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Abstract

We present dual variants of two algebraic constructions of certain classes of

residuated lattices: The Galatos-Raftery construction of Sugihara monoids and their

bounded expansions, and the Aguzzoli-Flaminio-Ugolini quadruples construction

of srDL-algebras. Our dual presentation of these constructions is facilitated by

both new algebraic results, and new duality-theoretic tools. On the algebraic front,

we provide a complete description of implications among nontrivial distribution

properties in the context of lattice-ordered structures equipped with a residuated

binary operation. We also offer some new results about forbidden configurations

in lattices endowed with an order-reversing involution. On the duality-theoretic

front, we present new results on extended Priestley duality in which the ternary

relation dualizing a residuated multiplication may be viewed as the graph of a partial

function. We also present a new Esakia-like duality for Sugihara monoids in the

spirit of Dunn’s binary Kripke-style semantics for the relevance logic R-mingle.
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Chapter 1

Introduction

In the mathematical study of reasoning, algebraic logic is among the dominant

paradigms in part because it provides a powerful framework for comparing diverse

propositional logical systems. When algebraization of a propositional logic is achiev-

able, it reifies the logic by interpreting it in terms of tangible algebraic structures,

providing semantic content. This process often represents a vast simplification of the

logic, effectively permitting us to ignore much of the syntactic complexity of formal

reasoning and thereby see important features that would have otherwise remained

obscure. Surprisingly, many interesting fine-grained distinctions survive this simpli-

fication, at least in well-behaved cases. For instance, an algebraizable propositional

logic is so closely bound to its equivalent algebraic semantics (see [5]) that its lat-

tice of axiomatic extensions is dually-isomorphic to the lattice of subvarieties of its

algebraic semantics.

Perhaps even more impressively, the metalogical properties of a propositional

logic may often be faithfully recast in terms of its algebraic semantics. For one

well-known example: Under appropriate technical hypotheses, a logic possesses the

interpolation property if and only if its equivalent algebraic semantics has the amal-
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gamation property (see [16]). Significantly, the amalgamation property is a categor-

ical property: It depends only on the ambient category of algebraic structures and

not on any internal features of the algebras (not even those as seemingly intrinsic to

the setting as their type). This underscores the importance of categorical properties

of logics’ algebraic semantics, and in particular relationships among such categories.

This thesis is about such relationships, especially those that present themselves

as algebraic constructions connecting one kind of algebraic semantics to another.

Often these constructions give categorical equivalences between varieties of logic

algebras, and often these constructions are spectacularly complicated. The leitmotif

of the present work is the repackaging of this complexity so as to reveal hidden

aspects of constructions on algebras of logic. Sometimes we achieve this aim by

purely algebraic means (e.g., in Chapter 5). More often, we rely on topological dual-

ities for lattice-based algebras to recast constructions in more pictorial and trans-

parent terms. Among other benefits, topological dualities afford representations of

algebraic structures that inform our analysis of the algebras themselves. Sometimes

the insight contributed by dual representations of algebras allows us to simplify

their theory in a manner that implicates new duality-theoretic results, initiating a

mutually-supporting feedback loop between algebraic analysis and duality theory.

We sketch our work as follows. Chapter 2 introduces the algebraic environment

in which we will work in the following chapters, in particular setting out needed

background on residuated lattices and lattices with involution (aka i-lattices). The

former provide the equivalent algebraic semantics for substructural logics, whereas

the latter provide a general and flexible framework for thinking about negation in

nonclassical logic.1 Residuated lattices and i-lattices are married in our discussion

1Although we will neglect the syntactic aspects of the logics corresponding to these classes of
algebras, it is nevertheless conceptually valuable to think of them in logical rather than purely
algebraic terms.
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of involutive residuated lattices, and we also discuss two classes of negation-bearing

residuated structures (i.e., Sugihara monoids and srDL-algebras) that will provide

case studies for later work. In addition to providing an exposition of the theory

of these algebras, Chapter 2 offers some new results about varieties of residuated

structures satisfying certain distributive laws (see Section 2.1.1), as well as some new

results regarding forbidden configurations in lattices with involution (see Section

2.2.1).

Chapter 3 offers background material on duality theory. This includes an intro-

duction to natural dualities, as well as generalities regarding the more classical

Stone-Priestley and Esakia dualities for distributive lattices and Heyting algebras.

We also discuss extended Stone-Priestley duality, an augmentation of Stone-Priestley

duality that accounts for the addition of residuated operations and involution.

