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Abstract 

Logistic Regression (LR), Linear Discriminant Analysis (LDA), and 

Classification and Regression Trees (CART) are common classification techniques for 

prediction of group membership. Since these methods are applied for similar purposes 

with different procedures, it is important to evaluate the performance of these methods 

under different controlled conditions. With this information in hand, researchers can 

apply the optimal method for certain conditions. Following previous research which 

reported the effects of conditions such as sample size, homogeneity of variance-

covariance matrices, effect size, and predictor distributions, this research focused on 

effects of correlation between predictor variables, number of the predictor variables, 

number of the groups in the outcome variable, and group size ratios for the performance 

of LDA, LR, and CART. Data were simulated with Monte Carlo procedures in R 

statistical software and a factorial ANOVA with follow-ups was employed to evaluate the 

effect of conditions on the performance of each technique as measured by proportions of 

correctly predicted observations for all groups and for the smallest group.  

In most of the conditions for the two outcome measures, higher performances of 

CART than LDA and LR were observed. But, in some conditions where there were a 

higher number of predictor variables and number of groups with low predictor variable 

correlation, superiority of LR to CART was observed. Meaningful effects of methods of 

correlation, number or predictor variables, group numbers and group size ratio were 
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observed on prediction accuracy of group membership. Effects of correlation, group size 

ratio, group number, and number of predictor variables on prediction accuracies were 

higher for LDA and LR than CART. For the three methods, lower correlation and greater 

number of predictor variables yielded higher prediction accuracies. Having balanced data 

rather than imbalanced data and greater group numbers led to lower group membership 

prediction accuracies for all groups, but having more groups led to better predictions for 

the small group. In general, based on these results, researchers are encouraged to apply 

CART in most conditions except for the cases when there are many predictor variables 

(around 10 or more) and non-binary groups with low correlations between predictor 

variables, when LR might provide more accurate results.  
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Chapter One 

 
Introduction and Literature Review 

Analysis of databases large and small is endemic across disciplines. Under 

different conditions of the data, statistical/analytical methods may perform differentially. 

The structure of the data affects the decision about which techniques to apply and hence 

limitations on directions of the studies. One purpose of data analysis is to determine 

characteristics of groups (e.g., students who stay in school versus those who drop out; 

patients who recover quickly from surgery versus those who do not). While many 

methods exist for identifying group membership of observations, logistic regression (LR) 

and linear discriminant analysis (LDA) are among the most commonly used (Agresti, 

2002; Huberty & Olejnik, 2006) and classification and regression trees (CART) is a more 

recent method (Breiman et al., 1984; Williams et al.,1999). Despite their extensive use, 

little is known about how well they classify observations accurately and which perform 

better under some data scenarios such as number of the groups in the outcome variable, 

number of the predictor variables, distributions of predictor variables, multicollinearity, 

and so on. 

The purpose of this study is to compare the performance of logistic regression, 

discriminant analysis, and classification and regression trees under conditions which are 

common in applied areas and so to address gaps in the literature. Furthermore, this study 



 

2 
 

aims to give suggestions to applied researchers in terms of which criteria and method to 

use when dealing with prediction of group membership.  

Before introducing the details of LDA, LR, and CART and summarizing the 

studies which compared these methods, a general overview of statistical learning 

techniques is presented below.  

A General Overview of Statistical Learning Techniques and Classification 

 Statistical learning techniques can be divided into five main categories based on 

the research purpose and data properties (Tabachnick & Fidell, 2013). A brief 

presentation of these categories is presented below; a detailed discussion of classification 

and group membership techniques is then included as the focus of this research is the 

comparison of three group membership techniques. The five main categories are: 

1) Techniques for investigating degree of relationships between variables: 

Regression and correlation techniques, multipath frequency analysis, and 

hierarchical linear models are examples of this category.  

2) Techniques for investigation of latent structure: Principal Components Analysis 

(PCA), Factor Analysis (FA), and Structural Equation Modeling (SEM) are 

examples.  

3) Techniques for investigating the time course of events: Survival analysis and time 

series analysis are examples. 

4)  Techniques for investigation of group differences: t-tests, analysis of variance, 

analysis of covariance, their multivariate versions (MANOVA and MANCOVA 

and Hotelling 𝑇") techniques are examples.  
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5) Group membership techniques: Logistic regression (LR), variations of 

discriminant function analysis (DFA) such as linear discriminant analysis (LDA), 

quadratic discriminant analysis (QDA) and mixture discriminant analysis (MDA) 

techniques, multipath frequency analysis with logits (MFAL), and classification 

and regression trees (CART) are examples.  

 

  Classification is defined as a method of grouping entities by their similarities 

(Bailey, 1994). The general purpose of classification methods is predicting group 

membership of cases or grouping variables based on degrees of relationships between 

predictor and outcome variables. When considering classification techniques, two 

circumstances for classification should be considered to clarify their differences.  

1) Classification techniques for grouping and investigating relationships between 

variables: When some variables are correlated with each other, it might be useful 

to reduce the number of the variables by PCA or FA techniques. Moreover, for 

cases when the variables are not directly observed (latent variable), the relations 

between latent and other observed variables based on existing literature and 

researcher assumptions can be explored or confirmed by SEM techniques (Kline, 

2016).  

2) Classification techniques for clustering observations or predicting group 

membership of observations: The methods such as latent class analysis (LCA), 

mixture modeling (MIX), or cluster analysis (CA) aim to identify unobserved 

group/class membership of observations. These techniques are applied when the 

predictor variables are observed but not the grouping variable. On the other hand, 
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as opposed to the cases when there are no observed groups, when the groups are 

observed and the interest is in predicting group membership based on predictors; 

i.e., what group the case is likely to belong in, LR, DA, or MFAL, can be applied 

depending on the choice of the researcher. In addition to these statistical methods, 

machine learning techniques such as classification trees and regression (CART), 

or random forests (RF) are applicable the same situation. 

 

Prediction of group membership is a useful statistical learning tool in social, 

educational, and health sciences, and other applied areas. It plays an important role when 

the researcher needs to analyze the importance of predictors of the outcome (categorical) 

variable and more specifically in predicting group/class membership of observations. For 

example, in health sciences, it is important to predict whether the patient is likely to have 

cancer or not, based on some health conditions and indicators s/he has since correct 

diagnosis leads to optimizing the treatment (Valentin et al., 2001). While this is an 

example of a two-group case (cancer/no cancer), it should be noted that there are 

situations when more than two groups exist. For instance, a researcher can divide 

disabilities into groups including speech and language delay, autism, cerebral palsy, 

down syndrome, nonverbal (visuospatial) learning disability, etc., which creates more 

than two groups (Lillvist, 2010; Mammeralla et al., 2010). 

Similar to the prediction of group membership, investigations of the significance 

of group differences are also useful statistical learning techniques. Both the evaluation of 

the group differences and group membership are based on the degree of the relationship 

between independent and dependent variables which defines the likelihood of 
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observations belonging to a group of outcome variables or the estimation of variables’ 

importance. On the other hand, statistical group difference and group membership 

techniques differ as group membership is either an independent variable or the dependent 

variable: group difference techniques such as MANOVA include group membership 

variable as an independent variable and group membership techniques, such as LR, use 

group membership as the dependent variable (Tabachnick & Fidell, 2013). Figure 1 

provides a presentation of common classification methods based on the purpose of 

techniques (predicting group membership of observations, grouping variables and 

clustering observations) and structure of variable (directly observed, unobserved). 

 

Figure 1 

Common Classification Methods 
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Other Classification Techniques 

 Before presenting details of LDA, LR, and CART, it should be noted that there 

are classification methods in addition to those mentioned above. In general, classification 

techniques can be divided into categories based on the algorithms or formulas they use 

such as frequentist approaches, linear classifiers, Bayesian procedures, quadratic 

classifiers, decision trees, neural networks, and feature classification (Swain & Sarangi, 

2013). Moreover, classification methods deal with problems such as: group membership 

(also known as supervised learning in machine learning), clustering (grouping 

observations to unobserved groups), and dimensionality reduction (reducing the number 

of variables).  

In the categories above, LR and LDA fall into the category of linear classifiers. 

Additionally, some classification techniques use machine learning algorithms, and while 

most of the classification techniques are known as statistical techniques or machine 

learning, there is not a strict division between the ideas of statistics and machine learning 

in the literature as both techniques are about data analysis (Witten et al., 2017). On the 

other hand, some institutions such as the National Science Board, Columbia University, 

and UC Berkeley claim that data science and statistics are different (Ratner, 2017). 

Machine learning techniques use algorithms to learn from data (such as classification 

properties of observations) without depending on fixed programing rules and assign 

observations to groups. Statistical techniques rely on fixed mathematical equations that 

formulate relationships between variables. Hence, mechanisms of machine learning 

techniques are different than classical statistical classification techniques. 
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Generalized additive model (GAM), multivariate adaptive regression splines 

(MARS), and kth-Nearest neighbor (KNN) are other common statistical classification 

techniques and neural networks (NNET), classification and regression trees (CART), 

random forest (RF), and boosting (BOOS) are well known machine learning techniques. 

In addition, there are other different types of classification techniques such as linear 

programming (LP) as a mathematical optimization technique and the hybrid method 

(HM) as a combination of LP and KNN.  

While machine-learning techniques for classification are becoming more 

frequently used techniques among applied researchers, logistic regression (LR) and linear 

discriminant analysis (LDA) are still the most commonly used techniques in social 

sciences for observed groups (Holden et al., 2011) while CART is used increasingly. 

Explanations and details about LD, LDA and CART are presented below.   

Linear Discriminant Analysis (LDA) 

The purpose of DA is predicting the group membership of cases/observations. It 

is one of the oldest and most well-known classification techniques, generalized after 

Fisher (Fisher, 1936; Rauch & Kelly, 2009). Throughout the past century, different 

discriminant functions were explored but all of them were based on similar logic or 

purpose. Common types of DA are linear discriminant analysis (LDA), quadratic 

discriminant analysis (QDA), and regularized discriminant analysis (RDA) (Hastie et al., 

2009). LDA specifically requires equality of covariance matrices, multivariate normality, 

and independence of observations. Additionally, it models only linear functions. On the 

other hand, QDA is an extended type of LDA which allows for quadratic functions. QDA 
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also requires multivariate normality and independence of observations but does not have 

a limitation for homogeneity of covariance matrices (Finch & Schneider, 2007). RDA is a 

mixture of LDA and QDA where covariance matrices of both methods are combined in a 

particular way (Friedman, 1989). While RDA and QDA are becoming more widely used, 

LDA is still the more commonly used classification method among researchers (Holden 

et al., 2011, Rauch & Kelley, 2009). Therefore, I will focus on LDA rather than the other 

types of discriminant analysis techniques. More details about LDA are presented below.  

The classification mechanism for LDA works by calculating the following 

formula, 

𝐺% = 𝑐%( + ∑𝑐%+𝑥+ + ln	(
12
3
)     (1) 

where 

𝐺%	is the score of the jth group, 

𝑐%(	is the constant value for the jth group,  

𝑐%+	is the coefficient value of the ith variable and the jth group, 

𝑥+	is the ith variable,  

𝑛%	is the number of observations within the jth group, and  

𝑁 is the total number of observations.  

Here, the constant value for the jth group 𝑐%(	 and the coefficient values  𝑐%+s  are 

calculated by the formulas,  

𝑐%( =
6
"
𝐶%8𝑀%,     (2) 

𝐶% = 𝑊;6𝑀%     (3) 

where  
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𝐶%	is the coefficients vector for 𝑐%+s,   

𝑊is the pooled within- group variance-covariance matrix, and  

𝑀%	is matrix of the means of the variables for group j.  

After calculating the scores of each case for each group, an observation is 

assigned to the group for which its score is the highest. For example, suppose the 

outcome variable has three groups, let us say the group scores were calculated as 𝐺6= 

24.65, 𝐺"= 32.09 and 𝐺< = 11.40. In this example, the observation will be assigned to 

the second group, since it has the highest group score.  

Assumptions of LDA. 

The LDA technique assumes multivariate normality, homogeneity of variance-

covariance matrices (HOCV), linearity, and absence of multicollinearity and singularity. 

According to Tabachnick and Fidell (2013), discriminant functions are robust against 

violation of normality when the violation is due to skewness rather than the presence of 

outliers. They also state that discriminant functions are robust against the violation of 

HOCV as well, and violation of the assumption of linearity has little effect unless 

extreme. Multicollinearity and singularity occur when some predictors are redundant with 

each other, but some computer programs automatically exclude predictors with 

insufficient tolerance, which prevent analyses from failing due to singularity and 

multicollinearity. In terms of sample size, Tabachnick and Fidell (2003) stated that each 

group should have more observations than the number of predictor variables. Finally, 

they claim that the performance of discriminant function analysis is very sensitive to the 

presence of outliers.  
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Logistic Regression (LR) 

 As another group membership classification method, one purpose of LR is to 

correctly predict the category of the outcome variable (Agresti, 2002). Therefore, it is 

related to DFA and MFAL, since they all answer similar types of questions. On the other 

hand, LR differs from these techniques due to its flexibility, as it does not require 

satisfaction of some assumptions and it can include both categorical and continuous types 

of variables as predictor variables. Moreover, the mathematical formulation of LR is 

different. 

 To introduce the mathematical background of LR, let u be a linear regression 

model as  

𝑢 = 𝐵( + 𝐵6𝑋6 + 𝐵"𝑋" + ⋯+ 𝐵E𝑋E = 𝐵( +	∑𝐵%𝑋+%    (4) 

where  

 𝐵(	is the intercept of the linear regression model, and 

 𝐵%	is the coefficient for jth variable,	𝑋%.  

Then, the probability of the ith observation to be in a group as opposed to a 

reference group based on a nonlinear function of the best linear combination of 

independent variables is  

𝑌G =
HI

6JHI
.        (5) 

  Observe that by some simple mathematical manipulations the regression equation 

𝑢 = 𝐵( +	∑𝐵%𝑋+% can be represented by the natural log of the probability of the odds 

ratio being in one group versus another reference group such as,   

ln K
6;K

= 𝐵( +	∑𝐵%𝑋+%.    (6) 
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 The default value of some statistical programs is 0.5 as a cut point to decide 

membership of an observation, so that if the logit is 0.5 or higher, the observation belongs 

to the group. The cut point can be set at another value as well (Soureshani et al., 2013).  

Classification and Regression Trees (CART) 

A more recent method which is an alternative to model-based approaches is 

classification and regression trees (CART) (Williams, 1999). It is nonparametric since 

there are no assumptions regarding observations’ distributions. While CART produces 

decision trees for classification, both continuous and categorical variables can be used as 

dependent variables. However, it should be noted since this research study is focused on 

group membership and classification, only the case when dependent variable is 

categorical will be considered.  

The mechanism of CART works through iterative division of data which 

classifies objects into more homogenous groups known as nodes in the CART 

terminology. The algorithm of CART starts with locating all subjects into one node, then 

placing them into other nodes based on creating the most homogenous groups by using 

predictor variables (Breiman et al., 1984). This process continues until an optimal split of 

the groups reaches a desirable level of homogeneity of groups based on group 

membership. To evaluate this mathematically, we minimize deviances in the nodes, and 

each deviance in a node is calculated as  

𝐷+ = −2 𝑛+E𝑙𝑛(𝑝+E)    (7) 

where,  

𝐷+ is the deviance of the ith node, 



 

12 
 

              𝑛+E is the number of the subjects from group k in node i,  

               𝑝+E proportion of subjects from group k in node i.  

After calculating deviances of each group, their sum, 𝐷 = 𝐷+, is used as the 

measure of homogeneity where smaller 𝐷s indicate better homogeneity. The process lasts 

till reduction in 𝐷s from one step to another becomes negligible, or when the criterion for 

stopping iterations is satisfied.  

The process of CART is represented in Figure 2 from Berk (2016). Here, all the 

observations first go to a root node. Then, the X values are divided into two based on 

criterion that 𝑋 values are compared with a value (𝑐6)  where the cases 𝑋 > 𝑐6 go to right 

and the cases      𝑋 ≤ 𝑐6 go to left. The observations on the left are assigned to terminal 

node 1, and no improvements in fit can be found for them. On the other hand, the 

observations on the right go to an internal node and they are divided again based on the 

criterion if 𝑍 > 𝑐" and the procedure follows the same pattern. While this is an 

illustration for two steps with one variable, more complex versions are possible.  

While CART has been addressed as an effective classification method with is 

variations (Holden et al., 2011; Kohavi, 1995; Witten et al., 1999; Quinlan, 1993), it may 

show a tendency to favor more distinct predictor variables with fewer values or it may 

create terminal nodes that overfit with observed data (Berk, 2016). Several models such 

as random forests (RF) (Horthorn et al., 2006) and Bagging (LeBlanck & Tibrishani, 

1996) were created to be alternatives to CART to address such problems.  
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Figure 2 

Presentation of a Simple CART Process 

Similarities and Differences between LDA, LR, and CART 

First, it should be noted that unlike LDA and LR, MFAL cannot be conducted 

with continuous predictor variables, as it only works with categorical data. Although the 

LDA and LR methods look the same, as both use the logit ratio of posterior probabilities, 

a difference arises from the way these techniques estimate coefficients; i.e., the essential 

difference is how the linear functions fit the data. Moreover, logistic regression is more 

general and makes almost no assumptions.  

When introducing LDA and LR in the book The Elements of Statistical Learning: 

Data Mining, Inference, and Prediction, Hastie et al. (2013) present them as linear 

methods for classification. The reason they call these methods linear is because the 

boundaries of the classes are determined to be linear. Yet, it should be noted that these 

models can be expanded to their nonlinear versions for classification by adding squares 

and cross-products of the predictor variables. It is also worth noting that since a predictor 
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can take values in a discrete set, the input space can be divided into a collection of 

regions labeled by classification. Thus, class boundaries are the key elements of the 

classification decisions. Moreover, observations far from decision boundaries play a role 

in estimating the common covariance matrix, which implies that LDA is not robust to 

gross outliers (Hastie et al., 2013). On the other side, CART is a nonparametric technique 

based on decision tree learning logic which provides either classification or regression 

trees based whether the outcome variable is categorical or continuous. Moreover, it may 

have stronger resistance to outliers (Timofeev, 2004). Therefore, while all the tree 

methods differ from each other, CART is by far different from LDA and LR due to the 

methodology it applies.  

 Ultimately, Hastie et al. (2013) underscore the difficulty of meeting assumptions in 

the practice and common use of qualitative variables. They suggest that logistic regression 

might be a safer choice and more robust than LDA, as well as having fewer assumptions. 

On the other hand, based on their experience, they mention that both models have very 

similar performance on classification accuracy in general, even when LDA assumptions 

are violated. Moreover, CART also requires very few assumptions and performs effectively 

(Phelps & Merkle, 2008).   

 Based on the use of variables, LDA and LR can be categorized in three ways. When 

all the predictors are included in the analyses at the same time, they are defined as direct 

LR or LDA, but when the order of the variables is specified, they are sequential LDA or 

LR. Finally, if there is a desire to reduce the number of independent variables but there is 

no preference on highlighting particular variables, stepwise LR or LDA can be applied for 

removing some variables by using statistical criteria. On the other hand, the mechanics of 
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CART does not require selection of variables in advance and it self-determines the 

important variables and places them into analyses for classification or regression.  

Table 1 provides comparisons between LDA, LR and CART in terms of their 

assumptions and requirements for type of predictor and outcome variables and, decision 

rules for classification.  

Table 1.  

Comparison Between LDA, LR and CART 

 LDA LR CART 

Assumptions Normality, Absence of 
outliers, HOCV, Linearity, 
Absence of Multicollinearity 
and Singularity, Independence 
of observations   

No Assumptions 
(minimal sample 
size requirement) 

No 
Assumptions 

Predictor 
Variables 

Continuous Continuous, 
Categorical 

Continuous, 
Categorical 

Outcome 
Variable 

Categorical Categorical Continuous, 
Categorical 

Decision Rule  Highest Group Score Cut Score 
(probability, 
generally 0.5)  

Homogeneity 
through total 
deviance 

Examples of the Application of LDA, LR, and CART 

Classification methods have been applied in various areas including social and 

physical sciences (Arabie & Soete, 1996). Due to the important nature of classification, 

many applied researchers wish to determine the importance of variables for different 

groups of observations as outcome variable or they want to be able to predict membership 

of observed or non-observed cases. For example, in educational research studies risk 

levels for kindergarten future reading difficulties (Catts et al., 2001), students’ learning 
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disability status (Cook et al., 2015; Dunn, 2007; Keogh, 2005; Lillvist, 2010; 

Mammarella et al., 2010;), their preferences on instruction types (Clayton et al., 2010) or 

career choices (Russell, 2008), identification of individuals on the basis of language 

impairment (Kapantzoglou et al., 2012), or decisions regarding admissions to academic 

programs (Remus & Wong, 1982) are some of the topic of interest in which LDA, LR, or 

CART are applied. In psychology and related fields these methods were applied for 

identification of individuals with psychiatric diagnoses (Zigler & Philips, 1961) or 

anxiety disorders (Clark et al., 1994); in behavioral sciences, applications have been to 

study individuals’ risks for addiction (Flowers & Robinson, 2002), tobacco consumption 

(Lei et al., 2015), or prediction of whether male juvenile offenders commit crimes (Glaser 

et al., 2002) and more.   

 To give examples from different areas: in health sciences, identification of 

patients with chronic health failure (Udris et al., 2001) or lung cancer (Phillips et al., 

2003) and evaluation of different diagnoses of Alzheimer’s patients (Rodriguez et al., 

1998); in finance, predicting bankruptcy (Jo et al., 1997), in astronomy, classifying stars 

(Bidelman, 1957), or in zoology, identification of new species or animals (Britzke et al., 

2011) are the topics which have benefited from the use of LDA, LR, or CART. To 

conclude, it should be noted that the use of LDA, LR, and CART are not limited to the 

disciplines or topics listed above and the methods can be applied in countless areas.  

