 

6.12 A - C) and acceptor intensity increased (peak at 611 nm in Figure 6.2 A – 

C). Three independent batches of seeds were used, ensuring consistency and 

rigor. The emission spectra were normalized for the intensity at 520 (donor 

peak), averaged, and plotted with SEM (Fig 6.12 A-C). When K18 Alexa 594 was 

added as an acceptor species, FRET was observed with the characteristic drop 

in donor intensity (at 520 nm, black arrow) and increase in acceptor intensity (at 

611 nm, red arrow). The reduction of the donor peak (520 nm) relative to the 

increase in acceptor peak (611 nm) is evidence that energy transfer is occurring 

between the labels and demonstrates the labels are in close proximity. Since we 
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know that K18 grows efficiently on the end of the fibril, it can be extrapolated that 

the MAP2 protein is also interacting with the end of the fibril due to the increase 

in acceptor emission observed. If MAP2 were binding randomly along the long 

axis of the fibril, it would be expected that the FRET signal would be weaker than 

that of K18. Since intensities for the acceptor peak are similar, it is likely that 

MAP2 is also binding to the end of the fibril. 

 

 

Figure 6.12 FRET of Alexa labeled monomers. 1 µM labeled K18 was mixed with 
10 µM K18 seeds and incubated 1 hour at 37 °C. Emission spectra were taken 
and 1 µM of the indicated acceptors were added (K18, 3R MAP2, or 4R MAP2). 
A FRET experiment of Alexa 488 and Alexa 594 labeled K18 grown on K18 
results in energy transfer due to close proximity of labeled monomers on the end 
of the fibril. B and C FRET signals for Alexa labeled MAP2 3R and 4R 
respectively. Energy transfer occurs to a similar degree with MAP2 proteins, 
indicating that they are likely binding to the end of the fibril in a similar manner to 
that of K18. 

To ensure this FRET signal was not a result of excess heparin in solution 

(from the seeds, and a similar argument as in the anisotropy experiments) 

resulting in monomer aggregation, the monomers were incubated together with 

2.5 µM heparin. This amount is equal to the amount of heparin that the seeds 

added would have contributed. If all of the heparin was unbound and free in 
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solution. It was shown that by addition of 2.5 µM heparin, no increase in FRET 

signal was observed for K18 (Fig 6.13 A). Likewise, 3R and 4R MAP2 were not 

observed to have an increase in FRET signal when only heparin was added (Fig 

6.13 B and C). This result is important because it suggests strongly the binding 

observed is specific to the fibril and not an artifact of labeling or unbound heparin. 

 

Figure 6.13 No FRET signal is observed when only heparin is added. 1 µM 
labeled K18 was mixed with [heparin] carried over from seeds in previous 
experiment (Fig 6.12) and incubated 1 hour at 37 °C. Emission spectra were 
taken and 1 µM of the indicated acceptors were added (K18, 3R MAP2, or 4R 
MAP2). Without the addition of seed, no FRET is observed for any of the 3 
reactions (A K18, B 3R MAP2, or C 4R MAP2) despite equimolar heparin 
concentrations as in seeded experiment above. 

If these monomers are indeed interacting with the end of the fibril, it 

should be possible to again use the biotinylated monomers in a different type of 

experiment than before. Commercially available products that contain 

streptavidin conjugated to gold nanoparticle exist. It is also possible to observe 

these gold nanoparticles under transmission electron microscopy. This type of 

experiment would allow for direct observation of the MAP2 at the end of the Tau 

fibril, by way of observing a black dot of a known size (here 6 nm Au) at the 

location in which the monomer has bound. It was necessary to use the constructs 
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generated for the bead-capture experiments, namely the proteins with a single 

cysteine residue at the N-terminus. This would ensure the PEG11-biotin 

conjugation would be pointing towards the solution, where it would be able to 

interact with the streptavidin conjugated nanogold. Tau fibrils were allowed to 

incubate with biotinylated 3R and 4R MAP2 and then were mixed with 

equivolume of diluted streptavidin conjugated gold nanoparticles (Aurion). It was 

observed that a 1:20 dilution of nanoparticles with assembly buffer produced the 

best results. After incubation with the gold nanoparticles for 1 hour, samples 

were prepared for TEM analysis. It was shown that MAP2 proteins were binding 

to the end of Tau fibrils (Fig 6.14 A - B). Since these MAP2 monomers were 

conjugated with biotin, and this biotin was accessible to the streptavidin on the 

gold nanoparticles, it was observed that a single or few nanoparticles were found 

on the end of the Tau fibrils. This result demonstrates visually that MAP2 3R and 

