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Abstract 

Children with Autism Spectrum Disorder (ASD) experience limited abilities in 

recognizing non-verbal elements of social interactions such as facial expressions [1]. 

They also show deficiencies in imitating facial expressions in social situations. In this 

Master thesis, we focus on studying the ability of children with ASD in recognizing facial 

expressions and imitating the expressions using a rear-projected expressive humanoid 

robot, called Ryan. Recent studies show that social robots such as Ryan have great 

potential for autism therapy. We designed and developed three studies, first to evaluate 

the ability of children with ASD in recognizing facial expressions that are presented to 

them with different methods (i.e. robot versus video), and second to determine the effect 

of various methods on the facial expression imitation performance of children with ASD 

using Reinforcement Learning (RL). 

In the first study, we compared the facial expression recognition ability of 

children with ASD with Typically Developing (TD) children using Ryan. Overall, the 

results did not show a significant difference between the performance of the ASD and 

groups in expression recognition. The study revealed the significant effect of increasing 

the expression intensity level on the expression recognition accuracy.
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The study also revealed both groups perform significantly worse in recognizing fear and 

disgust expressions.  

The second study focused on the effect of context on the facial expression 

recognition ability of children with ASD compared to their TD peers. The result of this 

study showed a higher general performance of TD children compared to the ASD group. 

Within the TD group, fear and in the ASD group sadness were recognized with the lowest 

accuracy compared to the average accuracy of other expressions. The result of this study 

did not show any difference between groups; however, we found that there is a 

significant effect of different background categories in both groups. It means, we found a  

significant higher recognition accuracy for the negative backgrounds compared to 

positive backgrounds in 20% intensity for the fear and sadness expressions. 

In the third study, we designed an active learning method using RL algorithm to 

identify and adapt based on the individual differences in expression imitation in response 

to different conditions. We implemented the RL to first, identify the effective imitation 

method based on individual’s performance and preference; and second, to make an online 

adaptation and adjustment based on the effective method for each individual. The result 

of this study showed that the active learning method could successfully identify and 

adjust the session based on participant’s strength and preference. The results also showed 

that each participant responded differently to each method in general and for each 

expression.  
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Chapter 1 Introduction 

 

1.1 Autism Spectrum Disorder (ASD) 

 

By the definition from The Diagnostic and Statistical Manual of Mental 

communication, social skills, and the presence of restricted, repetitive patterns of 

behavior. ASD symptoms appears at different times. In some children the symptoms 

become evident by lack of progress and in others may be a loss of previously developed 

skills [3]. There are symptoms that lead to earlier identification such as, an absence of 

intentional communicative response, an absence of coordinated gaze, effect, and voice 

during interaction with others and atypical social interest, and engagement [4]. 

 There have been many studies to identify the cause of ASD. However, the studies 

could not conclusively implicate any one factor as the major cause. Although, studies 

confirmed that ASD is a pervasive disorder with lifelong symptoms [1]; young children 

with ASD who receive early age applied behavior analytic (ABA) interventions can 

acquire the social and communication skills later in life [1].  

Facial expressions are one of the key elements of social interactions and communications. 

A deficit in recognizing facial expressions prevent the formation of effective social 

interactions. Although, facial expression recognition and emotion perception are not main 

parts of ASD definition, the idea of children with ASD suffer from emotion recognition 
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deficiency is presumed [5][6]. On the other hand, there are studies [7][8] that doubt the 

idea of general deficiency in facial expression recognition in children with ASD, instead, 

they suggest that children with ASD may perform worse than their TD peers in 

recognizing some facial expressions and emotions.    

 Studies suggest that difficulties with imitation tasks appear in children 

with ASD as young as 24 months of age [9]. There are different ideas on a general 

imitation deficiency in children with ASD. Some studies claim a significant difference in 

imitation skill of children with ASD compared to their TD peers [10]; however, there are 

other studies casting doubt on the idea of general imitation deficiency in children with 

ASD [11].  

A study by Ingersoll [12] focuses on social aspect of imitation skill and its role in 

developing social skills. according to this study, the imitation skill serves as two distinct 

functions in early childhood that are learning function and social function. The study 

suggests, a disruption in social use of imitation skill in early childhood have considerable 

impact on social and communication skill later in life. 

1.2 Socially Assistive Robotics 

Initially, Assistive Robotics (AR) has referred to robots that assisted people with 

physical disabilities through physical interaction [13]. On the other hand, Fong [14] used 

the term Socially Interactive Robotics (SIR) for the first time to describe robots with the 

main tasks of social interactions. Socially Assistive Robotics (SAR) are considered as 

combination of AR and SIR, that is defined as robots that assist human by providing 

certain terms of social interactions [13]. 
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The difference between SIR and SAR is the ultimate goal of interaction. in SIR 

the robot’s goal it to create effective interaction for the sake of interaction; however, in 

SAR the robot creates the effective interaction with a human to achieve specific goals 

such as rehabilitation, learning, etc. [13].  Studies have shown that SAR can serve as an 

effective tool in therapy sessions for individuals that suffer from cognitive and behavioral 

disorders. They can provide efficient assistant to teach certain types of skills [15].  

Socially assistive robots can address various applications and needs. They can 

serve as companion for elderly people to reduce stress and depression. While the robots 

are not replacements for human, they can provide tutoring services for children. Studies 

showed that effectiveness of socially assistive robots in post-surgery rehabilitation of 

adult and children by providing regular exercise instructions [16] or story-telling [17] and 

companionship [13]. As mentioned above, the socially assistive robots can be used to 

assist individuals with cognitive disorders. For example, they have been used as social 

agents and facilitators for children with ASD to practice social skills [18], monitor their 

social interactions with other peers [19] and to encourage emotional expressions. 

1.3 The Role of Socially Assistive Robots in Autism Research 

As previously discussed, children with ASD exhibit deficiencies in social 

interaction and communication. One reason for this deficiency is that in a social scene, 

children with ASD seem to pay more attention to objects in the scene rather than human, 

and human bodies rather than their faces [20]; which result to loosing social cues and fail 

to effectively communicate. similarly, studies [21] showed that individual with ASD are 
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more successful in understanding social cues in less complex stimuli (i.e. scenes with 

single social cues).  

Additionally, Baron-Kohen is one of his studies [22] states:  

 

“The hyper-systemizing theory of autism proposes that the systemizing 

mechanism is set too high in people with autism. As a result, they can only 

cope with highly lawful systems, and cannot cope with systems of high 

variance or change (such as the social world of other minds). They appear 

‘change-resistant’ “. 

 

Summing up these two characteristics of individuals with ASD, interacting with 

robots is more predictive and systemized with less social cues compared to real social 

situations. Therefore, individuals with ASD exhibit comfort and interest toward robots 

[23]. In fact, robots are able to simulate social situations without complicity and 

unpredictability of daily social interactions. As a result the field of SAR has been widely 

studied [24]. 

1.4 Adaptive Human Robot Interaction 

 One of the recent fields of studies in social robotic is the adaptive human robot 

interaction using RL. In despite of many studies with pre-programmed and structured 

human robot interaction scenarios there are researches working on active robot learning 

or human robot interaction that consider inputs from human to integrate with a RL 

method. In some of these studies a machine learns by observing human behavior [25] 

[26] [27]; other studies focused on how machines can learn and adapt using human’s 

instruction [28] [29] or by interacting [30] with human during the learning process. 

 A study [31] that focused on different aspects of active learning in human robot 

interaction, presented three interaction modes which enable a robot to actively learn. The 

https://www.sciencedirect.com/topics/neuroscience/autism
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three modes are different in when they make queries. The first mode, made query every 

turn, the second made query under certain circumstances and the last made query only 

when explicitly asked by human. Although, each of the modes seemed to have their 

advantages and disadvantages, they were preferable to passive supervised learning mode 

in terms of performance and human subject preference.  

 The use of adaptive social robots for behavioral therapy of children with ASD has 

receive of many attentions. Researches showed that children with ASD show interest 

toward the robots; however, there is a question that if it is the appearance of the robot that 

affects the social behavior of a child with ASD or its behavior. A study [32] by Feil-

Seifer et al. demonstrated it is the behavior of the social robot that affects social behavior 

of a child with ASD, by designing an autonomous robot-assisted behavior intervention 

using a control architecture. 

1.5 Research Problems and Thesis Contributions  

The objectives of this thesis are: 

1. To study the facial expression recognition ability of children with ASD 

in comparison with TD children using Ryan, a rear-projected 

humanoid robot. 

2. To study the effect of context on facial expression recognition of 

children with ASD compared to TD children. 

