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Abstract

The main point of this dissertation is to introduce the action on de Vries

algebra by a topological monoid and we denoted the resulting category by dVT.

In order to reach our goal, we started with introducing new proofs for some

well known results in the category of flows. Then, we studied the Generalized

Smirnov’s Theorem for flows. After we studied the new category (dVT), we were

able to provide a new way to construct the Čech-Stone flow compactification of

a given flow . Finally, we developed the co-free T -de Vries algebra out of a given

de Vries algebra for a spacial case.
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Chapter 1

Introduction And Motivation

1.1 Organization of the thesis

In this chapter we motivate the topics covered in this dissertation and out-

line the tools used in the analysis. The remaining sections of this chapter are

not meant to serve as a comprehensive introduction. Instead, the reader may

refer to the more detailed introductions at the beginning of each chapter. The

appendix lists definitions and known facts about various structures which ap-

pear in chapters 2,3, and 4. It is best consulted as a supplementary reference

from within the main chapters. In order to assist the reader in dealing with the

features of this thesis, a list of symbols (pages vi, vii) is provided.

This dissertation covers three different topics: topological dynamics, prox-

imity flows, and T -de Vries algebras. Each topic may be read separately and

requires some background.
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1.1.1 What is new

Chapter 2 covers well known facts about topological dynamics with some

new proofs that are aligned with our main work. It covers all the basics needed

to understand the topic from the definitions of flow, flow maps, and subflows.

In particular, T -scales, one of the tools on which we rely heavily, are defined

in this chapter. In fact, Lemma (2.1.11) and Proposition (2.1.14) are the most

important and we will use them frequently in Chapters 3 and 4.

Chapter 3 begins with an introduction to Smirnov’s Theorem (Theorem 3.1.10),

for which we include a new proof. In order to extend this theorem to dynami-

cal systems we need to define the concept of a T -proximity on a flow, which is

our second tool used in Chapter 4. Even though T -proximities and the General-

ized Smirnov’s Theorem (Theorem 3.1.15) have been studied by other authors

([8]), we indicate new proofs using T -scales (our first tool) that will make this

approach more helpful in later chapters. Although we assume that all spaces in

this chapter are compactifiable flows, we found it useful to end this chapter with

the consideration of non-compactifiable flows and non-separated T -proximities.

Chapter 4 contains our main topic. We start with the material needed to

cover classical de Vries duality (Theorem 4.1.5). Then we use all of the machin-

ery developed in the previous chapters to prove (1) the duality between compact

flows and T -de Vries algebras, (2) the continuity of the action of T on a compact

space is equivalent of the smoothness of the action on the dual De Vries algebra,

and (3) subflows are dual to round T -filters.
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In Chapter 5 we give the structure of the co-free T -de Vries algebra over a

naked de Vries algebra, but only for a compact topological monoid T . So we

had to start the chapter with a careful development of the sum of two de Vries

algebras. This is a very short chapter; however, this topic is very interesting.

The last chapter (6) covers some applications of T -de Vries algebras. We

conclude the chapter with some questions that may be considered for future

work.

1.2 Why we study T -de Vries algebra

In 1962, de Vries developed an algebraic approach to the category of compact

spaces. The duality, which now bears his name (see [5]), has been exploited

by several authors, notably Bezhanishvili and coauthors ([3], [4]). The ideas

have been generalized to different categories, such as locally compact spaces

and frames, and have a number of applications, such as Stone duality and the

Gleason cover of a space.

The idea of de Vries algebra is to associate to every compact Hausdorff space

X the complete boolean algebra RO(X) together with the proximity relation ≺

defined by a ≺ b if cla ⊆ b; the resulting object is written (RO(X),≺). In order

to extend this duality to compact flows, the proximity is required to satisfy an

additional axiom, and we we call it a T -proximity. It develops that every com-

pactifiable flow admits a compatible T -proximity.
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The Generalized Smirnov Theorem for flows was first proved by Google and

Megrelishvili in [8]. We found it important to include this topic with new proofs

mainly to generalize De Vries’s work.

As we mentioned above, Stone duality can be viewed as a particular case

of de Vries duality. An obvious question, then, is to ask whether this will be the

case for Stone flows and dVT. There is a work done by Ball, Geschke, and Hagler

(see [11]) on the duality between Stone flows and T -Boolean algebras, and we

preferred to point out this duality in the last chapter as an application.

Our generalization of de Vries algebra may open the door to new areas of

research in the field of dynamical systems. For example, it may provide insight

into the structure of the Gleason cover of a compact flow or even the Gleason

cover of a compactifiable flow. This is a rather mysterious object about which

rather little seems to be known. The dual notion, namely the injective dVT-

envelope of a T -de Vries algebra, is likewise a natural and important topic about

which little is known. Furthermore, the category of frames with actions and its

duality with dVT will be another area of interest.
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Chapter 2

Introduction To Topological

Dynamics
This chapter is a very short introduction to topological dynamics. This is a

topic with a vast literature, and what follows is only enough to provide context

for the development that follows. The material itself is well known, with proofs

available mostly in [2]; only those facts which may be less well known or are

particularly relevant to the development are proven in detail.

We define flows and flow compactifications. We also explain the relation be-

tween T -scales and compatibility of a given flow. We end the chapter by defining

a special kind of flow map, called a T -irreducible flow map, and discussing some

conditions equivalent to the definition.

2.1 Flows

Throughout T denotes a topological monoid, i.e. a monoid T endowed with a

topology making multiplication a continuous map T × T −→ T , whose members

5



we call actions and denote by r, s, or t, sometimes with subscripts. We use Nt

to denote the neighborhood filter (see A.2.6 for definition) of an element t ∈ T .

Definition 2.1.1. [2] We say that the topology of T is based at 1 if N1t ∈ Nt for

all t ∈ T and N1 ∈ N1. This is equivalent to saying that the neighborhood filter of

each t ∈ T is generated by the translates N1t of the neighborhoods N1 of 1.

Definition 2.1.2. We say that T acts on a space X if there is a monoid homo-

morphism φX : T → homSp(X,X), where Sp designates the category of spaces with

continuous maps. That is,

1. φX(1) is the identity function on X, and

2. φX(ts) = φX(t)φX(s) for all t, s ∈ T .

We write φX(t)(x) as simply tx. A flow is a triple (X, T ,φX), where X is a

Tychonoff space, T is a topological monoid, and φX : T → homSp(X,X) is an

action of T on X which makes the evaluation map (t, x) → tx continuous. A

subset Y ⊆ X is T -invariant if ty ∈ Y for all y ∈ Y and t ∈ T , and a T -invariant

subspace of a flow is called a subflow. A subset U of a flow X is T -stable if

t−1U ⊆ U for all t ∈ T ; note that U is T -stable iff X r U is T -invariant. And

finally, a flow map f : X → Y is a continuous function between flows which

commutes with the actions.

Example 2.1.3. Let X = [0, 1] with the usual topology, and let

T ≡ { t : X→ X : t is continuous and t(0) = 0 and t(1) = 1 }
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Give T a topology that makes X a flow; for instance, we could choose the topol-

ogy on T to be the compact open topology (see A.2.8 for definition). The only

T -invariant subsets are {0}, {1}, {0, 1}, and X, and these are all subflows.

Notation 2.1.4. Throughout we denote the archimedean lattice ordered group of

continuous real-valued functions f : X → R by C(X). The bounded part of C(X) is

designated

C∗(X) ≡ { f ∈ C(X) : ∃n ∈ N (|f| 6 n) } .

Definition 2.1.5. Let X be a space acted upon by T . A function g ∈ C(X) is said

to be T -uniformly continuous if for all t ∈ T and ε > 0 there is a neighborhood

Nt ∈ Nt such that

∀s ∈ Nt, x ∈ X (|g(sx) − g(tx)| < ε).

If the topology on T is based at 1, this condition need only be checked at t = 1. We

denote the collection of all T -uniformly continuous functions on X by CT (X).

The relevance of the notion of T -uniform continuity for our purposes is given

by Lemma 2.1.6. This lemma is well known (see [2] Theorem 3.2 and proposi-

tion 5.12), but we include a proof because it is fundamental for our purposes.

Lemma 2.1.6. Let X be a compact space acted upon by T . Then X is a flow, i.e., the

evaluation map T × X→ X is continuous, iff every member of C(X) is T -uniformly

continuous, i.e., iff CT (X) = C(X).

7



Proof. Suppose X is a flow. Given g ∈ C(X), t ∈ T , and ε > 0, use the continuity

of g to find for each x ∈ X a neighborhood Vx of tx such that |g(x ′) − g(tx)| < ε

for all x ′ ∈ Vx. Then use the continuity of evaluation to find neighborhoods Ux

of x and Ntx of t such that t ′x ′ ∈ Vx for all x ′ ∈ Ux and t ′ ∈ Ntx .

Let {Uxi : 1 6 i 6 n } be a finite subcover of {Ux : x ∈ X }, and putN ≡
⋂

16i6nNtxi.

Then an arbitrary x ∈ X lies in some Uxi and so we have

|g(t ′x) − g(tx)| 6 |g(t ′x) − g(txi)|+ |g(tx) − g(txi)| < 2ε

for all t ′ ∈ N.

On the other hand, suppose every member ofC(X) is T -uniformly continuous.

Let V be a neighborhood of tx for given x ∈ X and t ∈ T . Because C(X) separates

points from closed sets, we can find g ∈ C(X), 0 6 g 6 1, such that g(tx) = 1

and g(x) = 0 for all x /∈ V. Because g is T -uniformly continuous, there is a

neighborhood N of t such that |g(tx ′) − g(t ′x ′)| < ε for all t ′ ∈ N and x ′ ∈ X.

Now g−1(1/2,∞) is a neighborhood of tx and t is continuous, so we can find a

neighborhood U of x such that g(tx ′) > 1/2 for all x ′ ∈ U. Then for all x ′ ∈ U

and t ′ ∈ N, the facts that g(tx ′) > 1/2 and |g(tx ′) − g(t ′x ′)| < 1/2 imply that

g(t ′x ′) > 0, i.e., g(t ′x ′) ∈ V. This proves the continuity of evaluation.

Lemma 2.1.7. Let X be a space acted upon by T . Then CT (X) is a uniformly closed

`-subgroup of C(X) which contains the constant functions and which is T -invariant

in the sense that g ∈ CT (X) implies gt ∈ CT (X) for all t ∈ T .

Proof. See Proposition 4.3 in [2].
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Definition 2.1.8. For subsets U and V of a flow X, we say that U is T -disjoint from

V if for all t ∈ T there is a neighborhood Nt of t such that for all s ∈ Nt it is true

that

s−1U ∩ t−1V = t−1U ∩ s−1V = ∅.

We say that U is T -contained in V, and write U ⊆T V, if U is T -disjoint from X\V.

Thus U ⊆T V means that for each t ∈ T there is a neighborhood Nt of t such that

⋃
Nt

r−1U ⊆ t−1V and t−1U ⊆
⋂
Nt

s−1V.

If the topology on T is based at 1 then this definition simplifies considerably.

In that case U is T -disjoint from V if there is a neighborhood N1 of 1 such

that s−1U ∩ t−1V = ∅ for all s, t ∈ N1, and U is T -contained in V if there is a

neighborhood N1 of 1 such that s−1U ⊆ t−1V for all s, t ∈ N1.

Definition 2.1.9. Two subsets A and B are said to be T -completely separated if

there is a T -uniformly continuous function g on X which is 0 on A and 1 on B.

It is worth remarking that two sets contained, respectively, in two T -completely

separated sets are T -completely separated, and that two sets are T -completely

separated if and only if their closures are.

Definition 2.1.10. A scale is a collection S = {Up} of open subsets of a given space

X, indexed by the rational numbers Q, such that cl(Uq) ⊆ Up for all q < p in Q.

Actually, what is important is only that the index set Q be countable, totally

ordered, without endpoints, and dense, meaning that for any q1 < q2 in Q there

9



should exist q3 ∈ Q such that q1 < q3 < q2. After all, any such set is isomorphic

to Q. Therefore we shall call any family {Uq : q ∈ Q} of open subsets a scale

provided that cl(Uq) ⊆ Up whenever q < p, and provided that the index set is

a countable dense totally ordered set without endpoints. But if no mention is

made of the index set then we assume it to be Q.

Lemma 2.1.11 shows how scales code continuous real-valued functions. It

also shows why it is often convenient to index scales with the countable dense

totally ordered set (0, 1)Q.

Lemma 2.1.11. For a continuous function f : X→ R, f > 0, the set

S ≡
{
f−1(−∞,q) : q ∈ (0, 1)Q

}

is a scale, and given a scale S = {Uq : q ∈ (0, 1)Q }, the function f : X→ R defined

by the rule

f(x) =


∧
{q : x ∈ Uq } if x ∈ Uq for some q ∈ (0, 1)Q,

1 if x /∈ Uq for all q ∈ (0, 1)Q

is positive and continuous and has the feature that Up ⊆ f−1(−∞,q) ⊆ Uq for all

p < q in (0, 1)Q.

Proof. For a continuous function f : X → R, f > 0, and for q ∈ (0, 1)Q, put

Uq ≡ f−1(−∞,q). Since f is a continuous function, cl(Uq) ⊆ f−1(−∞,q], i.e.,

f(x) 6 q for all x ∈ cl(Uq). It follows at once that cl(Uq) ⊆ Up for q < p in

10



(0, 1)Q, which is to say that S ≡ {Uq} is a scale.

Now assume that a scale S ≡ {Uq : q ∈ (0, 1)Q } is given and that the function

f is defined from it as above. It is clear that 0 6 f(x) 6 1 for every x ∈ X. To

prove that f is continuous let x ∈ X and let (c,d) be an open interval of R

containing f(x). Find p, i, j ∈ Q such that c < p < i < f(x) < j < d and

let U ≡ Uj \ cl(Up). We first claim that U is an open neighborhood of x. For

f(x) =
∧
{q : x ∈ Uq } < j implies that x ∈ Uq for some q < j, hence x ∈ Uj.

And we cannot have x ∈ cl(Up), for otherwise x ∈ cl(Up) ⊆ Ui would imply

f(x) =
∧
{q : x ∈ Uq } 6 i, contrary to assumption. This proves the first claim.

The last claim is that f(U) ⊆ (c,d). This holds because for every x ′ ∈ U we have

x ′ ∈ Uj =⇒ f(x ′) =
∧

{q : x ′ ∈ Uq } 6 j < d,

and because f(x ′) > p, for otherwise f(x ′) =
∧
{q : x ′ ∈ Uq } < p would imply

that x ′ ∈ Uq for some q < p, hence x ′ ∈ Up ⊆ cl(Up), contrary to assumption.

We conclude that f is a continuous function.

An important observation is that if f : X → Y is a continuous function and

{Uq} is a scale in Y then {f−1(Uq)} is a scale in X.

Definition 2.1.12. [2] A T -scale on a flow X is a scale S ≡ {Up : p ∈ Q} such that

Uq is T -contained in Up for all q < p in Q.

Lemma 2.1.13. A continuous real-valued function f on a flow X is T -uniformly

continuous iff the scale associated with it in Lemma 2.1.11 is a T -scale.

11



Proof. Let f be a T -uniformly continuous real-valued function on a flow X. By

Lemma 2.1.11,

S ≡
{
f−1(−∞,q) : q ∈ (0, 1)Q

}
≡ {Uq : q ∈ (0, 1)Q }

is a scale. Fix t ∈ T and q < p, and let ε ≡ p − q. Because f ∈ CT (X), there

exists a neighborhood Nt of t such that for all x ∈ X and r, s ∈ Nt we have

|f(rx) − f(sx)| < ε,

and therefore

x ∈ r−1Uq =⇒ rx ∈ Uq = f−1(−∞,q) =⇒ f(rx) < q

=⇒ f(sx) < p =⇒ sx ∈ Up =⇒ x ∈ s−1Up.

Thus Uq is T -contained in Up for all q < p in Q, and hence S is a T-scale.

Now assume that a T -scale S ≡ {Uq : q ∈ (0, 1)Q } is given, and use Lemma

2.1.11 to define a continuous function f on X. Fix t ∈ T and ε ∈ (0, 1)Q. We

claim that there is a neighborhood Nt ∈ Nt such that

s−1Uq ⊆ t−1Uq+ε and t−1Uq ⊆ s−1Uq+ε

for all s ∈ Nt and all q ∈ (0, 1)Q such that q+ ε ∈ (0, 1)Q. Fix a positive integer

n > 2/ε, and for each integer k, 0 6 k 6 n − 1, find a neighborhood Nk ∈ Nt

12



such that s−1U k
n
⊆ t−1Uk+1

n
and t−1U k

n
⊆ s−1Uk+1

n
for all s ∈ Nk. Let Nt ≡⋂n−1

0 Nk ∈ Nt. Then for s ∈ Nt and q ∈ (0, 1)Q such that q + ε ∈ (0, 1)Q, let k

be the least integer such that k/n > q. We have

s−1Uq ⊆ s−1U k
n
⊆ t−1Uk+1

n
⊆ t−1Uq+ε,

and likewise t−1Uq ⊆ s−1Uq+ε. This proves the claim. The claim then shows

that for any s ∈ Nt and x ∈ X we have

f(sx) =
∧

sx∈Uq

q =
∧

x∈s−1Uq

q >
∧

x∈t−1Uq+ε

q =
∧

tx∈Uq+ε

(q+ ε) − ε = f(tx) − ε.

