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ABSTRACT 

 

Computational modeling is a powerful tool which has been used to inform decisions 

made by engineers, scientists, and clinicians for decades. Musculoskeletal modeling has 

emerged as a computational modeling technique used to understand the interaction between 

the body and its surroundings. There are several common approaches used for 

musculoskeletal modeling which take advantage of different model formulations to obtain 

information of interest. Unfortunately, models with different joint formulations inherit 

disparities in representations of ligament, muscle, and cartilage at joints of interest. These 

differences affect the way the joint functions and limit the insight it provides through 

computational analysis. Musculoskeletal models with high fidelity joint representations in 

a finite element framework have become increasingly viable in recent years, but three 

challenges limit progression: model personalization, modeling infrastructure, and 

computational efficiency. The goal of musculoskeletal modeling is almost entirely to 

understand the motion of the body, the mechanics of the joints, and the strain on the tissues 

in subjects performing various activities. These interests require models that act as the 

subject’s body would – a very complex task. Improving on methods in model 

personalization for calibrating joint strength, soft tissue response, and modeling geometry 

will continue to drive this work toward true subject specificity. Previously, software has 
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been released which provides a modeling infrastructure for musculoskeletal modeling 

using rigid body dynamics. No such framework exists to build and perform 

musculoskeletal modeling with high fidelity joint representations in a finite element 

environment. A computational framework which provides methods to scale models and 

estimate joint kinematics and muscle forces directly from laboratory data would improve 

the accessibility and usability of these complex techniques. Developing tools which 

promote computational efficiency and manage effective parallelization of simulation and 

optimization will help improve the usability of musculoskeletal finite element modeling. 

The purpose of this work was to improve upon methods in musculoskeletal finite element 

modeling by developing novel techniques to evolve the current state-of-the-art in this area 

of research. Specifically, the first study calibrated the knee strength response of a 

musculoskeletal model of the lower limb to healthy data collected from subjects. The 

model was then used in the second study to perform concurrent estimation of muscle forces 

and tissue strain in subjects performing two activities. The third study considered marker-

based motion and compared it to kinematics obtained from stereo radiography-based bone 

tracking. As part of this study a new set of polynomial splines describing the motion in 5 

degrees of freedom at the knee were provided. Lastly, a computational framework was 

developed which served to scale a generic musculoskeletal finite element model and 

perform estimations of joint kinematics and muscle forces directly from laboratory data. 

The goal of this dissertation was to increase the accessibility of a powerful modeling 

approach to researchers around the globe by developing and advancing techniques which 

improve the usability of these methods.  
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CHAPTER 1. INTRODUCTION 

 

1.1. Introduction 

“How beauteous mankind is! O brave new world that has such people in’t” marveled 

Miranda in Shakespeare’s The Tempest (5.1.182-183). Undeniably, mankind is wrought of 

beauty as seen through many lenses, most importantly the lens of a philosopher or scientist. 

There is much that is yet unknown to humans about our very existence and it is this 

unknown which serves as the impetus to propel our understanding and quench this hunger. 

The rate at which our technological prowess as a civilization drives forward discoveries in 

medicine, science, and mathematics is certainly the reality of this brave new world.  

Research performed on the human body, specifically musculoskeletal research, has 

seen an enormous spike in the past 50 years as advances in technology have paved the way 

for discoveries in science, medicine, and engineering. Experimental research is the primary 

approach used to investigate causal relationships found in science. It can be further divided 

into in vivo, meaning in life, and in vitro, meaning in the glass. In vivo research allows for 

the inspection of the body in people or animals that are alive and can be asked to perform 

complex motions and tasks. This technique allows for a better understanding of the whole 

body and joint scales but is limited in the ability to explore internal quantities of interest at 

the tissue or cellular scales. Additionally, the body is a complex system, and it is often 

difficult to isolate the contribution of individual tissues in response to force and motion. In 
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vitro experiments allow for the analysis of bone, ligaments, and muscles in cadaveric 

specimens. Mechanical testing can be used to determine precise response of tissue or joints 

to exact loading and unloading conditions. In vitro analysis is costly which can be 

prohibitive of continued use. Furthermore, it requires a precise application of force and 

motion. Given this requirement, it is difficult to apply experimental loading conditions to 

mimic conditions experienced in vivo.  

Computational modeling has emerged as a technique to bridge the gap between in vivo 

and in vitro experimental research. This technique allows researchers to replicate parts of 

the body at a variety of scales depending on the scope of research. With ample validation, 

models can be used to analyze design alternatives, predict patient outcomes, and suggest 

improvements to surgical technique and implant design without having to implement what 

could otherwise be a costly or dangerous practice. However, no two people are alike, which 

makes it difficult to use computational modeling to effectively model inherent subject-

variability. Care must be taken to properly validate models appropriately at each scale 

being considered. For example, to properly validate the contributions of ligaments to 

stability at the knee, both the individual ligament tissue models, and the entire joint soft 

tissue response to loading should be considered. 

Rigid body dynamics applications specific to musculoskeletal modeling have 

improved modeling accessibility to researchers around the globe. These software packages 

use whole body modeling to estimate kinematics, kinetics, and muscle forces but fail to 

capture high-fidelity detail at joints of interest. Rigid body musculoskeletal models 

frequently represent the joint as a simple hinge (Anderson and Pandy, 2001a) or using 
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average measurements taken from cadaveric knees (Arnold et al., 2010; Delp et al., 2007). 

These approaches likely misrepresent the joint and prevent any passive or active joint 

deformability which plays a large role in muscle force estimations and joint strength. 

Furthermore, current musculoskeletal models use muscle modeling parameters obtained 

from cadaveric specimens (Arnold et al., 2010; Ward et al., 2007), which when coupled 

with single fiber muscle representations often fail to capture the force generating 

characteristics of the muscle over the entire excursion of the joint (Blemker and Delp, 2006, 

2005; Herzog and ter Keurs, 1988).  Finite element analysis allows for modeling of details 

such as wrapping of ligament and muscle (Fitzpatrick et al., 2010), complex material 

properties (Ali et al., 2017; Blemker and Delp, 2005; Fernandez and Hunter, 2005), and 

deformable contact (Ali et al., 2017; Armitage and Oyen, 2017; Yao et al., 2008). 

Opportunities for improvements in the field of computational biomechanics can be divided 

into three areas: model personalization, modeling infrastructure, and computational 

efficiency. Model personalization seeks to improve the sophistication and representation of 

subject and specimen-specific models. Model behavior is directly affected by its shape, 

size, and the way the muscles and soft tissue are represented. The increase in modeling 

capabilities seen in finite element modeling comes with an increase in complexity of the 

model and simulations. Currently, no software exists to estimate kinematics, kinetics, and 

muscle forces in a single framework finite element simulation. Development of modeling 

infrastructure to streamline the creation of simulations would help to improve the usability 

and repeatability of this powerful technology. The third opportunity, computational 

efficiency, is also related to finite element musculoskeletal simulations. These simulations 
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are computationally slow when compared to rigid body dynamics models which take only 

a few minutes to run. To facilitate optimization-based finite element models which estimate 

kinematics and muscle forces, improvements need to be made in parallelization and 

efficiency to improve the feasibility of these models in computational biomechanics.     

1.2. Objectives 

The objective of this dissertation was to address limitations in computational modeling 

associated with model personalization, modeling infrastructure, and computational 

efficiency. The first specific objective was to calibrate two existing lower extremity 

musculoskeletal finite element models to healthy subject strength measurements. This 

objective helped to improve personalization and highlight changes to muscle and model 

geometry with a deformable joint representation when compared to a simplified joint 

representation. The second specific objective was to estimate muscle forces for two subject 

models during two tasks: stance phase of gait and chair rise. This objective incorporated 

new modeling infrastructure to perform single framework muscle force estimations and 

demonstrated the feasibility of a single framework approach. The final specific objective 

was to develop a computational framework to aid in the translation of laboratory data to 

finite element simulation. This framework improved modeling infrastructure by including 

techniques to scale models, and estimate joint kinematics, kinetics, and muscle forces. 

Computational efficiency was a large consideration of this final objective and was 

improved through the implementation of a core application programming interface (API) 

which managed asynchronous process control during estimation of muscle forces and joint 

kinematics. 
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1.3. Dissertation Overview 

Chapter 2 provides a review of recent literature associated with the field of 

musculoskeletal biomechanics. The chapter describes current approaches to 

musculoskeletal modeling and concludes with discussion on the benefits of single 

framework musculoskeletal modeling.  

Chapter 3 presents The Interaction of Muscle Moment Arm, Knee Laxity, and Torque 

in a Multi-Scale Musculoskeletal Model of the Lower Limb whose objective was to 

demonstrate the impact of a deformable joint representation on muscle moment arms and 

joint torque in a multi-scale musculoskeletal finite element model of the lower limb. This 

work is in press with the Journal of Biomechanics (Hume et al., in press). 

Chapter 4 presents Simulation of Activity Using a Multi-Scale Finite Element Model 

of the Lower Limb whose objective was to estimate muscle forces for two subjects during 

two activities: the stance phase of gait and a chair rise. Muscle forces, ligament loads, 

tibiofemoral and patellofemoral contact forces, and center of pressure locations were 

compared for different subjects and tasks to highlight feasibility of muscle force estimation 

and soft tissue analysis in a single framework musculoskeletal finite element model.  

Chapter 5 presents Comparison of Marker-Based and Stereo Radiography Knee 

Kinematics in Activities of Daily Living whose objective was to compare kinematics 

obtained through optical motion capture to kinematics obtained from radiography-based 

bone tracking and discuss the reliability of marker-based methods in a variety of activities. 

Updated polynomial equations for secondary degrees of freedom as a function of flexion 

angle were developed from radiography-based kinematics of knee extension and compared 
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to previous results obtained from cadavers. This work is in press with Annals of Biomedical 

Engineering (Hume et al., in press). 

Chapter 6 presents A Computational Framework for Building Explicit Finite Element 

Musculoskeletal Simulations Directly from Laboratory Data whose objective was to 

demonstrate a single framework to scale models and estimate joint kinematics, kinetics, 

and muscle forces in a musculoskeletal model of the lower limb directly from laboratory 

marker and force plate data. 

Chapter 7 discusses the contributions to the field of computational biomechanics made 

by this dissertation and suggests direction for future work in this field. 
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CHAPTER 2. BACKGROUND INFORMATION AND LITERATURE REVIEW 

 

2.1.  Experimental Biomechanics 

Biomechanics is the study of the mechanical laws relating to the movement or 

structure of living organisms. Biomechanical studies have been cited dating back to the 

17th century by scientists such as Giovanni Alfonso Borelli who studied animal locomotion, 

but improvements in medicine, imaging, and computational capabilities have led to a sharp 

increase in biomechanical interest in the past fifty years. The desire to understand the 

human body and how it responds to the world around it is an ideology which has helped 

drive changes in medicine, surgical intervention, and clinical practice. Musculoskeletal 

modeling is one specific form of biomechanical analysis which employs deterministic 

models to allow for investigation into regions of interest in the body. It allows researchers 

to gain insight into the interaction of muscle and joint mechanics that cannot practically be 

measured by simple observation alone. Musculoskeletal modeling is supported almost 

entirely by the in vivo study of human motion and the in vitro study of tissues. 

2.1.1. In Vivo Experimental Analysis 

The in vivo study of human locomotion is a dominant area of biomechanics and has 

helped researchers to quantify healthy and pathologic kinematics and control strategies. 

The task of reaching down to pick up a washcloth might be conducted differently when 



 

8 

 

performed by a healthy individual, an individual with a hip or shoulder replacement, or an 

individual with limb amputation. It is the desire to understand these differences which 

drives in vivo research and data analysis. Data collection in the laboratory is supported by 

a number of different technologies which help to obtain measurements that are of great 

importance to researchers. The “standard” motion analysis laboratory consists of optical 

motion capture used to track the Euclidian motion of markers affixed to regions of interest, 

force plates to record the reaction forces and moments imparted by the ground on the body, 

and electromyography to quantify the activation of muscles driving motion of the body 

during various activities. Analyses have been performed on lower extremity kinematics 

and kinetics in adults (DeVita et al., 2016; Kadaba et al., 1990; Schipplein and Andriacchi, 

1991) and children (Bell et al., 2002; Chen et al., 1998; MacWilliams et al., 2003) using 

these technologies. Although less common, dynamic radiography has also become a 

valuable tool in clinical research to better understand the underlying motion of the bones 

(Kefala et al., 2017; Myers et al., 2012; Torry et al., 2011), which often occurs at levels 

such as a few millimeters or degrees. Despite the many benefits, in vivo data collection 

does not allow researchers to access internal quantities of interest. As an example, despite 

realizing the motion of the knee joint using marker-based or dynamic radiography-based 

kinematics during walking, it is currently impossible to know the amount of force in the 

ACL or the contact pressure on the meniscus using non-invasive techniques. Furthermore, 

in vivo data collections can be cost prohibitive and require extensive approval processes by 

an institutional review board. 



 

9 

 

2.1.2. In Vitro Experimental Analysis 

 In vitro analyses allow for the study of tissues of cadaveric specimens in any area 

of the body. This permits a wide range of studies to be performed which may not otherwise 

be possible during in vivo experiments. Material properties of ligaments (Bigliani et al., 

1992; Chandrashekar et al., 2006; Woo et al., 1991), cartilage (Chen et al., 2001), muscle 

(Ward et al., 2009), and bone (Sueyoshi et al., 2017) may be ascertained through 

compressive, tensile, and fatigue analysis. Experimental testing can also be performed at 

the joint level to see how the joint as a system responds to loading and changes in 

kinematics. Cyr et al. (2015) mapped loading of the superficial medial collateral ligament 

to total joint contact force at various flexion angles and applied loading conditions (Cyr et 

al., 2015). Though informative, in vitro testing fails to capture the information about in 

vivo conditions which researchers are keen to explore. To step closer to in vivo motion, 

some researchers have developed joint simulators of the spine (Mannen et al., 2015), knee 

(Maletsky and Hillberry, 2005), and shoulder (Gulotta et al., 2012) to prescribe 

physiological motion and loading while examining internal quantities otherwise 

inaccessible. These simulators simplify the joint representations to facilitate the application 

of loads and kinematics. For example, the Kansas Knee Simulator (KKS) (Maletsky and 

Hillberry, 2005) represented the quadriceps tendon using a single line of action and 

neglected hamstrings representation. While joint simulators allow for more realistic 

application of joint loads and kinematics, they fall short in accurately representing in vivo 

loading conditions.   
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2.2. Computational Modeling in Biomechanics 

Computational modeling allows researchers to build deterministic computer-based 

models to analyze fracture, structural, and fluid mechanics in components or regions of 

interest. In the field of biomechanics, computational modeling acts to complement in vivo 

and in vitro experimental analysis. As discussed throughout section 2.1.1 and 2.1.2, in vivo 

analysis allows researchers to examine and evaluate the motion of the body through a lens 

that prohibits quantitative understanding of mechanics and dynamics experienced by 

tissues inside the body. In vitro analysis partly fills this gap by allowing researchers to 

perform exploratory science by testing the mechanics of materials, considering changes in 

surgical intervention, and examining features of the body that are not readily available 

during in vivo analysis. Computational biomechanics bridges the gap between these two 

approaches to experimental biomechanics through the creation of computer simulations 

which, when properly validated, can shed light onto the internal mechanics of the joint 

experienced during complex activities.   

Validation is a crucial part of building effective computational models in any area 

of science and should be present at each scale being considered. Validation is the process 

of confirming that the predictions of a computational model match a known outcome. This 

can be achieved by comparison to analysis performed in in vivo or in vitro experiments. 

This work considers the whole body and joint scales, but computational models may also 

consider research at the tissue, cellular, and atomic scales as well. Regardless of the scope, 

care must be taken to ensure the ability of the model to accurately describe what is being 

represented. Building computational models which mimic in vitro experimental analysis is 
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a common way to highlight validity of model response and improve faith in computational 

results. For example, computational models were built to accurately mimic indentation 

results of a healthy cartilage-bone interface (Armitage and Oyen, 2017) and tissue 

engineered cartilage constructs (Meloni et al., 2017). Computational models are often built 

to mimic experimental testing and joint simulators such as those discussed previously. 

Baldwin et al. (2009) developed a model to mimic the experimental setup of the KKS and 

used it to verify specimen-specific patellofemoral kinematics obtained from a finite 

element representation of the knee (Figure 2.1) (Ali et al., 2016; Baldwin et al., 2009). 

Harris et al. (2016) calibrated ligament material properties and geometry in finite element 

models of healthy knee specimens to match load displacement profiles obtained from in 

vitro experiments (Harris et al., 2016). 

Computational modeling in biomechanics can be divided into three approaches: 

whole body modeling using rigid body dynamics applications, high fidelity joint modeling 

using finite element analysis, and a hybrid approach which uses whole body modeling in 

sequence with high fidelity joint models, each with benefits and limitations.  

2.3. Whole Body Musculoskeletal Modeling 

2.3.1. Applications 

Whole body musculoskeletal models provide a method to take data from the motion 

analysis laboratory and estimate joint kinematics, joint kinetics, and muscle forces. Most 

commonly built in rigid body dynamics software packages (OpenSim, AnyBody), they 

consist of bony geometry constrained by joints with linear musculotendon actuators 

running along the bones. These models routinely neglect ligaments and articular contact 
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and represent joints such as the knee as a simple hinge (Anderson and Pandy, 2001a) or 

prescribe secondary degrees of freedom (DOF) as a function of knee flexion angle (Arnold 

et al., 2010; Blemker et al., 2007; Rajagopal et al., 2016; Thelen and Anderson, 2006). 

These simplifications made to the joints help facilitate calibration of parameters defining 

muscle geometry such as moment arm, and parameters defining force development such 

as tendon slack length. Simply put, these models do not deform kinematically to internal 

or external loads imparted on the joint. They can be used for the estimation of muscle forces 

but do not give insight into joint mechanics. 

Despite these limitations, whole body musculoskeletal modeling has had an incredible 

impact on the field of biomechanics. Beginning as a tool to evaluate potential surgical 

intervention (Delp et al., 1990), the open source software application OpenSim (OpenSim, 

Stanford, CA) has improved accessibility to musculoskeletal modeling for the 

biomechanics research community. Recent work has used OpenSim to examine medial 

compartment loading in subjects with osteoarthritis (Richards and Higginson, 2010) and 

obese children (Lerner et al., 2014), variations in joint kinematics during walking in healthy 

and obese populations (Haight et al., 2014), and metabolic costs estimated during the stance 

and swing phases of gait (Umberger, 2010). The ability to efficiently estimate muscle 

forces, whole body kinematics, and joint reaction forces will maintain OpenSim’s place in 

the field of computational biomechanics. 

2.3.2. Muscle Representation 

In the body, the geometries of muscles are defined by their attachments to bone as an 

origin and insertion location, the direction of fiber orientation or pennation angle, and the 
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physiological cross-sectional area which determines max force generating capability. The 

ability to measure and represent muscle geometry appropriately is paramount to effective 

estimation of muscle forces.  

The path of the muscle is an important feature to be considered in musculoskeletal 

models to maintain accurate joint representations. The path a muscle takes determines its 

moment arm, or the effectiveness of the muscle about a joint. Determined partly by the 

insertion and origin, the muscle and tendon complex is commonly represented as a linear 

musculotendon unit which follows the path of the muscle centroid (Jensen and Davy, 

1975). The musculotendon path is held in place by a series of via points and geometric 

primitives which enable wrapping over joints. Muscles with broad insertions into the bone 

are often represented by several fibers, such as the deltoid muscle located at the shoulder. 

Some models have multifiber representations for all muscles, with the goal to more 

effectively facilitate force production over the entire range of muscle excursion (Carbone 

et al., 2015).  

Moment arm as it relates to muscle modeling is defined as the effectiveness of a 

particular muscle at generating a particular motion of interest, such as knee flexion during 

gait (Sherman et al., 2015). Geometrically, the muscle moment arm can be described as the 

perpendicular distance from the muscle to the center of rotation of the joint. This is a 

difficult quantity to visualize, as the instantaneous center of rotation of the joint changes 

significantly even in simple tasks such as gait (Koo and Andriacchi, 2008). An incorrect 

description of muscles moment arms can have large effects on joint torque but also 

incorrectly bias the muscle force estimation strategy, which often favors muscles based on 
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how effective they are. There are several methods for estimating muscle moment arm. The 

first is the tendon excursion method which is based on the principle of virtual work and 

estimates moment arm as the change in length with respect to the change in joint angle (An 

et al., 1984). This method assumes inextensibility of the musculotendon unit and treats 

contact as a workless constraint. A second method to calculate moment arm is the 

estimation of effective moment arm (Grood et al., 1984), which can be defined as the ratio 

of reaction torque at the joint to the applied muscle force. This method assumes the joint 

acts as a simple lever mechanism and can be expressed numerically: 

𝜏 = 𝑀𝐴 × 𝐹 

where tau is measured reaction torque at the joint and F is the applied force by the muscle. 

Taking the derivative of both sides and rearranging terms develops a numerical estimation 

of moment arm:  

𝑀𝐴 =  
𝑑𝜏

𝑑𝐹
 

Thus, the change in output torque divided by the change in input force describes the 

effective moment arm of the muscle. Muscle moment arm measurements are often 

performed in vitro (Arnold et al., 2010; Buford et al., 1997, 2001; Grood et al., 1984), and 

the results have been used to support the development and validation of musculoskeletal 

geometry (Arnold et al., 2010; Delp et al., 2007). Defining rigid representations of the 

muscle path and moment arm encourages effective muscle force and joint reaction force 

prediction in whole body musculoskeletal modeling, however it does not facilitate changes 

to musculoskeletal geometry given change in applied muscle force. 
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2.3.3. Muscle Force Estimation  

Force production in muscles is a complex cascade of electrochemical signaling 

between the brain and muscle. In skeletal muscle, fibrils make up fascicles, and fascicles 

make up fibers which are oriented in parallel along the line of action. Muscle fibrils are 

constituted of sarcomeres, the functional unit of muscle, and arranged in series. Muscle 

force is generated by the sarcomere when the head of the heavy chain myosin binds to actin 

chains via linking domains on the troponin complex. Hydrolysis of adenosine triphosphate 

facilitates the power stroke in the myosin and results in tension developing in the 

sarcomere. It is currently impossible to measure muscle forces exerted by an individual 

without the implantation of a tendon transducer which requires invasive surgery (Fukashiro 

et al., 1993).  

Mathematical models of muscle have existed throughout most of the 20th century, but 

it wasn’t until 1989 that Felix Zajac submitted a numerical model representation of the 

passive and active definitions of the musculotendon complex (Zajac, 1989) based on the 

Hill muscle model (Hill, 1938). The Hill-type model, or lumped parameter model, 

represents the muscle as a contractile (active) component in parallel with an elastic 

(passive) element and then in series with another elastic (passive) element representing the 

tendon (Figure 2.2). The Hill-type model is defined by normalized descriptions of the 

force-length and force-velocity relationships of muscle, as well as the force-length 

relationship of tendon. These curves along with empirical measurements taken of muscle 

fiber and tendon lengths, sarcomere lengths, physiological cross section area, and 
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pennation angle (Arnold et al., 2010; Ward et al., 2009) allow for estimation of muscle 

forces and are commonly used in muscle modeling. 

The contraction of the muscle is defined by optimal fiber length (𝑙𝑓
𝑜), tendon slack 

length (𝑙𝑡
𝑠), maximum muscle force (𝐹𝑀

𝑜 ), and pennation angle (α). The optimal fiber length 

(𝑙𝑓
𝑜) represents the length at which the muscle can generate maximum force (𝐹𝑀

𝑜 ), which 

was determined by the specific fiber tension multiplied by the cross-sectional area of the 

muscle. Muscle pennation affects the transmission of force through the aponeurosis and is 

likely tied in with the function and excursion of the muscle as well as the fiber composition. 

These three parameters have been measured empirically (Arnold et al., 2010; Ward et al., 

2009), and are mostly agreed upon in the literature surrounding computational muscle 

modeling. However, the tendon slack length (𝑙𝑡
𝑠) is difficult to measure directly, though 

attempts have been made to measure (Hug et al., 2013) and compute values numerically 

(Manal and Buchanan, 2003). Commonly used whole body models scale these four 

parameters with the size of the model to maintain the same force-length relationships across 

all joint angles (Arnold et al., 2010; Delp et al., 2007). Musculotendon length, velocity, 

and activation coupled with these parameters (𝑙𝑓
𝑜, 𝑙𝑡

𝑠, 𝐹𝑀
𝑜 , α) and the relationships describing 

force-length and force-velocity characteristics determine the force output developed by the 

muscle. 

