
University of Denver University of Denver 

Digital Commons @ DU Digital Commons @ DU 

Electronic Theses and Dissertations Graduate Studies 

8-1-2018 

Surface Entropy of Shifts of Finite Type Surface Entropy of Shifts of Finite Type 

Dennis Pace 
University of Denver 

Follow this and additional works at: https://digitalcommons.du.edu/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Pace, Dennis, "Surface Entropy of Shifts of Finite Type" (2018). Electronic Theses and Dissertations. 1481. 
https://digitalcommons.du.edu/etd/1481 

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It 
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital 
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu. 

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1481&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.du.edu%2Fetd%2F1481&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1481?utm_source=digitalcommons.du.edu%2Fetd%2F1481&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu


Surface Entropy of Shifts of Finite Type Surface Entropy of Shifts of Finite Type 

Abstract Abstract 
Let χ be the class of 1-D and 2-D subshifts. This thesis defines a new function, HS : χ x R → [0,∞] which we 
call the surface entropy of a shift. This definition is inspired by the topological entropy of a subshift and 
we compare and contrast several structural properties of surface entropy to entropy. We demonstrate that 
much like entropy, the finiteness of surface entropy is a conjugacy invariant and is a tool in the 
classification of subshifts. We develop a tiling algorithm related to continued fractions which allows us to 
prove a continuity result about surface entropy in the 2-D case, namely that while it is only upper 
semicontinuous with respect to eccentricity that there are bounds on how badly discontinuous it can 
behave. 

A known result about entropy is that the class of entropies of 2-D SFTs is the class of CFA numbers. In the 
second part of this thesis we show that all such CFA numbers can be realized as the surface entropy of a 
2-D SFT. Furthermore we construct an example of a 2-D SFT demonstrating that the class of surface 
entropies is a strict superset to the class of entropies. 

Document Type Document Type 
Dissertation 

Degree Name Degree Name 
Ph.D. 

Department Department 
Mathematics 

First Advisor First Advisor 
Ronnie Pavlov, Ph.D. 

Second Advisor Second Advisor 
Nicholas Ormes 

Third Advisor Third Advisor 
Alvaro Arias 

Keywords Keywords 
Surface entropy, Entropy 

Subject Categories Subject Categories 
Mathematics | Physical Sciences and Mathematics 

Publication Statement Publication Statement 
Copyright is held by the author. User is responsible for all copyright compliance. 

This dissertation is available at Digital Commons @ DU: https://digitalcommons.du.edu/etd/1481 

https://digitalcommons.du.edu/etd/1481


Surface Entropy of Shifts of Finite Type

A Dissertation

Presented to

the Faculty of Natural Sciences and Mathematics

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Dennis Pace

August 2018

Advisor: Dr. Ronnie Pavlov



c©Copyright by Dennis Pace 2018

All Rights Reserved



Author: Dennis Pace
Title: Surface Entropy of Shifts of Finite Type
Advisor: Dr. Ronnie Pavlov
Degree Date: August 2018

Abstract

Let X be the class of 1-D and 2-D subshifts. This thesis defines a new function,

HS : X × R→ [0,∞] which we call the surface entropy of a shift. This definition is

inspired by the topological entropy of a subshift and we compare and contrast several

structural properties of surface entropy to entropy. We demonstrate that much like

entropy, the finiteness of surface entropy is a conjugacy invariant and is a tool in the

classification of subshifts. We develop a tiling algorithm related to continued fractions

which allows us to prove a continuity result about surface entropy in the 2-D case,

namely that while it is only upper semicontinuous with respect to eccentricity that

there are bounds on how badly discontinuous it can behave.

A known result about entropy is that the class of entropies of 2-D SFTs is the class

of CFA numbers. In the second part of this thesis we show that all such CFA numbers

can be realized as the surface entropy of a 2-D SFT. Furthermore we construct an

example of a 2-D SFT demonstrating that the class of surface entropies is a strict

superset to the class of entropies.

ii



Acknowledgements

I would like to thank Dr. Ronnie Pavlov, my adviser, for his unwavering support,

guidance, and patience throughout my graduate career. I would also like to thank

the other members of my committee; Dr. Nic Ormes, Dr. Alvaro Arias, and Dr.

Brian Majestic for helping shape this thesis into something of which I can be proud.

I’m grateful to Megan Daut for offering much needed support and motivation during

far too many late night writing sessions. Finally I thank my parents, Wesley and

Elizabeth Pace; without them I wouldn’t have become someone capable of such an

achievement.

In loving memory of my father, Wesley Pace (1947-2017).

iii



Table of Contents

1 Introduction 1

2 Definitions 9
2.1 Subshifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Computability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Behavior of Surface Entropy 17
3.1 1-D Shifts of Finite Type . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Surface Entropy in 2-D Shifts of Finite Type . . . . . . . . . . . . . . 27
3.3 2-D Surface Entropy as a function of α . . . . . . . . . . . . . . . . . 37

4 Realizations of Surface Entropy 61
4.1 Computability Properties of Entropies . . . . . . . . . . . . . . . . . 61
4.2 Realizing CFA Surface Entropy . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Layer HM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Layer Dd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Layer DHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Realizing non-computable CFB Surface Entropy . . . . . . . . . . . . 67
4.3.1 Layer P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Layer S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 Layer T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.4 Layer D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

iv



List of Figures

3.1 Block Gluing: Independent subwords within a large word. . . . . . . . 32
3.2 The grid symbols of Example 3.2.15 . . . . . . . . . . . . . . . . . . . 35
3.3 “Standard” Tiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Tiling algorithm examples. . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 K1 is maximized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 The template procedure used to prove Theorem 3.3.19. . . . . . . . . 58

4.1 Substitution rules for S. (Taken from [Hochman].) . . . . . . . . . . 76

v



Chapter 1

Introduction

This thesis is about properties of shifts of finite type, which are a symboli-

cally defined subclass of dynamical systems. A topological dynamical system

(X, {Tg}g∈G) is a compact topological space X, along with a G-action by homeomor-

phisms {Tg}g∈G. The field of dynamics concerns itself with the long term average

behavior when many Tg are applied to points of X or its subsets. In the area of

symbolic dynamics, we work with subshifts. A subshift is defined as X ⊆ AG, where

A is some finite set called the alphabet, endowed with the discrete topology, and G

is a group (for our purposes, G will always be Z or Z2.) The homeomorphisms of the

system are the G-action of translations {σg}g∈G. X is a subshift if it is closed in the

product topology on AG and invariant for all shifts, i.e. ∀g ∈ G, σg(X) = X. When

G = Z, X will be a space consisting of bi-infinite sequences consisting of letters of A,

and when G = Z2 it will be a space consisting of two-dimensional bi-infinite arrays;

for these spaces we assume Tg = σg.

Example 1.0.1. Let X ⊂ {0, 1}Z2
such that x ∈ X iff all rows in x are constant (i.e.

each row must be all 0s or all 1s) and exactly one row of x contains 1s. Then X is

shift invariant; any shift of a point with a single row of 1s will also have a single row

1



of 1s. However X is not closed. For each n ∈ N there is a point, xn, where there is

row of all 1s n digits above the origin; then limn→∞ xn is a point of all 0s, x0. Let

X ′ = X ∪ {x0}. Then X ′ is a subshift.

The class of subshifts we mostly treat in this thesis are the so-called shifts of finite

type (or SFTs.) Let C be a finite subset of Zd and define LX(C) = {x|C : x ∈ X}.

The language of X, LX , is the union of all such LX(C) and any w ∈ LX(Cw) ⊂ LX

is called a word of X of shape Cw. When G = Z we will say that w has length n if

|Cw| = n and Cw is contiguous, similarly we will say w is a (n,m) rectangle in Z2 if

Cw is an n ×m rectangle. A shift of finite type is then defined thusly; let FX be

a finite list of words in AZd then X ⊂ AZd is an SFT if for all x ∈ AZd , x ∈ X unless

x contains a word in FX . Although there are no restrictions on the size of words

appearing in FX , since it is finite for any particular SFT, there will be a maximum

size forbidden word. In this sense, restricting to the class of SFTs is about restricting

to systems that can be defined entirely with local information.

Example 1.0.2. Let X ′ be the subshift defined in Example 1.0.1. X ′ is not an SFT.

Assume that it were, then the set of finite forbidden words has a maximum height h.

Let x be a point with all 1s at the origin and all 1s at height 2h above the origin. Any

subword of x with height at most h would have at most one row of 1s and thus would

not be forbidden, but x is not a legal point of X ′.

Example 1.0.3. Let Dd be the SFT with alphabet {B,R, T} and forbidden list

Fd = {BR,BT,RT,RB, TB, TR, TB , BT , RR , BR , RT }.

Dd is the SFT consisting of points which are either all Bs, all T s, or 1 distinguished

row of Rs with Bs below and T s above.

2



It appears that Example 1.0.2 and Example 1.0.3 have the same properties, a shift

space with at most one distinguished row, and yet one is not an SFT while the other

is. The important difference is whether there is local information encoding when the

distinguished row has appeared in the shift. In Dd this is encoded when the symbols

switch from B to T but in X ′ the 0s above and below the distinguished row are

the same. This idea that we can take a non-SFT and produce a similar SFT that

preserves a desired property will be used several times in constructing examples and

in the main results of Chapter 4.

The isomorphism in the class of dynamical systems is called a conjugacy and

a major question in the field is the classification of equivalent systems. One of the

first major tools and the first numerical tool in answering this question was entropy.

In general the entropy of a system is defined using open covers, but a key technique

in the study of symbolic dynamics is noticing that we can study the behavior of the

system by studying the behavior of LX . Topological entropy (hereafter simply

entropy) is then defined for any Zd subshift as:

h(X) = lim
n→∞

logLX([1, n]d)

nd
.

The entropy of a system is a conjugacy invariant; thus entropy is important in

answering the question of classification of dynamical systems. Entropy has also found

broad application in many fields related to dynamics. In statistical physics, the

entropy of a system is called the free energy and determines the equilibrium behavior

of the system. In information theory the encoding schema for information storage

generates a dynamical system and the entropy of this system is the carrying capacity

of the schema. A concrete example of this can be found in the (2,7) run-length

limited scheme (RLL) which was widely used in storing data on magnetic computer

3



hard drives [7]. While we think of computers as using binary to store information

there are physical constraints in the magnetic media which force a more sophisticated

approach to be used to physically store the information. A short summary of these

constraints are that two consecutive 1s stored in the media cause interference and the

read head has trouble differentiating between a pair of 1s and a single 1, similarly if

there are too many adjacent 0s the read head can have trouble accurately determining

how many 0s were suppose to be present. To correct these issues the (2,7) RLL forced

information to be stored so that at least two 0s but no more than seven 0s could occur

between consecutive 1s. This means that not every bit on the media was data, but

that some of the bits occurred simply to conform to the RLL standard. Decoding a

section of media required removing these extraneous bits; which meant that a track

encoding in RLL did not hold quite as much information as one encoded in pure

binary. The amount of data stored in an n digit binary sequence is 2n = en log 2 where

log 2 is the entropy of an unrestricted shift on two letters whereas the amount of data

stored in an n digit (2,7) RLL sequence is about enh where h ≈ log 1.4 is the entropy

of the shift generated by (2,7) RLL.

From the above definition we can view entropy as a first order (here we will assume

d = 2 for purpose of discussion) estimate of the exponential growth of LX ,

LX([1, n]2) ≈ en
2h(X).

However, for some constant C ∈ [0,∞) consider the following two estimates:

L1
X([1, n]2) ≈ en

2h(X) L2
X([1, n]2) ≈ en

2h(X)+2Cn.

4



Entropy is not enough to distinguish these two cases. In a shift where such a C exists

define this higher order term in the estimate as surface entropy (it will be 0 or ∞

in the case that this term is non-linear.)

This thesis has two major sections. First, we begin by proving some structural

results about surface entropy in both the 1-D and 2-D settings. We develop sur-

face entropy as a companion to entropy. The conjugacy invariance of entropy was

of noteworthy importance and so we ask a similar question of surface entropy. It is

not the case that surface entropy is conjugacy invariant in full generality as we con-

struct examples of two conjugate systems with different surface entropy. However,

among other results, we do show that the finiteness of surface entropy is invariant.

We give examples (Example 3.2.4 and 3.2.5) that this distinction is meaningful by

demonstrating two subshifts with 0 entropy that do not agree on the finiteness of

their surface entropy.

Corollary 3.2.17. If X and Y are conjugate subshifts then HS(X,α) < ∞ if and

only if HS(Y, α) <∞.

In the 1-D setting we also show that the finiteness of the surface entropy can be

calculated algorithmically.

Theorem 3.1.6. Let X be a 1-D SFT, there exists an algorithm to determine if

HS(X) =∞ or if HS(X) <∞.

In the 2-D case we again show several structural results and then prove that surface

entropy further deviates from entropy in its behavior. Note that in the definition of

entropy only square words are used; it turns out that we can use this definition because

any sequence of rectangular word sizes which sees the size of the words increasing to

infinity will generate the same value. Interestingly, this is no longer the case when

calculating surface entropy; the eccentricity (ratio of a rectangle’s height to width)

5



of the words used affect the value of the calculation. Thus we define surface entropy

of a particular eccentricity α to be

HS(X,α) = sup
{{(xn,yn)}| yn

xn
→α,xn→∞}

(
lim
n→∞

log |LX(xn, yn)| − xnynh(X)

xn + yn

)
.

Fixing an SFT and considering surface entropy as a function of α we produce

an example demonstrating surface entropy is not continuous but it is upper semi-

continuous. Moreover we produce bounds on how badly discontinuous it can be.

Theorem 3.3.2. Let X be a subshift. Then HS(X,α) is an upper semi-continuous

function of α.

Theorem 3.3.18. Let X be a subshift. Let β, α ∈ (0,∞) and assume β
α
/∈ Q. Let

P = max(2 + α, 2 + 1
α

) then HS(X, β) ≤ PHS(X,α).

Theorem 3.3.19. Let X be a subshift. Let β, α ∈ (0,∞) and assume β
α
∈ Q where

p
q

is the reduced form of β
α

. Let z = max{p, q} and let γ = max{1 + z + α, 1 + z + 1
α
}

then HS(X, β) ≤ γHS(X,α).

In the proof of Theorem 3.3.18 and Theorem 3.3.19 we need an upper bound on

HS(X, β) which essentially means we need an upper bound on the word count of ec-

centricity β rectangles. We only have information about the word count on rectangles

of eccentricity α with which to construct our upper bound. Since surface entropy is

measuring the linear exponential growth rate instead of quadratic exponential growth

rate these bounds must have a smaller margin of error than in similar proofs regard-

ing entropy. We develop a tiling algorithm which accomplishes this by filling the β

(eccentricity) words with many different sizes of α words. Surprisingly the algorithm

that succeeds is one closely related to the Euclidean algorithm and the properties of

the continued fraction expansion of β
α

plays a role in the proof of these theorems.

6



Peculiarly, several questions in 2-D SFTs are unavoidably related to computability

theory. For instance, given an alphabet and set of forbidden words it is algorithmically

undecidable if the resulting SFT is non-empty [2]. We can classify elements of R based

on how they can be approximated by Turing machines, examples of such numbers are

computable, computable from above, and computable from below with the

latter two classes strictly containing than the first. There are interesting arguments

that computable numbers encapsulate the concept of how we fundamentally think

about numbers and yet there are only countably many computable numbers and so

they are measure 0 in R.

The second half of the thesis moves on to the question of which numbers can be

realized as surface entropy. A number which can be arbitrarily estimated from above

by a Turing machine is said to be computable from above (CFA) and a major

result in symbolic dynamics by Hochman and Meyerovitch [4] showed that the set of

entropies of 2-D SFTs was equal to the the set of non-negative CFA numbers. Our

results in Section 4.2 use this result to show that all such numbers can be realized as

the surface entropy of a 2-D SFT.

Theorem 4.2.4. For any CFA γ ∈ [0, 1] there is a subshift X such that HS(X, 1) =

γ.

We then demonstrate in Section 4.3 that there are non-CFA numbers which can

also be realized as surface entropy, proving that the set of surface entropies is a strict

superset to the set of entropies. Unlike our result in the CFA case this construction

cannot directly use the results in [4]. Their construction is a highly technical result

which requires using an embedded Turing machine to sample the frequencies appear-

ing in so-called Toeplitz sequences. Using the methods from both their construction

or ours these Toeplitz sequences always result in a final surface entropy that is infi-

nite. Much like the previous discussion about Theorem 3.3.18 and Theorem 3.3.19

7



we require finer control of the word count in order to control surface entropy. Our

construction uses the embedded Turing machine to sample from a different type of

sequence, so-called Sturmian sequences. The upside to using these sequences is that

we can better control the word counts, the downside is that these sequences have less

redundancy and are harder to control with a Turing machine. We are required to use

results about the Weyl equidistribution theorem to show that this limited control is

still sufficient.

Theorem 4.3.20. There exists a subshift X such that HS(X, 1) is CFB and not

CFA.

8



Chapter 2

Definitions

2.1 Subshifts

Definition 2.1.1. Let A be a finite set of symbols, the alphabet, endowed with the

discrete topology. Define σ : AZ → AZ such that ∀a ∈ AZ and i ∈ Z, σ(ai) = ai+1.

Then (AZ, σ) along with the product topology on AZ is the full shift in 1-D.

Definition 2.1.2. Let A be a finite set of symbols, the alphabet, endowed with the

discrete topology. For each v ∈ Z2 define σv : AZ2 → AZ2
such that ∀a ∈ AZ2

, σv(aw) =

av+w. Then
(
AZ2

, {σv}
)

along with the product topology on AZ2
is the full shift in

2-D.

Definition 2.1.3. If X ⊂ AZd is closed and σv invariant for all v ∈ Zd then (X, {σv})

is a d-dimensional subshift.

Definition 2.1.4. Let X be a subshift. The collection of all finite configurations

appearing in any element of X is the language of X, denoted LX . An element

w ∈ LX is called a word.

9



Definition 2.1.5. Let X be a 1-D subshift then LX(n) ⊆ LX is the set of words of

length n.

Definition 2.1.6. Let X be a 2-D subshift then LX(n,m) ⊆ LX is the set of rectan-

gular n ×m words. (Here and thereafter n ×m denotes a rectangle of width n and

height m.)

Definition 2.1.7. The eccentricity of an n×m rectangle is m
n

.

Definition 2.1.8. Let X be a subshift. The entropy of X, denoted h(X), is defined

as follows:

h(X) =


limn→∞

log|LX(n)|
n

if X is a 1-D subshift

limn→∞
log|LX(n,n)|

n2 if X is a 2-D subshift.

Definition 2.1.9. Let X ⊆ AZd be a subshift. Then X is a shift of finite type, an

SFT, if ∃F a finite set of words such that ∀a ∈ AZd, a ∈ X iff no word in F appears

in a.

Definition 2.1.10. Let F be a finite list of forbidden words and X ⊆ AZd be the

associated SFT. X is a nearest neighbor SFT if F only contains words of two

adjacent letters.

Definition 2.1.11. Let (X, {σv}) and (Y, {σv}) be subshifts. f : X → Y is a factor

map if f is onto Y and ∀v ∈ Zd, f ◦ σv = σv ◦ f . If such an f exists Y is a factor

of X.

Definition 2.1.12. Let X, Y be subshifts and f : X → Y be a factor map. f is a

conjugacy iff f is a bijection. If such an f exists then X is said to be conjugate

to Y .

10



Definition 2.1.13. Let G be a directed graph and A be the edges of G. Let X ⊆ AZ

such that x ∈ X iff x is a bi-infinite walk of edges of G. Then X is a subshift and is

called the edge shift corresponding to G.

Definition 2.1.14. Let X ⊆ AZ be an edge shift and G be the corresponding graph.