A parallel argument yields f(tx) > f(sx) − ε. This completes the proof that f is

T -uniformly continuous.

Proposition 2.1.14. [2] Two subsets A and B of a flow X are T -completely sep-

arated iff there is a T -scale S ≡ {Uq} such that A ⊆ Uq and B ∩ Uq = ∅ for all

q ∈ Q.

Proof. Suppose that subsets A and B of a flow X are T -completely separated.

Then there exists a T -uniformly continuous function f ∈ CT (X) such that f(A) =

0 and f(B) = 1. Let Vq = f−1(−∞,q) for q ∈ (0, 1)Q. Then by Lemma 2.1.13

S ≡ {Vp} is a T -scale, and clearly A ∈ Vq and B∩Vq = ∅ for all q ∈ (0, 1)Q. Now

assume that there is a T -scale S = {Uq} such that A ⊆ Uq and B ∩ Uq = ∅ for

all q ∈ (0, 1)Q. Define g : X→ R as in Lemma 2.1.11. By construction g(A) = 0

and g(B) = 1. By Lemma 2.1.13 g is a T -uniformly continuous function.

13



Given a flow X, let βX : X→ βX ≡ Y be its Čech-Stone compactification.

• Each action t : X → X lifts to a unique action tβ : βX → βX such that

tβ ◦ βX = βX ◦ t.

• Because β is a functor, this defines an action of T on βX, i.e., (t1t2)β(y) =

tβ1 (t
β
2 (y)) and 1β(y) = y for all y ∈ βX. This action need not make βX a

flow, i.e., evaluation need not be continuous.

• Each bounded member f of C(X) extends to a unique member fβ of C(βX).

Define an equivalence relation ∼T on βX by declaring y1 ∼T y2 if fβ(y1) =

fβ(y2) for all bounded functions f ∈ CT (X). For each y ∈ βX let [y] ≡

{y ′ : y ′ ∼T y } designate the equivalence class of y, let Z ≡ βX/∼T desig-

nate the quotient space, and let q : βX → Z designate the quotient map.

Because q is continuous and surjective, Z is a compact Hausdorff space

and q is a closed map. Finally, abbreviate q ◦ βX to βTX.

βX Z

X R

q

fTβX
βTX

f

Proposition 2.1.15. Assume the foregoing terminology. Then the following hold.

1. By construction, for each f ∈ CT (X) the function fβ factors through q, say

fβ = fT ◦ q for some fT ∈ C(Z). Since these functions separate the points of

Z, Z is compact, and CT is uniformly closed by Lemma 2.1.7,

{
fT : f ∈ CT (X)

}
= C(Z).
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2. T acts on Z by the rule t[y] = [ty], t ∈ T , y ∈ Y, and βTX commutes with

these actions. With respect to this action, Z is a compact flow and βTX is a

flow map.

3. The map βTX is universal among flow compactifications of X. That is, any flow

compactification α : X→ Y factors uniquely through βTX.

Proof. (2) The action of T on Z is well defined, for y1 ∼T y2 and t ∈ T imply

tβy1 ∼T t
βy2. That is because for each bounded f ∈ CT (X) we have ft ∈

CT (X), hence fβ(tβ(y1)) = (ft)β(y1) = (ft)β(y2) = fβtβ(y2). To show that βTX

commutes with these actions, observe that

βTX(tx) = q(βX(tx)) = q(t
β(βX(x))) = [tβ(βX(x))] = t

β[βX(x)]

= tβ(q(βX(x))) = t
ββTX(x).

A routine calculation can then be used to show that the functions of C(Z) are

T -uniformly continuous, with the result that Z is a flow by Lemma 3.1.7 and βTX

is a flow compactification.

(3) See Theorem 5.18 of [2].

Notation 2.1.16. For a flow X let βTX : X → Z ≡ βTX denote the flow compactifi-

cation of Proposition 2.1.15.

Theorem 2.1.17. βT is a functor. That is, any flow map f lifts uniquely to a flow

map βTf which makes this diagram commute.
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βTX βTY

X Y

βTf

f

βTX βTY

Definition 2.1.18. A flow X is compactifiable if it is (flow homeomorphic to) a

subflow of a compact flow.

Proposition 2.1.19. A flow is compactifiable if and only if each of its points is

T -completely separated from every closed set not containing it.

Proof. Suppose that Y is a flow compactification of X. Then CT (Y) = C(Y), and

therefore f|X ∈ CT (X) for every f ∈ CT (Y). Hence CT (X) separates points from

closed sets.

Assume that every point in X is T -completely separated from every closed

set not containing it. This condition gives to the quotient map q : βX → Z of

Proposition 2.1.15 the property that its composition q ◦ βX = βTX is one-one,

making X a subflow of the compact flow Z.

Theorem 2.1.20. Every flow X has a finest compactifiable quotient flow Y = X/∼,

where x ∼ y if and only if g(x) = g(y) for all g ∈ CT (X), and βTX = βTY.

Proof. This is the case in Proposition 2.1.15 when βX(x1) ∼T βX(x2) for points

x1 6= x2 in X.

2.2 CT -embeddings

A subflow Y of X is said to be CT -embedded in X if every function in CT (Y)

can be extended to a function in CT (X).
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Proposition 2.2.1. [2] The only flow compactification in which a compactifiable

flow X is CT -embedded is βTX.

The next theorem is the Urysohn’s Extension Theorem for flows. For its proof

see [2].

Theorem 2.2.2. A subflow Y is CT -embedded in a flow X if and only if any two

T -completely separated subsets of Y are T -completely separated in X.

Corollary 2.2.3. [2] In a compactifiable flow any compact subset is T -completely

separated from any closed set disjoint from it, and any compact subflow is CT -

embedded.

2.3 T -irreducible maps

Recall that in general topology, a continuous function f : X → Y is called

perfect if it is closed and has compact fibers, i.e., f−1(y) is compact for all y ∈ Y.

f is called irreducible if it is a perfect surjection which maps no proper closed

subset of X onto Y.

Definition 2.3.1. Let X and Y be flows and let f be a perfect flow map from X onto

Y. Then f is called T -irreducible if, whenever A is a proper closed subflow of X,

f(A) 6= Y.

Lemma 2.3.2. Let f : X→ Y be T -irreducible. Then:

1. If g : Y → Z is T -irreducible, then g ◦ f : X→ Z is T -irreducible;
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2. Any initial factor of f which is a closed surjection is T -irreducible. That is,

if f = k ◦ h for a closed surjection h : X → Z and a continuous function

k : Z→ Y, then h is T -irreducible.

3. If k : Z → X is a closed flow surjection such that h ≡ f ◦ k is T -irreducible

then k is T -irreducible.

Proof. (1) Since f and g are closed surjective, so is g ◦ f. If A is a proper closed

subflow of X, then f(A) is a proper closed subflow of Y, so g(f(A)) = (g ◦ f)(A)

is a proper closed subflow of Z. Thus g ◦ f is T -irreducible.

(2) If f factors as k ◦ h then k must be surjective. If the closed surjection h

were not T -irreducible, there would be a proper closed subflow A of X such that

h(A) = Z. Thus f(A) = k(h(A)) = k(Z) = Y, which is a contradiction.

(3) If k were not T -irreducible there would be a closed subflow A ( X such

that k(A) = X. But then h(A) = f(k(A)) = f(X) = Y, contrary to the assumption

that h is T -irreducible.

Theorem 2.3.3. Let f : Y → X be a perfect flow surjection. Then the following are

equivalent.

1. f is T -irreducible.

2. For every non-empty open subset U ⊆ Y, there exist a non-empty open subset

V ⊆ X and a finite subset T0 ⊆ T such that f−1(V) ⊆
⋃
T0
t−1U.

3. For every proper closed subset A ⊆ Y there exists a finite subset T0 ⊆ T such

that f(
⋂
T0
t−1A) is proper in X.
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4. For every non-empty regular open subset U ⊆ Y there exists a nonempty

regular open subset V ⊆ X and a finite subset T0 ⊆ T such that f−1(V) ⊆

intY clY(
⋃
T0
t−1U).

5. For every proper regular closed set A in Y there exists a finite subset T0 of T

such that clX intX f(
⋂
T0
t−1A) is a proper regular closed subset of X.

Proof. (1) iff (2). Assume (1) and let U be a non empty open set U in Y. There

must be at least one point x ∈ X such that
⋃
T t

−1U ⊇ f−1(x), for otherwise

Y r
⋃
T t

−1U would be a proper closed subflow of Y which f maps onto X. Fix

such an x; by the compactness of f−1(x), there exists a finite subset T0 ⊆ T such

that
⋃
T0
t−1(U) ⊇ f−1(x). Then V ≡ Xr f(Y r

⋃
T0
t−1U) is an open subset of X

such that f−1(V) ⊆
⋃
T0
t−1U.

Assume (2) and let W be a proper closed subflow of Y. Then U = Y rW is

a nonempty open stable subset of Y. By (2) there exist a nonempty open set V

in X and a finite subset T0 of T such that f−1(V) ⊆
⋃
T0
t−1U, which means that

f(W) 6= X.

(2) iff (3). Let A be a proper closed subset of Y. Then by (2) there exist a

nonempty open set V in X and a finite subset T0 of T such that

f−1(V) ⊆
⋃
T0

t−1(Y rA) =⇒
⋂
T0

t−1A ⊆ Y r (f−1(V))

=⇒ f

(⋂
T0

t−1A

)
⊆ Xr V.
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On the other hand, assume (3) and consider a nonempty open subset U of Y.

By (3) there exists a finite subset T0 ⊆ T such that f(A) is proper in X, where

A ≡
⋂
T0
t−1(Y r U). Then V ≡ X r f(A) is a nonempty open subset of X such

that f−1(V) ∩A = ∅, i.e.,

f−1(V) ⊆ Y rA = Y r
⋂
T0

t−1(Y rU) =
⋃
T0

t−1U.

(2) iff (4). The implication from (2) to (4) follows from the fact that

⋃
T0

t−1U ⊆ intY clY
⋃
T0

t−1U.

The opposite implication follows from the fact that every open set in a regular

space is the union of the regular open subsets contained in it.

(3) iff (5). The implication from (3) to (5) follows from the fact that

clX intX f
(⋂
T0

t−1A

)
⊆ f
(⋂
T0

t−1A

)
.

The opposite implication follows from the fact that every closed set in a regular

space is the intersection of the regular closed sets containing it.

Lemma 2.3.4. If f : Y → X is a T -irreducible surjection, then

1. for every non empty open subset U of Y there exists a finite subset T0 of T such

that intX[f(
⋃
T0
t−1U)] 6= ∅, and

2. for every dense T -invariant subset S of X, f−1(S) is a dense T -invariant set.
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Proof. To prove (1), let U 6= ∅ be an open subset of Y. Since f is T -irreducible,

there exist a finite subset T0 of T and a non empty open subset V of X such that

f−1(V) ⊆
⋃
T0

t−1U =⇒ V = f(f−1(V)) ⊆ f

(⋃
T0

t−1U

)

=⇒ intX

(
f

(⋃
T0

t−1U

))
6= ∅.

Now suppose S is a dense T -invariant subset of X. Because f is a closed

function, we have

X = clX S = clX(f[f−1(S)]) = f(clY [f−1(S)]).

Note that clY [f−1(S)] is a closed subflow of Y which mapped onto X and since

f is T -irreducible, clY [f−1(S)] = Y.
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Chapter 3

Smirnov’s Theorem With Actions
In this chapter we give a brief explanation of T -proximities and the Gener-

alized Smirnov Theorem. The latter associates a flow compactification to each

compatible T -proximity on a compactifiable flow and vice-versa. In pursuit of

a completion, we will include a self-contained construction of the Smirnov flow

compactification of a given compactifiable flow.

3.1 T -Proximity

Let X be a set. A proximity on X is a binary relation ≺ on the power set of

X which satisfies axioms (P1)-(P6) given below. When A ≺ B we say that A

is strongly contained in B. It is often convenient to use the associated binary

relation δ defined from ≺ as follows.

AδB ⇐⇒ A ⊀ (Xr B), and A ≺ B ⇐⇒ Aδ(Xr B).

Here the notation AδB expresses the negation of AδB.
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Definition 3.1.1. [9] Let X be a set and ≺ a binary relation on the power set of X.

We call ≺ a proximity on X, and the pair (X,≺) a proximity space, if ≺ satisfies

the following axioms:

(P1) X ≺ X;

(P2) A ≺ B =⇒ A ⊆ B;

(P3) A ⊆ B ≺ C ⊆ D =⇒ A ≺ D;

(P4) A ≺ B,C =⇒ A ≺ B ∩ C;

(P5) A ≺ B =⇒ Xr B ≺ XrA;

(P6) A ≺ B =⇒ ∃ C ⊆ X(A ≺ C ≺ B).

If the proximity ≺ satisfies additionally the following axiom (P7), it will be called

separated, or a Hausdorff proximity.

(P7) x 6= y =⇒ {x} ≺ Xr {y}.

(P4) and (P5) together imply

(P4’) A,B ≺ C =⇒ A ∪ B ≺ C.

Definition 3.1.2. [9] Let (X,≺1) and (Y,≺2) be two proximity spaces. A mapping

f : X→ Y is called a proximity mapping if

A ≺2 B =⇒ f−1(A) ≺1 f
−1(B).
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Each proximity ≺ on X induces a topology by declaring a subset U ⊆ X to be

open if U = {x ∈ X : {x} ≺ U}. This is called the topology induced by the proximity

≺, and is designated τ≺. If ≺ is a separated proximity then τ≺ is a completely

regular topology on X. If X is endowed with both a proximity ≺ and a topology

τ, the proximity is called compatible if τ≺ = τ.

Lemma 3.1.3. Let (X,≺) be a proximity space, then

(i) A ≺ B implies clτ≺(A) ≺ B.

(ii) A ≺ B implies A ≺ intτ≺(B).

Proof. See [9] Lemma (3.2).

Corollary 3.1.4. Let X be a topological space and let ≺ be a compatible proximity

on X. If A ≺ B then there exists a regular open set a such that A ≺ a ≺ B.

Proof. If A ≺ B, then by (P6) and the previous lemma we can find C such that

A ≺ int(cl(C)) ≺ B. Then a = int(cl(C)) is the desired regular open set.

Lemma 3.1.5. A compact Hausdorff space X has a unique compatible separated

proximity, given by

AδB ⇐⇒ clA ∩ clB 6= ∅, or equivalently,

A ≺ B ⇐⇒ clA ⊆ intB.

Proof. It is easy to see that, as defined above, ≺ satisfies (P1)–(P5) and (P7);

we need only prove (P6). Assume that A ≺ B, then clA ∩ cl(X r B) = ∅. Since
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X is a compact Hausdorff space, it is normal and hence there exist open sets C

and D such that clA ⊂ C and cl(X r B) ⊆ D and clC ∩ clD = ∅. This gives

clA ⊆ C = intC and clC ⊆ Xr clD ⊆ intB, i.e., A ≺ C ≺ B.

Evidently ≺ is a compatible proximity, that is, a subset U ⊆ X has the feature

that U = { x : {x} ≺ U } iff U is open in X. To see that ≺ is the only such proximity

on X, consider an arbitrary proximity ≺ ′ on X such that U = { x : {x} ≺ ′ U } iff

U is open in X. We claim that intA = { x : {x} ≺ ′ A } ≡ U for all A ⊆ X. For

certainly if x ∈ intA then {x} ≺ ′ intA ⊆ A, hence x ∈ U. Furthermore U is

open, for each x ∈ U is contained in a set V such that {x} ≺ ′ V ≺ ′ A, and clearly

V ⊆ U since each point y ∈ V satisfies {y} ≺ ′ A. That is, {x} ≺ ′ U for all x ∈ U,

hence U is open. The claim follows.

We have shown that A ≺ ′ B implies A ⊆ intB. Since A ≺ ′ B also implies

(X r B) ≺ ′ (X r A), we have A ≺ ′ B implies clA ⊆ intB, i.e., A ≺ ′ B implies

A ≺ B. To verify the converse of the latter implication, consider A ≺ B, i.e.,

clA ⊆ intB. By the claim we know that intB = { x : {x} ≺ ′ B }, so for each

x ∈ clA we have {x} ≺ ′ B, hence {x} ≺ ′ Vx ≺ ′ B for some subset Vx ⊆ X. By

replacing Vx by intVx = { x ′ : {x ′} ≺ ′ Vx }, we may assume that each Vx is open in

X. Because X is compact, {Vx : x ∈ clA } has a finite subcover {Vxi : 1 6 i 6 n }.

By (P4’) we get

A ⊆
⋃

16i6n

Vxi ≺ ′ B.