2.3.4. Muscle Force Estimation Strategies for Human Locomotion 

The human body has more muscles than degrees of freedom. As an indeterminate 

system there are many possible solutions to resolve a given loading condition making 

muscle force estimation a non-trivial task. Several different strategies are used to estimate 
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muscle forces required for human locomotion. A common strategy, and the one employed 

in Chapters 4 and 6, is inverse dynamics optimization (Tsirakos et al., 1997). This 

technique requires that kinematics of the body are known, as well as ground reaction forces 

and moments obtained from force platforms. Given this information, an inverse dynamics 

approach can be used in which reaction forces and moments are applied to the body at each 

time instant and resultant moments and forces are calculated at the joints. A performance 

criterion is then chosen to resolve the resultant moments at the joints by the application of 

muscle forces. Previous work has considered the minimization of activation (Li et al., 

1999), muscle stress (Crowninshield and Brand, 1981), and fatigue (Dul et al., 1984) to 

converge on a solution. Validation of the optimization solution can be considered by 

comparing the prescribed model activations to electromyography recorded during in vivo 

experimental analysis. The inverse dynamics optimization technique is computationally 

efficient but limited in that it only considers one time point at a time without history 

dependence of muscle force predictions. This technique is also quite common in whole 

body musculoskeletal modeling as it does not require contact to be represented in the 

model.  

 Other techniques have been used to predict muscle forces. Dynamic optimization 

performs a forward integration on the equations of motion: 

𝑀(𝒒)�̈� + 𝐶(𝒒)�̇�2 + 𝐺(𝒒) + 𝑅(𝒒)𝑭𝑴𝑻 + 𝐸(𝒒, �̇�) = 𝟎 

where M correspond to the mass matrix of the system; 𝒒, �̇�, and �̈� correspond to the 

rotational position, velocity, and acceleration of each joint in the system; 𝐶(𝒒)�̇�2 is a term 

representing Coriolis forces and torques; 𝐺(𝒒) represents gravity applied to segments; 
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𝑅(𝒒)𝑭𝑴𝑻 is a term relating to the angular torque due to muscle forces; and 𝐸(𝒒, �̇�) is a 

term relating to the interaction of the body with external forces (Pandy, 2001). This method 

does not require laboratory motion capture and force plate data, but instead a numerical 

representation of the objective function must be defined (Anderson and Pandy, 1999). The 

limitation of this method is the computational expense required to perform multiple 

iterations of optimization on the cost function while integrating the equations of motion. 

Optimal control solutions have presented a powerful alternative to optimization based 

solutions (Audu and Davy, 1985), and recent work using PID controllers to predict muscle 

forces while tracking joint kinematics has shown promising results (Fitzpatrick et al., 2014; 

Navacchia, 2016)  

2.4. Joint Level Modeling 

Computational modeling at the joint scale allows for an increased level of realism 

when compared to whole body musculoskeletal modeling. Active and passive structures 

that carry load through the joint, complex material representations, and three-dimensional 

representation of bone and soft tissue structures can all improve the fidelity of the joint 

representation. Rigid body dynamics software applications, such as OpenSim and 

Anybody, support contact based on the elastic foundation “bed of springs” theory (Fregly 

et al., 2003). When considering the knee, this limits the implementation of any deformable 

contact such as the wrapping and deformation of ligaments, cartilage, and menisci. Finite 

element analysis (FEA) has become a platform where highly detailed joint representations 

can be effectively represented. The software package used in the work described in this 

dissertation, Abaqus (SIMULIA, Providence, RI), has become a standard tool used for 
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mechanical, thermodynamic, and fluid problem formulations. FEA is a numerical method 

which can be applied to boundary value problems by solving a series of partial differential 

equations. Rigid bodies are discretized into nodes and elements which can then be bounded 

by constraints and manipulated in response to load and motion. It was the strength of this 

numerical method, which made it so successful in mechanical engineering, that propelled 

its translation into skeletal biomechanics in 1972 (Brekelmans et al., 1972). The primary 

limitation of the finite element method is long computational run times. It is common for 

a simulation to take several hours using FEA, compared to a rigid body dynamics 

simulation which may take only a few minutes to complete. Furthermore, without 

references to the whole body it is difficult to determine boundary conditions that mimic in 

vivo conditions in joint level models. Despite these limitations, improvements in 

computational hardware and methods continue to drive forward the usability of FEA in 

computational biomechanics. 

Development of a finite element joint model, specifically at the knee, requires careful 

consideration regarding the complexity of structural representations. As the complexity of 

the model and the structures included increases so does the computational expense. A key 

strength of musculoskeletal modeling in FEA is model modularity: the ability to simplify 

specific structures or material representations while maintaining high fidelity in those of 

greater importance. This can be seen in previous work which has modeled ligaments as 

three-dimensional structures with wrapping capability (Limbert et al., 2004; Shim et al., 

2014), and by contrast as one-dimensional springs (Harris et al., 2016; Hume et al., 2018; 

Smith et al., 2015). Cartilage has been represented as fully deformable with isotropic 
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(Donahue et al., 2002) and biphasic poroviscoelastic non-linear (Mattei et al., 2014) 

material representations, and using a pressure over-closure relationship based on elastic 

foundation theory (Fitzpatrick et al., 2010; Harris et al., 2016). This work, despite vast 

differences in implementation of identical structures, was successful due to the careful 

consideration given to model complexity and scope of the research question. The same 

consideration to scope should is given to whole body musculoskeletal modeling and joint 

level finite element modeling to answer different research questions. 

2.5. Musculoskeletal Modeling: A Sequential Approach 

Whole body musculoskeletal and joint level models allow researchers access to 

different questions: “How does the body respond?” and “How does the joint respond?”. 

Logically, the next question is “How does the joint respond while the body is performing 

an activity”. To consider the simultaneous response at multiple modeling scales recent 

work has turned to a combined sequential approach to musculoskeletal modeling. In this 

approach loading conditions, muscle forces, and joint reaction forces and moments are 

obtained from a whole body musculoskeletal model and then applied to a high-fidelity 

model of the joint. The finite element joint model then estimates stresses and strains in 

ligaments, cartilage, and bone, returning detailed information to the researcher. This state 

of the art technique has been used to consider subject-specific knee mechanics in healthy 

(Adouni and Shirazi-Adl, 2014b; Shelburne et al., 2005) and implanted (Kim et al., 2009; 

Navacchia et al., 2016b) subject populations. 

Limitations with the sequential modeling approach involve the disconnect developed 

between models at two different modeling scales. As discussed in section 2.3.1, whole 
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body musculoskeletal models include simplified representations of the knee joint where 

motion is constrained to a 1 degree of freedom hinge (Anderson and Pandy, 2001a) or 

prescribed for secondary degrees of freedom as a function of flexion angle (Arnold et al., 

2010; Delp et al., 1990; Rajagopal et al., 2016; Thelen and Anderson, 2006). Thus, the 

relative position of the bones with respect to one another does not change under any 

circumstance. Muscle forces are estimated while moment arms are held fixed, so individual 

muscles will always maintain the same efficacy at a given joint angle. When these loading 

conditions are applied to the complex knee representation with deformable joint definition 

the joint will deform according to the constraints of contact, ligament, and muscle. This 

will cause changes in muscle moment arms and consequently the efficacy of a muscle with 

prescribed loading conditions (Fiorentino, 2013; Hume et al., 2018; Lunnen et al., 1981; 

Navacchia et al., 2017). Simply put the model communication is unidirectional with no 

kinematic or kinetic feedback returned to the whole body musculoskeletal model. (Care 

must be taken when using the term ‘deformable joint definition’. For this work, 

‘deformable joint representation’ refers to a joint which allows translational DOF and does 

not constrain the joint kinematically or use prescribed joint motion as a function of knee 

flexion angle.) Performing muscle force estimations using a full body musculoskeletal 

model with complex knee geometry developed entirely in a finite element framework 

would combine muscle force estimation and deformable tissue strain analysis into a single 

framework. This technique would eliminate the disconnect observed in the sequential 

modeling approach and develop a more accurate musculoskeletal response. Recent work 

in single-framework musculoskeletal modeling has been promising. Halloran et al. (2010) 
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performed concurrent estimations of muscle force and tissue strain at the foot during gait. 

This planar representation of the lower extremity was successful in estimating tissue strain 

but took between 10 and 14 days to successfully run – 99.5% of which was due to the finite 

element simulation (Halloran et al., 2010). Adouni et al. (2012) performed joint level 

concurrent muscle force estimations and tissue strain analysis. Muscles had fixed 

orientation of lines of action relative to the bones and neglected elasticity and force-length 

properties of muscle. Computational runtime was not reported (Adouni et al., 2012). Line 

et al. (2010) performed concurrent estimations of muscle and joint contact forces during 

gait. The models used surrogate representations of contact and neglected the force-length 

properties of muscle. Run times were reported between 42 minutes and 32 hours (Lin et 

al., 2010).  

2.6. Gaps and Opportunities 

Single framework musculoskeletal simulation offers an untapped area of potential 

research growth, but progress needs to be made to increase usability. Opportunities for 

single framework musculoskeletal simulation involve the effective translation of 

laboratory data into finite element simulation. Specifically, this can be broken down into 

three distinct areas of work: “model personalization”, “modeling infrastructure”, and 

“computational efficiency”. OpenSim has been successful, arguably, due to its ease of use 

and open nature of the software and techniques which have been used by hundreds of 

universities around the globe. Improving upon these three facets of single framework 

musculoskeletal finite element simulation would be of great benefit to biomechanics 

research. 
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2.6.1. Model Personalization 

Effective musculoskeletal modeling requires the scaling of model segment lengths, 

masses, and muscle strengths. Whole body models represented in OpenSim and AnyBody 

are scaled to the size of subjects using optical marker data obtained from the gait lab. Model 

segment scaling is performed by considering the length between two markers placed on a 

segment of a generically sized model to the length measured from a subject. The ratio of 

distances can then be used to scale the relative length, and other dimensions if necessary, 

of the musculoskeletal model segment and is repeated for all segments included in the 

model (Lund et al., 2015). This allows for accurate estimation of joint kinematics and 

application of ground reaction forces and moments. Whole body musculoskeletal finite 

element models are represented by millions of nodes and elements and are frequently 

assembled using single subject geometries. Presently there is no way to use marker data 

from the motion laboratory to directly scale a musculoskeletal finite element model. 

Differences among individuals in muscle geometry and strength is seldom captured 

in whole body musculoskeletal modeling. As discussed in section 2.3.2, moment arms are 

difficult to measure in vivo, but joint strength information is easily obtained through 

maximum isometric strength testing on joint dynamometers. Determining the maximum 

isometric flexion or extension torque at joints of interest allows for generic scaling of 

muscle group strength which can lead to more realistic estimations of muscle forces and 

joint response (Myers et al., 2018).  
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2.6.2. Modeling Infrastructure 

Improved modeling infrastructure is important to the usability and repeatability of 

single framework finite element musculoskeletal simulations. OpenSim allows users to 

scale musculoskeletal models and build simulations that estimate kinematics, joint kinetics, 

and muscle forces in a repeatable and efficient way. Currently there is no software package 

that allows for such control of building and running musculoskeletal simulations in FEA. 

A user-friendly computational framework which would offer techniques for model scaling, 

kinematics estimation, and muscle force estimation would significantly lower the entrance 

threshold to a currently complex and inconvenient modeling workflow. Finite element 

simulations are composed of inputs files representing bone, muscle, tendon, material 

properties, kinematics, and ground reaction forces. As an example, the multi-scale 

musculoskeletal finite element model described in chapters 3, 5, and 6 is composed of 200-

300 input text files including more than 2,000,000 lines of syntax. Manipulating a model 

of this magnitude efficiently to allow for multi-subject simulation work is nearly 

impossible. Development of a computation framework to streamline this musculoskeletal 

workflow in FEA will not only increase the usability of musculoskeletal finite element 

modeling, but it will open the door to other standardized work flows in model modularity 

and personalization. 

2.6.3. Computational Efficiency 

Computational efficiency is a known limitation of FEA in musculoskeletal 

simulation. Muscle force estimations performed by rigid-body-based simulations such as 

OpenSim step sequentially through time, using the resultant activations from the previous 
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time point as an initial guess to the optimization for the following increment. This approach 

is ineffective for computationally expensive musculoskeletal FEA as it would increase the 

runtime linearly by the number of time points to be optimized. Current computer 

architecture, in both workstation or cluster environments, has access to countless computer 

processing unit (CPU) cores. The desktop computer in most homes has between 4 and 8 

CPU cores, which scales up to 16-32 cores in high end workstations and more than 100 

cores in cluster computing environments. Implementing a method for effective 

parallelization to solve simultaneous solutions for kinematics or muscle force estimations 

at multiple time points would continue to drive improvements in scalability and efficiency 

of musculoskeletal FEA. 
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Figure 2.1 Computational representation of the Kansas Knee Simulator (KKS) used to 

validate predicted patellofemoral kinematics in a finite element representation of the knee 

[from Fig 1 (Baldwin et al., 2009)]. 
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Figure 2.2 Representation of the lumped parameter model also known as a Hill-type 

model. The model is represented by a contractile element (active) in parallel with an 

elastic element (passive) representing the muscle, and then in series with another elastic 

element (passive) representing the tendon. The subfigures represent the normalized 

mathematical force-length and force-velocity representations of the muscle and force-

length properties of tendon.  
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CHAPTER 3. THE INTERACTION OF MUSCLE MOMENT ARM, KNEE LAXITY, 

AND TORQUE IN A MUTLI-SCALE MUSCULOSKELETAL MODEL OF THE 

LOWER LIMB 

 

3.1. Abstract 

Introduction Musculoskeletal modeling allows insight into the interaction of 

muscle force and knee joint kinematics that cannot be measured in the laboratory. 

However, musculoskeletal models of the lower extremity commonly use simplified 

representations of the knee that may limit analyses of the interaction between muscle forces 

and joint kinematics. The goal of this research was to demonstrate how muscle forces alter 

knee kinematics and consequently muscle moment arms and joint torque in a 

musculoskeletal model of the lower limb that includes a deformable representation of the 

knee. Methods Two musculoskeletal models of the lower limb including specimen-

specific articular geometries and ligament deformability at the knee were built in a finite 

element framework and calibrated to match mean isometric torque data collected from 12 

healthy subjects. Muscle moment arms were compared between simulations of passive 

knee flexion and maximum isometric knee extension and flexion. In addition, isometric 

torque results were compared with predictions using simplified knee models in which the 

deformability of the knee was removed and the kinematics at the joint were prescribed for 
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all degrees of freedom. Results Peak isometric torque estimated with a deformable knee 

representation occurred between 45° and 60° in extension, and 45° in flexion. The 

maximum isometric flexion torques generated by the models with deformable ligaments 

were 14.6% and 17.9% larger than those generated by the models with prescribed 

kinematics; by contrast, the maximum isometric extension torques generated by the models 

were similar. The change in hamstrings moment arms during isometric flexion was greater 

than that of the quadriceps during isometric extension (a mean RMS difference of 9.8 mm 

compared to 2.9 mm, respectively). Discussion The large changes in the moment arms of 

the hamstrings, when activated in a model with deformable ligaments, resulted in changes 

to flexion torque. When simulating human motion, the inclusion of a deformable joint in a 

multi-scale musculoskeletal finite element model of the lower limb may preserve the 

realistic interaction of muscle force with knee kinematics and torque. 

3.2.  Introduction 

Musculoskeletal modeling allows researchers to gain insight into the interaction of 

muscle and joint mechanics that cannot practically be measured in the laboratory. The 

current status quo in musculoskeletal modeling of the knee is to either constrain it to a 

hinge joint (Anderson and Pandy, 2001), or prescribe secondary degrees of freedom (DOF) 

as a function of flexion angle (Arnold et al., 2010; Delp et al., 1990; Rajagopal et al., 2016; 

Thelen and Anderson, 2006). Furthermore, the patellar mechanism is often represented as 

a pulley to simplify the transfer of force to the tibia (Arnold et al., 2010; Rajagopal et al., 

2016).  These simplified joint representations facilitate the calibration of muscle geometry 

parameters such as muscle moment arm, and calibration of muscle force-development 
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parameters such as tendon slack length. In short, if the joint does not respond kinematically 

to loading, muscle geometry and parameters may be calibrated with only concern for knee 

flexion. However, simplified models of the knee limit the insight into changes in soft tissue 

constraint and contact mechanics due to injury or pathology.  

The real knee responds to load in multiple DOF with well described soft tissue 

characteristics (Bendjaballah et al., 1997, 1998; Moglo and Shirazi-Adl, 2003), which 

interact with muscles forces, lines of action, and moment arms (Fiorentino, 2013; Lunnen 

et al., 1981; Navacchia et al., 2017). More recently, the inclusion of ligaments and articular 

surface interaction have made musculoskeletal models more realistic and better able to 

reveal the complex relation between knee loading and kinematics in healthy, pathologic, 

and repaired populations (Navacchia et al., 2016a; Smith et al., 2015, 2016). However, 

these models often require an iterative approach using separate models of muscle force as 

input to models with detailed knee mechanics (Adouni and Shirazi-Adl, 2014a; Navacchia 

et al., 2016b) creating a disconnect between joint and muscle force estimation. Translations 

and rotations at the TF and PF joints can alter muscle moment arms and thus muscular 

contribution to knee torque by making muscles more or less effective (Draganich et al., 

1987; Pandy and Shelburne, 1998). In addition, changes in kinematics may change the 

length of the muscles, affecting their inherent ability to generate force at a given joint angle 

(Pandy and Shelburne, 1998).  

The goal of this study was to demonstrate how muscle forces alter knee kinematics 

and consequently muscle moment arms and joint torque in a musculoskeletal model of the 

lower limb that includes a deformable model of the knee. Multi-scale musculoskeletal 
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models were created incorporating two different models of the natural knee developed in 

prior work (Ali et al., 2016; Harris et al., 2016) with specimen-specific TF ligaments, 

patellar mechanisms, and articular geometry. The two models were used to show how 

muscle forces altered moment arms and joint torques during maximum isometric flexion 

and extension simulations. We hypothesized that maximal contraction of the extensor or 

flexor muscles would change the kinematics of the TF joint and alter (1) muscle moment 

arms, (2) muscle forces, and (3) maximum isometric torques. 

3.3.  Methods 

3.3.1. Measurement of Extension and Flexion Torque 

Twelve subjects (6M/6F, 70.29±13 kg, 176.91±10.87 cm, 29.3±4.4 years) provided 

informed consent to participate in a University of Denver IRB approved study. The subjects 

were seated with their hip angle at 60° and their knee joint line coincident with the axis of 

rotation of a Cybex dynamometer. Their shank was parallel to a lever arm attached just 

above the ankle with a Velcro pad (Cybex International, Medway MA) (Figure 3.1). Each 

subject performed a series of maximum isometric knee flexion and extension efforts at 15°, 

45°, 60°, 75°, 90° and 115° of knee flexion. The subjects began with neutral ankle angle, 

though plantarflexion was not constrained by the experimental setup. Three flexion and 

three extension efforts were performed at each knee angle. The maximum knee flexor and 

extensor torques were recorded by the dynamometer for each subject. Mean and standard 

deviation were calculated across the subject sample at each joint angle. 
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3.3.2. Musculoskeletal Model of the Lower Extremity 

Two finite element (FE) models of the lower limb including previously developed 

knee models of two healthy specimens were created in ABAQUS/Explicit (SIMULIA, 

Providence, RI) (Figure 3.2). The models of the lower limb were adapted from Delp et al. 

(2007) and consisted of four segments from pelvis to foot. Two unique specimen-specific 

models of the knee were utilized to quantify the sensitivity of the results to specimen-

specific response (Model 1: “S1” and Model 2: “S2” from Harris et al. (2016)). The 

formulation of the knee models has been discussed previously (Ali et al., 2017, 2016; 

Harris et al., 2016) but will be summarized below. Bone and cartilage geometries were 

reconstructed from computed tomography (CT) and magnetic resonance imaging (MRI) (1 

mm x 0.35 mm x 0.35 mm), respectively, using ScanIP (Synopsys, Exeter, UK). For all 

analyses, bones were meshed with rigid triangular shell elements (R3D3) while cartilage 

was meshed using hexahedral elements (C3D8). The cartilage mesh was formed by using 

a semi-automated morphing technique to match a hexahedral template to the surface 

geometry obtained from MRI (Baldwin et al., 2010). Contact between the cartilage surfaces 

was modeled with a pressure-overclosure relationship, based on elastic foundation theory, 

previously verified to accurately mimic deformable contact (Fitzpatrick et al., 2010). A 

coefficient of friction of 0.01 was applied at the articular cartilage surfaces (Unsworth et 

al., 1975). 

Seven ligamentous structures crossing the TF joint were represented, including the 

anterior and posterior cruciate ligaments (ACL, PCL), medial and lateral collateral 

ligaments (MCL, LCL), popliteofibular ligament (PFL), anterolateral ligament (ALS), and 



 

33 

 

medial and lateral representations of the posterior capsule (PCAP) (Harris et al., 2016). 

Ligaments were modeled as bundles of point-to-point tension-only non-linear springs and 

were calibrated to specimen-specific joint laxity envelopes (Harris et al., 2016).  

3.3.3. Muscle Model Representation 

Ten muscles spanning the knee were represented as Hill-type muscles comprised 

of a contractile element (active fiber force-length curve) in parallel with a passive elastic 

element (passive fiber force-length curve), then in series with an elastic tendon (Zajac, 

1989). Specifically, rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), 

vastus intermedius (VI), semimembranosus (SM), semitendinosus (ST), biceps femoris 

short (BFS) and long (BFL) heads, medial gastrocnemius (MG), and lateral gastrocnemius 

(LG) were modeled (Figure 3.2). Muscles were divided into functional groups: the extensor 

group including RF, VM, VL, and VI, and the flexor group including SM, ST, BFS, and 

BFL. The line of action of the four quadriceps muscles was estimated from the Visible 

Human Project (Ackerman, 1998) as the centroid path of each muscle belly (Fitzpatrick et 

al., 2016). A multi-fiber representation was adopted to better represent force generation 

over the entire excursion of the joint (Ettema and Huijing, 1994; Herzog and ter Keurs, 

1988). The VM and VL were divided into three and two fibers (Figure 3.2), respectively, 

according to a previously described cadaveric data set that grouped fibers based on function 

and sarcomere length (Klein Horsman et al., 2007). VI and RF were each represented by a 

single muscle fiber. Patellar tendon and quadriceps tendon were modeled as 2D fiber 

reinforced membrane elements (Baldwin et al., 2009) and were previously calibrated to 

match TF and PF experimental kinematics for the two specimens (Ali et al., 2017, 2016). 
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Patellar and quadriceps tendons wrapped over femoral bone and articular geometries 

(Figure 3.2). The tendons of the SM and ST wrapped over cylindrical analytical surfaces 

fit to the posterior aspect of the femoral condyles and posterior edge of the tibial plateau to 

more accurately follow the centroid of the muscle paths (Shelburne and Pandy, 1997). 

Insertion and origin for the four hamstrings and two gastrocnemii were derived from 

anatomical landmarks as reported by Delp (Delp et al., 2007). Muscle geometries were 

calibrated such that moment arms calculated during passive knee flexion closely matched 

values reported from in vitro experiments (Buford et al., 1997). This was done by 

perturbing the attachment sites and muscle wrapping surfaces within physiological bounds 

(Navacchia et al., 2016a). A modified force-length curve (Rajagopal et al., 2016) was 

adopted and optimal fiber lengths were adapted from Delp et al. (Delp et al., 2007) for the 

hamstrings and gastrocnemius muscles and Ward et al. (Ward et al., 2009) for the 

quadriceps. Optimal fiber length was scaled by the overall muscle length according to the 

optimal fiber and muscle length ratios reported by Ward et al. (2009). The tendon slack 

length and maximum isometric force of each muscle were adjusted manually (Anderson 

and Pandy, 2001; Buchanan et al., 2004; Zajac, 1989) until the resultant maximum 

isometric torque produced by the two models was within one standard deviation of the 

mean isometric extension and flexion profiles from the test subjects (Table 3.1). 