3. To design an adaptive human robot interaction using RL to determine 

ASD individuals’ differences in imitating a sequence of expressions in 

different conditions and adjust the interaction based on them.  
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To answer the questions above, we designed three studies and executed them on a 

group of participants. For the first study, we used Ryan companionbot to produce six 

basic facial expressions [33] with different intensities. The expressions were displayed to 

12 children (i.e. 6 ASD and 6 TD) and we analyzed the data using ANOVA analysis. For 

more details see chapter 3. In the second study, we produced custom videos of facial 

expressions with integrated thematic backgrounds, as the simplified context, to examine 

the effect of backgrounds on facial expression recognition. The stimuli set was then 

displayed to 12 children (i.e. 6 ASD and 6 TD). We analyzed the result using ANOVA 

analysis. For more details see Chapter 4. Finally, in the last study, we designed an 

adaptive human robot interaction session using RL; during the session four facial 

expressions (i.e. disgust, fear, happiness and sadness) were presented to participants with 

three different methods (i.e. image, video, and robot). Two ASD participants were asked 

to imitate the displayed expressions. The goal of the session was to detect each 

participant’s strength and preference using the algorithm and adjust the session based on 

each participant’s effective method. For more details see Chapter 5. 

1.6 Organization  

The thesis is organized as follow: Chapter 2 presents literature review of the 

existing studies on the field of SAR, facial expression recognition in children with ASD 

and active learning in social robotics using RL methods. Chapter 3 focuses on studying 

the facial expression recognition ability of children with ASD using Ryan. the effect of 

thematic background on facial expression recognition is discussed in Chapter 4. Chapter 

5 discusses the findings of an active learning human robot interaction session focused on 
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facial expression imitation. And finally, Chapter 6 concludes the thesis and provides 

some directions for future studies. 
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Chapter 2 Background and Literature Review 

 

2.1 Expression Recognition in Children with ASD using SAR 

Studies have demonstrated that children with ASD exhibit less anxiety and more 

comfort toward technology and robots [23]. Therefore, the field of Socially Assistive 

Robotics  (SAR) has been widely studied [24]. There are many socially assistive robots 

with expressive face to target and improve the facial expression recognition ability in 

children with ASD. They are capable of expressing realistic facial expressions as well as 

engaging children in social interaction without causing much anxiety and complexity for 

them. Some of them such as FACE [34] and Zeno [35] can demonstrate nearly realistic 

human facial expressions. On the other hand, some socially assistive robots such as 

KASPAR [36] and Tito [37] have more simplified faces to reduce sensory overload.  

There have been many studies in using SAR as a tool to teach social skills and 

emotion recognition to children with ASD. Keepon is a non-humanoid robot with 

snowman-like body made of silicon rub, which can express excitement, pleasure and fear 

emotions with body movement [38]. A study with a three year old girl autistic girl and a 

group of twenty-five TD children in the age range of one to three, showed the success of 

Keepon to improve some  of the social skills such as eye contact, joint attention, 
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emotional expression, and turn-taking in both groups after several intervention sessions 

with Keepon [39].  

Another study used FACE [34], a female android robot. The robot’s face is made 

of skin-like silicon rubber, which enables the robot to show six basic expressions (i.e. 

anger, disgust, fear, happiness, sadness, and surprise). FACE has been used in [40] to 

target emotional behavior. The study included four subjects with high functioning autistic 

individuals in the range of seven to twenty-years-old. All subjects demonstrated 

improvement in emotional behavior at the end of the intervention sessions. Additionally, 

participants showed a spontaneous ability of imitating the head movements and facial 

expressions of the robot.  

Another example of using humanoid robots to teach social skills to autistic 

children, is a study using KASPAR [36], which is a child-size male robot with active 

arms, hands, and head. KASPAR can open and close its mouth and eyes. In another study 

[41] KASPAR is used as a therapeutic tool for a 16-year-old boy, who was diagnosed 

with severe autism and could not tolerate other children. The intervention sessions 

improved his skills such as imitation, eye contact, joint attention, and turn-taking. 

Besides, the child showed interest toward the robot’s eyes, eye lids and face. This interest 

led to the child later touching his own face and eyes as well as those of his therapist. 

Recent studies [42][43] used Zeno R50 [35], which is a child-size male robot with 

active arms and legs, and the ability to express six basic facial expressions. Zeno R-50 

provides more realistic expressions than other facially expressive robots such as 

KASPAR, but less realistic than FACE. The study aimed to compare expression 
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recognition ability of ASD children with those of TD children. The study did not find any 

general deficiencies in expression recognition between groups, except for fear. 

2.2 Rear-Projected Robots 

Although robots with nearly realistic expressive faces are considered as important 

achievements, they still suffer from several limitations. First, once the mechanical 

platforms are built, they are fixed and cannot be modified. Second, large numbers of 

actuators in the robots’ face make them expensive and difficult to maintain. Finally, in 

the long term, some of the actuators either completely fail or weaken so the expressions 

are not as intense and recognizable.  

  A good solution for the problems mentioned above is rear-projected robots, which 

have received much attention recently [44][45]. Rear-projected robotic heads consist of a 

neck mechanism, a face-shaped translucent mask and a projector that projects a computer 

graphic avatar onto the mask. The computer graphic avatar is produced using character 

animation technologies. Compared to android robots, rear-projected robots are less 

expensive more flexible, and feature low power consumption and fast reaction time. 

Dome robot [46] is one of the rear-projected robots that uses a cartoonish animated face 

projected on a dome-shaped mask.  Dome robot lacks a realistic human face. Another 

example of rear-projected robots is the Lighthead robotic face [47] which projects a more 

realistic animation onto a face-shaped translucent mask. Al Moubayed et al. presented 

Furhat [44], a human-like light-projected robot that uses computer animation to 

demonstrate facial expressions and a mirror to produce a side projection-angle which 

results in a larger form factor.  
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2.2.1 Ryan Companionbot 

Ryan is a rear-projected humanoid robot developed at DreamFace Technologies, 

which is based on the Expressionbot [45]. It is created by using character animation 

technologies to show 3D avatar models that produce natural speech and facial 

expressions. The animated face model is then projected onto a face-shaped translucent 

mask. This design is not only an effective alternative to overcome many of the limitations 

with the mechanical-expressive face design, it also provides flexibility to redesign and 

customize facial expressions, from simplistic non-sophisticated expressions to nearly 

realistic human like expressions.   

The 3D models of six universal basic expressions (i.e. anger, disgust, fear, 

happiness, sadness, and surprise) were designed in Maya based on the Facial Action 

Coding System (FACS) [48]. For example, sadness involves Inner Brow Raiser (AU 1), 

Brow Lowerer (AU 4) and Lip Corner Depressor (AU 15) and happiness involves Cheek 

Raiser (AU 6) and Lip Corner Puller (AU 12). 

 Ryan is an emotive robot with an expressive face and accurate visual speech. This 

robotic platform has been used in a number of other studies to interact with autistic 

children [49], TD adults [50] and older adults with dementia and/or depression [51]. 

Since Ryan is equipped with key elements of social communication such as facial 

expression, gaze, spoken dialogue and visual speech, it is capable of natural face-to-face 

communication. 
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2.3 Expression Recognition within Social Context 

Most of the studies on facial expression recognition use static images; however, a 

study [52] that examined the effect of videos with different durations (i.e. 4 s, 2 s and 1 s 

long) showed that all emotional and non-emotional expressions were recognized better 

when seen on dynamic faces versus static pictures. Additionally, in real life most 

expressions happen under dynamic visual conditions; therefore, in this study we used 

video of facial expressions. 

For individuals with ASD, the real social world is full of challenges and 

ambiguities; the explicit and narrow experimental tasks considerably minimize these 

ambiguities which results in findings that might not accurately describe the difficulties 

individuals with ASD face every day. Consequently, there need to be experiments with 

conditions closer to daily social situations. One opportunity is to add thematic 

(situational/ meaningful) backgrounds and objects to the experiment materials (e.g. 

images, videos) of facial expression recognition studies. Below we review some of the 

studies that consider the more realistic experimental setups and their findings. 

There are studies that put more emphasis on facial expression recognition ability 

within a social context. One of these studies [21] focused on the recognition of complex 

emotions within a social context. There were 23 children with ASD and 24 children in the 

control group. They were asked to watch twenty-seven short scenes (i.e. 6-30 s long) of 

movies. The movies involved the expression of complex emotions. After each clip the 

children were asked to label the expressions of one of the people in the scene. They were 

provided with the choice of four emotion labels. The results of this study show that 
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children with ASD perform worse than their TD peers in average. They also show that 

children with ASD perform as well as the TD group in single cue scenes but perform 

worse when the scenes contain multiple cues. It shows children with ASD fail to use 

multimodal socio-emotional information, which happens very frequently in daily life.  

In another study conducted by Klin et al. [20], 15 participants with ASD and 15 

TD participants were asked to watch five digitized clips from a movie. The demonstrated 

social interactions in the movie were socially complicated, simulating the social 

situations that individuals with ASD will face in daily life. The sessions were recorded 

and then the visual fixations were measured using eye-tracking technology. The result of 

this study showed individuals with ASD paid attention to the objects (e.g., a vase on the 

table) in the scene more than TD individuals did, correlated with the social impairment 

(i.e. children with more social impairments paid more attention to objects rather than 

facial expressions). Although, the fixation time on the objects was small relative to 

fixation time on the face and body, the paper does not find it surprising given that their 

videotape clips were chosen to minimize inanimate distraction. The paper suggests 

further studies with more attractive backgrounds. 