Comparison Studies of Classification Methods’ Performances 

Over the decades, there have been studies comparing classification methods, 

especially LR and LDA. This is because it is important for researchers to be able to 

choose the optimal method for their studies, especially when the methods’ purposes are 
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the same but with different assumptions (Pohar et al., 2004). However, the discussion of 

the optimal choice of classification method continues, since there are many specific 

conditions to explore and some methods perform better than others under certain 

conditions. To add another dimension, statisticians continue to invent new classification 

techniques. Hence, over a variety of research areas there can be many different conditions 

of data such as sample size, group size ratio, or predictor variables’ distributions. These 

different data conditions may impinge on the effectiveness of the classification methods 

and when the methods’ optimal performances occur. Thus, which conditions have 

significant influence on the classification accuracy of which methods should be explored 

carefully.  

 In general, comparison studies between the classification methods has fallen into 

two different methodologies: comparison studies with “real” data and comparison studies 

with simulated data. An exception is that by using mathematical techniques and an 

approximation approach on angles, discrimination boundaries, and key formulas of LR 

and discriminant function, Efron (1975) states that under multivariate normality and 

homogenous variances LR performs better than LDA by evaluating expected error rates 

(Efron, 1975).  

Some results of the research from these comparisons along with general 

definitions are presented below.  

Comparison Studies with Real Data. 

While most of the studies using real data have a focus on understanding the nature 

of the classification for the problem in which they are interested, some apply several 
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classification techniques at the same time and provide a comparison between results of 

the methods. Comparison with real data is a common way to compare performance of the 

methods in statistics and related applied areas by using collected empirical data. For 

example, Dattalo (1995), Meshbane and Morris (1996), and Ferrer and Wang (1999) used 

real data to compare results of LR and LDA and their focus was on performance of the 

methods, these studies reported comparable performances of LDA and LR. On the other 

hand, while focusing on predicting coronary heart disease (Kurt et al., 2008), predicting 

species distributions (Manel et al., 1999), prediction of dementia (Maroco et al., 2011), or 

prediction of cardiovascular risk (Colombet, 2000), the researchers used real data and 

applied at least two of the methods to reach more precise results and recommendations 

for better methods.   

It should be noted that while the studies with real data that focus on the content 

provide some comparison between methods, and create suggestions for optimal methods 

for their topics, they are limited to the data they used, and their ability to control data 

conditions such as sample size, predictor distributions, or effect size is absent. Therefore, 

the results of studies with a focus on performance evaluation of the methods is reported 

here since they are not limited to any content area.  

Simulation Studies Comparing LDA, LR, and CART. 

Simulation studies are also commonly used to compare statistical methods which 

have the same purpose for analysis, such as the classification methods LDA, LR, and 

CART. It is important to note that simulation studies have become more common over 

the past decades for comparison since with them researchers have the ability to 
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manipulate or control the data, so the evaluation of performance of the methods can be 

evaluated under different conditions. In simulation studies, data are generated based on 

specified controlled conditions such as sample size, equality of variance, or number and 

strength of relationship of predictor variables. Thus, whichever conditions are controlled, 

researchers can evaluate if the specific data conditions and their interactions affect the 

performance of the methods, as well as observing which method or methods perform 

better under certain scenarios. The uncontrolled conditions of the data are assumed to be 

random.  

Many simulation studies use the Monte Carlo technique to simulate data. 

Particularly, comparison studies between classification techniques including LR, LDA, 

and CART have applied this technique. The results from simulation studies and real data 

studies focusing on evaluation of methods’ performances based on controlled variables 

such sample size, group size, and other conditions are presented in the following sections.  

Results from Existing Comparison Studies 

In this section, results of comparison studies of the performances of LDA, LDA, 

and CART are reported. The results can be introduced into two main groups: overall 

performance of the methods and performance of the methods under controlled conditions. 

While overall performance of the methods are based on simulated data or real data, most 

of the studies for the performance of the methods were reported from simulated data. 

However, a few studies using real data also reported performance of the methods for 

certain conditions.  
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Comparison studies’ results for overall performance of the methods. 

Before discussing effect of conditions such sample size or homogeneity of 

variance on the performance of the classification methods including LDA, LR, and 

CART, results for the overall performance of the methods from comparison results are 

summarized.  

First, it should be noted that the comparison studies for performance of 

classification methods include some conflicting results for the overall performance of the 

methods and their performance under certain data conditions. One reason for this might 

be due to the fact while some studies use real data, some others used simulated data and 

the data were from various disciplines. Moreover, while simulation studies have more 

flexibility and power to manipulate data conditions, it is still difficult to control and 

report many conditions of data structure at the same time. Finally, the methods and 

procedures of simulating data and the design of analyses of the studies may differ, so that 

might also lead to results that are inconsistent.  

When comparing the overall performance of LDA with LR, some results showed 

that LR has higher prediction accuracy for group membership (Baron, 1991), while other 

results found little or no difference between the two methods (Dey & Astin, 1993; Hess et 

al., 2001; Meshbane & Morris, 1996). Some studies showed that the statistical methods 

LDA and LR have performance comparable to CART (Dudoit et al., 2002; Ripley, 1994), 

but others showed LDA and LR performed better than CART (Williams, 1999) or CART 

performed better than LR and LDA (Holden, 2011). On the other hand, some results 

which showed better performance of LDA (Preatoni et al., 2005) or LR (Arminger et al., 

1997) than CART are also available in the literature. Finally, some results also showed 
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better performance of CART than LDA for group membership prediction accuracy 

(Grassi et al., 2001) while some other results showed similar performance of LR and 

CART (Schumacher et al., 1996). Thus, the superiority of overall performance of any one 

method is unclear without consideration of the specific nature of the data. 

Comparison studies’ results under certain conditions. 

In applied areas, data structure might take different conditions such small or large 

sample size, number of variables, or predictor variables’ distributions. While knowing 

overall performance of the methods helps practitioners decide which methods to apply in 

their studies, it is critical to evaluate performance of the methods under controlled data 

conditions. For example, it is possible that a method could perform better than other 

methods in terms of overall classification accuracy, but it might show poor performance 

with small sample sizes or in the presence of multicollinearity. Therefore, overall 

performance of the methods is not enough to make decisions about the optimal method.  

Some previous studies evaluated classification methods including LDA, LR, and 

CART performance under controlled data conditions and the results are reported below.  

Sample size. 

Sample size is one of the most commonly used conditions in comparison studies 

for statistical techniques. It refers to the number of observations collected/simulated for a 

study. In research studies which include quantitative data, there is a common 

understanding that smaller sample sizes may provide inaccurate results while a very large 

sample size may not be needed to obtain reliable results (Zavorka & Perrett, 2013). To be 

able to judge the efficiency of sample size for different statistical analysis techniques, 

there are sample size calculation methods for finding the desired statistical power. 
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However, collecting data with the optimum sample size might be challenging due to time, 

financial, and measurement considerations (Maas & Hox, 2005). Thus, the effects of 

sample size for the classification methods should be examined carefully, and limitations 

and consequences regarding it should be explored.  

Some studies that have investigated the effects of sample size on the performance 

of classification techniques agreed that sample size has a significant impact on the 

accuracy of classification methods (Bolin & Finch, 2014; Holden et al., 2011; Finch et 

al., 2014; Holden & Kelley, 2010; Pai et al., 2012a, 2012b; Pohar et al., 2004; So, 2003). 

On the other hand, some studies found that sample size is not a significant factor on the 

performance of classification methods (Fan & Wang, 1999; Lei & Koehly, 2003). As this 

creates a conflict in the literature, some researchers whose results did not reach 

significance claim that this might be due to the limitations of a study, such as not 

including a small enough sample size (Lei & Koehly, 2003) or not having a varying 

number of sample size levels (So, 2003). LDA and LR, in general, have lower 

misclassification rates for larger samples and higher misclassification rates for smaller 

samples (Finch et al., 2014; Holden et al., 2011; Holden & Kelley, 2010; Lei & Koehly, 

2003; Pohar et al., 2004). Yet, in some studies the smallest sample size was not the case 

of the lowest classification accuracy for LR (Finch et al., 2014; Pai et al., 2012). On the 

other hand, while Bolin and Finch (2014) reported the reverse, some studies showed that 

higher sample sizes lead to higher misclassification rates for CART. This might be due to 

the fact that the studies included different sample sizes.  

In spite of the fact that increasing sample size also increases classification 

accuracy of LDA and LR in general, there are some other factors that significantly 
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influence sample size effects on the performance of LDA, LR, and CART such as model 

complexity, group size ratio, and effect size (Holden et al., 2011; Bolin & Finch, 2014). 

According to Holden et al. (2011), when sample size and effect size increase, the 

performance of LDA and LR become more similar. On the other hand, they also 

concluded that the classification accuracy of both classification methods was poor when 

the group sizes for outcome variables were close to each other under different sample size 

scenarios. Yet, when discrepancy for group size ratios was greater, LR performed better 

than LDA in most instances except in some cases when sample size was at the highest 

level of the study (1000), in which case LDA performed slightly better. While Fan and 

Wang (1999) state that LDA is more sensitive to sample size than LR, Pohar et al. (2004) 

made the comment that when the assumptions for LDA are satisfied, it performs better 

than LR in almost all different possible sample size levels and other conditions. On the 

other hand, while performance of CART diminished at larger sample size conditions, it 

was still the best performing method across different sample sizes (Finch et al., 2014; 

Holden et al., 2011) 

Table 2 lists studies which have compared classification techniques including 

LDA, LR, and CART with a sample size condition. 
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Table 2.  

Comparison Studies for Sample Size 

Study Methods Sizes 

Bolin & Finch (2014) LR, LDA, CART, QDA, GAM, 
NNET, RF, MIXDA 

150, 1500 

Fan & Wang (1999) LR, PDA 60, 100, 200, 400 

Finch et al. (2014) LR, LDA, CART, GAM, MDA 150, 300, 750; 
100, 200, 500 

Harrell & Lee (1985) LR, LDA 50, 130 

Holden & Kelley (2010) LDA, QDA, FFM 100, 1000 

Holden et al. (2011) LR, LDA, CART, QDA, MDA, 
NNET, GAM, MARS, BOOST 

100, 200, 500, 
1000 

Lei & Koehly (2003) LR, LDA 100, 400 

Pai et al. 2012(a) LR, MDA, NNET, KNN, LP, HM 100, 200, 400, 500 

Pai et al. 2012(b) LR, DA, MP, HM, NNET, KNN, INT 100, 200, 400, 500 

Pohar et al. (2004)  LR, LDA 40, 60, 100, 200, 
1000 

So (2002) LR, LDA, LPM, KM 200, 400 

Group size ratio, prior probabilities, cut score, and sample representativeness. 

Group size ratio.   

Group size ratio refers to the proportion of the group’s sample size within the 

outcome group membership variable. In application, group sizes are not generally equal, 

and cases when groups are somewhat balanced or very imbalanced are more common. In 

terms of efficiency and accuracy of classification methods, researchers studied the effect 

of group size ratios, mostly when the ratios were 50:50, 75:25, or 90:10. In this notation, 
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50:50 refers to both of the groups having 50% of the total sample and 75:25 refers to one 

group having 75%, the other group having 25% of the total sample.  

Group size ratio, that is greater imbalance in group sizes, has a strong impact on 

the classification accuracy of group membership techniques (Bolin & Finch, 2014, 

Holden et al., 2011) and it is a significant source of variation in error rates (Finch & 

Schneider, 2006).  Comparing performances of LDA, LR, CART, or other classification 

techniques in terms of group size ratio, different types of interactions can be observed, so 

researchers should clarify if their research interest is based on the smaller group, larger 

group, or total sample classification accuracies (Lei & Koehly, 2003). In general, having 

greater inequalities between dependent variable group sizes (for example the case of 

10:90 versus 25:75) leads to lower overall misclassification rates (Breckenridge, 2000; 

Craen et al.,2006; Finch & Schneider, 2006; Holden et al., 2011; Holden & Kelley, 2010; 

Lei & Koehly, 2003). However, greater inequalities in group sizes might have different 

effects for the different groups. For instance, increasing the group size ratio might 

increase classification accuracy for the whole sample and for a larger group while it may 

lead to lower classification accuracy for a smaller group (Bolin & Finch, 2014). In fact, 

when increasing group size ratio, the classification methods do not misclassify the groups 

equally and show tendencies to classify in favor of the larger group, although increasing 

model complexity reduces misclassification rates of both small and large groups (Holden 

et al., 2011). On the other hand, when the groups are somewhat balanced, 

misclassification rates for the smaller group are low (Finch & Schneider, 2007).  

According to some researchers, group size ratio has a significant interaction with 

sample size (Bolin & Finch, 2014; Holden et al., 2011), model complexity, effect size 
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(Holden et al., 2011), and variance ratio (Finch & Schneider, 2007) in terms of 

classification accuracy for some statistical classification techniques. For example, 

increasing inequality in a group’s variance results in worse performance of LDA and LR 

and better performance of CART. However, when group variances are highly 

disproportional and group sizes are balanced, the smaller group classification accuracy is 

higher for the methods (Finch & Schneider, 2006). Moreover, when group sizes are 

unbalanced and effect sizes are high, the smaller group classification accuracy does not 

change very much for LR and LDA (Finch & Schneider, 2007). Finally, when group 

sizes are disproportional, the effect of the factors sample size, effect size, and covariance 

matrix ratios are minimal for classification accuracy of the larger group (Finch & 

Schneider, 2006).  

In general, when the group sizes are highly imbalanced, classification accuracy 

for the smaller group is very low (Holden et al., 2011). On the other hand, when the 

group sizes are balanced, performances of the classification methods were not highly 

affected by the variation in sample size. Moreover, LDA showed better performance than 

LR in balanced situations, while CART was the best performing method regardless of 

whether group sizes were balanced or not (Bolin & Finch, 2014). Furthermore, according 

to Holden et al. (2010), LR generally performs better than LDA in different group size 

ratio and model complexity scenarios. On the other hand, Ferrer and Wang (1999) state 

that the superiority of logistic regression to discriminant analysis was not impressive in 

their study (Ferrer & Wang, 1999).  
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Prior probabilities and cut score. 

Prior probability is a concept from Bayesian theory and is related to an event 

occurring before the collection of data (Nicholson, 2014). In the concept of classification, 

it should be understood as prior information about the likelihood of a random person to 

be a member of a specific group; i.e., the proportion of members within the group in the 

true population (Lei & Koehly, 2003). Therefore, it differs from group size ratio 

conceptually even though both concepts frequently refer to similar information. Unless 

specified, some statistical packages such as SAS and SPSS use the default settings for 

prior probabilities and cut score. As an example, for a two-group case, default prior 

probabilities are 50:50 and the cut score is 0.5. However, the more general practice for 

specification of prior probabilities is using the group size ratios gathered from sample 

size ratios of the groups or the population’s group size ratios (Ferrer & Wang, 1999). 

Some researchers say that it is important to consider prior probabilities and 

specification of a priori selection of classes when evaluating the performance of LR and 

parametric classification methods (Fan & Wang, 1998; Huberty, 1994; Press & Wilson, 

1978; Wilson & Hargrave, 1995). Ferrer and Wang (1999) showed that prior probabilities 

explain an important amount of variation for error rates when using group size ratios as 

the estimate of prior probabilities.  

According to Lei and Koehly (2003), there is a significant interaction between 

cut-score and prior probabilities for accuracy of performance of LDA and LR. Here, cut 

score refers to a decision rule based on probability; i.e., what probability should be the 

rule of thumb for group membership in LR? Even though the default is 0.5, one has the 

option to assign an observation to a group with a different probability. Their results 
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showed that LDA with priors specified based on sample sizes of the groups from the 

sample performs better than LR and LDA without specification of priors (i.e., using 

default settings). Moreover, LR performs slightly better than LDA without the 

specifications. For optimal performance of classification, assuming that the sample is 

representative of the population, they suggest using LDA with proportional priors or LR 

with a cut score 0.5 when the interest is in reducing total misclassification. Similarly, for 

the case when the concern is reducing large group misclassification accuracy, their 

suggestion is using LDA with prior probability specification for extreme inequalities of 

the group sizes such as 10:90 and a cut score of 0.5 for LR regardless of any other 

conditions. Finally, the suggestion for small group accuracy is using a cut score 0.1 for 

LR and LDA with equal prior probability specifications regardless of any other 

conditions such as true prior probabilities and variance ratios.  

While many research studies focus only on classification accuracy of groups of 

the dependent variable, it is also possible that these groups include subgroups. Therefore, 

subgroup sizes may have effect on classification performances of the methods. For 

example, in a study regarding reading disability, the groups for dependent variable could 

be having a reading disability and not having a reading disability. Moreover, these groups 

could also have unknown subgroups based on degree of disability or other conditions 

which may not be known. Due to the limitation of not being able to categorize the 

subgroups exactly, it is also possible that the subgroups overlap. According to Finch et al. 

(2014), increasing level of overlap between subgroups leads to higher misclassification 

rates of the methods including LR, LDA, and CART in general. CART showed the best 

performance under heterogeneous groups and subgroup overlap.   
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Sample representativeness. 

Besides the effects of group size ratio and prior probabilities, So (2003) also 

studied the effect of sample representativeness which measures how well the sample 

represents the population in terms of prior probabilities of the population groups. For 

example, for a population of groups with prior probabilities 10:90, if the sample has the 

group size ratio 20:80, it means that the sample is over representative (over-sampled) for 

the smaller group and under representative (under-sampled) for the larger group. The 

study showed that sample representativeness is a significant factor for the classification 

accuracies of classification methods including LDA and LR and significantly interact 

with prior probabilities. On the other hand, the effect of sample representativeness is 

negligible when the data hold the condition of equal prior probabilities of population.  

Table 3 is presented below to summarize some studies which have compared 

classification techniques including LDA, LR, and CART for group size ratio, prior 

probabilities, cut score and sample representativeness. 

 

 

 

 

 

 

 

 

 



 

30 
 

Table 3.  

Comparison Studies for Group Size Ratio, Prior Probabilities, Cut Score or Sample 
Representativeness  

Studies Methods Conditions GSR 

Bolin & Finch (2014)  
LR, LDA, CART, 
QDA, GAM, NNET, 
MIXDA, RF 

PM, SS, GSR, ES 50:50:50,  
25:25:100 

Fan & Wang (1998)  LR, PDA SS, PP, HOCV 50:50, 75:25, 
90:10 

Ferrer &Wang (1999) LR, PDA, NPDA GSR, PD, HOCV 50:50, 75:25, 
90:10 

Finch et al. (2014) LR, LDA, CART, 
GAM, MDA 

SS, GSR, SubS, 
SubR 50:50, 75:25 

Finch & Schneider (2007) LR, LDA, CART, 
QDA, NNET 

GSR, ES, HOCV, 
NPV, PD 

111,211,221 
11111,21111, 
22221 

Finch & Schneider (2006) LR, LDA, CART, 
QDA, 

SS, GSR, ES, PD, 
HOCV  

50:50, 75:25, 
90:10 

Holden et al. (2011) 
LR, LDA, CART, 
QDA, MDA,   NNET, 
GAM, MARS, BOOST 

SS, ES, GSR, MC 50:50, 75:25, 
90:10 

Lei & Koehly (2003) LR, LDA HOV, GSR, SS, 
PP 

50:50, 75:25, 
90:10 

So (2003) LR, LDA, LPM, K-
MEAN 

SS, PP, HOCV, 
GS, SRep 

50:50, 75:25, 
90:10 

 
Note: ES: Effect Size, GSR: Group Size Ratio, HOCV: Homogeneity of Variance-
Covariance Matrices, MC: Model Complexity, NPV: Number of Predictor Variables,  
PD: Predictors’ Distributions, PM: Percent Misclassified, PP: Prior Probabilities, 
SubR: Subgroup Ratio, SRep: Sample Representiveness, SS: Sample Size,  
SubS: Subgroup Separation  

Predictors’ distributions: Normality versus non-normality. 

In parametric statistical techniques, normality is a required assumption to ensure 

reliable results (Ghasemi & Zahediasl, 2012). It refers to the distributional property of 

outcome or predictor variables such as symmetry and inclusion of a proportion of the 

observations within the determined standard deviations around the mean based on an 

empirical rule. Even though some studies state that certain statistical techniques are 
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robust against violation of normality, it is still one of the most common assumptions to 

check before conducting parametric statistical analyses. Moreover, violation of normality 

may cause biased classifications which lead to poor performances of classification 

techniques (Eisenbeis, 1977; Kiang, 2003).  

According to some researchers, normality has a significant effect on the 

performance of LDA (Pohar et al., 2012) and LR (Pai et al., 2012) and LR was superior 

to LDA when the normality assumption was not satisfied (Kiang, 2003). However, when 

the assumptions of LDA, normality, and HOCV were satisfied, the two methods showed 

similar performances. Additionally, when predictor variables were normally distributed, 

only violation of HOCV slightly affected the accuracies of the methods. Moreover, when 

data were skewed, violation of HOCV at higher degrees improved performances of LDA, 

LR, and CART (Finch & Schneider, 2006).  

In some comparison studies for analyzing the accuracy of classification 

techniques, to be able to observe the effect of normality or non-normality, researchers 

created limited cases of non-normal data, where predictor variables were skewed or 

lognormally distributed. These non-normal cases were then compared to the cases when 

data were normal. However, it should be noted that non-normality is a broad situation and 

there can be many different degrees of non-normality.  

According to Pohar et al. (2004), the cases when skewness is somewhat ignorable 

at values about ±0.2, LDA performs better, but when level of skewness is increased, LR 

tends to perform better. In general, LDA performed better when all the predictors were 

normal while LR was better suited to many different types of distributions (Baron, 1991; 

Cox, 1989). On the other hand, when only one of two variables was normal and the other 
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was skewed or asymmetric, LDA was robust; i.e., inclusion of even one normal variable 

might increase the resistance of LDA against sensitivity to non-normality of other 

variables. Under the condition when data were skewed and kurtosis was small, both LDA 

and LR performed at an optimal level. Moreover, under non-normality with a large 

sample size, performance of both LDA and LR became more similar (Rausch & Kelley, 

2009). However, increasing kurtosis also increased the performance of classification in 

favor of LDA, which contradicts other presented studies in which LDA and LR 

performed differently under conditions of non-normality.  

Even though categorical predictor variables are not preferred for LDA, when all 

predictor variables were categorical, LR, LDA, and CART showed similar performances 

for overall misclassification rates and smaller group misclassification rates (Finch, 

Schneider, 2006). Moreover, when prior probabilities are not equal, LR is expected to 

perform better than LDA under conditions of non-normality and extreme cases (Dattalo, 

1994; Ferrer & Wang, 1999; Hosmer 1989; Huberty, 1999). On the other hand, CART 

performed worse than LDA and LR when the distribution was either normal or skewed 

except in the cases when covariance ratios were highly disproportional (Finch & 

Schneider, 2006). Finally, in the discussion for normality, Ashikaga and Chang (1981) 

argue that similarity of population shapes plays a more important role than normality of 

predictors when assessing the performance of classification techniques.  