3.3.4. Simulation Setup 

Three activities were simulated in ABAQUS/Explicit using the two lower limb 

models: passive knee flexion, maximum isometric knee extension, and maximum isometric 

knee flexion. The activities were performed quasi-statically with the hip fixed at 60° and 
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the knee placed at angles ranging from 5° to 120° of flexion. Gravity was ignored for all 

simulations. Activations were applied uniformly to muscle groups over the range of flexion 

angles for each simulated activity. Muscle moment arms were estimated as the partial 

derivative of knee torque with respect to force by applying small perturbations to muscle 

forces. 

3.3.5. Passive Knee Flexion 

Passive knee flexion was simulated by minimal activation of both flexor and 

extensor muscle groups (a=0.05) in the nine different positions. Aside from knee flexion 

angle, kinematics at the knee were unconstrained and determined based on the interaction 

of muscle, contact, and ligament restraint. The objective of the passive knee flexion 

simulation was to determine passive joint kinematics and muscle moment arms at discrete 

flexion angles for comparison to maximum isometric simulations. 

3.3.6. Maximum Isometric Flexion-Extension (Deformable Joint Representation) 

Maximum isometric flexion and extension were simulated by activating the 

primary muscle group maximally (a=1.00) while the opposing muscle group remained at 

minimal levels (a=0.05). The gastrocnemius muscles remained at 5% activation for 

isometric extension and 30% activation during isometric flexion to reflect the moderate 

level of gastrocnemius electromyography shown during maximum isometric knee flexion 

(Gravel et al., 1987). Like the setup of the dynamometer used in the subject measurements 

(Figure 3.1), a constraint was placed at the distal tibia to mimic the strap used to prevent 

knee flexion and extension during isometric contractions. The net torque applied by the 

muscles at the knee was calculated by cross multiplying the constraint force on the distal 
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tibia with its moment arm with respect to the knee joint center. Internal-external rotation 

of the knee model was constrained kinematically to the rotations calculated during the 

passive flexion task. The objective of these simulations was to highlight the effect of a 

deformable joint on muscle moment arms and maximum isometric torque output at the 

knee. 

3.3.7. Maximum Isometric Flexion-Extension (Kinematically Prescribed Joint 

Representation) 

Maximum isometric flexion and extension simulations were repeated constraining 

knee kinematics to those obtained from the passive knee flexion. The objective of this 

simulation was to compare knee torque and moment arm results between musculoskeletal 

models with and without a deformable joint, given the commonality of prescribed 

kinematics in other models and studies. 

3.4. Results 

3.4.1. Experimental Isometric Extension and Flexion Torque 

The mean peak extension torque for the 12 subjects (189.5 Nm) occurred at 75° of 

knee flexion (Figure 3.3). Peak isometric extension torque for individual subjects ranged 

from 91.0-244.0 Nm and occurred between 60°-90° knee flexion. The mean peak for 

isometric flexion torque (-94.2 Nm) occurred at 15°, corresponding to the most extended 

position of the knee collected during the study. Peak isometric flexion torque occurred 

between 15° and 45° of knee flexion for individual subjects and ranged from 52.8-151.0 

Nm.  
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3.4.2. Model Isometric Extension and Flexion Torque 

Simulations of isometric extension torque produced peak torques at 45° (156.4 Nm) 

and 60° (140.8 Nm) for Models 1 and 2, respectively (Figure 3.3). RMS differences 

between the simulations and the mean results from the experiments were 16.6 Nm and 19.4 

Nm, respectively, over the flexion range. Simulation of isometric flexion torque produced 

peak torque at 45° for both models. RMS differences between the simulation and the mean 

isometric flexion results from the subjects were 16.0 Nm and 17.9 Nm for Models 1 and 2, 

respectively, over the flexion range.  

3.4.3. Model Passive Knee Flexion Moment Arms 

Quadriceps moment arms peaked between 15° and 30° of knee flexion (Figure 3.4). 

In general, moment arms were lowest at the highest knee flexion angle (i.e. 115°). The SM 

and ST moment arms exhibited minimal change through early flexion, peaked between 45° 

and 60° (Model 1: 38.6 mm, 47.5 mm, Model 2: 40.0 mm, 49.5 mm), and decreased into 

deep flexion. The BFL and BFS moment arms increased in early flexion, peaked at 75° 

(Model 1: 25.7 mm, 20.1 mm. Model 2: 34.0 mm, 24.7 mm), and then decreased during 

late flexion.  

3.4.4. Model Maximum Isometric Flexion and Extension Moment Arms 

Quadriceps moment arms during maximum isometric extension simulations 

exhibited minimal change from those calculated during passive knee flexion (Figure 3.4) 

with a mean RMS difference of 2.91 mm (Table 3.2), which is 6.7% of the mean peak. The 

location of peak moment arm did not change between simulated isometric extension and 

passive flexion: between 15° and 30° of knee flexion. Peak moment arm values for RF 
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(47.6 mm and 43.7 mm), VM (41.0 mm and 43.1 mm), VL (42.8 mm and 43.0 mm), and 

VI (48.7 mm and 47.3 mm) did not substantially change from passive knee flexion. 

Hamstring moment arms changed substantially during maximum isometric flexion 

simulations (Figure 3.4) with a mean RMS difference equal to 9.80 mm which is 28.0% of 

the mean peak moment arm of the hamstrings, significantly higher than for the quadriceps 

(p < 0.005) (Table 3.2). The location of the peak hamstring moment arms remained 

consistent between 45° and 60°, with peak values for SM (51.8 mm and 54.4 mm), ST 

(59.7 mm and 63.1 mm), BFL (37.0 mm and 46.0 mm), and BFS (31.5 mm and 38.6 mm) 

that saw large increases throughout mid flexion (15°-90°) when compared to passive knee 

flexion. 

3.4.5. Maximum Isometric Torque Differences (Deformable vs Kinematically 

Prescribed) 

At 60° of knee flexion, maximum extensor torques in models with a deformable 

joint representation were 0.5% smaller (Model 1) and 0.4% larger (Model 2) than in 

models with kinematics prescribed to passive knee flexion (Figure 3.5). RMS differences 

between these two cases were 2.6 Nm and 1.6 Nm for the two models. The muscle force 

output for the extensor muscles decreased by 1.4% and 1.0% with the inclusion of joint 

ligaments. 

Maximum flexion torques were 14.6% (Model 1) and 17.9% (Model 2) larger 

than flexion torques without joint deformability, and the location of the maximum flexion 

torque shifted from 45° to 60° in both models. RMS differences between these two cases 

were 13.5 Nm and 15.3 Nm for the two models. The maximum flexion task saw 5.7% 
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and 4.8% decreases in flexor muscle force summed over all flexion angles when joint 

ligaments were included. 

Changes in position of the tibia relative to the femur were seen during both 

isometric torque activities when compared to passive knee flexion. Relative tibial 

translation was calculated by subtracting the AP location obtained during the passive 

knee flexion from the AP location obtained during the maximum isometric activity 

(Figure 3.6). During the extension task, the tibia translated anteriorly between 5° and 30° 

of knee flexion and posteriorly from 30° to 120°. Peak changes in tibial AP location 

during maximum isometric extension were -10.8 mm and -8.8 mm and occurred at 120° 

of knee flexion. During the isometric flexion task, the tibia translated posteriorly for the 

entire range of joint angles. Peak changes during isometric flexion were -16.6mm and -

15.5mm and occurred at 90° of knee flexion. 

3.5. Discussion 

The torque a muscle generates at the knee is partly due to its moment arm, which 

can be altered by changes in joint kinematics. In this study, we demonstrated the interaction 

between muscle force, joint kinematics, muscle moment arms, and joint torque in a 

musculoskeletal model of the lower limb with a deformable model of the knee. Maximum 

isometric knee extension and flexion were simulated to examine the effect of joint 

deformability on muscle moment arms and the torque produced at the knee. Only small 

changes were observed for quadriceps moment arms and extensor torque while moment 

arms for the hamstrings were altered substantially during maximum isometric simulations. 

Maximum isometric torque reflected the changes seen in hamstrings moment arms, with 
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substantial changes to magnitude and peak location for isometric flexion torque. Changes 

in flexion torque were caused by changes in relative AP kinematics during the activity. 

Experimental maximum isometric torque was similar to previously reported 

measurements in healthy adults (Anderson et al., 2007; Shelburne and Pandy, 1997) and 

simulation results were able to replicate both trend and magnitude of the experimental data. 

A notable difference between the in vivo and simulation results was the location of peak 

extensor torque. Mean subject data peaked at 75° (range: 60°-90°) while the simulation 

results peaked at 45° (Model 1) and 60° (Model 2). Prior musculoskeletal models of the 

lower limb have produced similar early peaks in maximum extensor moment (Arnold et 

al., 2010; Delp et al., 1990; Pandy and Shelburne, 1998). This might be explained by the 

fact that the Hill-type muscle model represents a muscle bundle using a single fiber, which 

does not replicate the wider force production range of whole muscle (Blemker and Delp, 

2006, 2005; Herzog and ter Keurs, 1988). Even so, RMS errors between model and 

experiment were 16.6 Nm and 19.4 Nm for isometric extension torque and 16.4 Nm and 

17.9 Nm for isometric flexion torque for Models 1 and 2, respectively. Simulation results 

remained within one standard deviation of experimental data. Furthermore, many subjects 

exhibited varying peak location in extensor moment (Figure 3.3) indicating substantial 

subject variability.  

Our estimates of quadriceps moment arms were similar to prior results. Quadriceps 

moment arms during knee extension presented larger peak values in magnitude than those 

reported by Buford et al. (1997) but matched in trend (Figure 3.4). Effective quadriceps 

moment arms described by Grood et al. (1984) better agreed with the results of the present 
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study. Previous modeling of the extensor mechanism also showed agreement with our 

results (Ali et al., 2016; Yamaguchi and Zajac, 1989). 

Lateral hamstrings (BFL and BFS) moment arms increased as the knee reached full 

extension (Figure 3.4). This can be explained by the screw home mechanism - a 

phenomenon where the tibia rotates externally as it becomes fully extended, pivoting 

mostly about the medial condyle and moving the insertion of the biceps muscles further 

posterior to the knee, thus increasing their moment arms (Jagodzinski et al., 2003). 

Contrary to our hypothesis, minimal change occurred in isometric extensor torque 

between models with prescribed kinematic motion and joint deformability. This is 

consistent with other findings that show similar extensor torques in knees with resected 

cruciate ligaments when compared with healthy knees (Draganich et al., 1987; Pandy and 

Shelburne, 1998). However, as hypothesized, a large increase in isometric flexion torque 

occurred at 30° in models with joint deformability: 22% and 21% for Models 1 and 2, 

respectively. Conflicting with our hypotheses, the summed muscle forces for the flexion 

group changed only 1.0% and 2.5% at that joint angle. The small changes in muscle forces, 

point to changes in moment arms as the primary contributor to changes in flexion torque. 

To our knowledge no prior studies have examined the change of hamstring moment arms 

resulting from the deformability of the knee during maximum isometric flexion. 

The mechanism behind the changes in moment arm, and thus changes in joint 

torque, can be explained by the translation of the tibia that occurs due to muscle forces in 

models with deformable ligaments. Both maximum isometric flexion and extension 

produced a posterior translation of the tibia as the knee was flexed. The large posterior 
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tibial translation during isometric flexion was caused by the increasing shear force of the 

hamstrings on the tibia as the knee flexed, peaking at 90° (Figure 3.4). The posterior 

translation of the tibia during isometric extension is explained by the natural femoral 

rollback that occurs in knee flexion causing the patellar tendon to be angled posteriorly 

relative to the long axis of the tibia, producing a posterior shear force acting on the tibia 

during quadriceps contraction (Shelburne and Pandy, 1997). The difference between 

isometric flexion and extension was that tibial AP translation had little impact on the 

patellar tendon moment arm and patellar mechanism, whereas posterior tibial translation 

produced large changes in the line of action of the hamstring muscles, the hamstring 

moment arms, and flexion torque (Markolf et al., 2004).  

Notable differences were observed between the moment arms and maximum 

isometric torques of the two lower limb models used in the study.  For example, peak 

isometric extensor torque occurred at 45° for Model 1 and 60° for Model 2. In addition, 

biceps femoris moment arms were greater in Model 2 than Model 1. However, subject-

specific geometry played a small role in how moment arm and maximum isometric torque 

changed with and without inclusion of ligament response.  Inclusion of ligaments elicited 

minimal change in torques during isometric extension, while in flexion the models 

exhibited similar increases (14.6% and 17.9%).  

Limitations of the computational model concern model complexity and subject 

specificity. While the soft tissue deformation of each knee was calibrated based on a 

specimen-specific laxity response (Harris et al., 2016), the torque of the musculoskeletal 

model was calibrated to mean subject isometric torque. The variance of the measured 
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isometric torque in our young healthy cohort indicates large inter-subject variability, which 

we did not capture in this study. Additionally, the model did not include a meniscus which 

has been shown to carry anterior-posterior load under various loading conditions (Markolf 

et al., 1976), particularly with the ACL absent. However, our simulations utilized models 

of the healthy knee that were calibrated to experimental data that incorporated the 

contribution of the meniscus to joint laxity.  

There were also limitations to the analyses. While all five secondary DOF were 

unconstrained during passive knee flexion, the internal-external DOF was constrained in 

maximum isometric flexion and extension simulations to the profile from passive knee 

flexion. This limited out of plane rotations in the musculoskeletal simulation to the 

physiologic internal-external rotation of the specimens. To test the impact on our results, a 

sensitivity analysis was performed by prescribing an additional 5° of internal and external 

rotation during isometric flexion and extension simulations with the knee flexed to 60°: 

four simulations in total. The results showed less than 2.5% change in knee torques for 

each simulation. Further limitations included constant activation of the muscle groups 

during passive flexion, maximum isometric flexion, and extension simulations. 

Additionally, the gastrocnemii were assumed to remain at minimal activation levels (5%) 

for passive knee flexion and isometric extension, and 30% activation for isometric flexion 

despite the possibility of a more complex contribution to knee flexion torque. A further 

limitation was the lack of in vivo measurements to validate our findings of large changes 

in hamstring moment arms caused by posterior tibial translation during isometric flexion. 
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In conclusion the changes that occur to joint kinematics when the loading response 

of the knee is represented may alter muscle moment arm and joint torque. Changes in 

maximum hamstring moment arms between 58% and 83% were observed during the 

isometric flexion simulations. Maximum moment arm changes in the quadriceps were 

more moderate during isometric extensions simulations (between 15% and 36%). The 

inclusion of a deformable joint model with calibrated ligament representation in a multi-

scale musculoskeletal FE model may provide a more realistic representation of the 

interaction of muscle force with joint kinematics. 
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Figure 3.1 Experimental and simulation setup for maximum isometric flexion and 

extension tasks.  
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Figure 3.2 Specimen-specific knee model illustrating the ligament representation (top 

left)(Harris et al., 2016) and tendon wrapping (bottom left)(Ali et al., 2016). 

Musculoskeletal model highlighting semimembranosus (SM), semitendinosus (ST), 

biceps femoris long head (BFL), rectus femoris (RF), vastus intermedius (VI), and multi-

fiber representations of vastus medialis (VMs, VMm, VMi) and vastus lateralis (VLs, 

VLi) (right). Gastrocnemius and biceps femoris short head geometry not shown.  
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Figure 3.3 Maximum isometric flexion and extension torque of 12 subjects (red-female, 

blue-male) including mean curve (black) (top) and torque response of calibrated models 

during maximum isometric flexion and extension simulations compared to mean subject 

response (µ±σ) (bottom).  
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Table 3.1 Muscle parameters used for Hill-type muscle model after calibration to torque 

data. Parameters differing between models are reported as Model 1, Model 2.  (*) denotes 

parameters which were calibrated to match model and mean subject knee torque data. 

 

  

Muscle 𝑳𝒎
 𝒐  (mm) 𝑳𝒕

𝒔 (mm)* 𝑭𝒎
𝒎𝒂𝒙 (N)* θ (°) 

RF 75.9 295.0  ,  288.0 1265.8 12.0 

VMi 126.8 27.0 436.5 12.6 

VMm 96.8 120.0 896.2 12.6 

VMs 96.8 174.0  ,  169.0 931.9 12.6 

VLi 129.4 90.0 1551.4 21.7 

VLs 99.4 194.0  ,  200.0 1294.5 21.7 

VI 119.3 135.0  ,  130.0 888.0 3.0 

BFL 109.0 319.0  ,  310.0 716.8  ,  672.0 0.0 

BFS 173 38.0  ,  35.0 643.2  ,  603.0 23.0 

SM 105.0 323.0  ,  314.0 982.4  ,  921.0 15.0 

ST 201.0 210.0  ,  200.0 328.0  ,  307.5 5.0 

MG 90.0 353.0  ,  373.0 1140.7 17.0 

LG 64.0 377.0  ,  390.0 500.2 22.0 
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Figure 3.4 Comparison between post-calibration passive knee flexion moment arms 

(solid) and moment arms calculated during maximum isometric torque simulations 

(dashed) compared with experimental bounds (µ±σ) reported by Buford et al. (1997). 

Data from Buford et al. represent moment arms estimated from tendon excursion 

measurements in cadavers.    
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Table 3.2 Root mean squared difference between moment arms calculated for maximum 

isometric simulation and passive knee flexion simulation 

  
 

Model 1 
RMS (mm) 

Model 2 
RMS (mm) 

RF 2.64 2.07 

VM 3.15 2.99 

VL 3.47 2.12 

VI 2.98 3.88 

SM 9.25 10.43 

ST 9.16 11.36 

BFL 9.33 10.63 

BFS 8.84 9.40 
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Figure 3.5 Changes in maximum isometric torque with (solid) and without (dashed) joint 

laxity representation. 
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Figure 3.6 Relative anterior-posterior (AP) tibial translation (passive knee extension AP 

subtracted from maximum isometric activity AP) for isometric flexion (dashed) and 

extension (solid). A negative value indicates a posterior translation.   
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CHAPTER 4. SIMULATION OF ACTIVITY USING A MULTISCALE FINITE 

ELEMENT MODEL OF THE LOWER LIMB 

  

4.1. Abstract 

 A key strength of computational modeling is that it can provide estimates of muscle, 

ligament, and joint loads, stresses, and strains through non-invasive means.  However, 

simulations that can predict the forces in the muscles during activity while maintaining 

sufficient complexity to realistically represent the muscles and joint structures can be 

computationally challenging.  For this reason, the current state of the art is to apply separate 

rigid-body dynamic and finite-element (FE) analyses in series. However, the use of two or 

more disconnected models often fails to capture key interactions between the joint-level 

and whole-body scales.  The objective of the current study was to create a multi-scale FE 

model of the human lower extremity that combines optimization, dynamic muscle 

modeling, and structural FE analysis in a single framework and to apply this framework to 

evaluate the mechanics of a healthy knee specimen.  Two subject-specific FE models 

(Model 1, Model 2) of the lower extremity were developed in ABAQUS/Explicit including 

detailed representations of the muscles. Muscle forces, knee joint loading, and articular 

contact were calculated for two activities using an inverse dynamics approach and static 

optimization. Quadriceps muscle forces peaked at the onset of chair rise (2174 N, 1962 N) 



 

54 

 

and in early stance phase (510 N, 525 N), while gait saw peak forces in the hamstrings (851 

N, 868 N) in midstance. Joint forces were similar in magnitude to available telemetric 

patient data.  This study demonstrates the feasibility of detailed quasi-static, muscle-driven 

simulations in an FE framework. These models can be used as tools in comparative 

evaluation of implant designs on joint mechanics and assessment of muscle performance 

in physical therapy strategies. 

4.2.  Introduction 

Musculoskeletal modeling allows researchers to gain insight into the interaction of 

muscle and joint mechanics that cannot practically be measured in the laboratory 

(Fernandez et al. 2011; Shelburne et al. 2011). A key challenge of the computational 

approach is determining the forces in the muscles during activity while maintaining 

sufficient complexity to realistically represent the tissues.  Muscle forces contribute to joint 

load and have a strong influence on joint mechanics (Lenhart et al., 2015), which in turn 

partially determine muscle length, line-of-action, and moment arm (Fiorentino, 2013; 

Hume et al., 2018; Navacchia et al., 2017).  This interaction between muscle forces, muscle 

moment arms, and joint torque at the knee is an important relationship that influences the 

biomechanics of the musculoskeletal system and can only be described in a model that 

incorporates both joint deformability and muscle mechanics (Hume et al., 2018; Shelburne 

and Pandy, 2002). Treatments that change or seek to restore healthy joint mechanics are 

rarely evaluated through a lens that includes the interaction of joint kinematics with muscle 

function. 
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The current state of the art is to apply separate rigid-body dynamic and finite-element 

(FE) analyses in series (Adouni and Shirazi-Adl, 2014a; Navacchia et al., 2016b). The 

series approach utilizes a rigid-body musculoskeletal model to calculate a muscle loading 

condition that is then applied to a detailed joint-level finite element (FE) model.  Rigid 

body dynamic analyses (e.g. OpenSim, AnyBody) represent whole-body motions and may 

include large numbers of muscles.  When used in conjunction with optimization, they can 

be used to predict forces in individual muscles required to perform an activity (Anderson 

and Pandy, 2001a; Besier et al., 2009; Smith et al., 2015). These analyses are 

computationally efficient, but have limited joint-level fidelity because bones are 

approximated as rigid bodies, joint representations are simplified (e.g. knee as a hinge joint 

or prescribing secondary kinematics) (Anderson and Pandy, 1999; Arnold et al., 2010), and 

muscle geometry is limited to wrapping of line segments over geometric primitives such 

as cylinders. The output of these rigid body simulations can then be applied to a detailed 

FE model focused on the joint of interest. FE analyses allows for representation of 

structures such as joints and ligaments in sufficient detail to allow for accurate solutions of 

the internal stresses and strains in structures including complex contact conditions and 

material representations such as anisotropic hyperelastic behavior (Fitzpatrick et al., 2010), 

with the tradeoff of longer computational times.   

However, the use of two or more disconnected models in series inherits differences 

between models in joint representations, contact conditions, and application of the 

boundary conditions, and can fail to capture key interactions between the joint-level and 

whole-body scales. For example, it has been shown that knee contact forces contribute 
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substantially to the resultant joint torques (Walter et al., 2015). Thus, these contributions 

would not be included in the inverse dynamics solutions of rigid body analyses ultimately 

affecting the muscle force predictions. Even so, studies which performed muscle force 

optimization directly in a finite element framework were often limited in complexity to 

avoid lengthy computational time (Adouni et al., 2012; Halloran et al., 2010, 2009; Lin et 

al., 2010). Notably, Lin et al. (2010) and Adouni et al. (2012) used a single model approach 

to obtain simultaneous muscle force and joint contact solutions for gait. However, these 

researchers modeled the muscles as ideal actuators, setting aside the elasticity of tendon 

and the force-length properties of muscle.  As computational power continues to improve 

and becomes less limiting, effective parallelization of static optimization routines will 

become increasingly viable for musculoskeletal simulations in a finite element framework. 

The objectives of this study were 1) to create a multi-scale musculoskeletal finite 

element (MSFE) model of the human lower extremity that combined muscle modeling and 

deformable FE analysis into a single model, and 2) to test whether static optimization can 

be practically applied to achieve simulation of human activity. Simultaneous analyses of 

muscle and joint function during physical activity can improve assessment of patient 

function and help to inform surgical and clinical practice. 

 

4.3.  Methods 

4.3.1. Human Experiments 

Laboratory measurements were collected from 2 healthy subjects during chair rise 

(Subject 1, age 60, 174 cm, 74.8 kg) and gait (Subject 2, age 59, 177.2 cm, 74.4 kg).  The 
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subjects provided informed consent to participate in a University of Denver IRB approved 

study. Each subject was screened for history of orthopedic injury to the lower extremity 

joints and excluded in concomitant conditions that limit function such as advanced arthritis 

of the hip.  Kinematic, force-plate, and EMG data were collected for a battery of activities 

testing function during activities of daily living (Kefala et al., 2017).  Two subjects and 

two activities were chosen to test the robustness of the proposed methodology.  Ground 

reaction forces were measured with strain-gauged force platforms (Bertec Corp, Columbus, 

OH) embedded in the laboratory floor. Active EMG surface electrodes (Noraxon USA, 

Scottsdale, AZ) recorded activity of six dominant lower extremity muscles.  Raw EMG 

data were rectified, filtered, and normalized to maximum isometric contractions, and used 

for validating the muscle activations predicted in the computer simulations.  The 3D 

positions of passive retro-reflective markers mounted on the body were measured using an 

eight-camera motion-capture system (Vicon Motion Systems Inc., Centennial, CO). Joint 

angles were calculated from the marker positions using a rigid body modeling software 

package (OpenSim, Stanford, CA). A high-speed stereo radiography (HSSR) system was 

used in conjunction with motion capture to calculate six degree of freedom (DOF) 

kinematics for the dominant knee during each task (Kefala et al., 2017). Lower limb 

kinematics and ground reaction forces were used as input to the musculoskeletal 

simulations of gait and chair rise. 