Smirnov’s Theorem 3.1.10 is the fundamental result concerning proximites.

It establishes a bijection between the compactifications of a Tychonoff space X
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and the compatible separated proximities on X. We give an outline of the proof,

following [3]. The fundamental notion is that of a round filter on a proximity

space.

Definition 3.1.6. Let ≺ be a compatible separated proximity on the Tychonoff

space X. Call a filter F on X round if for all A ∈ F there exists B ∈ F such that

B ≺ A. A maximal among proper round filter is called an end.

Let ≺ be a compatible separated proximity on the Tychonoff space X.

Lemma 3.1.7. 1. Every proper round filter is contained in a maximal proper

round filter.

2. A family F of subsets of X is an end if and only if it has these two properties.

• For all A,B ∈ F there exist C ∈ F such that C ≺ A ∩ B.

• For all A ≺ B, either XrA ∈ F or B ∈ F.

3. For a given ultrafilter F on X, the round part of F,

F≺ ≡ {A ∈ F : ∃B ∈ F (B ≺ A) } ,

is an end.

4. Every end is the round part of any ultrafilter containing it.

5. For each x ∈ X, Fx ≡ {A : {x} ≺ A } is an end.
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Proof. (1) For a given round filter F set M to be the set of all round filters that

contains F. Note that M is partially ordered by set inclusion and every chain

in M has an upper bound in M. Thus by Zorn’s Lemma M contains a maximal

element η which is an end containing F.

(2) Assume that F is and end. For A,B ∈ F, A ∩ B ∈ F because F is a filter,

and there exists C ∈ F such that C ≺ A ∩ B because F is round. On the other

hand, if A ≺ B then either A ∩ C 6= ∅ for every C ∈ F or there exist E ∈ F such

that A ∩ E = ∅. In the first case η = {D : ∃C ∈ F (A ∩ C ≺ D } is a round filter

containing F and B. By the maximality of F we have η = F and B ∈ F. In the

second case we have XrA ∈ F because E ⊆ XrA.

Suppose the family F satisfies the given conditions. Then one easily sees that

F is a round filter by the first condition. By way of contradiction, assume that

F is contained in a round filter η such that B ∈ (η r F) for some B. Since η is

round there exists A ∈ η with the property that A ≺ B. By hypothesis we have

XrA ∈ F ⊆ η, which leads to the contradiction ∅ = A ∩ (XrA) ∈ η.

(3) If A,C ∈ F≺ then there exist B,D ∈ F such that B ≺ A and D ≺ C. Then

B ∩D ≺ A,C by axiom (P3), hence B ∩D ≺ A ∩ C by (P4), proving F≺ to be a

filter. To prove that F≺ is round, consider A ∈ F≺, say B ≺ A for B ∈ F. Then by

(P6) there exists some C for which B ≺ C ≺ A, and B witnesses the membership

of C in F≺. To prove that F≺ has the second property listed under (2), consider

A ≺ B. Use axiom (P6) again to find C such that A ≺ C ≺ B. Because F is an

ultrafilter, either C ∈ F or Xr C ∈ F. Thus either B ∈ F≺ or XrA ∈ F≺.
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(4) Assume that η is an end and let F be an ultrafilter containing η. Then it

is clear that η is contained in F≺. Now if A ∈ F≺ then there exist B ∈ F such

that B ≺ A. By (2) either X r B ∈ η or A ∈ η, and the former possibility is

incompatible with the fact that B ∈ F. We conclude that η = F≺.

(5) It is well known that Fx is a filter. For every A ∈ Fx, there exist a regular

open set a such that {x} ≺ a ≺ A and a ∈ Fx. To show it is maximal assume

A ≺ B and by (P6) find C such that A ≺ C ≺ B. Use the fact that either

x ∈ C ≺ B or x ∈ X r C ≺ X r A to get that either B ∈ Fx or X r A ∈ Fx.

Therefore Fx is an end.

For a given proximity space (X,≺), let Y be the set of ends of X, topologized

by using sets of the form

O(U) ≡ { F : U ∈ F } , open U ⊆ X,

as a base for open sets.

Lemma 3.1.8. For a family {Ui : i ∈ I } of open subsets of X,

⋃
I

O(Ui) = Y ⇐⇒ ∀i ∈ I ∃ open Vi ≺ Ui
(⋃

I

Vi = X

)
.

Proof. Suppose
⋃
I Vi = X for some choice of open subsets Vi ≺ Ui, and consider

an arbitrary η ∈ Y. Let F be an ultrafilter on X containing η, so that η = F≺ by

Lemma 3.1.7. Then F must contain at least one of the Vi’s, hence ηmust contain

at least one of the Ui’s, i.e., η must lie in one of the O(Ui)’s.
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On the other hand, suppose
⋃
I Vi 6= X for any choice of open subsets Vi ≺

Ui. Considering that the family {Xr V : ∃i ∈ I (open V ≺ Ui) } has the finite

intersection property, it must be contained in an ultrafilter F whose round part

η = F≺ is an end. But clearly η /∈ O(Ui) for any i ∈ I, for otherwise the

roundness of η would require V ∈ η for some V ≺ Ui, contrary to assumption.

This shows that
⋃
IO(Ui) 6= Y.

Lemma 3.1.9. Y is a compact Hausdorff space, the map α : X → Y = (x 7→ Fx) is

continuous and one-one, and α(X) = { Fx : x ∈ X } is dense in Y. In short, α : X→ Y

is a compactification of X.

Proof. We are assuming that X is a Tychonoff space and that the proximity is

compatible. To prove Y is a Hausdorff space choose distinct elements η,F ∈ Y

and assume that A ∈ η r F. Because η is round we can find B ∈ η such that

B ≺ A, and by Lemma 3.1.3 and Corollary 3.1.4, we can then find a regular

open set a such that B ≺ a ≺ cl(a) ≺ A. Since F is an end we have Xr cl(a) ∈

F. Therefore O(a) and O(X r cla) are disjoint open sets containing η and F,

respectively.

To show that Y is compact, consider an open cover C of Y; without loss of

generality we may assume that C = {O(Ui)} for some family {Ui : i ∈ I } of open

subsets of X. If C has no finite subcover then {Xr V : ∃i ∈ I (V ≺ Ui) } is the

basis of a proper filter by (the proof of) Lemma 3.1.8, and this filter is contained

in at least one end F.

29



But this is a contradiction, since any such end F could not contain any set

V ≺ Ui for any i ∈ I, and therefore could not contain any Ui by virtue of its

roundness.

In order to see that α is a one to one map let x1, x2 be distinct points in X.

Then x1 lies in the open set X r {x2}, and since the proximity is compatible,

{x1} ≺ X r {x2}. By axiom (P6) and Lemma 3.1.3 there is a regular open subset

a ⊆ X such that {x1} ≺ a ≺ X r {x2}. Since Fx1 and Fx2 are ends, a ∈ Fx1 but

a /∈ Fx2.

To show that α is continuous, let O(a) be a nonempty basic open subset of

Y. Then for every x ∈ α−1(O(a)) there exist c ∈ ηx such that {x} ≺ c ≺ a. Since

every end which contains cmust contain a, it follows that α(p) ∈ O(a) for every

p ∈ O(c). Thus x ∈ c ⊆ α−1(O(a)).

Theorem 3.1.10 (Smirnov). Let X be a Tychonoff space.

1. For every compactification α : X→ Y, the proximity defined by the rule

AδYB ⇐⇒ clY α(A) ∩ clY α(B) 6= ∅,

is a compatible separated proximity on X.

2. Conversely, for every compatible separated proximity ≺ on X there is a com-

pactification α : X → Y such that ≺ coincides with ≺Y . The compactification

is unique up to isomorphism with respect to this property.
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Proof. (1) It is clear that the corresponding relation

A ≺Y B ⇐⇒ AδY(Xr B) ⇐⇒ clY α(A) ∩ clY α(Xr B) = ∅

satisfies axioms (P1)–(P5) and (P7); we need only verify (P6). For that purpose

suppose that A ≺Y B. We claim that α(A) ≺ α(B), where ≺ designates the

unique compatible proximity on Y given in Lemma 3.1.5. ForA ≺Y Bmeans that

clY α(A) ∩ clY α(Xr B) = ∅, from which follows clY α(A) ⊆ intY(Y r α(Xr B)).

From the claim and the fact that ≺ satisfies axiom (P6), we can deduce the

existence of a subset C ⊆ Y such that α(A) ≺ C ≺ α(B).

Finally, we claim that A ≺Y α−1(C) ≺Y B. Note that α(X r α−1(C)) ⊆

Y r C, and α(X r B) ⊆ Y r α(B). Thus clY α(A) ∩ clY α(X r α−1(C)) = ∅

and clY(C) ∩ clY α(X r B) = ∅. Now clY αα−1(C) ∩ clY α(X r B) = ∅ because

αα−1(C) ⊆ C, hence A ≺Y α−1(C) ≺Y B.

(2) It remains to show that for all subsets A,B of X,

AδB iff clY α(A) ∩ clY α(B) = ∅

By Lemma 3.1.9 the space X is embedded in Y, the compact space of ends.

Assume that for subsets A,B of X we have clY α(A) ∩ clY α(B) = ∅. Then

clY α(A) ⊆ Y r clY α(B) and for every end F in clY α(A) there exist an open

subset bF of X such that F ∈ O(bF) ⊆ Y r clY α(B). Since bF ∈ F, there exist

aF ∈ F such that aF ≺ bF. The sets {O(aF) : F ∈ clY α(A)} constitute an open
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cover of clY α(A), and by compactness it has a finite subcover, say {O(ai) : i ∈ I}

for some finite index set I. It follows that
⋃
I ai ≺

⋃
I bi.

We claim that A ≺ X r B, which would imply that AδB. For if x ∈ A then

Fx ∈ O(ai) for some i which clearly implies that x ∈ ai and hence A ⊆
⋃
I ai. If

x ∈
⋃
I bi then Fx ∈

⋃
IO(bi) ⊆ Y r clY(B) which implies that x ∈ Xr B.

On the other hand, if for subsets A,B ⊆ X we have A ≺ X r B then by

Corollary 3.1.4 there exist regular open sets a,b such that A ≺ a ≺ b ≺ X r B.

It follows that α(A) ⊆ O(a) and α(B) ⊆ O(XrclX b). SinceO(a)∩O(XrclX b) =

∅, we get clY(α(A)) ∩ clY(α(B)) = ∅.

We now enrich Smirnov’s Theorem by the addition of actions. This is one of

the main topics of the thesis.

Definition 3.1.11. A proximity ≺ on a flow X is called a T -proximity provided

that whenever A ≺ B and t ∈ T there exists a neighborhood Nt of t such that

⋃
Nt

r−1A ≺
⋂
Nt

s−1B.

Lemma 3.1.12. Let X be a flow and ≺ be a proximity on X. The following are

equivalent:

1. ≺ is a T -proximity on X.

2. The following two conditions are satisfied.

(i) Every action t : X→ X is a proximity mapping.
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(ii) For subsets A,B ⊂ X with A ≺ B, A is T -contained in B. That means

that for every t ∈ T there exists a neighborhoodNt of t such that r−1A ⊆

s−1B for all r, s ∈ Nt.

Proof. Assume that (1) holds. To prove (2)(i) consider A ≺ B and t ∈ T . Then

by (1) there exist a neighborhood Nt of t such that
⋃
Nt
r−1A ≺

⋂
Nt
s−1B. In

particular, t−1A ≺ t−1B, which means that t : X → X is a proximity mapping.

To verify (2)(ii) again consider A ≺ B. Then for every t ∈ T there exists a

neighborhood Nt of t such that for all r, s ∈ Nt we have

r−1A ⊆
⋃
Nt

r−1A ≺
⋂
Nt

s−1B ⊆ s−1B.

On the other hand, suppose (2) holds and consider A ≺ B and t ∈ T . Then

by (P6) there exist C,D such that A ≺ C ≺ D ≺ B, and by (2) there exist

neighborhoods N ′t and N ′′t of t such that
⋃
N ′t
r−1A ⊆

⋂
N ′t
s−1C, t−1C ≺ t−1D

for every t ∈ T , and
⋃
N ′′t
r−1D ⊆

⋂
N ′′t
s−1B. Letting Nt = N ′t ∩N ′′t , we have for

all r, s ∈ Nt that

⋃
Nt

r−1A ⊆
⋂
Nt

s−1C ⊆ s−1C ≺ s−1D ⊆
⋃
Nt

r−1D ⊆
⋂
Nt

s−1B.

By (P3) we have
⋃
Nt
r−1A ≺

⋂
Nt
s−1B for every r, s ∈ Nt, which proves (1).
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3.1.1 Smirnov’s Theorem with actions

Lemma 3.1.13. The canonical proximity ≺ on a compact flow is a T -proximity.

Proof. Let X be a compact Hausdorff flow, with its unique proximity ≺ defined

by

A ≺ B whenever clX(A) ∩ clX(Xr B) = ∅, A,B ⊆ X.

If A ≺ B then there exists a function f ∈ C∗(X) = CT (X) such that f(clX(A)) = 0

and f(clX(X r B)) = 1. To prove ≺ is a T -proximity, fix t ∈ T . Since f is a T -

uniformly continuous function, for every 0 < ε < 1 there exists a neighborhood

Nt of t such that

|f(rx) − f(sx)| < ε for x ∈ X and r, s ∈ Nt.

If x ∈ r−1(A) then f(rx) = 0 and therefore |f(sx)| < ε. Thus

sx /∈ f−1(1) ⊇ clX(Xr B) =⇒ sx ∈ Xr clX(Xr B)

=⇒ sx ∈ B

=⇒ x ∈ s−1(B)

Hence, for every t ∈ T there exist a neighborhoodNt of t such that r−1A ≺ s−1B

for every r, s ∈ Nt, so ≺ is a T -proximity.

Theorem 3.1.14. [9] Let (Xi, δi), i = 1, 2, be proximity spaces, and let αi : Xi →

Yi be the corresponding Smirnov compactifications (Theorem 3.1.10). Then for ev-

34



ery proximity mapping f : X1 → X2 there is a unique continuous function f ′ : Y1 →

Y2 such that f ′ ◦ α1 = α2 ◦ f.

Theorem 3.1.15 (Smirnov’s Theorem with actions). Let X be a compactifiable

flow.

1. Let α : X → Y be a flow compactification and let us identify X with its image

under α to simplify notation. Then the associated proximity≺ from Smirnov’s

Theorem 3.1.10, namely

A ≺ B ⇐⇒ clY A ∩ clY(Xr B) = ∅, A,B ⊆ X,

is a compatible separated T -proximity on X.

2. Let ≺ be a compatible separated T -proximity on X, and let α : X → Y be the

compactification associated with ≺ by Smirnov’s Theorem 3.1.10. Then the

actions on X lift to Y so as to make α a flow compactification of X.

3. These two processes are inverses of one another.

Thus the flow compactifications of X are in bijective correspondence with the com-

patible separating T -proximities on X.

It should be noted that the classical Smirnov Theorem 3.1.10 is the special

case of Theorem 3.1.15 corresponding to the trivial action T = 1.

Proof. (1) Suppose subsets A,B ⊆ X satisfy A ≺ B. Then since CT (Y) separates

disjoint closed subsets of Y, the fact that clY A ∩ clY(X r B) = ∅ implies the
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existence of f ∈ CT (Y) such that f(clY A) = 0 and f(clY(X r B)) = 1. An

argument along the lines of the proof of Lemma 3.1.13 can then be used to

show that ≺ is a T -proximity.

(2) Lemma 3.1.12 asserts that each action t ∈ T is a proximity map, and it

extends to an action on Y by Theorem 3.1.14. We need only to show that the

induced action is continuous, and this will follow from Lemma 3.1.7 if we can

show that each g ∈ C(Y) is T -uniformly continuous. But that follows directly

from the fact that gα ∈ CT (X). In more detail, for given t ∈ T and ε > 0 find a

neighborhood Nt of t such that |gαt(x) − gαs(x)| < ε for all s ∈ Nt and x ∈ X.

This yields |gt ′α(x) − gs ′α(x)| < ε for all s ∈ Nt and x ∈ X, where s ′ and t ′ are

the respective extensions of s and t to Y. Since α(X) is dense in Y, it follows that

|gt(y) − gs(y)| < ε for all y ∈ Y, i.e., g is T -uniformly continuous.

Theorem 3.1.16. Let X be a compactifiable flow, and for A and B subsets of X

define

A ≺ B ⇐⇒ A and Xr B are T -completely separated.