Almost all of this chapter consists of well-known preliminary material, but Sections

3.3 and 3.4.1 provide new results regarding the omission of lattice bounds from the

algebraic signature. This provides a natural duality for distributive i-lattices satis-

fying the normality condition x^ x ď y_ y, as well as a duality for bottom-free

reducts of monoidal t-norm based logic algebras (aka GMTL-algebras).

Chapter 4 explores the phenomenon of functionality in the context of extended

Stone-Priestley duality. Although residuated operations are typically presented on

dual spaces by a ternary relation, under appropriate hypotheses this ternary relation

may be interpreted as a partial binary operation. This is the case in the context of

Sugihara monoids and srDL-algebras, for example, and we lay out some of the theory

of functional extended Stone-Priestley duality for the pertinent classes of algebras.

We also provide a more abstract treatment of the functionality phenomenon, working

in the canonical extension of certain distributive lattices with operators in order to

obtain a new perspective. The results of this chapter come from the author’s [26, 27].

3
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Figure 1.1: Various equivalences among the categories in the vicinity of bounded
Sugihara monoids SMK.

Chapter 5 inaugurates our effort to use previous chapters’ duality-theoretic

machinery to simplify constructions. This chapter recalls the Galatos-Raftery con-

struction [30, 31] of Sugihara monoids (i.e., idempotent distributive commutative

residuated lattices with a compatible involution) from certain enriched relative Stone

algebras (i.e., semilinear residuated lattices where multiplication coincides with the

lattice meet). Together with the two following chapters, Chapter 5 offers a presen-

tation of the Galatos-Raftery construction on certain structured topological spaces.

This dual variant of the Galatos-Raftery construction implicates both the Davey-

Werner duality for normal distributive i-lattices, as well as the extended Priestley

duality specialized to Sugihara monoids (or, more precisely, their bounded expan-

sions). The web of categories tied together by the Galatos-Raftery construction, its

dual, and these topological dualities provides a multifaceted description of categories

providing semantics for the relevance logic R-mingle, as equipped with Ackermann

constants (see Figure 1.1). Chapter 5 contributes to this project through algebraic

work that simplifies the Galatos-Raftery construction, anchoring it in representa-

tions tailored to accentuate the i-lattice structure of Sugihara monoids. This is

necessary preprocessing for the duality-theoretic applications in subsequent chap-

ters. These results originally appeared in the author’s [24].
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Chapter 6 introduces a new duality for Sugihara monoids that is focused on their

i-lattice structure. This duality shares much in common with Esakia’s celebrated

duality for Heyting algebras [21], and is obtained by restricting the Davey-Werner

duality for i-lattices to those i-lattices that appear as reducts of Sugihara monoids.

The duality of this chapter provides the diagonal of Figure 1.1, and it originally

appears in the author’s [24].

Chapter 7 utilizes the results of Chapters 5 and 6 to provide our dual variant

of the Galatos-Raftery construction. This dual variant is vastly more transparent

and pictorial than its algebraic counterpart, and completes our study of Sugihara

monoids. The results of this chapter come from [24].

Moving from Sugihara monoids to our second case study, Chapter 8 provides

a dual variant of the Aguzzoli-Flaminio-Ugolini construction [1] of large classes of

monoidal t-norm logic algebras from their Boolean skeletons and radicals. The dual

construction shares much in common with our dual variant of the Galatos-Raftery

construction, and makes plain conceptual similarities between the two constructions.

Moreover, our dual variant of the Aguzzoli-Flaminio-Ugolini construction reveals

hidden aspects of the order-theoretic structure of the algebraic version of the con-

struction, while presenting the monoidal/residuated content of the construction in

a much simpler fashion. This work is drawn from the author’s [27].
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Chapter 2

Residuated algebraic structures

This preliminary chapter lays out background regarding the algebraic structures

pertinent to the work to follow. Much of the material presented here is folklore, and

will be summarized without proof. For a more leisurely presentation of the theory

of residuated structures, we refer the reader to the standard monograph [29] (but

see also [8], which provides a different perspective).

We strive to make our treatment as self-contained as possible, but presume

familiarity with the elements of lattice theory and universal algebra. For general

information on these subjects, we refer to the texts [18], [7], and [9]. Our results are

often framed in the language of category theory, information on which may be found

in [3] and [43]. We defer providing background on duality theory until Chapter 3.

Although the primary purpose of this chapter is to recall preliminaries, some

material is new. The results on distributive laws in Section 2.1.1 are the author’s

own [25], as are the results on forbidden configurations in i-lattices in Section 2.2.1.