4.3.2. Musculoskeletal Model 

Two MSFE models of the lower limb including knee models of healthy specimens 

were created for dynamic analyses in ABAQUS/Explicit (SIMULIA, Providence, RI) 
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(Figure 4.1).  Two distinct knee models with specimen-specific articular geometry and 

calibrated laxity response were used to test the robustness of single-framework MSFE to 

changes in joint mechanics. The formulation for the model of the knees has been discussed 

previously (Ali et al., 2017, 2016; Harris et al., 2016; Hume et al., 2018) but will be 

summarized below. The model included specimen-specific bone and cartilage geometry 

which were segmented from CT and MRI, respectively. Contact was modeled with a 

pressure-overclosure relationship, based on elastic foundation theory, previously verified 

to accurately mimic deformable contact (Fitzpatrick et al., 2010). The model included a 1 

DOF hinge-joint at the ankle, a 3 DOF ball-joint at the hip, and 6 DOF joints representing 

the tibiofemoral (TF) and patellofemoral (PF) joints. 

TF and PF ligaments were calibrated to specimen specific laxity and flexion-

extension tests (Ali et al., 2016; Harris et al., 2016). Seven ligamentous structures crossing 

the tibiofemoral joint were represented including the anterior and posterior cruciate 

ligaments (ACL, PCL), medial and lateral collateral ligaments (MCL, LCL), 

popliteofibular ligament (PFL), anterolateral ligament (ALS), and both medial and lateral 

representations of the posterior capsule (PCAP) (Harris et al., 2016). Ligaments were 

modeled as bundles of point-to-point tension-only non-linear springs and were calibrated 

to the joint laxity envelope of the same specimens whose geometry was used to build the 

knees (“S1” and “S2” in Harris et al.). Patellar and quadriceps tendon were modeled as 2D 

reinforced membrane elements permitted to wrap over cartilage and bone (Baldwin et al., 

2009). 
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Twenty muscles spanning the hip, knee, and ankle were represented as 3-element 

Hill-type muscles. The muscles represented in the model were soleus, gastrocnemius 

(medialis and lateralis), tibialis anterior, vastus medialis (3 musculotendon units), vastus 

intermedius, vastus lateralis (2 units), rectus femoris, semimembranosus, semitendinosus, 

biceps femoris short and long head, gluteus maximus (3 units), iliacus, and psoas. Insertion 

and origin were derived initially from anatomical landmarks as reported by Delp et al. 

(2007). Muscle geometries were calibrated such that moment arms calculated during 

passive knee flexion closely matched values reported from in vitro experiments (Buford et 

al., 1997). Hill-type muscle model parameters were calibrated to match mean isometric 

flexion and extension torque curves recorded from healthy subjects (Hume et al., 2018). 

4.3.3. Calculation of Muscle Forces in Chair Rise and Gait 

Muscle activations and forces, and joint loads and contact pressures were calculated 

for the chair rise activity and during the stance phase of gait. Using a quasi-static inverse 

dynamics approach, muscle forces were estimated using static optimization at six body 

positions throughout the chair rise and seven body positions during gait. Static optimization 

was used because the number of muscles that span the knee exceeds the kinematic degrees 

of freedom.  For activities that do not involve rapid movement, a quasi-static analysis is 

reasonable because inertial forces contribute little to tissue loading (Anderson and Pandy, 

2003). The inputs to the static optimization were the joint angles of the hip, knee, and ankle 

joints, and the ground reaction forces and centers of pressure applied relative to the foot 

center of mass (COM).  In the ABAQUS/Explicit simulation, the kinematics of the hip, 

knee, and ankle were prescribed and enforced by residual torques applied at those joints to 
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maintain the required position. The remaining DOF of the tibiofemoral joint and the 

patellofemoral joint were unconstrained at the knee and determined based on the 

interaction between tibiofemoral and patellofemoral contact force, muscle force, and 

ligament restraint. The variables in the optimization design vector were the activation 

levels of the muscles. An initial guess for these values was obtained from the normalized 

subject EMG.  The optimization found the muscle activations that reduced the residual 

flexion-extension torques to less than 1 N-m at the hip, knee, and ankle and minimized the 

sum of the cube of muscle stress (Crowninshield and Brand 1981).  

The static optimization routine was implemented in MATLAB (Mathworks, Natick, 

MA) using the Nelder-Mead Simplex method, which combined ABAQUS/Explicit 

concurrent simulations of each activity’s time points with muscle forces calculated using 

subroutines written in MATLAB and Python. The total number of time points included in 

the static optimization was 13 for the two activities. Separate optimizations were performed 

simultaneously at each of the 13 time-points in MATLAB using a custom computational 

framework that managed multithreading and parallel process control. During the 

optimization, each FE simulation used the current design vector of muscle activations 

coupled with the previous kinematic pose and corresponding muscle geometry to estimate 

muscle forces for each time point. Each optimization concluded when the improvements 

on the cost function became less than 0.1% for 20 iterations. 

4.4. Results 

Parallel simulations of chair rise and gait required 60 hours using a desktop 

workstation with 16 Intel® Xeon® 3.50 GHz processors and 64.0 GB of memory.  Each 
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iteration of static optimization took approximately 6 minutes of computational time, 

therefore requiring a maximum of 600 iterations to complete all 13 time-points.  Results 

reported for both models will be ordered as Model 1 (M1: “S1”) and Model 2 (M2: “S2”), 

unless otherwise stated.  

Activations predicted by the static optimization during chair rise matched normalized 

subject EMG in both trend and magnitude (Figure 4.2) with no notable differences between 

models M1 and M2. Muscle forces for the quadriceps, echoing the model activations and 

subject EMG, peaked at the beginning of the chair rise (2174 N, 1962 N) and decreased 

throughout the activity (Figure 4.3). The gluteus maximus exhibited a similar trend with 

large forces (1278 N, 1109 N) at the beginning that decreased throughout the activity. 

Iliopsoas and hamstrings produced very little force over the entirety of the activity. 

Gastrocnemii and soleus saw larger forces at the beginning (828 N, 919 N) and end (657 

N, 799 N) of the chair rise. Normalized subject EMG, recorded from the medial 

gastrocnemius started at 4% activation that increased toward full extension. However, the 

estimated activation from the optimization fell between 5% and 20% activation but was 

similar in trend for both Model 1 and Model 2. 

During the chair rise activity, total TF contact forces (calculated along the superior-

inferior axis of the tibia) peaked early in the activity (337% BW, 341% BW) and then 

decreased as the subject progressed to stance. PF contact forces echoed the estimated 

muscle forces seen in quadriceps peaking at the beginning of chair rise (227% BW, 233% 

BW) and decreasing with the knee flexion angle through the activity. PCL, MCL, and PFL 

carried load throughout the chair rise, peaking in the beginning with 413 N and 575 N, 425 
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N and 327 N, and 368 N and 225 N of load, respectively, and then diminishing as knee 

flexion angle decreased. 

During the gait activity, quadriceps forces peaked during contralateral toe off (CTO) 

(896 N, 870 N) and decreased through stance phase to contralateral heel strike (CHS) 

(Figure 4.4). Normalized subject EMG peaked at 35% and 33% of stance for the medial 

and lateral vasti, respectively. Maximum hamstring forces occurred midway through single 

limb support (851 N, 868 N) and decreased through stance to CHS. Normalized subject 

EMG peaked for medial hamstrings at 46% of stance. Predicted activations for hamstrings 

matched normalized subject EMG with peaks occurring at 54% of stance for both models. 

Gastrocnemii and soleus saw minimal muscle contribution at CTO (181 N, 90 N), echoed 

by predicted model activations and subject EMG, which then increased throughout stance 

peaking at CHS (2171 N, 2281 N). Muscle forces from iliopsoas increased during stance 

with Model 1 forces ultimately increasing (520 N) at CHS and Model 2 forces decreasing 

at CHS (234N). 

During the stance phase of gait, total TF contact forces increased throughout stance 

until CHS (402% BW, 397% BW). Both Model 1 and Model 2 started with a 50%/50% 

medial to lateral distribution of contact at CTO and deviated throughout the trial to 

79%/21% and 89%/11% at CHS for the two models, respectively. The patella was in 

contact with the femur from CTO to mid-stance with maximum contact occurring at CTO 

(36% BW, 25% BW). The ACL, PCL, and MCL carried load during the second half of 

stance, with respective peaks of 293 N and 213 N, 122 N and 81 N, and 120 N and 163 N. 
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4.5.  Discussion 

A multi-scale musculoskeletal model of the lower extremity was created that 

combined muscle modeling and deformable FE analysis into a single model and was used 

in a static optimization to simultaneously solve for muscle forces and tibiofemoral and 

patellofemoral mechanics during a chair rise and the stance phase of gait.  The 

musculoskeletal model combined representations of the bones, muscles, tendons, and 

ligaments into a single deformable model of the lower extremity. Two separate knee 

models with calibrated specimen-specific ligament representations were used to illuminate 

differences in the simulations due to geometry and soft tissue representation. The multi-

scale musculoskeletal model was calibrated as reported in prior work (Hume et al., 2018) 

to match mean healthy maximum isometric flexion and extension torques recorded from 

test subjects. The model results showed that muscle forces can be calculated in a single 

framework without the use of serial models with inherently dissimilar geometry, loading 

conditions, and scales.  Our solution was important because it demonstrated that a 

representation of muscle geometry and properties can be combined with a detailed and 

deformable computational model of the knee in a simulation to predict muscle forces, soft 

tissue, and joint mechanics simultaneously. 

 The computational time required to run single framework finite element solutions 

for chair rise and gait, constituted 13 parallel optimizations in total, was 60 hours per 

subject. Required computational time for the present study was shorter than recent finite 

element optimization-based solutions, which reported computational times between 32 

hours and 4 weeks (Halloran et al., 2010, 2009; Lin et al., 2010), and often include planar 
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models of the joints (Halloran et al., 2010, 2009) and surrogate representations of the 

contact mechanism (Halloran et al., 2009; Lin et al., 2010). While rigid body dynamics 

simulations allow for fast convergence of static optimization solutions (Smith et al., 2015; 

Thelen et al., 2014) and forward dynamics solutions (Guess et al., 2014), they are limited 

in their ability to model complex anisotropic material representations (Ali et al., 2017). The 

work presented here highlights the ability to perform 3-dimensional analyses of individuals 

performing complex activities to examine soft tissue stresses and strain in a single finite 

element framework using optimization-based muscle prediction. 

Muscle forces predicted during the chair rise activity were similar in trend and 

magnitude to previous predictions. Shelburne and Pandy (2002) reported peak quadriceps 

forces at 80° of knee flexion of 2800 N compared to 2174/1962 N, for Model 1 and Model 

2, respectively. Predicted hamstrings forces were nearly identical to those presented in this 

study with predicted peak forces of 500 N throughout the activity. Although the subject 

from the present study was slightly heavier, Shelburne and Pandy (2002) instructed their 

subject to rise “as quickly as possible” which might explain the discrepancy in quadriceps 

muscle forces. Joint loads predicted by the simulation were similar to previous joint load 

predictions and measurements made using telemetric implants. Peak tibiofemoral and 

patellofemoral contact forces were seen at 0% cycle: 336/341% BW and 227/233% BW 

respectively. Our results for TF contact fall within ±2σ bounds representative of 7 subjects 

with telemetric implants performing a chair rise (Bergmann et al., 2014). Shelburne and 

Pandy (2002) reported similar results for TF contact, but with larger magnitude of PF 

contact at 80° knee flexion, 450% BWs compared to 227/233% BW. Contact forces in both 
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PF and TF decreased through the activity, as expected based on decreasing quadriceps 

muscle force profiles. Ligament forces predicted by the models were similar with 

previously published work. During the chair rise task, the PCL carried most of the shear 

load, with peak force of 413/575 N occurring at 80° of knee flexion. Shelburne and Pandy 

(2002) reported larger peak PCL force (650 N), with minimal MCL contribution (max: 50 

N) and negligible ACL contribution. Our work indicated load sharing between the PCL 

and MCL (max: 327 N / 425 N) in deep flexion. This is likely explained by the internal-

external DOF represented in the present model, compared to the planar representation from 

Shelburne and Pandy (2002). 

Muscle forces compared well with previous predictions performed using static 

optimization during instrumented (Lin et al., 2010) and healthy gait (Adouni and Shirazi-

Adl, 2014b; Anderson and Pandy, 2001b). Previously reported peak vasti forces fell 

between 600 and 1200 N compared to 510/525 N at CTO, and peak gastrocnemii forces 

between 300 and 900 N compared to 1000 N/1112 N at CHS. Previous results predicted 

300 N (Anderson and Pandy, 2001b), between 0 and 600 N (Lin et al., 2010), and 225 N 

(Adouni and Shirazi-Adl, 2014b) of hamstring force, where our models predicted peak 

hamstring forces 851/868 N during mid stance (30% cycle), following the shape of 

normalized subject EMG. Models moderately overpredicted TF contact forces when 

compared to ±2σ bounds representative of 6 subjects with telemetric implants during gait 

with 381/396% BW TF contact at CHS. The expected two-peak shape of the TF contact 

loading was not evident, likely attributed by the uncharacteristically large hamstrings loads 

predicted by the simulations. The patella only remained in contact through midstance, 



 

66 

 

which can be explained by the hyper extension of the knee determined by the radiography-

based kinematics. ACL forces played a larger role in gait than chair rise, with peak 

magnitudes occurring at CHS (293/205 N). Similar trends can be found in previous work, 

which showed increasing ACL loading profile as the knee was hyperextended, with a mean 

of 80 N in 2° of hyperextension (Jagodzinski et al., 2003). 

Subject specific response to loading at the knee has a large effect on muscle forces, 

lines of action, and moment arms (Fiorentino, 2013; Hume et al., 2018; Lunnen et al., 1981; 

Navacchia et al., 2017). The differences in the optimization results from the two knee 

models demonstrated the importance of calculating muscle forces and joint mechanics 

simultaneously.  The two knee models produced results which were similar in trend, but 

with different load sharing of the functional muscle groups. Specifically, the peak 

quadriceps force output was 11% larger during the chair rise task for Model 1. Furthermore, 

the movement of the COP on the patellar cartilage (Figure 3) was illustrative of differences 

in load sharing between the vastus medialis and vastus lateralis. At 0% cycle 

the %VM/%VL to total quadriceps force was 51%/21% and 60%/13% for the two models, 

respectively. This ratio of contribution changed throughout the activity concluding at 100% 

cycle with 38%/33% and 35%/40%. The change in contribution of different muscles at 

varying normalized fiber lengths highlights the ability of static optimization to resolve the 

muscle redundancy problem effectively and the sensitivity of muscle forces to variation in 

articular geometry (Smoger et al., 2015), ligament representation (Smith et al., 2015), and 

muscle moment arms that occurs in a deformable model of the joint (Hume et al., 2018). 

This sensitivity further highlights the importance of a single framework approach which 
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includes rigid body kinematics and muscle force estimation with soft tissue modeling in a 

single framework. 

 The present study included several limitations.  First, the kinematics and kinetics 

applied to the models came from an in vivo study whereas the models were derived form 

in vitro work which tuned their soft tissue response to cadaveric specimens. The in vivo 

subjects were similarly matched in size to the two lower extremity models, but differences 

in articular geometry, and soft tissue response remain. It is likely that the hyperextension 

measured by the HSSR during gait was subject specific and did not represent the kinematic 

behavior of the knee models. Nevertheless, the purpose of this study was to highlight the 

importance of a single framework approach on MSFE models with calibrated soft tissue 

response at the knee. Secondly, predictions of joint forces during most activities depend 

heavily on the muscle forces calculated for the activities (Shelburne et al., 2006).  While 

no data exist to directly confirm the calculated values of the muscle forces obtained here 

for squatting, the predicted joint loads, and muscle activation patterns compared favorably 

with measurements of the same activities obtained in vivo.  For example, the level of vastus 

activation and muscle force decreased as the subject moved through stance, while 

gastrocnemius muscle force increased through CHS (Figure 4.4).  In addition, joint loads 

during chair rise were similar to those obtained using telemetric tibial implants. A final 

limitation is that the optimization took 60 hours of computational time on 13 cores for each 

subject.  However, the current FE framework has the advantage of allowing modular 

complexity in tissue definitions that can dramatically affect, increase or decrease, solution 

speeds.  This capability allows solution refinement, specifically increasing the number and 
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complexity of deformable tissues, as the simulation progresses.  In addition, ever increasing 

numbers of processers and processer speeds will further enable practical use of deformable, 

multiscale musculoskeletal simulations. 

In summary, a detailed multi-scale MSFE model with calibrated soft tissue 

response was used to perform simultaneous predictions of muscle forces, joint mechanics, 

and loading of structures using laboratory data from a subject as input.  This study 

demonstrates the feasibility of predicting muscle forces in dynamic, muscle-driven 

simulations that maintain high-fidelity joint representation. This methodology can be used 

in clinically relevant evaluation of soft tissue changes that occur due to injury, pathology, 

or surgical intervention at the joint level scale while providing assessment of physical 

therapy strategies at muscle and whole-body scales.    
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Figure 4.1 The lower limb musculoskeletal finite element model with two calibrated 

specimen specific knees (“S1” pictured). The knees included TF and PF soft tissue 

structures whose response was calibrated to in vitro experiments (Ali et al., 2016; Harris 

et al., 2016). The model 15 unique muscles comprised of 20 musculotendon fibers which 

span the lower limb previously calibrated to match mean healthy isometric knee flexion-

extension torque results (Hume et al., 2018). 
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Figure 4.2 Predicted model activations for Model 1 (blue) and Model 2 (orange) and 

normalized subject EMG (black) plotted for chair rise (left) and the stance phase of gait 

(right). 
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Figure 4.3 Forces prescribed by static optimization in muscle groups crossing the knee, 

forces carried by tibiofemoral ligaments, contact forces (TF/PF) plotted against telemetric 

implant data (Bergmann et al., 2014), and motion of the COP during the chair rise 

activity. 
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Figure 4.4 Forces prescribed by static optimization in muscle groups crossing the knee, 

forces carried by tibiofemoral ligaments, contact forces (TF/PF) plotted against telemetric 

implant data (Bergmann et al., 2014), and motion of the COP during the gait activity. 
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CHAPTER 5. COMPARISON OF MARKER-BASED AND STEREO 

RADIOGRAPHY KNEE KINEMATICS IN ACTIVITIES OF DAILY LIVING 

 

5.1. Abstract 

 Movement of the marker positions relative to the body segments obscures in vivo 

joint level motion. Alternatively, tracking bones from radiography images can provide 

precise motion of the bones at the knee but is impracticable for measurement of body 

segment motion.  Consequently, researchers have combined marker-based knee flexion 

with kinematic splines to approximate the translations and rotations of the tibia relative to 

the femur. Yet, the accuracy of predicting six degree-of-freedom joint kinematics using 

kinematic splines has not been evaluated.  The objectives of this study were to (1) compare 

knee kinematics measured with a marker-based motion capture system to kinematics 

acquired with high speed stereo radiography (HSSR) and describe the accuracy of marker-

based motion to improve interpretation of results from these methods, and (2) use HSSR 

to define and evaluate a new set of knee joint kinematic splines based on the in vivo 

kinematics of a knee extension activity.  Simultaneous measurements were recorded from 

eight healthy subjects using HSSR and marker-based motion capture. The marker positions 

were applied to three models of the lower extremity to calculate tibiofemoral kinematics 

and compared to kinematics acquired with HSSR.  As demonstrated by normalized RMSE 

above 1.0, varus-valgus rotation (1.26), medial-lateral (1.26), anterior-posterior (2.03), and 
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superior-inferior translations (4.39) were not accurately measured. Using kinematic splines 

improved predictions in varus-valgus (0.81) rotation, and medial-lateral (0.73), anterior-

posterior (0.69), and superior-inferior (0.49) translations. Using splines to predict 

tibiofemoral kinematics as a function knee flexion can lead to improved accuracy over 

marker-based motion capture alone, however this technique was limited in reproducing 

subject-specific kinematics.  

5.2.  Introduction 

Marker-based motion capture is the established standard for the quantification of 

human movement. Video cameras are used to locate the position of markers placed on the 

body in a calibrated motion capture volume, and from these marker positions the movement 

of the body segments and their relative motions at the joints are calculated (Kadaba et al., 

1990; Taylor et al., 1982).  This technology has helped researchers and clinicians glean 

valuable information from a wide variety of patient populations and has an ongoing impact 

on clinical and scientific practice.  The kinematics of the joints measured with marker-

based motion capture assume no movement of markers relative to the bones. That is, the 

markers are assumed to be rigidly fixed to the body segments.  However, movement of the 

overlying skin and soft tissues relative to the underlying bones introduces uncertainty in 

the marker  positions relative to the body segments and obscures in vivo joint level motion 

(Benoit et al., 2006; Cappozzo et al., 1996; Li et al., 2012; Reinschmidt et al., 1997; Stagni 

et al., 2005). Estimations of this uncertainty typically fall between 10 mm and 30 mm of 

relative motion between the markers and underlying bone, although error of 42 mm has 

been reported at the distal thigh (Stagni et al., 2005). At the knee, this amount of uncertainty 
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makes joint-level measurement challenging.  In some degrees of freedom (DOF), the actual 

relative motion between bones at the knee occurs on a scale of a few millimeters or degrees 

(Anderst et al., 2009; Kefala et al., 2017; Li et al., 2004; Torry et al., 2011).  These small 

joint motions are very difficult to measure with skin-marker-based tracking systems yet are 

of keen interest to many investigators for understanding healthy knee motion and the 

changes that accompany injury (Ali et al., 2017; Moglo and Shirazi-Adl, 2005) and repair 

(Clary et al., 2013; Heyse et al., 2017; Schwechter and Fitz, 2012). 

Measurement of knee joint kinematics using dynamic radiography allows for direct 

analysis of joint motion with high accuracy. Dynamic radiography records a series of x-

ray images of the bones of interest that are then used to reconstruct joint motion by 

matching the pose of the subject’s bones to the images (Anderst et al., 2009; Ivester et al., 

2015; Kefala et al., 2017; Li et al., 2004; Torry et al., 2011). Accuracy for kinematic 

tracking of radiography images at the knee has been reported in static joint orientations 

between 0.15 mm - 0.20 mm and 0.2° - 0.4°, and for dynamic tracking 0.1° - 0.9° rotation 

with translational DOF peaking at 0.7 mm (Anderst et al., 2009; Ivester et al., 2015; Li et 

al., 2004; Miranda et al., 2011; Torry et al., 2011). However, radiography cannot achieve 

the large measurement volume that is frequently required for analysis of body segment 

motion common in musculoskeletal modeling.  For this reason, some studies use marker-

based motion capture with radiography of the knee to capture motion of the body 

simultaneously with precise measurement in regions of interest (Navacchia et al., 2017, 

2016b; Zheng et al., 2014).  
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Combining marker-based motion capture and dynamic radiography for 

measurement of knee motion is currently impractical for most laboratories as dynamic 

radiography systems are not widely available and require time-consuming post-processing 

of image data.  To compensate for the lack of precise rotational and translational 

measurements, some researchers have assumed that motion of the tibia relative to the femur 

follows a predictable pattern as a function of knee flexion angle (Arnold et al., 2010; Delp 

et al., 1990), and substituted in vitro measurements of knee kinematics. In particular, 

Walker et al. (Walker et al., 1988) measured the motion of the femur and tibia using 

radiographs while flexing and extending the knees of 23 cadaveric specimens via a motor 

attached to the quadriceps tendon. The kinematic results were scaled to an average sized 

knee and fit with splines for varus-valgus (VV), internal-external (IE), anterior-posterior 

(AP), and superior-inferior (SI) DOF (medial-lateral (ML) was excluded) as a function of 

knee flexion-extension (FE)(Walker et al., 1988) and have been implemented in a 

commonly used biomechanical model (Arnold et al., 2010).  However, knee kinematics 

measured in vitro may differ significantly from those obtained under natural loading 

conditions in living humans, and post mortem changes in tissue properties may further 

influence the natural articulation that occurs at the knee in cadaveric specimens. Recent 

measurements of healthy kinematics using dynamic radiography bone tracking provide the 

opportunity to refine the use of kinematic splines in knee motion measurement.  An in vivo 

analysis of knee flexion-extension in healthy subjects using stereo radiography may yield 

improved kinematic polynomial splines for use in biomechanical modeling. 
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Two objectives were developed for this study. The first objective was to compare 

knee kinematics measured with a marker-based motion capture system to kinematics 

acquired with stereo radiography and describe the accuracy of marker-based motion to 

improve interpretation of results from these methods. The second objective was to use 

stereo radiography to define and evaluate a new set of knee joint kinematic splines based 

on the in vivo kinematics of a knee extension activity. Based on prior assessments (Li et 

al., 2012; Reinschmidt et al., 1997), we hypothesized that marker-based kinematics would 

accurately describe knee flexion-extension, and that the other five DOF of the knee would 

not be accurately measured. We also hypothesized that kinematic splines based on subject 

measurements would more accurately replicate subject knee motion as compared to prior 

splines based on in vitro measurements.  