4R isoforms are binding to the end of the Tau fibril. 
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Figure 6.14 Streptavidin gold binds to end of fibrils incubated with biotinylated 
MAP2 monomers. A 3R and B 4R MAP2 conjugated to biotin binds to the end of 
K18 fibrils, indicated by the presence of the gold nanoparticle at the fibril’s end. 
Streptavidin binding to biotinylated monomers causes the nanoparticle to show 
up only where MAP2 is present. 

Now with direct evidence for MAP2 binding to the end of Tau fibrils, it 

became clear how the mechanism of action for blockage is likely occurring. In the 

absence of MAP2, Tau proteins elongate into long fibrils unhindered. If MAP2 

monomers are included in the reaction, it is possible for the MAP2 monomers to 

bind to the end of the Tau fibrils, but not allow for the next Tau monomer to bind. 

Taken together, the results of anisotropic KD determination, magnetic bead 

experiment, FRET, and gold nanoparticle data demonstrate in a logically 

consistent fashion that the MAP2 protein binds to the end of Tau fibrils in a 

specific and tight manner. Additionally, these results demonstrate that the 

number of MAP2 layers that form on the end of the fibril is as few as a single 
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layer. It also seems likely that the MAP2 protein, which is not interacting with the 

end of the fibril, but that is sedimented in the earlier experiments, is likely due to 

amorphous aggregates forming with excess heparin. The heparin titration 

experiments show that the blockage effect is not caused by reduced heparin 

concentration, however. It is still unknown whether or not the MAP2 protein is 

interacting in an identical fashion as Tau, but it is suggested by the FRET 

experiments that the MAP2 is probably binding parallel and in-register or the 

FRET labels would likely be too far apart to have similar signal intensities to Tau 

labeled with Alexa 594. 
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Chapter 7 Discussion 

7.1 Full length monomeric Tau resides in multiple conformational states 

Measurements of the structure of Tau in solution demonstrated various 

intramolecular interactions. Particularly, FRET experiments on monomeric Tau 

resulted in distance distributions shorter than would be expected for a true 

random coil [19], [129]. One study utilized introduction of Tryptophan residues 

and cysteines (labeled with a fluorophore, IAEDANS) to measure FRET 

efficiencies and calculate the distances between the pair of fluorophores. This 

study demonstrates that the monomer alone in solution can adopt a global 

hairpin-type structure  [20]. Another study utilized FRET to demonstrate that 

upon addition of heparin, the MTBR of Tau compacts, and the N and C termini 

are forced outwards[129]. This could demonstrate the initial step towards 

oligomerization of positively-charged monomers on the polyanionic heparin 

scaffold. Due to limitations with the instrumentation used, molecules must be 

observed in bulk solution or only briefly at the single molecule level (on the order 

of milliseconds [168]).  

One way to avoid these pitfalls is to utilize an instrument called the anti-

Brownian electrokinetic trap (ABEL trap) [123], [169]. This instrument is capable 

of tracking the molecular trajectory and utilizing electromotive force to direct 
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analytes of interest. Keeping analytes in the measurement cell enables 

prolonged (on the order of seconds) measurements of individual proteins [123] ̶ 

[124], [165]. Prolonging measurement time provides better signal-to-noise and 

allows for new conformational information to be elucidated. 

ABEL trap instruments have been utilized to study other proteins 

previously [123], [125] but the first use of this type of instrument on an 

intrinsically disordered protein has been shown here and confirmed that 

fundamental solution-phase behavior of monomeric Tau can be examined [127]. 

This proof of concept will enable development of more advanced studies that 

could incorporate cofactors and/or seeds to investigate the mechanism of 

monomer to fibril conversion. 