Let V be the vertices of G and M be a |V | × |V | matrix where M(I,J) is equal to the

number of edges from vertex I to vertex J . Then M is the adjacency matrix of X.

Definition 2.1.15. Let G be a directed graph and A be the vertices of G. Let X ⊆ AZ

such that x ∈ X iff x is a bi-infinite walk of vertices of G. Then X is a subshift called

the vertex shift corresponding to G.

We note that by Theorem 2.3.2 and Proposition 2.3.9 in Lind and Marcus [7] that

any 1-D SFT is conjugate to both an edge shift and a vertex shift.

Definition 2.1.16. Let X ⊆ AZ be a vertex shift. Let M be an |A| × |A| matrix

where each row corresponds to a unique element of A and each column corresponds

to a unique element of A. Let a, b ∈ A then if

M(a,b) =


1 if ab ∈ LX

0 if ab /∈ LX

M is the adjacency matrix of X.

Definition 2.1.17. Let X ⊆ AZd be a subshift and x ∈ X. x is periodic with period

n > 0 if ∃v ∈ Zd such that σnv (x) = x. The least period of x is the smallest n > 0

such that x is periodic.

Definition 2.1.18. Let X be a subshift. X is irreducible if ∀u, v ∈ LX ,∃w ∈ LX

such that uwv ∈ LX .

11



Definition 2.1.19. Let X be an edge shift with adjacency matrix A. X is primitive

iff ∃N > 1 such that AN > 0.

Definition 2.1.20. Let G be a directed graph and XG its associated edge shift. Let

I be a maximal subgraph of G such that for any i, j ∈ V (I) there is a path from i to

j consisting of edges in I. Let XI be the edge shift associated with I, then XI is an

irreducible component of XG.

Definition 2.1.21. Let A be a nonnegative irreducible matrix, the eigenvalue of A

with maximal modulus is its Perron eigenvalue and an eigenvector corresponding

to a Perron eigenvalue is a Perron eigenvector.

Theorem 2.1.22. [7] Let X be a 1-D SFT and XG be a conjugate edge shift with

adjacency matrix A. If λA is the Perron eigenvalue of A then h(X) = log λA.

Definition 2.1.23. Let X be a 1-D SFT. X is mixing if ∀u, v ∈ LX ,∃N(u,v),∀n >

N(u,v)∃w ∈ LX(n) such that uwv ∈ L(X).

Definition 2.1.24. Let X ⊆ AZ2
. X is block gluing with gap size g if for any

pair of two solid blocks B1, B2 ( Z2 such that the distance between B1 and B2 is

greater than g and for any two points y, z ∈ X then ∃x ∈ X such that x|B1 = y|B1

and x|B2 = z|B2.

Definition 2.1.25. Let X, Y be 2-D subshifts where AX is the alphabet of X and AY

is the alphabet of Y . Choose k ∈ N and let B : LX(2k + 1, 2k + 1) → AY . Define

B(i,j) ( Z2 as the (2k+ 1, 2k+ 1) rectangle centered at (i, j). Define f : X → Y such

that y(i,j) = B(X|B(i,j)
). Such an f is a sliding block code of window size k.

12



Definition 2.1.26. Let X be a subshift with alphabet AX . Define a subshift Y such

that AY = LX(M,M) and the identity map from LX(M,M)→ AY induces a sliding

block code between X and Y . Then Y is the Mth higher block presentation of

X.

There are analogous definitions for sliding block code and Mth higher block pre-

sentation in 1-D where intervals of X, instead of squares of X, are mapped to letters

of Y . (See [7] for more details.)

Definition 2.1.27. [11] A sequence x ∈ {0, 1}Z is k-balanced if for any two sub-

words of x with the same length, the number of 1s appearing in each word differs by

no more than k, i.e. ∀n ∈ N,∀i, j ∈ Z
∣∣#1(x[i,i+n−1])−#1(x[j,j+n−1])

∣∣ ≤ k where

#1(x[i,i+n−1]) is the number of 1s appearing in the n letter word starting at xi.

Definition 2.1.28. [3] A sequence, (xz) ∈ Z2, is Sturmian if ∀n ∈ N,
∣∣L(xz)(n)

∣∣ =

n+ 1.

It can be shown that an aperiodic 1-balanced sequence is Sturmian.

Definition 2.1.29. Choose ρ, γ, δ ∈ [0, 1). For each z ∈ Z let xz = χ[1−ρ,1](zγ + δ)

mod 1. Then the sequence (xz) is generated from a γ circle rotation and the

frequency of 1s appearing in (xz) is ρ.

Proposition 2.1.30. [3] The set of Sturmian sequences is equivalent to the set of

sequences generated from irrational circle rotations.

Definition 2.1.31. [5] Let (xz) ∈ {0, 1}Z such that ∀n ∈ N,∀i, j ∈ Z, if i (mod 2n+1) =

j (mod 2n+1) = 2n (mod 2n+1) then xi = xj. Define X = {σn((xz))}n∈Z. Then any

x ∈ X is a (dyadic) Toeplitz sequence.

13



2.2 Computability

Definition 2.2.1. A Turing machine, T , is a theoretical model of computation

consisting of the following components.

• A finite alphabet, A, which contains a “blank” symbol.

• A finite list of states, S, which contains a distinguished initial and halting

state.

• A finite table of instructions, I : (A× S)→ (A, S, {−1, 0, 1}).

• A tape, (tn) ∈ AN, which stores the input and output of T . The input and

output of T is a finite sequence of elements of A proceeded by all blanks.

• A head, H = (HS, HP ) ∈ S × N, which stores the current state of the Turing

machine and the current location on the tape where the machine and read and/or

write.

We can think of T as a partial function from the set of tapes to itself where the

output of T can be computed using the following algorithm.

Upon initialization, T sets its current state, HS, to the initial state. The position

of the head, HP , is set to 0. It then performs the following loop unless it reaches the

halting state, at which point it halts.

Begin Loop

(L1) Read the symbol on the current location of the tape and use this along with the

current state to determine which instruction to perform. This is done by calculating

(a, s,m) = I(tHP , HS).

(L2) Set the state to s, replace the symbol at the current location with a, and move

14



the head to HP +m.

End Loop

A step of the Turing machine is one iteration of this loop. When T halts, we

denote the contents of the tape after halting by T ((tn)); else T ((tn)) is undefined.

We can also think of T as acting on natural numbers by bijectively corresponding

n ∈ N to its base-k expansion for some k. In this case, both the input and output have

only finitely many non-blank symbols. For T we consider in this work, the output in

this case will be a pair of natural numbers, which we interpret as the numerator and

denominator of a rational number T (n).

The Church-Turing Thesis is an axiom of computation theory which states

that any type of effective computation can be performed by a Turing machine.

While a Turing machine can simulate any effective computation, it should be noted

that this is by no means efficient. A simple multiplication machine which multiplied

10 ∗ 10 required 11500 steps[12].

Definition 2.2.2. A number x ∈ R is computable from above (CFA) if there is

a Turing machine T such that T (n)→ x and for each input n ∈ N, T (n) ≥ x.

Definition 2.2.3. A number x ∈ R is computable from below (CFB) if there is

a Turing machine T such that T (n)→ x for each input n ∈ N, T (n) ≤ x.

Definition 2.2.4. A number x ∈ R is computable if there is a Turing machine T

such that for each input n ∈ N, T (n)− 1
n
≤ x ≤ T (n)+ 1

n
. Alternatively, T (n) outputs

the first n digits of x.

It is easily checked that a number is computable iff it is both CFA and CFB.

Definition 2.2.5. A function f : N → N is a computable function if there is a

Turing machine T such that T (n) = f(n).

15



The set of computable functions is closed under any algebraic operation which

can be computed with a finite algorithm; in particular it contains all elementary

functions and is closed under sums, products, and composition. We use the term

computable function to better match the literature. For our purposes we consider

computable functions simply to be Turing machines and so if T is a Turing machine,

f is a computable function, and Tf is the Turing machine implementing f then

f ◦ T = Tf ◦ T .

Definition 2.2.6. The IP set generated from an infinite set of generators, {gn}n∈N,

denoted IP −(g1, g2, ..., ), is the sequence of the set of all finite sums of the generators

ordered by size.

16



Chapter 3

Behavior of Surface Entropy

We begin by a definition for surface entropy in 1-D and Theorem 3.1.2 shows how

to calculate surface entropy in the 1-D setting for certain shifts of finite type. We then

classify when a SFT will have finite or infinite surface entropy. We give two equivalent

definitions of surface entropy in 2-D and prove several general properties of surface

entropy. We show that the surface entropy of a product is subadditive and that if the

subshift is block gluing the surface entropy has an upper bound related to the entropy

and block gluing gap. Examples are then presented showing calculations of surface

entropy and highlighting the fact that unlike entropy, surface entropy can depend on

the eccentricity of the rectangles used to count words. Several examples describing

surprising behavior of surface entropy are presented; in particular surface entropy can

be infinite, it can be 0 when X is not the full shift, and limn→∞ SX(xn, yn) as defined in

Definition 3.2.1 may not converge along certain sequences in Ξ(α) (Definition 3.2.2.)

We also show that surface entropy is not a conjugacy invariant, but Theorem 3.2.16

shows that whether surface entropy is infinite is a conjugacy invariant.

17



3.1 1-D Shifts of Finite Type

Definition 3.1.1. Let X be a 1-D subshift and h(X) be the entropy of X. The

surface entropy of X is defined as:

HS(X) = lim
n→∞

log |LX(n)| − nh(X).

Theorem 3.1.2. Let X be a 1-D, mixing, edge shift with adjacency matrix A that

has Perron eigenvalue λ. Let r be a right eigenvector of A and ` be a left eigenvector

of A normalized s.t. ` · r = 1. Then HS(X) = log
(

1
λ

∑
ri
∑
`i
)
.

Proof. By Theorem 4.5.12 in Lind and Marcus [7]

(An)ij = [ri`j + pij(n)]λn where lim
n→∞

pij(n) = 0.

Also recall that by Theorem 2.1.22 h(X) = log λ, thus

HS(X) = lim
n→∞

log |LX(n)| − nh(X) = lim
n→∞

log

(∑
i,j

(An−1)ij

)
− n log λ

= lim
n→∞

log

(∑
i,j

[ri`j + pij(n− 1)]λn−1)

)
− n log λ

= lim
n→∞

log

(∑
i,j

[ri`j + pij(n− 1)]

)
− log λ

= log

(
1

λ

∑
i,j

ri`j

)
= log

(
1

λ

∑
i

ri
∑
i

`i

)
.

Theorem 3.1.3. Let X be a 1-D, irreducible, edge shift with period p. Then HS(X) <

∞.

18



Proof. Let A be the adjacency matrix of X and λ be the Perron eigenvalue of A.

Then λp is the Perron eigenvalue of Ap. By Theorem 4.5.6 of [7] the vertices of A can

be ordered by period class so that:

A =



0 B0 0 . . . 0

0 0 B1 . . . 0

...
...

...
. . .

...

0 0 0 . . . Bp−2

Bp−1 0 0 . . . 0


and

Ap =



A0 0 0 . . . 0

0 A1 0 . . . 0

0 0 A2 . . . 0

...
...

...
. . .

...

0 0 0 . . . Ap−1


where each Ai is primitive and Ai = Bi...Bp−1B0...Bi−1. Since Ai is primitive,

limn→∞
Ani
λn

= Ci for some real valued matrix Ci. Thus limn→∞
Apn

λpn
= C where C

is a block diagonal matrix with Ci along the diagonal.

Instead of considering sequences of any word length, we restrict to word lengths

in a single residue class mod p. For each residue class we will find a finite upper

bound of the surface entropy restricted to sequences in that residue class; such an

upper bound on each residue class will give an upper bound on a sequence of any

word length. Let 0 < o ≤ p.

lim
n→∞

log |LX(pn+ o)| − (pn+ o)h = lim
n→∞

log

(∑
i,j

(Apn+o−1)ij

)
− (pn+ o) log λ

19



= lim
n→∞

log

(∑
i,j

(ApnAo−1)ij

)
− pn log λ− o log λ

= lim
n→∞

log

(∑
i,j

(
Apn

λpn
Ao−1

)
ij

)
− o log λ

= lim
n→∞

log

(∑
i,j

(
Apn

λpn
Ao−1

)
ij

)
− o log λ

= log

(∑
i,j

[
lim
n→∞

(
Apn

λpn

)
Ao−1

]
ij

)
− o log λ

= log

(∑
i,j

[
CAo−1

]
ij

)
− o log λ <∞.

For any sequence of word lengths the residue classes mod p finitely partition the index

set and so the bounding of the residue sequences gives a bound for any sequence.

lim
n→∞

log |LX(n)| − (n)h = sup
0≤o≤p

[
log

(∑
i,j

[
CAo−1

]
ij

)
− o log λ

]
<∞.

Lemma 3.1.4. Let X be an edge shift that is not irreducible, where h(X) = log λ,

X has two irreducible components Y and Z each with entropy log λ such that ∃y ∈

L(Y ), z ∈ L(Z), w ∈ L(X) such that ywz ∈ L(X). Then HS(X) =∞.

Proof. There is a letter yz ∈ Y that can transition to some zy ∈ Z in |w| steps. Since

Y is irreducible there is some G ∈ N so that any letter in Y can precede yz by at

most G number of steps. Similarly Z being irreducible means that after at most H

steps zy can transition to any letter in Z. To create a word in LX(n) we can choose

wY ∈ L(Y ) and wZ ∈ L(Z) along with transition word wG ∈ L(Y ) of length no more

than G and wH ∈ L(Z) with length no more than H such that |wYwGwwHwZ | = n.

20



|LX(n)| ≥
n−|w|∑
i=G

|LY (i−G)| |LZ(n− i−H)| .

Calculating surface entropy we find.

lim
n→∞

[log |LX(n)| − n log λ]

≥ lim
n→∞

log

n−|w|∑
i=G

|LY (i−G)| |LZ(n− i−H)|

− n log λ


≥ lim

n→∞

[
log

(∑n−|w|
i=G |LY (i−G)| |LZ(n− i−H)|

λn

)]

≥ lim
n→∞

log

 1

λG+H

n−|w|∑
i=G

(
|LY (i−G)|

λi−G

)(
|LZ(n− i−H)|

λn−i−H

)
≥ lim

n→∞

log

 1

λG+H

n−|w|∑
i=G

(1)(1)

 ≥ ∞.

Thus HS(X) =∞.

Theorem 3.1.5. Let X be a non-irreducible edge shift with h(X) = λ such that X

does not satisfy the hypotheses of Lemma 3.1.4. Then HS(X) <∞.

Proof. For 0 ≤ i ≤ ψ let Mi be the irreducible components of X with entropy

log λ and for 0 ≤ j let Aj be all the other irreducible components of X. Let

φ = max{h(Aj)}. Let A be the induced subgraph on
⋃
Aj and XA the edge shift

corresponding to A; by Theorem 4.4.2-4.4.4 of [7] it follows that h(XA) = φ. By the

assumption that the hypotheses of Lemma 3.1.4 do not hold ∀w ∈ L(X), w contains

subwords from at most one Mi. Let ε > 0 such that (φ+ ε)− λ < −ε < 0 then there

21



is a C such that ∀n |LA(n)| ≤ Cen(φ+ε).

|LX(n)| ≤
∑
i≤ψ

n∑
k=0

k∑
v=0

|LA(v)| |LMi
(n− k)| |LA(k − v)|

log |LX(n)| − nλ ≤ log

[∑
i≤ψ

n∑
k=0

k∑
v=0

|LA(v)| |LMi
(n− k)| |LA(k − v)|

]
− log(enλ)

≤ log

[∑
i≤ψ

n∑
k=0

k∑
v=0

Cevφ+ε |LMi
(n− k)|Ce(k−v)φ+ε

]
− log(enλ)

≤ log

[∑
i≤ψ

n∑
k=0

k∑
v=0

C2ekφ+ε

ekλ
|LMi

(n− k)|
e(n−k)λ

]

≤ log

[∑
i≤ψ

n∑
k=0

k∑
v=0

C2ekφ+ε

ekλ

]

≤ log

[∑
i≤ψ

n∑
k=0

k∑
v=0

C2

ekQ

]

= log

[
ψC2

n∑
k=0

k

ekQ

]

lim
n→∞

(|LX(n)| − nλ) ≤ lim
n→∞

(
log

[
ψC2

n∑
k=0

k

ekQ

])
<∞.

Theorem 3.1.6. Let X be a 1-D SFT, there exists an algorithm to determine if

HS(X) =∞ or if HS(X) <∞.

Proof. Let X be an SFT then there is an algorithm to determine Y , a nearest neigh-

bor, edge shift, such that X is conjugate to Y . Theorem 3.1.2, Theorem 3.1.3,

Lemma 3.1.4, and Theorem 3.1.5 provide an algorithm to determine if HS(Y ) < ∞

or if HS(Y ) = ∞ and by Corollary 3.2.17 HS(X) < ∞ if and only if HS(Y ) < ∞

is.

22



Theorem 3.1.7. Let X be a 1-D primitive, nearest neighbor SFT. Then HS(X) = 0

if and only if X is a full shift.

Proof. Assume X is a full shift on A letters. Then |LX(n)| = An and h(X) = logA.

Thus

lim
n→∞

[log |LX(n)| − n logA] = lim
n→∞

[
log
|LX(n)|
An

]
= log 1 = 0

By way of contradiction assume X is a primitive, nearest neighbor SFT that is

not a full shift. Let A be the adjacency matrix of X and Θ be a matrix the same size

of A will all entries of 1. Since X is not a full shift then A 6= Θ. Let `, r be defined as

in Theorem 3.1.2. Since X is primitive all entries of ` and r are positive. Then since

A is a 0− 1 matrix it follows that:

`Ar <`Θr

λ`r <
∑
i,j

`irj.

Since `r are normalized,

λ <
∑
i,j

`irj

1 <
1

λ

∑
i,j

`irj.

Then by Theorem 3.1.2,

0 < log

(
1

λ

∑
i,j

`irj

)
= HS(X).

23



Lemma 3.1.8. Let X be a 1-D SFT such that HS(X) = 0 then limn→∞
|LX(2n)|
|LX(n)|2 = 1.

Proof. Since HS(X) = 0 by the definition of surface entropy:

lim
n→∞

log |LX(n)| − nh = 0

lim
n→∞

log
|LX(n)|
enh

= 0

lim
n→∞

|LX(n)|
enh

= 1.

By subadditivity |LX(n)| ≥ enh. Let ε > 0 then ∃N such that ∀n > N the following

holds.

1 ≤ |LX(n)|
enh

≤ 1 + ε (3.1)

1 ≤ |LX(2n)|
e2nh

≤ 1 + ε. (3.2)

Using equations 3.1 and 3.2 we obtain lower and upper bounds on the quotient in

question.

1

(1 + ε)2
≤

|LX(2n)|
e2nh(
|LX(n)|
enh

)2 ≤
1 + ε

1

1

(1 + ε)2
≤ |LX(2n)|
|LX(n)|2

≤ 1 + ε

1
.

Since ε was arbitrary the result holds.

Theorem 3.1.9. Let X be a 1-D, mixing, M-step SFT such that X is not a full shift,

then HS(X) 6= 0.