Equivalently by Proposition 2.1.14, A ≺ B iff there is a T -scale {Uq : q ∈ Q } such

that A ⊆ Uq ⊆ B for all q ∈ Q. Then ≺ is the largest compatible separated

T -proximity which can be defined on X.

Proof. We would like to prove that ≺ is a compatible separated T -proximity. Let

A,B,C ⊆ X.

(P1) It is clear that X ≺ X.

36



(P2) A ≺ B implies there is a T -scale {Uq : q ∈ Q } such that A ⊆ Uq ⊆ B for

all q. This clearly implies that A ⊆ B.

(P3) A ⊆ B ≺ C ⊆ D implies there is a T -scale {Uq : q ∈ Q } such that B ⊆

Uq ⊆ C for all q. But then A ⊆ Uq ⊆ D for all q, hence A ≺ D.

(P4) A ≺ B,C implies that A and XrB are T -completely separated, and that A

and XrC are T -completely separated. There are f,g ∈ CT (X), 0 6 f,g 6 1,

such that f(A) = 0 and f(XrB) = 1 and g(A) = 0 and g(XrC) = 1. Then

h = (f + g) ∧ 1 ∈ CT (X), and h(A) = 0 and h(X r (B ∩ C)) = 1, yielding

A ≺ B ∩ C.

(P5) A ≺ B implies that there exists f ∈ CT (X) such that f(A) = 0 and f(XrB) =

1. Then g ≡ 1− f ∈ CT (X) satisfies g(XrB) = 0 and g(XrA) = 1, hence

Xr B ≺ XrA.

(P6) A ≺ B implies that there is a T -scale {Uq : q ∈ Q } such that A ⊆ Uq ⊆

B for all q. Then for C ≡ U0 we have A ≺ C by virtue of the T -scale

{Uq : 0 > q ∈ Q } and C ≺ B by virtue of the scale {Uq : 0 < q ∈ Q }.

(P7) If x 6= y then since X is a compactifiable flow and x /∈ {y} there is some

g ∈ CT (X) such that g(x) = 0 and g(y) = 1. So {x} ≺ Xr {y}.

(Comp) In order to prove that ≺ is a compatible proximity, assume that U is an

open subset of X and that x ∈ U. Since X is compactifiable, there exists a

function f ∈ CT (X) such that f(x) = 0 and f(X r U) = 1; i.e {x} ≺ U and

hence U ∈ τ≺. On the other hand, if U ∈ τ≺ and x ∈ U, then {x} ≺ U.
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Hence there exist f ∈ CT (X) such that f(x) = 0 and f(X r U) = 1. Thus

x ∈ f−1([0, 1/4)) ⊂ U which means that U ∈ τ.

(T) To show that ≺ is a T -proximity, consider A ≺ B, say {Uq : q ∈ Q } is a

T -scale such that A ⊆ Uq ⊆ B for all q. Note that for any p < q in Q,

Up ≺ Uq because {Ur : p < r < q } is a T -scale such that Up ⊆ Ur ⊆ Uq

for all p < r < q. Now suppose that t ∈ T is given. Since U0 ⊆T U1, we

can find a neighborhood N1 of t such that
⋃
N1
r−1U0 ⊆

⋂
N1
s−1U1, and

likewise another neighborhood N3 of t such that
⋃
N3
r−1U2 ⊆

⋂
N3
s−1U3.

Letting Nt ≡ N1 ∩N3 gives

⋃
Nt

r−1A ⊆
⋃
Nt

r−1U0 ⊆
⋂
Nt

s−1U1 ⊆ t−1U1

≺ t−1U2 ⊆
⋃
Nt

r−1U2 ⊆
⋂
Nt

s−1U3 ⊆
⋂
Nt

s−1B.

The fact that ≺ is the largest T -proximity on X follows directly from Lemma

3.1.12.

Corollary 3.1.17. Let X be a compact Hausdorff flow. Then with respect to the

canonical proximity on X,

AδB ⇐⇒ clA is T -disjoint from clB in X.
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3.1.2 Non-separated T-proximity

In case the flow X is not compactifiable, then we can define an equivalence

relation ∼ on X such that the quotient flow Y ≡ X/∼ is compactifiable (see

Theorem 2.2.3). The relation ∼ is defined by

x ∼ y ⇐⇒ g(x) = g(y) for all g ∈ CT (X),

and is respected by the actions, i.e., x1 ∼ x2 implies tx1 ∼ tx2 for all xi ∈ X and

t ∈ T , thereby providing an action of T on Y. Furthermore, Y is a flow, i.e., the

evaluation map T × Y → Y is continuous, and the projection map q : X → Y

is a flow surjection. (See [2] for a full development.) In fact, Y is Hausdorff

and compactifiable, and is the finest among the quotient flows of X with these

properties.

The point is that the proximity relation of Theorem 3.1.16 can be defined

on a flow X even if X is not compactifiable. In that case the ≺ relation satisfies

axioms (P1)–(P6), as shown by the proof of Theorem 3.1.16, though it cannot

satisfy (P7). Nevertheless the finest compactifiable quotient flow Y of X does

carry a coarsest compatible separated proximity inherited from ≺.

Theorem 3.1.18. Any flow has a finest quotient flow which admits a compatible

separated proximity.
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Chapter 4

De Vries Algebras With Actions
A proximity is a relation on the family of all subsets of a given space which

satisfies axioms (P1)–(P7). It turns out that one may restrict this relation to the

(complete Boolean algebra of) regular open subsets of the space without loss

of information. The objects of study then become complete Boolean algebras

equipped with a relation satisfying the axioms which appropriately generalize

(P1)–(P7), so called de Vries algebras.

This chapter begins by defining these algebras and sketching a proof of the

duality between de Vries algebras and compact Hausdorff spaces. Our purpose is

to enrich the category of de Vries algebras by adding actions, thus obtaining the

category of de Vries algebras with actions, or T -de Vries algebras. We then prove

the duality between the category of compact flows and the category of T -de Vries

algebras. Our main references are [5] by de Vries and [4] by Bezhanishvili.
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4.1 Classical de Vries duality

Definition 4.1.1. [4] A de Vries algebra is a pair (B,≺), where B is a complete

Boolean algebra and ≺ is a binary relation on B satisfying the following axioms:

(DV1) 1 ≺ 1;

(DV2) a ≺ b implies a 6 b;

(DV3) a 6 b ≺ c 6 d implies a ≺ d;

(DV4) a ≺ b, c implies a ≺ b∧ c;

(DV5) a ≺ b implies ¬b ≺ ¬a;

(DV6) a ≺ b implies there exists c ∈ B such that a ≺ c ≺ b;

The algebra is called separating if it also satisfies the following axiom.

(DV7) a 6= 0 implies there exists b 6= 0 such that b ≺ a.

An important and useful consequence of this definition is the following.

(DV8) For every a ∈ B we have a =
∨
b≺a

b.

Remark 4.1.2. The relation ≺ on a de Vries algebra B is a generalization of a

proximity relation on a space. In fact, if (X,≺) is a proximity space then the

restriction of the strong containment relation ≺ to RO(X) makes (RO(X),≺) a de

Vries algebra. For that reason we shall refer to the relation ≺ of a de Vries algebra

(B,≺) as a proximity, trusting in the reader’s ability to resolve any ambiguity that

might arise.

41



Before defining the action on a given de Vries algebra, let us recall the defini-

tion of a de Vries morphism, and of the composition of two de Vries morphisms.

Definition 4.1.3 ([5]). Let (A,≺A) and (B,≺B) be de Vries algebras. We say that

f : A→ B is a de Vries morphism if the following conditions are satisfied:

(M1) f(0) = 0;

(M2) f(a∧ b) = f(a)∧ f(b);

(M3) a ≺ b implies ¬f(¬a) ≺ f(b);

(M4) f(a) =
∨
b≺a

f(b).

For a morphism h : A→ B that satisfies (M1)-(M3), the associated morphism

f∗(a) =
∨
b≺a

f(a)

is a de Vries morphism. Since the composition of two de Vries morphisms f and

g satisfies (M1)-(M3) but may not satisfy (M4), de Vries defined the composition

of f and g by

f ∗ g ≡ (f ◦ g)∗.

Proposition 4.1.4 ([5]). Let (A,≺A) and (B,≺B) be de Vries algebras and let

h : A→ B be a de Vries morphism. For all a,b ∈ A,

1. h(1) = 1;

2. h(a) 6 ¬h(¬a), i.e. h(¬a) 6 h(a);
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3. a ≺ b implies h(a) ≺ h(b);

4. a 6 b implies h(a) 6 h(b).

5. If a ≺ c and b ≺ d, then h(a∨ b) ≺ h(c)∨ h(d).

Proof. 1. We know that 0 ≺ 0 by (DV5), and by (M3) and (M1) we get

¬h(1) ≺ 0. Then 1 ≺ h(1) by (DV5), hence 1 6 h(1) which implies

that 1 = h(1).

2. 0 = h(0) = h(a∧¬a). By (M2) we have 0 = h(a)∧ h(¬a), which implies

h(a) 6 ¬h(¬a).

3. If a ≺ b then by (M3) and by (2) above we have h(a) 6 ¬h(¬a) ≺ h(b),

hence h(a) ≺ h(b).

4. If a 6 b then h(a) = h(a∧ b) = h(a)∧ h(b), i.e., h(a) 6 h(b).

5. Suppose that a ≺ c and b ≺ d, then h(a ∨ b) 6 ¬h(¬a ∧ ¬b). By (M2)

we have h(a∨ b) 6 ¬h(¬a)∨ ¬h(¬b). Thus h(a∨ b) ≺ h(c)∨ h(d).

We sketch proofs of the main ideas behind de Vries’s Theorem in Theorem

4.1.5. Theorem 4.1.6 is the full form of this famous result.

Theorem 4.1.5 (de Vries). 1. For a given compact Hausdorff space X, let B ≡

RO(X) and define U ≺ V ⇐⇒ clXU ⊆ V, U,V ∈ RO(X).

Then (B,≺) is a de Vries algebra.
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2. For every de Vries algebra (B,≺) there is a unique compact Hausdorff space X

such that B is isomorphic to RO(X), and when B is identified with its image

under this isormorphism,

a ≺ b ⇐⇒ clX a ⊆ b, a,b ∈ B.

3. Any continuous function f : X → Y between compact Hausdorff spaces X and

Y produces a de Vries homomorphism

f̃ : RO(Y)→ RO(X) = (U 7→ intX clX f−1(U)).

Proof. (1) It is routine to check that ≺ satisfies (DV1)–(DV5). To prove (DV6)

assume U ≺ V, i.e., clX(U)∩ clX(XrV) = ∅. Because X is a normal space, there

are disjoint open subsets U ′,V ′ such that

U ⊂ clXU ⊆ U ′ ⊆ X \ V ′ ⊆ V.

Let W ≡ intX(X r V ′), then W ∈ B and U ≺ W ≺ V. To prove (DV7), consider

a regular open set U 6= ∅, say x ∈ U. Since X is a regular space, there is an open

set U ′ such that x ∈ U ′ ⊆ clXU ′ ⊆ U. Then V ≡ intXU ′ ∈ B and ∅ 6= V ≺ U.

(2) Given a de Vries algebra (B,≺), let X be the Stone space of B, taken here

to be the space of ultrafilters on B, and identify B with RO(X). It is always the

case that B is isomorphic to the clopen algebra of X, but because B is complete X
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is extremally disconnected, i.e., the closure of each open set is open. That means

that a regular open subset, i.e., a subset which is the interior of its closure, is

clopen. Thus clop(X) coincides with RO(X), and we may identify B with RO(X).

Following the development in the proof of Smirnov’s Theorem 3.1.10, call a

filter η on B round if for all b ∈ η there exists a ∈ η such that a ≺ b. For each

ultrafilter F ∈ X define the round part of F to be

F≺ ≡ {b ∈ F : ∃a ∈ F (a ≺ b) } .

The same arguments used in the proof of Smirnov’s Theorem 3.1.10 show that

every round filter is contained in a maximal round filter which we call an end,

that the round part of any ultrafilter is a maximal round filter, that any maximal

round filter is the round part of any ultrafilter containing it, and that a maximal

round filter is characterized by the properties

a,b ∈ η =⇒ ∃c ∈ η (c ≺ a∧ b) and a ≺ b =⇒ ¬a ∈ η or b ∈ η.

Let Y ≡ End(B,≺) denote the set of all ends on B, and let q : X→ Y = (F 7→ F≺)

be the map which takes each ultrafilter to its round part.

In order to show that Y is a compact Hausdorff space we only have to prove

that q is a closed quotient map. Fix b ∈ B and let A = { F ∈ X : b ∈ F } be a basic

closed subset of X.
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Assume for the sake of argument that C ≡ q−1(q(A)) is not a closed subset

of X, i.e., assume that there exists F ′ ∈ clXC r C. Therefore q(F) 6= q(F ′)

for every F ∈ A. Thus for every F ∈ A there exist cF ∈ F≺ r F ′≺. So there

exist aF ∈ F such that aF ≺ cF and ¬aF ∈ F ′≺. Let OF ≡ { x ∈ X : aF ∈ x }

and UF ≡ { x ∈ X : ¬aF ∈ x }. Then {OF : F ∈ A } is a cover of A, and it has a

finite subcover {OFi : i = 1, . . . ,n }. Let U ≡ UF1 ∩ · · · ∩ UFn , a neighborhood

of F ′ which must meet C because F ′ ∈ clXC, say η ∈ U ∩ C. That means that

η≺ = q(η) = q(F) = F≺ for some F ∈ A. But F ∈ OFj for some j because the

OFi ’s cover A, and F ∈ UFj by construction, a clear contradiction. We conclude

that C is a closed subset of X.

Now we would like to show that the quotient map q : X → Y is irreducible,

hence provides a bijection RO(X) → RO(Y). Let A be a proper closed subset of

X, and consider w ∈ X r A. We find b, c,d ∈ B such that 0 < c ≺ d ≺ b and

w ∈ U ⊆ X \ A, where U ≡ {u ∈ X : d ∈ u }. Thus we have ¬c ∈ v≺ for every

v ∈ A, and since b ∈ w≺ we have w≺ 6= v≺ for every v ∈ A. So q(A) is a proper

subset of Y, i.e. q is an irreducible quotient map. By Theorem 6.5(d) of [10] we

have a bijection RO(X)→ RO(Y) .

We must show that, under the isomorphism p : B → RO(Y), a ≺ b in B iff

clY p(a) ⊆ p(b). But this is not difficult, for the relation

U ≺ ′ V ⇐⇒ p−1(U) ≺ p−1(V), U,V ∈ RO(Y)
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obviously makes (RO(Y),≺ ′) into a de Vries algebra, and therefore the ≺ ′ rela-

tion, when extended to the power set P(X) of X by the convention that

A ≺ ′ B ⇐⇒ ∃U,V ∈ RO(X) (A ⊆ U ≺ ′ V ⊆ B), A,B ∈ ℘(X),

makes X into a compact separated proximity space by Remark 4.1.2. The

desired conclusion follows from Lemma 3.1.5.

(3) We show that f̃ satisfies (M3) and (M4). For (M3) assume that U ≺ V for

U,V ∈ RO(Y), i.e., clY U ⊆ V. Since

¬f̃(¬U) = Xr clX f̃(Y r clY U) = Xr clX intX clX f−1(Y r clY U)

= Xr clX f−1(Y r clY U) ⊆ f−1(clY U),

it follows that clX ¬f̃(¬U) ⊆ f−1(clY U) ⊆ f−1(V) ⊆ intX clX f−1(V) = f̃(V).

(M4) It is clear that we have
∨
U≺V f̃(U) ⊆ f̃(V) for all V ∈ RO(Y). For every

x ∈ f−1(V) there exist U ≺ V such that f(x) ∈ U ≺ V, hence x ∈ f−1(U) ⊆

f−1(V). The point is that
⋃
U≺V f

−1(U) = f−1(V), so that

∨
U≺V

f̃(U) = intX clX
⋃
U≺V

f−1(U) = intX clX f−1(V) = f̃(V).

For every de Vries algebra (B,≺) the set End(B,≺) of all ends on (B,≺) with

the topology whose basic open sets of the form O(a) = {F : a ∈ F} is a compact

Hausdorff space.
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Theorem 4.1.6. The correspondences of Theorem 4.1.5 can be elaborated into a

full categorical equivalence between the categories of compact Hausdorff spaces and

that of de Vries algebras.

For a given complete Boolean algebra B, the separated de Vries proximities on

B (Definition 4.1.1) are in bijective correspondence with the isomorphism classes of

the compact Hausdorff spaces X for which RO(X) is isomorphic to B.