In these cases, we offer a more thorough discussion and furnish proofs where relevant

and informative.
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2.1 Residuated structures

A residuated binar2 is an algebra pA,^,_, ¨, z, {q of type p2, 2, 2, 2, 2q, where

pA,^,_q is a lattice, and for all x, y, z P A,

y ď xzz ðñ x ¨ y ď z ðñ x ď z{y.

The latter demand is often called the law of residuation. When ¨ is a binary operation

on some lattice, ¨ is said to be residuated when there exist binary operations z and

{ for which the law of residuation holds. The division operations z and { are called

the residuals of the multiplication ¨.

In order to promote readability, we often abbreviate x ¨ y by xy. We will also

adopt the convention that ¨ binds more strongly than z, {, which in turn bind more

strongly than ^,_.

Proposition 2.1.1. [29, Theorem 3.10] Let A “ pA,^,_, ¨, z, {q be a residuated

binar.

1. Multiplication preserves existing joins in each argument, i.e., if X,Y Ď A and

Ž

X and
Ž

Y exist, then

ł

X ¨
ł

Y “
ł

txy : x P X, y P Y u.

2. Divisions preserve all existing meets in the numerator, and convert all existing

joins in the denominator to meets, i.e., if X,Y Ď A and
Ž

X,
Ź

Y exist, then

for any z P A each of
Ź

xPX xzz,
Ź

xPX z{x,
Ź

yPY zzy, and
Ź

yPY y{z exists

2A binar is a set equipped with a binary operation. Binars are also commonly called groupoids
or magmas.
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and

zzp
ľ

Y q “
ľ

yPY

zzy, p
ľ

Y q{z “
ľ

yPY

y{z.

p
ł

Xqzz “
ľ

xPX

xzz, z{p
ł

Xq “
ľ

xPX

z{x.

3. xzz “ maxty P A : xy ď zu and z{y “ maxtx P A : xy ď zu

Remark 2.1.2. Proposition 2.1.1 has a partial converse. Specifically, if pA,^,_q is

a complete lattice endowed with an additional binary operation ¨, then ¨ is residuated

provided that it distributes over arbitrary joins in each coordinate. For finite lattices

(and somewhat more generally), it suffices for ¨ to distribute over binary joins.

The following is an easy consequence of Proposition 2.1.1.

Proposition 2.1.3. [29, Corollary 3.14] Let A “ pA,^,_, ¨, z, {q be a residuated

binar. Then ¨ is isotone in each coordinate, and z and { are isotone in their numer-

ators and antitone in their denominators. Moreover, A satisfies the following iden-

tities.

p¨_q xpy _ zq “ xy _ xz.

p_¨q px_ yqz “ xz _ yz.

pz^q xzpy ^ zq “ xzy ^ xzz.

p^{q px^ yq{z “ x{z ^ y{z.

p{_q x{py _ zq “ x{y ^ x{z.

p_zq px_ yqzz “ xzz ^ yzz.

Observe that the law of residuation is not prima facie an equational condition.

However, one may show that residuated binars form a finitely-based variety.

8



Residuated binars need not have a multiplicative neutral element. If A is a

residuated binar with a multiplicative neutral element e, we say that an expansion of

A by a constant designating e is unital. If A is a residuated binar with multiplicative

neutral element e, then we say that A is integral if it satisfies x ď e. The following

gives some properties of integral residuated binars.

Proposition 2.1.4. [29, see, e.g., Lemma 3.15] Let A be an integral residuated

binar with multiplicative neutral element e. Then A satisfies the following identities.

1. xy ď x^ y.

2. y ď xzy.

3. x ď x{y.

4. xzx “ x{x “ e.

A residuated binar may also lack universal bounds with respect to its underlying

lattice order. However, if A is a residuated binar with least element K, then A

satisfies the equations x ¨ K “ K ¨ x “ K. Consequently, A also has a greatest

element J and J “ KzK “ K{K. We refer to an expansion of a residuated binar

by a constant designating a least element K as a bounded residuated binar. Note

that bounded residuated binars are term-equivalent to the expansions of residuated

binars by constants designating both least and greatest elements.

We say that an expansion of a residuated binar A “ pA,^,_, ¨, z, {q is modular,

distributive, complemented, or Boolean provided that pA,^,_q is. Likewise, we say

that A is commutative, associative, or idempotent provided that pA, ¨q is. Note

that if A is a commutative residuated binar, then A satisfies xzy “ y{x. In this

event, we denote the common value of xzy and y{x by x Ñ y. For commutative

residuated binars, we work with the term-equivalent signature involving the single

binary operation Ñ rather than z and {.