It was shown in collaboration with the Goldsmith group at University 

Wisconsin, Madison, that full length human Tau (the longest isoform) is present 

in a bimodal distribution of fluorescence anisotropies. However, when either a 

folded globular protein (microbial transglutaminase or MTG), denatured MTG, or 

free dye were measured, the samples only consist of a distribution of anisotropy 

best fit by one Gaussian function. This implies that these latter cases only have 

one global structure. Upon denaturation, Tau no longer exhibited this bimodal 

distribution. This is indicative of structural perturbation by the denaturant. To 

ensure this was due to disruption of intramolecular interactions in the monomeric 

state of Tau, several additional experiments were performed. First, hydrolyzed 

dye and unlabeled Tau (mutated to have no cysteines) were mixed, and bulk 
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anisotropy measurements were taken. Then the same experiment was 

performed using the ABEL trap. The results suggest it is likely the dye is not 

interacting with the protein in a non-specific manner ([127] See page 12 in the 

supplement). Additionally, when a less hydrophobic dye was used (Atto 633), the 

anisotropic distributions were very similar ([127] supplement, Fig S5). This also 

substantiates the claim that the dye is not interacting with the protein and causing 

artifactual anisotropic distributions. Utilizing molecular dynamics simulations, 

dyes conjugated to proteins have been shown to track the proximal residues 

[171]. If these results were purely a consequence of unfolded proteins in solution, 

then the denatured MTG would likely exhibit a bimodal anisotropic distribution, 

which it does not. This feature must be attributed to Tau itself, and not a 

consequence of being an unfolded protein. These findings are in agreement with 

other studies which show Tau has transient intramolecular interactions which 

result in a structure that is more compact than expected for a random-coil [20]. 

Transient structure in other IDPs has been shown. For example, 

Huntingtin protein is an amyloidogenic protein containing polyglutamine 

expansions in the primary sequence and is considered to have intrinsically 

disordered regions [167] ̶ [168] and a collapsed solution-phase structure has also 

been demonstrated for polyglutamine chains [174]. Aβ fragments are also highly 

flexible in solution. NMR of soluble Aβ has shown that conformational sampling 

occurs and structural disorder is prevalent [175]. These transient structures are 

important because they preclude true amyloid formation but might be associated 
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with oligomeric states and early polymerization. It is thought that hydrophobic 

regions can become exposed during this conformational sampling. These 

hydrophobic patches may serve as aggregation hotspots. 

This work is being followed up with additional measurements on hT40 

mutants labeled with Atto 647N. Also, time-resolved anisotropy measurements of 

the hT40 310 labeled with Atto 647N have been recorded. The future work 

utilizing this instrument could be useful in developing a better understanding of 

how initial aggregation occurs, and what factors may drive the oligomerization of 

Tau. 

7.2 Amyloid fibril selection and evolution 

The ability to form distinct fibril conformers from proteins with identical 

sequence, and to perpetuate these conformers by template-assisted conversion, 

is a unique property of amyloids [69], [131]–[133], [176], [177]. Structural 

polymorphism requires that the recruited proteins exhibit a high degree of 

plasticity as they are molded into different conformational states, Tau proteins 

possess such plasticity. It has been shown that K18 fibrils, when subjected to 5 

cycles of seeding and growth, formed a heterogeneous mixture of conformers 

[63]. Upon further examination, it was demonstrated that the K18 fibrils formed 

from stirred material were relatively homogenous [64]. After consecutive cycles of 

seeding and growth, the once dominant polymorph had become a sub-

population. To understand the context of this phenomena, it is helpful to consider 

that structural evolution has been observed for other amyloids.  
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Strain switching and conformational polymorphism are well documented 

phenomena within the context of amyloids [144], [158], [178]. It was shown that 

for prion protein, fibrils formed under different agitation conditions were 

structurally unique [179]. These fibrils were shown to have differing properties 

with respect to cross-β-core structure and morphology. Importantly, these unique 

structural features arose when independent reactions from identical batches of 

protein were agitated differently. Polymorphism was a result of monomers 

adopting unique structures upon differing agitation modes, and not from 

preformed nuclei within the stock monomer samples. Here we present sample 

homogeneity formed during agitation and then subsequent selection of minor 

subpopulations due to differences in their growth rate, which resulted in 

heterogeneity in the later cycle samples.  