5.3. Methods 

Eleven healthy subjects (5M/6F, 65.2±4.3 yr, 167.3±13.9 cm, 70.4±9.9 kg) were 

recruited to participate in the study. All subjects provided informed consent to a protocol 

approved by the Institutional Review Board of the University of Denver. Subjects were 

less than 30 kg/m2 BMI and had no history of surgery or injury to the lower limb. Each 

subject performed a series of activities including seated knee extension, gait, step down, 

and a walking pivot turn. After familiarizing the subjects with each activity, a single 

dynamic radiography recording was taken for each activity. 

Knee kinematics from high speed stereo radiography (HSSR) first reported by 

Kefala et al. (Kefala et al., 2017) were used here for comparison to marker-based 

kinematics of the same subjects. A previously described HSSR imaging system (Ivester et 
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al., 2015) was used to capture knee kinematics during each activity.  Briefly, the system 

consisted of two custom radiography sources positioned at a relative angle of 60°. High-

speed cameras (Vision Research, Wayne, NJ) captured the images produced by the image 

intensifiers. A custom calibration cube with implanted tantalum beads was used to calibrate 

the imaging space between the two cameras. The data were synchronized via a step 

function sent from the high-speed cameras to the motion capture system allowing for a 

temporally aligned comparison between the two modalities. Bone tracking from the HSSR 

images was performed in Autoscoper (Brown University, RI) to obtain the pose of each 

bone throughout the different tasks. Knee kinematics were calculated from the bone 

transformations giving rotations and translations about the flexion axis of the femur using 

the ordered cardan sequence XYZ, defined by a positive rotation of the distal segment 

about the X axis representing flexion, a positive rotation about the Y axis representing 

varus rotation, and a positive rotation about the Z axis representing internal rotation.  

6 DOF knee kinematics for the knee extension activity obtained from HSSR bone 

tracking were interpolated to one-degree increments of knee flexion and averaged for 8 of 

the 11 subjects who participated in the study. The averaged kinematics were then fit with 

polynomial equations to represent secondary DOF in a healthy population as a function of 

knee flexion. The order of the equations was chosen such that the coefficient of 

determination (R2) was greater than 0.95 for each DOF. During the HSSR measurements, 

marker positions were recorded with an 8-camera motion capture system (Vicon Motion 

Systems Inc., Centennial, CO) at 100 Hz.  Fifty retroreflective markers were placed on 

bony landmarks and used to define a whole-body marker set with increased emphasis on 
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lower limb segments (Figure 5.1). All marker trajectory data were filtered using a 4th order 

Butterworth filter with a cutoff frequency of 6 Hz. To determine knee kinematics during 

the activities, the marker positions recorded from the subjects were applied to three 

different models of the lower extremity.  

First, the marker data were applied in Visual 3D (V3D) (C-motion, Germantown, 

MD) to a 7-segment lower extremity model with six DOF at the knee joint. The segments 

included in this model were pelvis, thighs, shanks, and feet. There were no constrained 

DOF at the knee and all 6 DOF were explicitly calculated using the relative translations 

and displacements of the tibia to the femur (6DOF Model). Kinematics were calculated in 

V3D using a least squares approximation between the markers fixed to the model and those 

placed on the subject. The pose of the femur and tibia was then used to calculate 6 DOF 

unconstrained joint kinematics at the knee.  Although it is not common practice to use 

marker data to estimate translations that occur at the knee, we chose to calculate them here 

for comparison to the subsequent methods that use splines to predict kinematics for these 

DOF.  

Second, the marker data were applied to a previously defined 7-segment 

musculoskeletal model in OpenSim 3.2 (OpenSim, Stanford, CA)(Arnold et al., 2010; Delp 

et al., 1990). The three angular DOF (FE, VV, IE) were calculated explicitly using marker 

data (3DOF Model), while kinematic splines from Walker et al. (Walker et al., 1988) 

determined the translations at the knee (ML, AP, SI) as a function of flexion angle (Arnold 

et al., 2010; Gaffney et al., 2016). In addition to the knee, the hip and ankle joints were 

represented with 3 and 1 rotational DOF joints, respectively. Kinematics were calculated 
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in OpenSim using a weighted least squares approximation to minimize the distance 

between model markers and subject markers, while also maintaining constrained or 

prescribed DOF at the joint (Lu and O’Connor, 1999). 

Finally, the same 7-segment musculoskeletal model in OpenSim was used as above, 

except substituting kinematic splines derived from HSSR measurements (1DOFSP Model) 

to determine the five secondary DOF at the knee (VV, IE, ML, AP, SI) as a function of 

flexion angle.  

All models were scaled according to each subject’s anthropometric measurements 

from static subject trials.  Specifically, each model was scaled using ratios of the distance 

between markers placed at bony landmarks on each subject, and virtual markers placed at 

corresponding locations on the model. The pelvis was scaled using relative distances 

between markers placed on the left and right anterior and posterior superior iliac spines. 

The thighs were scaled using relative distances between markers placed on the greater 

trochanter and lateral femoral epicondyle. The shanks were scaled using relative distances 

between markers placed on the medial and lateral femoral epicondyles, and the medial and 

lateral malleoli. Lastly, the feet were scaled using the relative distance between markers 

placed on the heel and the toe tip. Kinematics were calculated for four activities (seated 

knee extension, gait, step down, and a walking pivot turn) using the cardan sequence as 

defined above. The designated zero for all DOF in each of the three modeling applications 

was set at full knee extension determined from HSSR and established simultaneously at 

that same instant in the marker-based models to illustrate the relative differences in 

kinematics between the three models. 
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To evaluate the accuracy of the three different modeling strategies, data were 

compared in two ways. First, mean error of the marker-based methods was calculated 

relative to the HSSR kinematics during the knee extension activity. This was accomplished 

by interpolating the FE DOF in all modeling techniques to one-degree increments from 0° 

to 105° of knee flexion, allowing for all other DOF to be compared as a function of flexion 

angle. Second, root mean squared error (RMSE) values were calculated for each activity 

in each DOF and normalized by the total excursion of that DOF during the task. The goal 

of this metric, which has been used previously (Akbarshahi et al., 2010; Stagni et al., 2005), 

was to compare overall accuracy of different modeling techniques, in various DOF, over a 

variety of tasks. Normalized RMSE reveals errors that exceed the DOF being measure. For 

example, an error of 5° in VV might exceed the range of VV during walking. Accordingly, 

a normalized value of RMSE greater than 1.0 indicated a RMSE that exceeded the range 

of motion measured with HSSR during the activity and indicated the inability to accurately 

reproduce kinematics in that DOF. Finally, to evaluate the polynomial splines created from 

HSSR, the splines were compared with the results of Walker et al.(Walker et al., 1988) and 

used to predict secondary kinematics for subjects 9, 10, and 11, which were then compared 

to kinematics obtained from HSSR bone tracking for those subjects. 

5.4. Results 

The 6DOF Model predicted large amounts of translation in the AP and SI DOF 

(Figure 5.2) for the knee extension task, resulting in maximum mean AP error of 20.9 mm 

at 100° of knee flexion and maximum mean SI error of 19.7 mm at 105° of knee flexion. 

Maximum mean error in the ML DOF from full extension through 40° of knee flexion was 
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3.4 mm and then increased to 7.0 mm at 105° of knee flexion. There was better kinematic 

agreement between the rotational DOF measured using HSSR and the 6DOF Model. 

Maximum VV rotational error reached 5.9°, and maximum IE rotation error was 7.0°.  

Across activities, normalized RMSE values were less than 0.55 in FE for knee extension, 

gait, step down, and pivot (Table 5.1), and substantially greater for VV and IE rotation as 

well as ML, AP, and SI translation, with the exception of IE rotation during knee extension 

(0.33) and pivot (0.29).  

The 3 DOF Model predicted lower mean errors than the 6 DOF model for the knee 

extension task, with maximum values reaching 5.6 mm at 105° in the AP DOF and 7.0 mm 

at 105° in the SI DOF (Figure 5.2). Error in ML increased from full extension through 40° 

of knee flexion where it peaked at 3.6 mm. Maximum mean VV error in the 3 DOF Model 

reached 5.9°, while that in IE rotation reached 4.7°. Like the IE error in the 6 DOF Model, 

there was a sharp increase in early flexion that plateaued at 20° with little change through 

the rest of knee flexion. Normalized RMSE values were less than 0.57 in FE for knee 

extension and step down with gait and pivot resulting in 0.71 and 0.82, respectively (Table 

5.1).  Normalized RMSE of VV and IE were greater than 1.0, with the exception of IE 

during knee extension and pivot. Kinematic splines represented in the 3 DOF model have 

RMSE values that were much lower than those calculated for the 6 DOF model. RMSE 

values were less than 1.0 in the ML DOF for all activities, less than 0.77 in the AP DOF 

except for the knee extension task (1.10), and less than 0.57 in the SI DOF. 

The 1 DOFSP Model had maximum errors of 5.6 mm at 105° in the AP DOF, and 

6.2 mm at 105° in the SI DOF during the knee extension task (Figure 5.2). Mean error in 
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AP translation was 1.35 mm from 0° to 80° of knee flexion then increased up to the 

maximum of 5.6 mm. Mean ML translational error was similar between the 3DOF and 1 

DOFSP models with a maximum of 3.4 mm. The 1 DOFSP Model reported a maximum 

mean error in VV of 2.7°, while maximum IE rotational error was 4.2°. The 1 DOFSP 

Model had a slower increase in error when compared to the 3 DOF Model from 0° to 40° 

of knee flexion at which point the max error was 4.2° without much deviation through the 

remainder of the activity. Mean errors for VV and IE rotation were nearly identical to the 

3 DOF Model. One notable difference was the lower mean error predicted in early flexion, 

between 5° and 20° of knee flexion, for the IE DOF in the 1 DOFSP Model.  Normalized 

RMSE of VV and IE rotation were less than 1.0, except for IE rotation during gait and VV 

rotation during pivot (Table 5.1). Kinematic splines represented in the 1 DOFSP model 

have RMSE values that were much lower than those calculated for the 6 DOF model, with 

the exception of the IE DOF during the gait and pivot activities. Normalized RMSE values 

were less than 1.0 in all translational DOF for all activities. Kinematic splines created from 

the in vivo knee extension kinematics were similar in trend and magnitude to the in vitro 

results of Walker et al. (Walker et al., 1988) (Figure 5.3) but had notable differences that 

impacted the prediction of ML, AP, and SI DOF in the 1 DOFSP Model (the coefficients 

for these equations have been provided in Table 5.2).  

Kinematic splines were used to predict kinematics in all 5 secondary DOF for three 

new subjects and compared with kinematics obtained via HSSR bone tracking (Figure 5.4). 

Mean normalized RMSE values for IE rotation, and AP and SI translations were less than 

1.0 (0.39, 0.46, 0.57, respectively) (Table 5.3). Splines for VV and ML DOF failed to 
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accurately represent the subject specific kinematics with mean normalized RMSE values 

exceeding 1.0 (1.17, 1.08). Normalized RMSE results in the IE DOF were smallest during 

the knee extension (0.17) and step down (0.31), and while gait (0.50) and pivot (0.59) fell 

below 1.0, the trend in the IE DOF for the pivot did not follow the HSSR kinematics (Figure 

5.4).  

5.5. Discussion 

Marker-based motion capture is an essential tool for measurement of joint 

kinematics, however soft tissue motion introduces uncertainties into the motion of the 

underlying bones. The objectives of this work were to compare knee kinematics measured 

with a marker-based motion capture system to kinematics acquired with HSSR to describe 

the accuracy of marker-based motion to improve interpretation of results from these 

methods, and to use HSSR to define and evaluate a set of knee joint kinematic splines based 

on the in vivo kinematics of a knee extension activity to predict subject-specific knee 

kinematics. As hypothesized, knee flexion angle was accurately measured by marker-based 

modeling techniques (as illustrated by the normalized RMSE values in Tables 1 and 3), 

however all other DOF were not accurately measured except IE in limited cases. On 

average, using kinematic splines obtained from healthy knee extension kinematics led to 

an improvement in kinematic predictions when compared with the 3 DOF Model and the 

6 DOF Model in VV, ML, AP, and SI DOF. Notably, the unconstrained 6 DOF Model had 

the lowest normalized RMSE in IE when compared to 1 DOFSP and 3 DOF Models. The 

kinematic splines implemented from HSSR produced mean errors nearly identical to 

splines created in prior work from in vitro measurements (Walker et al., 1988). The 
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comparison to results from the test cohort of three subjects suggested that using splines to 

predict VV, IE, ML, AP, and SI DOF as a function of knee flexion can lead to improved 

accuracy over marker-based motion capture alone, but the technique may be limited in 

reproducing subject-specific kinematics. 

The first objective compared knee kinematics measured with a marker-based 

motion capture system to kinematics acquired with HSSR and described the accuracy of 

marker-based motion. FE rotation was accurately measured in all tasks and models, 

however the kinematics predicted for the VV DOF in the 3DOF and 6DOF Models (those 

without implemented splines) showed poor accuracy when compared to HSSR-based 

kinematics. The normalized VV RMSE exceeded 1.0 in nearly all scenarios for the 6 DOF 

and 3 DOF Models.  This outcome was supported by the results of prior research studies 

that also found little agreement between marker-based and precise methods of VV 

measurement in absolute error (Tsai et al., 2011) and normalized RMSE (Akbarshahi et al., 

2010; Stagni et al., 2005). Given the consistent agreement of this outcome across studies, 

the continued prolific use of marker-based methods to measure VV rotation of the knee 

appears unwarranted. Our results showing inadequate accuracy of IE measurement in 

walking and step-down were mirrored by prior research as well (Akbarshahi et al., 2010; 

Benoit et al., 2006; Tsai et al., 2011). However, in contrast to some prior studies, kinematics 

measured by the 3 DOF and 6 DOF models in IE rotation followed the trend of the HSSR 

kinematics for the two tasks with larger excursions in the IE DOF, knee extension and 

pivot.  A few prior researchers have found similar trends in IE accuracy (Stagni et al., 2005; 

Tsai et al., 2011).  Even so, our IE rotational error increased abruptly between 0° and 25° 
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of flexion during the knee extension task, after which point the IE error remained constant 

(Figure 5.2). This error might be attributed to the inability of marker-based methods to 

adequately capture the screw-home mechanism, a well-documented kinematic 

phenomenon (Kim et al., 2015). Past 25° there was very little change in error, suggesting 

the ability of marker-based methods to capture large amounts of IE rotation in complex 

tasks.  

The second objective used HSSR to define and evaluate a new set of knee joint 

kinematic splines based on the in vivo kinematics of the knee extension activity.  The 

splines implemented in the 1 DOFSP Model improved mean normalized RMSE across all 

activities in all DOF relative to the marker-based kinematics, except for the IE DOF for the 

6 DOF Model. However, accuracy of the VV DOF, though improved over marker-based 

techniques, remained poor for pivot and gait. These task specific differences can be 

explained by the small VV excursion during the gait and pivot tasks which inflates the 

normalized RMSE. For example, the 1 DOFSP Model accurately reproduced VV during 

the knee extension task (0.41) as this task had the greatest excursion of VV. Moreover, VV 

kinematics appeared to be highly subject dependent, with large differences in location of 

the kinematic envelope of each subject. Mean normalized RMSE were similar between the 

training and test cohorts (Table 1, Table 3), demonstrating that a sufficient number of 

subjects were used to create the in vivo kinematic splines.  The high normalized RMSE 

results illustrated the challenge of matching all six DOF for a single subject (Table 3). 

Arguably, based on the differing results for different tasks, separate splines should be 

created for each activity.  For example, kinematic splines derived for turning and cutting 
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might be useful to improve the prediction of IE rotation in pivoting activities.  While trends 

in IE rotation and AP and SI translations were moderately recreated by the kinematic 

splines, the kinematics were frequently not representative of the actual subject kinematics 

during unique tasks (e.g. IE rotation during pivot and SI translation during knee extension). 

When compared to splines reported for cadaveric knee specimens (Walker et al., 

1988), the in vivo kinematic splines were similar across all DOF with a few notable 

differences. IE splines from in vivo kinematics were similar to in vitro in trend but showed 

a more rapid initial increase to 7° internal rotation at 10° knee flexion, and maximum 

internal rotation of 17.6° compared to 15°. In addition, unlike Walker et al. (Walker et al., 

1988), the spline representing the in vivo AP DOF predicted small translation in the 

subjects until 50° of flexion, beyond which AP translation increased to a maximum of 6.5 

mm at 105°. These differences were most likely due to differences in loading conditions 

between the in vitro and in vivo experimental configurations.  Most notably, active and 

passive forces were present in the hamstring muscles of the subjects, which were not 

applied in the in vitro experiment.  Despite these differences, our hypothesis that kinematic 

splines based on subject measurements would more accurately produce knee motion as 

compared to splines based on in vitro measurements was not supported. The results of this 

study show almost identical RMSE calculated for the two spline methods. As supported by 

the variation of RMSE between the different tasks, we believe that the similarity in these 

results indicate that subject variability in the form of unique subject kinematics (Kefala et 

al., 2017) and the laxity of the joint (Harris et al., 2016) allow for changes between tasks 

that make it difficult to use one set of kinematic equations to accurately represent 6 DOF 
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kinematics universally across tasks and subject populations. Even though normalized 

RMSE was improved with kinematic splines, challenges persist in predicting subject-

specific knee motion as shown by differences between spline-based and HSSR-based 

subject-specific kinematics (Figure 5.4). 

Limitations of the present study included the use of only two different modeling 

techniques with a single marker set. The 3 DOF and 6 DOF models used here were 

representative of conventional marker-based practice (Arnold et al., 2010; Gaffney et al., 

2016; Zhang et al., 2015), even so other marker-based techniques may yield better results 

(Andriacchi et al., 1998). In addition, no attempt was made to compensate for the soft tissue 

artifact that most likely explains the errors in kinematics produced by marker-based 

methods (see Cereatti et al.(Cereatti et al., 2017) for a review). Using different subject 

populations and activities to produce kinematic splines might yield different results.  Our 

subject cohort had BMI less than 30 kg/m2; greater soft tissue artifact and subsequent 

kinematic errors might occur in subjects with higher BMI (Lerner et al., 2014). 

Furthermore, measurement of different activities might reveal different sensitivities in each 

DOF, as might occur during dynamic out-of-plane-movement, such as a cutting maneuver 

(Reinschmidt et al., 1997; Stagni et al., 2005).   

In conclusion, knee kinematics measured with a marker-based motion capture 

system compared to kinematics acquired with HSSR revealed FE rotation to be accurately 

measured in all tasks and models, however the kinematics predicted for the VV DOF in the 

3 DOF and 6 DOF Models showed poor accuracy when compared to HSSR-based 

kinematics. Similarly, IE measurement in walking and step-down had poor accuracy, 
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however, IE rotation followed the trend of the HSSR kinematics for knee extension and 

pivot - tasks with larger excursions in the IE DOF.  Implementing kinematic splines 

improved mean normalized RMSE across all activities, including joint translations (which 

were universally inaccurate with the 6 DOF Model).  However, accuracy remained poor 

for pivot and gait.  Using splines to predict VV, IE, ML, AP, and SI DOF as a function 

knee flexion led to improved accuracy over marker-based motion capture alone, yet the 

accuracy of in vivo kinematic splines was sufficient only in the IE, AP, and SI DOF, with 

limitations in reproducing subject-specific kinematics.  
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Figure 5.1 (top-left) Simultaneous biplane radiography and optical motion capture 

highlighting lower extremity marker set. (top-right) Experimental marker set. (bottom) 

Coordinate system used for resolution of knee kinematics. 
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Figure 5.2 Mean error and standard deviation for each modeling modality across all 

subjects during the knee extension task.    
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Figure 5.3 Mean subject kinematics (black-solid) plotted as a function of flexion angle 

for secondary DOF with kinematic spline (black-dashed) and Walker et al splines (red-

dashed) (Arnold et al., 2010; Walker et al., 1988). 
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Table 5.1 RMSE normalized by total excursion during the activity as measured with 

HSSR. Green cells denote normalized RMSE < 0.5, blue cells denote RMSE < 1.0, and 

white indicates RMSE > 1.0.  
3DOF 

FE 
6DOF 

FE 
1DOFSP 

FE 
3DOF 

VV 
6DOF 

VV 
1DOFSP 

VV 
3DOF 

IE 
6DOF 

IE 
1DOFSP 

IE 

EXT 0.02 0.02 0.02 1.18 1.45 0.41 0.21 0.33 0.17 

GAIT 0.71 0.55 0.71 2.10 1.45 0.99 2.08 1.27 1.53 

PIV 0.82 0.38 0.82 3.36 1.26 1.01 0.59 0.29 0.54 

STEPD 0.57 0.43 0.57 2.19 0.87 0.82 1.42 0.93 0.78 

MEAN 0.53 0.35 0.53 2.21 1.26 0.81 1.08 0.71 0.76 

 

 3DOF 
ML 

6DOF 
ML 

1DOFSP 
ML 

3DOF 
AP 

6DOF 
AP 

1DOFSP 
AP 

3DOF 
SI 

6DOF 
SI 

1DOFSP 
SI 

EXT 0.52 1.00 0.40 1.10 4.71 0.95 0.45 1.66 0.37 

GAIT 0.87 1.33 0.84 0.77 1.68 0.73 0.57 7.83 0.69 

PIV 0.76 1.19 0.76 0.42 0.81 0.56 0.43 3.82 0.43 

STEPD 0.98 1.52 0.91 0.36 0.93 0.53 0.41 4.24 0.47 

MEAN 0.78 1.26 0.73 0.66 2.03 0.69 0.47 4.39 0.49 
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Table 5.2 Polynomial coefficients for kinematic splines that maintained R2 >= 0.95. 

 C0 C1 C2 C3 C4 C5 

VV 4.428e-2 8.550e-2 -1.233e-3 -1.094e-6 4.598e-8  

IE 8.326e-1 5.149e-1 -1.213e-2 1.562e-4 -6.965e-7  

ML -4.258e-2 1.035e-1 -2.009e-3 2.100e-5 -8.438e-8  

AP 2.219e-3 4.709e-3 -1.623e-3 3.916e-5 -1.767e-7  

SI 3.222e-1 1.153e-1 -7.937e-3 1.912e-4 -1.776e-6 5.533e-9 
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Figure 5.4 Kinematics calculated for 3 subjects using radiography-based bone tracking 

(solid) and kinematic splines developed from in vivo knee extension (dashed). Results 

plotted as a function of % activity. 
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Table 5.3 Mean RMSE normalized by total excursion for the three subjects depicted in 

Figure 4, comparing the radiography-based kinematics to kinematic spline results. 
 

VV-S IE-S ML-S AP-S SI-S 

EXT 0.45 0.17 0.61 0.48 0.36 

GAIT 1.56 0.50 1.33 0.43 084 

PIV 1.67 0.59 1.68 0.44 0.41 

STEPD 0.90 0.31 0.68 0.51 0.66 

MEAN 1.17 0.39 1.08 0.46 0.57 
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CHAPTER 6. A COMPUTATIONAL FRAMEWORK FOR BUILDING EXPLICIT 

FINITE ELEMENT MUSCULOSKELETAL SIMULATIONS DIRECTLY FROM 

LABORATORY DATA 

 

6.1. Abstract 

The interaction between muscle forces, muscle moment arms, and joint torque at the 

knee is an important relationship that influences the biomechanics of the musculoskeletal 

system. Finite element (FE) analyses allow for representation of structures such as joints 

and ligaments in sufficient detail to allow for accurate solutions of the internal stresses and 

strains in structures including complex contact conditions and material representations. 