An object P in a category C is said to be projective if every morphism P → B

factors through every epimorphism A→ B. In the category K of compact Haus-

dorff spaces and continuous maps, the projective objects are the extremally dis-

connected spaces, i.e., those spaces in which the closure of each open set is

open. These are the Stone spaces of the complete boolean algebras. Further-

more, a famous theorem of Gleason asserts the existence of a unique projective

cover q : P → X for any compact Hausdorff space X, i.e., an irreducible surjec-

tion q from a projective object onto X. The Gleason cover is often referred to as

the absolute of X, and two compact Hausdorff spaces are said to be co-absolute if

their absolutes are homeomorphic.

Let B be a complete Boolean algebra with Stone space X. Among the various

proximities on B which make it into a de Vries algebra, there is always a finest,

namely the 6 relation, and the de Vries dual compact Hausdorff space for this

relation is X. In fact, for any other proximity ≺ ′ with corresponding compact

Hausdorff space Y, the quotient map q : X → Y constructed in the proof of The-
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orem 4.1.5 is the Gleason cover of Y. An extensive development of the Gleason

cover by means of de Vries algebras can be found in the excellent article [4].

Proposition 4.1.7. Let B be a complete Boolean algebra with Stone space X. Then

the poset of isomorphism types of those compact Hausdorff spaces having absolute

X is isomorphic to the family of separating proximities on B.

4.2 de Vries duality with actions

Definition 4.2.1. Let (B,≺) be a de Vries algebra and let T be a topological monoid

whose elements are designated by lower case letters t, r, s . . . . An action of T on B

is a monoid antimorphism.

θ : T → homdV(B,B)

In detail,

• θ(1) is the identity de Vries morphism on B, and

• θ(rs) = θ(s) ∗ θ(r).

Our convention is that T acts on B on the right, which means that we write

(a)θ(t) for the result of applying the action θ(t) to the input a ∈ B. When we

suppress mention of θ, which we shall do whenever possible, we write (a)θ(t)

as at. Under that convention we have

• a1 = a for all a ∈ B, and

• a(rs) = (ar)s for all a ∈ B and r, s ∈ T .
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4.2.1 Smooth actions

Definition 4.2.2. An action of T on a de Vries algebra (B,≺) is said to be smooth

if for all a ≺ b in B and all t ∈ T there exists a neighborhood Nt of t such that

ar ≺ cs for all r, s ∈ Nt.

Let X be a compact Hausdorff space with dual de Vries algebra B. Then every

action of T on X induces an action of T on B, and vice-versa.

Theorem 4.2.3. An action of T on a de Vries algebra (B,≺) is smooth iff the

corresponding action makes the dual compact Hausdorff space into a flow.

Proof. Take B = RO(X) for some compact Hausdorff space acted upon by T , and

let ≺ be its unique compatible proximity, i.e., a ≺ b in B means cla ⊆ b. Then

if X is a flow we know that C(X) = CT (X), so whenever a ≺ b in B there is an

f ∈ CT (X) such that f(a) = 0 and f(X r b) = 1. As in Theorem 3.1.16, this

provides a T -scale {Uq} such that a ⊆ Uq ⊆ b for all q ∈ Q. Then for t ∈ T

we have a neighborhood Nt of t such that for all r, s ∈ Nt it is the case that

r−1U1 ⊆ s−1U2, hence

r−1a ⊆ r−1U0 ⊆ r−1U1 ⊆ s−1U2 ⊆ s−1b.

Since {r−1Uq} is a scale, cl r−1U0 ⊆ r−1U1, so that

cl r−1a ⊆ cl r−1U0 ⊆ r−1U1 ⊆ s−1b ⊆ int cl s−1b.

In the language of de Vries algebras, this translates into the assertion that

ar ≺ bs for all r, s ∈ Nt, which is to say that the action of T on B is smooth.
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Now suppose T acts smoothly on the de Vries algebra (B,≺), let X be the

compact Hausdorff space of ends of B, and identify B with RO(X). Consider

an arbitrary continuous real-valued function f : X → R, f > 0, and let {Uq} be

the scale corresponding to f as in Lemma 2.1.11, i.e., Uq = f−1(−∞,q) for all

q ∈ Q. Then U ′q ≡ int clUq ∈ B for all q ∈ Q, and U ′p ≺ U ′q for all p < q.

The key point is that the smoothness of the action insures that U ′p is T -contained

in U ′q for p < q, so that {Up} is a T -scale, and f is T -uniformly continuous by

Lemma 2.1.13 and Lemma 2.1.6. With the aid of Lemma 3.1.7, we conclude

that X is a flow.

Definition 4.2.4. A T -de Vries algebra is a de Vries algebra (B,≺) equipped with

a smooth T action, and its proximity is referred to as a T -proximity.

Definition 4.2.5. Define Φ : TK −→ dVT by Φ(X) = (RO(X),≺), where ≺ is the

unique proximity on X defined by b ≺ a if and only if clb ⊆ a. For a flow map

f : X→ Y, define Φ(f) : RO(Y)→ RO(X) by Φ(f)(a) = int cl f−1(a).

Remark 4.2.6. Note that the contravariant functor Φ is well defined because

(RO(X),≺) is a T -de Vries algebra by Theorem 4.2.3.

Lemma 4.2.7. Let f : X → Y be a flow map. Then Φ(f) is a T -de Vries morphism

from Φ(Y) to Φ(X).

Proof. It follows from de Vries duality that Φ(f) and φ(t) are de Vries mor-

phisms. We only have to show that f commutes with the actions. Since f is a

flow map, then f(t(x)) = t(f(x)) for every t ∈ T and every x ∈ X.
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Now, we would like to show that Φ(f ◦ t) = Φ(t) ∗ Φ(f). Let a,b ∈ RO(Y) be

such that b ≺ a, so that b ⊆ clb ⊆ a and it follows that int cl f−1(b) ⊆ f−1(a).

Thus int cl t−1(int cl f−1(b)) ⊆ int cl t−1(f−1(a)). Therefore, for a ≺ b we have,

(Φ(t) ◦Φ(f))(b) = int cl t−1[int cl f−1(b)]

⊆ int cl t−1[f−1(b)]

= Φ(f ◦ t)(a)

It follows that

(Φ(t) ∗Φ(f))(a) =
∨
b≺a

(Φ(t) ◦Φ(f))(b)

⊆ Φ(f ◦ t)(a)

For the reverse inclusion, let a ∈ RO(Y). First we will show that

t−1[f−1(a)] =
⋃
c≺a t

−1[f−1(c)].

It is clear that
⋃
c≺a t

−1[f−1(c)] ⊆ t−1[f−1(a)]. To prove the other inclusion

let x ∈ t−1[f−1(a)]. Then f(tx) ∈ a, and because Y is Tychonoff we can find

c ∈ RO(Y) such that f(tx) ∈ c ⊆ cl c ⊆ a and therefore x ∈
⋃
c≺a t

−1[f−1(c)].

Since a is open and since f and t are continuous functions we get

t−1[f−1(c)] ⊆ int cl t−1[int cl f−1(c)].
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Hence

int cl t−1[f−1(a)] = int cl
⋃
c≺a

t−1[f−1(c)]

⊆ int cl
⋃
c≺a

int cl t−1[int cl f−1(c)]

=
∨
c≺a

int cl t−1[int cl f−1(c)]

=
∨
c≺a

(Φ(t) ◦Φ(f))(c).

So we get Φ(f◦ t)(a) ⊆ Φ(t)∗φ(f) and therefore Φ(f◦ t)(a) = (Φ(t)∗Φ(f))(a).

A similar proof show that Φ(t ◦ f)(a) = (Φ(f) ∗Φ(t))(a) and because f ◦ t = t ◦ f

it follows that Φ(t) ∗Φ(f) = Φ(f) ∗Φ(t).

Theorem 4.2.8. Φ is a contravariant functor from TK to dVT.

Proof. Let X be a compact flow. Note that 1X is the identity function and for any

T -de Vries algebra B, 1B = idB. Let a ∈ RO(X), then

Φ(1X)(a) = int cla

= a

= 1Φ(X)(a).
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For every t ∈ T , it is clear that

Φ(t) =Φ(t ◦ 1X)(a)

= int cl t−1(a)

= at

= (Φ(t) ∗ 1Φ(X))(a).

Now let X, Y and Z be compact flows, and let f : X −→ Y and g : Y −→ Z are

flow maps. Because the composition of flow maps is a flow map then by Lemma

4.2.7 we have Φ(g ◦ f), Φ(f) and Φ(g) are T -de Vries morphisms. Following

similar steps of the proof of Lemma 4.2.7 we get Φ(g ◦ f) = φ(f) ∗Φ(g).

Definition 4.2.9. Define Ψ : dVT −→ TK by

Ψ(B) = End(B)

For every T -de Vries morphism f : A −→ B define Ψ(f) : End(B) −→ End(A) by

Ψ(f)(F) = {a ∈ A : ∃b ∈ A b ≺ a (f(b) ∈ F)}.

The contravariant functor Ψ is well-defined because for every T -de Vries al-

gebra the space of ends is a compact flow by Theorem 4.2.3. Also, it follows

from de Vries duality that Ψ(f) is a continuous function and Ψ(f)(F) ∈ End(A).

54



Theorem 4.2.10. Let f : A −→ B be a T -de Vries morphism, then Ψ(f) : End(B) −→

End(A) is a flow map.

Proof. We only have to show that Ψ(f) commutes with the actions, i.e, for every

t ∈ T we have Ψ(f) ◦ Ψ(t) = Ψ(t) ◦ Ψ(f). Since f is a T -de Vries algebra we have

f ∗ t = t ∗ f. So we only have to show that Ψ(f ∗ t) = Ψ(t) ◦ Ψ(f).

Let F ∈ End(B), then

(Ψ(t) ◦ Ψ(f))(F) = {a ∈ A : ∃c ∈ A (c ≺ a and ct ∈ η)}

= {a ∈ A : ∃c ∈ A (c ≺ a and ∃d ∈ A [d ≺ ct and f(d) ∈ F])}.

where η = {m ∈ A : d ∈ A (d ≺ m and f(d) ∈ F)} = Ψ(f)(F).

If a ∈ Ψ(t) ◦ Ψ(f), then there exists c ≺ a and d ∈ A such that d ≺ ct and

f(d) ∈ F. By (DV6) there exist c ′ such that c ≺ c ′ ≺ a. Because t and f are

de Vries morphisms, we get d ≺ ct ≺ c ′t and f(d) ≺ (f ◦ t)(c) ≺ (f ◦ t)(c ′). It

follows that f(d) ≺
∨
m≺c ′(f ◦ t)(m) = (f ∗ t)(c ′) and therefore (f ∗ t)(c ′) ∈ F

which implies that a ∈ Ψ(f ∗ t)(F).

Because Ψ(f∗t)(F) and (Ψ(t)◦Ψ(f))(F) are ends on A and (Ψ(t)◦Ψ(f))(F) ⊆

Ψ(f ∗ t)(F), we have Ψ(f ∗ t)(F) = (Ψ(t) ◦ Ψ(f))(F). A similar proof shows

that Ψ(t ∗ f) = Ψ(f) ◦ Ψ(t) and because f is a T -de Vries morphism we get

Ψ(t) ◦ Ψ(f) = Ψ(f) ◦ Ψ(t).
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Theorem 4.2.11. Ψ is a contravariant functor from dVT to TK.

Proof. Let 1A be the idenity de Vries morphism, then

Ψ(1B)(F) = {a ∈ A : ∃c ∈ A (c ≺ a and c ∈ F)}

= F

= 1End(A)(F)

= 1Ψ(A)(F).

Let f : A −→ B and g : B −→ C be a T -de Vries morphisms, then by de

Vries duality Ψ(g ∗ f),Ψ(g) and Ψ(f) are continuous functions and moreover,

Ψ(g ∗ f) = Ψ(f) ◦ Ψ(g). By Theorem 4.2.10 we have Ψ(g ∗ f),Ψ(g) and Ψ(f) are

flow maps.

Remark 4.2.12. From de Vries duality we have

• For any compact space X we have (Ψ ◦ Φ)(X) is homeomorphic to X, and

therefore, every compact flow X is homeomorphic to (Ψ ◦Φ)(X).

• For every de Vries algebra B we have (Φ ◦ Ψ)(B) is isomorphic to B which

implies that for every T -de Vries algebra B we have (Φ ◦ Ψ)(B) is isomorphic

to B.

• For every de Vries algebra B, the map B −→ RO(End(B)) which maps b to

O(b) is a bijection.
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• For every de Vries morphism f : A −→ B and a ∈ Awe have (Φ◦Ψ)(f)(O(a)) =

O(f(a)). Therefore, if A is a T -de Vries algebra then for every t ∈ T we have

(Φ ◦ Ψ)(t)(O(a)) = O(t(a)). We shall denote this by O(a)t = O(at).

• For every continuous function f : X −→ Y and x ∈ X we have (Ψ◦Φ)(f)(Fx) =

Ff(x) ∩ RO(Y). If f is a flow map then for every t ∈ T we have tFx = Ftx,

which implies that

(Ψ ◦Φ)(f)(tFx) = Ff(tx) ∩ RO(Y)

= Ftf(x) ∩ RO(Y)

= t[Ff(x) ∩ RO(X)]

= t[(Ψ ◦Φ)(f)(Fx)].

Theorem 4.2.13. For a T -de Vries algebra (B,≺) define ξB : (RO(End(B)),≺) −→

B by ξB(O(b)) = b. Then ξ : Φ ◦ Ψ −→ 1dVT is a natural isomorphism.

Proof. By remark 4.2.12 we have that ξB is a bijection; it remains only to show

that ξB commutes with the actions, i.e., for every t ∈ T we have ξBt = tξB. Let

t ∈ T , then

ξB(O(b)t) = ξB(O(bt))

= bt

= (ξBO((b)))t.
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Assuming that f : A −→ B a T -de Vries morphism, then we have

(Φ ◦ Ψ)(A) A

(Φ ◦ Ψ)(B) B

ξA

(Φ ◦ Ψ)(f)

ξB

f

we want to show this diagram commutes. First

(1dVT (f) ◦ ξA)(O(a)) = 1dVT (f)(a) = f(a).

Also, by remark 4.2.12 we have

(ξB ◦ (Φ ◦ Ψ)(f))(O(a)) = ξB(O(f(a))) = f(a).

Because ξB is an isomorphism for all T -de Vries algebra B it follows that ξ is a

natural isomorphism. For every t ∈ T we have

(1dVT (f) ◦ ξA)(O(a)) = 1dVT (f)(at)

= f(at)

= f ∗ t(a)

= t ∗ f(a)

= t ∗ (1dVT (f) ◦ ξA)(O(a)).
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Theorem 4.2.14. For a compact flow, define ζX : X −→ (End(RO(X),≺)) by

ζX(x) = F ∩ RO(X). Then ζ : 1TK −→ (Ψ ◦Φ) is a natural isomorphism.

Proof. For compact flows X, Y and flow map f : X −→ Y we have the following

diagram.

X (Ψ ◦Φ)(X)

Y (Ψ ◦Φ)(Y)

ζX

f

ζ
Y

(Ψ ◦Φ)(f)

we shall show that the diagram commutes. Note that

(ζ ◦ f)(x) = ζ(f(x)) = Ff(x) ∩ RO(X).

Also, by remark 4.2.12 we have

((Ψ ◦Φ)(f) ◦ ζX)(x) = (Ψ ◦Φ)(f)(Fx) = Fx ∩ RO(Y).

So the diagram commutes and hence ζ is a natural transformation. By remark

4.2.12 ζX is a homeomorphism for all compact flow X. Therefore it is a natural

isomorphism.
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We only have to show that the morphisms commutes with the action. Let

t ∈ T , then

(ζ ◦ f)(tx) = ζ(f(tx))

= Ff(tx) ∩ RO(X)

= t[Ff(x) ∩ RO(X)]

= t[(ζ ◦ f)(x)].

Theorem 4.2.15. The categories TK and dVT are dually equivalent.

Proof. By Theorem 4.2.8, Φ is a contravariant functor from TK to dVT and by

Theorem 4.2.11, ψ is a contravariant functor from dVT to TK. By Theorem

4.2.13 and Theorem 4.2.14, ξ : Φ ◦ Ψ −→ 1dVT and ζ : 1TK −→ Ψ ◦ Φ are

natural isomorphisms. Therefore, dVT and Tk are dually equivalent.

Theorem 4.2.16 (de Vries duality with actions). A compact Hausdorff flow X

induces an action making RO(X) a separating T -de Vries algebra, and for every

separating T -de Vries algebra (B,≺) there is a unique compact Hausdorff flow X

for which B is isomorphic to RO(X) and, when B is identified with its image under

this isomorphism, a ≺ b iff clX a ⊆ b.

We point out that Theorem 4.2.16 includes classical de Vries duality as the

special case in which the action of T is trivial, i.e., T = 1.
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4.2.2 round T -filters and subflows

A round T -filter is a round filter that is closed under the actions. A round filter

F is said to be fixed if tF = F for all t ∈ T . The dual of round T -filters are called

round T -ideals. It is well know that round filters are in bijective correspondence

with round ideals by means of the complementation map.