Another example of structural polymorphism leading to strain switching 

induced by differences in agitation has been shown for Aβ [70]. This study 

demonstrated that if amyloidogenic proteins were incubated either quiescently or 

agitated, that unique structures would arise. Aβ fibrils formed under agitation 

were also shown to interconvert to the quiescently formed fibril structure, if these 

fibrils were mixed together. The structural conversion took place over the course 

of 35 days [70]. This process was demonstrated to be due to in part to 

dissociation of monomers from the less thermodynamically stable fibril. This 

allowed for elongation and growth of the more stable Aβ polymorph. It was also 

demonstrated, in this work,  that a change in agitation allowed for a new 
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dominant structure of Tau fibril to evolve [64]. Since each reaction was sonicated 

and added to new monomers, the fastest growing Tau fibril would become 

dominant over time, rather than the more stable structure. Tau fibrils did not 

appreciably dissociate to allow a similar mechanism of action, as measured for 

Aβ, however. This could be due to cofactor interactions, causing increased 

thermodynamic stability.  

Surface catalyzed secondary-nucleation mechanisms have also been 

suggested to cause strain switching within a single fibril [150] ̶ [151], [187]. 

Secondary nucleation is a phenomenon in which a new amyloid nucleus forms 

on the surface of the fibril, along the long axis. This mechanism would seem to 

imply branching of fibrils, though this has not been observed. It has been 

suggested that these small fibrils detach from the surface easily and begin 

elongation independent of the nucleation site. If fibrils are capped, fragmentation-

based pathways may allow for Tau to break, and then elongate despite having 

been previously capped. Fibrils have been observed to break into pieces as 

small as trimers and still be seeding competent [95]. However, short fibrils 

(>10mer) appear to be most seeding competent [96]. 

It was demonstrated that Tau fibrils are found in the brains of people with 

chronic traumatic injury [11], [180], [181]. This disease is thought to be caused by 

repeated concussion or head trauma [8], [9], [182]. This highlights the need to 

further investigate the breakage properties of amyloids.  Fragile fibrils may 

spread more rapidly, as small fibrils have been shown to be selectively 
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endocytosed [93], [96]. Further work needs to be done in order to better 

understand how mechanisms of breakage can contribute to structural 

polymorphism of amyloids found in disease. Selection processes can 

interconvert the dominant Tau fibril species in solution. Changes in structure 

were monitored by various techniques including: TEM, proteolytic sensitivity, and 

light scattering. A study on α-synuclein showed that structural evolution, with 

respect to these same biophysical properties, also occurred [183]. Additionally, it 

was shown that there were different degrees of toxicity from different α-synuclein 

fibril species when applied to SH-SY5Y cell culture. Using cell culture and mouse 

models, Tau inclusions formed exogenously can result in unique, faithfully-

propagating, strains of Tau fibrils. These phenotypes could be induced in 

aggregate free cells by addition of fibril-containing cellular lysate [177], [184].  

Differences in disease phenotypes may be linked to fibril conformation or 

the ability of the fibril to faithfully propagate during cell-to-cell transmission. 

Therefore, it is important to examine the conformational heterogeneity of amyloid 

fibrils to more fully understand the processes which lead to different disease 

phenotypes. 

7.3 Tau fibril stability 

Amyloid fibrils made of Tau are very stably folded [185]. Proteins in the 

amyloid fold typically form zipper-like structures [186]–[188], which results in high 

stability. Bovine spongiform encephalopathy (BSE) prion amyloids are capable of 

surviving the meat rendering process, and even incineration of medical and 
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agriculture byproducts[189]. Inactivation of prions and amyloids can be achieved 

under harsh conditions of strong alkalinity and high temperatures [190]. This 

stability could contribute to why the Tau fibrils were not dissociated upon limited 

dilution. The dissociation of fibril and cofactor interactions may take place under 

more extreme dilution conditions than examined here (>40x). The limit of 

detection for these proteins on Coomassie stained SDS PAGE meant it was not 

possible to examine greater dilutions. Silver staining or immunostaining could be 

used to achieve greater sensitivity, but with greater background. ABEL traps can 

overcome this limitation due to higher signal-to-noise. An ABEL trap may be used 

in the future to examine fibril dissociation leading to greater understanding of 

molecular behavior of Tau fibrils. 