Proof. Since X is not a full shift ∃u, v ∈ L(X) such that uv /∈ L(X) and WLOG |u| =

|v| = M . Let Y = XM be the higher block presentation of X. X is mixing so Y is a

24



primitive edge shift. Let A be the adjacency matrix of Y , λ be the Perron eigenvalue

and r, ` be the normalized eigenvectors of A. Define Sn = |{w∈LX(n):w ends with u}|
|LX(n)| and

Pn = |{w∈LX(n):w begins with v}|
|LX(n)| .

|LX(2n)| ≤ |LX(n)|2 − SnPn |LX(n)|2

|LX(2n)|
|LX(n)|2

≤ 1− SnPn

Since X is irreducible by Corollary 3.1.6 it has finite surface entropy so ∃C such that

|LX(n)| ≤ Cλn. Define S ′n = |{w∈LY (n−M+1):w ends with u}|
Cλn

and P ′n = |{w∈LY (n−M+1):w begins with v}|
Cλn

.

Then Sn ≥ S ′n and Pn ≥ P ′n.

Let j be the column of A representing the letter u.

S ′n =
1

Cλn

∑
i

(
Ani,j
)
.

So by Theorem 4.5.12 of [7]

limS ′n = lim
1

Cλn

∑
i

(
Ani,j
)

=
1

C

∑
i

[(r`)i,j] =
1

C

∑
i

ri`j.

Since A was primitive, ∀i, j it is the case that ri > 0, `j > 0 and thus limSn > limS ′n >

0. The same argument provides that limPn > limP ′n > 0. Hence lim |LX(2n)|
|LX(n)|2 ≤

lim (1− SnPn) < 1 so by Lemma 3.1.8 HS(X) > 0.

Theorem 3.1.10. Let X be a 1-D, irreducible, M-step SFT with period p such that

X is not a full shift, then HS(X) 6= 0.

Proof. Since X is not a full shift ∃u, v ∈ L(X) such that uv /∈ L(X) and WLOG

|u| = |v| = M . Let Y = XM be the higher block presentation of X, so Y is an edge

25



shift. Let A be the adjacency matrix of Y , λ be the Perron eigenvalue of A. Define

Sn =
|{w ∈ LX(n) : w ends with u}|

|LX(n)|

and

Pn =
|{w ∈ LX(n) : w begins with v}|

|LX(n)|
.

|LX(2n)| ≤ |LX(n)|2 − SnPn |LX(n)|2

|LX(2n)|
|LX(n)|2

≤ 1− SnPn

Since X is irreducible by Theorem 3.1.3 it has finite surface entropy so ∃C such that

|LX(n)| ≤ Cλn. Define

S ′n =
|{w ∈ LY (n−M + 1) : w ends with u}|

Cλn

and

P ′n =
|{w ∈ LY (n−M + 1) : w begins with v}|

Cλn
.

Then Sn ≥ S ′n and Pn ≥ P ′n.

Ap =



A0 0 0 . . . 0

0 A1 0 . . . 0

0 0 A2 . . . 0

...
...

...
. . .

...

0 0 0 . . . Ap−1


,

26



where each Ai is primitive. Let j be the column of A representing the letter u and

B = Ai be the submatrix of Ap containing the non-zero entries of j. Let λB be the

Perron eigenvalue and r, ` be the normalized eigenvectors of B. Note that λB = λp.

S ′pn =
1

Cλpn

∑
i

(
Api,j
)

=
1

Cλpn

∑
i

(Bi,j) .

By Theorem 4.5.12 of [7]

lim
n→∞

S ′n ≥ lim
n→∞

S ′pn = lim
n→∞

1

Cλpn

∑
i

(Bi,j) = lim
n→∞

λnB
Cλpn

∑
i

ri`j =
1

C

∑
i

ri`j.

SinceB was primitive, ∀i, j it is the case that ri > 0, `j > 0 and thus limSn > limS ′n >

0. The same argument provides that limPn > limP ′n > 0. Hence lim |LX(2n)|
|LX(n)|2 ≤

lim (1− SnPn) < 1 so by Lemma 3.1.8 HS(X) > 0.

3.2 Surface Entropy in 2-D Shifts of Finite Type

We now wish to define surface entropy in 2-D. Our goal is to isolate the linear

coefficient, C, in LX(n, n) ≈ en
2h(X)+n2C ; SX below formalizes how to do so. We

allow surface entropy to depend on eccentricity α, which we will formalize using

Ξ(α), instead of just using squares since as mentioned previously the eccentricity of

the word size sequence will effect the value of surface entropy. We allow Ξ(α) to be all

sequences approaching the eccentricity α instead of just using sequences of rectangles

with exactly eccentricity α because if α is irrational there are no such rectangles and

we want parity between a rational and irrational definition.

27



Definition 3.2.1.

SX(xn, yn) =
log |LX(xn, yn)| − xnynh(X)

xn + yn
.

Definition 3.2.2.

Ξ(α) = {{(xn, yn)} ∈ (N2)N|yn
xn
→ α and xn →∞}.

Definition 3.2.3. If X is a subshift then the surface entropy of X with eccentricity

α is:

HS(X,α) = sup
{{(xn,yn)}| yn

xn
→α,xn→∞}

(
lim
n→∞

log |LX(xn, yn)| − xnynh(X)

xn + yn

)
= sup
{(xn,yn)}∈Ξ(α)

(
lim
n→∞

S(xn, yn)
)
.

By sub-additivity the surface entropy of a subshift is always nonnegative and by

a standard diagonalization argument there is always a sequence of word sizes that

achieves the surface entropy as a limsup.

We now present two examples of calculating surface entropy in 2-D SFTs, the first

of which illustrates that surface entropy can be infinite and the second that a non-full

shift can have 0 surface entropy.

Example 3.2.4. Let X ⊂ {0, 1, 2}Z2
where the forbidden words of X are

FX = {02, 10, 11, 20, 21}

where no vertical configurations are forbidden. A legal configuration in X has indepen-

dent rows where each row is either ...00000... or ...22222... or ...0001222... Consider

w ∈ LX(n, n). A row of w is either all 0s, all 2s, or has n locations which could

28



be 1 so there are n + 2 choices for a row in w. There are n such rows in w thus

|LX(n, n)| = (n+ 2)n.

h(X) = lim
n→∞

log(n+ 2)n

n2
= 0.

HS(X, 1) ≥ lim
n→∞

log |LX(n, n)| − n2h(X)

2n
= lim

n→∞

log(n+ 2)n

2n
=∞.

Example 3.2.5. Let X ⊂ {0, 1, 2}Z2
where the forbidden words of X are

FX = {02, 10, 11, 20, 21, 0
1 ,

1
0 ,

0
2 ,

2
0 ,

1
2 ,

2
1 }.

A legal configuration in X has rows that are either ...00000... or ...22222... or ...0001222...

and rows are copied vertically thus |LX(n,m)| = (n+ 2).

h(X) = lim
n→∞

log(n+ 2)

nm
= 0.

HS(X, 1) = sup
(xn,yn)∈Ξ(1)

(
lim
n→∞

log |LX(xn, yn)| − xnynh(X)

xn + yn

)
= sup

(xn,yn)∈Ξ(1)

(
lim
n→∞

log(xn + 2)

xn + yn

)
= 0.

Note that the subshifts in Examples 3.2.4 and 3.2.5 both have entropy 0 but will

turn out to not be conjugate by Corollary 3.2.17 since Example 3.2.4 has infinite

surface entropy and Example 3.2.5 does not.

29



Definition 3.2.6.

Ξ′(X,α) = {{(xn, yn)} ∈ (N2)N|yn
xn
→ α and xn →∞ and lim

n→∞
S(xn, yn) exists}.

Definition 3.2.7. Define H ′s as follows:

H ′s(X,α) = sup
{(xn,yn)}∈Ξ′(α)

(
lim
n→∞

S(xn, yn)
)
.

Definitions 3.2.6 and 3.2.7 are used to generate an equivalent formulation of surface

entropy using a restricted class of word size sequences where only sequences with

defined limits are considered.

Proposition 3.2.8. If X is a subshift then HS(X,α) = H ′s(X,α).

Proof. Since Ξ′(X,α) ⊆ Ξ(α) it follows thatHS(X,α) ≥ H ′S(X,α). For any {(xn, yn)} ∈

Ξ(α) let S = limSX(xn, yn), then by compactness there is a subsequence C =

{(xnk , ynk)} such that limSX(xnk , ynk) = S and C ∈ Ξ′(X,α) thus H ′S(X,α) ≥ S

and so H ′S(X,α) ≥ HS(X,α).

Theorem 3.2.9. For subshifts X, Y and α ∈ [0,∞), HS(X × Y, α) ≤ HS(X,α) +

HS(Y, α).

Proof. Let X, Y be subshifts. We note that h(X×Y ) = h(X)+h(Y ) [9]. Choose a se-

quence O = {(xn, yn)} such that limSX×Y (xn, yn) = HS(X×Y ) then limSX(xn, yn) ≤

HS(X,α) and limSY (xn, yn) ≤ HS(Y, α). Thus ∀(xn, yn) ∈ O the following holds:

|LX×Y (xn, yn)| = |LX(xn, yn)| × |LY (xn, yn)|

log |LX×Y (xn, yn)| = log |LX(xn, yn)|+ log |LY (xn, yn)|

30



log |LX×Y (xn, yn)| − xnynh(X × Y )

= log |LX(xn, yn)|+ log |LY (xn, yn)| − xnyn(h(X) + h(Y )

log |LX×Y (xn, yn)| − xnynh(X × Y )

= log |LX(xn, yn)| − xnynh(X) + log |LY (xn, yn)| − xnynh(Y )

SX×Y (xn, yn) = SX(xn, yn) + SY (xn, yn)

limSX×Y (xn, yn) ≤ limSX(xn, yn) + limSY (xn, yn) (*)

HS(X × Y, α) ≤ HS(X,α) +HS(Y, α).

Lemma 3.2.10. If ∃{(xn, yn)} such that limSX(xn, yn) = HS(X) and limSY (xn, yn) =

HS(Y ) then HS(X × Y, α) = HS(X,α) +HS(Y, α). In particular this is true if either

subshift has the property that any sequence of rectangular word sizes will attain the

surface entropy.

Proof. Follows from equation (*) in the proof of Theorem 3.2.9.

Recall from Definition 2.1.24 that block gluing is a mixing property of 2-D sub-

shifts. Informally a block gluing subshift is one where there is a universal gap g, such

that subwords sufficiently far apart can be chosen independently of each other when

determining a legal configuration.

Theorem 3.2.11. If X is a block gluing subshift of gap size g then HS(X,α) < gh.

Proof. Let n,m ∈ N. Then |LX(n,m)| < ∞. For any k ∈ N a word of size

(k(n + g), k(m + g)) contains at least k2 subwords of size (n,m) that each can be

freely chosen. This is accomplished by placing each (n,m) subword a distance of g

away from each of the other (n,m) subword as illustrated in Figure 3.1.

31



8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

8>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>

>>>>>>>>>>:

gn

m

km+kg

kn+kg

Figure 3.1: Block Gluing: Independent subwords within a large word.

|LX(n,m)|k
2

≤ |LX(k(n+ g), k(m+ g))|

k2 log |LX(n,m)| ≤ log |LX(k(n+ g), k(m+ g))|

k2 log |LX(n,m)|
k2(n+ g)(m+ g)

≤ log |LX(k(n+ g), k(m+ g))|
k2(n+ g)(m+ g)

log |LX(n,m)|
(n+ g)(m+ g)

≤ lim
k→∞

log |LX(k(n+ g), k(m+ g))|
k2(n+ g)(m+ g)

log |LX(n,m)|
(n+ g)(m+ g)

≤ h(X)

log |LX(n,m)| ≤ h(X)(n+ g)(m+ g)

log |LX(n,m)| − nmh(X) ≤ nmh(X) + ngh(X) +mgh(X) + g2h(X)− nmh(X)

log |LX(n,m)| − nmh(X)

n+m
≤ ngh(X) +mgh(X) + g2h(X)

n+m
. (*)

Let {(xn, yn)} ∈ Ξ(α) then by (*),

HS(X,α) = lim
n→∞

log |LX(xn, yn)| − xnynh(X)

xn + yn
≤ lim

n→∞

xngh(X) + yngh(X) + g2h(X)

xn + yn

32



≤ lim
n→∞

gh(X) + yn
xn
gh(X) + g2h(X)

xn

1 + yn
xn

= gh.

Our next examples demonstrate several interesting properties of surface entropy.

Example 3.2.12. Let X = {0, 1}Z2
then |LX(n,m)| = 2nm and h(X) = log 2.

HS(X, 1) = sup
(xn,yn)∈Ξ(1)

(
lim
n→∞

log(2xnyn)− xnyn log 2

xn + yn

)
= 0.

Example 3.2.13. Let Y be the 2nd higher block presentation of the fullshift on 2

letters as defined in Definition 2.1.26. Then from Example 3.2.12 and Corollary

3.2.18 HS(Y, 1) = 2 log(2).

The SFTs in Example 3.2.12 and 3.2.13 are conjugate (the proof of this in 2-D

is the same as the proof of the 1-D case in [7]) but have different surface entropies.

Demonstrating that surface entropy is not a conjugacy invariant.

Example 3.2.14. Let X ⊂ {0, 1}Z2
where the forbidden words of X are { 0

1 ,
1
0 }. The

rows of this shift look like 1-D fullshifts and are copied vertically. |LX(n,m)| = 2n

thus h(X) = 0.

HS(X,α) = sup
(xn,yn)∈Ξ(α)

(
lim
n→∞

log(2xn)

xn + yn

)
=

log 2

1 + α
.

Example 3.2.14 demonstrates that the surface entropy of a subshift can depend

on the eccentricity of the rectangles used. This is different than entropy which is

independent of the eccentricity.

33



Example 3.2.15. Let Y be the SFT described in Theorem 16 of [10] with k = 106.

Y has an alphabet of the integers 0, 1, ..., k along with 6 grid symbols (Figure 3.2). A

point y ∈ Y has grid symbols partitioning the plane into rectangles and each rectangle

is filled with rows of integers. These rows of integers must alternate between rows of

all 0s and rows of all non-0s. If the bottom of a rectangle is closed by grid symbols,

then the row of integers directly above it must be all 0s. Y is block gluing, a rather

strong mixing property, and yet we will use the bounds on LY proved in [10] to show

that limn→∞ SY (n, n) does not exist. (Though those bounds are only proved for so-

called locally admissible words, they in fact also apply to LY (n, n) as needed for our

calculation.) It is an immediate consequence of the bounds in [10] that h(Y ) = log k
2

.

Consider square words with odd dimensions, (2n− 1, 2n− 1), then

k(2n−1)(n) ≤ LY (2n− 1, 2n− 1)

lim
n→∞

log
(
k(2n−1)(n)

)
− (2n− 1)2 log k

2

4n− 2
=

log k

4
≤ lim

n→∞
SY (2n− 1, 2n− 1).

Consider square words with even dimensions, (2n, 2n), then

LY (2n, 2n) ≤ 210n−4(4n2 + 1)484nk2n2

lim
n→∞

SY (2n, 2n) ≤ lim
n→∞

log
(

210n−4(4n2 + 1)484nk2n2
)
− 4n2 log k

2

4n
= log 48 +

5

2
log 2.

Since the sequences of even squares and the sequence of odd squares are both subse-

quences of the sequence of squares

lim
n→∞

SY (n, n) ≤ lim
n→∞

SY (2n, 2n) ≤ log 48 +
5

2
log 2

<
log k

4
≤ lim

n→∞
SY (2n− 1, 2n− 1) ≤ lim

n→∞
SY (n, n).

34



Figure 3.2: The grid symbols of Example 3.2.15

s
1

s s s ss
2 3 4 5 6

Example 3.2.15 serves to demonstrate that surface entropy is not as well behaved

in 2-D as it was in 1-D. In the 1-D case an SFT having the mixing property not only

guaranteed that this limit would exist, but allowed us to prove an explicit algebraic

formula for its value. Demonstrated here however we see that even a property as

strong as block gluing can’t even guarantee the existence of this limit. This also

serves to show that many of the “problems” that may arise in calculations or theorems

concerning surface entropy might not be fixed by simply assuming a mixing property;

there is something more subtle causing issues. This example also serves to illustrate

the necessity of using a limit superior in the definition of surface entropy. Even when

only considering a sequence of squares, which are not even all of the sequences in

Ξ(1), we cannot assume convergence of limits.

Theorem 3.2.16. Let X and Y be conjugate SFTs where the sliding block code

realizing the conjugacy has a window of size k. If HS(X,α) < ∞ then HS(Y, α) <

HS(X,α) + 2kh(X).

Proof. Let f be the k × k sliding block code from X to Y as defined in Definition

2.1.25. Then f is a surjection from LX(n+ 2k,m+ 2k) to LY (n,m) so ∀m,n ∈ N the

following holds:

|LY (n,m)| ≤ |LX(n+ 2k,m+ 2k)| . (3.3)

35



Thus

|LY (n,m)|−(n+2k)(m+2k)h(X) ≤ |LX(n+ 2k,m+ 2k)|−(n+2k)(m+2k)h(X)

log |LY (n,m)|−nmh(X) ≤ log |LX(n+ 2k,m+ 2k)|− (nm+ 2nk+ 2mk+ 4k2)h(X)

+ (2nk + 2mk + 4k2)h(X)

log |LY (n,m)| − nmh(X)

n+m

≤ log |LX(n+ 2k,m+ 2k)| − (nm+ 2nk + 2mk + 4k2)h(X) + (2nk + 2mk + 4k2)h(X)

n+m

=
log |LX(n+ 2k,m+ 2k)| − (nm+ 2nk + 2mk + 4k2)h(X)

n+m
+

(2nk + 2mk + 4k2)h(X)

n+m

=
(n+m+ 4k)

n+m

[
log |LX(n+ k,m+ k)| − (nm+ 2nk + 2mk + 4k2)h(X)

n+m+ 4k

]
+

(2nk + 2mk + 4k2)h(X)

n+m

=
(n+m+ 4k)

n+m

[
log |LX(n+ 2k,m+ 2k)| − (nm+ 2nk + 2mk + 4k2)h(X)

n+m+ 4k

]
+2kh(X).

Let mi, ni ∈ Ξ(α), by the previous inequality it follows that:

HS(Y, α) = lim
i→∞

log |LY (ni,mi)| − nimih(X)

ni +mi

≤

lim
i→∞

(ni +mi + 4k)

ni +mi

[
log |LX(ni + 2k,mi + 2k)| − (nimi + 2nik + 2mik + 4k2)h(X)

ni +mi + 4k

]
+ 2kh(X)

HS(Y, α) ≤ HS(X,α) + 2kh(X).

36



Corollary 3.2.17. If X and Y are conjugate subshifts then HS(X,α) < ∞ if and

only if HS(Y, α) <∞.

Proof. Follows immediately from Theorem 3.2.16.

Corollary 3.2.18. If Y is the M th higher block representation of X and HS(X) <∞

then HS(Y, α) = HS(X,α) + (M − 1)h(X).

Proof. This is similar to the proof of Theorem 3.2.16 except that the sliding block code

for the Mth higher block presentation yields a bijection from LX(n+M−1,m+M−1)

to LY (n,m), and so the inequality (3.3),

|LY (n,m)| ≤ |LX(n+ 2k,m+ 2k)| ,

becomes the following equality

|LY (n,m)| = |LX(n+M − 1,m+M − 1)| .

3.3 2-D Surface Entropy as a function of α

To this point we’ve considered surface entropy by fixing an α and comparing the

behaviors of the surface entropies of different shifts. A natural question is whether

fixing a shift and allowing α to vary would also yield interesting results. In fact when

fixing X, HS(X,α) becomes a function on the positive reals and so questions we

might ask about such functions become relevant. Specifically is HS(X,α) a continuous

function? It turns out that it is not and we present a counter example demonstrating

37



that as a function of α, HS(X,α) need not be continuous. However, we then show

that HS(X,α) is upper semicontinuous. In general the discontinuities in an upper

semicontinuous function can be arbitrarily large, we prove that this is not the case

for HS(X,α) in Theorems 3.3.18 and 3.3.19 which give a type of upper bound on how

badly discontinuous the function can be.