As suggested by studies [20][53] Limited activity monitoring in toddlers with 

autism spectrum disorder., in a social scene, children with ASD lose part of the important 

social cues and features as they pay attention to non-social objects. Lee et. al in a study 

[54] created Clip-based videos that are half-static and half-dynamic videos of social 

situations. In these videos, the surrounding objects are static and blurred, which requires 

less visual attention than fully dynamic videos and the children focus more on the facial 
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expression without losing the social context of the facial expression. Six children with 

ASD were recruited for this study. The videos were used as intervention material during 

multiple sessions. The results of this study show some improvements in facial expression 

recognition and emotion judgement. The study concluded that limiting the amount of 

information from surrounding areas in a social scene with specific close-up cues can help 

an individual with ASD to better understand emotions and facial expressions. This study 

is another confirmation of the fact that in a normal social scene, individuals with ASD 

tend to pay more attention to non-social objects rather than social cues such as facial 

expressions. 

2.4 Expression Imitation in Children with ASD  

Children use the imitation skills to learn from their environment [55]. There are 

different ideas on a general imitation deficiency in children with ASD. Some studies 

claim a significant difference in imitation skill of children with ASD compared to their 

TD peers [10]; however, there are other studies casting doubt on the idea of general 

imitation deficiency in children with ASD [11]. A study [20] by Ingersoll focused on two 

different aspects of imitation that are social function and learning function. Through a 

social use of imitation skill children interact with their caregivers through games and 

learn communication and social skill. The study concludes, a disruption in social use of 

imitation skill in early childhood have considerable impact on social and communication 

skill later in life. 

Socially assistive robots have been used in studying imitation skills of children 

with ASD. A study [37] focused on effect of a mobile robot on facilitating reciprocal 
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interaction such as imitative play. The goal of this work was to address the question that a 

robot, which more predictable and less complex than human can improve social 

interaction and imitative plays in children with ASD. The study found that forms of 

shared conventions such as imitation of body movements are higher with two children 

paired with a human mediator which can be explained by the limited motion capabilities 

of the robot. Additionally, it showed children paired with robot, showed more shared 

attention such as visual contact and physical proximity in all types of imitation plays 

including facial expressions. It shows the interaction with a robot with appealing 

characteristics has benefits for children with ASD.      

2.5 Adaptive Socially Assistive Robotic 

One of the recent filed of studies in use of SAR for children with ASD is to 

design adaptive interaction and intervention sessions. A study [39] studied the use of 

three different interaction modes of a social robot with human. The three modes are 

different in when they made queries. The first mode, made query every turn, the second 

made query under certain circumstances and the last made query only when explicitly 

asked by human. Although, each of the modes seemed to have their advantages and 

disadvantages, they were preferable to passive supervised learning mode in terms of 

performance and human subject preference.  

A study [56] proposed an adaption mechanism for robot behavior based on RL to 

improve the quality of human robot interaction. The robot will read the body signals such 

as repositioning body and averting gaze from a human partner and adjust the gaze, 

distance and the interaction speed based on that information. In this study, the occurrence 
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of body signals were the inputs for the policy gradient RL algorithm (PGRL). The PGRL 

algorithm minimizes the reward by changing the policy, which in turn determines the 

robot’s behavior. 15 subjects between the age of 20 to 35 participated in one 30-minute 

session to interact with robot. the results showed for most of the subjects the parameters 

(e.g. distance and interaction speed) converged to the each of the subject’s preferences 

within 15 to 20 minutes. The study showed the robot could adapt to individual 

preferences for most of the subjects in the experiment. It concluded that a robot can adapt 

its behavior parameters to individuals by PGRL method.  

Another study [57] examined whether a social robot can learn how to employ 

different social behaviors to achieve interactional goals from a task-oriented interaction 

from a human user. In this study, pre-defined high-level behaviors such as guiding 

attention, motivating, or providing positive feedback are mapped into low-level behaviors 

such as directed gaze, specific gestures, or verbal utterances. Low-level behaviors that are 

executable by the social robot allow for parameterization in accord with the desired high-

level behaviors. They used Q-learning to adapt this mapping based on the direct reward 

from the robot experiences through the interaction with the human user. The setup was 

implemented within a memory game with the robot head Furhat as an assistant. They 

learning-based assistance condition with the random behavior condition. The results 

showed the participants in learning-based condition can solve the memory game faster 

because better assistance from the robot compared to the random behavior mood.   
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Chapter 3 Studying Facial Expression Recognition Using Rear-Projected 

 

In this pilot study, we used Ryan Companionbot, a rear-projected humanoid robot 

developed by DreamFace technologies, to evaluate the facial expression recognition 

ability of ASD children compared to TD children. Our first hypothesis is that ASD 

children will perform worse than the TD control group on average. Our second 

hypothesis is that both groups will show a higher expression recognition accuracy as the 

intensity of Ryan’s facial expressions increase. Our third hypothesis is that both groups 

will perform worse in recognizing negative expressions (i.e. anger, disgust, and fear) 

comparing to other expressions, as suggested by some studies [58]. Finally, we predict 

that Ryan’s facial expressions will be, overall, comprehensible and recognizable with 

high average accuracy for children in both groups. 

3.1 Methods 

 In this pilot study, Ryan demonstrated a sequence of facial expressions. The set 

consisted of six basic facial expressions (i.e. anger, disgust, fear, happiness, sadness, and 

surprise) and four different intensities (i.e. 25%, 50%, 75%, and 100%) for each of the 

expressions (total of 24 trials). We determined each expression intensity based on the 

number of frames between neutral and 100% intensity of that specific expression [33]. 

(e.g. for 25% intensity, number of frames between neutral and 100% intensity were 
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divided by 4). Each expression started from a neutral state and progressed to a desired 

expression at a certain intensity level. For each participant, the expression demonstration 

started with the lowest intensity (i.e. 25%). In each intensity level, the expressions were 

shown randomly. The intensity increased to the next level after all the trials were 

completed for the current intensity level. After showing each expression, Ryan resumed 

demonstrating the final intensity and waited for the children’s response. When the 

children were ready to answer, they verbally gave their answer to Ryan and the 

researcher recorded the response. Figure 3-1 shows Ryan and six basic expressions 

demonstrated on its face with 100% intensity. 

 

 

Fig 3-1 Left) Ryan Companionbot robot [31,32]. Right) Expressions demonstrated by Ryan with 100% 

intensity (Top from left to right: anger, disgust, fear. Bottom from left to right: happiness, sadness, surprise) 
 

 Before the experiment started, children were introduced to the whole experiment 

setup including the robot and different expressions. They could choose one of the seven 

choices available for each expression. Choices included six basic expressions and neutral. 

Although no neutral expression was included in the expression set, the children could 

choose neutral if the expression was ambiguous due to low intensity. The researcher 
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made sure each of the choices was understandable for the children. Children had the 

choices printed on a paper in front of them during the session. At times when the children 

were indecisive about their guess, we took the final guess as the official decision/answer. 

 The experiment was conducted in the social robotics laboratory at the University 

of Denver where an IRB approval was obtained, and all the children’s parents signed a 

consent form. The study was presented to each child in a room with the presence of Ryan 

and a research assistant. We asked each participant to sit on a chair in front of Ryan. Each 

time the researcher made sure that Ryan’s face is in the same height as the children’s 

face. Figure 3-2 shows the room setup. 

 

 

Fig 3-2. Room setup of the experiment protocol 

 

 Twelve children between the ages of 8 and 16 were recruited for the study. Six 

were classified as high functioning autistic by medical diagnosis (Age M=11.1, SD=3.27) 

(one female and five male) and six as typically developing children (Age M=11.1, 

SD=3.12) (six male). In accepting high functioning ASD participants, we insured that a 

doctor or psychiatrist formally diagnosed the children. Additionally, Autism Diagnosis 

Observation Schedule (ADOS) [59] examinations were performed by clinical 
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psychologist collaborators in the Department of Psychology at the University of Denver 

to reassure that all the ASD participants met the threshold score for ASD diagnosis.  As 

for the control group, neuro-typical children who had never been diagnosed with any kind 

of developmental or social disorder were recruited. Neuro-typical siblings of children 

with ASD were excluded from the study to ensure clear separation between the TD-

control and ASD group.  

Additionally, all the children’s parents were asked to fill the Social 

Responsiveness Scale™ (SRS™) questionnaire, as a complementary assessment to the 

ADOS. According to the SRS diagnostic manual, a T-score between 60 and 75 indicates 

deficiencies in social skills that are associated with mild (high functioning) to moderate 

Autism Spectrum condition and a score above 76 indicates presence of deficiencies in 

social skills that are strongly associated with a clinical diagnosis of Autistic Disorder or 

Asperger’s Disorder [60]. Of our six ASD participants, SRS scores were available for 

five of them. Comparing the scores for ASD participants (M=66.4, SD=7.38) with TD 

control group (M=40, SD=2.09) showed a significant difference (t(5) = 7.75, P<0.001) 

between the two groups. 