Theorem 4.2.17. If (B,≺) is a T -de Vries algebra, then there is a one-to one

correspondence between round T -filters of B and subflows of End(B).

Proof. For a round T -filter F of B, let us define:

YF = ∩ {O(d) : d ∈ F} .

Let = ∈ YF. Following the proof of (I.3.12) of [5] the set YF is a closed subset

of the space End(B) because for every a ∈ F there exist b ∈ F such that b ≺ a

and hence O(b) ⊆ O(a). Moreover, for every t ∈ T we have bt ∈ F which

implies that

bt ∈ = ⇒ a ∈ t= ∀a ∈ F

⇒ t= ∈ O(a) ∀a ∈ F

⇒ t= ∈ YF.

Therefore, YF is a subflow and if F ⊆ = then Y= ⊆ YF.
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Now suppose Y is a subflow of End(B), define

FY = {a ∈ B : Y ⊆ O(a)} .

To show FY is a round filter

• let a ∈ FY and a 6 b , we have Y ⊆ O(a) ⊆ O(b) which implies that

b ∈ FY;

• let a,b ∈ FY , then Y ⊆ O(a) ∩O(b) = O(a∧ b). Thus for every = ∈ Y we

have a∧b ∈ = so there exist c= ∈ = such that c= ≺ a∧b. Then {O(c=)}=∈Y

is an open cover of Y and it has a finite subcover. Therefore we could fined

c ≺ a∧ b and Y ⊆ O(c).

Since Y is closed under the actions, then tY ⊆ Y. Let a ∈ FY

a ∈ FY ⇒ tY ⊆ Y ⊆ O(a)

⇒ a ∈ t= for every = ∈ Y and for every t ∈ T

⇒ ∃b= ∈ B such that b= ≺ a and b=t ∈ =

⇒ at ∈ = for every = ∈ Y

⇒ Y ⊆ O(at)

⇒ at ∈ FY .

Therefore FY is a round T -filter.
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Lemma 4.2.18. Let X be a compact Hausdorff space with regular open algebra B.

Then the maps

U −→ IU ≡ {a ∈ B : cla ⊆ U }⋃
I←− I

are inverse bijections between the family OX of open subsets of X and the family of

round ideals of B.

Proof. For a given U ∈ OX, it is straightforward to check that IU is an ideal of

B. To verify that it is round, consider a ∈ Iu. Then X r U and cla are disjoint

closed subsets of the normal space X, hence there is an open set V such that

cla ⊆ V ⊆ clV ⊆ U, yielding a ≺ b ∈ IU for b ≡ int clV. And it is clear that⋃
IU = U, for obviously

⋃
IU ⊆ U, and U ⊆

⋃
IU by virtue of the regularity of

X.

Given a round ideal I of B, let U ≡
⋃
I. We claim that IU = I. For I ⊆ IU

because for every a ∈ I there exists some b ∈ I such that cla ⊆ b ⊆
⋃
I = U.

To show that IU ⊆ I, consider a ∈ B such that cla ⊆ U. Since cla is compact,

cla ⊆
⋃
I0 for a finite subset I0 ⊆ I. Then clearly a ⊆ int cl

⋃
I0, which is to say

that a 6
∨
I0 in B, hence a ∈ I.

We remind the reader that, in a de Vries algebra (B,≺), any ideal I on B

contains a largest round ideal

I≺ ≡ {a ∈ I : ∃b ∈ I (a ≺ b) } ,
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an ideal which we refer to as the round part of I. In case B arises from a compact

Hausdorff space X as in Lemma 4.2.18,
⋃
I≺ =

⋃
I. In connection with that

lemma, note that for each open subset U ⊆ X there are typically many ideals

I ⊆ B such that
⋃
I = U, but there is exactly one round ideal with this feature.

Let X be a compact flow. Recall that a subset Y ⊆ X is T -invariant if ty ∈ Y

for all y ∈ Y and T -stable if t−1Y ⊆ Y for all t ∈ T .

Lemma 4.2.19. Let X be a compact flow and let (B,≺) be its dual T -de Vries

algebra. Then the bijections of Lemma 4.2.18 restrict to inverse bijections between

the families of T -stable open subsets of X and round T -ideals of B. Consequently,

the maps

Y −→ {a ∈ B : cla ∩ Y = ∅ }

Xr
⋃
I←− I

are inverse bijections between the family of closed subflows of X and the family of

round T -ideals of B.

Proof. A subset Y ⊆ X is a closed subflow iff its complement U = X r Y is open

and T -stable.

Let X be a compact Hausdorff space with de Vries dual (B,≺B), and let Y be a

closed subspace of X with de Vries dual (A,≺A). Let U ≡ Xr Y and I ≡ IU as in
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Lemma 4.2.18. Then the insertion Y → X gives rise to a de Vries homomorphism

m : B→ A = (b 7→ intY clY(b ∩ Y)), b ∈ B.

Lemma 4.2.20. Assume the foregoing terminology. Then for elements bi ∈ B,

m(b1) 6 m(b2) ⇐⇒ ∀b ∈ B (b ≺ b1 ∧ ¬b2 =⇒ b ∈ I).

Consequently, for bi ∈ B,

m(b1) = m(b2) ⇐⇒ ∀b ∈ B (b ≺ b1 ∧ ¬b2 or b ≺ b2 ∧ ¬b1 =⇒ b ∈ I).

Proof. In any boolean algebra, b1 � b2 iff there exists 0 < a 6 b1 ∧ ¬b2.

Applying this principle to elements m(bi), we get

m(b1) � m(b2) ⇐⇒ ∃ 0 < a 6 m(b1)∧ ¬m(b2).

But m is surjective and preserves meets, so we may take a to be of the form

m(b) for some b 6 b1 such that m(b) > 0 and m(b)∧m(b2) = m(b∧ b2) = 0.

But if m(b) = intY clY(b ∩ Y) > 0 then b 6⊆ U, from which it follows that b ′ /∈ I

for some 0 < b ′ 6 b. Here we have used the fact that b =
⋃
{b ′ : clb ′ ⊆ b } by

virtue of the regularity of X.
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4.3 Proximity topology

This section is a digression from the main development. In it we observe that

the proximity≺ on a de Vries algebra (B,≺) is associated with a particular topol-

ogy on B, here termed a proximity topology. This is Theorem 4.3.2. However, the

proximity topology is not a Boolean topology, meaning that it does not render

the Boolean operations continuous, as we show in Example 4.3.3. In fact, as of

this writing we are unaware of any further implications of these observations.

Definition 4.3.1. A proximity topology on a complete Boolean algebra B is a

topology having a basis for open sets of the form

〈a,b〉 ≡ int[a,b], a 6 b,

with the following features:

(PT1) 1 and 0 are isolated.

(PT2) ¬〈a,b〉 = 〈¬b,¬a〉;

(PT3) If 〈a,b〉 6= ∅ and 〈a, c〉 6= ∅ then 〈a,b∧ c〉 6= ∅;

(PT4)
∨
〈⊥,a〉 = a for all a ∈ B;

(PT5) If 〈a,b〉 6= ∅ then there exists a 6 c 6 b for which 〈a, c〉 6= ∅ and 〈c,b〉 6= ∅.
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Theorem 4.3.2. Given a de Vries algebra (B,≺), the subsets of the form

〈a,b〉 ≡ {c : a ≺ c ≺ b}, a 6 b,

form a basis for a proximity topology on B. Conversely, given a proximity topology

on a complete Boolean algebra B, the relation ≺ on B defined by the rule

a ≺ b ⇐⇒ a 6 b and int[a,b] 6= ∅.

is a proximity on B which generates the given topology as above. These two pro-

cesses are mutually inverse, so that the proximities on B are in bijective correspon-

dence with the proximity topologies on B.

Proof. For a given de Vries algebra (B,≺), we would like to show that the family

of subsets of B defined as above forms a base for a proximity topology on B.

Note that the family is certainly closed under intersection, for

〈a,b〉 ∩ 〈c,d〉 = int[a,b] ∩ int[c,d] = int([a,b] ∩ [c,d])

= int[a∨ c,b∧ d] = 〈a∨ c,b∧ d〉.

Furthermore, the family satisfies (PT1) because (B,≺) satisfies (DV1) of Defi-

nition 4.1.1; (PT2) follows from (DV4) in similar fashion, as does (PT4) from

(DV8). Next observe that 〈a,b〉 6= ∅ iff a ≺ b, hence (PT3) follows from (DV4)

and (PT5) follows from (DV6).
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Now suppose we are given a basis

〈a,b〉 ≡ int[a,b], a 6 b,

for a proximity topology on a complete Boolean algebra B, and define the re-

lation ≺ as above. Then (B,≺) satisfies (DV1) of Definition 4.1.1 because the

topology satisfies (PT1), (DV2) and (DV3) by construction, (DV4) by (PT3),

(DV5) by (PT2), (DV6) by (PT5), and (DV7) by (PT4). Finally, only a little

reflection is required to conclude that these two processes are inverses of one

another.

We note here that the proximity topology is not a Boolean topology, which is

to say that the Boolean operations on B are not necessarily continuous in that

topology.

Example 4.3.3. Take B to be RO[0, 1], the regular open algebra on the unit inter-

val, and let a1 ≡ [0, 1/2) and a2 ≡ (1/2, 1], elements which join to the top [0, 1]

in B. But the top element is isolated in the proximity topology, so that if the join

operation were continuous then we could find regular open subsets bi ≺ ai ≺ ci

such that a ′1 ∨ a
′
2 = [0, 1] for all bi ≺ a ′i ≺ ci. Clearly no such elements bi and ci

exist.
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Chapter 5

Coproduct in dVT

5.1 Coproduct of Boolean algebras

Theorem 11.2 of [12] states that every family of Boolean algebras has, up to

isomorphism, a unique free product which is in fact the boolean algebra dual to

the product space of the dual spaces of boolean algebras in the given family.

Assume that A and B are complete Boolean algebras, let SA = ult(A) and

SB = ult(B) be their Stone spaces, and identify A and B with the algebras

Clop(SA) and Clop(SB) of clopen subsets of SA and SB, respectively. By elemen-

tary Stone duality, the sumA⊕B in the category of boolean algebras is the clopen

algebra of the product SA×SB in the category of compact Hausdorff spaces. The

canonical insertions are given by the formulas A → A⊕ B = (a 7→ a× SB) and

B → A ⊕ B = (b 7→ SA × b). The rectangle determined by elements a ∈ A and

b ∈ B is the set (a× SB) ∩ (SA × b), a set we denote by a∧ b.
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Two important features of rectangles are

a1 ∧ b1 6 a2 ∧ b2 ⇐⇒ a1 6 a2 and b1 6 b2, and

(a1 ∧ b1)∧ (a2 ∧ b2) = 0 ⇐⇒ a1 ∧ a2 = 0 or b1 ∧ b2 = 0.

An arbitrary element of the sum is a finite union of rectangles, written
∨
I(ai∧bi)

for a finite index set I.

5.2 Coproduct of de Vries algebras

Let (A,≺A) and (B,≺B) be abstract de Vries algebras, with compact Haus-

dorff spaces XA and XB of ends. Our objective is the coproduct of (A,≺A) and

(B,≺B) in the category dV of de Vries algebras. This, of course, is the de Vries

dual (RO(XA×XB),≺) of the product XA×XB in the category of compact Haus-

dorff spaces. What we offer in this section is an alternative construction of the

coproduct, one which sheds some light on its internal structure.

We start with the sum A⊕ B in the category of Boolean algebras, with Stone

spaces SA and SB and with canonical insertions A→ A⊕B and B→ A⊕B as in

Subsection 5.1. We work in the complete boolean algebra RO(SA × SB), which

we denote by A� B. Since the compact space SA × SB has a base of rectangles,

each element u ∈ A � B can be expressed in the form u =
∨
I(ai ∧ bi) for a

possibly infinite index set I.
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The elements which can be expressed in this form for a finite index set I are

the clopen sets, and they make up the boolean subalgebra A⊕ B of A� B. The

expression u =
∨
I(ai ∧ bi) is not unique, i.e., it is possible that

∨
I(ai ∧ bi) =∨

J(cj∧dj) for I 6= J. However, comparison of elements of A�B is facilitated by

recalling that, in any boolean algebra, a � b iff there exist 0 < c 6 b such that

a ∧ c = 0; we say that c witnesses the fact that a � b. This is the idea behind

the proof of Lemma 5.2.1.

Lemma 5.2.1. For elements u = a∧b and v =
∨
J(aj∧bj) of A�B, u 6 v iff for

all subsets J0 ⊆ J we have a 6
∨
J0
aj or b 6

∨
JrJ0

bj. Consequently, for elements

u =
∨
I(ai ∧ bi) and v =

∨
J(aj ∧ bj) of A � B, u 6 v iff for all i ∈ I and all

subsets J0 ⊆ J we have ai 6
∨
J0
aj or bi 6

∨
JrJ0

bj.

Proof. If a∧ b �
∨
I(ai ∧ bi) then there is a witnessing rectangle 0 < a ′ ∧ b ′ 6

a∧ b disjoint from
∨
I(ai ∧ bi). But

0 = (a ′ ∧ b ′)∧
∨
I(ai ∧ bi) =

∨
I((a

′ ∧ b ′)∧ (ai ∧ bi))

implies that a ′ ∧ ai = 0 or b ′ ∧ bi = 0 for all i ∈ I. If we put I0 ≡ { i :

a ′∧ ai = 0 } then we get that a �
∨
I0
ai as witnessed by a ′ and b �

∨
IrI0

bi as

witnessed by b ′.

Conversely, if there is a subset I0 ⊆ I such that

0 < a ′ ≡ a∧

(
¬
∨
I0

ai

)
and 0 < b ′ ≡ b∧

(
¬
∨
IrI0

bi

)

then a ′ ∧ b ′ is a nonempty open subset of a∧ b disjoint from
∨
I(ai ∧ bi).
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A� B is the boolean completion of A⊕ B, i.e., A� B is the unique complete

boolean algebra into which A⊕B embeds as a dense subalgebra. But A�B also

has the status of a de Vries algebra, as we shall now explain.

We may regard the Stone space SA of A as the de Vries dual, i.e., the space

of ends of the de Vries algebra (A,6), and likewise SB may be regarded as the

space of ends of (B,6). Since SA × SB is the product in the category of compact

Hausdorff spaces, its de Vries dual (A � B,≺0) is the coproduct of (A,6) and

(B,6) in the category of de Vries algebras. Here ≺0 is the canonical proximity

on the compact space SA × SB, i.e., u ≺0 v iff clu 6 v. Note that if u ∈ A ⊕ B

then u is clopen, hence u ≺0 u.

Lemma 5.2.2 ([4], Section 4). Assume the foregoing terminology. Then for all

u, v ∈ A� B, u ≺0 v iff there exists some w ∈ A⊕ B such that u 6 w 6 v.

Proof. Certainly, if clu 6 v =
∨
I(ai ∧ bi) then since clu is compact, clu 6∨

I0
(ai ∧ bi) ≡ w for some finite subset I0 ⊆ I, and w ∈ A ⊕ B. On the other

hand, if u 6 w 6 v for some w ∈ A ⊕ B then we have u 6 w ≺0 w 6 v, hence

u ≺0 v.

Thus (A � B,≺0) is a zero-dimensional de Vries algebra. Now we shall in-

troduce a new proximity ≺ on A � B, and we shall show that the space of ends

of (A � B,≺) is XA × XB. Finally we shall show that the identical insertion

(A � B,≺) → (A � B,≺0) is a de Vries homomorphism, and this will provide a

surjection SA × SB → XA × XB.
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Definition 5.2.3. For elements u =
∨
I(ai ∧ bi) and v =

∨
J(aj ∧ bj) of A ⊕ B,

declare u ≺ v to mean that for all i ∈ I and J0 ⊆ J,

ai ≺A
∨
J0

aj or bi ≺B
∨
JrJ0

bj.

For elements u, v ∈ A�B, declare u ≺ v to mean that there exist elements u ′, v ′ ∈

A⊕ B such that u 6 u ′ ≺ v ′ 6 v.

Lemma 5.2.4. (A� B,≺) is a de Vries algebra.

Proof. It is clear that ≺ satisfies (dV1), and it satisfies (dV2) because u ′ ≺ v ′

implies u ′ 6 v ′ for elements u ′, v ′ ∈ A⊕ B by Lemma 5.2.1. It is also clear that

≺ satisfies (dV3). To verify the remaining de Vries axioms, consider elements

uj =
∨
Ij
(aji ∧ b

j
i) for index sets Ij.

(dV4) It suffices to show that for elements ui ∈ A ⊕ B, u1 ≺ u2,u3 implies

u1 ≺ u2 ∧ u3. Observe first that

u2 ∧ u3 =
∨
i∈I2

(a2
i ∧ b

2
i)∧

∨
j∈I3

(a3
j ∧ b

3
j )

=
∨

(i,j)∈I2×I3

((a2
i ∧ a

3
j )∧ (b2

i ∧ b
3
j )).