9



We will call an associative residuated binar a residuated semigroup. Unital resid-

uated semigroups are called residuated lattices, and comprise the most important

and thoroughly-studied class of residuated structures. We will return to residuated

lattices in Section 2.3.

If K is a class of similar algebras with lattice reducts, we say that A P K is

K-semilinear if A is a subalgebra of a product of linearly-ordered algebras in K,

and if K is clear from context we simply say that A is semilinear. Since chains are

distributive lattices, the lattice reduct of a semilinear algebra is always distributive.

2.1.1 Distributive laws

Owing to Proposition 2.1.1 and Remark 2.1.2, one may think of the law of

residuation as articulating a kind of strong distributive property. However, neither

lattice distributivity nor any of the identities

xpy ^ zq “ xy ^ xz p¨^q

px^ yqz “ xz ^ yz p^¨q

xzpy _ zq “ xzy _ xzz pz_q

px_ yq{z “ x{z _ y{z p_{q

px^ yqzz “ xzz _ yzz p^zq

x{py ^ zq “ x{y _ x{z p{^q

hold in the variety of residuated binars (cf. the distributive laws in Proposition

2.1.3). Blount and Tsinakis showed in [6] that in a residuated lattice satisfying

10



distributivity at e, viz.

px_ yq ^ e “ px^ eq _ py ^ eq,

the equations e ď x{y_y{x, p{^q, and p_{q are equivalent. Likewise, in the presence

of distributivity at e, the equations e ď yzx _ xzy, p^zq, and pz_q are equivalent.

Semilinear residuated lattices satisfy all of these nontrivial distributive laws, but a

residuated lattice may satisfy all six of these identities but fail to be semilinear (this

is true of lattice-ordered groups, for example).

The goal of this section is to understand inferential relationships among these

six nontrivial distributive laws, a typical instance of which is given in the following.

Proposition 2.1.5. Let A be a distributive residuated binar. Then if A satisfies

both p_{q and p^zq, A also satisfies pz_q.

Proof. Note that p^zq is equivalent to the identity

px^ yqzpz ^ wq ď xzz _ yzw,

whereas pz_q is equivalent to the identity

px_ yqzpz _ wq ď xzz _ yzw.

Let u ď px _ yqzpz _ wq. Then by residuation x, y ď x _ y ď pz _ wq{u, and by

p_{q we have x ď z{u_w{u and y ď z{u_w{u. Observe that x “ x^ pz{u_w{uq

and y “ y ^ pz{u _ w{uq, and by distributivity we obtain that x “ x1 _ x2 and

y “ y1 _ y2, where

x1 “ x^ pz{uq,

x2 “ x^ pw{uq,

11



y1 “ y ^ pz{uq,

y2 “ y ^ pw{uq.

Note that

x1 ď z{u ùñ u ď x1zz ď px1 ^ y2qzz,

x2 ď w{u ùñ u ď x2zw ď px2 ^ y1qzw,

y1 ď z{u ùñ u ď y1zz ď px2 ^ y1qzz,

y2 ď w{u ùñ u ď y2zw ď px1 ^ y2qzw.

Hence u ď px1^y2qzpz^wq ď x1zz_y2zw and u ď px2^y1qzpz^wq ď x2zz_y1zw.

Also, u ď x1zz ď x1zz _ y1zw and u ď y2zw ď x2zz _ y2zw. This implies that:

u ď px1zz _ y2zwq ^ px2zz _ y1zwq ^ px1zz _ y1zwq ^ px2zz _ y2zwq

“ ppx2zz ^ x1zzq _ y1zwq ^ ppx1zz ^ x2zzq _ y2zwq

“ px1zz ^ x2zzq _ py1zw ^ y2zwq

“ px1 _ x2qzz _ py1 _ y2qzw

“ xzz _ yzw.

This proves the claim.

Along the same lines, we obtain the following.

Proposition 2.1.6. Let A be a distributive residuated binar.

• If A satisfies both pz_q and p{^q, then A also satisfies p_{q.

• If A satisfies both p¨^q and p_{q, then A also satisfies p{^q.

• If A satisfies both p^¨q and pz_q, then A also satisfies p^zq.

12



• If A satisfies both p^zq and p¨^q, then A also satisfies p^¨q.

• If A satisfies both p{^q and p^¨q, then A also satisfies p¨^q.

Remark 2.1.7. The previous results were originally proven by passing to equivalent

first-order conditions on dual structures via the Ackermann Lemma based algorithm

(ALBA) (see, e.g., [15]). This foreshadows the utility of the duality theory discussed

in Chapter 3. However, we shall not take a detour into first-order correspondence

theory here.