3.2 Results and Discussions 

 Overall, we did not find a significant difference between the performances 

(average recognition accuracy) of the ASD (M=0.71, SD=0.15) and TD (M=0.73, 

SD=0.17) groups in expression recognition. We ran a 3-way mixed ANOVA on 

recognition accuracy as the independent variable and group (ASD vs. TD), expression 

(anger, disgust, fear, happiness, sadness and surprise) and intensity (25%, 50%, 75% and 
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100%) as dependent variables. The results revealed significant main effects of intensity 

[F(3,240) = 9.7, P<0.0001] and expression [F(5,240) = 6.5, P<0.0001] with no main 

effect of group. The three-way interactions between these factors was not significant, nor 

were the interactions between intensity and group, or between expression and the group. 

 The ANOVA analysis showed the main effects of expression and intensity but did 

not show any interaction between these factors by groups. We thus examine these factors 

in greater depth below, regardless of group. Figure 3-3 shows the recognition accuracy 

for each expression. The average recognition accuracy was lower for disgust and fear 

expressions. Our analysis shows that both groups performed significantly worse in 

recognizing disgust (M=0.5, SD=0.3) versus the average of other expressions (M=0.76, 

SD=0.15) (t(16) = -2.7, P=0.008). Also, the average performance of groups in 

recognizing fear (M=0.54, SD=0.38) was significantly lower compared to the average of 

other expressions (M=0.75, SD=0.14) (t(14) = -1.8, P=0.04).  

 Figure 3-4 demonstrates the effect of increasing the intensity on recognition 

accuracy. Our analysis shows that increasing the intensity from 25% to 50% had a 

significant effect on recognition accuracy. The recognition accuracy with the 25% 

intensity (M=0.5, SD=0.26) was significantly lower than the accuracy with 50% intensity 

(M=0.72, SD=0.22) (t(11) = -3.75, P=0.001). Additionally, the recognition accuracy with 

the 75% intensity (M=0.83, SD=0.14) was significantly higher than the accuracy with the 

50% intensity (t(11) = -2.34, P=0.019). We did not find any significant effect of the 

intensity increment on recognition accuracy from 75% to 100%. 
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 Figure 3-5 and 3-6 show the confusion tables for the ASD participants and TD 

group, respectively. The figures compare the ability of both groups to recognize 

expressions and reveal how the demonstrated expressions by Ryan are recognizable by 

children. It can be seen that disgust and fear are more often mistaken with other 

expressions. 

 In general, we did not find a general impairment in the ASD group for 

recognizing facial expressions of emotion. This could have occurred for several reasons. 

First, the sample size was small in each group. Second, since all the participants in this 

study were children with high functioning autism, they had higher levels of cognitive 

abilities. Thus, it is reasonable that they performed close to their TD peers. However, as 

mentioned before, the emotion recognition findings in ASD have been inconsistent and 

there are many studies [15,16] that disagree with any general expression recognition 

deficiency in ASD children. 

 

Fig 3-3 The average group accuracy is shown for both ASD (blue), TD (yellow), and the average of both 

groups (green). Each bar represents the average of the group for that specific expression. Error bars are 

standard errors. 
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Although we did not find differences between groups, both groups showed 

significantly lower performance in recognizing disgust and fear expressions. This is 

consistent with some evidence that people with ASD may have particular deficits 

recognizing negative basic emotions [29]. For instance, studies have shown lower 

accuracy in recognizing fear [36,37] and disgust [38]. We found impairment in 

recognizing fear and disgust in both groups. 

 

 

Fig 3-4 The average group accuracy is shown for both ASD (blue), TD (yellow), and the average of both 

groups in different intensity levels. 

 

 

Fig 3-5. Confusion matrix for the recognition of six basic expressions by ASD group. Rows are ground 

truth and columns are recognized expressions by ASD participants. 
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Fig 3-6. Confusion matrix for the recognition of six basic expressions by the TD control group. Rows 

indicate ground truth and columns indicate the proportion of expression categorizations made by TD 

participants. 

 

Moreover, there was a significant effect of increasing the intensity on the average 

recognition accuracy. The effect remained significant as the intensity increased up to 

75%. Since no interaction was found between expressions and intensity, it can be 

concluded that all the expressions demonstrated by Ryan are recognized with 80% 

accuracy and higher when the expression intensity level reaches 75% and higher. 

 Finally, Fig. 3 and Fig. 4 show that the recognition rates for most of the 

expressions are better in higher intensities, and in lower intensities such as 25% which is 

difficult to recognize the expression, Ryan was successful to effectively conveying the 

expressions. Fig. 5. shows that in the ASD group, disgust was often mistaken with anger. 

This low recognition accuracy might be due to inherent deficiency of ASD children in 

recognizing negative expressions as shown by other studies [37]; however, we did not 

find any difference between ASD and TD group in recognizing disgust. In general, the 

only expressions with low recognition accuracies are disgust and fear; besides, according 

to previous studies [36-38], children are expected to show lower recognition in these 

expressions. Therefore, Ryan can successfully demonstrate facial expressions and convey 

facial social cues to children.  
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Anecdotally, all the children in both groups showed an acceptance toward Ryan when 

being first introduced to the robot, which confirms that Ryan is an effective tool to be 

used in future studies of SAR for children diagnosed with autism.  
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Chapter 4 A Study on the Effect of Thematic Background on Facial Expression 

Recognition in Children with Autism Spectrum Disorder 

 

In this study, our first hypothesis is that ASD children will generally perform 

worse than the TD control group in the expression recognition task, especially in negative 

expressions compared to other studies. Our second hypothesis is that both groups will 

show higher expression recognition accuracy as the intensity increases. Our third 

hypothesis is that the recognition accuracy will be higher for matching expression-

background combinations (e.g. happiness combined with positive backgrounds) and 

lower for non-matching combinations (e.g. happiness combined with negative 

backgrounds) in the ASD group. This means, as suggested by studies [20][53] we expect 

the participant in  the ASD group will attend to the background more than the facial 

expression; whereas the TD group will ignore the background and focus on the task. 

Finally, we expect the effect of the background to be more visible in lower intensities.  

4.1 Methods 

 The raw videos of six basic facial expressions were obtained from the MMI facial 

expression dataset [61]. The videos were then properly cropped and scaled. Figure 4-1 

shows the last frame of each facial expression video. The expressions in these videos are 

demonstrated with 100% intensity level. To create different intensity levels, for each 
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expression, the repetitive neutral frames before the expressions were deleted, as well as 

the repetitive frames after the expression reached the maximum intensity. Then the 

number of remaining frames were divided by five to create five levels of intensity (i.e. 

20%, 40%, 60%, 80% and 100%). To have the same length for all the videos (i.e. 3 s), 

neutral and maximum intensity frames were added to the beginning and the end of each 

video, respectively. Figure 4-2 shows the last frame of happiness with different intensity 

levels. 

 

Fig 4-1. Basic facial expression. Left to right) anger, disgust, fear, happiness, sadness, surprise [61] 

 

We intended to use different emotionally stimulating images as background 

images for the facial expressions. It was important for us not to have any other human or 

facial expressions in the background images to avoid confusion or distraction from the 

main facial expression in the videos. We also made sure that all the pictures were 

appropriate for children. We chose the backgrounds from a large scale dataset for image 

emotion recognition [62] by You et al. and other internet websites. In the dataset, the 

pictures are categorized in eight emotion categories (i.e. amusement, awe, contentment, 

excitement, anger, disgust, fear and sadness); however, for our study we did not use these 

labels. Instead, we categorized the selected images as positive, neutral and negative 

categories. 
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Initially 76 images were selected. 10 adults between the age of 23 to 35 were 

asked to label each picture as negative, positive or neutral and provide a scale between -

10 to 10 with -10 as the most negative, 0 neutral and 10 the most positive. Then the z-

scores from each participant were compared and three top pictures with the highest rating 

in each category were chosen. Figure 4-3 shows all the selected pictures and their 

categories. 

 

Fig 4-2. Happiness facial expression with intensity levels of (left to right) 20%, 40%, 60%, 80% and 100% 
[61] 

 In this step, all the videos of six facial expressions (i.e. anger, disgust, fear, 

happiness, sadness and surprise) with five intensity levels were integrated with each of 

the nine backgrounds using video editing software. In integrating the videos with the 

background images, we tried to keep a balance between the size and brightness of the 

foreground and the background. Figure 4-4 demonstrate the first frame (neutral) of all the 

video expressions integrated with all the backgrounds.   