Neither K18 nor K19 fibrils were observed to release associated cofactors 

under high salt conditions (500 mM). Similarly, the fibrils themselves did not 

dissociate appreciably under high salt conditions. It is likely that some of the 

cofactor may be very tightly associated with Tau along the long fibril axis. The 

cofactor has been proposed to stabilize the parallel and in-register arrangement 

of the many positive charges found in Tau [177] ̶ [178]. The fact that cofactors 

can be partially exchanged [57] demonstrated that at least some of the cofactors 

associated to the fibril are non-permanent. However, since neither increased salt 

concentration nor dilution released bound cofactors appreciably, it is likely a 

compensatory structure must replace bound cofactors [57]. The cofactor 

exchange process could be responsible for cell internalization processes [161]. 
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Fibrils initially formed with heparin were shown to bind to sulfonated 

polysaccharides on the surface of cells in culture, and this process mediated 

micropinocytosis of the fibrils [161]. Additionally, it has been shown that 

polyanionic molecules (cofactors) are associated with NFTs [179] ̶ [180]. This 

suggests that cofactor mediated stabilization likely occurs in-vivo. The exact role 

for polyanionic cofactors in disease is unclear, however, hyperphosphorylated 

Tau found in disease has been shown to aggregate without a cofactor [195]. 

Although high-resolution structural data has become available for the AD fibril 

[71], it is not clear whether fibrils formed in-vitro have the same structure. The 

cryo-EM structure of Tau fibrils showed electron density in the interior of the fibril 

but was not of high enough resolution to precisely understand what this electron 

density is due to [71]. It is possible that this density is due to the presence of a 

polyanionic cofactor. Heterogeneity within the structure of the cofactor would 

obscure the molecular resolution for these structures. Further work needs to be 

done to characterize the extent of cofactor mediated stabilization in disease 

fibrils, and the position(s) of these cofactors within the fibril structure.  

7.4 MAP2 aggregation 

It has been demonstrated in the literature that NFTs are comprised 

primarily of phosphorylated Tau. Antibodies raised against epitopes of MAP2 not 

present in Tau, generally have little reactivity against these NFTs [196]. Claims of 

epitopes from MAP2 in NFTs have been made, but cross-reactivity of antibodies 

with Tau could not be fully eliminated [195]  ̶[196]. Evidence for MAP2 amyloid 
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formation in the literature is scarce, but has been demonstrated in two 

contradictory studies [197] ̶ [198]. The first study utilized a truncated MAP2 C 

construct to generate PHF-like structures. A relatively high concentration of 

recombinant 3R MAP2 MTBRs was incubated in a sitting drop crystallization 

setup and allowed to aggregate for 1 - 4 weeks. The PHF-like structures formed 

bound the amyloid specific dyes, ThT and ThS, and were examined using TEM. 

The second study demonstrated the ability for MAP2 C to form SF-like structures 

under similar concentrations and sitting-drop crystallography conditions. The 

ability for MAP2 C to form PHF in this study was predicated on mutating a region 

of MAP2 C to the sequence of Tau. By changing this sequence in MAP2 C to the 

sequence found in Tau (4 amino acid substitutions), the ability of MAP2 C to form 

SF was diminished greatly, while the ability to form PHFs was enhanced. Another 

study demonstrated that if two amino acids are changed from the sequence of 

MAP2 to Tau, and vice versa, the aggregation of these proteins can be 

modulated [200]. In the case of the mutant Tau, amyloid formation was 

decreased and an increased likelihood of granule or amorphous aggregation was 

observed. The results of the experiments involving the mutated MAP2 show that 

the propensity of MAP2 to form amyloid aggregates was increased when it 

contained the sequence derived from Tau. These results are interesting because 

the sequence that was mutated is known to be one of two very important six-

residue stretches within the larger sequence that comprises Tau amyloid 

aggregates. These small regions within the MTBR region of Tau are known as 
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the hexapeptide repeats. In fact, fibrils from only these hexapeptide regions have 

been observed. These studies highlight that it may be possible for MAP2 to form 

amyloid structures under particular conditions. 

There have been almost no studies on MAP2 D aggregation. The full 

length and MTBRs of MAP2 D expressed here, aggregated during the initial 

purification procedure used. This required the use of 2 M urea to solubilize the 

protein (see methods). It was demonstrated that the aggregation behavior of 

MAP2 in the presence of heparin cofactor results in large amorphous 

aggregates, which do not resemble amyloid fibrils.  