Proposition 2.1.8. Propositions 2.1.5 and 2.1.6 give the only implications among

the six nontrivial distributive laws.

Proof. We define residuated binars Ai for i P t1, 2, 3, 4, 5, 6u, each of whose lattice

reduct is the four-element Boolean algebra tK, a, b,Ju, where K ă a, b ă J. Tables

for ¨, z, { are given below. For A1:

¨ K a b J

K K K K K

a K K K K

b K K J J

J K K J J

z K a b J

K J J J J

a J J J J

b b b b J

J b b b J

{ K a b J

K J J b b

a J J b b

b J J b b

J J J J J

For A2:

¨ K a b J

K K K K K

a K K K K

b K a b J

J K a b J

z K a b J

K J J J J

a J J J J

b K a b J

J K a b J

{ K a b J

K J a a a

a J J a a

b J a J a

J J J J J
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For A3:

¨ K a b J

K K K K K

a K K a a

b K K b b

J K K J J

z K a b J

K J J J J

a a J a J

b a a J J

J a a a J

{ K a b J

K J J K K

a J J a a

b J J b b

J J J J J

For A4:

¨ K a b J

K K K K K

a K a K a

b K a K a

J K a K a

z K a b J

K J J J J

a b J b J

b b J b J

J b J b J

{ K a b J

K J K J K

a J J J J

b J K J K

J J J J J

For A5:

¨ K a b J

K K K K K

a K a a a

b K K K K

J K a a a

z K a b J

K J J J J

a K J K J

b J J J J

J K J K J

{ K a b J

K J b b b

a J J J J

b J b b b

J J J J J
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For A6:

¨ K a b J

K K K K K

a K K b b

b K b K b

J K b b b

z K a b J

K J J J J

a a a J J

b b b J J

J K K J J

{ K a b J

K J a b K

a J a b K

b J J J J

J J J J J

One may check by direct computation that

• A1 |ù p{^q, p^zq, p^¨q, p¨^q and A1 |ù pz_q, p_{q.

• A2 |ù pz_q, p^zq, p^¨q, p¨^q and A2 |ù p_{q, p{^q.

• A3 |ù p_{q, p{^q, p^¨q, p¨^q and A3 |ù pz_q, p^zq.

• A4 |ù p_{q, pz_q, p{^q, p¨^q and A4 |ù p^zq, p^¨q.

• A5 |ù p_{q, pz_q, p^zq, p^¨q and A5 |ù p{^q, p¨^q.

• A6 |ù p_{q, pz_q, p{^q, p^zq and A6 |ù p¨^q, p^¨q.

For each σ P tp_{q, pz_q, p{^q, p^zq, p^¨q, p¨^qu, there is a unique implication in

Proposition 2.1.5 or 2.1.6 having σ as its consequent. Let σ1, σ2 be equations in the

antecedent of the aforementioned implication. Then the above countermodels show

that if σ R Σ Ď tp_{q, pz_q, p{^q, p^zq, p^¨q, p¨^qu and either σ1 R Σ or σ2 R Σ,

then σ is not an equational consequence of Σ. This suffices to prove the claim.

The presence of complements and a neutral element in a residuated binar can

have a profound impact on whether it satisfies any of the six nontrivial distributive

laws, a stark example of which is illustrated by the following lemma.
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Lemma 2.1.9. Let A be a complemented residuated binar with neutral element e.

If A is integral, then ^ and ¨ coincide.

Proof. From the fact that A is integral, we have that x ¨ y ď x^ y for all x, y P A.

Consequently, for any x P A we have that x ¨ x1 ď x ^ x1 “ K, where x1 denotes

a complement of x. On the other hand, because the neutral element e is the top

element of A we also have that x_x1 “ e for any x P A. Multiplying by x and using

p¨_q, we obtain x “ x ¨ e “ x ¨ px_ x1q “ x2 _ x ¨ x1 “ x2 _ K “ x2. It follows that

A is idempotent, whence for any x, y P A, x^ y “ px^ yq ¨ px^ yq ď x ¨ y ď x^ y,

i.e., x ¨ y “ x^ y.

The above entails that the only complemented integral residuated binars are

Boolean algebras, and hence satisfy all six nontrivial distributive laws as well as

lattice distributivity. Moreover, it turns out that the satisfaction of non-trivial

distribution laws also often forces integrality in this setting.

Lemma 2.1.10. Let A be a residuated binar with neutral element e. If e has a

complement e1 and A satisfies any one of the distributive laws p¨^q, p^¨q, p^zq,

p{^q, then A is integral.