The following example will demonstrate a subshift in which HS(X,α) will be

discontinuous.

Example 3.3.1. Let X be an SFT with an alphabet of 0, 1 along with border tiles lower

left corner, upper left corner, upper right corner, lower right corner, left edge, right

edge, upper edge, and bottom edge. Each border tile will also have one of 1000 colors.

Points of X must have the following structure: at most one square with perimeter

of border tiles, colored independently, all locations inside of such squares (by inside

we mean to the right of the left edge, above the bottom edge, etc) are independently

colored by {0, 1} and all other locations are 0. (Since X is closed and shift-invariant,

it must also contain “limit points” such as a point with no border tiles, and those

containing 2 sides of an “infinite” square.) Though X is technically not an SFT as

written (there is no way to preclude border tiles forming non-square rectangles), it can

be made an SFT by adding a “diagonal signal” within the rectangle which negligibly

affects word count.

We claim that HS(X,α) is not continuous wrt α. To demonstrate this we must

find upper and lower approximations for the LX(xn, yn), we will assume WLOG that

α > 1 and thus eventually yn > xn.

The number of words on an xn × yn rectangle is trivially at least 2xnyn, since all

0-1 words are legal.

For an upper bound, first note that every word on an xn × yn rectangle, yn > xn,

either contains an entire perimeter of a square consisting of border tiles or does not.

38



A word containing such an entire perimeter is determined entirely by the side length

of the square (less than or equal to xn possibilities), the location of its upper left corner

(less than or equal to xnyn possibilities), and the letters on the border and interior of

the square. This gives an upper bound of

x2
nyn10004xn−42(xn−2)2

on the number of such words.

A word which does not contain an entire perimeter of a square is determined

entirely by the subrectangle of 0-1 symbols it contains (which may be empty), the

letters within that rectangle, and all border letters inside the word. There are less than

or equal to x2
ny

2
n choices for the subrectangle (from less than or equal to xnyn choices

for the upper-left and lower-right corners). There are less than or equal to 2xn + yn

border tiles (coming from the case where three edges contain border tiles), and so the

maximum number of choices for the border and 0-1 tiles is 10002xn+yn2xnyn−(2xn+yn).

This gives an upper bound of

x2
ny

2
n10002xn+yn2xnyn−(2xn+yn)

on the number of such words. Combining these bounds,

2xnyn ≤ |LX(xn, yn)| ≤ x2
nyn10004xn−42(xn−2)2 + x2

ny
2
n10002xn+yn2xnyn−(2xn+yn)

These bounds on |LX(xn, yn)| allow us to calculate bounds on h(X).

lim
n→∞

log (2xnyn)

xnyn
≤ lim

n→∞

log (|LX(xn, yn)|)
xnyn

39



≤ lim
n→∞

1

xnyn
log
(
x2
nyn10004xn−42(xn−2)2 + x2

ny
2
n10002xn+yn2xnyn−(2xn+yn)

)

log 2 ≤ h(X) ≤ lim
n→∞

1

xnyn
log

(
2xnyn

(
2x

2
n

2xnyn
+ 1

))

= lim
n→∞

1

xnyn
log
(
2xnyn

(
2xn(xn−yn) + 1

))
= log 2.

We now give a lower bound on HS(X, 1). (n, n) ∈ Ξ(1) and for each n there is a point

in X which contains an n × n square. So every configuration of such a square is in

LX(n, n).

10004n−42(n−2)2 ≤ |LX(n, n)|

lim
n→∞

log
(

10004n−42(n−2)2
)
− n2 log 2

2n
≤ lim

n→∞
SX(n, n) ≤ HS(X, 1)

2 log 500 ≤ 2 ≤ HS(X, 1).

We now give an upper bound on surface entropy. We first simplify the upper

bound:

|LX(xn, yn)| ≤ x2
ny

2
n2xnyn(10004xn−42−xn(yn−xn)−4xn+4 + 5002xn+yn).

Clearly the first term inside the parentheses approaches 0 as n→∞, and so will

be eventually dominated by the second. This yields

|LX(xn, yn)| ≤ 2x2
ny

2
n2xnyn5002xn+yn .

40



Taking logs, subtracting xnynh(X), dividing by xn + yn, and taking a limsup as

n→∞ yields

HS(X,α) ≤ lim
log 2 + 2 log xn + 2 log yn + (2xn + yn) log 500

xn + yn
=

2 + α

1 + α
log 500.

Since limα→1+
2+α
1+α

log 500 = 1.5 log 500, and since HS(X, 1) ≥ 2 log 500, we’ve

shown the desired discontinuity of HS(X,α) at α = 1.

Theorem 3.3.2. Let X be a subshift. Then HS(X,α) is an upper semicontinuous

function of α.

Proof. Let α ∈ R+ and αj → α. For each αj there exists a sequence {(xjn, yjn)} ∈

Ξ′(αj) s.t limn→∞ S(xjn, y
j
n) = HS(X,αj). We construct a new eccentricity sequence

by the following. For each k ∈ N choose (xjn, y
j
n) so that the following hold: n ≥ k, j =

k andHS(X,αj)− 1
2n
≤ S(xjn, y

j
n) ≤ HS(X,αj)+

1
2n
. Let (xk, yk) be the element chosen.

Then {(xk, yk)} ∈ Ξ(α) and limj→∞HS(X,αj) = limk→∞ S(xk, yk) ≤ HS(X,α).

Figure 3.3: “Standard” Tiling

In order to later prove Theorems 3.3.18 and 3.3.19

we will need to develop a few tools. These theorems

will be proved by bounding the word count of a large

rectangle using the word count of smaller rectangles.

A standard approach to such a proof is to use smaller

rectangles of a fixed size and simply fill as many copies as will fit into the larger

rectangle as demonstrated in Figure 3.3. This has an error involved, the uncovered

area of the larger rectangle, that is large in comparison to either dimensions of the

larger rectangle but is small in comparison to the area of the larger rectangle. For

calculations involving entropy this error is small enough and will vanish in the limit.

When dealing with surface entropy however this error is not necessarily small in

41



comparison to the perimeter and thus may not vanish. The following definitions and

theorems are intended to design a different sort of tiling algorithm that produces an

error term that will vanish in comparison to the perimeter.

Definition 3.3.3. Let N be a set of numbers. A tileset, (T,N), is a set of rectangles,

T such that ∀n ∈ N there is a rectangle in T with width n and a rectangle in T of

height n.

Definition 3.3.4. Given a rectangle R = (w × h) and a tileset (T,N), generate an

ordered pair (C,Rr) with the following non-deterministic algorithm:

1. Choose a tile, (tw × th) ∈ T such that th = h and tw ≤ w. If no such tile exists,

terminate the algorithm.

2. Repeat for dimensions (w − tw, h).

When the algorithm terminates, C is the number of tiles used before termination and

Rr the remaining rectangle (the remainder) that couldn’t be tiled. Rr has the di-

mension used in step 1 when it terminated.

TileLEFT(R,(T,N)) is the set of all ordered pairs that could be generated by

this algorithm.

Since this algorithm is possibly not deterministic, each (C,Rr) represents a possi-

ble choice path of the algorithm. Some tilesets will produce a deterministic algorithm,

in which case (C,Rr) will be unique. A later lemma shows that given the proper re-

strictions that the initial segments of (C,Rr) will be deterministic.

Definition 3.3.5. Given a rectangle R = (w × h) and a tileset (T,N), generate an

ordered pair (C,Rr) with the following non-deterministic algorithm:

42



(a) Tiling from the Left

(b) Tiling from the bottom

Figure 3.4: Tiling algorithm examples.

1. Choose a tile, (tw × th) ∈ T such that th ≤ h and tw = w. If no such tile exists,

terminate the algorithm.

2. Repeat for dimensions (w, h− th).

When the algorithm terminates, C is the number of tiles used before termination and

Rr is the remainder.

TileBOTTOM(R,(T,N)) is the set of all ordered pairs that could be generated

by this algorithm.

Definition 3.3.6. Given a rectangle, R, and a tileset, (T,N), the tiling algorithm

will return a set of sequences of ordered pairs (Cn, Rn) where Cn is the number of tiles

used at the nth step of the algorithm and Rn is the remainder uncovered by the first

n steps of the algorithm.

TILE(R,(T,N)) = {{(Cn, Rn)}|{(Cn, Rn)}

was produced by a run of the following non-deterministic algorithm}

43



Algorithm:

Let C0 = 0 and R0 = R. Let O = 0 if h
w
≤ 1, otherwise O = 1. Starting with n = 1,

for each n do the following:

If n+O is odd, choose (Cn, Rn) ∈ TileLEFT (Rn−1, (T,N)).

If n+O is even, choose (Cn, Rn) ∈ TileBOTTOM(Rn−1, (T,N)).

Remark: If for any ∃n > 1 s.t Cn = Cn+1 = 0 then ∀i > n,Ci = 0

Definition 3.3.7. A perfect tiling of R is TILE(R, (Squares,R)).

Note that in the case of a perfect tiling that [C1;C2, C3...] will be the contin-

ued fraction expansion of h
w

; since this tiling algorithm is just an application of the

Euclidean algorithm.

Definition 3.3.8. A rectangle of eccentricity α is an α-tile.

Definition 3.3.9. Define Γ to be the function such that if x is the eccentricity of a

rectangle then Γ(x) is the eccentricity of the remainder after performing 1 step of a

perfect tiling.

Based on the above definition the following can easily be checked:

Γ(x) =


x− bxc x ≥ 1

1
1
x
−b 1

x
c x < 1.

Γ

(
1

x

)
=

1

Γ(x)
.

Definition 3.3.10. An w × h rectangle such that either:

1) |h− wα| ≤ z

44



OR

2)
∣∣w − h

α

∣∣ ≤ z is called an (α, z)-tile.

Definition 3.3.11. (α, 1)-tiles are called are near α-tiles.

Since we are working in an integer lattice, near α-tiles are rectangles where one

side is fixed and the other is as close to being eccentricity of α as possible.

Definition 3.3.12. For a rectangle, R, TILE(R, (near α-tiles,N)) is a near α

tiling of R.

TILE(R, (α-tiles,R)) is deterministic since there is only one tile of each width

and height of eccentricity α. Using (α, z)-tiles is not necessarily deterministic, but

the following proposition will show the needed level of determinism.

Proposition 3.3.13. If β
α
∈ R−Q then there exists a γ and V such that if R = w×h

is a rectangle,
∣∣ h
w
− β

∣∣ < γ, and w > V then if (K1, R1) = TileBOTTOM((1 ×

β), (α-tiles,R)) and (C1, R1) ∈ TileBOTTOM(R, ((α, z)-tiles),N) it follows that K1 =

C1.

1

β
K1

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

α

α

α

α

Figure 3.5: K1 is maximized.

45



Proof. For use later we will need the following fact.

∣∣∣∣ hw − β
∣∣∣∣ < γ ⇒

∣∣∣∣∣ hαw − β

α

∣∣∣∣∣ < γ

α
⇒ β − γ

α
<

h
α

w
<
β + γ

α
.

(3.4)

Since the tiling algorithm is greedy, this means that K1 will be as large as possible

so that the tiles are still inside the (1, β) rectangle (See Figure 3.5).

K1α < β < (K1 + 1)α =⇒ K1 <
β

α
< K1 + 1.

K1 is an integer, and β
α
∈ R−Q, so for small enough γ, K1 <

β−γ
α

and β+γ
α

< K1 + 1.

Since these inequalities are strict, there is a V such that if w > V , K1 <
β−γ
α

1
1+ z

wα
,

and β+γ
α

1
1− z

wα
< K1 + 1. Choose such a γ and V and any w > V . Then

K1 <
β − γ
α

1

1 + z
wα

=⇒ K1(1 +
z

wα
) <

β − γ
α

<
h
α

w
this follows from inequality (3.4).

=⇒ K1(wα + z) < h.

In TileBOTTOM the width of a tile used must be the width of the original rectangle

and so (w, (wα+z)) is the tallest tile that can be used in the algorithm that produces

C1. The above shows that even if only tiles of this size are used C1 ≥ K1, since at

least K1 such tiles will fit by the definition of K1. Similarly,

β + γ

α

1

1− z
wα

< K1 + 1 =⇒

h
α

w
<
β + γ

α
< (K1 + 1)

(
1− z

wα

)
=⇒ h < (K1 + 1)(wα− z).

46



Again since the width is fixed in TileBOTTOM (w, (wα− z)) is the shortest tile

that can be used to produce C1. The above shows that K1 is the maximum number

of such tiles that can fit, and so K1 ≥ C1. Thus C1 = K1.

Proposition 3.3.14. If β
α
∈ R − Q then there exists a γ and V such that if R =

w × h is a rectangle,
∣∣ h
w
− β

∣∣ < γ, and h > V , then if (K1, R1) = TileLEFT ((1 ×

β), (α-tiles,R)) and (C1, R1) ∈ TileLEFT (R, ((α, z)-tiles),N) it follows that K1 =

C1.

Proof. This follows a similar proof to Proposition 3.3.13.

It is easily checked that if {(Ci, Ri)} = TILE((1×β
α
, (squares,R)) then {(Ci, αRi)} =

TILE((1× β, ((α− tiles,R)).

Proposition 3.3.15. Let R = (w, h) have eccentricity β and {(ki, Ri)} ∈ TILE(R, ((α, z)-

tiles,N)). Let Tk be the tiles used by the algorithm and wk × hk be the dimensions of

Tk. Then
∑∞

k=1 (2wk + 2hk) ≤ γ(2w + 2h) where γ = max
(
1 + z + α, 1 + z + 1

α

)
.

In other words the sums of the perimeters of the tiles used by the tiling algorithm

are bounded by a constant multiple of the perimeter of the rectangle they are tiling.

This constant only depends on α and z.

Proof. Let Γ be the set of tiles used during TileLEFT and Γ′ the tiles used during

TileBOTTOM. Note z + α ≥ hk
wk

and z + 1
α
≥ wk

hk
since these are (α, z)-tiles.

2w + 2h ≥
∑
k∈Γ

2wk +
∑
k∈Γ′

2hk

γ(2w + 2h) ≥
∑
k∈Γ

2wk(1 + (α + z)) +
∑
k∈Γ′

2hk

(
1 +

(
1

α
+ z

))

47



≥
∑
k∈Γ

2wk

(
1 +

hk
wk

)
+
∑
k∈Γ′

2hk

(
1 +

wk
hk

)
≥
∑

k∈Γ∪Γ′

2wk + 2hk.

Lemma 3.3.16. ∀α, β such that β
α
/∈ Q and ∀M ∈ N, δ > 0, Z ∈ N then ∃γ ∈

R, V ∈ N such that for any rectangle R with dimensions w × h satisfying
∣∣ h
w
− β

∣∣ <
γ,
∣∣∣wh − 1

β

∣∣∣ < γ and w > V, h > V and for any (Ci, Ri) ∈ TILE(R, ((α, 1),N)) the

following will hold.

Let Rs = ws×hs where ws = 1 and hs = β
α

and (Ki, (R
s)i) = TILE(Rs, (squares,R)).

Define wi, hi as the width and height of Ri, define (ws)i, (h
s)i similarly for (Rs)i.

(L1) ∀i ≤M ;Ci = Ki.

(L2)
∣∣∣hih − (hs)i

hs

∣∣∣ < δ and
∣∣∣wiw − (ws)i

ws

∣∣∣ < δ.

(L3†)
∣∣∣ hiwi − αΓi(β

α
)
∣∣∣ < δ.

(L3‡)
∣∣∣wihi − 1

α
Γi(α

β
)
∣∣∣ < δ.

(L4) wi > Z and hi > Z.

Proof. Choose Z ∈ N and δ > 0. We will proceed by induction on M . First be-

gin by considering only one step of the tiling algorithm; M = 1. Let 0 < δ† ≤

min{δ, 1
2
αΓ
(
β
α

)
, δ

2

[
αΓ
(
β
α

)]2}. Note that δ† 6= 0 since β
α
/∈ Q. Let δ′ < min{ δ†

2(β+1)
, δ†

2( 1
β

+1)
}.

Choose γ < 1 and V as in the hypothesis of Proposition 3.3.13 and 3.3.14 such that

all of the following hold: V
α
> K1,

K1

V
< δ, bV

α
c > 0, C1α( 1

V
+ γ) < δ′, C1

V
+ C1

α
γ < δ′,

α
β
hsγ ≤ δ′,V

∣∣∣ (ws)iws
− δ
∣∣∣ > Z and V

∣∣∣ (hs)ihs
− δ
∣∣∣ > Z.

From Proposition 3.3.13 and 3.3.14 it follows that C1 = K1 and so (L1) holds.

We now proceed to verify (L2) and (L3) by considering which step of the of the tiling

algorithm is performed.

48



Case 1: Assume first step of the tiling algorithm is TileBOTTOM. We begin by

verifying (L2). Since this is TileBOTTOM the widths are unchanged so, (ws)1
ws

= 1 =

w1

w
, verifying the first half of (L2). The tiles used are (α, 1)-tiles thus the height of

each tile is in the interval [wα−α,wα+α]. If each tile had height exactly wα then the

height of the remainder would be h−C1wα. This is likely not the case, however each

tile can only differ from wα by at most α and thus the actual height of the remainder

can only differ from h− C1wα by at most C1α, giving the following inequality,

(|h1 − (h− C1wα)|) < C1α. (3.5)

Recall from the hypothesis that hs = β
α

, thus when tiling by squares with ws = 1

it follows that (hs)1 = hs − C1w
s = β

α
− C1.

We now verify the remaining half of (L2).

∣∣∣∣h1

h
− (hs)1

hs

∣∣∣∣ ≤ ∣∣∣∣h1

h
− α

β

(
β

α
− C1

)∣∣∣∣
≤
∣∣∣∣h1

h
−
(

1− α

β
C1

)∣∣∣∣
≤
∣∣∣∣h1

h
−
(

1− w

h
C1α +

w

h
C1α−

α

β
C1

)∣∣∣∣
≤
∣∣∣∣h1

h
−
(

1− w

h
C1α

)∣∣∣∣+

∣∣∣∣whC1α−
α

β
C1)

∣∣∣∣
≤
∣∣∣∣h1

h
−
(

1− w

h
C1α

)∣∣∣∣+ C1α

∣∣∣∣wh − 1

β

∣∣∣∣
(3.5)

≤ C1α

h
+ C1α

∣∣∣∣wh − 1

β

∣∣∣∣
≤ C1α

(
1

h
+ γ

)
< δ′ < δ.

49



The above implies (L2) for Case 1. We will need the following inequality (*) to

complete the proof of this case.

∣∣∣∣h1

h
− (hs)1

hs

∣∣∣∣ < δ′

h

w

∣∣∣∣h1

h
− (hs)1

hs

∣∣∣∣ < δ′(β + γ)

(*)

∣∣∣∣h1

w
− α

β
(hs)1

h

w

∣∣∣∣ < δ′(β + γ).

Then the proof of the inequality in (L3†) is as follows:

∣∣∣∣h1

w1

− αΓ

(
β

α

)∣∣∣∣ =

∣∣∣∣h1

w
− α(hs)1

∣∣∣∣
≤
∣∣∣∣h1

w
− α

β
(hs)1

h

w
+
α

β
(hs)1

h

w
− α(hs)1

∣∣∣∣
≤
∣∣∣∣h1

w
− α

β
(hs)1

h

w

∣∣∣∣+

∣∣∣∣αβ (hs)1
h

w
− α(hs)1

∣∣∣∣
(∗)
≤ δ′(β + γ) +

α

β
(hs)1

∣∣∣∣ hw − β
∣∣∣∣

≤ δ′(β + γ) +
α

β
(hs)1γ

≤ δ′(β + γ) +
α

β
hsγ ≤ δ† ≤ δ.