7.5 Inhibition of Tau  

It was shown here that MAP2 binds to the end of K18 fibrils with a lower 

KD (1.6 µM for MAP2 4R and 2.8 µM for MAP2 3R vs 3.9 µM for K18 on itself) 

than Tau for itself. If MAP2 is going to be a useful inhibitor of Tau aggregation, it 

must interact with the fibril directly and specifically. When K19 was used as a 

control, no binding was observed. This is consistent with the asymmetric seeding 

barrier that has been previously described [57], [63], [130]. There are very few 

other studies that demonstrate that MAP2 may inhibit Tau aggregation. One such 

study has been published on a possible inhibitory role of MAP2 C on Tau 

nucleation. MAP2 C was shown to inhibit Tau nucleation when a negatively-

charged lipid cofactor (arachidonic acid) was used [201]. It was not fully explored 

whether or not MAP2 was interacting with the arachidonic acid. Arachidonic acid 

can be used in place of other polyanionic cofactors in Tau research [202]. The 



 

106 
 

inhibition of Tau protein in this study was negated by phosphorylation of MAP2 C. 

Phosphorylation of MAP2 C could result in lowered affinity for the anionic 

micelles, used to induce Tau aggregation. With less MAP2 C binding to the 

micelles, perhaps the Tau was again able to nucleate and form amyloid fibrils. 

This study did not investigate 4R MAP2. 

There are other cases of experiments in which Tau aggregation is blocked 

by some type of inhibitor. Many of these examples are of small molecules [121], 

[203]–[205], but there are cases of a peptide being used [206]. Seidler et al 

demonstrated that mutated fragments of the Tau MTBRs made from D-amino 

acids can block the aggregation of K18. This study shows that by using a known 

disease related mutation, ΔK280, a steric zipper is formed between the β-sheets 

and this can block the Tau aggregation [207]. This mechanism of action is 

different than our proposed mechanism, because it is taking place on the side of 

the protofilament. Experiments in our lab demonstrate that this mutant (K18 

ΔK280) can also be blocked by MAP2 (data not shown) which is promising 

because an eventual drug to treat Tau aggregation should target a variety of 

sequences.  

Other studies demonstrating a blocking effect on Tau aggregation typically 

involve small molecule inhibitors. Some of these small molecules have been 

derived from methylene blue (MB). MB and other phenothiazines have been 

shown to inhibit Tau aggregation in-vitro [208]. These molecules have had limited 

success at stopping disease progression in zebrafish, however [209]. These 
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molecules are thought to oxidize the cysteines in Tau, as is the case for vitamin 

B12 [205]. The cysteines in Tau have been shown to be important in aggregation 

[210]–[212]. A small molecule that has been studied more exhaustively than most 

others is (−)-epigallocatechin gallate [120], [211] ̶ [212]. One paper suggests its 

ability to block aggregation occurs by either stabilizing a conformation of 

monomer that is incapable of forming nuclei or by changing the monomer to an 

inert state [121]. This could be important for preventing the initial aggregation 

from occurring. This mechanism would not affect aggregation in a seeded 

environment, such as when fibrils are transmitted from neuron to neuron [100] ̶ 

[101], [213].  

Chaperone proteins have been shown to regulate protein refolding in the 

cellular environment. Heat shock proteins (HSPs) are a class of chaperones. 

HSP expression is usually regulated tightly and can be increased in response to 

cellular stress, such as protein aggregation. HSP70 is a highly conserved 

chaperone protein. It has been shown to bind and inhibit Tau fibril elongation also 

[216]. The cellular machinery that may be responsible for disassembling Tau 

fibrils in neurons has yet to be discovered. Studies do show that different 

combinations of HSPs may be necessary to achieve noticeable clearance of 

amyloids [217]–[219]. It is possible that the proper combination of chaperones 

that would allow disaggregation of amyloids, does exist. Once a fibril has grown 

to a sufficient length, natural fibril fragmentation pathways must cause breakage 

and subsequent seeding for pathology to spread. Mechanisms of breakage could 
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include trauma or some undiscovered combination of chaperones. If we could 

harness an interaction between natural or synthetic blocking agents and Tau 

fibrils, natural mechanisms such as proteolytic degradation or chaperones 

mediated disassembly may clear the aggregates. 