Studies which performed muscle force optimization directly in a finite element framework 

were often limited in complexity to avoid lengthy computational time.  However, recent 

advances in computational efficiency and control schemes for muscle force prediction have 

made these solutions more practical. Yet, the formulation of subject-specific MSFE 

simulations remains a challenging problem. The objectives of this work were to develop a 

computational framework to build and run simulations which (1) scale the size of MSFE 

models and efficiently estimate (2) joint kinematics and (3) muscle forces from data 

collected in the motion lab. A computational framework was built using MATLAB and 

python to interface directly with model input and output files. The software used laboratory 
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marker data to scale model segment lengths and estimate joint kinematics of subjects 

performing two activities. Concurrent muscle force and tissue strain estimations were 

performed using static optimization based on the estimated kinematics and ground reaction 

forces transformed to the foot. RMSE between subject and model marker locations fell 

between 3.5 mm and 11 mm indicating success in model scaling and kinematics estimation. 

Estimated muscle forces, ligament stress, and tibiofemoral contact compared well with 

previous studies and results from instrumented knee implants. This software will improve 

the usability of complex musculoskeletal simulations in a finite element framework. 

6.2.  Introduction  

The interaction between muscle forces, muscle moment arms, and joint torque at the 

knee is an important relationship that influences the biomechanics of the musculoskeletal 

system and can only be described in a model that incorporates both joint deformability and 

muscle mechanics (Shelburne and Pandy, 2002)(see Chapter 3). Muscle forces contribute 

to joint load and have a strong influence on joint mechanics (Lenhart et al., 2015), which 

in turn partially determine muscle length, line-of-action, and moment arm (Fiorentino, 

2013; Navacchia et al., 2017). Finite element (FE) analyses allow for representation of 

structures such as joints and ligaments in sufficient detail to allow for accurate solutions of 

the internal stresses and strains in structures including complex contact conditions and 

material representations such as anisotropic hyperelastic behavior (Fitzpatrick et al., 2010).  

Even so, studies which performed muscle force optimization directly in a finite element 

framework were often limited in complexity to avoid lengthy computational time (Adouni 

et al., 2012; Halloran et al., 2010, 2009; Lin et al., 2010).  However, recent advances in 
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computational efficiency (see Chapter 4) and control schemes for muscle force prediction 

(Navacchia et al. in review) have made these solutions more practical.  Yet, the formulation 

of subject-specific MSFE simulations remains a challenging problem. The sequential 

approach to musculoskeletal modeling remains reliant on rigid body dynamics software 

packages for estimation of joint kinematics and transformation of ground reaction forces 

and moments to the musculoskeletal model. Using a separate tool creates a mismatch in 

joint mechanics between models of various complexities. As previously illustrated for 

muscle modeling (see Chapter 4), when used for kinematics estimation and load application 

the series modeling approach also inherits differences given active deformation of the joint 

and varying kinematic profiles. 

The objectives of this work were to develop a computational framework to build and 

run simulations which (1) scale the size of MSFE models and efficiently estimate (2) joint 

kinematics and (3) muscle forces from data collected in the motion lab. 

6.3. Methods 

6.3.1. Computational Framework 

A computational framework was developed to create a user-friendly software 

application for performing musculoskeletal finite element simulation work in 

ABAQUS/Explicit (Figure 6.1). The objectives of the framework were to (1) scale a 

generically sized MSFE model using optical marker data obtained from subject 

experiments, (2) estimate joint kinematics for the MSFE model using optical marker data, 

and (3) estimate muscle forces using kinematics and ground reaction forces and moments 

applied directly to the MSFE model. The software was written using MATLAB and 
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python. MATLAB was used to manipulate model nodal geometry, build modeling input 

files, assign amplitudes (e.g. kinematics, kinetics, muscle and ground reaction forces), and 

manage asynchronous process control during optimization of kinematics and muscle 

forces. Python was used to interface directly with the FE input/output files to gather 

information needed for various steps in the modeling process. As an example, Python was 

used to read the resultant location of the foot center of mass (COM) after estimating 

kinematics to appropriately transform the ground reaction forces and moments to the foot 

for muscle force estimation. After development of the software was completed a proof-of-

concept was performed by scaling the generic MSFE model and estimating kinematics and 

muscle forces for two subjects performing chair rising and gait. 

6.3.2. Human Experiments 

Laboratory measurements were collected from 2 healthy subjects in a previous study 

which considered activities of daily living in an older adult population (Kefala et al., 2017). 

Subject 1 (age 78, 153.0 cm, 59.1 kg) and Subject 2 (age 58, 177.2 cm, 74.5 kg) were 

chosen due to their differences in weight and height which required scaling from the 

generic MSFE model. The subjects provided informed consent to participate in a 

University of Denver IRB approved study. Each subject was screened for history of 

orthopedic injury to the lower extremity joints and conditions that limit function such as 

advanced osteoarthritis.  Optical marker motion and force-plate reaction forces and 

moments were collected during chair rising and the stance phase of gait. 
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6.3.3. Musculoskeletal Model 

An MSFE model of the lower limb including specimen-specific knee model was 

created for dynamic analyses in ABAQUS/Explicit (SIMULIA, Providence, RI) (Figure 

6.2).  The formulation for the model of the knee has been discussed previously (Ali et al., 

2017, 2016; Harris et al., 2016)(see Chapters 3 and 4) but will be summarized below. The 

model included specimen-specific bone and cartilage geometry which were segmented 

from CT and MRI, respectively. Contact was modeled with a pressure-overclosure 

relationship, based on elastic foundation theory, previously verified to accurately mimic 

deformable contact (Fitzpatrick et al., 2010). The model included a 1 DOF hinge-joint at 

the ankle, a 3 DOF ball-joint at the hip, and 6 DOF joints representing the tibiofemoral 

(TF) and patellofemoral (PF) joints. 

TF and PF ligaments were calibrated to specimen specific laxity and flexion-

extension tests (Ali et al., 2016; Harris et al., 2016). Seven ligamentous structures crossing 

the tibiofemoral joint were represented and modeled as bundles of point-to-point tension-

only non-linear springs which were calibrated to the joint laxity envelope of the same 

specimen whose geometry was used to build the knee (“S1” in Harris et al.). Patellar and 

quadriceps tendon were modeled as 2D reinforced membrane elements permitted to wrap 

over cartilage and bone (Baldwin et al., 2009). 

Twenty muscles spanning the hip, knee, and ankle were represented as 3-element 

Hill-type muscles. The muscles represented in the model were soleus, gastrocnemius 

(medialis and lateralis), tibialis anterior, vastus medialis (3 musculotendon units), vastus 

intermedius, vastus lateralis (2 units), rectus femoris, semimembranosus, semitendinosus, 
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biceps femoris short and long head, gluteus maximus (3 units), iliacus, and psoas. Insertion 

and origin were derived initially from anatomical landmarks as reported by Delp et al. 

(2007). Muscle geometries were calibrated such that moment arms calculated during 

passive knee flexion closely matched values reported from in vitro experiments (Buford et 

al., 1997). Hill-type muscle model parameters were calibrated to match mean isometric 

flexion and extension torques recorded from healthy subjects (Hume et al., 2018). 

6.3.4. Model Scaling 

The purpose of model scaling is to take a generically sized model, and with the help 

of optical marker data from a standing static trial, scale the segment lengths of the generic 

model to match the subject’s segment lengths. The ability to scale each segment of the 

MSFE model is an important aspect of musculoskeletal modeling and likely paramount to 

the success of accurate kinematics and muscle force estimations (Lund et al., 2015). The 

software gives the user the ability to choose any two markers to scale any of three axes 

(ML, AP, SI) of a segment. Input files including bony geometries of the MSFE model 

(pelvis, right femur, right tibia, right midfoot) were imported into the scaling software. A 

standing static subject trial with full body marker set obtained from the subject experiments 

was imported and aligned with the MSFE bony geometry. Markers extraneous to lower 

limb modeling, such as those on the upper extremity and contralateral limb, were removed. 

Markers were then individually placed on appropriate bony landmarks through the software 

to echo placement from the in vivo data collection. The newly aligned markers were 

exported as an input file of the MSFE model and rigidly fixed to each segment. Scaling 

was performed on each segment of the MSFE model using the ratio of the distances 
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between markers placed at the proximal and distal ends of each segment of the model when 

compared to the in vivo static trial. For example, the thigh segment was scaled using the 

ratio of the lengths between the markers placed on the greater trochanter and the lateral 

epicondyle of the femur. These scaling factors were then used to scale the model along the 

long axis of each segment. Model anthropometrics were updated using the subject mass 

and new geometries defined by scaled model marker locations (Hanavan, 1964). The 

software was then used to export a model with updated geometry for subsequent analyses.  

6.3.5. Kinematics Estimation 

Kinematics were estimated from motion capture data for the stance phase of gait and 

a chair rise activity. Marker data from subject experiments were imported into the software 

and appropriately cropped to include only the time range of interest for each activity. For 

gait this included stance phase, and for chair rise this included the duration from dual limb 

weight acceptance to full knee extension. The data were then down sampled to minimize 

the required number of optimizations, and thus computational time, of the analyses. 

Markers defining the angle at the hip, knee, and ankle were defined and used as initial 

guesses for the kinematics optimization routine. Input files corresponding to kinematics 

guesses were exported from the software. 

 Kinematics optimization was performed at 5 Hz for chair rising, which 

corresponded to 7 and 8 time points for Subjects 1 and 2, respectively. To illustrate 

extensibility of the modeling framework optimization was performed at 5 Hz and 20 Hz 

for stance phase, which corresponded to 6 and 15 time points for Subjects 1 and 2, 

respectively. All 36 time points were optimized in parallel using the software to improve 
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computational efficiency of the modeling process. The goal of the optimization was to 

minimize the weighted least squares distance between the model markers and the 

experimental marker positions. Kinematics describing the position and rotation of the 

pelvis, three rotations of the hip joint, flexion of the knee joint, and flexion of the ankle 

joint were solved for using a bounded Nelder-Mead simplex direct search algorithm. The 

varus-valgus, internal-external, medial-lateral, anterior-posterior, and super-inferior DOF 

were solved for implicitly in the model through the interaction of muscle, ligament, and 

articular contact. While six DOF kinematics at the knee could be prescribed using 

radiography-based kinematics or kinematic splines eliminating contact and improving 

computational time, full contact solutions were obtained to highlight the robustness of a 

single framework MSFE musculoskeletal model. 

6.3.6. Muscle Forces Estimation 

Muscle forces were estimated for Subject 1 and 2 for gait and chair rise. The software 

used the resultant kinematics of the MSFE model and ground reaction forces and moments 

from in vivo subject experiments to transform and apply reaction loads to the foot center 

of mass. Like the kinematics estimation, optimization was performed on 36 time points 

corresponding to two activities for Subject 1 and 2. The goal of the optimization was to 

minimize the residual flexion torques developed by each joint required to maintain the 

kinematics obtained previously while minimizing the sum of the squared muscle stress 

(Crowninshield and Brand, 1981). Once again, secondary DOF at the knee were solved for 

based on the interaction between muscle forces, ligament, and articular contact. TF 

ligament loads, as well as TF and PF contact forces and center of pressure locations were 
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obtained for both subjects during each activity. Kinematics were compared in passive 

(kinematics optimization) and active (muscle force optimization) to demonstrate the effects 

of a single framework deformable joint representations. Muscle forces, contact forces, and 

ligament loading are reported for each subject during the two activities.  

6.4. Results 

The time required by the user to scale the MSFE model and build the simulation input 

files for kinematics estimation and muscle force estimation using the software framework 

took less than 2 hours in total. Results reported for both models will be reported as “Subject 

1, Subject 2”, unless otherwise stated.  

6.4.1. Model Scaling 

Scaling was performed on Subject 1 and Subject 2 (Figure 6.3). The femur and tibia 

were scaled along the long axis of the bones using the ratio of the distances between the 

greater trochanter and lateral femoral epicondyle, and the lateral femoral epicondyle down 

to the lateral malleolus, respectively. The foot was scaled in the AP direction using the 

ratio of the distance between the calcaneus and head of the first metatarsal. The pelvis was 

scaled in the ML direction using the ratio of the distance between markers placed on the 

anterior-superior iliac spines. Scaling parameters can be found in Table 6.1 for both 

subjects. 

6.4.2. Kinematics Estimation 

Parallel simulations of kinematics estimation for chair rise and gait required 40 hours 

using a desktop workstation with 2 Intel Xeon Gold 3.20 GHz processors (32 cores in total) 

and 128.0 GB of memory. Each iteration of kinematic optimization took approximately 5 
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minutes of computational time, therefore requiring a maximum of 500 iterations to 

complete all 36 time-points. Results for kinematics optimization had root mean squared 

errors that fell between 3.5 mm and 11 mm for both activities (Figure 6.4). Generally, chair 

rising saw larger RMSE results than gait due to the soft tissue artifact seen in deep hip and 

knee flexion. Anterior and posterior-superior iliac spines (ASIS, PSIS), medial and lateral 

femoral epicondyles (MKNE, LKNE), and medial and lateral ankle (MANK, LANK) were 

assigned weights of 5 with the remaining markers assigned weights of 1. Due to large 

amounts of occlusion seen to ASIS markers during chair rise, the weights were changed to 

1 and markers placed on the pelvic crest were increased to 5. Secondary kinematics at the 

knee were solved implicitly based on the interaction of muscle, ligament, and cartilage 

contact. The relative changed was calculated during the chair rise between secondary TF 

kinematics from passive kinematics estimation and from active muscle force optimization 

(Figure 6.5). Maximum differences seen in anterior-posterior (-10.1 mm) and internal-

external (-18.8 mm) DOF illustrate changes due to loading exhibited by the joint and the 

importance of a high fidelity joint representation in kinematics and muscle force 

estimation. 

6.4.3. Muscle Forces Estimation 

Parallel simulations of muscle force optimization for chair rise and gait required 60 

hours using the same desktop workstation. Each iteration took approximately 6 minutes of 

computational time, therefore requiring a maximum of 600 iterations to complete all time-

points.  
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During the chair rise activity, quadriceps forces peaked during largest knee flexion 

(2690, 4440 N) and decreased as the knee extended (347, 798 N) (Figure 6.2). Resultant 

muscle forces at the hip were small, except for Subject 2’s gluteus maximus at the 

beginning of the chair rising activity (S2: 724 N). Ankle plantar and dorsiflexor muscles 

were also small in magnitude, except for Subject 1’s plantar flexors which increased as the 

knee extended. TF contact forces were largest during deepest knee flexion (373%, 507% 

BW) and decreased as the knee extended (244%, 282% BW), except for Subject 2 which 

saw a moderate increase during the last 30% of the activity. PF contact forces mimicked 

the muscle forces estimated for the quadriceps with peak contact occurring in deepest knee 

flexion (325%, 502% BW). The PCL and MCL carried load throughout the chair rise, 

peaking at the beginning of the activity with 389, 552 N and 390, 532 N, respectively. 

During the stance phase of gait, quadriceps forces peaked during weight acceptance 

(1155, 1170 N) while gastrocnemii forces increased throughout stance and peaked at 

contralateral heel-strike (550, 911 N) (Figure 6.3). TF contact forces peaked during full 

weight acceptance (378%, 366% BW) with a second peak occurring at contralateral heel-

strike (335%, 430% BW) driven by gastrocnemii forces. PF contact forces mimicked 

quadriceps forces and saw a peak during weight acceptance (93%, 49% BW). Ligament 

loads were small in magnitude, with both Subject 1 and 2 seeing a large peak in PCL 

loading occurring just before toe-off (191, 402 N). 

6.5. Discussion 

A computational framework to estimate joint kinematics and muscle forces in a single 

framework multi-scale musculoskeletal finite element model was developed using 
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MATLAB (Mathworks, Natick, MA) and Python for software development and model 

interfacing. The musculoskeletal model combined representations of the bones, muscles, 

tendons, and ligaments into a deformable model of the lower extremity. The framework 

developed included functionality for scaling the generic MSFE model to match subject 

segment lengths and scale anthropometric parameters based on optical markers placed on 

bony landmarks. Kinematics were estimated using a least squares optimization to estimate 

3, 1, and 1 DOF kinematics at the hip, knee, and ankle respectively.  The 5 secondary DOF 

at the knee were solved for implicitly through the interaction of cartilage, ligament, and 

muscle. Muscle forces were estimated using an inverse dynamics approach which utilized 

a static optimization to solve the muscle redundancy problem. Analysis was performed to 

estimate muscle forces and tissue strain concurrently to provide a more realistic pathway 

for musculoskeletal modeling. This research is important because it demonstrated the 

ability to estimate kinematics and muscle forces directly in a finite element environment 

from laboratory data such as optical marker motion and force plate reaction loads. 

Model scaling was performed using the ratio of marker distances on the model 

compared to the subjects. Generally, Subject 1 was smaller in stature while Subject 2 was 

larger. Non-linear isotropic three-dimensional segment scaling is possible in the presented 

software, however scaling was performed along the long axis of the femur and tibia to limit 

the effect on the musculoskeletal system geometry affecting moment arms and lines of 

action calibrated previously. Despite subject bony geometry being unavailable for 

validation in the current study, model scaling was successfully demonstrated by the 

minimum RMSE values for Subject 1 (3.4 mm) and Subject 2 (5.2 mm) during kinematics 
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estimation. Recent work has demonstrated non-isotropic scaling of musculoskeletal models 

from sparse landmarks using an articulated statistical shape model (Zhang et al., 2016). 

This method saw significant improvements in pelvis and femur segment scaling when 

compared to isotropic scaling methods. Scaling methods which take advantage of subject 

imaging or non-isotropic scaling techniques may yield improved results when scaling high 

fidelity MSFE models. However, isotropic segment-based scaling of the complex MSFE 

model allowed for a more realistic and repeatable estimation of subject specific kinematics 

and muscle forces.  

Kinematics were estimated for Subjects 1 and 2 performing a chair rise task and 

during the stance phase of gait. Kinematics estimated from the same model as used in 

muscle force estimations provide a more accurate modeling pathway to eliminate the gap 

inherited by combining models of various complexities. Rigid body musculoskeletal 

modeling provides a fast method to estimate kinematics, but the knee is often represented 

as a hinge (Shelburne and Pandy, 1997) or using average kinematics obtained from 

cadaveric passive motion (Arnold et al., 2010; Delp et al., 2007). The MSFE modeling 

framework estimated 3, 1, and 1 DOF kinematics at the hip, knee, and ankle, respectively. 

The MSFE model also implicitly estimated secondary DOF at the knee determined by the 

interaction of cartilage contact, ligament restraint, and muscle loading. To the authors’ 

knowledge this novel approach has not been performed previously and represents a step 

forward in musculoskeletal modeling using high fidelity joint representations. Previous 

work has demonstrated the effect of joint deformability on muscle forces and joint torques 

at the knee (see Chapters 3 and 4) supporting the need for single framework simulations 
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with high fidelity joint representations when performing muscle force estimations. Joint 

deformability plots of Subjects 1 and 2 performing the chair rise show the change in 

kinematics at the knee between unloaded and loaded conditions for both subjects (Figure 

6.5). Loaded conditions include applied ground reaction forces and moments and applied 

muscle force estimations while the unloaded condition includes prescribed and implicitly 

defined kinematics at the hip, knee, and ankle. The large changes seen in anterior-posterior 

and internal-external DOF affect muscle moment arms and thus muscle effectiveness. 

Single framework solutions effectively deal with the differences caused by subject-specific 

kinematics and complex joint response. 

Muscle forces estimated during chair rising compared well with trends and 

magnitudes of previous predictions (Shelburne and Pandy, 2002). As expected the 

quadriceps peaked at largest knee flexion angles with minimal contribution from the 

antagonistic hamstring muscle group or gastrocnemii. Joint load predictions were similar 

to previously reported results from telemetric knee implants (Bergmann et al., 2014). 

Subject 2’s deviation from the ±1 standard deviation bounds echoed the increased 

quadriceps forces at full extension and in deepest knee flexion. Loading of the PCL 

throughout the chair rising activity corroborated results reported by Shelburne and Pandy 

(2002). The knee model used in this MSFE model exhibits load sharing between the PCL 

and MCL during this activity, which was also echoed by results presented in Chapter 4. 

Muscle forces estimated during the stance phase of gait compare well with previous 

estimations (Adouni and Shirazi-Adl, 2014a; Anderson and Pandy, 2001b). Quadriceps 

forces peaked during weight acceptance and gastrocnemii forces peaked at toe off as 
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expected. Muscle forces predicted by the hamstrings and quadriceps oscillated between 

50° and 70°. This can likely be explained by the inability of the static optimization 

technique to incorporate history dependence in muscle predictions. This is a common 

problem associated with static optimization and inverse kinematics and as much of a 

concern in rigid body dynamics as it is finite element musculoskeletal modeling. 

Tibiofemoral contact forces, though larger, imitate the dual peaked results demonstrated 

by the telemetric implant data. Both Subjects 1 and 2 see minimal ligament contribution 

during stance phase, with an expected peak of the PCL near toe-off. 

The computational time required to run single framework finite element solutions 

for chair rising and gait, including both kinematics and muscle force estimation, was 100 

hours in total. The four cases, described by two subjects each performing two activities, 

included 29 optimizations and were run in parallel simultaneously on four different 

workstations. Recent finite element optimization-based solutions reported run times 

between 32 hours and 4 weeks and included planar models of the joints (Halloran et al., 

2010, 2009) and surrogate representations of the contact mechanism (Halloran et al., 2009; 

Lin et al., 2010). Musculoskeletal models implemented in rigid body dynamics software 

packages allow for fast estimation of kinematics and muscle forces, but they lack the ability 

to model complex anisotropic material representations (Ali et al., 2017). The work 

presented here both improves upon and highlights the ability to perform concurrent 

simulation of muscle force estimation and tissue strain analysis in a single framework using 

optimization-based prediction of joint kinematics and muscle forces. 
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Limitations associated with scaling and kinematics involve the placement of 

markers on the MSFE model. While it is straightforward to place markers on bony 

landmarks, the software does not give feedback as to the relative location of markers placed 

at mid-thigh or mid-tibia. Marker sets which include rigid clusters of markers located at 

mid segment would likely see an increase in RMSE results. Including functionality to scale 

the location of mid-segment markers based on placed markers at the proximal and distal 

segment ends would improve kinematic predictions. Furthermore, the neutral position of 

the foot should be calibrated prior to kinematics estimation. Placement of markers on the 

outside of the sneaker can lead to variable results with offsets in ankle-plantarflexion angle. 

Though not a limitation of methods, computational time is a consideration when 

performing FEA. Estimating kinematics and muscle forces in the MSFE represented nearly 

100 hours of computational time, despite the parallel process control API developed in this 

work. MSFE models lend themselves to model modularity and thus hybrid optimization 

routines should be considered which perform quick, non-contact, rigid optimizations 

(kinematics, muscle forces) which then switch back over to complex representations during 

the last 10% of the optimization (using cost-function performance). This work also 

involves several limitations concerned with model representation. The ground reaction 

forces and moments were transformed to the resultant foot COM location after muscle 

forces estimated from laboratory EMG were applied to the model as an initial guess.  The 

following optimization of muscle forces based on the minimization of muscle stress and 

resultant joint torque represents a change in distribution of force within muscle groups 

(minimize muscle stress) and change of total force contributions of antagonistic groups 
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(minimize residual joint torques). The redistribution of muscle forces elicits changes in the 

internal-external DOF of the knee, as well as medial-lateral contact distribution which 

influences the hip-knee-ankle alignment. These changes in kinematics and alignment affect 

the final location of the foot COM during static optimization and thus diminish the integrity 

of the transformation of ground reaction forces and moments to the foot. Furthermore, the 

changes seen in internal-external rotation of the tibia and foot caused by changes in 

hamstring or quadriceps internal force distribution is not entirely realistic. Although the 

reaction forces and moments are applied to the foot center of mass, the lack of real contact 

represents a simplification in MSFE modeling that ultimately affects the accuracy of the 

tissue strain analysis. Promising results have been demonstrated in multibody dynamic 

analysis framework, ADAMS (MSC Software Corporation, Santa Ana, CA), which uses a 

deformable foot segment with regions of contact defined by elastic foundation theory 

(Guess et al., 2014). This implementation, like other rigid body dynamics applications, is 

limited in its ability to model complex material properties and deformation. Finding a 

computationally efficient method of foot-ground contact in MSFE modeling would 

improve the accuracy of joint and tissue stress analysis. A final limitation is concerned with 

computational time. Although improved over previous simulations, 40 hours of inverse 

kinematics and 60 hours of static optimization still represents a hurdle preventing these 

techniques from widespread use. MSFE modeling allows for modular model complexity 

of tissue definitions which can dramatically affect solution speeds.  Furthermore, work in 

hybrid architecture (GPU/CPU) explicit finite element simulation appears promising 
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(Banihashemi, 2015) and will likely usher large improvements in computational time 

required for complex MSFE simulations. 