Proof. We prove the result for p¨^q and p^zq. The result will follow for p^¨q and

p{^q, respectively, by an entirely symmetric argument.
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First, suppose that A satisfies p¨^q. Note that

e1 “ e ¨ e1

ď J ¨ e1

“ J ¨ e1 ^J

“ J ¨ pe1 ^ eq

“ J ¨ K

“ K.

Thus e1 “ K, whence e “ J.

Second, suppose that A satisfies p^zq. Observe that

J “ KzK

“ pe^ e1qzK

“ pezKq _ pe1zKq

“ K _ pe1zKq

“ e1zK,

from which it follows that J ď e1zK, and by residuation e1 ¨ J ď K. Since e ď J and

¨ is order-preserving, we thus have e1 ¨ e ď e1 ¨ J ď K. Therefore e1 ď K, i.e., e1 “ K.

It follows as before that e “ e_K “ e_ e1 “ J, and this gives the result.

Combining the previous two lemmas yields the following.

Corollary 2.1.11. Let A be a complemented residuated binar with neutral element

e. If A satisfies any one of the distributive laws p¨^q, p^¨q, p^zq, p{^q, then A is a

Boolean algebra.
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Proof. Because A is complemented, e has a complement. Lemma 2.1.10 then pro-

vides that A is integral, and hence from Lemma 2.1.9 it follows that A is a Boolean

algebra.

Lemma 2.1.12. Let A be a Boolean residuated binar with neutral element e, whose

complement is denoted by e1. If A satisfies any one of the distributive laws p¨^q,

p^¨q, pz_q, p_{q, p^zq, or p{^q, then A is integral, and hence is a Boolean algebra.

Proof. Corollary 2.1.11 settles the claim if A satisfies any of p¨^q, p^¨q, p^zq, or

p{^q. We therefore prove the claim for A satisfying pz_q; it will follow if A satisfies

p_{q by a symmetric argument. Suppose that A satisfies pz_q. We have:

J “ JzJ

“ Jzpe_ e1q

“ Jze_Jze1

ď Jze_ e1

From the fact that Boolean algebras are ^-residuated, we obtain from the above

that J “ J^ e ď Jze. Then from the residuation property for ¨, we get J ď e. The

result follows.

Corollary 2.1.13. Let A be a Boolean residuated binar with a multiplicative neutral

element. Then each of the identities p¨^q, p^¨q, pz_q, p_{q, p^zq, and p^zq is

logically-equivalent to the other five.

2.2 Lattices with involution

A lattice with involution (or i-lattice for short) is an algebra A “ pA,^,_, q,

where pA,^,_q is a lattice and  is an anti-isomorphism, i.e., an isomorphism of
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‚1 “  ´ 1

‚0 “  0

‚´1 “  1

‚ J “  K

‚a “  a ‚ b “  b

‚ K “  K

Figure 2.1: Labeled Hasse diagrams for D3 and D4

pA,^,_q and pA,_,^q. Note that the latter requirement may be met equationally

by stipulating that the identities

 px_ yq “  x^ y,

 px^ yq “  x_ y,

  x “ x

hold in A, whence i-lattices form a variety. If A is an i-lattice, then x P A is called

a zero if  x “ x. We call an i-lattice distributive (modular) if its lattice reduct is

distributive (modular), and we call it normal3 if it satisfies the identity

x^ x ď y _ y pNq

We will call expansions of normal distributive i-lattices by lattice bounds Kleene

algebras. Observe that if K and J are the least and greatest element of a Kleene

algebra, then  K “ J and  J “ K.

There are just three subdirectly irreducible distributive i-lattices: The two-

element Boolean algebra with its usually involution; the three-element i-lattice chain

D3; and the four-element i-lattice D4 with two incomparable zeros. Kalman showed

in [41] that the variety of all distributive i-lattices is ISPpD4q, and that the variety

3Note that our terminology differs from that introduced by Kalman [41]. In Kalman’s terms, a
normal i-lattice is one satisfying the given identity as well as distributivity.
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of all normal distributive i-lattices is ISPpD3q.
4 We denote the latter variety by

NDIL, and the variety of Kleene algebras by KA.

2.2.1 Forbidden configurations

A lattice A is non-distributive if and only if neither of two forbidden sublattices

appear in A: The five-element non-modular lattice N5 and the five-element modular

(but non-distributive) lattice M3. The forbidden configurations N5 and M3 provide

a pictorial test for distributivity, and in this section we give an analogous test to

determine whether a given modular i-lattice is normal.