As an extended version of normality, multivariate normality is also an important 

property of data to be able to make precise parametric statistical estimates. Particularly, 

in many multivariate statistical techniques, multivariate normality is assumed, but 

meeting that assumption is even more difficult than meeting the assumption of univariate 
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normality. For instance, if all the variables’ distributions are not normal, then multivariate 

normality is not possible. Harrel and Lee (1985) reported that when multivariate 

normality holds, there is little difference between LDA and LR.  

Table 4 is presented below to list some studies which have compared 

classification techniques including LDA, LR, and CART for predictor variables’ 

distributions.  

Table 4.  

Comparison Studies for Predictor Variables’ Distributions 

Authors Methods Conditions 

Finch, Schneider (2007) LR, LDA, CART, QDA, 
NNET 

PD, ES, GN, HOCV, 
GSR, NPV 

Finch & Schneider (2006)  LR, LDA, CART, QDA PD, HOCV, ES, SS, GSR 

Ferrer & Wang (1999) LR, PDA, NPDA PD, GSR, HOCV 

Harrel and Lee (1985) LR, LDA PD, PP, GS 

Pai et al. (2012a)  LR, MDA, NNET, KNN, LP, 
HM 

PD, SS, CORR, DD, SP, 
Lin, Out, HS 

Pai et al (2012b) LR, DA, MP, HM, NNET, 
KNN, INT 

PD, DD, Out, HS, GSR, 
SS, GSR 

Pohar et al. (2004) LR, LDA PD, SS, CORR, DBGM, 
MAHD, GN 

Rausch & Kelley (2009) LR, LDA, LDR, MDA PD, GSSRNP, GS, PD 
 

Note: CORR: Correlation, DBGM: Distance Between Group Means, DD: Dynamic Data,  
ES: Effect Size, GN: Numbers of the Groups in the Outcome Variable, GS: Group  
Separation, GSR: Group Size Ratio, GSSRNP: Group Sample Size to the Number of 
Predictors, HOCV: Homogeneity of Variance, HS: Homoscedasticity, Lin: Linearity,  
MAHD: Mahalanobis Distance, NPV: Number of Predictor Variables, PD: Predictors’ 
Distributions, PP: Prior Probabilities, Out: Outliers, SS: Sample Size 
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Effect size. 

Effect size is a measure of the quantified difference between groups or degree of 

relationship between variables. Conceptually, many indices such as standardized mean 

difference, Cohen’s D, Hedge’s G, η2, or a correlation coefficient can be used to report 

effect size.  In the studies which compare classification methods, effect size is also used 

for evaluating group separation; i.e., degree of group mean differences and standardized 

mean differences between groups were used as the index of group separation while some 

researcher evaluated group separation with different formulas. 

Some previous research showed that when the group means of the outcome 

variable were widely separated (large effect size), LDA, LR, and CART showed higher 

classification accuracies (Bolin &Finch, 2014; Finch & Schneider, 2007; Holden et al., 

2011). Holden and Kelly (2010) also reported a similar result only for LDA as they did 

not include LR and CART in their study. Moreover, at high levels of effect size, 

increasing the sample size ratio results in lower classification accuracy for LDA and 

misclassification in LDA occurs in favor of the larger groups (Holden & Kelly, 2010). 

Furthermore, when normality and HOV assumptions for LDA were satisfied, LDA and 

LR showed similar results across different effect sizes while CART performed slightly 

better. On the other hand, when violating HOV, it was observed that the methods’ 

performances of classification accuracy for LDA and LR declined faster at large effect 

sizes than when effect sizes were smaller, but CART showed improved performance in 

the same scenario (Finch & Schneider, 2007). 

According to some researchers, there are significant interactions of effect size and 

group size ratio (Finch & Schneider, 2007; Holden et al., 2011), predictors’ distributions, 
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number of the predictor variables, model complexity and sample size (Holden et al., 

2011), and variance ratio for the classification accuracy of classification methods (Finch 

& Schneider, 2007). Moreover, while Finch and Schneider (2007) found that effect size is 

the highest source of variation for the classification accuracy of the methods they studied 

among all the other variables in their study, another study (Finch & Schneider, 2006) 

reports that effect size has a relatively small effect on the classification methods. 

Additionally, in general, increasing effect size leads to smaller misclassification rates, but 

increasing effect size decreased the misclassification rate only about 2-3 % and was not 

affected by the other manipulated variables. On the other hand, effect size has an 

important impact on smaller group classification accuracy in all group size ratio 

conditions while misclassification rates of smaller groups for LDA, LR, and CART 

improved when groups had higher effect sizes. Moreover, CART showed the highest 

classification accuracy for the larger group and smaller groups at different effect size 

levels. Furthermore, when effect size was small for unequal group sizes, a very high 

percentage of observations from the smaller group were misclassified by LDA and LR, 

but CART showed a better resistance in this case and had higher classification ratios for 

smaller groups (Holden et al., 2011). On the other hand, large group classification 

accuracies were high in general regardless of level of effect size (Finch & Schneider, 

2006). 

When effect size is large the classification methods have a tendency to predict 

group membership in favor of the larger group in the outcome variable regardless of true 

group membership (Finch & Schneider, 2006; Holden et al., 2011) and performance 

difference between LDA and LR become trivial for overall classification when the effect 
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size is large (Holden et al., 2011). Therefore, if the purpose is prediction of smaller 

groups, this result should be considered carefully.  

Table 5 is presented below to list some studies which have compared 

classification techniques including LDA, LR, and CART for effect size. 

Table 5.  

Comparison Studies for Effect Size 

Authors Methods Conditions Effect Sizes 

Bolin &Finch (2014) LR, LDA, CART, QDA, 
GAM, NNET, MIXDA, RF 

PM, SS, GSR, 
ES 

.2, .5, .8, 1.6 

Finch & Schneider (2007) LR, LDA, CART, NNET, 
QDA, 

ES, GN, HOCV, 
GSR, NPV, PD 

.2, .8 

Finch & Schneider (2006) LR, LDA, CART, QDA, PD, CI, ES, SS, 
GSR, NPV 

.2, .5, .8 

Holden & Kelley (2010) LDA, QDA, FFM HOCV, PM, SS, 
SSR, ES 

.2, .5, .8, 1.6 

Holden et al. (2011) 
LR, LDA, CART, QDA, 
MDA,    NNET, GAM, 
MARS, BOOST 

SS, ES, GSR, 
MC 

.2, .5, .8, 1.6 

 
Note: ES: Effect Size, GN: Numbers of the Groups in the Outcome Variable, GSR: 
Group Size Ratio, HOCV: Homogeneity of Variance, NPV: Number of Predictor 
Variables, PD: Predictors’ Distributions, PM: Percent Misclassified PP: Prior 
Probabilities, SS: Sample Size 
 

Homogeneity of variance-covariance matrices. 

Variance is one of the important statistical learning tools to evaluate distributions 

of variables and homogeneity of variance-covariance matrices (HOCV) indicates that 

distribution of observations from different groups have similar degrees of distance from 

their group means. As previously stated, LDA requires HOCV matrices, but some other 

classification techniques in general also assume HOCV to yield better analyses (Johnson 

& Wichern, 1988; Tabachnick & Fidell, 2013). 
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Some procedures such as Levene’s homogeneity of variance test, Bartlett’s test or 

its multivariate version, Box’s M test, can be applied to evaluate homogeneity of 

variance-covariance matricies (Tatsuoka, 1988) though Box’s M is affected by non-

normality (Huberty, 1994; Meshbane & Morris, 1996). Therefore, evaluation of HOCV 

under non-normal data is difficult (Lei & Koehly, 2003). On the other hand, Mashbane 

and Morris (1996) did not find that LDA’s performance diminishes under violation of 

HOCV for normal data which implies that LR does not necessarily perform better than 

LDA under unequal variances. Yet, normality of data is rare in application, so these 

results should be evaluated with care.  

As an alternative to LDA, QDA was suggested to be more robust against violation 

of HOCV (Anderson, 1984; Huberty, 1994; Huberty, Lowman, 2000; Johnson & 

Wichern, 1988). While QDA was thought to perform better than LDA, some researchers 

found that the overall performance of QDA was not better than LDA in any cases of 

different covariance equality or inequality for total error rates, but QDA was better for 

individual group error rates (Meshbane & Morris ,1995); however, a preference for LDA 

over QDA was suggested to practitioners due to theoretical difficulties of QDA (Hess et 

al., 2001). Particularly, QDA may not be a better technique under covariance inequality 

when the assumption of normality is not satisfied (Krzanowski, 1977; McClachlan, 1992; 

Stevens, 1996). Moreover, similar performances of QDA and LDA were reported by 

Ferrer and Wang (1999) and they claim that might be due to usage of pooled covariance 

estimations (Ferrer & Wang, 1999). On the other hand, Finch and Schneider (2006) 

reported that QDA performs better than LDA under violation of HOCV. Finally, such 

techniques as QDA or FMM (Finite Mixture Model), which assume inequality of 
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variances, have a disadvantage for class predictions when population variances are indeed 

homogeneous (Holden & Kelly, 2010).   

 Heterogeneity or homogeneity of variance-covariance matrices was found to 

cause a considerable amount of variation in classification error rates of LDA, LR, and 

CART by some researchers (Fan &Wang, 1998; Finch & Schneider, 2007). Additionally, 

heterogeneity of the matrices affects the performance of both LDA and LR negatively 

and the performance difference of LDA and LR becomes greater in favor of LR when 

variance inequalities between groups are bigger. Yet, that does not necessarily imply that 

LR performs significantly better than LDA when variance-covariances are unequal. 

Under violation of HOCV and when groups have highly unbalanced prior probabilities, 

LDA predicts classes of observations in favor of the larger group, while LR classifies in 

favor of the smaller group when cut scores for LR and prior probabilities for LDA were 

not specified, so the default setting were used (Fan &Wang, 1998). However, 

specification of prior probabilities and cut scores might change the direction of these 

results. A study by Lei and Koehly (2003) after Fan and Wang (1998) found that LDA 

and LR both performed better for smaller group classification (when group sizes on the 

dependent variable were not equal) under unequal variances than in the case when the 

variances were homogenous. On the other hand, violation of HOCV decreased accuracy 

of LDA for the larger group as expected. Finally, they found significant interactions of 

variance-covariance ratios, cut score, and classification methods (LDA, LR) for 

classification accuracy of larger and smaller groups (when the group sizes were 

unbalanced). Nonetheless, variance-covariance ratio, cut score, and classification method 

(LDA, LR) did not yield a significant interaction for total classification accuracy due to 
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reverse effects of cut score. Therefore, the importance of HOCV may be not necessarily 

limited to LDA, but also LR (Lei & Koehly, 2003).   

While it was expected that LR would perform better than LDA under violation of 

HOCV, some studies did not find a superiority of LR to LDA for this condition (Fan & 

Wang, 1999) especially when the data were normally distributed (Finch & Schneider, 

2006). On the other hand, according to Kiang (2003), LR is superior to LDA when the 

assumption of HOCV does not hold. Moreover, Finch and Schneider (2006) found a 

considerable contribution of variance ratio for the performance of the classification 

methods. Their results also showed that both LR and LDA show weaker performance 

under non-equal variances, but CART improved its performance and it was the best 

performing method under variance inequality. Moreover, when group variances were 

equal, the larger group had a very small misclassification rate and the smaller group had a 

very high misclassification rate. On the other hand, similar to their previous study, Finch 

and Schneider (2007) found that increasing inequality of variances between groups leads 

to weaker performance of LDA and LR, but variance inequality had a small effect on 

larger group classification accuracy when group sizes are not balanced (Finch & 

Schneider, 2006, 2007). Additionally, for the three-group outcome case, both methods 

had their highest classification accuracies for the group with the highest mean, the group 

with the lowest mean had the second highest classification accuracy, and the middle 

group had the lowest classification accuracy for LDA, LR, and CART. They also report 

that the effect of unequal variances is small on the performance difference of LDA and 

LR when the data are distributed normally. On the other hand, when the data are not 

normally distributed, the performance of the methods under variance-covariance matrix 
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inequalities depends on the type of non-normality. When predictor variables are skewed, 

an increasing level of variance-covariance inequality leads to better performance of LDA, 

LR, and CART. Moreover, Hess at al. (2001) found similar results for LDA and LR 

under non-normal data regardless of whether the variances were homogenous or not 

(Hess et al., 2001). They also stated that when variances are not homogenous, the 

performance differences of LDA and LR depends on group size ratios and increasing 

sample sizes under extreme variance inequality may not improve precision of the 

methods. Thus, violation of HOCV in general leads to higher misclassification rates of 

both LDA and LR, and when the effect size was large the performances declined faster 

than when the effect size was small (Finch & Schneider, 2007). Finally, while some 

researchers used HOCV as a case of group separation (Fan & Wang 1998), some other 

researchers evaluated group separation with different concepts such as Mahalanobis 

distance or effect size.  

Table 6 is presented below to list studies which have compared classification 

techniques including LDA, LR, and CART for HOCV.  
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Table 6. 

Comparison Studies for HOCV 

Studies Methods Conditions 
Fan & Wang (1998) LR, PDA SS, PP, HOCV 
Ferrer & Wang (1999) LR, PDA, NDA PD, GSR, HOCV 
Finch & Schneider (2006) LR, LDA, CART, QDA PD, HOCV, ES, SS, GSR 

Finch & Schneider (2007) LR, LDA, CART, QDA, 
NNET 

ES, GN, HOCV, GSR, 
NPV, PD 

Hess et al. (2001) PDA, LR GS, HOCV, SS, PD 

Kiang (2003) LR, MDA, NNET, DT, KNN 
PD, LIN, DYN, CORR, 
MMOD, HOCV, GSR, 
SS 

Lei & Koehly (2003) LR, LDA  HOV, GSR, SS, PP 
 
Note: CORR: Correlation, DYN: Dynamic Environment of Data, ES: Effect Size, GN: 
Numbers of the Groups in the Outcome Variable, GS: Group Separation, GSR: Group 
Size Ratio, HOCV: Homogeneity of Variance, LIN: Linearity, MMOD: Multimodal 
Data, NPV: Number of Predictor Variables, PD: Predictors’ Distributions, PP: Prior 
Probabilities, SS: Sample Size 

Multicollinearity: Correlation effect. 

Correlation defines a degree of linear relationship between variables. 

Multicollinearity is the case of when some or all predictor variables are highly correlated 

with each other. Absence of multicollinearity is an assumption for LDA, while LR and 

CART do not have any specific limitation regarding it. In general, presence of 

multicollinearity can be assessed by inspection of the correlation matrix of variables or 

reviewing tolerance or the variance inflation factor (VIF) (Neter et al., 1996). Kiang 

(2003) reports that low correlation has a moderate effect on the classification 

performance of LDA and LR. Previous research also showed that presence of 

multicollinearity significantly increased classification accuracy of LDA, but the 

performance of LR was not affected by multicollinearity significantly (Pai et al, 2012). 

This is an interesting result to consider since LDA requires absence of multicollinearity 
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as an assumption. On the other hand, for parameter estimation, it is known that 

multicollinearity causes poor performance of statistical techniques (Meyers et al., 2016). 

Thus, it can be concluded that multicollinearity can have different directions of impact 

depending on if the purpose is classification or parameter estimation. Even though they 

did not discuss implications of the results, Pohar et al. (2004) presented a table which 

implies superiority of LDA under higher correlations. Moreover, Zavroka and Perret 

(2014) stated that degree of correlations between variables affect the recommended 

minimum sample size for LDA and QDA. Finally, none of the reviewed studies 

compared LDA, LR, and CART at the same time for correlation conditions of predictor 

variables.  

Table 7 is presented below to list some studies which have compared 

classification techniques including LDA and LR for the effect of predictor correlation.  

Table 7.  

Comparison Studies for Correlation Effect 

Studies Methods Conditions 

Kiang (2003) LR, MDA, NNET, DT, KNN PD, LIN, DYN, CORR, 
MMOD, HOCV, GSR, SS 

Pai et al. (2012a) LR, MDA, NNET, k-NN, LP, 
HM 

PD, SS, CORR, DYN, GSR, 
LIN, OUT, HS 

Pai et al (2012b) LR, DA, MP, HM, NNET, 
KNN, INT 

PD, DYN, OUT, HS, GSR, 
SS 

Pohar et al. (2004) LR, LDA  SS, PD, CORR, DBGM, 
MAHD, GN 

Zavroka & Perret (2014) LDA, QDA  NPV, CORR, GSR 
 

Note: CORR: Correlation, DBGM: Distance Between Group Means, DYN: Dynamic 
Environment of Data, GN: Numbers of the Groups in the Outcome Variable,  
GSR: Group Size Ratio, HOCV: Homogeneity of Variance, HS: Homoscedasticity,  
LIN: Linearity, MAHD: Mahalanobis Distance, MMOD: Multimodal Data,  
NPV: Number of Predictor Variables, PD: Predictors’ Distributions, SS: Sample Size  
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Number of predictor variables. 

While a larger number of predictor variables has the potential to increase 

classification accuracy, the cases when variables do not significantly contribute to group 

differences or when the number of predictor variables is comparable to the number of the 

subjects in the study might cause decreasing performance of the statistical models 

(Hosmer & Lemeshow, 1989; Huberty, 1994). Therefore, studies with a greater number 

of predictor variables typically require larger sample sizes (Zavroka & Perret, 2014). 

According to McLachlan and Byth (1979), LDA and LDR perform similarly in terms of 

classification accuracy under the condition when the number of predictor variables is 

comparable to sample size. However, when the group sample sizes are small relative to 

the number of predictors, classification methods may tend to provide inaccurate 

prediction (Rausch & Kelley, 2009). 

Most of the comparison studies evaluated performance of LDA, LR, and CART 

under a fixed number of predictor variables. However, not having varying numbers of 

predictor variables in a comparison study creates a situation where one cannot analyze 

the effect of the number of predictor variables on the performance of classification 

methods, leaving a gap in the literature. On the other hand, it should be noted that the 

nature of comparison studies becomes complicated when including more controlled 

conditions, so that it is possible that researchers avoid complexity in their studies by not 

including number of predictor variables as a condition. Although Finch and Schneider 

(2007) found that effect size was the main factor in determining correct classification of 

these methods, they also found a small contribution of the interaction for number of 

predictor variables, their distributions and variance ratio. Their results also showed that 
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increasing the number of predictor variables also increased performance of LDA, LR, and 

CART overall. Moreover, the methods generally showed similar performances for 

different numbers of predictor variables. 

In addition to this finding, a greater impact of the number of predictor variables 

was found with more rather than fewer groups in the dependent variable. For example, 

when having three groups in the dependent variable and increasing the number of the 

predictor variables from three to seven, the methods (LDA, LR, CART) increased their 

classification accuracies by 2-6%, but when having five groups in the dependent variable 

and increasing number of the predictor variables from three to seven, LDA and LR 

increased their classification accuracies about 18% and CART increased its classification 

accuracy about 10%. It was also notable in that study that LDA and LR showed higher 

improvement than CART when increasing number of the predictor variables.  

Table 8 is presented below to list some studies which have compared 

classification techniques including LDA, LR, and CART by the number of the predictor 

variables they included in the study. 
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Table 8.  

Comparison Studies and Number of the Predictor Variables Included in the Study 

Number of the 

Predictor 

Variables 

Authors and Year 

1 Bolin & Finch (2014); Holden & Kelley (2010); Hess et al. (2001) 

2 Pohar et al. (2004); Kiang (2003) 

3 Finch &Schneider (2006); Lei & Koehly (2003); Pai et al. 

(2012a); 

Pai et al. (2012b) 

4 Holden et al. (2011) 

5 Finch et al. (2014); Harrell, Lee (1985) 

8 Ferrer & Wang (1999); Rausch& Kelley (2009) 

2,4 Zavroka & Perret (2014)  

3,7 Finch & Schneider (2007) 

3,8 Fan & Wang (1998)  

Number of groups in the outcome variable. 

 
Most of the studies compared the classification methods evaluated the methods 

under the case when the outcome variable had just two groups and in almost all the 

studies which compared performance of classification methods, the effect of number of 

the groups in the outcome variable was not discussed in detail. However, both LDA and 

LR can be applied in the case when the outcome variable has more than two groups 

(Hosmer & Lemeshow, 1989) and number of the groups might have an effect on the 
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performance of classification methods. In application, the case when the outcome 

variable has more than two groups is common.  

Finch and Schneider (2007) evaluated the cases for three and five groups 

separately. For almost all the conditions they tested, there was a decrease in classification 

accuracy of LDA, LR, and CART when increasing the number of groups. On the other 

hand, there were very small differences between the methods for the different number of 

groups of the outcome variable under various data conditions. It should be noted that 

while most of the comparison studies created different levels of conditions such as 

sample size or group size ratio and included them in the comparison, that was not the 

case of this study and the effects of number of the groups were evaluated separately. 

They report an interesting result that the middle groups (in terms of means) had lower 

classification accuracy. Moreover, they stated that while they studied three and five 

groups, their results were similar to the two-group case. While the methods showed 

comparable results for three- and five-group cases, it was noticeable that CART had 

better classification accuracy than LDA and LDA for the three group (less groups) case 

and LR and LDA (with similar results) showed better performance than CART for five 

group case. Finally, based on their results they suggested minimizing the number of 

groups without disregarding important groups.  

In their study with two normally distributed predictor variables, Pohar et al. 

(2004) also found that the greater the number of groups (categories) in the dependent 

variable, the lower the prediction accuracy of LDA and LR. They also claim that the 

effect of categorization might depend on some other data conditions such as correlation 
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and number of the variables. Finally, their results show that LDA performs better for a 

larger number of categories while LR is a better option for the binary case.  

Table 9 is presented below to list studies which have compared classification 

techniques including LDA, LR, and CART for the number of groups they included in 

their study  

Table 9. 