In this study Ryan was the only assistant present in the experiment room with the 

participants. We created a remote-control software to control the robot from the 

observation room. This software follows a scripted scenario and sends commands to the 

robot to conduct the experiment. This software is also able to show a video/image on the 

screen in front of the robot. The work by Abdollahi [51] contains more details on the 

hardware and software of the robot. 
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Fig 4-3. Top) Positive backgrounds.  Middle) Neutral backgrounds 

Bottom) Negative backgrounds 1 

 

 

Fig 4-4. First frame of each video integrated with different backgrounds 

 

 

                                                 

 
1  top right:  https://www.scoop.it/t/greeting-cards-quotes/?&tag=Canada+Day+Fireworks 

Bottom left and middle: https://wall.alphacoders.com/ 

Bottom right: https://www.aray.gr/katoxirosi-pneymatiko-dikaiomato-vivlio 

https://www.scoop.it/t/greeting-cards-quotes/?&tag=Canada+Day+Fireworks
https://wall.alphacoders.com/
https://www.aray.gr/katoxirosi-pneymatiko-dikaiomato-vivlio
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Ryan followed a scripted scenario controlled by a researcher in the control room. 

The research assistant also had the ability to interrupt the scripted conversation and add 

extra sentences to provide a more natural and flexible experiment for the children. Ryan 

started the session with a brief self-introduction and by asking some easy questions (e.g. 

what is your favorite color?) to decrease the participants anxiety and make them feel 

comfortable with the robot and the environment. Then Ryan explained the study structure 

and details. The participants had a list of six basic expressions in front of them. Ryan 

asked each participant to read the expressions out-loud and made sure they knew the 

meaning of all the expressions. After we confirmed that all the explanations were clear 

for the participants, Ryan practiced a few tests with them and then the participants 

continued the rest of the study.  

 The study took about 60 to 75 mins for each participant. There were six blocks, 

each block included 45 videos. Participants could take a break between each block. 

During the study if the participants seemed less motivated and focused, Ryan would have 

a conversation with them about their different hobbies, as the study was paused. Ryan 

also encouraged them with positive and motivating phrases. If any one of the participants 

seemed tired (especially younger children) we would randomly skip one or two blocks to 

make the experiment shorter for them. 

 An IRB approval was obtained for this study and all the participants and their 

parents signed a consent form. The study was conducted in the social robotics laboratory 

at the University of Denver. We asked each participant to sit on a chair in front of a 

screen and the robot. Figure 4-5 (right) shows the room setup. 
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Twelve children 7-15 years old were recruited for the study. Six of them were 

diagnosed with high function autism by medical diagnosis (Age M=11.54, SD=2.19) (one 

female and five males) and the other six were typically developing children (Age 

M=10.34, SD=3.09) (two females and four males).   

 

 

Fig 4-5. Left) Ryan Companionbot. Right) The Experimental Setup 

 

 Additionally, all the children’s parents filled out the Social Responsiveness 

Scale™ (SRS™) questionnaire. According to the SRS diagnostic manual, a T-score 

above 76 indicates presence of deficiencies in social skills that are strongly associate with 

a clinical diagnosis of Autism Spectrum Disorder and a score between 60 and 75 

indicates deficiencies in social skills that are associated with mild (i.e. high functioning) 

to moderate ASD [60]. The difference between scores for ASD participants (M=78.83, 

VAR=183.36) and TD control group (M=45.83, VAR=28.16) was significantly different 

(t (7) = 5.55, P=0.0004).  
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4.2 Results and Discussions 

 We ran a 4-way independent ANOVA on recognition accuracy as the dependent 

variable and group (ASD vs. TD), expression (anger, disgust, fear, happiness, sadness 

and surprise), intensity (20%, 40%, 60%, 80% and 100%) and background category 

(negative, neutral and positive) as the independent variables. 

 In terms of the main effect, the results showed significant main effects of group 

[F(1,2316) = 47.76, P<0.001], expression  [F(5,2316) = 88.38, P<0.001], intensity 

[F(4,2316) = 30.82, P<0.001] and category [F(2,2316) = 3.351, P = 0.035]. The results 

also revealed the significant two-way interactions of intensity*category [F (8,2316) = 

2.27, P = 0.02], group*expression [F (5,2316) = 15.26, P < 0.001] and 

expression*intensity [F (20,2316) = 7.50, P < 0.001]. The three-way interaction between 

expression*intensity*category was also significant [F (40,2316) = 1.77, P = 0.002]. 

 Figure 4-6 shows the effect of expressions and groups. Looking at the graph and 

following by two-way ANOVA on recognition accuracy as the dependent variable and 

group and expressions as independent variables, the groups are different in overall 

performance with TD (M=0.84, VAR = 0.028) group performing better than ASD group 

(M=0.76, VAR=0.067) (F(1,70) = 4.24, P=0.04). Additionally, for the TD group, fear, 

and for the ASD group, sadness, seem to have the lowest accuracy compared to the other 

expressions. A T-test revealed a significant difference between the recognition accuracy 

of fear (M=0.69, VAR=0.026) and the average of other expressions (M=0.87, 

VAR=0.005) (t(6) = -2.42, P=0.02) in the TD group; and a significant difference between 

the recognition accuracy of sadness (M=0.51, VAR=0.092) and the average of other 
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expressions (M=0.81, VAR=0.012) (t(6) = -2.27, P=0.03) in the ASD group. Figure 4-7 

and 4-8 show the confusion matrix for ASD and TD groups respectively. 

 

 

Fig 4-6. The average recognition accuracy for is shown for both ASD (blue) and TD (orange) for each 

expression. Each bar represents the average of the group for that specific expression. Error bars are standard 

errors. 

 

Figure 4-9 demonstrates the effect of intensity on expression recognition 

accuracy. Both groups showed significant improvement in recognition accuracy when the 

intensity increased from 20% (M=0.67, VAR=0.14) to 40% (M=0.81, VAR=0.092) (t 

(71) = -3.69, P=0.0002). 

 

Fig 4-7. Confusion matrix for the recognition of six basic expressions by ASD group. Rows are ground 

truth and columns are recognized expressions by ASD participants. 
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Fig 4-8. Confusion matrix for the recognition of six basic expressions by TD group. Rows are ground truth 

and columns are recognized expressions by TD participants. 

 

 

Fig 4-9. The average recognition accuracy is shown for both ASD (blue), TD (yellow) and average of both 
groups (green) in each intensity. 

 

 

 As mentioned earlier, the ANOVA analysis showed the main effect of the 

background category and its interaction with all the variables except the group factor, 

which means both groups had the same pattern of performance depending on the 

background category. Therefore, for further analysis of the effect of background we did 

not separate the groups. Figure 4-10 shows the main effect of category. Running the T-

test, there is a significant difference between the recognition accuracy of videos with 

negative (M=0.83, VAR=0.008) and positive (M=0.77, VAR=0.014) (t (11) = 3.09, 

P=0.005) backgrounds. 
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Fig4-10. The average recognition accuracy for each category of background images. 

 

 To find the point where the significant effect of category lays within the three-

way interaction of category*intensity*expression, we first broke down the analysis by 

studying the effect of category on each intensity. Figure 4-11 demonstrates the effect of 

category in each intensity. Running a T-test, the only considerable effect of background 

was found in 20% intensity, in which the recognition accuracy for the negative 

background (M=0.75, VAR=0.135) was significantly higher than for the positive 

background (M=0.58, VAR=0.199) (t (119) = 2.40, P=0.008). Therefore, we studied the 

effect of background with 20% intensity on each of the expressions. Fig. 10 shows the 

graph of the recognition accuracy for each of the expressions with different background 

categories with 20% intensity. 

 

Fig 4-11. The recognition accuracy for each background category in different intensity levels. 
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 Figure 4-12 suggests that the difference lays within the fear and sadness 

expressions. T-test analyses confirmed that for the sadness expression the recognition 

accuracy of videos with negative backgrounds (M=0.652, VAR=0.12) was significantly 

higher than for videos with the positive backgrounds (M=0.257, VAR=0.15) (t (20) = 

2.60, P=0.008).  

The same effect was found for the videos of fear expression between the negative 

(M=0.696, VAR=0.16) and positive backgrounds (M=0.125, VAR=0.035) (t (14) = 4.25, 

P=0.00039).   

 

Fig 4-12. The recognition accuracy for each background category and each of the expressions in 20% 
intensity levels. 
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Chapter 5 Toward Adaptive Socially Assistive Robotic for Children with Autism 

Using Reinforcement Learning 

 

SAR has received many attentions in the field of Autism research [24] because 

children with ASD show interest and comfort toward the robots [23].  In this field, social 

robots serve different purposes. In some studies they appear as a guide or facilitator to 

engage children in a study or a therapy session and encourage them to interact and focus 

throughout the session, normally in these studies the instructions are presented by a 

human teacher or a computer software [63]. While in other studies robots are used as the 

main teacher or therapist and convey the lessons and materials such as language learning 

applications and they are expected to be able to replace a human tutor [64][65]. 

Generally, such tutoring systems are expected to adapt to the students’ input and their 

needs, to provide help in form of hints or instructions as a human teacher or therapist 

would do. There is another category of studies that use robots as a tool to present the 

experiment or game materials. An example of these studies is using robot to evaluate 

facial expression recognition or imitation ability of children with ASD [49] or using the 

robots to run intervention sessions for children with ASD to improve their social skills 

[66].  