Note that an i-lattice may have any number of zeros or no zero at all, but [41]

shows that a modular i-lattice with a zero is normal if and only if the zero is unique.

In light of this, we easily obtain the following.

Lemma 2.2.1. Let A be a modular i-lattice with a zero. Then A refutes pNq if and

only if D4 embeds into A.

Proof. Suppose first that D4 embeds into A, and let a and b be the incomparable

zeros of D4. Then  a^ a “ a ę b “ b_ b, showing that A is not normal.

Conversely, suppose that A is not normal. Then A has two distinct zeros a and b

by the above cited result of [41]. Note that distinct zeros are incomparable, whence

a and b are incomparable. Then ta^ b, a, b, a_ bu is the universe of a subalgebra of

A that is isomorphic to D4.

An i-lattice with no zeros may refute pNq, and in this case D4 obviously does not

appear as a subalgebra. Denote by B8 the i-lattice with no zeros whose lattice-reduct

is the Boolean cube (see Figure 2.2). Our aim is to prove the following.

4Here and throughout the sequel we use I, H, P, and S to denote the standard class operators
of taking isomorphic copies, homomorphic images, direct products, and subalgebras.
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‚ J “  K

‚a ‚ b

‚ c

‚ c

‚ a ‚  b

‚ K “  J

Figure 2.2: Labeled Hasse diagram for B8

Theorem 2.2.2. Let A be a modular i-lattice with no zeros. Then A refutes pNq

if and only if B8 embeds into A.

Toward this goal, we prove several technical lemmas.

Lemma 2.2.3. Let A be an i-lattice with no zeros, and suppose that a, b P A with

a^ a ę b_ b. Then there exist a1, b1 P A with a1 ^ a1 ę b1 _ b1 and  a1 ă a1,

 b1 ă b1.

Proof. Set a1 :“ a_ a and b1 :“ b_ b. It is obvious that  a1 ă a1 and  b1 ă b1.

Moreover, were it the case that a1^ a1 ď b1_ b1, we would have a^ a ď b_ b,

a contradiction. The result follows.

Lemma 2.2.4. Let A be a modular i-lattice with no zeros, and suppose that a, b P A

with a^ a ę b_ b and  a ă a,  b ă b. Then:

1. a and b are incomparable.

2.  a and  b are incomparable.

3.  a and b are incomparable.

4. a^ b ę  a_ b.

21



Proof. The first three claims are trivial. For the fourth claim, suppose on the

contrary that a ^ b ď  a _  b. Note that a ^ p a _  bq ď a ^ p a _ bq because

 b ď b. On the other hand, observe that

a^ pb_ aq “  a_ pa^ bq

ď  a_ p a_ bq

“  a_ b,

whence it follows that a^pb_ aq “ a^p a_ bq. But notice that this implies that

 pa^pb_ aqq “  a_p b^ aq “ a^p b_ aq by modularity, which contradicts

the assumption that A has no zeros.

Lemma 2.2.5. Let A be a modular i-lattice with no zeros, and suppose that a, b P A

with a^ a ę b_ b and  a ă a,  b ă b. Then the elements a, b, a, b, a^ b, a_

b, a^ b, a_ b are pairwise distinct.

Proof. Note that a and b being incomparable, together with  a ă a and  b ă b,

gives that a ‰ b, b, a, a^ b, a_ b, a^ b. That a ‰  a_ b follows because a

and  b are incomparable by Lemma 2.2.4. The same comments apply to b.

Were it the case that  a “ a^ b, a_ b, a^ b, or  a_ b, it would contradict

the fact that  a is incomparable to each of a, b, b. The same holds for  b.

The above gives that each of a, b, a, b is distinct from each of the remaining

seven elements on the list. Lemma 2.2.4(4) gives that a ^ b ‰  a _  b, and

a^ b ă a ă a_ b since a and b are incomparable. Were a^ b “  a_ b “  pa^ bq,

it would contradict the fact that A has no zeros. Similar comments show that a_ b

is distinct from the remaining elements on the list. Finally,  a ‰  b implies that

 a^ b ‰  a_ b. This proves the claim.
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Lemma 2.2.6. Let A be a modular i-lattice with no zeros, and suppose that a, b P L

with a^ a ę b_ b and  a ă a,  b ă b. Further assume that

a ď  a_ b

b ď  b_ a

Then S “ ta, b, a, b, a^b, a_b, a^ b, a_ bu is the universe of a subalgebra

of A.