Number of the Groups in the Comparison Studies 

Number of the 

Groups 

Authors and Year 

2 Fan & Wang (1998); Ferrer & Wang (1999);  

Finch & Schneider (2006); Harrell & Lee (1985);  

Hess et al. (2001); Holden et al. (2011); 

Holden & Kelley (2010); Kiang (2003);  

Lei & Koehly (2003); Rausch & Kelley (2009) 

3 Bolin & Finch (2014) 

2 and 3 (separately) Finch et al. (2014) 

3 and 5 (separately) Finch & Schneider (2007) 

4 Pai et al. (2012)-1; Pai et al. (2012)-2; Zavroka & Perret 

(2014) 

2, 3, 4, 5, infinity Pohar et al. (2004) 
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Other conditions. 

Unlike conditions of sample size, effect size, and predictor variables’ distribution 

which were discussed with some frequency by researchers in the literature, there are 

some additional conditions which have been tested to compare classification methods 

including LDA, LR, and CART. Some results regarding these conditions are introduced 

below. 

Linearity. 

Linearity is a mathematical property formulated as 𝑓 𝑥 = 𝐴𝑥 + 𝐵 in which	𝑓 𝑥  

is defined as a linear function and 𝑥 is a variable. The values of (𝑥, 𝑓 𝑥 ) can be 

represented as a straight line with a random degree of slope in a scatterplot or in the data 

points somewhat clustering around a line. Therefore, linearity can be understood as level 

of straightness for the relationship between dependent and independent variables. While 

it is assumed for LDA, LR and CART do not require linearity as an assumption. Based on 

limited research, LR was superior to LDA when the linearity assumption was not 

satisfied (Kiang, 2003). However non-linearity still has a moderate effect on the 

performance of LR and the performance LDA significantly decreased in the absence of 

linearity (Kiang, 2003; Pai et al., 2012) 

Model complexity. 

Model complexity is the condition related to inclusion of the number of variables, 

their interactions, and nonlinear versions such as quadratic or cubic forms of the variables 

in the analysis. In general, inclusion of more variables, interactions, and quadratic or 

cubic forms of the variables increase model complexity. More complex models show 

greater prediction accuracies, but in the case when some variables do not significantly 
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contribute to the model’s prediction accuracy or the goodness of fit, more parsimonious 

options should be preferred. Moreover, complex models might lead to some problems 

such as multicollinearity or singularity. Therefore, model complexity should not be 

always taken as an advantage.  

Holden et al. (2011) stated that, in general, more complex models have lower 

misclassification rates and the misclassification rates depends on the classification 

method. They found significant interactions between model complexity, effect size, and 

group size ratio for the methods’ classification accuracies. Moreover, when group sizes 

were unequal, the large and small group misclassifications were highly dependent on 

model complexity and group size ratio. Furthermore, when group sizes were unequal and 

model complexity was increased, both smaller and larger groups had smaller 

misclassification rates. In their study, which had three levels of model complexity (linear, 

simple, complex), for linear and simple models and when groups sizes were equal, LR 

had lower misclassification rates than LDA while for unequal groups, they both showed 

very similar performance. On the other hand, for the complex model, LR had better 

performance than LDA regardless of effect size or group size ratio. Finally, in addition to 

increasing performance when the effect size increased, CART generally showed the 

highest prediction accuracy among the three methods for different types of model 

complexities (Holden et al., 2011). 

Dynamic environment of data.  

Most of the comparison studies made the assumptions of static data, so that there 

was no change in data values over time. On the other hand, some researchers considered 

the dynamic nature of real world data should be included in comparison studies for 
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classification methods’ performance. By using some trigonometric functions to generate 

change in coefficients for variables over time, it was found that a dynamic environment 

of data decreases performance for some classification methods including LDA and LR 

(Kiang, 2003; Pai et al., 2012). In the studies which took account of dynamic data, a time 

series approach was used, but it should be noted that there might different situations with 

dynamic data rather than just using a sine function which varies from -1 to +1 with a 

periodic fluctuation.  

Outliers. 

An outlier can be defined as an observation which is distant from the other 

observations in the data. In application, the presence of outliers in a dataset is a common 

situation and it creates some analytical concerns. In statistics, deletion of the outliers or 

transformation of data with some mathematical formulas are two ways to deal with 

outliers. Pai et al. (2012) showed that classification accuracies of the techniques are 

affected by presence of outliers and in line with the LDA assumptions, the performances 

are decreased. 

Multimodal structure of data. 

While many statistical models require a unimodal structure of data, multimodal 

distributions are also possible. Multimodal data is the case when the distribution has more 

than one peak or modes. Bimodal (2 modes) and trimodal (3 modes) data are types of 

multimodal data. Kiang (2003) reports that both LDA and LR performed worse under a 

multimodal data structure and the results indicate LR performed slightly better than LDA 

(Kiang, 2003). On the other hand, this result should be reviewed with care since both 

methods had different base error rates.  
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Percent of initial misclassification. 

When some observations are initially misclassified, performance of classification 

methods might decrease and having misclassified observations is considered a 

measurement problem (Betebenner et al., 2008; Ozasa, 2008). There are several types of 

misclassifications such as random, non-random, differential, and non-differential 

misclassification (Chhikara & McKeon, 1984; Holden & Kelley, 2010; Lachenbruch, 

1966; Lachenbruch, 1974; Ozasa, 2008). 

LDA might be affected slightly by initial misclassification, as observations which 

have a mean close to other classes to which they do not belong have a greater chance of 

misclassification (Holden, 2009; Holden & Kelly, 2010; Lachenbruch, 1966; 

Lachenbruch 1974; McLachlan, 1972). Bolin and Finch (2014) reported that initial 

misclassification proportions, group size ratio, and classification methods interacted 

significantly. Moreover, their results showed that higher initial misclassification rates 

caused higher misclassification accuracy (prediction) of the methods including LDA, LR, 

and CART. Finally, in their study CART performed better than LDA and LR while all 

showed similar patterns in the presence of initially misclassified data by reducing their 

classification accuracies.   

Group separation. 

Group separation, like effect size, defines level of separation between two or more 

groups which is the extent of overlapping levels of populations. While it has mostly been 

measured by Mahalanobis distance: 𝐷" = 	(𝜇6 −	𝜇")X	Σ;6(𝜇6 − 𝜇") (Harrell & Lee, 

1985, Lei & Koehly, 2003; Rauch & Kelley, 2009; So, 2003), variance ratios (Fan & 

Wang, 1998) and some other formulas or algorithms also used to quantify separation of 
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groups. The 𝐷" values such 6.7 and 2.2 were considered as large separation (Stevens, 

1996; Meshbane & Morris, 1996) and 0.7 or below were considered as moderate 

separation (Huberty, Wisenbaker & Smith 1987).  

Some previous research found that increasing Mahalanobis distance (i.e. level of 

separation between groups) leads to higher classification accuracies for LDA and LR 

(Fan & Wang, 1999; Harrell & Lee, 1985, Finch et al., 2014; Lei & Koehly, 2003). 

Moreover, the results also showed that under the conditions when HOCV and normality 

held, the superiority of LDA to LR disappeared with increasing group separation 

(Mahalanobis distance). Furthermore, group separation was found to significantly interact 

with group size ratio, HOCV, prior probabilities, cut score, and smaller and larger group 

classification accuracies of the methods including LR and LDA (Lei & Koehly, 2003; So, 

2003). On the other hand, the performance difference between LDA and LR for smaller 

and larger groups’ classification accuracies was not affected significantly by different 

degrees of group separation (Harrell & Lee, 1985). Moreover, in their study which 

included LR, LR, and CART, Finch et al. (2014) found that under the condition when 

degree of separation for subgroups was high, CART provided more accurate results. 

Summary and Research Questions 

When applying explanatory models, researchers aim to investigate causal 

relations between variables, while usage of predictive models such as LDA, LR, and 

CART are generally targeted to predict categories based on a correlational rather than 

causal design. Therefore, these models are used to evaluate group discriminations and 

determinations (Sainani, 2014). For example, by applying predictive models, one can 
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estimate probability of having a disease based on results of diagnostic tests, or mortality 

of a veteran with a stroke of a particular level of severity within one year (Bates et al., 

2014). Some predictor variables such as positive perception of teacher, GPA, if the 

student lived with biological parents or not, and number of the days absent from school 

can be examined to see if they predict high school students’ dropout status by applying 

LR (Suh et al., 2007), as well as the other two. Traditionally, in educational and social 

science research, LDA and LR are applied widely, and as a newer method, CART is not 

applied as often as LDA and LR (Holden et al., 2011).   

In the reviewed literature, it is clear that many data conditions may affect 

performance of the classification methods. Sample size, group size ratios, distributions of 

the predictors, effect size, and homogeneity of variance-covariance matrices are the most 

studied conditions which are also important factors to consider for classification accuracy 

for LDA, LR, and CART. On the other hand, correlations between predictor variables, 

number of the variables, number of the groups in the dependent variable, model 

complexity, dynamic structure of the data, linearity, presence of outliers, multimodal 

structure of data, percent of initial misclassification, and group separation are also 

important and less studied data conditions for comparison of LDA, LR, and CART. 

Moreover, there is little known about effect of fundamental data conditions for 

classification: correlation between independent variables, number of the groups in the 

independent variable and number of predictor variables for the classification accuracy of 

the methods. Finally, it is noticeable in the literature that there are conflicts between 

results of some studies for particular conditions.  
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While CART shows higher performance than LDA and LR in different levels of 

sample size, homogeneity of variance covariance matrices and effect size, group size 

ratio, different model complexities, percent of initial misclassification, and level of group 

separation, it shows lower classification accuracy than LDA and LR under normal or 

skewed types of data. LR is expected to perform better than LDA under violation of LDA 

assumptions such as normality and homogeneity of variance covariance matrices. With 

non-inclusion of CART, some studies reported better performance of LR under 

nonlinearity and the presence of multimodal data. Finally, without having detailed 

comparison results, it is known that the dynamic environment of data and the existence of 

outliers affects performance of the classification methods.   

In addition to these results, LDA, LR, and CART were reported to be affected by 

the number of predictor variables and the number of groups in the dependent variable. A 

larger number of groups decreased classification accuracies of the methods, while more 

predictor variables increased the classification accuracies and the methods LDA, LR, and 

CART showed comparable results under these conditions. Moreover, no study was found 

to compare LDA, LR, and CART at the same time for the effect of correlation of 

predictor variables while LDA was found to perform less efficiently and LR not to be 

affected significantly by multicollinearity. On the other hand, it should be noted that there 

are a limited number of studies to compare the methods under these conditions and 

further investigation is needed.  

In summary, while previous research accommodates some level of knowledge 

about the factors which affect performance of LDA, LR and CART, further study is 

needed to have a better understanding of the performance of the group classification 
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methods LDA, LR, and CART. Particularly, the following factors have not been 

thoroughly investigated: correlations between predictor variables, number of the predictor 

variables, and number of the groups in the dependent variables. Moreover, these 

conditions should be evaluated not only for overall classification accuracy but also 

smaller and larger group classification accuracies, so that group size ratio should be 

included to produce more detailed results. Therefore, the research questions for this study 

are:  

1) Which of the three methods (LDA, LR, and CART) performs better under 

different levels of correlation between predictor variables?  

2) Which of the three methods (LDA, LR and CART) performs better under 

different numbers of groups in the dependent variables?  

3) Which of the three methods (LDA, LR and CART) performs better under 

different numbers of the predictor variables? 

4) Which of the three methods (LDA, LR and CART) performs better under 

different group size ratios? 

5) Is there any significant interaction between level of correlation between 

predictor variables, number of the predictor variables, number of the groups, 

and group size ratios in the dependent variables for classification accuracies of 

the three methods? 

6) Which of the three methods (LDA, LR, CART) performs better overall? 
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Measures of outcome variables 

To be able to address the research questions and evaluate performance of the 

methods LDA, LR, and CART, two measures of outcome will be applied: overall rate of 

correct classification, rate of correct classification for the smallest group in terms of the 

group’s sample size, and rate of correct classification for the largest group in terms of the 

group’s sample size.  

Rate of correct classification for all groups (rccA): rccA will be calculated based 

on dividing the number of all correctly predicted observations for their classes by total 

number of all observations. It is presented by the formula: 

 𝑟𝑐𝑐𝐴 = 	3[\]H^	_`	a_^^Habcd		e^Hf+abHf	_]gH^hib+_1g	`_^	bjH+^	aciggHg
3[\]H^	_`	b_bic	_]gHhib+_1g

              (8) 

Rate of correct classification for the smallest group in terms of groups’ sample 

sizes (rccS): rccS will be calculated by dividing the number of correctly predicted 

observations for the smallest group by the total number of observations in the smallest 

group. It can be presented by the formula: 

 𝑟𝑐𝑐𝑆 = 	3[\]H^	_`	a_^^Habcd		e^Hf+abHf	_]gH^hib+_1g	`_^	bjH	g\iccHgb	l^_[e
3[\]H^	_`	b_bic	_]gHhib+_1g	+1	bjH	g\iccHgb	l^_[e

     (9) 

 As can be seen, rccA will be used for measuring overall classification accuracy 

and rccS will be used for measuring the classification accuracy of the smallest group. 

Definitions 

This study focuses on the conditions: correlations between predictor variables, 

group size ratios, number of the groups in the outcome variable, and number of the 

predictor variables. Correlation defines degree of linear associations between predictor 
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variables and it was set to .2 and .5. Group size ratio is the percentages of groups sizes 

within the whole sample was set to the cases when the groups were balanced and 

imbalanced in terms of groups’ sample sizes. Number of the groups in the outcome 

variable indicates how many groups the outcome variable has and it was set to levels 

when there were two, three, and four groups. Number of the predictor variables defines 

number of the variables used to predict the group membership of observations and it was 

set to the levels when there were two, five and ten predictor variables. The performances 

of the methods were evaluated by rate of correct classifications which is the rate between 

number of correct group predictions and total sample sizes. On the other hand, while 

focusing on the conditions mentioned above, not being able to include other data 

conditions such effect size, predictor distributions, or sample size due to computational 

and time concerns was a limitation of this study. Finally, the fact that the focused data 

conditions were used with a limited number of levels is another main limitation of this 

study.   
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Chapter Two 

 
Method 

 Chapter Two includes a description of the methodology of the study. First, details 

of the research design and data generation process are presented. Then, tools and 

procedures of data analysis will be discussed.  

Research Design 

In this study, factors regarding data properties will be controlled. The factors are 

number of the predictor variables (3 levels: 2, 5, 10), correlation between predictor 

variables (2 levels: .2, .5), number of groups (3 levels: 2, 3, 4), and group size ratio (2 

levels: balanced, imbalanced). For the specifications of the balanced and imbalanced 

groups, see Table 10. The first two conditions are related to predictor variables while the 

latter are related to the outcome variable. Moreover, three different analysis methods 

(LDA, LR, and CART) were applied to compare their performances. Therefore, 3x2x3x2 

= 36 different data conditions were created and analyzed with each of three methods. All 

other factors were assumed to be random and are uncontrolled. Sample size was fixed to 

200 and for each condition 1000 iterations were simulated. Therefore, 3x36x200 = 

21,600 simulated observations each having 1,000 iterations were included in this study.  
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To conduct the comparison study between LR, LDA, and CART and evaluating 

their performance under certain conditions summarized in Table 10, a Monte Carlo 

simulation technique was applied. Data generation via Monte Carlo simulation was 

conducted with R statistical software (R Core Team, 2016) and analysis of the results 

were conducted with SPSS statistical software (IBM Corp., 2013).  

Monte Carlo methods are data simulation techniques relying on random sampling 

procedures. It is common to use the Monte Carlo approach to test theoretical hypotheses 

such as mathematical approximations, probability calculations, or probability 

distributions’ parameter estimations by generating datasets that meet specified conditions 

(Paxton et al., 2001). In summary, it is a commonly used technique to compare statistical 

techniques and evaluate their performances. As Monte Carlo simulation allows 

researchers to generate variables randomly and manipulate desired characteristics 

(controlled variables), it will be used in this study as the data generation process.   

For simplicity of data generation and analysis, all the predictor variables were 

created with a standard normal distribution (normal distribution with mean 0 and standard 

deviation 1). Table 10 presents the controlled variables and the levels that were used in 

this study. 
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Table 10.  

Controlled Variables and Levels for the Study 

Controlled variables                           Levels of the variable   
_______________________________________________________________________                                                     
 
Method      LDA, LR, CART 

Number of Predictor Variables             2, 5, 10 

Number of Groups                                2, 3, 4  

Group Size Ratio                                  Imbalanced           Balanced 

                   10:90                     50:50   (2 groups)  

  10: 20:70               33:33:33   (3 groups) 

  10:15:20:55           25:25:25:25  (4 groups) 

Correlation Between Variables            .2, .5 
_______________________________________________________________________ 

Data Generation 

 To generate data with desired properties, the function MVRNORM in R software 

was used and therefore multivariate normality of predictor variables was satisfied. The 

MVNORM library in R allows researchers to specify the correlations between predictor 

variables and the number of predictor variables. The sample size was fixed at 200, as it is 

a common sample size in simulation studies and it is a reasonable number of observations 

in applied social science quantitative research. Additionally, effect size was fixed to 0.5 

following Cohen’s (1988) comment that 0.2, 0.5, and 0.8 are small, medium and large 

effect sizes respectively. Moreover, for LDA, prior probabilities were specified based on 

their observed group sizes as recommended by Lei and Koehly (2003). Based on their 
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suggestions, the groups were assigned to assigned to the probabilities which were ratios 

of their samples sizes in total sample. For example, for a two-group case with group size 

ratio 10:90, the prior probability for the smaller and larger groups were .1 and .9, 

respectively. On the other hand, when groups were balanced, the prior probabilities were 

0.5 for both groups.  

Controlled Variables and Their Patterns 

In this study four variables were controlled: the number of the predictor variable, 

the number of the groups for outcome variable, group size ratio, and variable correlation. 

The number of the predictor variables and correlation matrices are qualities about 

predictor variables while the number of the groups and group size ratio are the qualities 

related to outcome variable. The details about conditions of each controlled variable are 

presented below.  

Correlation (CORR)  

 The MVRNORM function in R software allows us to determine correlation 

between predictor variables for simulated data. Even though it is impossible to create all 

possible levels of correlations between variables, two levels of correlations (low, 

medium) between predictor variables were created. For low correlation, the coefficient 

was 0.2, and for medium correlation the coefficient 0.5 was used.  

With 2, 5, and 10 predictor variables, the correlation matrices for low and medium 

correlation are, respectively, as follows in Figure 3. 
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          Ten Predictor Variables  

 

Figure 3 

Correlation Matrices Between Predictor Variables with Two, Five and Ten Predictor 
Variables 

When simulating predictor variables, it was discovered that the predictor variables 

were correlated higher than the fixed level, on average. For example, when fixing the 

correlations at .5 in MVRNORM, the correlations for the simulated data were a little 

higher than .5; i.e., .58, depending on the data condition. Therefore, smaller values of 

correlation coefficients were introduced to the R software during the data simulation 

process, so that the controlled conditions were satisfied. For all 36 data conditions, the 

new lower correlation values were tested and ensured to be equivalent in value to the 

fixed correlation coefficient values of .2 and .5.  
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Number of predictor variables (NPV) 

 Number of the predictor variables were automatically determined by the creation 

of correlation matrices, as when deciding correlations between predictor variables one 

needs to first decide the number of the variables and the function MVRNORM creates the 

number of the variables based on the determined correlation matrix. The levels of the 

number of the predictor variables for study were based on simulated data with two, five, 

and ten predictor variables.  

Number of groups for outcome variable (GN) 

 In this study, the number of groups in the dependent variable has three levels: 

two, three or four groups in the dependent variables, which are the common in terms of 

number of the groups in application. To be able to generate groups, first the number of 

the observations for each group was counted based on the group size ratios, then for each 

group, the number of observations were generated. For example, for the case with three 

groups with a group size ratio 10:20:70, 20, 40 and 140 observations for different groups 

were simulated since total sample size will be 200 and it was distributed to the group 

according to the group size ratio. Different groups were labeled with different numbers. 

For example, with three groups in the dependent variable, groups were labeled as group 

1, group 2, and group 3 and following the example above group 1 had 20 cases, group 2 

had 40 cases, and group 3 had 140 observations. Once simulating and labeling groups for 

the outcome variable and simulating predictor variable datasets for each iteration, 

outcome variable and predictor variables were matched to each other randomly based on 

a standardized mean of 0.5 which is considered as a medium effect size by Cohen (1998). 
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Table 11 presents sample sizes for the groups based on group size ratios and the number 

of the groups. 

Table 11.  

Number of Groups and Groups Sizes for the Simulation 

Number of groups Groups Size Ratio Sample Sizes for the groups 

2 50:50 100:100 

 10:90 20:180 

3 10:20:70 20:40:140 

 33:33:33 67:66:67 

4 10:15:20:55 20:30:40:110 

 25:25:25:25 50:50:50:50 

Group Size Ratio (GSR) 

 Group size ratio is an important variable to control since it effects other 

manipulated variables. In this study, two different levels of groups size ratio were 

controlled: balanced group size ratios and unbalanced group size ratios. A balanced group 

size ratio exists when each group in the dependent variable has the same number of 

observations. An unbalanced level of group size ratio exists when the number of cases in 

the groups are not equal and there is a large difference between the largest and the 

smallest group in terms of number of observations.  

 While the balanced case was simulated to compare the methods’ performances 

under balanced cases for overall prediction accuracies, having the imbalanced case 

accommodated evaluation of the methods’ (LDA, LR, and CART) performances for 
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smaller group prediction accuracy as well as overall class prediction accuracies. Table 12 

presents the number of the groups for the dependent variable and the group size ratios for 

balanced and unbalanced cases. In the notation 10:15:20:55, 10 is the percentage of 

observations of the smallest group while 55 is the percentage of observations of the 

largest group.   

Table 12.  

Number of Groups and GSR for Balanced and Imbalanced Cases 

Number of Groups            GSR for Imbalanced Case          GSR for Balanced Case 
______________________________________________________________________                                                  
 
  2                                  10:90     50:50  

3                  10:20:70    33:33:33 

4                10:15:20:55        25:25:25:25 
______________________________________________________________________ 

Simulating groups of dependent variable 

To simulate categorical outcome variables, first means of predictor variables for 

each group were introduced to the software. To be able to satisfy the fixed standardized 

group difference (.5 effect size) between each consecutive group in terms of sample size 

and the overall group mean to be zero, the group means were calculated based on simple 

mathematical equation systems. For example, for an imbalanced three group case all 

variables for the smallest, the second and the largest groups were assigned to the values   

-.8, -.3 and .2, accordingly. For the full list of all predictor variables for different group 

numbers and levels of group size ratios, see Table 13. Once the predictor variables were 

assigned to the determined values, based on correlations between predictor variables, 

group size ratios, and groups’ sizes, the observations were created via the c(rep()) 
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function in R, then all the observations were combined by the data.frame (,)	function with 

all predictor variables and the dependent variable. 