A common factor in this last category of social robot studies or generally most of 

the studies in facial expression is participants are exposed to one method out of all the 



  38 

possible methods. For example, in a facial expression recognition study, the facial 

expressions can be presented to participants in the form of images, videos or using a 

humanoid robot with realistic [34] or simplified [36] expressive face. Normally each of 

these methods lead to different conclusions, for example there are different discussions 

on facial expression recognition baseline of children with ASD, or more importantly the 

outcome of the intervention sessions might be different using each of the available 

methods.  

Consequently, in this pilot study we designed an adaptive human robot interaction 

session, using RL, in which the participants were exposed to different sets of stimuli that 

were four basic facial expressions (i.e. happiness, sadness, disgust and fear) with three 

different methods (i.e. images, videos and robots). Our main goal was to explore whether 

we can customize the session based on individual’s performance and preference in 

response to different methods of presenting facial expressions within an adaptive human 

robot interaction session using RL. To accomplish this task, we first observed whether 

presenting the facial expressions with different methods result to different facial 

expression imitation response from children with ASD. Second, we explored if there is 

one method that results to the best facial expression imitation response for all the 

expressions., and third, to explore whether the effective method is the same among all 

individuals or it is different for each individual. Fourth, if the adaptive algorithm can find 

the most effective method in terms of performance and preference for each individual and 

is able to adjust and customize the session for each individual based on the feedbacks 

from the participant and the researcher. 
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There are books and papers that explain about the theory of RL and its methods. 

In the next chapter we review RL using some of these resources [67][68]. 

5.1 Reinforcement Learning (RL) 

 In RL, an agent tries to maximize the accumulated reward by interacting with its 

environment over its lifetime. Most of the time, the tasks run in episodes, which means 

the task is restarted after the end of each episode. In this setting the learning agent tries to 

maximize the total reward per episode. For the non-episodic or continuous tasks either 

the average reward over the whole lifetime or a discounted return is considered. In RL 

problems, the learning agent and its environment are modeled being in a state (s ϵ S) and 

can perform actions (a ϵ A). Each of these variables can be discrete, continuous and 

multi-dimensional. The states contain all the information related to current situation and 

will be sued to predict future states. The actions are the choices made by the agent, based 

on the states. Rewards (R) are basis for evaluating the choices. In RL everything inside 

the agent is completely known and controllable by the agent; everything outside may or 

may not be completely known. A policy (л) is a stochastic rule, by which the agent 

selects actions as a function of states.  

As discussed above, the goal of RL is to find a mapping from states to actions, 

called policy, that picks actions in given states maximizing the cumulative expected 

reward. The return is the function of future rewards that the agent seeks to maximize. It 

has several different definitions depending on the nature of the tasks and whether there 

needs to be any discount for the delayed rewards. There are several ways to define a 

return function. One of the most conventional return functions is defined as below:  



  40 

𝑅𝑡 = ∑ 𝛾𝑘𝑟𝑡+𝑘+1
𝑇
𝑘=0      (5.1.1)  

where, 𝑅𝑡 is the return, 𝑟𝑡 is the reward at the step 𝑡 and γ is a number between 0 and 1 as 

the discount factor, with the possibility of 𝑇 =  ∞  or γ =1 (but not both).  

The RL agent needs to discover the relations between the states, actions and the 

rewards. Therefore, exploration is required. In contrast to supervised learning, the learner 

must first discover its environment and is not told the optimal actions needed to be taken. 

To gain information about the states, actions, rewards and their relations, the agent needs 

to explore previously unused actions or the actions that is not certain about. The 

algorithm needs to decide if it should stick to actions with high reward or to explore and 

possibly discover new state-action pairs with higher reward. The problem is commonly 

known as the exploration-exploitation trade-off.  

Almost all the RL algorithms are based on estimating value functions of states or 

state-action pairs. Value functions are defined with respect to particular policies. Value of 

a state under a policy, denoted as 𝑉л (𝑠), is the expected return when starting in s and 

following л thereafter. 𝑉л (𝑠) is defined as below: 

𝑉л (𝑠) =  𝐸л {𝑅𝑡 | 𝑠𝑡 = 𝑠} =  𝐸л { ∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠}∞  
𝑘=0           (5.1.2) 

where 𝐸л{ } is the expected value when the agent follows policy л. We call 𝑉л the state-

value function for policy л. Similarly, we define the value of taking action a in state s 

under a policy л, denoted 𝑄л (𝑠, 𝑎), as the expected return taking action a from state s 

and following policy л thereafter. 𝑄л is called action-value function: 

𝑄л (𝑠, 𝑎) =  𝐸л {𝑅𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎} =  𝐸л { ∑ 𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎}∞  
𝑘=0      (5.1.3) 
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Both of these functions can be estimated from the experience. The optimal value 

function is the largest expected return assigned to a state or state-action pair by a given 

policy. Any policy that its value function is optimal is an optimal policy. 

There are variety of methods in RL algorithms are based on value function that 

attempt to estimate the optimal value function for state or state-action pair. These 

methods can be classified into three classes: 1) Dynamic Programming-based methods 2) 

Monte-Carlo methods and 3) Temporal Difference learning such as Q-Learning and 

State, Action, Reward, State, Action (SARSA). 

 Dynamic programming methods require a model of the reward function to 

calculate the value function. The model does not necessarily need to be predetermined 

but can also be learned from data. Such methods are called model-based. Monte-Carlo 

methods use sampling to estimate the value function. The Monte-Carlo methods are 

model-free. These methods are episodic and during each episode a certain policy is 

running. The frequencies of transitions and rewards are kept track of and are used to 

estimate the value function. Unlike the Monte-Carlo methods, Temporal Difference 

methods do not have to wait until an estimate of the return is available to update the value 

function. Rather, they use temporal errors and only have to wait until the next time step. 

The temporal error is the difference between the old estimate and the new estimate of the 

value function, integrated with the reward received in the current sample. In contrast to 

dynamic-programming methods, they do not need a model and only take into account the 

sampled successor state. In this setting, the value function can be only estimated from 

sampled transitions (states and actions).  
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The value state-value function is updated using the formula below: 

𝑉(𝑠) = 𝑉(𝑠) +  𝛼 [ 𝑟 +  𝛾 𝑉(𝑠′) − 𝑉(𝑠)]     (5.1.4) 

This is the simplest method, known as TD (0), where s is the current state, r is the 

observed reward for the current state, α is the step-size or learning-rate and s’ is the next 

state. The equivalent temporal difference learning algorithm for state-action value 

function is SARSA which stands for State, Action, Reward, State, Action, represents the 

elements of quintuple of events, (𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1, 𝑎𝑡+1) that make up transition from one 

state-action pair to the next. The corresponding formula is defined as below: 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) +  𝛼 [ 𝑟 +  𝛾 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]   (5.1.5) 

SARSA is an on-policy method, which means it collects sample information from 

the environment using the current policy. As a result, exploration should be embedded 

into policy and determines the speed of policy improvement. In this method we 

continually estimate 𝑄л for the policy л, and at the same time change л toward greediness 

with respect to  𝑄л. SARSA converges with probability of 1 to an optimal policy and 

action-value function as long as all the state-action pairs are visited an infinite number of 

times and the policy converges to the greedy policy. 

 One of the off-policy TD algorithm, is Q-Learning, within which, the learned 

action-value function, 𝑄, directly approximates the optimal action-value function, 𝑄∗, 

independent of the policy being followed. The policy still has an effect in that it 

determines which state-action pairs are visited and updated.  
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The formula for Q-learning algorithm is as below: 

              𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) +  𝛼 [ 𝑟 +  𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]           (5.1.6) 

Briefly, Q-learning directly learns an optimal policy, whilst SARSA learns a near-optimal 

policy while exploring. To be able to learn an optimal policy using SARSA there need to 

be an algorithm to decay exploration (i.e. decay ϵ in ϵ-greedy action choice). 

Additionally, SARSA allows for possible penalties from exploratory moves, while Q-

learning ignores it. This result to SARSA acting as a more conservative algorithm 

avoiding dangerous (i.e. high negative reward optimal paths). 

5.2 Methods and Parameters 

 To design an adaptive human robot interaction session and examine our 

hypotheses we used RL. in this section we explain about the algorithm design, choice of 

parameters and facial expression imitation materials.  

5.2.1 Facial Expression Imitation Materials 

 One of the goals of this study was to expose children with ASD to different 

presentations of facial expressions to observe if there is any differences in terms of facial 

expression imitation performance and preference that results from different methods. To 

realize this goal, we tested four facial expressions that were disgust, fear, happiness, and 

sadness. Additionally, we used three different methods of presenting the facial 

expressions to children. The methods we used were images of facial expressions 

demonstrated by a human, videos of facial expression demonstrated by a human and 

facial expressions demonstrated on the humanoid social robot’s face, Ryan.  
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 The videos of facial expressions were obtained from the MMI database [6]. The 

videos were then cropped and scaled to remove the extra part of images. All the 

expressions in the videos were demonstrated with 100% intensity, starting from neutral 

expression, and progressing to 100% intensity level. All the videos ended with the last 

frame staying on the screen. Since the second study did not show any effect of 

background in 100% intensity and in this study all the imitation materials are presented 

with 100% intensity, we did not use any of the thematic backgrounds in this study, so the 

videos were the same videos used in the second study without thematic backgrounds 

integrated with them. We used the last frame of each video as the image of that 

expression. Additionally, we used the humanoid social robot, Ryan, to demonstrate the 

expressions on its face. Figure 5-1 shows the images and the last frame of videos for 

facial expressions. Figure 5-2 shows the facial expression demonstrated by Ryan.  