One final area of AD aggregation inhibitors to discuss is that of antibody-

based drugs. These drugs have proven to be effective in mice [220]. Many of 

these Aβ antibodies capture the monomer in an incompatible format, thereby 

prohibiting aggregation. As an example, Bapineuzumab was shown to be safe in 

Phase 2 trials [221] but produced no statistical difference in disease progression 

of mild-to-moderate AD when compared to a placebo in 3 double-blind studies 

[219] ̶ [220]. So far, other antibodies have had similar results [224]–[226]. These 

studies demonstrate that it is possible to engineer monomer-capturing antibodies 

which have encouraging results in-vitro. As for Tau, there are antibody-based 

approaches demonstrating the ability to inhibit cell-to-cell transmission of Tau 

fibrils in the preclinical stages that show promising results thus far [224] ̶ [225]. 

Further studies to demonstrate the exact region or regions of MAP2 that result in 

the blockage of Tau, shown here, will need to be performed. Eventually, it may 

be possible to engineer a peptide that resembles the sequence of MAP2, which 

provides the same structural interference and results in reduced aggregation in 

patients. The potent and rapid blocking effect demonstrated by the work here 

could help shape how inhibitors are designed in the future. 
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7.6 MAP2 binds to and caps the end of Tau fibrils 

The end of the fibril is the location in which new monomers are added [54]. 

The structural information stored in the amyloid fold (such as sheet-sheet 

packing and protofilament contact residues) defines the structure of fibrils during 

the conversion of soluble Tau into fibrillar aggregates. This information is stored 

in the “strain” or conformation. Conformational templating allows for the faithful 

replication of the structure as parallel and in-register aggregates [54]. 

The structure of Tau fibrils can be perturbed by changing a single amino 

acid residue [58]. This is because the core of the fibril is tightly packed and 

changing the R-group of a single amino acid can generate unfavorable 

interactions that restrict an incoming monomer from binding to and elongating the 

fibril. This change in structure could the due to selection processes rather than 

strain switching in one fibril. It is conceivable that if some minimum number of 

MAP2 monomers bind to the end of a Tau fibril, they might provide enough 

perturbation in structure that the Tau protein can no longer grow on this fibril. 

This interaction may be driven by the sequence similarities between the MAP2 

and Tau. However, changes to the structure then cause Tau monomer 

incompatibilities because of the sequence dissimilarity to MAP2. There are 27 

amino acid changes between the two sequences of truncated 4R MAP2 and K18. 

These differences are likely to be responsible for the inability of MAP2 to be 

recruited to an appreciable amount and elongate the Tau fibrils. This is also likely 

the reason K19 was incapable of blocking K18 seeded aggregation. 



 

110 
 

Although it is not possible to seed 3R Tau monomer on 4R fibrils [63], 

[130], it is possible to form mixed fibrils where both 3R and 4R Tau are part of the 

same fibril [56]. It seems that the fact that the second repeat is missing from 3R 

MAP2 is inconsequential with respect to its ability to block. That region of the 

protein may not need to be included in the fibril core for templating to occur. 

Fibrils from AD have recently been shown to be composed of the third and fourth 

repeats [71]. This may explain why 3R MAP2 may be able to successfully block 

the aggregation of 4R Tau, like the 4R MAP2 isoform.  

It was shown that MAP2 binds to the end of K18 fibrils and blocks Tau 

aggregation. The differences in the MAP2 and Tau sequences are likely 

responsible for the incapability of Tau monomers to grow on MAP2 capped fibrils 

but the sequence similarity between the proteins may be the reason for this 

binding. Although MAP2 does not grow on the Tau fibril as Tau would, it seems 

to be possible for a single MAP2 molecule to bind to the end. Perturbations in 

structure caused by differences in the two protein sequences could disfavor 

additional monomers from binding. If the conformation of the fibril is perturbed 

enough, it could also be that Tau is no longer capable of adopting the structure 

and continuing to elongate the fibril. There is literature to support that 

conformation of fibrils may not be perfectly imparted on the new monomer, and 

conformational strain may switch within a single fibril [144], [158]. A similar 

mechanism that results in capping, rather than true strain switching and 
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elongation, could help explain why MAP2 seems to block Tau aggregation with a 

single layer. 