Fix i0 ∈ I1 and J ⊆ I2 × I3. For each k ∈ I2 let Jk ≡ { j ∈ I3 : (k, j) ∈ J }. Because

u1 ≺ u3, for each k ∈ I2 either a1
i0
≺A

∨
i∈Jk a

3
i or b1

i0
≺B

∨
i/∈Jk b

3
i . Let

K ≡

{
k ∈ I2 : a1

i0
≺A

∨
i∈Jk

a3
i

}
.
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Because u1 ≺ u2, either a1
i0
≺A

∨
k∈K a

2
k or b1

i0
≺B

∨
k/∈K b

2
k. In the first case

when a1
i0
≺A

∨
k∈K a

2
k, we set a ≡

∧
K

∨
i∈Jk a

3
i . Since a1

i0
≺A a we get

∨
(i,j)∈J

(a2
i ∧ a

3
j ) =

∨
k∈I2

∨
j∈Jk

(a2
k ∧ a

3
j ) >

∨
k∈K

(
a2
k ∧

∨
j∈Jk

a3
j

)

>
∨
k∈K

(a2
k ∧ a) =

∨
k∈K

a2
k ∧ aA�a1

i0
.

In the second case when b1
i0
≺B

∨
k/∈K b

2
k, we have for each k /∈ K that b1

i0
≺B∨

i/∈Jk b
3
i , so we put b ≡

∧
k/∈K

∨
i/∈Jk b

3
i . Since b1

i0
≺ b we get

∨
(i,j)/∈J

(b2
i ∧ b

3
j ) =

∨
k∈I2

∨
j/∈Jk

(b2
k ∧ b

3
j ) >

∨
k/∈K

(
b2
k ∧

∨
j/∈Jk

b3
j

)

>
∨
k/∈K

(b2
k ∧ b) =

∨
k/∈K

b2
k ∧ b � b1

i0
.

(dV5) It is sufficient to show that u1 ≺ U2 implies ¬u2 ≺ ¬u1 for elements

ui ∈ A⊕ B. So assume u1 ≺ u2, and observe that

¬u1 = ¬
∨
I1

(a1
i ∧ b

1
i) =

∧
I1

(¬a1
i ∨ ¬b1

i) =
∨
K⊆I1

(∧
k∈K

¬a1
k ∧

∧
k/∈K

¬b1
k

)
.

Thus in order to show that ¬u2 ≺ ¬u1 we must show that for any subset J ⊆ I2

and for any family K of subsets of I1 we have

∧
i∈J

¬a2
i ≺A

∨
K∈K

∧
k∈K

¬a1
k or

∧
i/∈J

¬b2
i ≺B

∨
K/∈K

∧
k/∈K

¬b1
k,
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which is to say that

∧
K∈K

∨
k∈K

a1
k ≺A

∨
i∈J

a2
i or

∧
K/∈K

∨
k/∈K

b1
k ≺B

∨
i/∈J

b2
i . (∗)

For that purpose fix a subset J ⊆ I2 and family K of subsets of I1, and put

K ≡

{
k ∈ I1 : a1

k ≺A
∨
i∈J

a2
i

}
.

Since
∨
k∈K a

1
k ≺A

∨
i∈J a

2
i by the dual of axiom (dV4) in A, if K ∈ K then the

first alternative in (∗) holds. On the other hand, the assumption that u1 ≺ u2

implies that b1
k ≺B

∨
i/∈J b

2
i for all k /∈ K, hence

∨
k/∈K b

1
k ≺B

∨
i/∈J b

2
i . Therefore

if K /∈ K then the second alternative in (∗) holds.

(dV6) It is enough to show that whenever elements ui ∈ A⊕B satisfy u1 ≺ u2

there exists v ∈ A⊕ B such that u1 ≺ v ≺ u2.

We first claim that for ai ∈ A and bi ∈ B, a1 ∧ b1 ≺ a2 ∧ b2 if a1 ≺A a2 and

b1 ≺B b2. This is true because, for the purpose of applying Definition 5.2.3, we

view the expression a2 ∧ b2 as of the form
∨

{2}(ai ∧ bi). Then a subset J ⊆ {2}

is either {2} or ∅, and if J = {2} then a1 ≺A
∨
j∈J aj = a2 and if J = ∅ then

b1 ≺
∨
j/∈J bj = b2.

We next claim that for any a ∈ A and b ∈ B such that a∧ b ≺ u =
∨
I(ai ∧

bi) ∈ A⊕B there exist elements a ′ ∈ A and b ′ ∈ B such that a∧b ≺ a ′∧b ′ ≺ u.

For the assumption that a∧ b ≺ u means that for any J ⊆ I either a ≺A
∨
j∈J aj

or b ≺B
∨
j/∈J bj. By appealing to axiom (dV6) in A and B separately, we may
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choose elements a ′ ∈ A and b ′ ∈ B such that

a ≺A a ′ ≺A
∧{∨

j∈J

a2
j : a ≺A

∨
j∈J

a2
j

}
and

b ≺B b ′ ≺B
∧{∨

j∈J

b2
j : b ≺B

∨
j∈J

b2
j

}
.

Then by construction we have arranged for a∧ b ≺ a ′ ∧ b ′ ≺ u.

Now assume that
∨
I1
(a1
i ∧ b

2
i) = u1 ≺ u2 =

∨
I2
(a2
i ∧ b

2
i) for finite index

sets I1 and I2. The proof of axiom (dV6) is completed by using the second claim

to choose, for each i ∈ I1, elements a ′i ∈ A and b ′i ∈ B such that a1
i ∧ b

1
i ≺

a ′i ∧ b
′
i ≺ u2, and then checking that u1 ≺

∨
I1
(a ′i ∧ b

′
i) ≺ u2.

(dV7) If 0 < u ∈ A� B then there exists 0 < v ∈ A⊕ B with v 6 u because

A ⊕ B is dense in A � B, say v =
∨
I(ai ∧ bi) for finite index set I. Moreover,

there exist an index i ∈ I such that ai ∧ bi > 0, which is to say ai > 0 in A and

bi > 0 in B. By (dV7) in A and B there exist 0 < c ∈ A and 0 < d ∈ B such

that c ≺A ai and d ≺B bi. Therefore c ∧ d ≺ ai ∧ bi 6 u, which implies that

0 < c∧ d ≺ u.

Lemma 5.2.5. The compact Hausdorff space Z of ends of the de Vries algebra A�B

is (homeomorphic to) XA × XB, where XA and XB represent the spaces of ends of

A and B, respectively.

Proof. We shall establish a bijection between XA × XB and Z. If x ∈ XA and

y ∈ XB then it is straightforward to check that the filter z(x,y) generated by

{a ∧ b : a ∈ x, b ∈ y} is round. To show that z(x,y) is maximal among round
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filters, it is sufficient to show that if a ∧ b ≺
∨
I(ai ∧ bi) in A ⊕ B then either

¬(a∧ b) ∈ z(x,y) or
∨
I(ai ∧ bi) ∈ z(x,y). This means that for all I ′ ⊆ I, either

a ≺A
∨
i∈I ′ ai or b ≺B

∨
i/∈I ′ bi, so that, by the maximality of x and y, either

¬a ∈ x or
∨
i∈I ′ ai ∈ x or ¬b ∈ y or

∨
i/∈I ′ bi ∈ y. If ¬a ∈ x then ¬(a ∧ b) =

¬a ∨ ¬b > ¬a ∧ 1B ∈ z(x,y), and similarly if ¬b ∈ y then ¬(a ∧ b) ∈ z(x,y).

In the only case remaining we have that for all I ′ ⊆ I either
∨
i∈I ′ ai ∈ x or∨

i/∈I ′ bi ∈ y. In view of the fact that

∨
I

(ai ∧ bi) =
∧
I ′⊆I

( ∨
i∈I ′

ai ∨
∨
i/∈I ′

bi

)
,

we can conclude that
∨
I(ai ∧ bi) ∈ z(x,y).

Consider an arbitrary z ∈ Z and put xz ≡ {a : a ∧ 1B ∈ z}. We claim that xz

is an end of A. Surely xz is a filter on A; to show that it is round, consider an

arbitrary a ∈ xz. Since z is round there exists u ∈ A � B such that a � u ∈ z;

without loss of generality we may assume u ∈ A ⊕ B, say u =
∨
I(ai ∧ bi for

finite index set I. Since ai ∧ bi ≺ a ∧ 1B for each i ∈ I, it follows that ai ≺A a

for each i, hence
∨
I ai ≺A a and a∧ 1B �

∨
I ai∧ 1B ∈ z and a �A

∨
I ai ∈ xz.

To show that xz is maximal among round filters on A, consider a1 ≺A a2. Then

a1 ∧ 1B ≺ a2 ∧ 1B, hence either ¬(a1 ∧ 1B) ∈ z or a2 ∧ 1B ∈ z, which yields

¬a1 ∈ xz or a2 ∈ xz. This proves the claim, and a parallel argument shows that

{b : 1A ∧ b ∈ z} ≡ yz ∈ XB.

Finally, since for any z ∈ Z it is clear that z(xz,yz) ⊆ z, it follows from the

maximality of z(xz,yz) that z(xz,yz) = z. And since for any x ∈ XA and y ∈ XB
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it is clear that x ⊆ xz(x,y) and y ⊆ yz(x,y), it likewise follows from maximality

that x = xz(x,y) and y = yz(x,y). Having established the bijection, the proof is

completed by a routine argument showing its continuity in both directions.

Lemma 5.2.6. The insertion map (A�B,≺)→ (A�B,≺0) is a de Vries morphism.

Proof. It is clear that it is a boolean isomorphism; we only have to prove that

if u ≺ v then u ≺0 v. But this is immediate from Lemma 5.2.2 and Definition

5.2.3.

Lemma 5.2.7. (A � B,≺), with the standard insertion maps, functions as the

categorical sum in dV.

Proof. Apply de Vries duality to the fact that Z serves as the product of XA and

XB in the category of compact Hausdorff spaces.

5.3 Co-free T -de Vries algebras

In this section we show that an abstract de Vries algebra can be endowed

with actions as freely as possible. Specifically, we develop the cofree T -de Vries

algebra over a naked de Vires algebra. In detail, for a given de Vries algebra

A we find a T -de Vries algebra D and de Vries homomorphism g : D → A with

the following universal property. For every T -de Vries algebra C and de Vries

homomorphism f : C → A there is a unique T -de Vries homomorphism h : C →

D such that g ◦ h = f.
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A C

D

f

h
g

In order to carry out the construction of D we make the simplifying assump-

tion that T is compact. That implies that T is a compact flow under the action

T × T → T = ((t, s) 7→ ts) by left multiplication. Consequently, the action

RO(T)× T → T = ((b, t) 7→ bt ≡ int cl t−1b = int cl { s : ts ∈ b })

is a smooth action on the de Vries algebra (RO(T),≺), where a ≺ b in RO(T) if

cla ⊆ b.

Now suppose we are given a given naked de Vries algebra (A,≺A) with dual

compact Hausdorff space XA of ends. Form the sum D ≡ A � RO(T) as in the

previous section. The de Vries dual of D is the product T × XA, which is also a

compact flow under left multiplication according to the rule

t(s, x) ≡ (ts, x), s, t ∈ T , x ∈ X.

Lemma 5.3.1. The action of T on T × XA by left multiplication gives rise to the

dual action of T on D given by the rule

ut =
∨

{a∧ bt : a ∈ A, b ∈ RO(T), a∧ b ≺ u } , u ∈ D, t ∈ T .

This action is smooth.
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Proof. Each element u ∈ D is the join of rectangles a ∧ b ≺ u, where a and b

are regular open subsets of XA and T , respectively. And

(a∧ b)t = int cl { (s, x) : t(s, x) ∈ a∧ b }

= int cl { (s, x) : ts ∈ b and x ∈ a } = a∧ bt.

The smoothness of the action is explained by Theorem 4.2.3.

We remark that a direct proof that the formula displayed in Lemma 5.3.1

gives a smooth action of T on D, one that does not go through the dual, appears

to be subtle.

It is an important fact that every compact Hausdorff space can be freely em-

bedded in a compact flow.

Proposition 5.3.2 ([1], 6.1). Let X be a compact Hausdorff space. Then the map

k : X → T × X = (x 7→ (1, x)) is the free compact flow over X. That is, for any

compact flow Y and any continuous function m there is a unique flow map l such

that l ◦ k = m.

T × X Y

X

l

k
m

The map l satisfies l((t, x)) = tm(x) for all x ∈ X and t ∈ T .

Proof. Note that l(r(t, x)) = l(rt, x) = rtm(x) = rl(t, x) which implies that l is a

flow map.
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Proposition 5.3.3. There is a unique cofree T -de Vries algebra over any naked de

Vries algebra. That is, for any given de Vries algebra A there is a unique T -de Vries

algebra D and de Vries homomorphism g with the following universal property.

For any T -de Vries algebra C and de Vries homomorphism f there is a unique T -de

Vries homomorphism h such that g ◦ h = f.

D C

A

g

h

f

The map g satisfies g(u) =
∨
{a ∈ A : a∧ b ≺ u and 1 ∈ b } for all u ∈ D. The

map h satisfies h(c) =
∨
{a∧ b : ∀t ∈ b (a 6 f(ct) } for all c ∈ C.

Proof. This is the dual of Proposition 5.3.2, with X there taken to be XA here,

and the dual of T × X there taken to be D = A � RO(T) here. To verify the

formula for g, first note that for any u ∈ D we have

g(u) = int clk−1(u) = int cl { x ∈ XA : k(x) = (1, x) ∈ u } .

where k has the meaning in Proposition 5.3.2. But a point (1, x) lies in u iff

there is a basic rectangle of the form a∧ b for a ∈ RO(XA) = A and b ∈ RO(T)

such that (1, x) ∈ a∧ b ≺ u.

To verify the formula for h, first observe that for any c ∈ C,

h(c) = int cl l−1c = int cl { (t, x) : l(t, x) ∈ c } = int cl { (t, x) : tm(x) ∈ c }

= int cl { (t, x) : m(x) ∈ ct } = int cl
{
(t, x) : x ∈ m−1(ct)

}
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where l has the meaning in Proposition 5.3.2. But a point (t, x) ∈ T × XA has

the feature that m(x) ∈ ct iff there is a basic rectangle of the form a ∧ b for

a ∈ RO(XA) = A and b ∈ RO(T) such that (t, x) ∈ a∧ b and m(x ′) ∈ ct ′ for all

x ′ ∈ a and t ′ ∈ b. The last condition is equivalent to a 6 f(ct).
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Chapter 6

Applications

6.1 Boolean flows

Recall that a boolean space is a space which is compact Hausdorff and zero-

dimensional, i.e., compact Hausdorff with a clopen basis. Thus a space is boolean

iff it is the Stone space of its clopen algebra; let us designate the category of such

spaces by bK. Bezhanishvili conducted a penetrating analysis of de Vries duality

confined to this subcategory of K in [4]. In that paper we find the following

strengthening of de Vries axiom (DV6).

Definition 6.1.1. We call a de Vries algebra (B,≺) zero-dimensional if axioms

(DV6) is strengthened by the following axiom:

(SDV6) a ≺ b implies there exists c ∈ B such that c ≺ c and a ≺ c ≺ b.

Note that if X is a boolean space then it is the Stone space of its clopen al-

gebra clop(X), whereas the de Vries dual of X is RO(X). These two algebras

coincide iff clop(X) is complete, i.e., iff X is extremally disconnected.
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In [11], the authors study injective and projective objects in the category of

boolean flows; let us denote this category by TbK. They show that every left

action on a boolean space gives rise to a right action on its clopen algebra, and

vice-versa; moreover, the continuity of the left action (meaning the continuity

of the evaluation map) is equivalent to the continuity of the right action (with

respect to the discrete topology). The resulting duality is between TbK and the

category of boolean algebras with actions, designated baT. The paper conducts

an extensive analysis of injective objects in baT, and in particular shows that this

category has enough injectives, and a more modest analysis of projective objects

in baT. Passing to the dual, we get that every object of TbK has a projective

cover, but that only a few objects have injective envelopes.

The two aforementioned investigations differ with one another in two im-

portant respects. First and foremost, [11] treats categories with actions and [4]

does not. Second, the two use different boolean algebras in their dualities with

boolean spaces X: clop(X) in the case of [11] and RO(X) in the case of [4]. Nev-

ertheless, both articles are closely related to the topics of this thesis. We list here

a few remarks regarding points of contact.