Hence (L3†) holds for Case 1.

The previous also implies that h1
w1
≥ 1

2
αΓ
(
β
α

)
. So we use the fact that

∣∣∣∣1x − 1

y

∣∣∣∣ =
|x− y|
|xy|

and Γ

(
1

x

)
=

1

Γ(x)

to conclude that

50



∣∣∣∣∣ 1
h1
w1

− 1

αΓ
(
β
α

)∣∣∣∣∣ =

∣∣∣∣w1

h1

− 1

α
Γ

(
α

β

)∣∣∣∣ =

∣∣∣ h1w1
− αΓ

(
β
α

)∣∣∣∣∣∣ h1w1
αΓ
(
β
α

)∣∣∣ ≤
∣∣∣ h1w1
− αΓ

(
β
α

)∣∣∣∣∣∣12 [αΓ
(
β
α

)]2∣∣∣ ≤ δ,

which proves (L3‡) for Case 1.

Case 2: Assume the first step of the tiling algorithm is TileLEFT. In TileLEFT the

heights are unchanged so (hs)1
hs

= 1 = h1
h
. Since the tiles used are (α, 1)-tiles the width

of the tiles used are in the interval [ h
α
−1, h

α
+1] which implies

∣∣∣w1

w
−
(
1− C1

α
h
w

)∣∣∣ < C1.

Also note that ws = α
β
.

∣∣∣∣w1

w
− (ws)1

ws

∣∣∣∣ ≤ ∣∣∣∣w1

w
−
(

1− C1
β

α

)∣∣∣∣
≤
∣∣∣∣w1

w
−
(

1− C1

α

h

w
+
C1

α

h

w
− C1

β

α

)∣∣∣∣
≤
∣∣∣∣w1

w
−
(

1− C1

α

h

w

)∣∣∣∣+

∣∣∣∣C1

α

h

w
− C1

β

α

∣∣∣∣
≤ C1

w
+
C1

α
γ < δ′ < δ.

This implies (L2) for Case 2. As in Case 1 we need the following inequality (∗∗).

∣∣∣∣w1

w
− (ws)1

ws

∣∣∣∣ < δ′

w

h

∣∣∣∣w1

w
− (ws)1

ws

∣∣∣∣ < δ′
(

1

β
+ γ

)
(∗∗)

∣∣∣∣w1

h
− β

α
(ws)1

w

h

∣∣∣∣ < δ′
(

1

β
+ γ

)

51



We then prove (L3‡) as follows.

∣∣∣∣w1

h1

− 1

α
Γ

(
α

β

)∣∣∣∣ =

∣∣∣∣w1

h1

− 1

α
(ws)1

∣∣∣∣
≤
∣∣∣∣w1

h
− β

α
(ws)1

w

h
+
β

α
(ws)1

w

h
− 1

α
(ws)1

∣∣∣∣
≤
∣∣∣∣w1

h
− β

α
(ws)1

w

h

∣∣∣∣+

∣∣∣∣βα(ws)1
w

h
− 1

α
(ws)1

∣∣∣∣
(∗∗)
≤ δ

(
1

β
+ γ

)
+
β

α
(ws)1

∣∣∣∣wh − 1

β

∣∣∣∣
≤ δ

(
1

β
+ γ

)
+
β

α
(ws)1γ ≤ δ† < δ.

This implies (L3‡) for Case 2. The same reasoning that gives (L3†)→ (L3‡) in

Case 1 will apply to show that (L3†) holds for Case 2.

In either case h,w > V , so from (L2):

∣∣∣∣h1

h
− (hs)1

hs

∣∣∣∣ < δ

−δ < h1

h
− (hs)1

hs
< δ

(hs)1

hs
− δ < h1

h
<

(hs)1

hs
+ δ

h

(
(hs)1

hs
− δ
)
< h1 < h

(
(hs)1

hs
+ δ

)
Z < V

(
(hs)1

hs
− δ
)
< h

(
(hs)1

hs
− δ
)
< h1.

A similar argument holds for w hence (L4) for both cases.

We now proceed with the inductive step. We say R = w × h satisfies ∗(γ, V,Φ) if∣∣ h
w
− Φ

∣∣ < γ,
∣∣w
h
− 1

Φ

∣∣ < γ and w > V, h > V .

Let δ > 0 and Z ∈ N.

By the 1 step case ∃γ, V such that for any rectangle R satisfying ∗(γ, V,Φ) then

52



(1-1) C1 = K1.

(1-2)
∣∣∣h1h − hs1

hs

∣∣∣ < δ and
∣∣∣w1

w
− ws1

ws

∣∣∣ < δ.

(1-3†)
∣∣∣ h1w1
− αΓ1

(
Φ
α

)∣∣∣ < δ.

(1-3‡)
∣∣∣w1

h1
− 1

α
Γ1
(
α
Φ

)∣∣∣ < δ.

(1-4) w1 > Z and h1 > Z.

By the inductive hypothesis for a given m ∃γm, Vm such that any rectangle R

satisfying ∗(γm, Vm, β) then ∀1 ≤ i ≤ m.

(I1) Ci = Ki.

(I2)
∣∣∣hih − (hs)i

hs

∣∣∣ < γm and
∣∣∣wiw − (ws)i

ws

∣∣∣ < γ.

(I3†)
∣∣∣ hiwi − αΓi

(
β
α

)∣∣∣ < γ.

(I3‡)
∣∣∣wihi − 1

α
Γi
(
α
β

)∣∣∣ < γ.

(I4) wi > V and hi > V .

Let R be a rectangle satisfying ∗(γm, Vm, β) Then we can apply m steps of the

tiling algorithm to R and by (I3†), (I3‡), and (I4) Rm satisfies ∗
(
γ, V, αΓm

(
β
α

))
and

hence when 1 more step of the tiling algorithm is applied to Rm properties (1-1) to

(1-4) will hold for the result Rm+1. To complete the proof we need to show that

properties (L1) to (L4) hold for Rm+1.

(L1) Since
∣∣ h
w
− αΓm(β

α
)
∣∣ < γ, (Cm+1, ·) = (C1, ·) ∈ TILE(Rm, ((α, 1),N)) =

(K1, ·) ∈ TILE
((

1× αΓm
(
β
α

))
, ((α, 1),N)

)
= (Km+1, ·) ∈ TILE

((
1× Γ

(
β
α

))
, ((α, 1),N)

)
.

(L2) This follows from the fact that (hm)1 = hm+1.

(L3†)By the definition of Γ, αΓm
(
β
α

)
is the eccentricity of the Rm remainder, so

by the application of (1-3†) to Φ = αΓm
(
β
α

)
;

∣∣∣∣hm+1

wm+1

− αΓm+1

(
β

α

)∣∣∣∣ =

∣∣∣∣∣ (hm)1

(wm)1

− αΓ

(
αΓm

(
β
α

)
α

)∣∣∣∣∣ =

∣∣∣∣ (hm)1

(wm)1

− αΓ

(
Φ

α

)∣∣∣∣ < δ.

53



(L3‡) As above Φ = αΓm
(
β
α

)
. Then apply (1-3‡) to (I3‡)

∣∣∣∣wm+1

hm+1

− 1

α
Γm+1

(
α

β

)∣∣∣∣ =

∣∣∣∣∣(wm)1

(hm)1

− 1

α
Γ

(
α

αΓm
(
β
α

))∣∣∣∣∣ =

∣∣∣∣(wm)1

(hm)1

− 1

α
Γ
(α

Φ

)∣∣∣∣ < δ.

(L4) Is a direct consequence of (I4).

Lemma 3.3.17. Let R be a rectangle for which the tiling algorithm does not terminate

for at least M steps. Then each step after the first will return a non-zero number of

tiles used. After M steps of the algorithm the following will hold: Rx ≤ xn

2
M
2
, Ry ≤ yn

2
M
2

where Rx is the width of the remainder and Ry is the height of the remainder.

Proof. Consider a step in the tiling algorithm that applies TileLEFT and uses a

non-zero number of tiles. The width of the remainder must be less than half the

width of the original, otherwise more tiles of the size already used could be placed.

Similarly the height of the remainder is reduced by more than half when applying

TileBOTTOM.

Assume toward contradiction that a step in the tiling algorithm after the first

returns 0 tiles used but the algorithm has not yet terminated. Since the algorithm is

has not terminated the previous step and next step cannot return 0 tiles as this is the

end condition. Assume WLOG that the previous and next steps are both TileLEFT.

Since the previous TileLEFT ended this implies that no more tiles can fit into that

configuration from the left, however since the current TileBOTTOM returned 0 it

has not changed the configuration and simpled passed it back to TileLEFT. This is

the same configuration that has already caused TileLEFT to halt and so cannot be

tiled by TileLEFT. This contradiction implies that no step after the first can return

0 until the algorithm terminates in 0s.

54



Since every step will apply a tile and ever time a tile is applied the corresponding

dimensions of the remainder is reduced by at least a factor of 1
2

after M steps it

follows that Rx ≤ xn

2
M
2
, Ry ≤ yn

2
M
2

.

Theorem 3.3.18. Let X be a subshift. Let β, α ∈ (0,∞) and assume β
α
/∈ Q. Let

P = max(2 + α, 2 + 1
α

) then HS(X, β) ≤ PHS(X,α).

Proof. Choose ε > 0. Let P = max(2+α, 2+ 1
α

), this is the bound given by Proposition

3.3.15 to the ratio of the perimeters of the tiles to the perimeters of the rectangle

they are tiling.

Let {(xn, yn)} ∈ (N2)N such that yn
xn
→ β and xi → ∞. Consider the set T =

{(n, bnαc)|n ∈ N} ∪ {(bn
α
c, n)|n ∈ N} ∪ {(n, dnαe)|n ∈ N} ∪ {(dn

α
e, n)|n ∈ N};

T contains every width and every height rectangle in Z2, furthermore T ⊆ (α, 1)-

tiles. ∃NT such that ∀n > NT ; S(n, bnc) < HS(α) + ε, S(bn
α
c, n) < HS(α) + ε,

S(n, dne) < HS(α) + ε, and S(dn
α
e, n) < HS(α) + ε.

For each (wn, hn) ∈ T there exists an εn such that S(wn, hn) < HS(α) + εn. There

are only finitely many εn > ε. Let E = max(εn).

Choose M such that 2
−M
2 PE < ε

By the previous Lemma 3.3.16 ∃γ,NM such that if (xn, yn) satisfies ∗(γ,NM) then

the tiling of (xn, yn) will agree with the perfect tile of β by α for the first M steps and

so that after M steps the remainder will have dimensions greater than NT . There is

an Nγ such that if n > Nγ (xn, yn) will satisfy ∗(γ,NM).

Let N > max(NT , Nγ). Let {Kj, Rj} = Tile((xn, yn), (T,Z2)). Let l be the

number of non-zero Kj, note that l > M . Let C1 be the number of (n, bnαc) tiles

used in the K1 step. C2 be the number of (n, dnαe) tiles used in the K1 step. Continue

to define Ci for 1 ≤ i ≤ 4l. Then
∑l

j=1Kj =
∑4l

i=1 Ci. Let (wi, hi) be the type of tile

counted by Ci.

55



log |LX(xn, yn)| − xnynh
xn + yn

≤
∑4l

i=1[Ci log |LX(wi, hi)|]− xnynh
xn + yn

=

∑4l
i=1[Ci log |LX(wi, hi)| − Ciwihih]

xn + yn

≤
∑4l

i=i[Ci(HS(α) + εi) ∗ (wi + hi)]

xn + yn

= HS(α)

∑4l
i=1[Ci(wi + hi) + Ci(wi + hi)

εi
HS(α)

]

xn + yn

= HS(α) ∗ sum of perimeter of α-rectangles

perimeter β-rectangle
+

∑4l
i=1[Ci(wi + hi)εi]

xn + yn

= PHS(α) +

∑l
i=1[Ci(wi + hi)εi]

xn + yn

= PHS(α) +

∑
wi∧hi>NT [Ci(wi + hi)ε]

xn + yn
+

∑
wi∨hi≤NT [Ci(wi + hi)εi]

xn + yn

≤ PHS(α) + Pε+

∑
wi∨hi≤NT [Ci(wi + hi)εi]

xn + yn

≤ PHS(α) + Pε+

∑
wi∨hi≤NT [Ci(wi + hi)E]

xn + yn
.

Since the dimensions of the remainder after M steps are each greater than NT ,

the tiles in the following sum are all contained within the remainder after M steps.

Rx and Ry be the dimensions of the remainder after M steps. Then the sum of the

dimensions of these tiles are also bounded by Proposition 3.3.15 by P (Rx +Ry).

∑
wi∨hi≤NT [Ci(wi + hi)E]

xn + yn
≤ PE(Rx +Ry)]

xn + yn
.

By Lemma 3.3.17 Rx ≤ xn

2
M
2
, Ry ≤ yn

2
M
2

.

56



∑
wi∨hi≤NT [Ci(wi + hi)E]

xn + yn
≤ PE(Rx +Ry)]

xn + yn
≤ PE

(
xn

2
M
2

+
yn

2
M
2

)
1

xn + yn
≤ PE

2
M
2

.

Thus:

log |LX(xn, yn)| − xnynh
xn + yn

≤ PHS(α) + Pε+

∑
wi∨hi≤NT [Ci(wi + hi)E]

xn + yn

≤ PHS(α) + Pε+
PE

2
M
2

≤ PHS(α) + Pε+ ε.

Since ε was arbitrary, for any sequence in Ξ(β), limn→∞

(
log|LX(xn,yn)|−xnynh

xn+yn

)
≤ PHS(α)

and thus HS(β) ≤ PHS(α).

Theorem 3.3.19. Let X be a subshift. Let β, α ∈ (0,∞) and assume β
α
∈ Q where

p
q

is the reduced form of β
α

. Let z = max{p, q} and let γ = max{1 + z + α, 1 + z + 1
α
}

then HS(X, β) ≤ γHS(X,α).

Proof. Choose ε > 0. Let p
q

be the reduced fraction of β
α

.

Let {(xi, yi)} ∈ (N2)N such that yi
xi
→ β and xi →∞.

Let {(Ci, Ri)} = TILE(1 × β, (α-tiles,R)). Since β
α
∈ Q ∃M such that ∀i > M ;

Ci = 0 and the area of Ri = 0. Call this tiling the template. Let Z =
∑M

i=1(Ci).

The (1, β) rectangle can be subdivided such that there are p equal rows and q

equal columns; this forms a grid on the template. Note that the tiles will fall along

grid lines.

57



Based on this template a tiling can be defined for each (xi, yi). Using only widths

of bxi
q
c or dxi

q
e and heights of byi

p
c or dyi

p
e subdivide (xi, yi) into p rows of integer

height and q columns of integer width. There is a correspondence between the grid

on the template and this grid on (xi, yi); use this correspondence to map the tiles

from the template to tiles on (xi, yi). See Figure 3.6.

1

β

q

xi

yi
p

Figure 3.6: The template procedure used to prove Theorem 3.3.19.

For 1 ≤ k ≤ Z let Tk be a tile used in the template and T ik = (wik, h
i
k) be the

corresponding tile used to tile (xi, yi) and gik be the number of grid partitions used

vertically or horizontally in T ik (Since the grid partitions are themselves α tiles the

number of partitions horizontally will always equal the number of partitions vertically

in an α-tile. This gives us bounds on the actual height and width of the T ik tiles based

only on the number of grid partitions they use:

gik
yi
p
− gik ≤ hik ≤ gik

yi
p

+ gik

gik
xi
q
− gik ≤ wik ≤ gik

xi
q

+ gik.

58



Using these bounds we can bound the eccentricity of the tiles used to cover (xi, yi),

gik
yi
p
− gik

gik
xi
q

+ gik
≤h

i
k

wik
≤
gik

yi
p

+ gik

gik
xi
q
− gik

yi
p
− 1

xi
q

+ 1
≤h

i
k

wik
≤

yi
p

+ 1
xi
q
− 1

lim
i→∞

yi
p
− 1

xi
q

+ 1
≤ lim

i→∞

hik
wik
≤ lim

i→∞

yi
p

+ 1
xi
q
− 1

β
q

p
≤ lim

i→∞

hik
wik
≤ β

q

p
.

Since β q
p

= α this implies that limi→∞
hik
wik

= α. For each k the proportion of wki to xi is

fixed by the template so since xi →∞, limi→∞wi =∞ it follows that (wik, h
i
k) ∈ Ξ(α).

Thus ∃Nk such that ∀i > Nk, S(wik, h
i
k) ≤ HS(α) + ε. When i > max{Nk}Zk=1,

|LX(xi, yi)| ≤
Z∏
k=1

∣∣LX(wik, h
i
k)
∣∣

log |LX(xi, yi)| ≤
Z∑
k=1

log
∣∣LX(wik, h

i
k)
∣∣

log |LX(xi, yi)| − xiyih ≤
Z∑
k=1

[
log
∣∣LX(wik, h

i
k)
∣∣− wikhikh]

log |LX(xi, yi)| − xiyih
xi + yi

≤
∑Z

k=1 [log |LX(wik, h
i
k)| − wikhikh]

xi + yi

log |LX(xi, yi)| − xiyih
xi + yi

≤
∑Z

k=1 [(HS(α) + ε)(wik + hik)]

xi + yi

log |LX(xi, yi)| − xiyih
xi + yi

≤ (HS(α) + ε)

∑Z
k=1 [(wik + hik)]

xi + yi
.

59



Let z = max{p, q} and by Proposition 3.3.15 let γ = max{1 + z+α, 1 + z+ 1
α
}. Since

ε was arbitrary,

lim
i→∞

log |LX(xi, yi)| − xiyih
xi + yi

≤ γHS(α).

This is true for any such sequence so HS(β) ≤ γHS(α).

Corollary 3.3.20. Let X be a subshift. If ∃α ∈ (0,∞) such that HS(X,α) = 0 then

∀β ∈ (0,∞), HS(X, β) = 0.

Proof. Direct consequence of Theorem 3.3.18 and 3.3.19.

Corollary 3.3.21. Let X be a subshift. If ∃α ∈ (0,∞) such that HS(X,α) =∞ then

∀β ∈ (0,∞), HS(X, β) =∞.

Proof. Direct consequence of Theorem 3.3.18 and 3.3.19.

60



Chapter 4

Realizations of Surface Entropy

4.1 Computability Properties of Entropies

An immediate question in the field of symbolic dynamics is to classify the set

of numbers that are the entropy of an SFT. Since 1 dimensional SFTs are closely

related to linear algebra, the property classifying the entropies of 1-D SFTs, being

a Perron number, is similar to being an algebraic number. Unfortunately such an

algebraic property cannot classify the entropies obtained from 2-D SFTs. Instead it

turns out that the classification comes from computability theory. One framing of the

computability properties of numbers is in regard to how they can be approximated

by Turing machines. We will first examine these properties and then show how they

relate to entropy and surface entropy.

There are only countably many possible Turing machines and so there can only be

countably many computable numbers. It cannot be the case that all real numbers are

computable. However, demonstrating a non-computable number is difficult since the

digits of such a number cannot be effectively listed. One possible method to construct

61



such a number is to leverage undecidable problems in computational theory; one such

problem is known as the halting problem.

Definition 4.1.1. Let T = {Tk}k∈N be the set of all Turing machines. The Halting

Problem states that there cannot exist H ∈ T with ∀k ∈ N, H(k) ∈ {0, 1} such that

∀Tk ∈ T , H(k) = 1 if and only if Tk halts in finite time when run with empty input.

We can now use this information to give an explicit construction of a non-computable

number.

Example 4.1.2. The following example demonstrates how to encode a non-computable

number. Let Ti be the ith Turing machine. Define the following sequence, where Cn(i)

is the ith digit of Cn in binary.