 

Fig 5-1. Four basic facial expression. Left to right) disgust, fear, happiness, sadness, [61] 

 

  

Fig 5-2. Expression demonstrated by Ryan. Left to right) disgust, fear, happiness, sadness 
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5.2.2 Reinforcement Learning Algorithm Parameters  

 The goal of our RL is using the human robot interaction to find the effective 

method in terms of performance and preference of each individual for each expression 

and adjust the session based on the gained information from the interacting with the 

participant. For this application we choose temporal difference method because first, 

there is not any available model of the interaction between the participant and the robot 

prior to the study, second, the session needs to be updated online based on the gained 

information and reward during the interaction.  

 During the interaction the algorithm should update the policy based on the gained 

reward. We define the reward function as the integration of imitation performance and 

the participant’s preference with given priority to the imitation performance score. It 

says, we defined two scores. The first score is the imitation score ( 𝑟𝑖) given by a human 

supervisor based on how well the expression is imitated. The score range for the imitation 

score is defined as follow: -1 for not imitation, 0 for poor imitation, 1 for average 

imitation and 2 for good imitation. The second score is the preference score ( 𝑟𝑝)  which 

is given by the participants which is defined as follow: 0 if they do not like the expression 

presentation and 1 if they like the expression presentation. The formulated reward (T 

based on these two scores is defined as below: 

𝑟 = [𝑟𝑖 + 𝑟𝑝 ∗
(𝑟𝑖+1)

3
 ] ∗ 10    (5.2.1) 

this formulation sums the imitation reward and the scaled preference reward based on the 

imitation score. It says, if the imitation score is higher the effect of preference is taken 
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more into account, otherwise, if there is poor imitation the effect of preference is 

decreased.  

 For this application, we prefer SARSA over Q-learning because we expect the 

agent to follow exact policy and take into account all the gained rewards (including 

negative rewards) and adjust the session and the policy accordingly based on the gained 

rewards. In order to avoid over-exploration and to converge to steady choices at the end 

of the session we manually tune the ϵ parameter for ϵ-greedy algorithm.  Therefore, we 

used the SARSA equation 5.1.5 to update the state-action value function in this 

application we define the expressions as the states and the methods as the actions taken in 

each of the states (i.e. in total 4 states and 3 actions). During the experiments, we choose 

the states randomly with uniform distribution so that participants will be equally expose 

to all the expressions. The algorithm chooses the actions for each state, based on 

exploration or exploitation, it either can discover new actions or can continue with the 

action that has the highest reward based on its current information.  

 The stop criterion is the number of iterations (72) that is set based on some 

simulation results. This number of iteration seems to be enough for the algorithm to 

explore and decide for the most optimal policy, as well as, not over-tiring the participants 

during the session. The iterations were divided to four sections. The first section is the 

initialization part (including 13 iterations) which displays all the stats and the actions in a 

sequence to the participants to make them familiar with the experiment and to make sure 

all the state-action pairs have been visited and gained a reward at least once. This 

approach needs to be taken due to low number of iterations otherwise some of the state-
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action pairs might remain unseen through the interaction. the second section includes 12 

iterations with 0.5-greedy algorithm allowing for high exploration. Each of the remaining 

two sections include 24 iterations and are 0.25-greedy and 0.1-greedy respectively.  

 We set the α parameter to one. Although in most studies it is preferred to decay 

the learning rate (α) toward the end of the experiment, in this setup due to nature of the 

study we prefer to keep α constant to be able to detect any changes in the reward function 

at any point of the study. In this design, each of the states are generated randomly and 

they are independent. So, each of the expressions updates their own state-action function, 

and the only connection they have is the impact of the participants. Due to independence 

of the expressions we are interested in immediate reward rather than future rewards, 

therefore, we set the discount factor to a low number, 0.2, to discount the future rewards 

and only allow the compensation for the impact of expression of each other and on the 

dynamic of the session.  

 Before running the real application, we tested all the parameters using simulation. 

We set the rewards to different values and observed the results of simulation to tune the 

parameters finely and decide about the best reward formulation. Observing the simulation 

results it was the most important for us that with set of parameters the algorithm can 

make the different actions distinguishable.  

For the pilot study, we recruited two ASD participants. A 13-year-old female and 

a 13-year-old male participant both with formal diagnosis of ASD. An IRB approval was 

obtained for this study and all the participants and their parents signed a consent form. 

The study was conducted in the social robotics laboratory at the University of Denver. 
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The session started with Ryan greeting the participants and explaining about the study. A 

researcher was present in the room to score the facial expression imitations demonstrated 

by participants. Then the facial expression materials were displayed with different 

methods based on the different phase of the RL algorithm. The expressions were 

displayed either on the robot’s face or in the form of video or image on the tablet on 

Ryan’s chest. Before each expression displayed the researcher told the participants where 

to look. After each expression the researcher asked the participant to imitate that and state 

if he/she liked the method or not. The session finished when the algorithm reached the 

72th iteration and Ryan appreciated the participant’s effort and time.  

 5.3 Results and Discussion 

 As discussed before, a SARSA algorithm considers all the gained rewards 

(including the negative reward) to update the policy. In the exploration phase the 

algorithm faces state-action pairs that result to negative rewards (e.g. in our case “no 

imitation” results to large negative reward). Considering this fact, one of the methods to 

examine a successful SARSA is to investigate the value function. Figure 5-3 shows the 

average accumulative state-action value function for the all states and the actions. Despite 

the low number of iterations and the exploratory moves, the algorithm successfully 

increased accumulative rewards for each of the participants, which explains the success 

of the algorithm in finding the effective methods and adapt the session based on those. 

Figure 5-3 demonstrates the accumulative average state-action value function over the 

iterations for each of the participants. Figure 5-4 demonstrate the accumulative average 

state-action value function over the iteration for each of the expressions.  
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Fig 5-3. The accumulative average state-action value function (Q-function) subject A (left) subject B (right) 

 

 

 

Fig 5-4. The accumulative average state-action value function (Q-function) for each expression 
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As mentioned earlier the goal of this study was to design and use an adaptive 

human robot interaction in a facial expression imitation session to study the effect of 

different method and to see if the RL algorithm is able to detect and address these 

differences based on rewards and feedbacks received from each individual. To answer 

these questions, we examine the state-action value function for each expression-method 

combination.  

Figure 5-5 shows the exact value of state-action value function at the end of each 

quadruple section (i.e. initialization, 0.5-greedy, 0.25-greedy and 0.1-greedy) for each of 

the methods. And the number above each line shows that how many times that method 

was used during the next section. 
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Fig 5-5. Policy adjustment for each expression based on the gained reward, Subject A (left) subject B (right) 
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Figure 5-5 demonstrates how the algorithm reacts to positive and negative 

rewards given by the participants and the researcher. The first section (i.e. up to 13th 

iteration) is the initialization phase and common between all the expressions, after this 

phase, the next two phases spend respectively, half of the time and one-fourth of the time 

exploring and the rest of the time following the optimal policy based on the Q-function 

values available up to that point. In the last phase which is less exploratory we expect the 

algorithm behaves more accordingly based on the Q-function values, which is exactly 

what the graphs are demonstrating.  

An interesting phenomenon happens in Figure 5-5 for Subject B in sadness 

expression. Right before the last phase (48th iteration), the video Q-value is much higher 

than the robot Q-value; however, the algorithm repeats the robot action twice while it 

repeats the video action just once. We explored the reason for this phenomenon by 

looking the closer look at the data. In the 49th iteration the combination of sadness-video 

happens and due to receiving a lower reward, the new update of Q-function drops the Q-

value of this combination to one, then a combination of sadness-robot happens in the 52nd 

iteration which seems to be an exploratory move. This combination receives a high 

reward resulting the algorithm to choose this combination for the next turn of sadness 

expression. Another phenomenon is observed in the last phase for Subject B in disgust 

expression. The performance drops no matter which method is used. The algorithm seems 

to choose the most optimal action, which is the image with less drop compared to video. 

One of the reasons that all the actions receive negative rewards for the disgust expression 

might be due to exhaustion of the subject. 
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We ware were able to observe these effects because the learning rate was set to 

one so we can detect any changes even toward the end of the session where the algorithm 

is less exploratory. In contrast to many RL studies, the state-action value function (i.e. Q-

function) for this application does not reach to a steady number and sudden changes are 

detected at any point of the session. For our purpose it is not a drawback because we want 

to adapt the session based on the participants’ performance and preferences at any time of 

the session and recognize the meaningful behavioral patterns of participants. For 

example, we can explain that the sudden drop of the Q-values for Subject B in all the 

expressions except happiness is due to exhaustion or losing the motivation toward the end 

of the study which matches to the Subject’s mood and comments observed by the 

researcher. Additionally, the sudden increase of the value function for the sadness-robot 

combination can be an indicator that the subject started feeling more comfortable with the 

robot toward the end of the session, which could not be detectable using a usual setting. 