Remark 6.1.2. • In regard to Definition 6.1.1, note that if c ≺ c and the ac-

tion on the algebra is smooth then for every t ∈ T there exist a neighborhood

Nt of t such that cr ≺ cs for every r, s ∈ Nt. This implies, in fact, that

cr = ct for every r ∈ Nt, which agrees with the result in [11] (Lemma 1.2.1)

that Nt = {r : cr = ct} is an open subset of T .
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• Moreover, in the proximity topology of Section 4.3.1 we can see that for every

c ≺ c we have 〈c, c〉 = {c}.

• Thus if a flow X is extremally disconnected, so that clop(X) = RO(X), then

the proximity topology of Section 4.3.1 is discrete. It is this topology which

makes the action of T on clop(X) continuous, and this is in agreement with

[11] .

6.2 Gleason Cover of a compact flow

The Gleason cover of a compact flow was first introduced by Richard Ball

and James Hagler in [1]. They prove the existence and uniqueness of projective

covers in the category of flows with perfect flow maps. In the classical case (no

action), Guram Bezhanishvili gave a simple construction of the Gleason cover

of a compact space by means of de Vries duality ([4]). Even though we were

unable to extend Guram’s work to include actions, here we can at least translate

the Ball-Hagler result into terms of T -de Vries algebras. The key concept is that

of a T -essential de Vries homomorphism.

The context for the following remarks are the categories TK of compact flows

and dVT of T -de Vries algebras. Straighforward arguments can be used to show

that, in both TK and dVT, the monomorphisms are the injective morphisms and

the epimorphisms are the surjective morphisms. Of course, the monomorphisms

in one category are dual to the epimorphisms in the other.
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In a category C, a morphism f : A → B is called an irreducible surjection

if it is an epimorphism such that, for any morphism g : C → A, if f ◦ g is an

epimorphism then so is g. The irreducible surjections of TK are characterized in

Theorem 2.3.3, where they were given the name T -irreducible surjections. The

dual notion is that of an essential extension; a morphism f : A→ B of C is called

an essential extension if it is a monomorphism such that, for any morphism

g : B → C, if g ◦ f is a monomorphism then so is g. We shall use the term

T -essential extension for this type of monomorphism.

In a category C, a maximal essential extension is an essential extension f : A→

B of which every other essential extension is a factor, i.e., for any essential ex-

tension g : A → C there is a morphism h : C → B such that h ◦ g = f. The dual

notion is that of a maximal irreducible preimage. It is known that a projective

cover provides a maximal irreducible preimage.

Lemma 6.2.1. The following are equivalent for a flow map f : Y → X in TK with

dual g : A→ B in dVT .

1. f is T -irreducible, i.e., irreducible in TK.

2. f maps no proper closed subflow of Y onto X.

3. g is a T -essential extension.

4. For all 0 < b ∈ B there exist 0 < a ∈ A and finite T0 ⊆ T such that

g(a) ≺B
∨
T0
bt.
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Proof. 2 is just a reformulation of 1 in light of the fact that the epimorphisms

in TK are the surjections. The equivalence of 1 with 3 is a consequence of the

duality between TK and dVT. The equivalence of 2 with 4 here is the equivalence

of 1 with 4 in Theorem 2.3.3.

An object I in a category C is called an injective if for any morphism f : A→ I

and monomorphism g : A → B there exists a morphism h : B → I such that

h ◦ g = f.

B

A I

hg

f

An injective envelope of an object C of C is an essential extension e : A → I such

that I is an injective in C. When they exist, injective envelopes are unique up to

isomorphism over A. In many categories, including dVT, the injective envelopes

are precisely the maximal essential extensions.

Theorem 6.2.2. A T -de Vries algebra A has a maximal T -essential extension

h : A → E. This is the injective envelope of A in dVT, and is unique up to iso-

morphism.

Proof. What Ball and Hagler prove in [1] is that every object in TK has a maximal

T -irreducible preimage. This theorem is simply the statement of the dual in

dVT.
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6.3 Problems

Problem 6.3.1. Assume we are given a complete boolean algebra B and a proximity

≺ relation that satisfies de Vries axioms (dV1)-(dV6), but not (dV7). Can one find

a largest de Vries algebra subalgebra (C,≺ ′)?

Problem 6.3.2. Assume that the action of T on (B,≺) is not smooth. What is the

largest T -de Vries algebra subalgebra (C,≺ ′) on which the action is smooth?

Problem 6.3.3. What is the co-free T -de Vries algebra over a given de Vries (B,≺)

algebra if we omit the compact assumption in chapter 5?

Problem 6.3.4. If (B,≺) is a T -de Vries algebra and X is its T -de Vries dual. What

is the topology that can be defined on B such that continuity of the action on B is

equivalent to continuity of the action on X.
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Appendix A

This Appendix includes only definitions and well know facts without proves

that we have used in one or more of the previous chapters and have not defined

them there.

A.1 Set theory

A relation E on a set X, i.e., a subset of X×X, is called an equivalence relation

on X when it has the following properties:

• For every x ∈ X, xEx.

• If xEy, then yEx.

• If xEy and yEz, then xEz.

A partial order is a binary relation 6 on a set A satisfying the following axioms:

• (relexivity) a 6 a for all a ∈ A.

• (antisymmetry) If a 6 b and b 6 a, then a = b.
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• (transitivity) If a 6 b and b 6 c, then a 6 a.

A set with a partial order is called a partially ordered set.

Lemma A.1.1. (Zorn’s Lemma) Let A = (A,6) be a partial order, and suppose

that every subset B of A which is ordered by 6 has an upper bound. Then A has a

maximal member.

A.2 General Topology

A topological space is a pair (X, τ) consisting of a set and a family τ of subsets

of X satisfying the following conditions:

• ∅ ∈ τ and X ∈ τ.

• If u, v ∈ τ, then u ∩ v ∈ τ.

• If A ⊂ τ, then
⋃
A ∈ τ.

The subsets of X belonging to τ are called open, and a subset of X is closed if

its complement is open. A family B of τ is called a base for a topological space

(X, τ) if every non-empty open subset of X can be represented as the union of

subfamily of B. Any base has the following properties:

• For any u, v ∈ B and every point x ∈ u ∩ v there exists a w ∈ B such that

x ∈ w ⊆ u ∩ v.

• For every x ∈ X there exist u ∈ B such that x ∈ u.
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A family P of τ is called a subbase if the family of all finite intersections

u1 ∩ u2 ∩ ..... ∩ uk where ui ∈ P for i = 1, ...,k a a base for (X, τ).

The closure of a subset A of X is defined be the intersection of all closed subsets

of X that contains A and is denoted by cl(A). The interior of A is the union of

all open sets contained in A and is denoted by int(A).

For a set X one can define different topologies. If τ1 and τ2 are two topologies

on X and τ2 ⊂ τ1, then we say that the topology τ1 is finer than the topology τ2,

or that τ2 is coarser than τ1.

Let X and Y are two topological spaces, a map f : X −→ Y is called continuous

if f−1(u) is open in X for every open subset u of Y. A continuous map f : X −→ Y

is called closed (open) if for every closed (open) set A ⊆ X the image f(A) is

closed (open) in Y. A continuous map f : X −→ Y is called a homeomorphism if

it is one-to-one, onto and the inverse mapping f−1 : Y −→ X is continuous.

A subspace Y of a topological space is a subset of Xwith the induced topology

where open sets in Y has the form U ∩ Y for some open set U in X.

A.2.1 Axioms of Separation

A topological space X is called a

• T0-space if for every pair of distinct points x,y ∈ X there exists an open set

containing exactly one of these points.

• T1-space if for every pair of distinct points x,y ∈ X there exists an open set

u ⊂ X such that x ∈ u and y /∈ u.
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• T2-space or (Hausdorff) if for every pair of distinct points x,y ∈ X there

exists open sets u, v such that x ∈ u and y ∈ v and u ∩ v = ∅.

• T3-space, or regular space, if X is a T1-space and for every x ∈ X and

every closed set F ⊂ X such that x /∈ F there exist open sets u, v such that

x ∈ u, F ⊂ v and u ∩ v = ∅.

• T3 1
2
-space, or Tychonoff space, or a completely regular space, if X is T1-

space and for every x ∈ X and every closed set F ⊂ X such that x /∈ F there

exists a continuous function f : X −→ I such that f(x) = 0 and f(x) = 1 for

y ∈ F.

• T4-space, or normal space, if X is a T1-space and for every pair of disjoint

closed subsets A,B ⊂ X there exist open sets u, v such that A ⊂ u, B ⊂ v

and u ∩ v = ∅.

Proposition A.2.1. A T1-space is a regular space if and only if for every x ∈ X and

every neighbourhood v of x in a fixed subbase P there exists a neighbourhood u of

x such that clu ⊂ v.

Proposition A.2.2. A T1-space is a Tychonoff space if and only if for every x ∈ X

and every neighbourhood v of x in a fixed subbase P there exists a continuous

function f : X −→ I such that f(x) = 0 and f(x) = 1 for y ∈ Xr v.

Theorem A.2.3. (Uryson’s Lemma)[6] For every pairA,B of disjoint closed subsets

of a normal space X there exists a continuous function f : X −→ I such that f(x) = 0

for x ∈ A and f(x) = 1 for x ∈ B.
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Theorem A.2.4. [Urysohn [7]]A subspace Y is C∗-embedded in a Tychonoff space

X if and only if any two completely separated subsets in Y are completely separated

in X.

Let X =
∏
s∈S Xs be the Cartesian product of the family {Xs}s∈S of topological

spaces and the family of mapping {ps}s∈S, where ps assigns to the point x ∈ X

its sth coordinate xs ∈ Xs. The set X with the topology generated by the family

of mapping {ps}s∈S is called the Cartesian product of the spaces {Xs}s∈S and the

topology itself is called the Tychonoff topology.

Proposition A.2.5. The family of all sets {Ws}s∈S , where Ws is open subset of

Xs and Ws 6= Xs only for finite many s ∈ S, is a base for the Cartesian product∏
s∈S Xs.

Suppose we are given a topological space X and an equivalence relation E on

the set X. Denote the set of all equivalence classes of E by X/E and the mapping

of X to X/E by q which maps a point x to the equivalence class [x]. It turn out

that in the class of all topologies on X/E that makes q continuous there exists

the finest one; this is the family of all sets U such that q−1(U) is open in X. This

topology is called the quotient topology and X/E is called the quotient space.

A.2.2 Filters

Let R be a family of sets that together with A and B contains the intersection

A ∩ B. By a filter in R we mean a non-empty subfamily F ⊂ R satisfying the

following conditions:
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(F1) ∅ /∈ F.

(F2) If A1,A2 ∈ F, then A1 ∩A2 ∈ F.

(F3) If A ∈ F and A ⊂ B ∈ R ,then B ∈ F.

A filter F in R is a maximal filter or an ultrafilter in R, if for every filter G in

R that contains F we have G = F.

A filter base in R is a non-empty family G ⊂ R such that ∅ /∈ G and

(FB) If A1,A2 ∈ G, then there exist an A3 ∈ G such that A3 ⊂ A1 ∩A2.

Remark A.2.6. One can easily prove that the set Nx of all topological neighbour-

hoods of the point x form a filter. We call it the neighbourhood filter at point x ∈ X

A point x is called a limit of a filter F if every neighbourhood of x belongs

to F; we then say that the filter F converges to x. A point x is called a cluster

point of a filter F if x belongs to the closure of every member of F. Clearly, x is

a cluster point of a filter F if and only if every neighbourhood of x intersects all

members of F.

A.2.3 Compact spaces

A cover of a set X is a family {As}s∈S of subsets of X such that
⋃
s∈SAs = X. If

X is a topological space , {As}s∈S is an open (closed) cover of X if all sets As are

open (closed). A topological space X is called compact space if X is a Hausdorff

space and every open cover of X has a finite subcover.
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We say that a family A = {As}s∈S of subsets of X has the finite intersection

property if A 6= ∅ and As1∩As2∩ .....∩Ask 6= ∅ for every finite set {s1, s2, ..., sk} ⊂

S.

Theorem A.2.7. A Hausdorff space X is compact if and only if every family of closed

subsets of X which has the finite intersection property has nonempty intersection.

The following are well know facts about compact spaces, for more informa-

tion about compact spaces see [6].

• Every closed subspace of compact space is compact.

• Every compact space is normal.

• Every compact subspace of a Hausdorff space X is a closed subspace of X.

• every continuous mapping of a compact space to a Hausdorff space is

closed.

• Every filter in X has a cluster point.

Let YX be the set of all continuous mapping of X to Y. For subsets A ⊂ X and

B ⊂ Y, let

M(A,B) = {f ∈ YX : f(A) ⊂ B}

Definition A.2.8. The compact-open topology on YX is the topology generated by

the base consisting of all
⋃k
i=1M(Ci,Ui), where Ci is a compact subset of X and

Ui is an open subset of Y for i = 1, 2, ..., k.
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A pair (Y,α), where Y is compact space and α : X −→ Y is a homeomorphic

embedding of X in Y such that cl(α(X)) = Y, is called a compactification of the

space X.

Theorem A.2.9. [6] A topological space X has a compactification if and only if X

is a Tychonoff space.

Let C(X) be the family of all compactification of X. Define an order relation

on C(X) by; α1X 6 α2X if there exists a continuous function f : α1X −→ α2X such

that fα1 = α2. The largest element in the family C(X) is called the Čech-stone

compactification and is denoted by βX.

Theorem A.2.10. (compactification Theorem) Every (Tychonoff) space X has a

compactification βX, with the following equivalent properties

(I) (Stone) Every continuous function g from X into any compact space Y has a

continuous extension g from βX into Y.

(II) (Stone-Čech) Every function f ∈ C∗(X) has a continuous extension to a func-

tion fβ ∈ C(βX).

A.3 Algebra

Definition A.3.1. A Boolean algebra is a set B together with operations ¬ : B →

B,∧ : B×B→ B and ∨ : B×B→ B, and special elements 0 ∈ B and 1 ∈ B, which

satisfies the following properties for all a,b, c ∈ B :

1. a∧ 1 = a∨ 0 = a;
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2. a∧ ¬a = 0 and a∨ ¬a = 1;

3. a∧ a = a∨ a = a;

4. ¬ (a∧ b) = ¬a∨ ¬b and ¬ (a∨ b) = ¬a∧ ¬b;

5. a∧ b = b∧ a and a∨ b = b∨ a;

6. a∧ (b∧ c) = (a∧ b)∧ c and a∨ (b∨ c) = (a∨ b)∨ c;

7. a∧ (b∨ c) = (a∧ b)∨ (a∧ c) and a∨ (b∧ c) = (a∨ b)∧ (a∨ c) .

A complete Boolean algebra B is a Boolean algebra such that for every subset

M of B we have
∨
M and

∧
M are in B.

Definition A.3.2. Let B and C be Boolean algebras. Then a homomorphism f :

B→ C is a map that preserves all the structure of Boolean algebras:

f(0) = 0 and f(1) = 1

f(a∨ b) = f(a)∨ f(b)

f(a∧ b) = f(a)∧ f(b), and

f(¬a) = ¬f(a).

If f is also a bijection, we say f is an isomorphism.
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Example A.3.3. Let X be any set and P(X) be the set of all subsets of X. Then P(X)

is a Boolean algebra with

A∧ B = A ∩ B

A∨ B = A ∪ B and

¬A = XrA.

Let B be a Boolean algebra and C ⊆ B be a subset containing 0 and 1 and

closed under the boolean operations. Then C is a boolean algebra, and we say

C is a subalgebra of B.

Example A.3.4. Let X be a topological space and Clop(X) be the set of clopen

(both closed and open) subsets of X. Then Clop(X) is a subalgebra of P(X): clopen

sets are closed under ( finite) unions and intersections and complements.

Definition A.3.5. Let B be a Boolean algebra and a,b ∈ B. Then we say a 6 b if

a∧ b = a.

Definition A.3.6. Let B be a Boolean algebra. A subset I ⊆ B is a ideal if:

1. 0 ∈ I;

2. If a ∈ I and b 6 a, then b ∈ I;

3. If a,b ∈ I, then a∨ b ∈ I;

4. If 1 /∈ B, we say B is a proper ideal.
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Definition A.3.7. A filter in a Boolean algebra B is a subset F of B such that

1. 1 ∈ F;

2. If a ∈ F and a 6 b, then b ∈ F;

3. If a,b ∈ F, then a∧ b ∈ F.

A.3.1 Stone duality

Definition A.3.8. For a Boolean algebra B,

XB = {F : F an ultrafilter of B}

is the set of ultrafilters of B. The map s : B −→ P(XB) defined by

s(b) = {F ∈ XB : b ∈ F}

is the stone map. Sometimes ult(B) is used for XB.

XB with s(b) as a base for the topology is called the stone space or Boolean space.

This space is known to be zero-dimensional space.

Theorem A.3.9. (Stone’s representation theorem) Every Boolean algebra is iso-

morphic to the clopen algebra of a Boolean space.

Proposition A.3.10. A Boolean algebra is complete iff it is isomorphic to the regu-

lar open algebra of some topological space
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