Table 13.  

Means of Predictor Variables for Levels of GSR and Group Numbers 

                                                    ______________________________________________ 

              Means of Predictor Variables for Groups 

GN GSR Group 1 Group 2 Group 3 Group 4 

#2 10:90 -.45 .05 - - 

#2 50:50 -.25 .25 - - 

#3 10:20:70 -.80 -.30 .20 - 

#3 33:33:33 -.50 .00 .50 - 

#4 10:15:20:55 -1.10 -.60 -.10 .40 

#4 25:25:25:25 -.75 -.25 .25 .75 

Steps of data generation and manipulation process 

Step 1: For the case when there were 2, 5, or 10 predictor variables, the data 

matrices were created by the function MVRNORM in R software. The MVRNORM 

function generates variables for each group based on a multivariate normal distribution. 

For example, for the case with five predictor variables, by generating all five predictor 

variables by MVRNORM, the predictor variables within each group follow the 

multivariate normal distribution which means they all follow the normal distribution 

individually but that does not necessarily mean when combining each group for the 

dependent variable, the predictor variables satisfied normality. This function also allows 
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one to specify the means and standard deviations of the predictor variables for each group 

in the dependent variable. On the other hand, while generating the predictor variables 

from multivariate normal distribution for each group, after combining them for whole 

datasets, multivariate normality is not necessarily satisfied for each iteration.  

Step 2: For the cases when the outcome variable has 2, 3, or 4 groups, 

observations are generated based on their group size ratios. Then the groups were labeled 

as group 1, group 2, group 3, and group 4. The groups labeled with smaller numbers have 

a smaller number of observations. For example, for unbalanced cases, group 1 is always 

the smallest group in terms of group size. For three group case, the group size ratios were 

67, 66, 67 for group 1, group 2, and group 3. Size of group 2 was 66 for locating group 

means easily.  

Step 3: Assign the observations of outcome variables to created predictor 

variables randomly based on standardized group mean difference 0.5 and means of 

predictor variables zero. 

By following the steps above and using required R functions, the dataset of 1000 

iterations with desired manipulated and random conditions were simulated. When, non-

convergence of data for a replication was encountered, another replication was run to 

replace it by R software, so that 1000 replications were completed. Then, training of the 

data was completed and the data was ready to analyze.  

Analysis of Data 

After generating the data with desired conditions, each method was used with 

similar datasets in terms of data conditions to predict the outcome variables separately. 
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The functions lda,	multinom and rpart	functions in R were used to conduct the analyses 

for LDA, LD, and CART. After the class predictions from three methods were obtained, 

an algorithm which controls if the method predicted the class correctly and finds number 

of correct predictions was created. Then, the rates of correct classification (rccA and 

rccS) of methods for each iteration were calculated and the second round of data for 

comparison of the methods was ready. To analyze results of this simulation study, a 

3x2x3x3x2 factorial analysis of variance (ANOVA) procedure for Method X Correlation 

X Number of the Variables X Number of the Groups X Group Size Ratio was conducted 

based on the rate of correct classifications. A factorial ANOVA assesses main effects and 

interactions among factors. SPSS statistical software was used in conducting the factorial 

ANOVA and follow-ups.  

Before conducting the factorial ANOVA, for all conditions, rate of correct 

classification prediction of each method was generated. As each condition had 200 

observations, it was possible to count the success rates of class predictions by comparing 

observed (simulated) groups and predicted groups for LDA, LR and CART. Then for 

each iteration, the rate of correct classification was determined by dividing the number of 

correct classifications by the sample size. Thus, by creating an algorithm which calculates 

the rate of correct classifications for all the groups (rccA), or smaller group (rccS), then 

the datasets for the factorial ANOVA was ready.  

In his research, Edwards (1985; p. 83) carried out all of the analyses using the 

arcsine transformed value of the proportions as a dependent variable and the results were 

identical for the proportions and transformed values. Therefore, following this results, the 

analyses of this study were based on proportions.  
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As the statistical significance of interactions and main effects are affected by 

sample size and the sample size of 1000 (number of the iterations for each combination 

of the conditions) is relatively large, and additional indices will be employed, partial eta 

squared (𝜂e"). Partial eta squared is an index which calculates proportion of total sample 

variance explained related to group membership by a determined effect partialling out 

other main and interaction effects (Pierce et al., 2014; Richardson, 2011). It can be 

presented by the formula 

 

where 𝑆𝑆H``Hab	 is sum of squares for the particular effect 𝑆𝑆b_bic   is the total sum of 

squares and, 𝑆𝑆H^^_^ is the error sum of squares. Haase (1982) reported partial eta 

squared (𝜂e") .083 to be a medium effect in size. Therefore, for the factorial ANOVA, 

main effects and interactions in this study, which had 𝜂e"	values equivalent or larger than 

.083 were considered having at least medium effect.  

 Factorial ANOVA assumes normality of predictor variables, homogeneity of 

variance (HOV), and independence of observations. By the design of this study the 

assumptions, for independence of observations was satisfied. On the other hand, due to 

large sample sizes (number of iterations), differences in group size ratios, group numbers 

and their respective means, the assumption of homogeneity of variance was not satisfied 

based on Levene’s test. Moreover, based on a rule of thumb for skewness to be between -

1 and +1, almost all of the cells satisfied the requirement for normality except some 

imbalanced cases with a binary outcome variable and two or five predictor variables 

(skewnesses were still within -2 to +2). However, ANOVA is robust against violation of 
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normality and HOV, especially when there is a large dataset with a balanced design. 

Therefore, effects of these violations were ignored.  

 After factorial ANOVAs were run and the results obtained, the follow-ups were 

implemented based on meaningful effects of interactions or main effects. Once an 

interaction was found to be meaningful, the dataset was split by level on one factor 

present in the interaction and the effects of the other conditions evaluated. Effects of the 

conditions were evaluated again based on if 𝜂e"	values were equivalent or larger than .083 

and the effects which had 𝜂e" less than 0.083 were not interpreted, except for the method 

effect on rccA. This process was followed until all the cells in the ANOVA design were 

investigated. Finally, the mean rccA and rccS values were compared for levels of the 

conditions.  
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Chapter Three 

 
Results 

 In this Chapter, results from the data analysis are reported. Since there were two 

outcome variables, this chapter has two sections: results for rate of correct classification 

for all groups (rccA) and for correct classification of the smallest group (rccS). At the end 

of the chapter, results comparing rccA and rccS are summarized. It should be noted that 

due to use of a decimal outcome variable, results are reported to three decimal places 

rather than two as suggested by APA. 

Results for rccA 

Overview 

Based on the factorial ANOVA results, all the interactions and main effects were 

statistically significant (p < .001). However, due to the large sample size, instead of 

statistical significance, partial eta squared values were employed to evaluate the 

importance of main effects and interactions. Using Haase’s (1982) finding of a medium 

effect size as 0.083, any partial eta squared (𝜂e") value greater than 0.083 of main effects 

or interactions was considered meaningful. For ease of reporting, the conditions 

(correlation, number of predictor variables, number of the groups, and group size ratio) 

are reported with their abbreviations: Corr, NPV, GN, and GSR.  
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The overall factorial ANOVA model was statistically significant and had a meaningful 

partial eta squared value (𝑝 < .001, 𝜂e" = .969) for the outcome variable rccA.  

Following the rule of thumb for meaningful effects of  𝜂e" > .083, all main effects were 

meaningful. Moreover, all two-way interactions except Method x NPV had meaningful 

effects on rccA. Finally, three-way interactions: Method x NPV x GN (𝜂e" = .087), 

Method x GN x GSR (𝜂e" = .169), and Corr x NPV x GN (𝜂e" = .177) had meaningful 

effects on rccA. All remaining interactions had partial eta square values less than 0.083, 

and are not interpreted here. Details of the overall factorial ANOVA results are provided 

in Table 14. 
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Table 14.  

ANOVA Summary Table for the Effects of Method, Corr, NPV, GN, and GSR on rccA 

Source df F            p 
  Partial Eta   
Squared (𝜼𝒑𝟐)   

Method 2 127047.3 <0.001 0.702 
Corr 1 108719.7 <0.001 0.502 
NPV 2 115969.6 <0.001 0.683 
GN 2 527124.9 <0.001 0.907 
GSR 1 1149617 <0.001 0.914 
Method * Corr 2 9936.965 <0.001 0.156 
Method * NPV 4 1699.443 <0.001 0.059 
Method * GN 4 6056.53 <0.001 0.183 
Method * GSR 2 50744.27 <0.001 0.485 
Corr * NPV 2 20721.98 <0.001 0.278 
Corr * GN 2 25021.86 <0.001 0.317 
Corr * GSR 1 20509.31 <0.001 0.160 
NPV * GN 4 17473.88 <0.001 0.393 
NPV * GSR 2 19755.73 <0.001 0.268 
GN * GSR 2 42466.41 <0.001 0.440 
Method * Corr * NPV 4 2391.374 <0.001 0.081 
Method * Corr * GN 4 2281.087 <0.001 0.078 
Method * Corr * GSR 2 2668.998 <0.001 0.047 
Method * NPV * GN 8 1278.243 <0.001 0.087 
Method * NPV * GSR 4 690.048 <0.001 0.025 
Method * GN * GSR 4 5501.345 <0.001 0.169 
Corr * NPV * GN 4 5786.564 <0.001 0.177 
Corr * NPV * GSR 2 3335.765 <0.001 0.058 
Corr * GN * GSR 2 1000.944 <0.001 0.018 
NPV * GN * GSR 4 335.823 <0.001 0.012 
Method * Corr * NPV * GN 8 967.997 <0.001 0.067 
Method * Corr * NPV * GSR 4 532.553 <0.001 0.019 
Method * Corr * GN * GSR 4 246.794 <0.001 0.009 
Method * NPV * GN * GSR 8 200.174 <0.001 0.015 
Corr * NPV * GN * GSR 4 397.885 <0.001 0.015 
Method * Corr * NPV * GN * GSR 8 93.965 <0.001 0.007 
Error 107892    
Total 107999    
Note: Method = Methods (LDA, LR, CART); Corr = correlation levels (.2, .5); 
NPV = Number of the predictor variables (2,5,10); GN = Number of groups in 
dependent variable (2,3,4); GSR = Group size ratio (imbalanced, balanced). 
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To follow up overall results, first the effects of three-way interactions, then effects 

of two-way interactions, and finally the main effects are interpreted.   

Interaction of Method, Group Numbers, and Group Size Ratio 

The method x GN x GSR interaction effect on rccA was statistically significant 

and greater than medium in size (𝜂e" = .169). To follow up this result, the data were split 

into levels by group size ratio creating simple interactions and the method x GN 𝜂e"	was 

examined. By doing so, effects of the interaction of the factors (method, GN) under 

single levels of the third factor can be examined (Myers et al., 2013). At both levels of 

GSR, when the group size ratios were imbalanced (𝜂e" = .20) and balanced (𝜂e" = .327) 

the method x GN had meaningful interaction effects on rccA. Then, the data were split by 

level of GN in addition to GSR level to investigate effect of method on rccA. The method 

effect was significant at all levels of GSR for all the levels of GN. The partial eta squared 

values of method are reported in Table 15. 

Table 15. 

Partial Eta Squared Values for Method Effect by Level of GSR and GN 

 
GSR GN 𝜼𝒑𝟐 

Imbalanced #2 .130 
 #3 .537 
 #4 .482 

Balanced #2 .766 
 #3 .888 
 #4 .722 
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Table 16 presents mean rccA for LDA, LR, and CART for different levels of GSR 

and GN. It should be noted that in all cases CART outperformed LR and LDA, though 

the difference with two imbalanced groups was trivial. 

Table 16.  

Mean rccA of LDA, LR, and CART by Level of GSR and GN 

  Mean rccA 
GSR GN LDA LR CART 

Imbalanced #2 .902 .902 .907 
 #3 .731 .731 .772 
 #4 .656 .660 .704 

Balanced #2 .659 .660 .773 
 #3 .468 .568 .678 
 #4 .514 .566 .634 

 
 

When the groups were imbalanced and number of the groups was two, the 

performance difference between LDA, LR, and CART was less than 0.5%. When the 

number of the groups was three or four, the difference between LDA and LR was less 

than 0.5%, but CART performed better than these two methods by around 4%.  

When the groups were balanced and GN was two, there was a trivial difference 

(.1%) between LDA and LR, but CART performed better than LDA and LR by 12%. 

When GN was three, LDA showed the lowest performance while LR showed 10% better 

performance than LDA and CART was the best performing method by 10% better than 

LR. Finally, when GN was four, LR showed around 5% better performance than LDA, 

and CART was the best performing method, about 7% better performance than LR.  

When the number of groups increased, all methods showed lower rccA. All 

methods correctly predicted the group classification better when there were fewer groups. 

Yet, CART showed somewhat better resistance against increasing GN than LDA and LR. 
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For example, when the groups were imbalanced, increasing GN from two to four resulted 

in LDA and LR decreases in rccA of 24.6% and 24.2% while CART decreased rccA by 

20.3%. When the groups were balanced, the decrease in rccA for all methods was lower. 

When the groups were balanced, increasing GN from two to four resulted in LDA, LR, 

and CART decreased rccA by 14.5%, 9.4%, and 13.9%, respectively. In that case, 

superiority of LR was observed with a more than 4% difference from LDA and CART. 

Moreover, the difference between LDA and CART was less than 1%. The only exception 

was for the balanced case when LDA had higher rccA for the four-group case (.514) than 

for the three-group case (.468).  

The methods had a higher rccA when the groups were imbalanced than when the 

groups were balanced. In general, when switching from the balanced case to the 

imbalanced case, LDA, LR, and CART performance increased by 21.6%, 16.6%, and 

9.93%, respectively. Furthermore, at higher levels of GN, sensitivity of the methods to 

the GSR of the groups was smaller. It should be noted that when increasing GN, the 

group differences between the smallest size group and the largest size group also 

increased by the design of the study.  

Figure 4 provides a graphical presentation of rccA for the methods and different 

levels of GN when GSR was imbalanced. 
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Figure 4 

 Mean rccA of Method by Level of GN When GSR is Imbalanced 

Figure 5 provides a graphical presentation of rccA for the methods at different 

levels of GN when GSR was balanced.  

 
Figure 5 

Mean rccA of Method by Level of GN When GSR is Balanced 
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Interaction of Method, Number of Predictor Variables and Group Number 

The Method x NPV x GN interaction was significant and greater than medium in 

effect size rccA (𝜂e" = .087). To follow up this result, the data were split by level of GN 

and method x NPV 𝜂e" was examined. Only at the level when GN was four did the 

method x NPV show a meaningful interaction (𝜂e" = .276), and at the other two levels of 

GN, the interaction had an effect size smaller than .083. Since for the cases when there 

were two groups and three groups the method x NPV interactions were not meaningful, 

only the case when GN was four is interpreted. The data were split by level of NPV in 

addition to GN level but only the case of four groups was examined to investigate the 

effect of method on rccA. The method effect was significant at all the levels of NPV 

when GN was four. The partial eta squared values of method are reported in Table 17. 

Table 17.  

Partial Eta Squared Values for Method Effect at Different Levels of NPV when GN was 

Four 

GN NPV 𝜼𝒑𝟐 
#4 #2 .789 
 #5 .689 
 #10 .243 

  

Table 18 presents mean rccA for LDA, LR, and CART for different levels of 

NPV when GN was four. It should be noted that when NPV was two and five, CART 

outperformed LR and LDA, but the difference between CART and LR when NPV was 

ten was trivial.  
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Table 18. 

Mean rccA of LDA, LR, and CART by Level of NPV When GN was four 

  Mean rccA 
GN NPV LDA LR CART 
#4 #2 .496 .527 .617 
 #5 .581 .607 .678 
 #10 .678 .705 .713 

 

According to these results, when NPV was two, LR performed better than LDA 

by 3.1% and CART performed better than LR by 9%. When NPV was five, LR 

performed better than LDA by 2.6% and CART performed better than LR 7.1%. Finally, 

when NPV was 10, LR performed better than LDA by 2.7% and CART performed better 

than LR by 0.8%. Therefore, CART performed better than LDA and LR at all cases of 

NPV when GN was four, but when there were ten predictor variables, the difference 

between CART and LR was trivial.  

With increasing NPV, rccA increased for all the methods. However, the contribution of 

additional predictor variables had different effects on different methods. LR was the best, 

LDA was second, and CART was the last in terms of increasing rccA by increasing NPV. 

For instance, by increasing NPV from two to ten, LDA increased its prediction ability by 

18.2%, LR by 28%, and CART by 9.6%. It was noticeable that, at the highest level of 

NPV, the gap between the methods became smaller and CART did not benefit from 

additional predictor variables as much as the other two methods did.  

Figure 6 provides a graphical presentation of mean rccA for the methods at 

different levels of NPV when GN was four.  
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Figure 6  

Mean rccAs of Method by Level of NPV with GN Equal to Four 

Interaction of Correlation, Number of Predictor Variables, and Group 

Number 

The Corr x NPV x GN interaction effect on rccA was significant and greater than 

medium in effect size (𝜂e" = .177). To follow up this result, the data were split by level 

of Corr and the NPV x GN 𝜂e"	was examined. At both levels of Corr, when the 

correlations between predictor variables were .2 (𝜂e" = .612) and .5 (𝜂e" = .11), NPV and 

GN had meaningful interaction effect on rccA. Then, the data were split by level of GN 

in addition to Corr level to investigate effect of NPV on rccA. The NPV effect was 
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significant at all levels of Corr for all the levels of GN. The partial eta squared values of 

NPV are reported in Table 19. 

Table 19.  

Partial Eta Squared Values for NPV Effect at Different Levels of Corr and GN 

 
Corr GN 𝜼𝒑𝟐 

.2 #2 .401 
 #3 .747 
 #4 .921 

.5 #2 .201 
 #3 .406 
 #4 .581 

 
 

Table 20 presents mean rccA for levels of NPV at the levels of GSR and GN. It 

was observed that at the lowest level of GN (#2), the contributions of additional predictor 

variables for average rccA were trivial while at case when GN was high (#4) and Corr 

was low, the increase in rccA by the contribution of additional variables was noticeable.  

Table 20.  

Mean rccAs with NPV of 2, 5, and 10 by Level of GN and Corr 

  rccA 
Corr GN NPV #2 NPV #5 NPV #10 

.2 #2 .785 .810 .828 
 #3 .623 .680 .730 
 #4 .558 .666 .785 

.5 #2 .779 .794 .806 
 #3 .613 .641 .662 
 #4 .535 .578 .612 

 

At both levels of correlation when GN was two, greater levels of NPV had greater 

rccAs and the difference was 2.5% or less. At the .2 level of Corr when GN was three, the 
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difference between the greater level of NPV with the one level smaller NPV in rccA was 

around 5% and when GN was four the difference was between 10% and 13%. The same 

differences for the .5 level of Corr when GN was three or four was about 3% or 4%. Even 

though it was clear that additional predictor variables increased prediction power of 

group membership methods, the case when Corr was .2 and GN was four had the most 

noticeable improvement with the addition of more predictor variables.   

At both low and moderate levels of correlation and with a different number of 

predictor variables, rccA was higher for two groups than for three or four. As NPV 

increased, rccA increased for all conditions of Corr and GN.  

Figure 7 presents mean rccAs for different levels of NPV at levels of GN when 

the correlation between predictor variables was .2. 

 
 
Figure 7  

Mean rccAs of Level of NPV by Level of GN When Corr is .2  
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Figure 8 presents mean rccAs for different levels of NPV at levels of GN when 

the correlation between predictor variables was .5. 

 
 
Figure 8  

Mean rccAs of Level of NPV by Level of GN When GN and Corr is .5  

 For a general sense of the effect of NPV, GN and Corr on accuracy of group 

prediction, Figure 9 presents effects on rccA when increasing NPV, GN and Corr.  

                     NPV   rccA                   GN    rccA               Corr  rccA 

 

 

  

 

Figure 9  

Reactions of rccA to Increase in NPV, GN, and Corr 
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As presented in Figure 9, increasing the number of predictor variables led to an 

increase in rccA while increasing the correlation between predictor variables or number 

of the groups in the outcome variable led to a decrease in rccA except for one case (Corr 

= .2 and GN = 4). 

Interaction of Method and Correlation 

The Corr x Method interaction effect on rccA was significant and greater than 

medium in effect size (𝜂e" = .156). To follow up this result, the data were split by level 

of correlation and at both levels when the correlation between predictor variables was .2 

(𝜂e" = .55) and .5 (𝜂e" = .796), the method condition had a meaningful effect on rccA.  

Table 21 presents mean rccA by method at each level of correlation. It was 

observed that at the low level of correlation, the methods performed better for prediction 

of group membership. Moreover, the influence of correlation level on LDA and LR for 

rccA was higher than its influence on CART.  

Table 21.  

Mean rccAs of Method by Level of Correlation  

Corr Method  Mean rccA 
.2 LDA .688 
 LR .712 
 CART .755 

.5 LDA .621 
 LR .650 
 CART .735 

 

 When the correlation was low (.2), the performance difference between LR and 

LDA in terms of rccA was 2.4% in favor of of LR and CART had a 4.3% better 

performance than LR. When the correlation was medium (.5), the performance difference 
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between LR and LDA was 2.9% in favor of LR and CART had a 8.5% better 

performance than LR. 

 The methods LDA and LR had 6.7% and 6.2% better performances at the low 

level of correlation than at the medium level while CART had just a 2% better 

performance at the low level of correlation. Figure 10 depicts mean rccA of the methods 

by level of correlation.  

 
Figure 10 

Mean rccAs for Method by Level of Correlation  

Interaction of Method and Group Numbers 

The Method x GN interaction effect on rccA was significant and greater than 

medium in effect size (𝜂e" = .183). To follow up this result, the data were split by level 

of GN. The method condition had a meaningful effect on rccA at all levels of GN: when 

there were two groups (𝜂e" = .631), three groups (𝜂e" = .81) and four groups (𝜂e" =

.628). 