Looking at Figure 5-5, we can observe each participant had different performance 

and preference in imitating facial expressions in response to different methods. These 

differences are not only obvious between the participants, but also obvious among the 

expressions for each participant. All of the differences and changes were successfully 

discovered by the algorithm and the session was accordingly adjusted and customized for 

each of the participants based on their performance.  

Figure 5-6 demonstrates the raw imitation score for each participant and each 

expression, given by a researcher.  



  54 

  

  

  

0

0.2

0.4

0.6

0.8

1

1.2

1 2 6 10141622232736515455596369

Im
it

at
io

n
 S

co
re

Iteration

Happiness Imitation Score (Subject A)

0

0.2

0.4

0.6

0.8

1

1.2

1 6 25 44 47 50 58 63 69 73

Im
it

at
io

n
 S

co
re

Iteration

Happiness Imitation Score (Subject B)

0

0.2

0.4

0.6

0.8

1

1.2

3 7 11 17 31 33 45 47 52 53 58 60 62 64 71

Im
it

at
io

n
 S

co
re

Iteration

Sadness Imitation Score (Subject A)

0

0.2

0.4

0.6

0.8

1

1.2

3 7 1114151719222930343743495267

Im
it

at
io

n
 S

co
re

Iteration

Sadness Imitation Score (Subject B)

0

0.2

0.4

0.6

0.8

1

1.2

4 12 18 21 29 32 44 56 68

Im
it

at
io

n
 S

co
re

Iteration

Disgust Imitation Score (Subject A)

0

0.2

0.4

0.6

0.8

1

1.2

4 12 20 28 35 40 51 56 65 71

Im
it

at
io

n
 S

co
re

Iteration

Disgust Imitation Score (Subject A)



  55 

   

Fig 5-6. Imitation scores for each expression, Subject A (left) subject B (right) 
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Chapter 6 Conclusion and Future Work Direction 

 

6.1 Conclusion 

 

This thesis consists of three studies on facial expression recognition and imitation 

by children with ASD. The pilot study on facial expression recognition using Ryan, 

presented a comparative pilot study on how children diagnosed with ASD compared to 

their TD peers can recognize expressions demonstrated by a rear-projected humanoid 

robot. It also presented the effect of using different intensities on the expression 

recognition accuracy. It showed in a group of 12 participants, there was no significant 

impairment in the ASD group compared to the TD group in recognizing the basic facial 

expressions on average. Moreover, a strong impairment for both groups was found in 

recognizing fear and disgust. Additional analysis of the results showed that increasing the 

intensity from 25% to 50% and to 75%, significantly affected the expression recognition 

accuracy in both groups. 

One lesson learned from this research is that a general assumption of impairment 

in expression recognition for children with ASD should not be assumed when designing 

SAR-based therapies for them. It says the robots used for Autism therapy can be the same 

as the robots for TD children, in terms of facial expressions complexities. The robots for 

children need to have more clarity on fear and disgust expressions because both groups 
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seem to confuse these two expressions with other expressions especially in lower 

intensities. The findings of this study therefore support the results of other studies such as 

[23] that have shown individuals with ASD are overall successful in matching 

expressions in still images. Also, the capability of Ryan to successfully convey all the six 

basic facial expressions and its potential to be used in future studies of SAR was 

investigated. Furthermore, this study did not observe any significant expression 

misrecognition due to defective or confusing expression demonstration by Ryan. A study 

[69] that used the same setup for TD adults showed that the recognition accuracy of 

disgust and fear is not significantly different from other expressions. Therefore, in this 

study we can conclude that fear and disgust expressions are less recognized due to 

difficult nature of the expressions.  Moreover, Ryan provides flexibility to redesign and 

customize facial expressions, from simplistic non-sophisticated expressions to nearly 

realistic human-like expressions, which make it a great choice for further SAR studies. 

The result of this study is similar to another facial expression recognition study [42] using 

humanoid robot, Zeno.  

The study on facial expression recognition using thematic backgrounds focused 

on how children diagnosed with ASD compared to their TD peers recognize facial 

expressions integrated with thematic backgrounds. A set of facial expression videos with 

six basic expressions, five intensity levels and nine different background images in three 

categories was presented to 12 participants. As expected in the first hypothesis, we found 

that the ASD group showed lower performance than the TD children on average. In the 

ASD group, sadness had the lowest recognition accuracy, whereas in the TD group fear 
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was the least recognized expression. Additional analyses showed that increasing the 

intensity from 20% to 40% significantly affected expression recognition accuracy in both 

groups, which supports the second hypothesis. Moreover, in partial support of the third 

hypothesis the study found the different effect of negative and positive backgrounds in 

both groups in fear and sadness expressions with the intensity of 20%. However, the 

effect was not significantly different between groups and was not visible for all the 

expressions, which does not fully support the third hypothesis. Finally, the effect of 

background happened at 20% intensity, which was anticipated as the fourth hypothesis. 

This study was able to find differences in overall performance between the groups 

and the effect of intensity; therefore, the lack of significance between an effect of context 

on each group cannot seem meaningful. It shows that children with ASD used the 

background to inform their expression judgments in the same manner as TD kids.  

Additionally, the effectiveness of negative backgrounds was more visible because there 

are more negative expressions that are consistent with the negative backgrounds. 

Whereas, it is hard to find the effect of positive backgrounds on the consistent positive 

expression (i.e. happiness) because the recognition is perfect. Briefly, it is not the 

negative nature of the negative backgrounds that is important; it is the congruency 

between the background and the expression that matters. 

The effectiveness of background is visible only when the intensity is low (i.e. 

20%) and the expressions is less recognizable; it shows the importance of the effect of 

intensity.  In this study, all of the children could easily understand the instructions 

provided by Ryan and could conveniently follow the robot. The children occasionally had 
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questions for Ryan (i.e. the robot’s age or favorite activity) that is, an indicator of 

showing interest towards the robot. 

Finally, the last study explored the effect of using a RL-based active learning in 

human robot interaction to identify and adapt based on the individual differences in 

expression imitation in response to different facial expression presentation methods. Four 

facial expressions (i.e. disgust, fear, happiness and sadness) were presented with three 

different methods (i.e. image, video and robot) to be imitated. One female (Age = 13) 

with ASD and one male (Age = 13) with ASD participated in this study. The result of this 

pilot study showed individuals with ASD have different performance and preference in 

response to different methods of presenting the facial expressions. It showed each 

individual perform differently and for one individual, the effective method(s) are 

different for each of the expressions.  

  In this study we observed that a flexible RL method is able to learn the 

individual differences and adjust the session based on the findings through interaction 

with the environment. The algorithm in this study was specially designed to detect any 

changes even in the last phase of the session. It allows for more knowledge on every 

aspect of individual’s preferences. One important lesson from this study is that different 

setups and materials result to different outcome for individuals, therefore, in designing 

human robot interaction session it is important to consider individual’s differences and 

preferences to gain the best result. The result of this research is three papers listed as 

below: 
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1. Askari, Farzaneh, Huanghao Feng, Timothy D. Sweeny, and Mohammad H. 

Mahoor. "A Pilot Study on Facial Expression Recognition Ability of Autistic 

Children Using Ryan, A Rear-Projected Humanoid Robot." (RoMan 2018). 

2. Askari, Farzaneh, Abdollahi, Hojjat, Timothy D. Sweeny, and Mohammad H. 

Mahoor. “A Study on the Effect of Thematic Background on Facial Expression 

Recognition in Children with Autism Spectrum Disorder.” (FG 2019) -submitted 

3. Askari, Farzaneh, Abdollahi, Hojjat, Timothy D. Sweeny, and Mohammad H. 

Mahoor. “Adaptive Socially Assistive Robotic for Children with Autism Using 

Reinforcement Learning.” (IROS 2019) -under preparation 

6.2 Future Work Direction 

Finally, the feature work direction would be recruiting more participants to run a 

more precise and extensive facial expression recognition study using different methods of 

presenting facial expressions (i.e. images, video, robot) to address facial expression 

recognition deficiency in children with ASD and to compare the results of different 

methods. Additionally, more ASD participants can be recruited for the adaptive human-

robot interaction study as well as TD participants to compare both groups. Also, other 

methods of scoring the facial expression imitations can be used to improve the results and 

look more deeply into the facial expression imitation baselines too. Finally, we can 

improve the RL study by adding another state that takes care of participants’ motivation. 

This state happens when the average total reward drops drastically in numerous 

consecutive iterations which are a sing of low motivation or exhaustion.  
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This state will be dedicated to increase the subjects’ motivation by using methods such as 

a conversation between the subject and Ryan.  
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