Cn(i) =


0 if i ≤ n and Ti has halted after n steps

1 otherwise

Now consider C = limn→∞Cn. C(i) = 0 if and only if Ti halted. If C were computable,

then there would exist a Turing machine T with T (i) = C(i), which would solve the

unsolvable halting problem.

However C is not completely without computability properties. It is not hard to

check that there exists T with T (n) = Cn, Cn → C, and ∀n,Cn ≥ C, and so C is

CFA. It is this particular computability property that turns out to be important in

classifying the entropies of 2-D SFTs.

Hochman and Meyerovitch[4] showed that the entropies of 2-D SFTs were exactly

the CFA numbers. Our main results are the following: every CFA number can be

realized as the surface entropy of a 2-D SFT, and more surprisingly, there are non-CFA

numbers that can also be realized as the surface entropy of a 2-D SFT.

62



4.2 Realizing CFA Surface Entropy

To define an SFT we need to provide a finite alphabet and a finite list of forbidden

words. For a simple system like the golden mean shift, this can often be done directly,

i.e. 1s cannot be adjacent. However for more complex SFTs the size of the alphabet

and forbidden list can become so enormous as to render the SFT unrecognizable. In

order to combat this phenomenon, we will describe our SFT as a series of layers. The

first layer of the construction will be a complete SFT with a defined alphabet and

finite forbidden list. Each subsequent layer will be additions to the previous layers

instead of being a complete SFT in its own right. Each new layer will add information

to the existing letters and add forbidden patterns depending on both this new and

previous information. Individual layers will be named so they they can be referred to

separately as projections of the full SFT. We will first construct an example SFT to

demonstrate this technique.

Example 4.2.1. Let G be the 2-D golden mean shift on {0, 1}. The alphabet is

AG = {0, 1} and the forbidden list is FG = {11, 1
1 }.

Let (G,C) be the SFT that colors each 0 either blue or red with the rule that a

0 can only be red if it is not adjacent to any 1s. A(G,C) = {1, 0B, 0R} and F(G,C) ={
11, 1

1 , OR1, 10R,
1

0R
0R
1

}
.

We will refer to the projection of (G,C) onto the 2nd coordinate as C.

We now wish to demonstrate that any CFA number can be the surface entropy

of a 2-D SFT. For this result we will use the SFT constructed in [4] with the only

modification being how many 1s are independently 2 colored. As such this SFT

will only require 3 layers; HM will be the SFT constructed in [4], Dd will (possibly)

distinguish a single row of HM, and DHM will double all of the 1s in the distinguished

row.

63



Choose γ ∈ [0, 1] such that γ is CFA. Let γ′ = 2γ
log 2

. Since γ is CFA, 2
log 2

is

computable, and CFA is closed under multiplication then γ′ is CFA.

4.2.1 Layer HM

By [4] there exists an SFT HM with the following properties. HM has a sublayer

consisting of 0s and 1s. For each x ∈ HM each row of x has the same {0, 1} Toeplitz

sequence embedded as one of its layers. By the construction of HM there is an xf ,

the frequency of 1s appearing in each row of this sublayer. Then ∃x ∈ HM such that

xf = γ′ and ∀x ∈ HM, xf ≤ γ′. Moreover h(HM) = HS(HM, 1) = 0. To achieve

HS(HM, 1) = 0 we choose the SFT constructed in [4] at the end of Section 7 before

entropy is added by doubling. Calculations similar to those used to construct the

SFT in our main result show the surface entropy is as desired.

4.2.2 Layer Dd

Let Dd be the SFT with alphabet {B,R, T} and forbidden list

Fd = {BR,BT,RT,RB, TB, TR, TB , BT , RR , BR , RT }.

Dd is the SFT consisting of points which are either all Bs, all T s, or 1 distinguished

row of Rs with Bs below and T s above.

Proposition 4.2.2. HS(Dd, 1) = 0.

Proof. By using the same calculation as below it is easy to check that h(Dd) = 0. Let

{(xn, yn)} ∈ Ξ(1). In a word of size (xn, yn) there are yn + 1 ways to choose which, if

64



any, row is distinguished. Thus

HS(Dd, 1) = lim
n→∞

log(yn + 1)

xn + yn
= 0.

4.2.3 Layer DHM

Define DHM = (HM × Dd,D1) as the SFT with alphabet ADHM = AHM × ADd ×

{Red,Black} and the following rules.

For all (i, j) ∈ Z2 if HM(i, j) = 0 then D1(i, j) = Black.

For all (i, j) ∈ Z2 if HM(i, j) = 1 and Dd 6= R then D1(i, j) = Black.

For all (i, j) ∈ Z2 if HM(i, j) = 1 and Dd = R then D1(i, j) ∈ {Red,Black}.

Proposition 4.2.3. HS(DHM, 1) = γ.

Proof. It is easily checked that h(DHM) = 0. By Theorem 3.2.9 we need only consider

the words arising from independently coloring the 1s. By [5] ∃Ov(xn) with Ov(n)
n
→ 0

such that the number of 1s appearing in an xn length subword of a Toeplitz sequence

of frequency xf is at least xnxf − Ov(xn) and at most xnxf + Ov(xn). There is an

x ∈ DHM which contains a distinguished row such that xf = γ′.

γ =
γ′

2
log 2 = lim

n→∞

log 2xnγ
′−Ov(xn)

xn + yn
≤ HS(DHM, 1).

To find an upper bound we can partition based on the number of 1s appearing in

a row of the (xn, yn) window.

65



HS(DHM, 1) ≤ lim
n→∞

 1

xn + yn
log

xnγ′+Ov(xn)∑
j=0

2j

 =
γ′

2
log 2 = γ.

Theorem 4.2.4. For any γ ∈ [0, 1] with γ is CFA there is a subshift X such that

HS(X, 1) = γ.

Proof. Choose X to be HM as constructed above.

We would also like to achieve a CFB surface entropy. At first glance it may

seem possible that we could simply double the 0s along a row, seemingly achieving a

surface entropy of 1 − γ. There are two important technical difficulties with such a

construction.

First note

xnγ′+Ov(xn)∑
j=0

2j, which appears in the calculation of surface entropy in

Theorem 4.2.3. This counts all the possible number of 1s that can appear in a point

of the SFT. Since the frequency of 1s is bounded above by γ′ the largest term in this

sum is 2xnγ
′+Ov(xn). Unfortunately, since the number of 1s is only bounded from above,

there is always a point of all 0s. This point of all 0s means that the corresponding

sum in the doubling 0s construction would contain a 2xn term regardless of γ′, and

therefore the surface entropy could not depend on γ′. Our construction will alleviate

this by coloring all 1s with 25 colors and coloring some 0s with many more colors.

The words containing the most 1s will dominate the word count so even though there

will be points that contain all 0s, the points that contribute to entropy and surface

entropy will have the “correct” number of 0s.

The second difficulty arises from the solution to the first difficulty, needing to

double all the 1s. In the construction from [4] the 1s and 0s are embedded along

and controlled by Toeplitz sequences. A Toeplitz sequence of frequency xf does not

66



have exactly xfn 1s in a given n length subword. Instead the maximum number of

1s is controlled by the overage function, Ov(n). When doubling all 1s in a point this

leads to a term 2nOv(n) in the word count. When calculating entropy, on the order of

n2, Ov(n)
n
→ 0 =⇒ log 2nOv(n)

n2 → 0 and this overage has no effect. When calculating

surface entropy, on the order of n, however, since these are dyadic Toeplitz sequences

Ov(n) ≈ log(n), log 2nOv(n)

n
→∞. Our solution to this issue is to instead use embedded

Sturmian sequences which have a constant overage function.

4.3 Realizing non-computable CFB Surface Entropy

For any x ∈ (0, 1) denote the ith digit of the binary expansion of x as x(i). Define

a function g such that for each i ∈ N,

g(i, x) =


x(
√
i) + 1

√
i ∈ N

0 otherwise.

Choose any such x where where x is CFA but not CFB; for the remainder of the paper

we consider the base 9 number αx ∈ [0, 1) where αx(i) = g(i, x). We will suppress

the dependence on x for readability.

For example if x = .011001... then α = .100200002000000100000000100000000002...

Proposition 4.3.1. α is a non-computable CFA number.

Proof. Assume BWOC that α is computable. Then there is a Turing machine, T,

which computes α. For fixed x, g−1(i, x) is a computable function and thus g−1 ◦ T

would compute the digits of x. However x was non-computable and thus α is non-

computable. Similarly since x is CFA there is a Turing machine S such that S(n)↘

αk. We note that g is order preserving thus (g ◦ S)(n)↘ α so α is CFA.

67



Since α is CFA there is a Turing machine, Tα, such that Tα(n) ↘ α. Define

αn = Tα(n).

In the construction of our SFT we will use a Turing machine to prune {0, 1}

sequences which contain a frequency of 1s greater than α. However, since α is non-

computable CFA the Turing machine we use will only have access to the upper ap-

proximations αn. Also, as will be clarified in our construction later, when Turing

machines are embedded in SFTs, it turns out that the machine only ever have access

to finitely many letters of the aforementioned sequences. In order for sequences with

unwanted frequencies to be pruned, but sequences with the desired frequencies to

remain, we need bounds on how far the frequencies of these finite portions deviate

from α. Since these bounds also need to be generated by Turing machine they must

also be computable. Furthermore our Turing machine will only sample a subsequence

of the sequence it is pruning, the subsequence being the IP-set (βj). A priori there is

no reason to suspect that sampling a subsequence should control the entire sequence;

fortunately since α is in base 9, the IP-set is generated by 9n, and we are working

with 1 balanced sequences we can bound the behavior of the entire sequence with the

subsequence. The following propositions provide all needed bounds.

Proposition 4.3.2. Define g(N) =


0 N ≤ 256

b
√

(N)c
13122

otherwise.

If r ∈ N such that r ≤ 9b
3√Nc, g(N) ≤

∑N
n=1 (||r(9n)α||2 + ||r2(9n)α||2 + ||r5(9n)α||2).

Proof. If N ≤ 256 the statement is trivially true. Assume N > 256. Let k = b
√
Nc.

First consider the case when r = 1. If α(n) ∈ {1, 2, 3, 4, 5, 6, 7, 8} and α(n + 1) = 0

then ||(9n)α||2 > 1
6561

. Due to the construction of α, namely that α(n) 6= 0 only if

n is a perfect square, in the first N digits of α there are at least k locations where

68



this configuration will occur. We would like a similar statement for r > 1. First note

that since r ≤ 9
3√N , the base 9 expansion of r has less than

√
N digits. We refer to a

run of 0s between non-zero digits as a gap. Since N > 256, after the first k
2

non-zero

digits of α its gaps are larger than the number of digits of r. Let s ∈ (k
2
, k] satisfy

α(s2) 6= 0. Since α(s2)·r has at most one more digit than r and the gap between α(s2)

and α((s + 1)2) was greater than the number of digits in r it follows that (rα)(s2)

and (rα)((s + 1)2) have a zero between them. Thus there are at least k
2

shifts of rα

where ||r(9n)α||2 > 1
6561

. It follows that g(N) =
b
√

(N)c
13122

= k
2

1
6561
≤
∑N

n=1 ||r(9n)α||2 ≤∑N
n=1 (||r(9n)α||2 + ||r2(9n)α||2 + ||r5(9n)α||2).

Definition 4.3.3. Let (βj) denote the sequence IP − (9nα, 2(9n), 5(9n)α).

Definition 4.3.4. Define σr(N,α) as follows:

σr(N,α) =
∑
j<N

e2iπrβjα.

Proposition 4.3.5. ∃Ψ(N) computable such that 2
∑

1≤r≤9b
3√
Nc

∣∣∣σr(8N ,α)
8N

∣∣∣+ 4

π

√
9b

3√
Nc
≤

Ψ(N) and Ψ(N)→ 0.

Proof. Let g(N) be defined as in Proposition 4.3.2 and r ≤ 9b
3√Nc. Then

g(N) ≤
N∑
n=1

(
||r(9n)α||2 + ||r2(9n)α||2 + ||r5(9n)α||2

)
.

Since 0 ≤ ||r9nα||2 ≤ .5 always holds and x ≤ sin(πx) when x ∈ [0, .7],

g(N) ≤
N∑
n=1

[sin2 (πr(9n)α) + sin2 (πr2(9n)α) + sin2 (πr5(9n)α)].

69



−g(N) ≥
N∑
n=1

[cos2 (πr(9n)α)− 1 + cos2 (πr2(9n)α)− 1 + cos2 (πr5(9n)α)− 1]

≥
N∑
n=1

[
ln cos2 (πr(9n)α) + ln cos2 (πr2(9n)α) + ln cos2 (πr5(9n)α)

]
= ln

(
N∏
n=1

cos2 (πr(9n)α) cos2 (πr2(9n)α) cos2 (πr5(9n)α)

)
.

e−g(N) ≥
N∏
n=1

[
cos2 (πr(9n)α) cos2 (πr2(9n)α) cos2 (πr5(9n)α)

]
=

 1

(23)N

(23)N∑
n=1

e2iπrβjα

2

(*)

=

(
1

8N
σr(8

N , α)

)2

8N√
eg(N)

≥ σr(8
N , α).

(*) comes from the equality on page 578 of [1] and noting that the first N gener-

ators of (βj) generate 8N elements of (βj).

And thus it follows that

2
∑

1≤r≤9b
3√
Nc

∣∣∣∣σr(8N , α)

8N

∣∣∣∣+
4

π
√

9b
3√Nc
≤ 2

∑
1≤r≤9b

3√
Nc

∣∣∣∣ 8N

8N
√
eg(N)

∣∣∣∣+
4

π
√

9b
3√Nc

= 2
∑

1≤r≤9b
3√
Nc

∣∣∣∣ 1√
eg(N)

∣∣∣∣+
4

π
√

9b
3√Nc

= Ψ(N).

lim
N→∞

Ψ(N) = lim
N→∞

2
∑

1≤r≤9b
3√
Nc

∣∣∣∣ 1√
eg(N)

∣∣∣∣+
4

π
√

9b
3√Nc

70



≤ lim
N→∞

2
∑

1≤r≤9b
3√
Nc

∣∣∣∣ 1

e
√
N

13122

∣∣∣∣+
4

π
√

9b
3√Nc

≤ lim
N→∞

∣∣∣∣∣∣
2
(

9b
3√Nc
)

e
√
N

13122

∣∣∣∣∣∣+
4

π
√

9b
3√Nc

= 0.

Ψ(N) is computable by construction and so the conclusion holds.

Corollary 4.3.6. For any irrational xf , ∃Ψxf (N) such that

2
∑

1≤r≤9b
3√
Nc

∣∣∣∣σr(8N , xf )8N

∣∣∣∣+
4

π
√

9b
3√Nc
≤ Ψxf (N)

and Ψxf (N)→ 0. Ψxf (N) may not be computable.

Proof. The proof of Proposition 4.3.5 hinges on the existence (and computability) of

g(N)→∞. In particular, if there is a gxf (N) such that

gxf (N) ≤
N∑
n=1

||r(9n)xf ||2 ≤
N∑
n=1

(
||r(9n)xf ||2 + ||r2(9n)xf ||2 + ||r5(9n)xf ||2

)
and gxf (N)→∞ then the existence of Ψxf (N) would follow from the proof of Propo-

sition 4.3.5. We use an argument similar to that in Proposition 4.3.2 to show such

a gxf (N) exists. For any k, if (rxf )(k) 6= (rxf )(k + 1) then ||r(9k)xf ||2 > 1
6561

and

since rxf is irrational, (rxf )(k) 6= (rxf )(k + 1) an infinite number of times. Thus

limN→∞
∑N

n=1 ||r(9n)xf ||2 = ∞, so gxf (N) =
∑N

n=1 ||r(9n)xf ||2 satisfies the needed

criteria and we can construct Ψxf (N).

We begin by briefly summarizing the goal and mechanics of our SFT. For any

non-computable CFA number, x, it is the case that 1− x is a non-computable CFB

number. Due to technical limitation of the construction we need to embed a CFA

71



number into the SFT using a Turing machine, we will use α in our construction. We

will then produce a surface entropy related to 1− α which will be CFB. Embedding

α into the SFT is accomplished by forcing a certain letter of the alphabet to appear

with frequency α, in our SFT we will be using the letter 1 for this.

The first layer of the SFT, P, will be a modification to the construction of Pavlov

in [11]. It will force each point of the SFT to contain a sequence of 0s and 1s copied

along each of its rows. These sequences will be periodic, 1-balanced or 2-balanced.

The second layer of the SFT, S, will use a substitution to place arbitrarily large

non-overlapping rectangular “boards” on top of the structure of P. These boards

will provide the structure to embed a Turing machine in a later stage. The precise

construction of the boards generate the IP-set (βj) along which the Turing machine

will sample the embedded sequences in P. Sampling along this IP-set will allow the

Turing machine to calculate the the frequency of 1s occurring in the entire sequence

and thus control this frequency. This Turing machine embedding will be very similar

to the one used by Hochman and Meyerovitch[4].

The Turing layer, T, will embed a Turing machine into the SFT which will cal-

culate the frequency of 1s in each point of the SFT. Any point of the SFT with a

frequency of 1s greater than α will be forbidden.

At this point of the construction the surface entropy of the resulting SFT will still

be 0 and all points of the SFT will have 1s appearing with frequency at most α. The

final layer of the SFT will add independent colorings to all of the 1s appearing in the

SFT and to some of the 0s, these colorings will increase the word count to create the

desired amount of surface entropy.

72



4.3.1 Layer P

Layer P will have 7 sublayers. The first sublayer is a technical layer, the next 3

will embed sequences of 0s and 1s along the rows of the shift; the last 3 will compare

these sequences to each other, forcing the sequences that survived to be either peri-

odic, 1-balanced, or 2-balanced and in fact there will be points containing all such

sequences. If any surviving embedded sequence is 2-balanced its counterparts must

be periodic or 1-balanced.

The alphabet of P = (Pp,PV ,PR,PL,PV R,PV L,PRL) is A = {Purple,Green} ×

{0, 1}6. where (Pp,PV ,PR,PL,PV R,PV L,PRL) are the respective projections of P.

Layer Pp has forbidden list F = {PG,GP, PP , GG }. This will produce a shift that

is just alternating stripes of purple and green rows.

Layer PV has forbidden list F = { 0
1 ,

1
0 }. For each point x ∈ PV (P) there will be

a bi-infinite sequence of 0s and 1s, sV , along its rows that is copied vertically.

Layer PR is such that x ∈ AZ
2

is forbidden iff ∀i, j if Pp(x(i,j)) = Purple and

PR(x(i,j)) 6= PR(x(i+1,j+1)) or if Pp(x(i,j)) = Green and PR(x(i,j)) 6= PR(x(i,j+1)). For

each point x ∈ PR(P) there will be a bi-infinite sequence of 0s and 1s, sR, along its

rows and each upward vertical shift from a purple row will shift the sequence 1 digits

to the right. Upward vertical shifts of a green row will remain constant.

Layer PL is such that x ∈ AZ
2

is forbidden iff ∀i, j if Pp(x(i,j)) = Green and

PR(x(i,j)) 6= PR(x(i−1,j+1)) or if Pp(x(i,j)) = Purple and PR(x(i,j)) 6= PR(x(i,j+1)). For

each point x ∈ PL(P) there will be a bi-infinite sequence of 0s and 1s, sL, along its

73



rows and each upward vertical shift of a green row will shift the sequence 1 digits to

the left. Upward vertical shifts of a purple row will remain constant.