In summary, a computational framework to build and perform concurrent 

estimation of muscle forces and tissue strain analysis was created to improve the 

accessibility of MSFE simulation. The study used optical marker-based motion and ground 

reaction forces and moments obtained in the lab to directly drive kinematics and muscle 

force estimation in a high-fidelity model of the lower which was scaled to subjects’ size 

and anthropometrics. This software will improve the usability of complex musculoskeletal 

simulations in a finite element framework.
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Figure 6.2 The lower limb musculoskeletal finite element model with calibrated specimen 

specific knee. The knees included TF and PF soft tissue structures whose response was 

calibrated to in vitro experiments (Ali et al., 2016; Harris et al., 2016). The model 15 

unique muscles comprised of 20 musculotendon fibers which span the lower limb 

previously calibrated to match mean healthy isometric knee flexion-extension torque 

results (Chapter 3). 
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   SUBJECT 1                 TEMPLATE                    SUBJECT 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Scaled lower limb models for Subjects 1 and 2 on either side of the template 

model. 
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Table 6.1 Scaling parameters used for Subject 1 and 2. 

 Subject 1 Subject 2 

Pelvis ML 1.09 1.00 

Femur SI 0.97 1.02 

Tibia SI 0.96 1.08 

Foot AP 1.14 1.19 
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Figure 6.4 Subject-specific kinematics estimated at the hip, knee, and ankle for the 

flexion-extension DOF for Subject 1 and 2 while performing a chair rise and during the 

stance phase of gait. 
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Figure 6.5: Change in implicitly described knee joint kinematics due to application of 

ground reaction loading at the foot and estimated muscle forces during chair rising for 

Subject 1 (blue) and Subject 2 (red). Secondary DOF knee kinematics are determined by 

the interaction of muscle forces, ligament constraint, and cartilage contact. 
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Figure 6.6: Forces prescribed by static optimization in muscle groups crossing the knee, 

forces carried by tibiofemoral ligaments, and contact forces (TF/PF) plotted against 

telemetric implant data (Bergmann et al., 2014) during a chair rise activity. 
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Figure 6.7: Forces prescribed by static optimization in muscle groups crossing the knee, 

forces carried by tibiofemoral ligaments, and contact forces (TF/PF) plotted against 

telemetric implant data (Bergmann et al., 2014) during the stance phase of gait. 
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 

 

The objective of this dissertation was to advance upon current methods in single 

framework finite element musculoskeletal modeling. Single framework simulations are 

currently the state-of-the-art in musculoskeletal simulation work, but due to their high level 

of complexity have seen relatively minimal usage in the field of biomechanics. The goal 

was to improve the accessibility and usability of musculoskeletal finite element simulations 

by addressing three issues that are currently limiting the progression of this research: model 

personalization, modeling infrastructure, and computational efficiency.  

 Chapter 3 described the knee torque response of a single framework 

musculoskeletal finite element model with deformable representation of the knee and 

calibrate it to the average strength response from healthy subject sample during isometric 

flexion and extension activities. The force-length curve that represents the response of 

single fiber muscle models has been described as too short (Herzog and ter Keurs, 1988) 

limiting its ability to represent active tension through the entire excursion of the joint 

(Blemker and Delp, 2006, 2005). The multi-fiber representation of the quadriceps 

mechanism described in chapter 3, coupled with the calibration of muscle parameters used 

to describe force generating characteristics has improved the representation of strength 

response at the joint. This improvement in model personalization led to the accurate 
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response of flexion and extension torque, which was then used to analyze response to 

loading that occurred at the knee due to a calibrated specimen-specific ligament 

representation. Large changes in flexion moment arms were observed in the model which 

have not been described previously in maximum isometric simulations and served to 

highlight the importance of a deformable model of the knee when estimating muscle forces. 

 Chapter 4 considered single framework muscle force estimations and tissue strain 

analyses. Static optimization, a common algorithm for solving the muscle redundancy 

problem, was used to estimate muscle forces while minimizing the sum of muscle stress. 

A computational environment was built to control parallel optimization of muscle forces 

at different time points throughout gait and chair rise; 13 time points were considered in 

total. The simulation of both tasks took nearly 60 hours for each subject. The time required 

to complete these simulations shows a large improvement over previous studies which 

performed complex muscle modeling directly in a finite element framework (Halloran et 

al., 2010, 2009). Muscle forces, ligament loads, and contact distribution compared well 

with previously reported simulation work and loads reported in patients with telemetric 

implants. As described in Chapter 2, the inverse dynamics method and static optimization 

technique are limited by the need for joint kinematics as input. There is currently no 

technique for estimating kinematics in a finite element environment and thus kinematics 

and ground reaction forces and moments were obtained from similarly sized subjects from 

OpenSim. This work highlighted the need for improved methods of kinematics estimation 

in single framework musculoskeletal simulation.  
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 Chapter 5 considered the accuracy of marker-based methods for estimating 

kinematics when compared to kinematics obtained from radiography-based bone tracking. 

It was shown that the flexion-extension degree of freedom (DOF) in all activities, and the 

internal-external DOF in activities with large excursion proved reliable in reproducing 

kinematics obtained from dynamic radiography. As described in Chapter 2, rigid body 

dynamics applications allow for computationally efficient estimation of kinematics, 

kinetics, and muscle forces in simplified representations of the body and joints. Kinematic 

splines based on the motion of cadaveric knees (Walker et al., 1988) have been 

implemented in a commonly used rigid body musculoskeletal model (Arnold et al., 2010) 

to improve upon the hinge representation of the knee joint. Updated kinematic polynomial 

splines were developed in this work based on the average healthy motion of the knee 

recorded using stereo radiography during in vivo knee extension to further improve 

kinematics predictions during simulation of activities performed in vivo. Although the 

results of this work highlighted the activity- and subject-specific differences in kinematics 

obtained from radiography-based methods, future work may consider subject-specific 

kinematic splines to describe healthy knee motion through computational modeling. Single 

framework musculoskeletal simulation work is computationally expensive, limiting its 

usefulness in the clinical setting. Previous work has incorporated surrogate representations 

of model features which drive large simulation time, such as contact (Lin et al., 2010). As 

an alternative, prescribed secondary DOFs as a function of flexion angle may lead to 

improved computational time during kinematics or muscle force optimization in single 

framework musculoskeletal models.  
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 Chapter 6 presented a computational framework for estimating joint kinematics and 

muscle forces in a single framework musculoskeletal finite element (MSFE) model. To the 

author’s knowledge, no such software currently exists. OpenSim has seen success due in 

part to its ease of use and open source nature which has made it accessible to researchers 

around the globe. The development of such a software for MSFE simulation will lead to 

increased accessibility and usability of these methods through different areas of interest. 

The goal of this work was to develop a modeling infrastructure which acted to improve the 

computational efficiency of these optimization approaches to MSFE simulation by 

managing parallelization and asynchronous process control. The framework was successful 

in estimating subject specific kinematics at the hip, knee, and ankle while allowing for the 

complex interaction of cartilage, ligament, and muscle to determine the secondary 

kinematics at the knee. Muscle force estimation was then performed, and results were 

presented to illustrate the ability of MSFE models to predict tissue strains concurrently 

with muscle force estimations.  

The work presented here seeks to improve upon current methods in MSFE 

modeling through improvements in model personalization, modeling infrastructure, and 

computational efficiency. Methods presented here parallel sophistication seen in models 

developed and presented in recent literature. Work by Guess et al. has shown concurrent 

prediction of muscle and tibiofemoral contact forces in healthy (Guess et al., 2013) and 

implanted knee joints (Guess et al., 2014) using MD Adams (MSC Software Corporation, 

Santa Ana, CA). The implementation of the lower limb model used 1-D non-linear springs 

to represent ligaments, and cartilage contact using regional contact defined by elastic 
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foundation theory. Concurrent muscle and tibiofemoral contact force estimations have also 

been performed in SIMM (Musculographics Inc., Santa Rosa, CA) (Smith et al., 2015, 

2016). Smith et al. estimated kinematics using marker data as input while prescribing 

secondary DOF at the knee as a function of knee flexion. Muscle forces were estimated 

during activities while accounting for the interaction of ligament (1-D springs), muscle 

forces, and cartilage contact (elastic foundation theory). AnyBody (AnyBody Technology, 

Aalborg, Denmark)  has also been used to perform concurrent muscle force, contact, and 

ligament strain (1-D spring) analysis in TKA (Chen et al., 2016) and healthy populations 

(Marra et al., 2015) using a novel force dependent contact approach which allowed for 

more efficient elastic contact calculations. These four model implementations were 

developed in multi-body dynamics software applications in such a way as to push the 

software to the limits of potential sophistication. This dissertation has seen the presentation 

of a MSFE model with specimen-specific ligament representation (1-D non-linear springs) 

and cartilage contact (elastic foundation theory) built in a finite element framework. This 

work has improved upon the current state-of-the-art, specifically due to the formulation of 

the model for FEA which sets it apart from current work in the field of musculoskeletal 

modeling. FEA allows for research questions which explore stress-driven pathologies such 

as osteoarthritis and its effects on bone and cartilage strength, malalignment and success 

in outcomes to procedures such as high tibial osteotomy, and fixation or loosening seen 

after total joint replacement. Analysis of joint response to stresses and strains associated 

with these pathologies during in vivo loading can only be performed on a model developed 
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for FEA with the ability to estimate kinematics and muscle forces from subject specific 

laboratory marker and forceplate data.    

Future work in this area should seek to improve quasi-subject-specific joint soft 

tissue representations. Population based modeling using statistical shape models has been 

used to successfully predict cartilage and ligament geometry from subject-specific bony 

geometry (Smoger, 2016). As described throughout this work, understanding the in vivo 

loading of cartilage, meniscus, and ligament is nearly impossible. However, future efforts 

should be made to quantify the subject-specific joint-scale response from in vivo 

experiments. Chapter 5 described a method for reproducing mean knee kinematics of a 

healthy adult cohort performing a passive knee extension. Previous work calibrated ACL 

and PCL ligament parameters of the MSFE model with subject-specific knee articular 

geometry to best match subject-specific knee extension kinematics (Ali, 2017). Given 

highly accurate kinematics obtainable using high-speed stereo radiography (HSSR) it 

should be possible to calibrate quasi-subject-specific joint response, given reconstruction 

or prediction of articular cartilage as described previously. Alternatively, calibration to a 

mean joint laxity response for predicted or segmented subject-specific cartilage and 

ligament geometry would continue to progress toward the goal of truly subject-specific 

musculoskeletal finite element modeling. 

Although this computational framework improves the efficiency and usability of 

high fidelity musculoskeletal modeling, work must continue to improve computational run 

times. Recent work has considered graphics processing units (GPUs) and hybrid solutions 

for explicit finite element analysis with promising results (Banihashemi, 2015). Within the 
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next decade computers with the ability to compute 1018 floating point operations (exaflops) 

per second will be introduced (Vuduc and Czechowski, 2011). It is believed these 

computers will more closely mimic the architecture seen in the GPU, which is 

distinguished by its scalability and large memory bandwidth. However, improvements in 

performance aren’t defined purely by the transfer of simulation work to the GPU, but more 

specifically FEA formulations which play to the GPU’s hardware architecture with high 

concurrency (high volume updates) and regional nodal coherence (localized group updates) 

(Banihashemi, 2015). Therefore, some of the responsibility to improve MSFE falls to the 

developers behind finite element analysis (FEA) software packages. ABAQUS currently 

supports GPU integration for ABAQUS/Standard job formulations but lacks supports for 

the Explicit domain. Hybrid integration of CPU and GPU load sharing would reap 

substantial improvements in computational time making single framework MSFE 

modeling increasingly useable. 

 In conclusion this work described and improved upon current limitations associated 

with single framework finite element musculoskeletal simulation, specifically model 

personalization, modeling infrastructure, and computational efficiency. There will always 

be the need for improvements to research methods, but it is the author’s hope that this work 

will be useful to the field of biomechanics and anyone interested in musculoskeletal 

modeling. 
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APPENDIX B. COMPUTATIONAL FRAMEWORK: FILES AND FEATURES 

ApplyNodeset2Model.m 

This script builds a GUI which allows the user to load MSFE bony geometry (.inp) as 

well as a static motion capture trial (.csv/.txt). Once loaded, the markers can be 

positioned appropriately on the MSFE geometry and exported as a model input file (.inp). 

Functional Decomposition 

Load FE Bone Geometry: Uses the function READ_MESH_NUMS_AJC.m or 

stlread_ascii_binary() to read in either an input file (.inp) or a CAD geometry file and 

load the nodes and elements associated with five segments: pelvis, femur, tibia, patella, 

and midfoot. The segments are plotted in the axes located on the left side of the GUI. 

Load Static Marker Trial: Prompts the user to choose a static subject trial saved in either 

.txt or .csv format and reads and formats the marker data in. The read in is 

straightforward and can be described as two parts: marker names, marker data. Marker 

names are obtained by loading the entire text file and reading text from the first marker to 

until the string “Frame” is found. The text is then parsed to remove the subject name in 

each marker string as denoted by everything before and including the colon. Marker data 

is parsed using the dlmread() function and hard coded offsets for the start of the numeric 

data. The average is taken of each marker position through time, which highlights the 

importance of a static subject trial. Standard deviations greater than 10mm will produce 

an error in the command prompt. The marker positions will then be plotted in the axes on 

the left side of the GUI, and the names and x, y, z, coordinates will be added to the table 

on the bottom right. 

Transform Marker Data Set: The buttons RotX, RotY, RotZ, +dX, +dY, +dZ allow for 

transformation of the entire marker set. Rotations are taken about the marker set centroid. 

This is helpful for aligning the marker set to the MSFE model which may be positioned 

differently in space than the optical marker data. Values can be keyed in for the 

magnitude of rotation and translation to the right of each set of buttons and are in units of 

degrees and millimeters, respectively.  

Single Marker Manipulation: Selecting a marker from the list at the bottom right, allows 

the user to translate individual markers to align them to bony landmarks which 

correspond to placement during subject data collection. Markers can also be irreversibly 

removed using the “Delete Marker” button. 

Export Markers to FE Input File: This section allows for the current alignment of markers 

to be exported to MARKERS.inp using the “Export to FE” button. The file is saved in the 

folder from which MSFE geometry was loaded, likely the model template folder. When 

MSFE scaling is performed this file will get copied to the new scaled model folder, and 

thus it is important that ApplyNodeset2Model.m isn’t run in sequence for more than one 
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subject at a time, otherwise the MARKERS.inp file will get overwritten. The “Export 

Scaling.cfg” button exports a file with information that allows the same geometry and 

marker file to be imported in the next phase of the software. It also exports to the model 

template folder. 

CalculateSegmentScaling.m 

This script builds a GUI which allows the user to load marker data from static subject 

trial as well as MSFE model with newly attached markers. Scaling factors can then be 

calculated for 1 to 3 axes representing the ML, AP, and SI DOFs of each segment. 

Scaling factors for each segment are calculated by selecting two markers which describe 

a displacement in that DOF and then taking the ratio of this distance for the two marker 

sets. For this reason, it is preferable to use markers position on anatomical geometry, 

such as femoral epicondyle or anterior superior iliac spine. 

Functional Decomposition: 

Load Scaling.cfg: This button prompts the user to browse for the Scaling.cfg file which 

was exported at the conclusion of the ApplyNodeset2Model GUI. The information in this 

file allows the software to load MSFE bony geometry and MARKER.inp file as well as 

the static subject trial. 

Static Trial Manipulation: These buttons allow for the transformation of the static subject 

marker set. The purpose of this section is purely visualization when determining markers 

to be used for scaling factors and can be skipped if desired. Rotation occurs about the 

marker set centroid and is specified in degrees. Translations are specified in millimeters. 

Scale [segment]: Each section allows for two markers to be chosen which will then be 

used to calculate a scaling factor for the primary (long) axis of the segment. This scaling 

factor will be linearly applied in each DOF unless the “Linear” checkbox is unchecked at 

which time scaling factors can chosen or input for the other two DOF. Although the 

muscle, ligament, and articular geometry is not affected at the knee, scaling of segments 

will affect muscle geometry which travel along them affecting moment arms. 

Export Scaling Data: This button exports ScalingParameters.mat which includes 

individual scaling metrics determined by the GUI. Default values are 1 unless otherwise 

updated. 

ApplyScaling2MSFEModel.m 

This script allows the user to load in ScalingParameters.mat and apply it to segment 

geometry in the MSFE Model. Anthropometrics are updated and ultimately a new scaled 

MSFE model is exported to the user defined output folder. 

Functional Decomposition 
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Build Scaling Matrices: Load scaling parameters and build scaling matrices with x, y, and 

z corresponding to AP, ML and SI respectively. 

Build Segment Coordinate System: Segment local coordinate systems (LCS) are built 

using a combination of model marker and joint center locations. These LCS are then 

combined with the scaling matrices to define segment scaling transformation matrices 

which will be applied to segment nodal geometry. 

Copy No-Scale Files: Files without scaling are copied to model output folder. This 

includes scripts, text files, and DU01 knee geometry files corresponding to ligament, 

bone, and cartilage geometry. Knee geometry was maintained in this software to preserve 

specimen-specific response. 

Copy and Scale [segment]: Files are transformed and scaled from the knee down through 

the foot, and from the knee up through the pelvis. In short, the knee joint center stays 

centered at (0,0,0). 

Update Mass: Queries the user for the subject mass in kilograms and runs the 

UpdateAnthro( ) function. See Implementation for details. 

Implementation 

scaleNodeCoordinates(infile, outfile, nodes, scaleMat, transVec, origin) 

The purpose of this function is to scale nodal geometry represented by node numbers in 

nodes found in a specific input file, infile, by translating it by transVec (determined by 

the scaling of the previous segment) and scaling it with scaleMat about origin. The scaled 

input file will then be written to the output folder defined by the path outfile. The 

parameter nodes can be set to -1 to dictate scaling of all nodal geometry in the file. 

UpdateAnthro(MarkerPath,Mass,FootAPScaleFactor) 

The purpose of this function is to recalculate subject segment anthropometry based on 

subject Mass and scaled model marker coordinates found in MarkerPath. Model marker 

names have been hard coded in as the search keywords for retrieving nodal coordinates 

with the intention of allowing for simple “recoding” when different marker sets are used. 

As an example, the pelvis is defined as an elliptical cylinder using markers: RASI, RPSI, 

LASI, LPSI, RCRT, LCRT, RTRO. The numerical formulation for each segment 

anthropometric estimation assumed segments were treated as geometric objects (elliptical 

cylinder and conical frustum) were based on descriptions provided by Hanavan (1964). 

For a review, a numerical formulation can be found on the C-Motion website (C-Motion, 

Germantown, MD) 

(http://c-motion.com/v3dwiki/index.php?title=Segment_Inertia). Pelvis, femur, and tibia 

use this method. Foot scaling is performed using an equation for moment of inertia 

http://c-motion.com/v3dwiki/index.php?title=Segment_Inertia
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scaling presented previously (Forwood et al., 1985) which requires the 

FootAPScaleFactor. 

BuildIKSims.m 

This script builds a GUI which allows the user to load in trial marker data and build 

simulation files to perform single frame inverse kinematics estimations using FEA. The 

tool lets you choose frames and select markers to provide initial guesses for optimization 

seeding of pelvis location, hip angle, and knee angle. 

Functional Decomposition 

Load Dynamic Trial: This allows the user to load a .csv or .txt file with marker motion 

data. The marker names are parsed and then dlmread( ) is used to read the entire block of 

marker coordinate data. Once the data has been loaded into the program the first available 

frame is displayed on the axes to the left of the GUI. Number of frames, start frame, end 

frame, and drop down boxes with marker names are updated. Tools for rotating and 

zooming the view can be found at the top left of the GUI. 

Crop Trial: This allows the user to select a region of interest for which inverse kinematics 

will be performed. Once the start and end frame are keyed in, the update button will 

rescale the scrollbar, update the current frame number, and replot the first available frame 

of marker data in the axes. 

Downsample Factor: This allows the user to down sample the number of frames included 

in the simulation. As an example, let’s say the start frame is set to 400 and then end frame 

is set to 799. The current frames will read 400. Updating the downsample factor to 2 will 

mean that only every other frame is included, and the current frames will read 200. 

Updating downsample factor to 20 will change the current frames to 20. Consideration 

should be given to selecting a value that makes sense given the frame rate of the marker 

data available.  

Pelvis COM, Hip Angle, Knee Angle: These areas allow the user to choose markers 

which represent the pelvis COM when averaged together, or the hip and knee angle when 

taking the angle between three markers. These values are calculated for the entire trial 

and used to seed the optimization with an initial guess. Calculating the pelvis COM will 

add a red dot in the plot to confirm the user decision. Hip and Knee angle outputs will 

also be displayed at the bottom of the axes and updated at each frame. 

Build Simulations: After typing in the activity name, clicking on the Build Simulations 

button will build IK simulation files including amplitude cards for kinematics (AMP) and 

main files (MAIN). There are two steps to the inverse kinematics: the first step moves the 

model into the approximated pose from the marker estimations, and the second step will 

be used in to perturb each DOF until the optimization converges on a solution. The initial 

guess for each optimization will be exported to InitialGuess_[frameNumber].txt  
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IKWrapper.m 

This script performs inverse kinematics estimation via downhill simplex given input 

simulation files provided by BuildIKSims( ). The software builds a 

simulation/optimization queue and fills it until all simulations/optimizations have 

completed. 

Functional Decomposition 

User settings: Define settings for simulations such as task, marker file, optimization 

parameters, and max number of cores to run jobs. NumCores is an important variable 

which defines how many threads to create at a time. Creating more threads than CPU 

cores is possible with this code and is problematic. 

Optimization Guess: This loads the InitialGuess_[frameNumber].txt for each kinematic 

optimization and sets the bounds for the problem space. Bounds can not be set for each 

time point, so it is important that the upper and lower bounds encompass the excursion of 

all DOFs 

Load Template Job Names: This section loads the template job information from 

“DU01_IK_S2_JOBLIST.txt” and “DU01_IK_S2_JOBNAME.txt”. Each file has a string 

or a series of strings corresponding to the job command and names with flags for variable 

defined values such as %TASK%, %SEED%, and %FRAME%. Seed numbers are 

developed randomly for each increment to deal with ABAQUS jobs freezing in a few 

situations and locking read/write privileges to files, preventing further analysis. 

Optimization Queue: This is the core of the optimization code for both inverse kinematics 

and static optimization. Assuming the job queue has been defined and is empty, this code 

loops through and creates threads to fill each spot in the queue. A thread will then launch 

the runSimplex( ) wrapper on the function runIKStep_matlab(), given a frame number 

and associated jobParams structure. This code manages optimization start, and code 

cleanup once optimizations finish. As an optimization completes, if there are more that 

need to be run, the completed spot in the queue will be collected, emptied, and replaced 

with a new thread which launches the runSimplex( ) wrapper on another frame number. 

Load Best Results: The optimization will return the best results which are stored in 

structure J{}, but for improved redundancy the final section of the code will also be able 

to load best results from existing optimization results files. 

runIKStep_matlab(x,jobParams): This function represents a single optimization iteration 

and takes a design vector (x) and job parameter structure filled with frame specific 

information. First a random seed is defined, and then main files and amplitude cards are 

built specific to the values associated with this iteration (seed) of the optimization. The 

runSimulation() is launched which uses a .NET library to launch and monitor the 

simulation process. A modified version occurs on Linux which does not have access to 
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the .NET library but the code performs similarly. When the simulation completes 

IKCostFun( ) calculates the cost function of the optimization iteration. The cost function 

for inverse kinematics is defined as the sum of the squared error between model markers 

and subject marker data scaled by the weights found in MARKER-WEIGHTS.txt. If 

markers are occluded or removed in the trial marker data they are excluded from the 

weighted cost function calculation. Once the cost function has been calculated the 

simulation files are deleted for the current iteration and the design vector and cost 

function are written to DesignVector_[frameNumber].txt 

BuildSOSimulation.m 

This script builds simulation files for muscle force estimation by performing static 

optimization on the joint kinematics obtained in the previous step. The static optimization 

consists of three steps. The first step moves the musculoskeletal model obtained in the 

previous section. The second step applies ground reaction forces and moment to the foot 

center of mass an applies a generic loading of muscle forces based off an initial guess. 