 

86 
 

Table 22 presents mean rccA by method by GN. It was observed that at lower 

levels of GN, the methods performed better for prediction of group membership. 

Moreover, the influence of group number on performance of the methods was not large in 

terms of percentage.   

Table 22.  

Mean rccAs of the Methods at Different Levels of GN 

GN Method  Mean rccA 
#2 LDA .780 
 LR .781 
 CART .840 

#3 LDA .599 
 LR .650 
 CART .725 

#4 LDA .585 
 LR .613 
 CART .669 

 

When there were two groups, the performance difference between LDA and LR 

was trivial, but CART had a 6% better performance in mean rccA. When there were three 

groups, LR had a 5.1% better performance than LDA and CART performed 7.5% better 

than LR. With four groups, LR had a 2.8% better performance than LDA and CART 

performed 5.6% better than LR.  

All the methods decreased prediction accuracies with increasing GN. The differences 

between the cases of four groups and three groups in rccA for LDA, LR, and CART were 

19.5%, 16.8% and 17.1%, respectively. Figure 11 depicts mean rccA by method at levels 

of GN.  



 

87 
 

 
Figure 11  

Mean rccAs for Method by Number of Groups  

Interaction of Method and Group Size Ratio 

The Method by GSR interaction effect on rccA was significant and greater than 

medium in effect size (𝜂e" = .485).  To follow up this result, the data were split by level 

of GSR. The method condition had a meaningful effect on rccA at the both levels of GSR 

when group size ratio was imbalanced (𝜂e" = .42) and balanced (𝜂e" = .805). 

 Table 23 presents mean rccA by method by GSR. At the imbalanced level of 

GSR, the methods performed better than in the balanced case. Moreover, the influence of 

GSR on performance of the methods was not different by large percentages for 

imbalanced GSR. 
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Table 23.  

Mean rccAs of Method by Level of GSR  

GSR Method  Mean rccA 
Imbalanced LDA .763 

 LR .764 
 CART .795 

Balanced LDA .547 
 LR .598 
 CART .695 

 

 In the imbalanced case, the performance between LDA and LR was trivial, but 

CART had around 3.1% higher rccA. When the groups in the dependent variable were 

balanced in terms of their sample sizes LR had a 5.1% higher performance than LDA, 

and CART had a 9.7% higher rccA than LR.  

 The methods LDA, LR, and CART showed 21.6%, 16.6%, 10% better 

performance, respectively, in the imbalanced case than the balanced case. CART has less 

sensitivity to variation in group size ratio. While reporting these results, it should be 

noted that in the imbalanced case, the majority of the sample belonged to the largest 

group, with an advantage in rccA. Figure 12 depicts mean rccA by method by level of 

GSR.  
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Figure 12  

Mean rccAs for Method by Level of GSR 

Interaction of Correlation and Number of Predictor Variables 

The Corr x NPV interaction effect was greater than medium in effect size (𝜂e" =

.278).  To follow up this result, the data were split by level of correlation. When the 

correlation between the predictor variables were .2 (𝜂e" = .81) and .5 (𝜂e" = .423), NPV 

had a meaningful effect on rccA.  

Table 24 presents mean rccA by NPV and level of Corr. It was observed that 

influence of correlation in rccA was higher at the cases with higher number of predictor 

variables than lower number of predictor variables. Moreover, rccA values were higher at 

the cases with lower level of correlation than the cases with medium level of correlation.  
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Table 24.  

Mean rccAs of Level of NPV by Level of Corr 

Corr NPV  Mean rccA 
.2 #2 .655 
 #5 .719 
 #10 .781 

.5 #2 .642 
 #5 .671 
 #10 .693 

  
When Corr was .2, increasing NPV from two to five resulted in a 6.4% increase in 

mean rccA and increasing NPV from five to ten resulted in a 6.2% increase in mean 

rccA. On the other hand, Corr was .5, increasing NPV from two to five resulted in 2.9% 

increase in mean rccA and increasing number of the predictor variables from five to ten 

resulted in 2.1% increase in mean rccA. Figure 13 depicts mean rccA by level of NPV for 

levels of correlation between predictor variables.  

 
Figure 13 

Mean rccAs for Number of Predictor Variables by Level of Correlation 
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Interaction of Correlation and Group Number 

The Corr x GN interaction effect on rccA was significant and greater than 

medium in effect size (𝜂e" = .317). To follow up this result, the data were split by level 

of correlation. When the correlations between the predictor variables were .2 (𝜂e" = .867) 

and .5 (𝜂e" = .934), GN had a meaningful effect on rccA.  

Table 25 presents mean rccA by GN and Corr. Increasing GN or Corr resulted in 

decreases in mean rccA, with the largest decrease for four groups.  

Table 25. 

Mean rccAs of the Levels of GN at the Different Levels of Corr  

Corr GN  Mean rccA 
.2 #2 .808 
 #3 .667 
 #4 .670 

.5 #2 .793 
 #3 .639 
 #4 .575 

 

At the low level of correlation (.2), increasing GN from two to three resulted to 

14.1% decrease in mean rccA while there was a trivial difference between the cases of 

three groups and four groups. On the other hand, at a medium level of correlation, 

increasing GN from two to three resulted in a 15.4% decrease in rccA and from three to 

four resulted in a 6.4% decrease in rccA. 

When GN was two, three, and four, the mean rccA differences at the low level of 

correlation and medium level of correlation were respectively 1.5%, 2.8%, and 9.5%. 

Figure 14 depicts mean rccA by level of GN by level of correlation between predictor 

variables.  
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Figure 14  

Mean rccAs for Number of Groups by Level of Correlation 

Interaction of Correlation and Group Size Ratio 

The Corr x GSR interaction effect on rccA was significant and greater than 

medium in effect size (𝜂e" = .16). To follow up this result, the data were split by level of 

correlation. When the correlation between the predictor variables were .2 (𝜂e" = .887) 

and .5 (𝜂e" = .933), GSR had a meaningful effect on rccA.  

Table 26 presents mean rccA by level of GSR by level of correlation. When group 

size ratios were balanced, rccA was affected more by the increase in correlation than 

when group size ratios were imbalanced.  
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Table 26.  

Mean rccAs of Level of GSR by Level of Corr  

Corr GSR  Mean rccA 
.2 Imbalanced .788 
 Balanced .649 

.5 Imbalanced .760 
 Balanced .578 

 

Figure 15 illustrates mean rccA for GSR by Corr. 

 
Figure 15 

Mean rccAs for Level of GSR by Level of Correlation 

Interaction of Number of Predictor Variables and Group Numbers 

The NPV x GN interaction effect on rccA was significant and greater than 

medium in effect size (𝜂e" = .393). To follow up this result, the data were split by NPV 

level. At all NPV levels when there were two predictor variables (𝜂e" = .944), five 
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variables	(𝜂e" = .907), and ten variables (𝜂e" = .836), GN had a meaningful effect on 

rccA.  

Table 27 presents mean rccA by level of GN by NPV. Cases with a higher 

number of predictor variables were less affected by the increase in group numbers.  

Table 27.  

Mean rccAs of Level of GN by Level of NPV  

NPV GN  Mean rccA 
#2 #2 .782 
 #3 .618 
 #4 .547 

#5 #2 .802 
 #3 .660 
 #4 .622 

#10 #2 .817 
 #3 .696 
 #4 .699 

  
Increasing GN resulted in lower mean rccA except for a trivial difference with 10 

predictor variables and 3-4 groups. Increasing group numbers from two to four for the 

cases when there were two, five or ten predictor variables resulted 23.5%, 18%, and 

11.8% decrease in rccA respectively.  

On the other hand, increasing the number of predictor variables resulted in higher 

rccA when controlling for GN. When there were two, three, and four groups in the 

dependent variable, increasing the number of predictor variables from two to ten resulted 

in a 3.5%, 4.2%, and 15.2% increase in rccA, respectively. Figure 16 depicts mean rccA 

by level of group number by number of predictor variables.  
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Figure 16 

Mean rccAs of Number of Group by Level of NPV 

Interaction of Number of Predictor Variables and Group Size Ratios 

The NPV x GSR interaction effect on rccA was significant and greater than 

medium in effect size (𝜂e" = .268). To follow up this result, the data were split by GSR 

level. When the groups were imbalanced (𝜂e" = .604) and balanced (𝜂e" = .739), the 

NPV condition had a meaningful effect on rccA.  

Table 28 presents mean rccA by level of NPV by level of GSR. The influence of 

increasing NPV was stronger in the balanced case than in the imbalanced case. 

Furthermore, the difference in rccA between the levels of GSR was lower when there 

were more predictor variables.  
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Table 28.  

Mean rccAs of Level of NPV by Level of GSR  

GSR NPV  Mean rccA 
Imbalanced #2 .748 

 #5 .773 
 #10 .800 

Balanced #2 .550 
 #5 .616 
 #10 .674 

 

Figure 17 depicts mean rccA by level of GSR by NPV. 

 
Figure 17 

Mean rccAs for Level of GSR by Level of NPV 

Interaction of Group Numbers and Group Size Ratio 

The GN x GSR interaction effect on rccA was significant and greater than 

medium in effect size (𝜂e" = .44). To follow up this result, the data were split by GSR 
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level. When the groups into the dataset were imbalanced (𝜂e" = .969) and balanced (𝜂e" =

.793), the GN condition had a meaningful effect on rccA. 

Table 29 presents mean rccA by level of GN by level of GSR. Cases with less 

group numbers were influenced more by change in group size ratio levels than then the 

cases with more group numbers. Moreover, variation in mean rccA for the cases with 

different number of group numbers in balanced case was less than imbalanced case.  

Table 29.  

Mean rccAs of Level of GN by Level of GSR  

GSR GN  Mean rccA 
Imbalanced #2 .904 

 #3 .745 
 #4 .673 

Balanced #2 .697 
 #3 .571 
 #4 .571 

 

When groups were imbalanced with two groups, mean rccA was 5.9% higher than 

when there were three groups, and three groups had a 7.2% higher mean rccA than when 

there were four groups.  

When there were two, three, and four groups, the imbalanced case had 20.7%, 

17.4%, and 10.2% higher mean rccAs than the balanced case, respectively.  

Figure 18 depicts mean rccA by level of GSR by GN. 
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Figure 18 

Mean rccAs for Group Number by Level of GSR 

Effect of Method in rccA 

The method effect on rccA was significant and large in size (𝜂e" = .702). Table 

30 presents the overall mean rccA for the methods, LDA, LR, and CART.  

Table 30.  

Overall Mean rccA of LDA, LR, and CART 

Method Mean 
rccA 

LDA .655 

LR .681 

CART .745 

 

LDA with .655 rccA showed the overall lowest performance, LR with .681 rccA 

was the second, and CART was the best overall performing method with .744 rccA. 
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While the overall results showed that CART was the best performing method of group 

membership prediction of the three methods evaluated in this research project, it should 

be noted that the superiority of CART may not be the case for all the conditions.  Of 36 

controlled conditions, in two conditions LR showed higher performance than CART and 

LDA and, these conditions are presented in Table 31. In all other conditions, CART 

showed better performance than LDA and LR in terms of mean rccA. In one of the 

conditions, LR showed a 1.8% better performance than LDA and 4.6% better 

performance than CART in terms of mean rccA. In the other condition, LR showed a 

3.4% better performance than LDA and a 7.1% better performance than CART in terms 

of mean rccA. And, LDA outperformed CART in these two conditions as well, by 2.8% 

and 3.7%. 

Table 31. 

Conditions in Which LR Performed Better Than Other Methods 

Corr NPV GN GSR LDA 
rccA 

LR 
rccA 

CART 
rccA 

.2 #10 #4 Imbalanced .790 .808 .762 

.5 #10 #4 Balanced .799 .833 .762 

 

In addition to the cases where LR performed better, there were conditions in 

which the prediction accuracy between the methods were trivial (difference being less 

than 1%) and they are presented in Table 32. These conditions were for the cases when 

group size ratios were imbalanced and the outcome variable was binary (GN = 2).  
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Table 32.  

Conditions in Which Performance Differences between Methods were Trivial  

Corr NPV GN GSR LDA 
rccA 

LR 
rccA 

CART 
rccA 

.2 #2 #2 Imbalanced .900 .900 .903 

.2 #5 #2 Imbalanced .902 .902 .908 

.2 #10 #2 Imbalanced .906 .906 .913 

.5 #2 #2 Imbalanced .900 .900 .903 

.5 #5 #2 Imbalanced .901 .901 .907 

.5 #10 #2 Imbalanced .902 .902 .910 

 

 A box plot of overall mean rccA of the methods is presented as Figure 19. As can 

be seen, while overall comparable performance between LDA and LR was observed, 

CART had a superior overall performance.  

 
Figure 19 

Box-plot for Performance of the Methods on Mean rccA 
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Effect of Correlation in rccA 

The correlation effect on rccA was significant and large in size (𝜂e" = .502). 

Table 33 presents the overall mean rccA by level of correlation, .2 and .5.  

Table 33.  

Overall Mean rccA by Level of Correlation 

Corr Mean 
rccA 

.2 .718 

.5 .669 

 

There was a 4.8% difference between the levels of correlation in rccA.  The 

overall prediction power of the methods was higher for the cases when correlations 

between predictor variables were low than the cases when correlations were medium. 

However, in some controlled conditions, the difference was trivial (less than 1%) and 

these are presented in Table 34.  
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Table 34.  

Conditions in which the Difference between Correlation Levels in Mean rccA was Trivial  

Methods NPV GN GSR Corr .2 
rccA 

   Corr .5 
rccA 

LDA #2 #2 Imbalanced .900 .900 

LDA #2 #3 Imbalanced .714 .710 

LDA #5 #2 Imbalanced .902 .901 

LDA #10 #2 Imbalanced .906 .902 

LR #2 #2 Imbalanced .900 .900 

LR #2 #3 Imbalanced .715 .709 

LR #5 #2 Imbalanced .902 .901 

LR #10 #2 Imbalanced .906 .902 

CART #2 #2 Imbalanced .903 .903 

CART #2 #2 Balanced .740 .735 

CART #2 #3 Imbalanced .747 .747 

CART #2 #3 Balanced .626 .626 

CART #5 #2 Imbalanced .907 .908 

CART  #5 #3 Imbalanced .772 .772 

CART #10 #2 Imbalanced .913 .910 

 

A box plot for overall mean rccA by level of correlation is provided as Figure 20. 

Overall mean rccA was higher at the low level of correlation.   
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Figure 20 

Box-plot for rccA by Level of Correlation 

Effect of Number of Predictor Variables in rccA 

The effect of NPV on rccA was significant and large in size (𝜂e" = .683). Table 

35 presents the overall mean rccA by NPV. 

Table 35.  

Overall Mean rccA by Number of Predictor Variables 

NPV Mean 
rccA 

#2 .649 

#5 .695 

#10 .737 
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With a higher number of predictor variables, the overall mean rccA was higher. 

However, in some conditions the effect of number of predictor variables was ignorable; 

they are presented in Table 36. In every binary imbalanced case, the effect of number of 

predictor variables was ignorable.  

Table 36.  

Conditions in Which the Effect of NPV on rccA was Trivial 

Method Corr GN GSR NPV #2 
rccA 

   NPV #5 
    rccA 

  NPV #10 
   rccA 

LDA .2 #2 Imbalanced .900 .902    .906 

LDA .5 #2 Imbalanced .900 .901 .902 

LR .2 #2 Imbalanced .900 .902 .906 

LR .5 #2 Imbalanced .900 .901 .902 

CART .2 #2 Imbalanced .913 .908 .903 

CART .5 #2 Imbalanced .910 .907 .903 

 

While the rccA values in Table 36 showed that the prediction performances of the 

methods were very high for the binary imbalanced cases, it should be noted that the 

prediction performance of the methods were actually poor in these conditions. In most 

cases, the observations from the largest group were predicted correctly and the 

observations from the smallest were predicted to be in the largest group. One can predict 

with 90% accuracy without employing any classification technique just by assuming all 

the observations belong to the larger group. Therefore, the methods did not improve the 

prediction accuracy for the binary imbalanced cases.  
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A box plot for rccA by number of predictor variables is presented as Figure 21. A 

higher rccA at a higher number of predictor variables was observed.  

 

 
 
Figure 21 

Box-plot for rccA by Number of Predictor Variables 

Effect of Number of Groups in rccA 

The effect of group numbers on rccA was significant and large in size (𝜂e" =

.907).	 Table 37 presents the overall mean rccA by GN. 
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Table 37. 

Overall Mean rccA by Group Number 

GN Mean 
rccA 

#2 .800 

#3 .658 

#4 .622 

 

The mean rccA when there were two groups was 14.2% higher than the case with 

three groups and 17.8% higher than the case with four groups. While in general, mean 

rccA for the cases with two groups was higher than with three or four groups, some 

results differed (Table 38). Cases where mean rccA for the four-group case was higher 

than for three-group case or there were trivial differences are presented in Table 39.   

Table 38. 

Conditions in which Four Groups had the Highest Mean rccA 

Method Corr NPV GSR 

GN #2 
mean 
rccA 

GN #3 
mean 
rccA 

GN #4 
mean 
rccA 

LDA .2 #10 Balanced .715 .609 .799 

LR .2 #10 Balanced .718 .681 .833 
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Table 39.  

Conditions with Trivial Differences by Level of Group Number and Cases with Four 
Groups rccA Higher than Three Group rccA 
 

Method Corr NPV GSR 

GN #2 
mean 
rccA 

GN #3 
mean 
rccA 

GN #4 
mean 
rccA 

LDA .2 #2 Balanced .633 .412 .414 

LDA .2 #5 Balanced .682 .518 .587 

LDA .2 #10 Imbalanced .906 .770 .790 

LDA .5 #5 Balanced .642 .426 .431 

LDA .5 #10 Balanced .661 .456 .478 

LR .2 #5 Balanced .682 .606 .625 

LR .2 #10 Imbalanced .906 .773 .808 

 

Figure 21 presents means rccA when there were two, three, or four groups. It is 

observed that in general, at lower levels of GN, rccA was higher.  
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Figure 22 

Box-plot for rccA by Level of Group Number 

Effect of Group Size Ratio in rccA 

The group size ratio effect on rccA was significant and large (𝜂e" = .914). Table 

40 presents the overall mean rccA by level of GSR.  

Table 40.  

Mean rccA by Level of GSR 

GSR Mean 
rccA 

Imbalanced .774 

Balanced .613 
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The imbalanced cases were predicted with 16.1% better accuracy.  While in 

almost every case the imbalanced cases were predicted better than the balanced ones, in 

two conditions the balanced case was predicted better and they are presented in Table 41.  

Table 41.  

Conditions in Which Balanced Data was Predicted Better than Imbalanced Data  

Method Corr NPV GN 

GSR 
Imbalanced 
mean rccA 

GSR 
Balanced 

mean rccA 
LDA .2 #10 #4 .790 .799 

LR .2 #10 #4 .808 .833 

 

Figure 23 presents means rccA for the cases when the groups in dependent 

variable were imbalanced and balanced. In general, the cases with imbalanced group 

sizes were predicted with higher accuracy.  

 
 
Figure 23 

Box-plot for rccA by Level of Group Size Ratio 
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Results for rccS 

	 As prediction of all groups is important, the prediction of the smallest group in 

terms of sample size may be equally important when data are imbalanced. For example, if 

we wish to predict school completion for students who come from the most 

underrepresented minority group in a school district, it is important to accurately identify 

the ratio of the underrepresented student group in terms of whole student population in 

the district and know that prediction of completion for the small group might be difficult. 

Therefore, in this section accuracy of the smallest group prediction (rccS) is reported just 

for the cases when data were imbalanced in terms of groups’ sample sizes. Therefore, the 

condition GSR was dropped for rccS, resulting in analysis of the effects of method, Corr, 

NPV, and GN.  

Overview 

Based on the factorial ANOVA results, all the interaction and main effects were 

statistically significant (p <. 001). Moreover, the main effects Corr (𝜂e" = .107), 

NPV(𝜂e" = .25) and GN (𝜂e" = .637) were greater than medium in size so they had 

meaningful effects on rccS. The method effect (𝜂e" = .079) and all the interactions were 

statistically significant but smaller than medium in effect size. The overall factorial 

ANOVA model was statistically significant and had a meaningful partial eta squared 

value (𝑝 < .001, 𝜂e" = .712) for the outcome variable rccS.  

While the method effect was the main focus of this study and the partial eta 

square for it was close to medium in size, in addition to the other main effects, results for 
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the method effect were also reported. Results for the interaction effects are not reported. 

Details of the overall factorial ANOVA results for rccS are provided in Table 42. 

Table 42.  

ANOVA Summary Table for the Effects of Method, Corr, NPV, and GN on rccS 

Source df F      p 
  Partial Eta   
Squared (𝜼𝒑𝟐)   

Method 2 2319.797 <.001 .079 
Corr 1 6434.903 <.001 .107 
NPV 2 9079.160 <.001 .252 
GN 2 47265.025 <.001 .637 
Method * Corr 2 471.969 <.001 .017 
Method * NPV 4 72.635 <.001 .005 
Method * GN 4 426.726 <.001 .031 
Corr * NPV 2 805.290 <.001 .029 
Corr * GN 2 654.058 <.001 .024 
NPV * GN 4 359.320 <.001 .026 
Method * Corr * NPV 4 71.864 <.001 .005 
Method * Corr * GN 4 130.099 <.001 .010 
Method * NPV * GN 8 189.364 <.001 .027 
Corr * NPV * GN 4 56.785 <.001 .004 
Method * Corr * NPV * GN 8 29.854 <.001 .004 
Error 53946      
Total 53999       
Note: Method = Methods (LDA, LR, CART); Corr = correlation levels (.2, .5); NPV 
= Number of the predictor variables (2,5,10); GN = Number of groups in dependent 
variable (2,3,4). 

Effect of Method in rccS 

The method effect on rccS was significant and but the effect was not higher than 

medium in size (𝜂e" = .079). According to results, LDA with the .291 of rccS showed the 

overall lowest performance, LR with .302 rccS was the second, and CART was the best 

overall performing method with .38 rccS.  

Table 43 presents the overall mean rccS for the methods, LDA, LR, and CART.  
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Table 43.  