Tau fibril seeds and MAP2 monomers were initially preincubated together 

for some time before the capped fibril seeds were added to fresh monomer and 

heparin. These experiments resulted in potent blockage of Tau (data not shown) 

and established the potential for MAP2 as a blocking agent. These types of 

experiments were adjusted to the more physiologically-relevant experimental 

design discussed below. By adding the fibril seeds to a mixture of MAP2 

monomer, Tau monomer, and heparin, a competition between MAP2 and Tau 

was forced. Small Tau fibrils have been shown to be progressively transported 

down neuronal networks [215] and selectively endocytosed [93]. These small 

Tau fibrils are thought to be much like the seeds used in recombinant 

experiments. As previously stated, fibrils as small as trimers have been 

observed, are internalized, and can induce aggregation in cells. The 

simultaneous introduction of fibril material to monomers (of MAP2 and Tau) and 

cofactor yielded a more biologically relevant competition-style experiment where 

MAP2 and Tau proteins would have to compete for the same sites on the fibril 

end. If after endocytosis of Tau fibrils, MAP2 is present – it might be possible for 

the internalized fibril ends to become capped – and therefore inhibit the growth. 

Mechanisms that slow the progression of Tau deposition in disease are of great 

interest. This is because there are no long-term treatment options for people 

afflicted with AD and other diseases. Additional work on mechanisms by which 
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Tau fibril spread can be mitigated is needed. It will be critical in the future to 

verify that MAP2 is able to block Tau seeding in the cell. Experiments towards 

this goal are currently ongoing.  
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Appendices 

Appendix A Alignments 

 

MAP2 C (3R) alignments. Shown here is the full length 3R MAP2 sequence from 
humans and constructs used in this work. Highlighted in red are the repeat 
regions. Red residues are cysteines, the blue star is the native cysteine used for 
Atto647N labeling for anisotropy and brown star is the N-Terminal cysteine 
labeled with Alexa 594 or PEG11-Biotin maleimide. Uniprot # P11137
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MAP2 D (4R) alignments. Shown here is the full length 4R MAP2 sequence from 
humans and constructs used in this work. Highlighted in red are the repeat 
regions. Red residues are cysteines, the blue stars are the native cysteines. 
Position 440 was used for Atto647N labeling for anisotropy and the brown star is 
the N-Terminal cysteine labeled with Alexa 594 or PEG11-Biotin maleimide. 
Uniprot # P11137 
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4R Tau alignments. Shown here is the full length 4R Tau sequence from 
humans. Shown here is the full length 3R MAP2 sequence from humans and 
constructs used in this work. Highlighted in red are the repeat regions. Red 
residues are cysteines, the blue stars are the native cysteines. Position 322 was 
used for Atto647N labeling (anisotropy experiments) and brown star is the N-
Terminal cysteine labeled with Alexa 594 or PEG11-Biotin maleimide. Uniprot # 
P11137 
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Appendix B Magnetic bead pulldown aparatus 

 

 

Streptavidin coated magnetic bead pulldown setup. A Before applying the 
magnetic field, beads were homogeneously mixed in solution. B Upon placement 
of the tube in a strong magnetic field, the beads would be pulled to one magnetic 
pole, creating a tightly packed pellet. 
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Appendix C Figures to accompany purification of Tau and MAP2 

 

Figure Appendix C 1 Representative cation-exchange chromatograms for K18 
and MAP2. Shown here are representative cation-exchange chromatograms for 
K18 with the y-axis scale of A UV (mAU) and B Conductivity (mS/cm). C and D 
show a representative chromatogram for MAP2 with y-axis scales for UV (mAU) 
and conductivity (mS/cm), respectively. Chromatograms for K19 and 3R MAP2 
are nearly indistinguishable from the 4R examples shown here. 
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Figure Appendix C 2 Representative ion exchange eluent fractions of K18 and 
truncated 4R MAP2 analyzed by SDS PAGE. Representative eluent fractions 
from MonoS GL10/100 (GE) column for truncated A Tau (#11 - #17) and B 4R 
MAP2 (#14 - #20). MAP2 elutes at a higher conductivity.  

 



 

136 
 

 

Figure Appendix C 3 Representative UV trace for truncated Tau and MAP2 on 
S75 and S200 columns, respectively. Representative UV (mAU) trace for A 
Chromatogram of K18 purified over a Superdex S75 (GE) and B truncated MAP2 
(4R here) purified over a Superdex S200 (GE). Black arrow represents K18 (top) 
and 4R MAP2 (bottom). Chromatograms for K19 and 3R MAP2 are nearly 
indistinguishable from the 4R examples shown here. 
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