Layer PV R is such that x ∈ AZ
2

is forbidden iff PV R(x(i,j)) 6= PV R(x(i−1,j)) +

PV (x(i,j)) − PR(x(i,j)). PV R is counting the number of digits where sV and sR differ

using only local information. As proved in [11], PV R will only have a legal configura-

tion if sV and sR are 1-balanced with the same frequency of 1s or if exactly one of sV

and sR is 2-balanced and the other is periodic with the same frequency of 1s.

Layers PV L and PRL will be defined analogously to PV R with PV L(x(i,j)) = PV L(x(i−1,j))+

PV (x(i,j))− PL(x(i,j)) and PRL(x(i,j)) = PRL(x(i−1,j)) + PR(x(i,j))− PL(x(i,j)).

Each sequence is checked against the other two, with the stipulation that they’re

both 1-balanced or exactly one is 2-balanced and the other is periodic. The result

of all checking will be that all three sequences have the same frequency of 1s and

that one of the following cases hold: all three sequences are 1-balanced or exactly

one of the three sequences is 2-balanced and the other two are periodic. There is no

other restriction on the sequences so any triple of sequences which fulfill the above

will appear in some point of P.

4.3.2 Layer S

Layer S is the substitution layer of the system. S will be an SFT comprised of

a grid like arrangement of increasingly large rectangular boards which will allow the

structure to later embed a Turing machine. Our construction is the same as page 15

of [4] with one difference. In their paper the boards are 5n × 5n and in our SFT the

boards will be 9n × 5n. To affect this change we replace columns 2 and 4 in each of

74



the substitution rules of Figure 4.1 with 3 columns that are each a copy of the column

they are replacing.

First define a substitution shift S′ with alphabet A = {|,−, x, y, p, q,>,⊥,`,a

,+,�,�} and substitution rules as described in Figure 4.1 with the changes noted

above. S′ fulfills all the assumptions in the hypothesis of Mozes Theorem 4.5[8], which

says that there then exists an SFT, S, that is isomorphic a.e. to S′. We will show

in the proof of Proposition 4.3.11 that the points where this isomorphism fails won’t

effect the construction; i.e. for the purposes of our arguments, any reasoning about

S′ will hold for S.

Definition 4.3.7. Nodes (defined in [4]) are tiles which contain one of the following

symbols from AS: {x, y, p, q,>,⊥,`,a,+}.

Nodes are of note in S because it is only on these symbols that the embedded

Turing machine will be able to sample from P or change its state.

Definition 4.3.8. Let RN [i, j] be a 9N by 5N rectangular subword of a point in S

whose lower left corner has coordinates (i, j) and contains the symbol x. An N-board,

BN [i, j] ⊆ RN [i, j] is the set of nodes contained in RN [i, j]. (Here and thereafter,

informal references to intersections/containments involving words formally refer to

the coordinates they occupy in Z2.) These boards are where the embedded Turing

machine will perform calculations as in [4]. [i, j] will be omitted when the location

of BN [i, j] is arbitrary. We define B0 as either � or �. Define ΩS(RN) to be the

result of applying one step of the substitution rules to RN . Define ΩS(BN [i, j] =

BN+1[ΩS(i),ΩS(j)] as the (N+1)-board which is a subset of ΩS(RN [i, j]). We note

that the construction of the substitution that for any BN+1 that there exists a BN such

that BN+1 = ΩS(BN).

75



Figure 4.1: Substitution rules for S. (Taken from [4].)

76



We note from Figure 4.1 that 0-boards may be adjacent horizontally and vertically,

but not both. For any N , we can see that the same is true of N -boards by reversing

the substitution.

We define 2 distance functions between boards, δh and δv. δh(Bn[x, y], Bm[i, j]) is

the minimum horizontal separation between the coordinates of any letter of Bn[x, y]

and the coordinates of any letter of Bm[i, j]. Likewise define δv as the minimum

vertical separation.

Example 4.3.9. Let w = x⊥ − ⊥ be a 4 × 1 subword of some point of S. Then

dh(x,−) = 2 and δh(x,⊥) = 1.

Lemma 4.3.10. For any point s ∈ S let Bni [ai, bi],Bnj [aj, bj], and Bnk [ak, bk] be N-

boards in s such that 1 ≤ ni < nj < nk. Then for some pair of these boards, A and

B one of the following hold:

δh(A,B) ≥ 2(9ni−1)−
ni−2∑
k=0

8(9k) = 9ni−1 + 1

δv(A,B) ≥ 2(5ni−1)−
ni−2∑
k=0

4(5k) = 5ni−1 + 1.

Proof. Let w and v be any two single letter words in s. If δh(w, v) > 1, then there are

δh(w, v)− 1 columns between w and v. After applying the substitution, each of these

columns is replaced by a strip 9 letters wide, and so there are 9(δh(w, v)−1) columns

strictly between ΩS(w) and ΩS(v). This means that δh(ΩS(w),ΩS(v)) = 9(δh(w, v)−

1)+1. Now let W and V be rectangular words in s such that δh(W,V ) = d > 1. Then

∀(w, v) ∈ W×V, δh(w, v) ≥ d thus δh(ΩS(w),ΩS(v)) ≥ 9d−8 so δh(ΩS(W ),ΩS(V )) ≥

9d− 8. Similarly, δv(W,V ) = d > 1 =⇒ δv(ΩS(W ),ΩS(V )) = 5d− 4.

We note that in any configuration of 3 different sized boards if one of the boards

is a B1 then it cannot be the case that all pairs in the configuration are adjacent

77



both vertically and horizontally, i.e δv ≥ 2 or δh ≥ 2. Then Ω
−(ni)
S (Bni−1[ai, bi]),

Ω
−(ni−1)
S (Bnj [aj, bj]), and Ω

−(ni−1)
S (Bnk [ak, bk]) is such a triple and contains a pair that

are not adjacent. Ωni−1
S applied to this pair gives the desired separation. Namely, if

they are not adjacent horizontally we let E(d) = 9d− 8 then

δh(Ω
−(ni−1)
S (A),Ω

−(ni−1)
S (B)) > 2 =⇒ δh(A,B) ≥ Eni−1(2) = 2(9ni−1)−

ni−2∑
k=0

8(9k).

A similar argument holds if they are not adjacent vertically with E(d) = 5d− 4.

Proposition 4.3.11. HS(S, 1) = 0.

Proof. Let {(xn, yn)} ∈ Ξ(1). Substitution shifts are known to have polynomial word

counts, and so |LS′(n,m)| ≤ (nm)k for some k ∈ N. By Theorem 4.4 of [8] and the

remark following, x ∈ S if either x ∈ S′ or x would be in S′ except for at most 1

vertical and 1 horizontal separating line. Therefore,

|LS(n,m)| ≤ |LS′(n,m)|+ nm |LS′(n,m)|4 ≤ (nm)k+2

Since h(S) = 0 it follows that:

HS(S, 1) = sup
{(xn,yn)}∈Ξ(1)

(
lim
n→∞

log |LS(xn, yn)| − xnynh(S)

xn + yn

)

≤ sup
{(xn,yn)}∈Ξ(1)

(
lim
n→∞

(k + 2) log(xnyn)

xn + yn

)
= 0.

78



4.3.3 Layer T

Let T be the Turing machine implementing Algorithm 4.3.12 below. By the

Church-Turing Thesis since Algorithm 4.3.12 is finite with well defined calculations

there exists a Turing machine whose outputs will be the same as the algorithm’s; it

is this Turing machine we refer to when we say T implements the algorithm. Let TR

be an SFT superimposed over P × S that implements T the same way that Section

7.2 of [4] implements a Turing machine; the Turing machine takes as input the 0s

and 1 of layer PR which are superimposed over the nodes of the bottom row of the

board in which T is running. T then performs calculations along the nodes of that

board. These nodes in S are the locations in the SFT that correspond to locations of

the tape in T , therefor these locations are the only places in the SFT where T change

read, write, or update its state. The nodes of S fall along the IP-set (βj) and so what

T sees as a contiguous word of length N as its input is actually located at N elements

of the IP-set. Let TL be defined analogously with input PL. Finally define the SFT

T = (P,S,TR,TL).

Algorithm 4.3.12. To be implemented by Turing Machine

Input {xn} ∈ {0, 1}N.

Let N=1.

Begin Loop

(AL1) Let aN be the N-th approximation of α from above.

(AL2) Calculate Ψ(N) as in Proposition 4.3.5.

(AL3) Set S8N (xn) to be the number of 1s in the first 8N digits of {xn}.

(AL4) If
S
8N

(xn)

8N
> aN + Ψ(N) halt.

(AL5) Increment N by 1.

End Loop

79



Notice that for each step of the algorithm the number of calculations required only

depends on N ; the runtime of the Turing machine that will implement this algorithm

will not depend on the input (xz).

Proposition 4.3.13. Let t ∈ T and let (xz)z∈Z be the bi-infinite sequence embedded

in the PV layer of t and xf be the frequency of 1s appearing in (xz), then xf ≤ α.

Proof. The frequency of 1s in any of the sequences embedded in t, is the same for

all three embedded sequences of t. It follows that any upper bound on the frequency

appearing in either of PL or PR is automatically an upper bound on the frequency

appearing in PV . At least one of PR or PL will have a sequence that is aperiodic 1-

balanced or periodic, this is the layer that will bound the frequency of 1s in t. WLOG

assume (xz) is the sequence embedded in PR and (xz) is either aperiodic 1-balanced

or periodic. Assume BWOC that xf > α.

Case 1: Assume (xz) is aperiodic 1-balanced. Since (xz) is 1-balanced it can

be generated as follows: ∃CN ∈ [0, 1] such that xz = χ[1−xf ,1](zxf + CN). Define

SN =
∑N

j=1

[
χ[1−xf ,1](βjxf + CN)

]
equivalently, SN =

∑N
j=1

[
χ[1−xf−CN ,1−CN ](βjxf )

]
.

Note that by the construction of the SFT, the Turing machine only samples (xz)

along the nodes of S and so the first N digits that the Turing machine counts are

the N digits corresponding to the first N elements of the (βj) IP-set. We need to

show that bounding the frequency of 1s along this IP-set will be sufficient to bound

the frequency of 1s in the entire sequence; results related to Weyl’s equidistribution

theorem from [6] will show this to be the case. SN is the number of 1s calculated by

the Turing machine for some run of N digits of (xz). By the results on page 34 of [6]

letting un = βnxf and (a, b) = (1− xf − Cn, 1− Cn):

∀R > 1,

∣∣∣∣S8N

8N
− xf

∣∣∣∣ < 2
∑

1≤r≤R

∣∣∣∣σr(8N , xf )8N

∣∣∣∣+
4

π
√
R
.

80



In particular when R = 9b
3√Nc by Proposition 4.3.5;

∣∣∣∣S8N

8N
− xf

∣∣∣∣ < 2
∑

1≤r≤9b
3√
Nc

∣∣∣∣σr(8N , xf )8N

∣∣∣∣+
4

π
√

9b
3√Nc
≤ Ψxf (N).

Ψxf (n) → 0 (Corollary 4.3.6) so
S
8N

8N
→ xf . Since αn → α < xf and Ψ(n) → 0

(Proposition 4.3.5) there must exist n such that αn+Ψ(n) <
S
8N

8N
. However this value

of n would cause the Turing machine to halt. Since the Turing machine is halted

there is no valid infinite configuration of T and t /∈ T.

Case 2: Assume (xz) is periodic with period P . Let M be such that xf >

αM + Ψ(M) and let N > M . Recall that PR embeds (xz) along each row shift-

ing (xz) to the right by one digit for each two vertical shifts. Let BN(i, j) be an

N-board in layer S(t) that has a width of 9N > P and height of 5N > P . Then either

9N+1 or 9N+1 +5N+1 is coprime with P. Let m be such that xm is located at PR(t(i,j)).

Subcase 1: 9N+1 is coprime with P. There is another N-board BN(i+9N+1, j) that

is 9N+1 tiles to the right of BN(i, j) and (i + 9N+1, j) corresponds to xm+9N+1 . Since

9N+1 is coprime with P, we can iterate this process to find an N-board starting with

a digit of (xz) from each residue class mod P.

Subcase 2: 9N+1 + 5N+1 is coprime with P. Similarly if 9N + 5N is coprime with

P then there is another N-board,BN

(
i+ 9N+1, j − 2(5N+1)

)
, that is 9N+1 tiles to the

right and 2(5N+1) tiles below the original. Since (xz) is shifted right every other ver-

tical shift, this other N-board starts with xm+9N+1+5N+1 and again there is an N-board

beginning with a digit of (xz) from each residue class mod P .

81



For 0 ≤ j ≤ P − 1, let Tj be a run of the Turing machine that begins on some xm

where m mod P = j. Let Tj(k) be the kth digit sampled by Tj. Since there is one

Turing run for each residue class of P ∀k, 1
P

∑P−1
j=0 Tj(k) = xf . Thus

xf =
1

8N

8N∑
k=1

[
1

P

P−1∑
j=0

Tj(k)

]
=

1

8N

 1

P

P−1∑
j=0

8N∑
k=1

Tj(k)


8Nxf =

1

P

P−1∑
j=0

 8N∑
k=1

Tj(k)

 .
8Nxf is the average of P elements so at least one of those elements is greater than

the average. This implies that

∃i, SN(xz) =
8N∑
k=1

Ti(k) ≥ 8Nxf .

For this particular Ti,

S8N

8N
> αN + Ψ(N).

Then it follows that Ti halts and t /∈ T, a contradiction. Therefore our original

assumption was wrong and xf ≤ α.

Corollary 4.3.14. There is a point t ∈ T such that the frequency of 1s appearing in

t is α.

Proof. Let (xz) be the aperiodic 1-balanced sequence generated by α. By the proof

of Proposition 4.3.13 if xf = α then

∀j ∈ N, α < αj =⇒ ∀j, n ∈ N;
S8n

8n
< α + Ψ(n) < αj + Ψ(n).

Thus the Turing machine does not halt on input of (xz) and ∃t ∈ T such that (xz) is

embedded in the PR layer of t and xf = α.

82



Proposition 4.3.15. Let n ∈ N. For any w ⊆ Bi define #(w) to be the number

of nodes appearing in w. Define ζi(n) = max0≤x≤9i−n #
(
Bi|[x,x+n−1]×[0,0]

)
. Define

ζ(n) = sup{i|9i>n} ζi(n). Then ζ(n)
n
→ 0.

Proof. Let n ∈ N and i ∈ N such that 9i > n. Let wx = Bi|[x,x+n−1]×[0,0]. Let

kn ∈ N such that 9kn ≤ n < 9kn+1 and define 0 ≤ Qn < 9, 0 ≤ Rn < 9kn such

that n = Qn9kn +Rn. Let gx = Bi|[x,x+9kn−1]×[0,0] then by the substitution rules of S:

∀x,#(gx) ≤ 8kn . Then wx is the concatenation ofQn 9kn-digit subwords and a subword

of length Rn. From this it follows that #(wx) ≤ Qn8kn + 8kn ≤ 9(8kn) + 8kn = 10(8kn).

Since this bound did not depend on i, ζ(n) ≤ 10(8kn). It follows that limn→∞
ζ(n)
n
≤

limn→∞
10(8kn )

9kn
= 0.

The following corollary is immediate.

Corollary 4.3.16. If ζ(n) is defined as in Proposition 4.3.15 then ζ(3n)
n
→ 0.

Proposition 4.3.17. Let {(xn, yn)} ∈ Ξ(1). ∃N such that ∀n > N ∀G ∈ LP×S(3xn, 3yn)

there are at most |ATR |
12ζ(3xn) words, w ∈ TR(xn, yn), such that

(P,S)(w) = G|[xn,2xn−1]×[yn,2yn−1] where ζ(xn) is defined as in Proposition 4.3.15.

Proof. Let G be a 3xn × 3yn subword of a point of P× S. Let

C(G) =

{(P, S,TR)|([i+xn,i+2xn−1],[j+yn+2yn−1])(t)|t ∈ T, (P,S)|([i,i+3xn−1],[j+3yn−1])(t) = G}

and choose any w ∈ C(G). Then w is the same as the center xn × yn subword of G

save for the Turing machine running in the boards of w. Our goal is to count the

number of possible different Turing configurations in C(G).

83



The Turing machines running on T occupy boards Bi of various sizes; we break into

various cases dependent on i.

Case 1: Let i ∈ N such that 9i ≤ xn and 5i ≤ yn; then Bi ∩ w 6= ∅ =⇒ Bi ⊆ G.

Since Bi ⊆ G the bottom row of Bi along with the {0, 1} sequence which Bi samples

is entirely contained in G. These two facts mean that the Turing machine running in

Bi is completely determined by G.

Case 2: Let i ∈ N such that 9i > xn and 5i > yn.

Sub-case 1: Let i ∈ N such that 9i−1 ≥ xn and 5i−1 ≥ yn. By Lemma 4.3.10 there

are at most 2 different board sizes that have non-empty intersection with w, call the

boards of these 2 sizes BX and BY . The dimensions of BX are bigger than w, and we

recall that same size boards are only adjacent either horizontally or vertically but not

both. Therefore, there are at most 2 different BX that have non-empty intersection

with w. The same holds for BY by similar reasoning. Let RX be the bottom row of

BX which intersects w. Then knowing the state of the Turing machine in all of the

nodes of RX ∩ G would completely determine BX ∩ w. By Proposition 4.3.15 and

Corollary 4.3.16 there are at most |ATR |
4ζ(3xn) possible configurations of these nodes.

Sub-case 2: Let i ∈ N such that 9i−1 < xn < 9i or 5i−1 < yn < 5i. There is at

most 1 such ix such that this is true for xn and at most 1 such iy for yn. w can have

non-empty intersection with at most 4 such Bik so similar to Sub-case 1 there are at

most |ATR |
8ζ(3xn) possible configurations of these nodes.

Thus are at most |ATR |
12ζ(3xn) possible configurations of these boards in w.

84



Case 3: Let i ∈ N such that 9i ≤ xn and 5i > yn. ∃N such that ∀n > N this case

is impossible since xn
yn
→ 1.

Case 4: Let i ∈ N such that 9i > xn and 5i ≤ yn and Bi ∩w 6= ∅. Choose N ∈ N

such that for all n > N, xn > log9 10 so that i > 10. A priori the Turing machine

performs calculations in any node of an N-board. To complete the proof of Case 4

we first show that this is actually a huge over estimate of where these calculations

can occur. An upward vertical shift in T is equivalent to a single step of the Turing

machine and so the Turing head can move at most 1 location along its tape. The

locations of the tape correspond to nodes in Bi and so after a single upward vertical

shift the Turing head has moved to the right by at most 1 node. We note that while

Bi has a width of 9i that is only contains 8i columns of S, it is not a contiguous

shape. Since Bi contains only 4i rows the Turing head can only move to the right at

most 4i columns. We wish to show that the horizontal distance from the left edge

of Bi to the 4ith column of Bi is at most 5i. By an induction using the substitution

rules the maximum width of a strip containing 8k columns of nodes is 9k. Thus a

strip containing 8d
2k
3
e columns of nodes would be no wider than 9d

2k
3
e ≤ 9

2k
3

+2/3 ≤ 5k

(this last inequality is for any k > 10). From this we conclude that a strip containing

4i = 8
2i
3 ≤ 8d

2i
3
e columns of nodes would have a width of no more than 5i. This means

that as the size of Bi increases that the locations in the board where there are any

changes in the Turing layer is a decreasingly small proportion of the left side of the

board. We also note that the width of w is wider than the width of the strip where

this change can occur.

85



Thus if the lower left corner of Bi, Bi(i, j) /∈ G no actual computation happens

inside of w. If Bi(i, j) ∈ G then the entire computation is also contained within G

and it is determined by G.

A bound on the total number of possible Turing configurations in C(G) is the

product of the bounds for the number of configurations in each of the 3 cases possible.

Since Case 1 and Case 4 are uniquely determined, this essentially means that the

bound comes from Case 2.