Overall Mean rccS of LDA, LR, and CART 

 

 

While the overall results showed that CART was the best performing method for 

smallest group membership prediction of the three methods evaluated in this research 

project, it should be noted that the superiority of CART was not be the case for all the 

conditions. Of 18 controlled conditions, in some conditions LR showed higher 

performance than CART and LDA and these conditions are presented in Table 44. In all 

other conditions, CART showed at least more than 1% better performance than LDA and 

LR in terms of mean rccS. It was noticeable that the conditions in which LR performed 

better than CART were the cases when there were a high number of predictor variables, 

group numbers, and low correlations between predictor variables.  

 

 

 

 

 

 

 

Method Mean 
rccS 

LDA .291 

LR .302 

CART .380 
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Table 44. 

Conditions in Which LR Performs Better Than Other Conditions in rccS  

Corr NPV GN LDA 
rccS 

LR 
rccS 

CART 
rccS 

.2 #5 #3 .392 .417 .382 

.2 #5 #4 .623 .642 .601 

.2 #10 #3 .533 .561 .525 

.2 #10 #4 .636 .828 .781 

 

A box plot for overall mean rccS by method is presented in Figure 24. Similar to 

rccA results, while overall comparable performance between LDA and LR was observed, 

CART had a superior overall performance.  

 
Figure 24 

Box-plot for rccS by Method 
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Effect of Correlation in rccS 

The correlation effect on rccS was significant and greater than medium in size 

(𝜂e" = .107). Table 45 presents the overall mean rccS by level of correlation, .2 and .5.  

Table 45.  

Overall Mean rccS Values for Levels of Correlation 

Corr Mean 
rccS 

.2 .371 

.5 .278 

 

There was a 9.3% difference between the levels of correlation in rccS. In general, 

rccS values were higher at the low level of correlation. However, in some controlled 

conditions, the difference was trivial (less than 1%) and these are presented in Table 46.  

Table 46.  

Conditions in which the Difference between Correlation Levels in Mean rccS was Trivial  

Methods NPV GN Corr .2 
rccS 

   Corr .5 
rccS 

LDA #2 #2 .015 .010 

LR #2 #2 .016 .010 

CART #2 #3 .297 .297 

CART #5 #3 .382 .382 

 

A box plot for mean rccS value by level of correlation is provided as Figure 25. Overall 

mean rccS was higher at the low level of correlation.   
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Figure 25 

Box-plot for rccS by Levels of Correlation 

Effect of Number of Predictor Variables in rccS 

The effect of NPV on rccA was significant and large in size (𝜂e" = .252). Table 

47 presents the overall mean rccS by NPV. 

Table 47.  

Overall Mean rccS by Number of Predictor Variables 

NPV Mean 
rccS 

#2 .226 

#5 .329 

#10 .418 

 

With a higher number of predictor variables, the overall mean rccS was higher. 

Between every consecutive level of NPV, the difference in rccS was more than 1%. A 
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box plot for rccS at the different numbers of predictor variables is presented as Figure 26. 

Higher rccS at a higher number of predictor variables was observed. 

 
Figure 26 

Box-plot for rccS by Number of Predictor Variables 

Effect of Number of Groups in rccS 

The effect of group number on rccS was significant and large in size (𝜂e" =

.637).	Table 48 presents the overall mean rccS by GN. 

Table 48.  

Overall Mean rccA by Group Number 

GN Mean 
rccS 

#2 .099 

#3 .335 

#4 .539 
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The mean rccS when there were two groups was 44% higher than the case with 

three groups and 20.4% higher than the case with four groups. Increasing number of 

groups resulted in an increase in rccS and differences between every consecutive levels 

of GN were more than 1%. Figure 27 presents means rccS values for the cases when 

there were two, three, or four groups. 

 
 
Figure 27 

Box-plot for rccS by Group Numbers 

Comparison between Results of rccA and rccS 

One hundred and eight conditions were evaluated for mean rccA and fifty-four 

conditions were evaluated for mean rccS (as the balanced cases were dropped for rccS). 

The mean rccA ranged from .374 to .913 which means that in the condition in which 

mean rccA was highest, 91.3% of the observations were predicted correctly and in the 

condition in which mean rccA was the lowest, just 37.4% of the observations were 
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predicted correctly. On the other hand, the mean rccS values ranged from .010 to .828 

and higher variation in rccS than rccA was observed.  

 One of the important differences between rccA and rccS was the overall mean of 

rccA and rccS values. While the overall mean for rccA was .694, the overall mean rccS 

was .324. Thus, there was a 47% difference between prediction accuracy for all groups 

and for the smallest group. That implies that the methods have weaker abilities to predict 

smaller groups.  

 While CART was the overall best performing method in rccA and rccS, in some 

cases LR performed better than CART or there were trivial differences between these 

methods for both outcome measures. Especially in cases where correlations between 

predictor variables were low, and there were a higher number of predictor variables and 

group numbers, LR had comparable or higher performances than CART for both 

outcome measures. Overall performance differences in rccA between CART and LR was 

6.4% and in rccS it was 7.8%. Moreover, overall performance differences in rccA 

between CART and LDA was 9% and in rccS it was 8.9%.  

 The effect size for method was high for rccA, but smaller than medium in size for 

rccS in terms of partial eta squared. But the methods had greater performance differences 

on rccS than rccA (the percentages for prediction accuracy), in general. This may be 

because GSR was included as a factor for rccA but not for rccS. Moreover, having 

different baselines for rccA and rccS might have affected the main effect of method in 

terms of partial eta squared. 

 Both rccA and rccS had higher values at the low compared to the medium level of 

correlation. For both outcome measures, the effect of correlation was lower for cases 
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where there were fewer predictor variables. The overall difference in rccA between the 

cases when the correlation was .2 and .5 was 4.9% and the difference was 9.3% in rccS. 

Therefore, a greater impact of NPV was observed for rccS than rccA.  

 Increasing the number of predictor variables yielded an increase in rccA and rccS. 

However, the contribution of additional predictor variables was more effective for rccS. 

For example, the difference in mean rccS between the case where there were ten 

predictor variables and two predictor variables was 19.2% while the difference in rccA 

was 8.8%. Therefore, the impact of number of predictor variables was greater in rccS.  

 One of the most noticeable differences between effects on rccA and rccS was in 

terms of group number. While at higher group numbers mean rccA were lower, mean 

rccS values were higher. Therefore, the effect of GN had a different direction of impact 

on rccA and rccS.  

 Figure 28 is a graphical representation of reactions of rccA and rccS for an 

increase in number of predictor variables, group number, and correlation between 

predictor variables. 

         NPV   rccA  rccS                 GN    rccA  rccS                Corr   rccA  rccS 

 

  

  

 

Figure 28 

Reactions of rccA and rccS to Increases in NPV, GN, and Corr  
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For a more detailed comparison of data conditions and methods, ordered mean 

rccA and rccS values with their conditions are presented in Appendixes B and C.	
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Chapter Four 

 
 Discussion  

 This chapter summarizes the primary findings, provides an integration of results 

of this with the literature, addresses the limitations of this study, and provides 

recommendations for applied researchers and for future study.  

Primary Findings Summary 

In this study, performances of group membership techniques were assessed. 

CART was found to have an overall better performance for predicting group membership 

than both LDA and LR. While two different measures of outcomes were used to evaluate 

the performances of the methods, CART still showed higher performance rates in most of 

the controlled data conditions for this study. However, in certain instances of combined 

conditions (a higher number of predictor variables, group number, and low correlations), 

LR showed better performance rates than CART. In fact, change in certain conditions 

(NPV, GN, Corr) led to faster performance improvement for LR than for CART. 

Therefore, when the study data conditions include having a higher number of predictor 

variables (10 or more) and number of groups (three, four, or more) in addition to low 

correlations among predictor variables, superiority of LR might be expected. While the 

focus of this study was a performance comparison of the classification methods LDA, 
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LR, and CART under controlled conditions, influences of the controlled conditions were 

also examined. A discussion regarding the influence of the conditions follows.  

All controlled conditions in this study had an influence on prediction accuracy. 

Moreover, based on partial eta squares, group size ratio was the most influential factor for 

the prediction of all groups (rccA). The second most influential factor was the group 

number. Following this was method, number of predictor variables, and level of 

correlation in that order. Dropping the group size ratio for rccS, group number was the 

most influential factor. Number of predictor variables was the second most influential 

factor and correlation was the third most influential factor. Moreover, the method effect 

was smaller than medium in size for prediction of small group classification accuracy, but 

the partial eta squared was very close to a medium effect. Therefore, the importance of 

the method was different for rccA and rccS in terms of the importance rank. But, this 

should be considered with the reminder that one factor (GSR) was not included for the 

outcome measure rccS. This could potentially affect the rank order of condition 

importance. Moreover, this generalization might be specific to the design of this study 

and in some other designs the rank order of conditions may be different.  

Showing the highest influence among all the conditions for rccA, group size ratio 

is an important element to discuss. The prediction accuracy for the balanced and 

imbalanced cases were meaningfully different in favor of the imbalanced case. In general, 

specifically for the binary case that includes imbalanced data, the focus should be 

prediction accuracy of the smaller group rather than prediction accuracy of all groups. 

For example, assuming imbalanced data with a group size ratio of 10:90, without 

applying any statistical procedures, if the researcher makes a decision that all the 
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observations belong to the larger group, s/he makes a prediction with 90% accuracy for 

the whole group, but 0% percent accuracy for the smaller group. Thus, accuracy of the 

smaller group is important to be able to evaluate grouping factors in classification studies. 

This study showed that the performance difference between the methods for imbalanced 

and balanced cases were noticeably different from each other. For instance, in the 

imbalanced case CART performed about 3% better than LR on rccA, but the difference 

was about 10% for the balanced case.  

The factor, group number, had different implications for prediction of all groups 

and prediction of the smallest group. While increasing group numbers yielded lower 

classification accuracy for all groups, prediction accuracy for the smaller group increased 

with higher group numbers. While increasing group numbers from two to four yielded a 

17.8% decrease in prediction accuracy of all groups, it led to a 44% increase in prediction 

accuracy for the smallest group in terms of sample size. Therefore, a great impact of 

number of groups on small group prediction accuracy was noted.  

Increasing the number of predictor variables also yielded higher prediction rates 

for all groups and for the smallest group. The interaction of method and number of 

predictor variables was smaller than medium in effect size. On average, the contribution 

of each additional predictor variable by increasing the number or predictor variables from 

two to ten for prediction of all groups was about 1.25% for LDA and LR, and about 0.8% 

for CART. On the other hand, contribution of each additional predictor variable for 

prediction of the smallest group with LDA was around 2.3%, with LR around 2%, and 

with CART was around 1.4%, on average. Thus, it was concluded that the influence of 

additional predictor variables is greater for prediction accuracy of the smallest group. 
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Prediction accuracy increased more for LDA and LR with additional predictor variables 

than for CART.  

Correlation levels between predictors had also a meaningful effect on prediction 

accuracy. As expected, at the low level of correlation the prediction accuracies were 

higher. The rationale is that correlated variables contain similar information, so that the 

contribution of additional correlated variables is limited while a less correlated variable 

has the potential to contribute more unique information. The change between correlation 

levels from .5 to .2 led a higher percentage improvement in prediction accuracy of the 

small group than prediction accuracy of all groups.  

It was concluded that all the controlled conditions had a greater impact on small 

group prediction than on overall prediction accuracy in terms of the percentage of 

correctly predicted observations.  

  With the rule of thumb used in this study for a medium effect, some three-way 

and two-way interactions were found to have meaningful effects on prediction accuracies 

for all groups and these results were reported in Chapter Three. On the other hand, no 

interactions were found to have meaningful effect on the prediction accuracy of small 

group prediction. However, while the criterion for a meaningful effect was set as a 

medium effect size, effects between small and medium could be evaluated. If one wishes 

to have smaller rule of thumb for a meaningful effect, the interactions method x NPV x 

GN, NPV x GN, Corr x GN, Corr x NPV, and method x GN could be evaluated as 

meaningful.  

 To address the research questions, in this study significant and meaningful effects 

of the studied conditions (correlation, number of predictor variables, groups numbers, and 
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group size ratio) were observed on rccA and rccS. Moreover, meaningful and significant 

interactions of the conditions were observed and reported. While in most of the cases 

(GN=2,3; NPN<10), CART performed better than the other two methods, in some 

conditions (GN=4, NPV=10), LR performed better than the other two methods.   

Implications for the Literature  

Classification techniques and particularly group membership techniques have 

been useful tools in a variety of research areas. Moreover, while in social sciences and 

education, applications of traditional classification techniques such as LDA and LR are 

very common, applications of newer techniques such as CART have been limited.  

 As many techniques have been developed to predict group membership, interest 

about which techniques result in better prediction arose. In many applied research studies 

which focus on prediction of categories, application to several classification techniques at 

the same time is common. While some of these studies also provided comparisons 

between accuracies of the techniques, the generalization of the comparison results could 

not go beyond the content of the research. Therefore, instead of using real data from 

content areas, some researchers simulated data to compare the effectiveness of 

techniques. An important advantage of simulated data is that the researcher can control 

conditions. Thus, using simulated data, some studies compared performances of methods 

under controlled conditions such as sample size (Bolin & Finch, 2014; Finch et al., 2014; 

Holden et al., 2011), effect size (Finch & Schneider, 2006; Holden et al., 2011), 

distribution of variables (Harrell & Lee, 1985; Pai et al., 2012a, b), group size ratio (Lei 

& Koehly, 2003), and homogeneity of variance-covariance (Fan & Wang, 1998; Kiang, 

2003). Under these conditions, though with some conflicting results, in general 
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comparable performances of LR and LDA were reported (Dey & Austin, 1993; Hess et 

al., 2011). Moreover, studies showing higher performance of LR than LDA (Baron, 

1991) or studies showing better performances of LDA than LR (Williams, 1999) are 

available in the literature. On the other hand, in simulation studies, CART was generally 

found to perform better than LDA and LR (Finch et al., 2014; Holden et al., 2011).  

 In addition to conditions which were studied well, this study evaluated the 

performances of the methods under different fundamental conditions. Consistent with the 

existent studies on the performance evaluation of the methods, CART showed an overall 

higher performance than LDA and LR. However, a new result emerged from this study 

that the condition with a high number of predictor variables, group number, and low 

correlations, LR may perform better than CART and LDA. Moreover, greater 

improvement in prediction accuracy for LDA under certain conditions was observed.  

In the previous studies, when comparing LDA with LR, there were studies 

showing that in general LR performs better than LDA or the two are comparable. 

Especially in the case where the assumptions for LDA were satisfied, researchers expect 

similar performances of these two methods (Hastie et al., 2013). The results from the 

current study also showed that the performances of these two methods were comparable 

in the case when data are multivariate normal. On the other hand, it should be noted that 

even though the difference was not large, in almost every case LR performed better, 

which was also consistent with the extant literature. In the studies which compared 

CART with LDA or LR, the general conclusion of the studies showed superiority of 

CART and the current study also showed that in most of the controlled conditions CART 

performed better than the two other methods. On the other hand, in some controlled 
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conditions LR had a better performance than CART. As mentioned above, the present 

study showed under which data conditions the methods have comparable performance 

and in which the performances differed.  

 Consistent with previous research, this study found that performance of the 

methods for overall prediction accuracy decreased with an increase in group number 

(Finch & Schneider, 2007; Pohar et al.,2004). Moreover, this study found that prediction 

accuracy for the groups which were the smallest was higher when there were more 

groups. While few studies investigated the effect of number of predictor variables, the 

results of this study agreed with Finch and Schneider (2007) that additional predictor 

variables increase the accuracy of group membership prediction.  

 Group size ratio was also found to have a meaningful effect on prediction 

accuracy and prediction accuracy for the whole group can be expected to increase by 

increasing inequality in groups’ sample size proportions. Moreover, a large difference 

between prediction accuracy for the smaller group and for the whole group was found as 

most of smallest group prediction accuracies in this study were less than 50% and most of 

the whole group prediction accuracies were higher than 50%.  

  Similar to previous findings, correlation had an effect on classification accuracy 

(Kiang, 2003). Moreover, findings of this study resonate with the comment Pai et al. 

(2012) made regarding ineffectiveness of multicollinear variables, as at higher levels of 

correlation the contributions of additional variables were smaller. As the highest level of 

correlations for this study was .5, at even higher levels less or trivial contributions may be 

expected. This study also found that the effect of correlation was less for CART than LR 

and LDA. 
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While most of the existing studies evaluated performances of the methods based 

on prediction accuracy for all groups, in this study prediction accuracies for smallest 

group were also evaluated and different findings for the two outcome measures were 

obtained. For the instances of highly imbalanced data, very high classification accuracies 

for all groups and very low prediction accuracies for smaller groups were observed. 

Therefore, this controversial situation should be noted when evaluating performance of 

methods, particularly for imbalanced data.  

Limitations 

  Using a fixed standardized mean difference as the degree of consecutive group 

separation for different group numbers was a limitation of this study. For instance, for the 

binary case, the difference between two groups was .5 in terms of the standardized group 

difference, but for the case when there were four groups, the difference between the 

largest and smallest group in size was 1.5. Therefore, for the case when there were more 

groups, the group separation between the largest group and the smallest group were 

higher than for the binary case. Therefore, the result for rccS, which was that rccS was 

higher for the case with more groups may not be generalizable to all conditions since 

degree of group separation is an important factor in obtaining higher rccA and rccS. 

Moreover, since the group differences were fixed, the effect of differential variable 

importance on group separation was not included in this study as level of variable 

correlation was set to be equal for all variables. Finally, different levels of group 

separation such as standardized mean differences less than or more than .5 (medium 

effect size) were not included in this study.  
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 Another limitation of this study was regarding the ratios for imbalanced data. 

While in this study, the percentage of the smallest group in terms of sample size was 

10%, smaller or higher ratios were not used in this study. Moreover, with multiple group 

numbers, the ratios were fixed and other scenarios with different ratios were not included. 

Furthermore, while negative correlations between predictor variables are common in 

application, negative correlations were not included in this study.  

Due to the complexity of having many controlled conditions, the data were 

simulated under an assumption of multivariate normality for each category, and this is 

another limitation of this study. Moreover, conditions such as having categorical 

predictor variables, multimodality, different sample sizes for all groups, and 

heterogeneity of variance-covariance matrices were other conditions not included in this 

study. 

Recommendations for Applied Researchers 

 Recommendations of this study for applied researchers can be categorized into 

two themes. The first theme is regarding choice of optimal method for different 

conditions and the second is how to increase prediction accuracy.  

 It is recommended that, in general, practitioners apply CART rather than LDA 

and LR for their data analysis when the number of predictor variables is less than 10, the 

number of groups is less than four, and medium or higher level of correlations are found 

between predictor variables. The methods may perform similarly in the case where there 

are two groups in the dependent variable and the group size ratio is highly imbalanced, so 

CART, LDA, or LR would be appropriate. On the other hand, under the conditions with 

10 or more predictor variables, 3, 4, or more groups, and generally low correlations 
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between predictor variables, LR might be a better alternative. LDA showed the worst 

performance under almost every controlled data condition and it had the lowest overall 

performance, it is not recommended to apply LDA unless the researchers have a 

particular rationale for its use.  

If researchers would like to increase the whole groups’ prediction accuracy, 

having more variables and fewer groups is suggested. If there is a concern about 

prediction accuracy for the small group, including more predictor variables with low 

correlations is recommended. Moreover, additional group numbers might increase the 

smaller group prediction accuracy. (On the other hand, increasing the number of the 

groups for the case when there are more than four groups may not increase prediction 

accuracy for small group as these cases were not investigated in this study.) Moreover, 

balancing techniques such as increasing the sample size of small group with repetitions or 

applying propensity score analysis techniques might increase accuracy of small group 

prediction. Finally, as in the previous studies indicated, before applying classification 

methods, decisions regarding prior probabilities and the cut score for LDA and LR are 

required.   

In general, it is suggested that applied researchers use CART in cases when there 

are two or three groups and there are fewer than 10 predictor variables for better results 

for rccA and rccS. On the other hand, when there four or more groups and more than 10 

predictor variables with low correlations, LR might be a better alternative.  

It is also recommended that courses on regression or multivariate statistics include 

CART in their content coverage as it was found that in many data conditions it performed 
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better than the classical group membership methods (LDA, LR) traditionally taught in 

statistics courses. 

Recommendations for Future Study 

For better evaluation of prediction of group membership phenomena, applied 

researchers need to know which methods performs better under different conditions and 

which conditions influence the accuracies of group membership prediction. While effects 

of some conditions are well studied, some conditions and their interactions with other 

conditions have not been studied widely. Therefore, some conditions which have not 

been studied widely such as predictor variable correlation, number of predictor variables, 

group number, and group size ratio and their interactions were evaluated in this study for 

whole group and small group prediction accuracies. However, the interplay of 

correlation, group number, number of predictor variables, and group size ratio with some 

other important data conditions such as predictor variables’ distributions, sample size, 

effect size, and homogeneity of variance-covariance matrices should be studied in future 

research projects.  

As this research was limited to a multivariate normal distribution for each 

category, a fixed sample size, and a fixed degree of group separation, effect of the 

conditions controlled in this study can be evaluated under different sample sizes, different 

versions of non-normal data, and different degrees of group separation. Moreover, future 

studies can use different levels of the data conditions evaluated in this study. Particularly, 

the number of predictors of 10 or more, the case when group number is more than four, 

and lower levels of correlation can be examined to investigate if LDA or LR perform 

better than CART. In this study, an increased number of predictor variables and group 
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numbers at low correlation levels resulted in the superiority of LR or comparable 

performance between LR and CART.  

 To the effect of imbalanced data on prediction accuracy, different group size 

ratios other than the ones evaluated in this study may be explored in a future study. 

Additionally, the effect of different levels of correlations and negative correlations and 

the cases with a mixture of positive and negative correlations should be studied.  

  As one limitation of this study was that as group number increased, group 

separation between the smaller and larger groups increased, the findings regarding 

increasing group numbers resulting in a decrease in rccA and decrease in rccS can be 

tested for the cases which fix the degree of group separation between the largest and 

smallest groups for different numbers of groups.  

As found in this study and previous studies, small group predictions rates are 

smaller than larger group prediction rates. Therefore, improvement of statistical 

techniques or procedures which increase prediction of small group are encourage for 

researchers who work on the methodological development of statistical techniques. 