The third step applies a perturbation on the muscle forces to resolve the residual torque at 

the joints. The third step is the step which is used in the optimization routine to iterate to 

a solution. 

Functional Decomposition – Step 1 

Load Parameters / Kinematics: This section loads kinematics from the previous step and 

sets params needed for simulation setup. 

Template File Check: Template files are used to build the simulation files. This step 

checks to see that the template files exist and throws a warning popup if they do not. 

Build Step 1: Use MAIN and AMP template files to build frame specific files with 

kinematics obtained from IK. 

Functional Decomposition – Step 2 

Template File Check: Locate Template files for MAIN, AMP, ACT, and AMPGRF. 

Create MAIN 2: Build step 2 MAIN files pointing to frame specific AMP, ACT, and 

AMPGRF files. 

Create AMP 2: Build step 2 AMP files maintaining kinematics. 

Create AMPGRF 2: Foot COM is obtained from the end of Step 1. Ground reaction 

forces and moments obtained from laboratory data specified in viconforceplate are 

transformed to the foot COM and written to amplitude cards. 

Create ACT 2: Load EMG estimates or user defined activation guesses. Read resultant 

muscle geometry from step 1 and estimate muscle forces using defined activations. Write 

these activations to ACT amplitude cards. 
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Functional Decomposition – Step 3 (Optimization Step) 

Template File Check: Locate template files for MAIN, AMP, ACT, and AMPGRF. 

Create MAIN 3: Build step 3 MAIN files pointing to frame specific AMP, ACT, and 

AMPGRF files. 

Create AMP 3: Build step 3 AMP files maintaining kinematics. 

Create AMPGRF 3: Foot COM is obtained from the end of Step 2. Ground reaction 

forces and moments obtained from laboratory data specified in viconforceplate are 

transformed to the foot COM and written to amplitude cards. 

Create ACT 3: Load EMG estimates or user defined activation guesses. Read resultant 

muscle geometry from step 2 and estimate muscle forces using defined activations. Write 

these activations to ACT amplitude cards. During static optimization, step 3 will obtain a 

design vector of muscle activations and update the step 3 ACT file accordingly. 

SOWrapper.m 

This script performs muscle force estimation via static optimization given input 

simulation files provided by BuildSOSimulation( ). The software builds a 

simulation/optimization queue and fills it until all simulations/optimizations have 

completed. 

Functional Decomposition 

User settings: Define settings for simulations such as task, optimization parameters, and 

max number of cores to run jobs. NumCores is an important variable which defines how 

many threads to create at a time. Creating more threads than CPU cores is possible with 

this code and is problematic. Scaling parameters describing the combined cost function of 

muscle stress cubed and residual joint torque. 

Optimization Guess: The code can be configured to load the previously described EMG 

estimates or user defined activation guesses and sets the bounds for the problem space. 

Bounds for muscle activations are [0 1]. 

Load Template Job Names: This section loads the template job information from 

“DU01_SO_S2_JOBLIST.txt” and “DU01_SO_S2_JOBNAME.txt”. Each file has a 

string or a series of strings corresponding to the job command and names with flags for 

variable defined values such as %TASK%, %SEED%, and %FRAME%. Seed numbers 

are developed randomly for each increment to deal with ABAQUS jobs freezing in a few 

situations and locking read/write privileges to files, preventing further analysis. 

Optimization Queue: This is the core of the optimization code for both inverse kinematics 

and static optimization. Assuming the job queue has been defined and is empty, this code 

loops through and creates threads to fill each spot in the queue. A thread will then launch 
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the runSimplex() wrapper on the function runSOStep_matlab(), given a frame number 

and associated jobParams structure. This code manages optimization start, and code 

cleanup once optimizations finish. As an optimization completes, if there are more that 

need to be run, the completed spot in the queue will be collected, emptied, and replaced 

with a new thread which launches the runSimplex() wrapper on another frame number. 

Load Best Results: The optimization will return the best results which are stored in 

structure J{}, but for improved redundancy the final section of the code will also be able 

to load best results from existing optimization results files. 

runSOStep_matlab(x,jobParams): This function represents a single optimization iteration 

and takes a design vector (x) and job parameter structure filled with frame specific 

information. First a random seed is defined, and then main files and muscle forces in the 

ACT amplitude cards are built specific to the values associated with this iteration (seed) 

of the optimization. The runSimulation() function is launched which uses a .NET library 

to launch and monitor the simulation process. A modified version occurs on Linux which 

does not have access to .NET but the code performs similarly. When the simulation 

completes SOCostFun() calculates the cost function of the optimization iteration. The 

cost function for static optimization is defined as the sum of the muscle stress cubed 

added to the residual joint torque (N*mm). Once the cost function has been calculated the 

simulation files are deleted for the current iteration and the design vector and cost 

function are written to DesignVector_[frameNumber].txt 
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APPENDIX C. COMPUTATIONAL FRAMEWORK: EXAMPLE USAGE 

The purpose of this appendix is to describe the steps taken to reproduce the results 

presented in Chapter 6 for the Subject 1 gait activity. Steps for model scaling, kinematics 

estimation, and muscle force estimation will be described in detail. Emphasis will be 

placed on workflow and areas which require user input. Input files for ABAQUS/Explicit 

will be developed and exported for analyses. 

 

The goal is to make the computational framework, ReadySim, available on SimTK. 

SimTK is a modeling community with a large user base which submits and maintains a 

wide variety of tools, models, and software. It is the hope of this work that making the 

software open source will spur further work in high fidelity musculoskeletal modeling. 

This document will be transferred to the Wiki section of the ReadySim page on SimTK 

and will serve as a live document as the software continues to grow. Be sure to check 

SimTK for updated code and documentation if you’re referring to this document 

elsewhere.  

 

Download and Deploy 

ReadySim can and should be downloaded from the SimTK website to ensure current 

release of the software. Once downloaded, extract the archive using a compression tool 

such as WinZip or WinRar to a location on the computer which does not have read/write 

restrictions such as the Desktop or Documents folder. Inside the ReadySim folder you 

will find 4 different subfolders: Code, ExampleData, UnscaledFEModel, and Tutorial.  

 

Model Scaling 

The purpose of the model scaling module is to take a static subject marker trial obtained 

from the lab and use it to scale a generic MSFE model. Scaling can be performed along 3 

axes for each segment and is based on the relative distances between markers placed on 

the model and markers seen in the static trial. The scaling module can be divided into 3 

sections: Apply Markerset to MSFE Model, Calculate Segment Scaling Factors, and 

Scale MSFE Model. 

 

Apply the Markerset to the MSFE Model 

From the \ReadySim\Code\Framework\ folder open up ApplyNodeset2Model.m in 

MATLAB. Run the file to launch the GUI. 

 

Load the FE bone geometry by clicking on “Load Geometry”. You will be prompted to 

select the unscaled model folder and subsequently the input files corresponding to pelvis 

[BONE1-PELVIS.inp], femur [BONE2-FEMUR-DU01.inp], tibia [BONE3-TIBIA-

DU01.inp], patella [BONE5-PATELLA-DU01.inp], and foot (midfoot) [BONE6-

MIDFOOT.inp]. These files can be found in the \ReadySim\UnscaledFEModel\ folder. 

Each file takes between 5-30 seconds to parse nodes and elements into MATLAB. 

 



 

152 

 

Once the bones appear in the plot window, load in the static marker trial 

[KS05_STATIC_MARKERS.csv] located in \ReadySim\ExampleData\. At this point the 

GUI window should look as follows: 

 
 

Select unnecessary markers from the list at the bottom right and delete them using the 

“Delete Marker” button. For the purposes of this tutorial the following markers were 

removed: RFHD, LFHD, RBHD, LBHD, TPHD, C7, T10, CLAV, RSHO, RELB, 

RWRA, RWRB, LSHO, LELB, LWRA, LWRB, LTRO, LTHI, LQAD, LKNE, 

LMKNE, LSHU, LTIB, LSHL, LANK, LMED, LHEE, LTIP, LTOE, LMET. 

Next, use the two rows of buttons labeled “RotX”, “RotY”, “RotZ”, “+dX”, “+dY”, 

“+dZ” to move the entire marker set as a whole. Lining up the pelvis markers is a good 

start when manipulating the entire set as it leads into simple single marker manipulations 

at the leg. Another approach might be to line up the long axis of the leg markers to the 

model limb and make single marker adjustments to the pelvis. The below image has used 

the first method to line up the pelvis. As you can see adjustments will need to be made to 

the entire marker set and thus the gross motion is a user preferred initial guess. 

NOTE: Use the pan, rotate, and zoom buttons in the top left of the plot window to 

manipulate the view for effective marker placement. 
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Next, use the buttons under Single Marker Manipulation, “+dX”, “+dY”, “+dZ” to 

manipulate the position of one marker in space and line it up with the segment or bony 

landmarks. Clicking on the marker in the list will allow you to use the buttons to translate 

it. Once this process is completed, clicking “Export to FE” will build an updated model 

marker file [MARKERS.inp] and place it in the \ReadySim\UnscaledFEModel\ folder. 

This marker file will then be copied into the scaled model folder in a subsequent step. 

Finally, the “Export ScalingConfig.txt” will export a file that points to location of the 

unscaled model, and marker file to expedite loading in future steps. 

Calculate Segment Scaling Factors for MSFE Model 

From the \ReadySim\Code\Framework\ folder open up CalculateSegmentScaling.m in 

MATLAB. Run the file to launch the GUI. Click “Load ScalingConfig.txt” and browse 

for the file exported in the unscaled model folder. After choosing this file, the loading in 
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of nodal geometry, model markers, and static trial markers will take between 1-2 minutes 

to complete. 

 
 

Once the model and markers have been loaded into the viewport the user can begin to 

define segment scaling factors for the ML, AP, and SI axes of each segment. Scaling can 

be performed linearly (all 3 axes use the same factor) or nonlinearly. For visual purposes, 

uses the Static Trial Manipulation section to translate the red markers representing the 

static subject trial so that comparisons can be easily made between model and subject. 

For this tutorial, the SI axis of femur [RASI, RKNE] and tibia [RKNE, RANK], the ML 

axis of the pelvis [RASI, LASI], and the AP axis of the foot [RHEE, RTOE] were scaled. 

Nonlinear, single dimension scaling was performed to best maintain moment arm 

geometry calibrated previously while scaling model segment lengths to match subject 

segment length. The scaling factors for pelvis, femur, tibia and foot were calculated as 

1.12, 0.99, 0.96, 1.09, respectively. All remaining factors were kept at 1.0. Results may 

differ depending on placement of the markers onto the model in the previous step. 

Clicking the “Export Scaling Data” button will export ScalingParameters.mat to the 

unscaled model folder. 
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Scale MSFE Model 

From the \ReadySim\Code\Framework\ folder open up ApplyScaling2MSFEModel.m in 

MATLAB. This m-file is not a GUI and has been designed using code cells which, when 

active, can be run using ctrl+enter. 

At the beginning of the code the user will be prompted to browse for the 

ScalingParameters.mat file. This should be located in your unscaled model folder 

\ReadySim\UnscaledFEModel\. The next few cells load model markers and joint centers 

and build segment local coordinate systems and apply scaling parameters to these 

transformation matrices. 

Next, the user is asked to browse for the Scaled Model Output Folder. This will need to 

be created, and the expected workflow would be to create the folder in the \ReadySim\ 

root folder. The software uses some file paths based on this folder placement. For this 

work the KS05 folder was created in \ReadySim\KS05\. Once the folder is selected files 

will be transferred which do not require scaling. The follow cells transfer files while 

scaling nodal geometry using the scaling matrices calculated previously for pelvis, femur, 

tibia, and foot. Next, the code updates the model segment masses (59kg for Subject 1), 

and anthropometrics.  

Finally, the code updates the muscle modeling parameters based on the newly scaled 

segment lengths. Calibration jobs are run in ABAQUS\Explicit for both the unscaled 

MSFE model and the newly scaled MSFE model. The purpose of these jobs is to compare 

muscle force output between the two models to ensure proper scaling was performed and 

representative force production will occur. If the prescribed muscle forces at 50% 

activation differ by more than 5% between to two models the code will warn the user via 

the command line. 

Kinematics Estimation 

The purpose of the kinematics estimation module is to take a dynamic marker trial 

obtained from the lab and use it to estimate kinematics for the scaled MSFE model. The 

kinematics module can be divided into 2 sections: setup, and kinematics optimization. 

 

Build Simulation Setup Files for Kinematics Estimation 

From the \ReadySim\Code\Framework\ folder open up BuildIKSims.m in MATLAB. 

Run the file to launch the GUI. 

 

Clicking the “Load Dynamic” button prompts the user to browse for a dynamic trial 

exported from Vicon Nexus 2.0+. Click the button and browse to the 

\ReadySim\ExampleData\ folder and choose KS05_12_MARKERS.csv, which 

corresponds to the gait activity. 
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The first step in setting up the IK simulations is to crop the trial to the region of interest. 

For the purposes of static optimization muscle estimation later, we will want to crop to a 

region where the foot is in contact with the forceplate. Set the start frame to 1069 and the 

end frame to 1155 and click update. The time bar, current frame, and the current frames 

will all updated with the new information for the cropped region. The region of interest 

includes 87 frames which would take a long time to run optimization on. To better 

facilitate parallel optimizations, we would like to down sample the input data. Setting the 

down sample factor to 20 will effectively sample at 5Hz, resulting in 6 optimization time 

points. Running 6 time points in parallel (6 threads) should be feasible on most desktop 

workstations. 

 

Next the application requires you to define initial guesses for the pelvis location, hip and 

knee flexion angles. These values help seed the optimization to minimize required 

computational time. For Pelvis COM choose RASI, LASI, RPSI, LPSI and click 

‘Calculate’. A red dot will appear at the calculated centroid location of those four 

markers. For hip angle, choose RASI, RPSI, and RKNE and click ‘Calculate’. The angle 

between those 3 markers will appear below the plot window and will update as the time 

bar is manipulated. Finally choose RTRO, RKNE, RANK and click ‘Calculate’. An 

estimate of knee angle will then be added below the plot. 
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Fill in a Task Name (GAIT for this tutorial) and click ‘Build Simulations’. You will be 

prompted to select the scaled model directory. For us, this corresponds to the 

\ReadySim\KS05\ folder. Choose this folder and click OK in the dialog box. Upon 

navigating to that location, you should now find AMP files (eg. 

AMP_DU01_IK_GAIT_1069_S1) and MAIN files (eg. 

MAIN_DU01_IK_GAIT_1069_S2) for the activity name, each of the subsampled 

frames, and two simulation steps. Finally, you will also find an InitialGuess_GAIT.txt. 

This file gets loaded and is used to the seed the optimization based on the location and 

angles we defined previously.  

 

The optimization is divided into two steps: S1 and S2. S1 is a step which moves the 

model to the estimated location and prescribes the kinematics we calculated in the setup 

GUI. The second step is a perturbation step, which interfaces with the optimization and 

allows for faster simulation times. Therefore, before moving on to the optimization step, 

run the S1 main files for each time point. These can be run from the ABAQUS command 

prompt using the following command: “abaqus job=MAIN_DU01_IK_GAIT_1069_S1 

double=both interactive”. This command will need to be run in separate ABAQUS 

command prompts for each job.  

 

Perform Kinematics Estimation using Simplex Optimization 

From the \ReadySim\Code\Framework\ folder open up IKWrapper.m in MATLAB. This 

m-file is not a GUI and has been designed using code cells which, when active, can be 

run using ctrl+enter. It is important that this code is run from the \Framework\ folder as it 

adds other directories to the matlab path. 

 

The first cell updates the path to include the \Framework\ folder as well as the 

optimization folder \FMINSEARCHBND\.  

 

The next cell includes settings which must be updated by the user. Updating the absolute 

path of the rundir (scaled model folder) and jobParams.viconfile which points to the 

marker data from the dynamic trial. On my computer, and given the framework is located 

on my desktop, these two path locations are set to: 

rundir =  

'C:\Users\Donald\Desktop\ReadySim\KS05\'; 

jobParams.viconfile = 

'C:\Users\Donald\Desktop\ReadySim\ExampleData\KS05_12_MARKERS.csv'; 

Update the paths to reflect your system configuration to point to these files and folders. 

This cell also reads the file “numCores.txt” to check for how many cores the user would 

NOTE: If you are not certain of the number of virtual cores (threads) your CPU 

has, this is a good opportunity to make sure that your CPU usage doesn’t reach 

100% while running these jobs. Be sure to understand the CPU capabilities before 

starting the semi-automated optimization routine. 
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like the simulation to run on. Another way to think about this is how many parallel 

MATLAB optimizations should be run at once. A proper understanding of your CPU 

architecture is important for this step to prevent over utilization. In this example, we 

developed a simulation at 6 discrete time points in the gait phase. If our numCores file is 

set to 6, all simulations will be run in parallel. If the numCores file is set to 4, 4 

simulations will be run in parallel. In this case the last two optimizations will begin once 

any of the first 4 simulations conclude. This adds considerable computational time and 

thus important considerations should be made when deciding on the subsample ratio to 

determine effective computational time. 

 

The third cell initializes software settings, and the fourth cell defines bounds for the 

design vector and loads the initial guess which was exported to InitialGuess_GAIT.txt in 

the previous step. Marker weights are also loaded from MARKER-WEIGHTS.txt and 

used during the cost function calculation which performs a least-squares calculation of 

the model markers compared to the subject markers 

 

The fifth cell loads job names which are used to make the call to ABAQUS and to clean 

up files post simulation. 

 

The sixth cell is the core code which runs the optimization queue. It does not require any 

inputs not previously defined and should run inverse kinematics optimization on each 

time point defined in the IK Setup GUI. Once all simulations are completed the results 

will be parsed into ‘kin’ and ‘rmse’ variables in the MATLAB workspace. This code 

opens background instances of MATLAB to run each optimization. 

 

The final cell includes extra code to read the DesignVector_IK_GAIT_framenum.txt file 

which was written at each iteration and includes the cost function evaluation. This code is 

included so that optimization solutions can be obtained in the future if necessary (or to 

recover current results if the system goes down unexpectedly). 

 

The final line of code is necessary to save results in KIN_task.mat (KIN_GAIT.mat) for 

the static optimization setup code which follows. 

 

Muscle Force Estimation 

The purpose of the muscle force estimation module is to model kinematics estimated in 

the previous step, apply ground reaction forces and moments to the foot, and estimate 

muscle forces which offset the residual torques that develop at the hip, knee, and ankle. 

NOTE: Dynamic pausing of optimizations is possible by editing the 

PAUSE_SIMS.txt file to 1. A value of 0 will continue the simulations. MATLAB 

batch instances will remain hooked while simulations are paused, however it frees 

computer resources if needed. 
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The muscle force optimization module can be divided into 2 sections: build setup files, 

and muscle force optimization. 

 

Build Simulation Setup Files for Muscle Force Estimation 

From the \ReadySim\Code\Framework\ folder open up BuildSOSimulation.m in 

MATLAB. This m-file is not a GUI and has been designed using code cells which, when 

active, can be run using ctrl+enter. 

 

The first cell defines paths for the runtime directory and forceplate file output from 

Vicon. Confirm that these files paths are correct considering the location of the 

\ReadySim\ folder. Force plate offsets are also included which are used when performing 

kinetic transformations to the foot. The code changes to the runtime directory (scaled 

model folder) and loads kinematics estimated in the previous step. 

 

The remaining cells defined in this code are split into three groups that correspond to file 

generation for 3 different steps. The static optimization job was divided into three steps 

which (1) position the model kinematically based on the results of kinematics estimation, 

(2) apply ground reaction forces and moments and an initial muscle activation/force 

guess, and (3) [optimization] make perturbations to muscle forces. After the first two 

sections, an empty code cell prompts you to run the newly created files for Step 1 and 

Step 2. 

 

Step 1 begins by checking that all necessary template files exist in the scaled model 

folder. These files will have been copied over during the model scaling step. A popup 

will prompt for any missing files. Next, MAIN files are generated based on the task 

name, and frame numbers. Then, AMP files are generated with amplitude curves defined 

for joint kinematics using the values estimated in the previous step. The user is then 

prompted to run the Step 1 ABAQUS simulations.  

 

Step 2 begins in a similar fashion to Step 1 and checks for all necessary template input 

files. The user will be prompted if any template files are missing. MAIN files are 

generated for Step 2 as well as AMP files which maintain the kinematics prescribed in 

Step 1. Next AMPGRF files are generated which prescribe transformed force plate 

kinetic data to the foot COM. The applied kinetics to the foot COM are ramped from zero 

to the calculated value through the duration of the trial, with a period of settling at the end 

of the trial. The last section of Step 2 loads activation estimates (either from EMG or an 

educated guess), estimates muscle forces based on S1 model kinematics, and builds ACT 

files which ramp muscle forces to predicted values. Finally, the user is prompted to run 

Step2 ABAQUS simulations. 

 

Step 3 begins by checking that all template files exist. MAIN, AMP, and AMPGRF files 

are generated which maintain the previously prescribed kinematics and kinetics. 

Transformed kinetics are updated based on the position of the new foot COM described 

by the kinematic changes seen at the tibiofemoral joint caused by application of muscle 
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forces and ground reaction forces and moments. Muscle forces are also updated using the 

activations input to Step 2. Step 3 is the step which is used in the optimization routine, so 

these prescribed activations will be perturbed to solve for muscle forces at each time 

point. For now, the activations are held constant. 

 

Perform Muscle Force Estimation using Simplex Optimization 

From the \ReadySim\Code\Framework\ folder open up SOWrapper.m in MATLAB. This 

m-file is not a GUI and has been designed using code cells which, when active, can be 

run using ctrl+enter. 

 

The first cell updates the path to include the \Framework\ folder as well as the 

optimization folder \FMINSEARCHBND\.  

 

The next cell includes settings which must be updated by the user. Updating the absolute 

path of the rundir (scaled model folder). On my computer, and given the framework is 

located on my desktop, this path location is set to: 

rundir =  

'C:\Users\Donald\Desktop\ReadySim\KS05\'; 

Update the paths to reflect your system configuration to point to this folder. This cell also 

reads the file “numCores.txt” to check for how many cores the user would like the 

simulation to run on. Another way to think about this is how many parallel MATLAB 

optimizations should be run at once. A proper understanding of your CPU architecture is 

important for this step to prevent over utilization. In this example, we developed a 

simulation at 6 discrete time points in the gait phase. If our numCores file is set to 6, all 

simulations will be run in parallel. If the numCores file is set to 4, 4 simulations will be 

run in parallel. In this case the last two optimizations will begin once any of the first 4 

simulations conclude. This adds considerable computational time and thus important 

considerations should be made when deciding on the subsample ratio to determine 

effective computational time. 

 

The third cell initializes software settings, and the fourth cell defines bounds for the 

design vector and loads the frame numbers which were exported to 

InitialGuess_GAIT.txt in the previous step. The initial guess for optimization is described 

by a 20% activation across all muscles. EMG or an informed guess should be used in 

place of this to improve computational efficiency. 

 

The fifth cell loads job names which are used to make the call to ABAQUS/Explicit and 

to clean up files post simulation. 

 

The sixth cell is the core code which runs the optimization queue. It does not require any 

inputs not previously defined and should run static optimization on each time point 

defined in the SO setup code. Once all simulations are completed the results will be 

parsed into ‘acts’ and ‘rmse’ variables in the MATLAB workspace. This code opens 

background instances of MATLAB to run each optimization. 
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The final cell includes extra code to read the designVector_SO_GAIT_framenum.txt file 

which was written at each iteration and includes the cost function evaluations. This code 

is included so that optimization solutions can be obtained in the future if necessary (or to 

recover current results if the system goes down unexpectedly). 

 

The final line of code is used to save results in acts_task.mat (acts_GAIT.mat) for future 

analyses. 

 

 

NOTE: Dynamic pausing of optimizations is possible by editing the 

PAUSE_SIMS.txt file to 1. A value of 0 will continue the simulations. MATLAB 

batch instances will remain hooked while simulations are paused, however it frees 

computer resources if needed. 
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