4.3.4 Layer D

We have now constructed an SFT T in which the frequency of 1s appearing in the

PV layer is at most α, and where there exists t ∈ T achieving frequency α. We now

need to add a final layer D which will add colors independently to all 1s and some 0s

in the PV layer to create the desired surface entropy.

Let Dd be the SFT with alphabet {B,R, T} and forbidden list

Fd = {BR,BT,RT,RB, TB, TR, TB , BT , RR , BR , RT }.

Dd is the SFT consisting of points which are either all Bs, all T s, or 1 distinguished

row of Rs with Bs below and T s above. This is the same as Dd defined in Section 4.2.

Fix φ ∈ N such that φ > 40
1−α .

86



Define D = (T×Dd,DD) as the SFT with alphabet (AT×{B,R, T})× ({Cj}2φ

j=1)

and the following list of forbidden words.

• For all x ∈ AZ2
, x is forbidden in D if for any (i, j) Dd(x(i,j)) = R and it is not

the case that PR(x(i,j)) = PV (x(i,j)) = PL(x(i,j)).

• For all x ∈ AZ2
, x is forbidden in D if PV (x(i,j)) = 1 and DD(x(i,j)) /∈ {Cj}25

j=1.

• For all x ∈ AZ2
, x is forbidden in D if PV (x(i,j)) = 0 and Dd(x(i,j)) 6= R and

DD(x(i,j)) 6= C1.

For the remainder of this section, all references to 0s and 1s refer to those in the

PV layer only. D will color all 1s appearing in a point as one of 25 colors. It will also

possibly have a distinguished row; which may only happen if sublayers PL,PR,PV all

agree, which enforces that the sequence embedded in PV is 1-balanced. In this case

all of the 0s in the distinguished row will be independently colored one of 2φ colors.

Recall that layers PV R, PV L and PRL enforce restrictions on the sequences embed-

ded in their respective sublayers. This enforcement is achieved by keeping a sort of

running total of the difference between the number of 1s appearing in each of the two

checked layers. As long as the two layers being checked involve different sequences

this checksum is uniquely determined by those layers. However, in the case that both

layers have identical sequences the checksum can either be all 0s or all 1s. This lack

of determination inflates the word counts of such a point; the following lemma gives

a bound on how badly this layer can behave in the case where the number of 1s is

maximal, which we will see later to be the dominant case for the word count.

Lemma 4.3.18. Let {(xn, yn)} ∈ Ξ(1). Let LDRD (xn, yn, j) ⊆ LD(xn, yn) be the xn×yn

subwords, w, which have a distinguished row in Dd and j 1s in a row of PV (w). Let

Rj(xn, yn) be the maximum number of rows in any such w where PV (w) and PR(w)

agree. Then limn→∞
Rdxnαe(xn,yn)

yn
= 0.

87



Proof. Let w ∈ LDRD (xn, yn, dxnαe) and

x ∈ {xf : d ∈ D, w = d|(xn,yn), xf is the frequency of 1s in a row of PV (d)}.

It is clear that |xnx− dxnxe| ≤ 1 and |xnα− dxnαe| ≤ 1. w having a distinguished

row implies that any point for which w is a subword has all 1-balanced embedded

sequences, thus |dxnαe − dxnxe| ≤ 1. Therefore,

|xnα− xnx| = |xnα− dxnαe+ dxnαe − dxnxe+ dxnxe − xnx| ≤ 3.

Thus |x− α| ≤ 3
xn

. Let q ∈ N and assume BWOC that for infinitely many n,

Rdxnαe(xn, yn) > yn
2q

. Assume WLOG xn > q. This means that there are two rows in

w whose vertical distance apart is more than 1, but less than 2q on which PR and

PV agree. PR shifts right every second vertical shift so it has shifted right at most q

times; we treat only the case of exactly q shifts here, as others are similar. Choose

any d ∈ D containing w. Since w contained a distinguished row this means that

the sequence embedded in PV (d) is the same as the one embedded in PR(d). The

sequence embedded in PV (d) contains an xn+q letter word which contains two copies

of the same xn letter word that start at different indexes that are q shifts apart. This

xn + q letter subword contains a subword, v, of length q such that vv is a subword

of the sequence embedded in PV (d) so vv is 1-balanced. The xn + q letter word is

a subword of a 1-balanced periodic sequence with period q (the sequence ..vvvv..);

∃1 ≤ p ≤ q such that the frequency of 1s in this periodic sequence is p
q
. By the

same argument as above
∣∣∣x− p

q

∣∣∣ ≤ 3
xn

. α is irrational thus α 6= p
q

and ∃Nq such that

∀n ≥ Nq
3
xn
≤
∣∣∣α− p

q

∣∣∣. Thus ∀n > Nq Rdxnαe(xn, yn) ≤ yn
2q

. Since q was arbitrary,

Rdxnαe(xn,yn)

yn
approaches 0.

88



Proposition 4.3.19. HS(D, 1) = (1−α)
2

log(2φ).

Proof. Let {(xn, yn)} ∈ Ξ(1). Choose N ∈ N such that ∀n > N, yn
2
≤ xn ≤ 2yn,

xn − dxnαe > xn−xnα
2

, and yn > φ. To find a lower bound for LD(xn, yn) recall that

from Corollary 4.3.14 ∃t ∈ T such that the frequency of 1s appearing in t is α; thus

∃d ∈ D where the frequency of 1s appearing is α and it has a distinguished row. The

number of 1s that can appear in a subword of length xn in a 1-balanced sequence of

frequency α is dxnαe. For each 1 there is a choice of 25 colors and for each 0 there is

a choice of 2φ colors so:

25yndxnαe(2φ)xn−dxnαe ≤ |LD(xn, yn)| .

We claim that the following is an upper bound for LD(xn, yn);

|LD(xn, yn)| ≤

|LS(xn, yn)| |LTR(xn, yn)| |LTL(xn, yn)|dxnαe∑
j=0

(xn + 1)(yn + 1)25ynj2φ(xn−j)23Rj(xn,yn) +

dxnαe+1∑
j=0

25ynj23yn23xn

 .
This sum came from partitioning D into points containing a distinguished row and

points that do not.

Case 1: For d ∈ D such that d contains a distinguished row and xf is the frequency

of 1s in PV (d) which is constant vertically; consider (P,D)(d). Recall that containing

a distinguished row forces the embedded sequence to be 1-balanced. There are yn + 1

choices for which row, if any, is distinguished and xn + 1 words of length xn in a

1-balanced sequence. Let j be the number of 1s appearing in a row of PV (d) in the

(xn, yn) window. Then 0 ≤ j ≤ dxnαe. If j is the number of 1s appearing then xn− j

89



will be the number of 0s appearing in the same row. Each 1 has 25 choices of color

and there are ynj 1s in the (xn, yn) window. Each 0 has 2φ choices of color. For each

j there are at most 2Rj(xn,yn) rows in each of PV R, PV L and PRL where the checksum is

not determined and has a choice of 0 or 1(see Lemma 4.3.18 and preceding discussion.

Note that technically as defined Rj(xn, yn) applies to the checksum in PV R, analogous

results hold for the other 2 checksum layers.) Giving an upper bound on this word

count of:
dxnαe∑
j=0

yn25ynj2φ(xn−j)23Rj(xn,yn).

Case 2: Consider d ∈ D such that d does not contain a distinguished row and

xf is the frequency of 1s in PV (d). Since there is no distinguished row the embedded

sequence need only be 2-balanced, and for lack of a better bound we only use that

there are at most 2xn words of length xn in such a sequence. Again consider (P,D)(d);

for each possible number of 1s in a row, 0 ≤ j ≤ dxnαe + 1, there are 25 choices to

color those 1s. No 0s will be colored in a point without a distinguished row. Let

Rj(xn, yn) be as defined in Lemma 4.3.18 then Rj(xn, yn) ≤ yn. Giving an upper

bound on this word count of:

dxnαe+1∑
j=0

25ynj23yn23xn .

Adding the bounds from our 2 disjoint cases and simplifying yields the following:

dxnαe∑
j=0

(xn + 1)(yn + 1)25ynj2φ(xn−j)23Rj(xn,yn) +

dxnαe+1∑
j=0

25ynj23yn23xn

90



=
(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)dxnαe∑
j=0

(xn + 1)(yn + 1)25ynj2φ(xn−j)23Rj(xn,yn)(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)
+

dxnαe+1∑
j=0

25ynj23yn23xn(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)


=
(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)(xn + 1)(yn + 1)

dxnαe∑
j=0

(
23(Rj(xn,yn)−Rdxnαe(xn,yn))

2(5yn−φ)(dxnαe−j)

)

+

dxnαe+1∑
j=0

25ynj23yn23xn(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)


≤
(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)(xn + 1)(yn + 1)

1 +

dxnαe−1∑
j=0

(
23yn

2(5yn−φ)(dxnαe−j)

)
+

 25yn(dxnαe+1)29xn

25yndxnαe2φ(xn−dxnαe)
+

dxnαe∑
j=0

29xn25ynj

25yndxnαe2φ(xn−dxnαe))



91



≤
(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)(xn + 1)(yn + 1)

1 +

dxnαe−1∑
j=0

(
23yn

2(5yn−φ)(dxnαe−j)

)
+

 25yn(dxnαe+1)29xn

25yndxnαe2φ(xn−dxnαe)
+

29xn

2φ(xn−dxnαe)

dxnαe∑
j=0

1

25yn(dxnαe−j)



≤
(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)(xn + 1)(yn + 1)

1 +

dxnαe−1∑
j=0

(
23yn

2(5yn−φ)(dxnαe−j)

)
+

 25yn29xn

2φ(xn−dxnαe)
+

29xn

2φ(xn−dxnαe)

dxnαe∑
j=0

1

25yn(dxnαe−j)

 .
Since xn − dxnαe > xn−xnα

2
; so the above is

≤
(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)(xn + 1)(yn + 1)

1 +

dxnαe−1∑
j=0

(
23yn

2(5yn−φ)(dxnαe−j)

)
+

 219xn

2xnφ
(1−α)

2

+
29xn

2xnφ
(1−α)

2

dxnαe∑
j=0

1

25yn(dxnαe−j)



92



Recall that φ > 40
1−α , so the above is

≤
(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)(xn + 1)(yn + 1)

1 +

dxnαe−1∑
j=0

(
23yn

2(5yn−φ)(dxnαe−j)

)
+

219xn

220xn
+

29xn

220xn

1 +

dxnαe−1∑
j=0

1

25yn(dxnαe−j)


(dxnαe − j) > 0 since dxnαe − 1 is the upper bound of the summation over j.

5yn − φ > 0 since φ is fixed with yn > φ so ∃U ∈ R such that

∀n > N,

dxnαe∑
j=0

(
23yn

2(5yn−φ)(dxnαe−j)

)
< U

and

∀n > N, 1 +

dxnαe−1∑
j=0

1

25yn(dxnαe−j)
< U.

Therefor the quantity above is less than or equal to

(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

) [
(xn + 1)(yn + 1)(1 + U) +

1

2xn
+

U

211xn

]
.

∃k ∈ N such that Proposition 4.3.11 gives an upper bound on |LS(xn, yn)| ≤

(xnyn)k+2 and once there is a count on |LS(xn, yn)| and |LP(xn, yn)| Proposition 4.3.17

gives an upper bound on |LTR(xn, yn)| and |LTL(xn, yn)|.

25yndxnαe(2φ)xn−dxnαe ≤ |LD(xn, yn)|

≤(xnyn)k+2A
2ζ(3xn)
TR

(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)[
(xn + 1)(yn + 1)(1 + U) +

1

2xn
+

U

211xn

]
.

93



Recalling from Lemma 4.3.18 that
Rdxnαe(xn,yn)

yn
→ 0 and from Corollary 4.3.16 that

ζ(3n)
n
→ 0 we can calculate h(D) as follows:

lim
n→∞

1

xnyn
log
(
25yndxnαe(2φ)xn−dxnαe

)
≤ lim

n→∞

1

xnyn
log (|LD(xn, yn)|)

≤ lim
n→∞

1

xnyn
log

(
(xnyn)k+2A

2ζ(3xn)
TR

(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)
[
(xn + 1)(yn + 1)(1 + U) +

1

2xn
+

U

211xn

])
.

5α log(2) ≤h(D)

≤ lim
n→∞

1

xnyn

(
(k + 2) log(xnyn) + 2ζ(3xn) log(ATR)

5yndxnαe log(2) + φ(xn − dxnαe) log(2) + 3Rdxnαe(xn, yn) log(2)

+ log

[
(xn + 1)(yn + 1)(1 + U) +

1

2xn
+

U

211xn

])
= 5α log(2).

Therefore h(D) = 5α log 2. Similarly we can calculate HS(D, 1).

lim
n→∞

log
(
25yndxnαe(2φ)xn−dxnαe

)
− xnyn5α log(2)

xn + yn
=

(1− α)

2
log(2φ) ≤ HS(D, 1).

94



limn→∞ SX(xn, yn) ≤

lim
n→∞

1

xn + yn

[
log

(
(xnyn)k+2A

2ζ(3xn)
TR

(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)
[
(xn + 1)(yn + 1)(1 + U) +

1

2xn
+

U

211xn

])
− xnyn5α log(2)

]

= lim
n→∞

log
(
25yndxnαe2φ(xn−dxnαe)23Rdxnαe(xn,yn)

)
− xnyn5α log(2)

xn + yn
=

(1− α)

2
log(2φ).

As {(xn, yn)} was an arbitrary sequence in Ξ(α) it follows that as the sup over all such

limn→∞ SX(xn, yn) that HS(D, 1) ≤ (1−α)
2

log(2φ). Thus HS(D, 1) = (1−α)
2

log(2φ).

Theorem 4.3.20. There exists a subshift X such that HS(X, 1) is CFB and not CFA.

Proof. Choose X to be D as defined above. Then HS(X, 1) = (1−α)
2

log(2φ).

Since α was not computable, (1 − α) is also not computable. We now show that

(1−α)
2

log(2φ) is CFB. Recall that since α was CFA that there is a Turing machine, T

such that T (n) ↘ α. Thus there is a Turing machine T ′ where for each n, T ′(n) =

1−T (n)
2

log(2φ) and 1−T (n)
2

log(2φ)↗ (1−α)
2

log(2φ). And thus (1−α)
2

log(2φ) is CFB but

not computable so it is not CFA.

Our results show that we can realize any CFB number for which a computable

g(N) as in Proposition 4.3.2 exists; however this is not equivalent to the class of all

CFB numbers. It remains an open question whether all CFB numbers can be realized

as HS(X, 1) for some 2-D SFT. Furthermore a full classification of surface entropies

of SFTs has yet to be found, however we now discuss without formal proof an upper

bound in the arithmetical hierarchy on the set {HS(X, 1)|X is an SFT}.

The arithmetical hierarchy, A , classifies the complexity of defining subsets of N

using formal first-order logic and is closely related to determining the computability

95



properties of such subsets. A subset of N which satisfy a logical formula which uses no

existential or universal quantifier (bounded quantification is allowed) is in the class

Π0
0 and Σ0

0. The hierarchy is then built inductively by quantifying formula from the

previous class; if ψ is Π0
k then ∀n, ψ is Σ0

k+1 and if ψ is Σ0
k then ∃n, ψ is Π0

k+1. A set

which is both Π0
k and Σ0

k is ∆0
k.

We can use the binary expansion of an element of R as the characteristic function

of a subset of N and this natural correspondence between 2N and R allows us to think

of elements of R as being in A . It is a known result that computable numbers are

∆0
1, CFA numbers are Π0

1, and CFB numbers are Σ0
1. We denote lim, lim, sup, inf

as limit operations. Since Q is dense and computable, in general a limit operation

of computable numbers results in all of R. We can informally denote a computable

limit operation, f(n) → x, as one where there is a Turing machine T such that

∀n, T (n) = f(n); these sorts of computable limit operations generally increment rank

in A . Through personal communication with Pascal Vanier it seems that the limit

operations in the calculation of surface entropy are of these second type and we apply

two such limit operations to the set of entropies. Since entropies are CFA which are

Π0
1 it appears that surface entropies must be at most Π0

3.

96



Bibliography

[1] Daniel Berend. “IP-sets on the circle”. Canad. J. Math. 42.4 (1990), pp. 575–

589. issn: 0008-414X. url: https://doi.org/10.4153/CJM-1990-030-8.

[2] Robert Berger. “The undecidability of the domino problem”. Mem. Amer.

Math. Soc. No. 66 (1966), p. 72. issn: 0065-9266.

[3] N. Pytheas Fogg. Substitutions in dynamics, arithmetics and combinatorics.

Vol. 1794. Lecture Notes in Mathematics. Edited by V. Berthé, S. Ferenczi,

C. Mauduit and A. Siegel. Springer-Verlag, Berlin, 2002, pp. xviii+402. isbn:

3-540-44141-7. doi: 10.1007/b13861. url: https://doi-org.du.idm.oclc.

org/10.1007/b13861.

[4] Michael Hochman and Tom Meyerovitch. “A characterization of the entropies

of multidimensional shifts of finite type”. Ann. of Math. (2) 171.3 (2010),

pp. 2011–2038. issn: 0003-486X. url: https://doi.org/10.4007/annals.

2010.171.2011.

[5] Konrad Jacobs and Michael Keane. “0 − 1-sequences of Toeplitz type”. Z.

Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), pp. 123–131. doi:

10.1007/BF00537017. url: https://doi- org.du.idm.oclc.org/10.

1007/BF00537017.

97



[6] Aditi Kar. “Weyl’s equidistribution theorem”. Resonance 8.5 (May 2003), pp. 30–

37. issn: 0973-712X. doi: 10.1007/BF02867127. url: https://doi.org/10.

1007/BF02867127.

[7] Douglas Lind and Brian Marcus. An introduction to symbolic dynamics and

coding. Cambridge University Press, Cambridge, 1995, pp. xvi+495. isbn: 0-

521-55124-2; 0-521-55900-6. doi: 10.1017/CBO9780511626302. url: https:

//doi-org.du.idm.oclc.org/10.1017/CBO9780511626302.

[8] Shahar Mozes. “Tilings, substitution systems and dynamical systems generated

by them”. J. Analyse Math. 53 (1989), pp. 139–186. issn: 0021-7670. url:

https://doi.org/10.1007/BF02793412.

[9] Donald S. Ornstein and Benjamin Weiss. “Entropy and isomorphism theorems

for actions of amenable groups”. J. Analyse Math. 48 (1987), pp. 1–141. issn:

0021-7670. doi: 10.1007/BF02790325. url: https://doi.org/10.1007/

BF02790325.

[10] Ronnie Pavlov. “Approximating the hard square entropy constant with prob-

abilistic methods”. Ann. Probab. 40.6 (2012), pp. 2362–2399. issn: 0091-1798.

doi: 10.1214/11-AOP681. url: https://doi-org.du.idm.oclc.org/10.

1214/11-AOP681.

[11] Ronnie Pavlov. “Topologically completely positive entropy and zero-dimensional

topologically completely positive entropy”. Ergodic Theory Dynam. Systems

38.5 (2018), pp. 1894–1922. issn: 0143-3857. doi: 10.1017/etds.2016.120.

url: https://doi-org.du.idm.oclc.org/10.1017/etds.2016.120.

[12] Stefan Sidler and Roman Lickel. Singletaple Turing Machine. 2015. url: http:

//turingmaschine.klickagent.ch/einband/?&lang=en#10_*_10 (visited on

06/12/2018).

98


	Surface Entropy of Shifts of Finite Type
	Recommended Citation

	Surface Entropy of Shifts of Finite Type
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Second Advisor
	Third Advisor
	Keywords
	Subject Categories
	Publication Statement

	tmp.1538072648.pdf.7HJWx