Moreover, application of data balancing techniques such as propensity score analysis and 

improvement of classification methods for imbalanced data after applying balancing 

techniques with simulated data can be explored in a future study.  

Due to limitations of LDA, categorical variables were not included in this study. 

A future study can test the effectiveness of LR, CART, loglinear analysis, and other 

classification techniques which are not limited to continuous variables. Moreover, the 

dependent variable in this study was categorical; a future study can test performances of 

the methods for ordinal dependent variables.  
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Some methods might show better performances in specific content areas. Thus, 

researchers in the content areas can study which classification techniques perform better 

in their area. Specifically, it is encouraged that careful analyses of imbalanced data be 

conducted, as in some fields the smallest group is the focus of interest. For instance, in 

the social sciences, recognition and understanding of underrepresented populations might 

be more challenging than of populations with higher representation. Therefore, in a group 

membership study, the focus should be the prediction accuracy of underrepresented 

groups rather than all groups. Similar examples in health sciences such as diagnosing an 

illness can be given.  

While this study just investigated LDA, LR, and CART, other classification 

methods such as neural networks, random forests, C5.0, boosting, generalized additive 

models, kth nearest neighbor, quadratic and discriminant analysis, etc. can be evaluated 

under the same controlled conditions in a future study.   

While this study evaluated prediction accuracy, and the methods LDA, LR, and 

CART are also used to make model estimations, a future study should evaluate the 

efficiency of coefficient estimation of the methods under similar conditions.  

Finally, some future studies can use measures other than rccA and rccS to 

evaluate performance of the methods. For example, Pohar et al. (2004) used indexes they 

named as C, B, and Q indexes to compare performances of LR and LDA. Moreover, due 

to complexity of simulated data with multiple iterations and the cases of multiple groups, 

receiver operating characteristic curves (ROC curves) were not applied in this study to 

evaluate method performance and a future study can improve the methodologies to apply 

ROC curves in such situations.  
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Appendix A 

Simulation Code for Some Conditions of This Study 

Note: Due to the length of the simulation process, only the code for several 

conditions is presented here. A complete version of the code is available upon request 

from the author. 

 

############################################### 

#Condition	8	
#Corr=.2(#1),	NPV	=	2(#1),	GN	=	3(#2),	GSR	=	imbalanced(#1),	Method	=	

LR(#2)		
	
require(MASS)	
require	(mvtnorm)	
require(nnet)	
require(rpart)	
require(rpart.plot)	
	
set.seed(1982)	
iter	<-1000	
rates	<-	matrix(nrow=iter,	ncol=3)	
	
for	(i	in	1:iter)	
{	
		mu1=c(-.8,-.8)	
		mu2=c(-.3,-.3)	
		mu3=c(.2,.2)	
			
		sigma=matrix(c(	1,.111,	
																																				.111,	1),2,2)	
			
		pvar1	=	mvrnorm(20,	mu1,	sigma)	
		pvar2	=	mvrnorm(40,	mu2,	sigma)	
		pvar3	=	mvrnorm(140,	mu3,	sigma)	
			
		group1	<-	c(rep("Group	1",1*20))	
		group2	<-	c(rep("Group	2",1*40))	
		group3	<-	c(rep("Group	3",1*140))	
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		outcome1	<-data.frame	(group1,	pvar1)	
		outcome2	<-data.frame	(group2,	pvar2)	
		outcome3	<-data.frame	(group3,	pvar3)	
			
		colnames(outcome1)[1]	<-	"group"	
		colnames(outcome2)[1]	<-	"group"	
		colnames(outcome3)[1]	<-	"group"	
			
		nsdataset	<-	rbind(	outcome1,	outcome2,	outcome3)	
		g	<-	runif(nrow(nsdataset))	
		dataset	<-nsdataset[order(g),]	
			
		#head(dataset)	
		#tail	(dataset)	
		#summary(dataset)	
		newdataset	<-	dataset[c(2:3)]	
		#cor(newdataset)	
		a	<-	mean(cor(newdataset))	
		meancorr	<-	((4*a)	-	2)/2	
		#print(meancorr)	
			
		#Logistic	Regression	
			
		mymodel	<-	multinom(dataset$group~	dataset$X1+dataset$X2)	
			
		#summary(mymodel)	
		#predict(mymodel,	dataset)	
		#predict(mymodel,	dataset,	type="prob")	
			
		cm	<-	table	(predict(mymodel),dataset$group)	
		rccA	<-sum(diag(cm))/sum(cm)	
		rccS	<-cm[1,1]/20	#use	this	for	imbalanced	cases	
			
		rates[i,1]	<-rccA	
		rates[i,2]	<-rccS	
		rates[i,3]	<-meancorr	
}	
	
#Dataset	for	Factorial	ANOVA	

	
Cond	<-	08	
Method	<-	2	
Corr	<-	1	
NPV	<-	1	
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GN	<-	2	
GSR	<-	1	
	
C08	<-data.frame(Cond,	Method,	Corr,	NPV,	GN,	GSR,	rates)	
C08	<-rename(C08,	c(X1="rccA",	X2="rccS",	X3="Corr")	
############################################### 

#Condition	88	
#Corr	=	.5(#2),	NPV	=	5(#2),	GN	=	4(#3),	GSR	=	balanced(#2),	Method	=	

LDA(#1)		
	
require(MASS)	
require	(mvtnorm)	
require(nnet)	
require(rpart)	
require(rpart.plot)	

	
set.seed(1982)	
iter	<-1000	
rates	<-	matrix(nrow=iter,	ncol=3)	
	
for	(i	in	1:iter)	
{	
		mu1=c(-.75,-.75,	-.75,	-.75,	-.75)	
		mu2=c(-.25,-.25,	-.25,	-.25,	-.25)	
		mu3=c(.25,.25,	.25,	.25,	.25)	
		mu4=c(.75,.75,	.75,	.75,	.75)	
			
		sigma=matrix(c(	1,.345,.345,.345,.345,	
																		 								.345,	1,.345,.345,.345,	
																																				.345,.345,1,.345,.345,	
																																				.345,.345,.345,1,.345,	
																																				.345,.345,.345,.345,1),5,5)	
			
		pvar1	=	mvrnorm(50,	mu1,	sigma)	
		pvar2	=	mvrnorm(50,	mu2,	sigma)	
		pvar3	=	mvrnorm(50,	mu3,	sigma)	
		pvar4	=	mvrnorm(50,	mu4,	sigma)	
			
		group1	<-	c(rep("Group	1",1*50))	
		group2	<-	c(rep("Group	2",1*50))	
		group3	<-	c(rep("Group	3",1*50))	
		group4	<-	c(rep("Group	4",1*50))	
			
		outcome1	<-data.frame	(group1,	pvar1)	
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		outcome2	<-data.frame	(group2,	pvar2)	
		outcome3	<-data.frame	(group3,	pvar3)	
		outcome4	<-data.frame	(group4,	pvar4)	
			
		colnames(outcome1)[1]	<-	"group"	
		colnames(outcome2)[1]	<-	"group"	
		colnames(outcome3)[1]	<-	"group"	
		colnames(outcome4)[1]	<-	"group"	
			
		nsdataset	<-	rbind(	outcome1,	outcome2,	outcome3,	outcome4)	
		g	<-	runif(nrow(nsdataset))	
		dataset	<-nsdataset[order(g),]	
			
		#head(dataset)	
		#tail	(dataset)	
		#summary(dataset)	
		newdataset	<-	dataset[c(2:6)]	
		#cor(newdataset)	
		a	<-	mean(cor(newdataset))	
		meancorr	<-	((25*a)	-	5)/20	
		#print(meancorr)	
			
		#Linear	Discriminant	Analysis	
			
		mymodel	<-	lda(dataset$group	~	
dataset$X1+dataset$X2+dataset$X3+dataset$X4	+dataset$X5,	prior	
=c(.1,.15,.2,.55))	
			
		#summary(mymodel)	
		#predict(mymodel,	dataset)	
		#predict(mymodel,	dataset,	type="prob")	
			
		cm	<-	table	(predict(mymodel)$class,dataset$group)	
		rccA	<-sum(diag(cm))/sum(cm)	
					
		rates[i,1]	<-rccA	
		rates[i,2]	<-rccS	
		rates[i,3]	<-meancorr	
}	
#Dataset	for	Factorial	ANOVA	
	
Cond	<-	88	
Method	<-	1	
Corr	<-	2	
NPV	<-	2	
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GN	<-	3	
GSR	<-	2	
	
C88	<-data.frame(Cond,	Method,	Corr,	NPV,	GN,	GSR,	rates)	
C88	<-rename(C88,c(X1="rccA",	X2="rccS",	X3="Corr"))	
	
############################################### 

#Condition	96	
#Corr=.5(#2),	NPV	=	10(#3),	GN	=	2(#1),	GSR	=	balanced(#2),	Method	=	
CART(#3)		
	
require(MASS)	
require	(mvtnorm)	
require(nnet)	
require(rpart)	
require(rpart.plot)	
	
set.seed(1982)	
iter	<-1000	
rates	<-	matrix(nrow=iter,	ncol=3)	
	
for	(i	in	1:iter)	
{	
		mu1=c(-.25,-.25,	-.25,	-.25,	-.25,-.25,	-.25,	-.25,	-.25,	-.25)	
		mu2=c(.25,.25,.25,.25,.25,.25,.25,.25,.25,.25)	
			
			
		sigma=matrix(c(	1,.47,.47,.47,.47,.47,.47,.47,.47,.47,	
																		 							.47,	1,.47,.47,.47,.47,.47,.47,.47,.47,	
																			 							.47,.47,1,.47,.47,.47,.47,.47,.47,.47,	
																		 							.47,.47,.47,1,.47,.47,.47,.47,.47,.47,	
																			 							.47,.47,.47,.47,1,.47,.47,.47,.47,.47,	
																		 							.47,.47,.47,.47,.47,1,.47,.47,.47,.47,	
																		 							.47,.47,.47,.47,.47,.47,1,.47,.47,.47,	
																		 							.47,.47,.47,.47,.47,.47,.47,1,.47,.47,	
																		 							.47,.47,.47,.47,.47,.47,.47,.47,1,.47,	
																			 							.47,.47,.47,.47,.47,.47,.47,.47,	.47,1),10,10)	
			
		pvar1	=	mvrnorm(100,	mu1,	sigma)	
		pvar2	=	mvrnorm(100,	mu2,	sigma)	
		
		group1	<-	c(rep("Group	1",1*100))	
		group2	<-	c(rep("Group	2",1*100))	
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		outcome1	<-data.frame	(group1,	pvar1)	
		outcome2	<-data.frame	(group2,	pvar2)	
			
			
		colnames(outcome1)[1]	<-	"group"	
		colnames(outcome2)[1]	<-	"group"	
			
		nsdataset	<-	rbind(outcome1,	outcome2)	
		g	<-	runif(nrow(nsdataset))	
		dataset	<-nsdataset[order(g),]	
					
		#head(dataset)	
		#tail	(dataset)	
		#summary(dataset)	
		newdataset	<-	dataset[c(2:11)]	
		#cor(newdataset)	
		a	<-	mean(cor(newdataset))	
		meancorr	<-	((100*a)	-	10)/90	
		#print(meancorr)	
			
		#CART	
		mymodel	<-	
rpart(dataset$group~dataset$X1+dataset$X2+dataset$X3+dataset$X4	
+dataset$X5+dataset$X6+dataset$X7+dataset$X8+dataset$X9+dataset$X10,	
data=dataset,	method="class")	
			
		#summary(mymodel)	
		cr<-	predict(mymodel,	dataset,	type="class")	
		#predict(mymodel,	dataset,	type="prob")	
			
		cm	<-	table	(cr,dataset$group)	
		rccA	<-sum(diag(cm))/sum(cm)	
	
		rates[i,1]	<-rccA	
		rates[i,2]	<-rccS	
		rates[i,3]	<-meancorr	
}	
#Dataset	for	Factorial	ANOVA	
	
Cond	<-	96	
Method	<-	3	
Corr	<-	2	
NPV	<-	3	
GN	<-	1	
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GSR	<-	2	
	
C96	<-data.frame(Cond,	Method,	Corr,	NPV,	GN,	GSR,	rates)	
C96	<-rename(C96,c(X1="rccA",	X2="rccS",	X3="Corr"))	
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Appendix B 

List of Data Conditions by Ordered Mean rccA Values 

Rank Method Corr NPV GN GSR 
Mean 

rccA 

Condition 

Number 

1 CART 0.2 #10 #2 Imbalanced .913 39 

2 CART 0.5 #10 #2 Imbalanced .910 93 

3 CART 0.2 #5 #2 Imbalanced .908 21 

4 CART 0.5 #5 #2 Imbalanced .907 75 

5 LR 0.2 #10 #2 Imbalanced .906 38 

6 LDA 0.2 #10 #2 Imbalanced .906 37 

7 CART 0.2 #2 #2 Imbalanced .903 3 

8 CART 0.5 #2 #2 Imbalanced .903 57 

9 LR 0.5 #10 #2 Imbalanced .902 92 

10 LDA 0.5 #10 #2 Imbalanced .902 91 

11 LDA 0.2 #5 #2 Imbalanced .902 19 

12 LR 0.2 #5 #2 Imbalanced .902 20 

13 LR 0.5 #5 #2 Imbalanced .901 74 

14 LDA 0.5 #5 #2 Imbalanced .901 73 

15 LR 0.2 #2 #2 Imbalanced .900 2 

16 LDA 0.2 #2 #2 Imbalanced .900 1 

17 LR 0.5 #2 #2 Imbalanced .900 56 

18 LDA 0.5 #2 #2 Imbalanced .900 55 

19 LR 0.2 #10 #4 Balanced .833 53 

20 CART 0.2 #10 #2 Balanced .811 42 

21 LR 0.2 #10 #4 Imbalanced .808 50 

22 CART 0.2 #10 #3 Imbalanced .806 45 

23 LDA 0.2 #10 #4 Balanced .799 52 

24 CART 0.5 #10 #2 Balanced .795 96 

25 LDA 0.2 #10 #4 Imbalanced .790 49 

26 CART 0.5 #10 #3 Imbalanced .787 99 
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27 CART 0.2 #5 #2 Balanced .784 24 

28 LR 0.2 #10 #3 Imbalanced .773 44 

29 CART 0.5 #5 #2 Balanced .772 78 

30 CART 0.2 #5 #3 Imbalanced .772 27 

31 CART 0.5 #5 #3 Imbalanced .772 81 

32 LDA 0.2 #10 #3 Imbalanced .770 43 

33 CART 0.2 #10 #4 Imbalanced .762 51 

34 CART 0.2 #2 #3 Imbalanced .747 9 

35 CART 0.5 #2 #3 Imbalanced .747 63 

36 LR 0.2 #5 #3 Imbalanced .741 26 

37 CART 0.2 #2 #2 Balanced .740 6 

38 CART 0.2 #10 #3 Balanced .740 48 

39 LDA 0.2 #5 #3 Imbalanced .740 25 

40 CART 0.5 #2 #2 Balanced .735 60 

41 LDA 0.5 #10 #3 Imbalanced .733 97 

42 LR 0.5 #10 #3 Imbalanced .731 98 

43 CART 0.2 #5 #4 Imbalanced .728 33 

44 CART 0.2 #10 #4 Balanced .720 54 

45 LR 0.5 #5 #3 Imbalanced .718 80 

46 LDA 0.5 #5 #3 Imbalanced .718 79 

47 LR 0.2 #10 #2 Balanced .718 41 

48 CART 0.5 #10 #4 Imbalanced .717 105 

49 LDA 0.2 #10 #2 Balanced .715 40 

50 LR 0.2 #2 #3 Imbalanced .715 8 

51 LDA 0.2 #2 #3 Imbalanced .714 7 

52 LDA 0.5 #2 #3 Imbalanced .710 61 

53 LR 0.5 #2 #3 Imbalanced .709 62 

54 CART 0.2 #5 #3 Balanced .703 30 

55 CART 0.5 #10 #3 Balanced .701 102 

56 CART 0.5 #5 #4 Imbalanced .695 87 
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57 LR 0.2 #5 #4 Imbalanced .694 32 

58 LDA 0.2 #5 #4 Imbalanced .690 31 

59 LR 0.2 #5 #2 Balanced .682 23 

60 LDA 0.2 #5 #2 Balanced .682 22 

61 LR 0.2 #10 #3 Balanced .681 47 

62 CART 0.5 #5 #3 Balanced .673 84 

63 CART 0.2 #2 #4 Imbalanced .670 15 

64 CART 0.2 #5 #4 Balanced .670 36 

65 LR 0.5 #10 #2 Balanced .663 95 

66 LDA 0.5 #10 #2 Balanced .661 94 

67 CART 0.5 #2 #4 Imbalanced .655 69 

68 CART 0.5 #10 #4 Balanced .655 108 

69 LR 0.5 #10 #4 Imbalanced .644 104 

70 LR 0.5 #5 #2 Balanced .643 77 

71 LDA 0.5 #10 #4 Imbalanced .643 103 

72 LDA 0.5 #5 #2 Balanced .642 76 

73 LR 0.2 #2 #2 Balanced .633 5 

74 LDA 0.2 #2 #2 Balanced .633 4 

75 CART 0.2 #2 #3 Balanced .626 12 

76 CART 0.5 #2 #3 Balanced .626 66 

77 LR 0.2 #5 #4 Balanced .625 35 

78 LDA 0.5 #2 #2 Balanced .619 58 

79 LR 0.5 #2 #2 Balanced .619 59 

80 CART 0.5 #5 #4 Balanced .618 90 

81 LDA 0.5 #5 #4 Imbalanced .617 85 

82 LR 0.5 #5 #4 Imbalanced .617 86 

83 LDA 0.2 #10 #3 Balanced .609 46 

84 LR 0.2 #2 #4 Imbalanced .607 14 

85 LDA 0.2 #2 #4 Imbalanced .606 13 

86 LR 0.2 #5 #3 Balanced .606 29 
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87 LR 0.5 #2 #4 Imbalanced .590 68 

88 LDA 0.5 #2 #4 Imbalanced .589 67 

89 LDA 0.2 #5 #4 Balanced .587 34 

90 CART 0.2 #2 #4 Balanced .580 18 

91 LR 0.5 #10 #3 Balanced .567 101 

92 CART 0.5 #2 #4 Balanced .562 72 

93 LR 0.5 #10 #4 Balanced .536 107 

94 LR 0.5 #5 #3 Balanced .536 83 

95 LR 0.2 #2 #3 Balanced .521 11 

96 LDA 0.2 #5 #3 Balanced .518 28 

97 LR 0.5 #2 #3 Balanced .498 65 

98 LR 0.5 #5 #4 Balanced .492 89 

99 LDA 0.5 #10 #4 Balanced .478 106 

100 LR 0.2 #2 #4 Balanced .473 17 

101 LDA 0.5 #10 #3 Balanced .456 100 

102 LR 0.5 #2 #4 Balanced .440 71 

103 LDA 0.5 #5 #4 Balanced .431 88 

104 LDA 0.5 #5 #3 Balanced .426 82 

105 LDA 0.2 #2 #4 Balanced .414 16 

106 LDA 0.2 #2 #3 Balanced .412 10 

107 LDA 0.5 #2 #3 Balanced .386 64 

108 LDA 0.5 #2 #4 Balanced .374 70 
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Appendix C 

List of Data Conditions by Ordered Mean rccS Values 

Rank Method Corr NPV GN 
Mean 

rccS 

Condition 

Number  

1 LR 0.2 #10 #4 .828 50 

2 LDA 0.2 #10 #4 .781 49 

3 LR 0.2 #5 #4 .642 32 

4 CART 0.2 #10 #4 .636 51 

5 LDA 0.2 #5 #4 .623 31 

6 CART 0.2 #5 #4 .601 33 

7 CART 0.5 #10 #4 .575 105 

8 LR 0.2 #10 #3 .561 44 

9 CART 0.5 #5 #4 .545 87 

10 LR 0.5 #10 #4 .538 104 

11 LDA 0.2 #10 #3 .533 43 

12 CART 0.2 #10 #3 .525 45 

13 CART 0.2 #2 #4 .520 15 

14 LDA 0.5 #10 #4 .516 103 

15 CART 0.5 #2 #4 .466 69 

16 LR 0.5 #5 #4 .462 86 

17 LDA 0.5 #5 #4 .450 85 

18 CART 0.5 #10 #3 .420 99 

19 LR 0.2 #2 #4 .418 14 

20 LR 0.2 #5 #3 .417 26 

21 LDA 0.2 #2 #4 .404 13 

22 LDA 0.2 #5 #3 .392 25 

23 CART 0.2 #5 #3 .382 27 

24 CART 0.5 #5 #3 .382 81 

25 LR 0.5 #2 #4 .354 68 
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26 LDA 0.5 #2 #4 .341 67 

27 LDA 0.5 #10 #3 .330 97 

28 CART 0.2 #10 #2 .321 39 

29 LR 0.5 #10 #3 .320 98 

30 CART 0.2 #2 #3 .297 9 

31 CART 0.5 #2 #3 .297 63 

32 CART 0.5 #10 #2 .261 93 

33 LR 0.5 #5 #3 .240 80 

34 LDA 0.5 #5 #3 .227 79 

35 CART 0.2 #5 #2 .224 21 

36 LR 0.2 #2 #3 .209 8 

37 LDA 0.2 #2 #3 .202 7 

38 CART 0.5 #5 #2 .188 75 

39 LR 0.5 #2 #3 .152 62 

40 LDA 0.5 #2 #3 .146 61 

41 LR 0.2 #10 #2 .133 38 

42 LDA 0.2 #10 #2 .125 37 

43 CART 0.2 #2 #2 .111 3 

44 CART 0.5 #2 #2 .094 57 

45 LR 0.5 #10 #2 .065 92 

46 LDA 0.5 #10 #2 .062 91 

47 LR 0.2 #5 #2 .055 20 

48 LDA 0.2 #5 #2 .053 19 

49 LR 0.5 #5 #2 .024 74 

50 LDA 0.5 #5 #2 .023 73 

51 LR 0.2 #2 #2 .016 2 

52 LDA 0.2 #2 #2 .015 1 

53 LDA 0.5 #2 #2 .010 55 

54 LR 0.5 #2 #2 .010 56 
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