Proof. That S is closed under  follows from the De Morgan laws and the fact that

  x “ x for all x P L. Because closure under  and either of the lattice connectives

implies closure under the other lattice connective, it suffices to show that S is closed

under _. There are only seven cases when this is not obvious, and we check them

in turn. Using modularity and a ď  a_ b, we have

a_ b ď  a_ b_ b “  a_ b ď a_ b ùñ  a_ b “ a_ b

b_ a_ b “  a_ b “ a_ b

 a_ pb^ aq “ p a_ bq ^ a “ pa_ bq ^ a “ a

Using b ď  b_ a,

a_ b ď a_ b_ a “ a_ b ď a_ b ùñ a_ b “ a_ b

a_ a_ b “ a_ b “ a_ b

 b_ pa^ bq “ p b_ aq ^ b “ pa_ bq ^ b “ b

pa^ bq _ p a_ bq “ ppa^ bq _  aq _ ppa^ bq _  bq “ a_ b
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Because S is closed under each of the operations of A, it follows that S is the

universe of a subalgebra of A. This proves the claim.

Lemma 2.2.7. Let A be a modular i-lattice with no zeros, and suppose that a, b P A

with a^ a ę b_ b and  a ă a,  b ă b. Set a1 :“  a_pb^aq and b1 :“  b_pa^bq.

Then  a1 ă a1,  b1 ă b1, a1^ a1 ę b1_ b1, a1 ď  a1_ b1, and b1 ď  b1_a1. Hence

A with a1 and b1 satisfy the hypotheses of Lemma 2.2.6.

Proof. A direct calculation using modularity shows that  a1 ď a1 and  b1 ď b1, and

these inequalities are strict because A has no zeros. Observe that

 a1 _ b1 “  a_ p b^ aq _  b_ pa^ bq

“ p a_ bq _ pa^ bq

ě  a_ pb^ aq

“ a1

This shows that a1 ď  a1 _ b1, and by symmetry b1 ď  b1 _ a1.

For the rest, suppose toward a contradiction that a1 ^  a1 ď b1 _  b1, i.e.,

 a1 ď b1. By modularity, this amounts to  a _ p b ^ aq ď b ^ pa _  bq. But this

implies that  a ď b, contradicting Lemma 2.2.4(3) and completing the proof.

Theorem 2.2.2 follows immediately from the foregoing lemma, and combining

this with Lemma 2.2.1 we obtain the following.

Theorem 2.2.8. Let A be a modular i-lattice. Then A is normal if and only if

neither of the i-lattices D4 or B8 may be embedded in A.
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2.3 Commutative residuated lattices and involutivity

The variety of residuated lattices is probably the most important class of residu-

ated structures, and for our purposes certain expansions of commutative residuated

lattices (henceforth CRLs) occupy an especially central role. For us, their impor-

tance arises because of their deep connection to several nonclassical logics (especially

relevant and many-valued logics), for which they provide the equivalent algebraic

semantics in the sense of [5]. We shall not dwell on the details of this connection

here, but refer the reader to [29, Section 2.6] for details.

In addition to its logical importance, the variety CRL of CRLs also enjoys numer-

ous pleasant algebraic properties: It is an arithmetical variety with the congruence

extension property, and each congruence of a CRL is determined by the congruence

class of its multiplicative identity. The following gives some useful properties of CRL,

all of which are well-known in the literature (and many of which rephrase facts from

the general setting of residuated binars).

Proposition 2.3.1. Let A “ pA,^,_, ¨,Ñ, eq be a CRL. Then A satisfies the

following.

1. xpxÑ yq ď y.

2. xpy _ zq “ xy _ xz.

3. xÑ py ^ zq “ pxÑ yq ^ pxÑ zq.

4. px_ yq Ñ z “ pxÑ zq ^ py Ñ zq.

5. pxyq Ñ z “ xÑ py Ñ zq “ y Ñ pxÑ zq.

6. eÑ x “ x.

7. e ď xÑ x.
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We introduce several subvarieties of CRL that will be important later. Note first

that a distributive CRL A “ pA,^,_, ¨,Ñ, eq is semilinear precisely when it satisfies

the identity

e ď pxÑ yq _ py Ñ xq,

and therefore the semilinear members of CRL form a variety in their own right.

The integral semilinear CRLs are called generalized monoidal t-norm logic alge-

bras, or GMTL-algebras for short, due to the fact that they provide the equivalent

algebraic semantics for the negation-free fragment of Esteva and Godo’s monoidal

t-norm based logic [22]. Some authors also call GMTL-algebras prelinear semi-

hoops. Bounded GMTL-algebras are called monoidal t-norm logic algebras, or MTL-

algebras, and provide the equivalent algebraic semantics for monoidal t-norm based

logic (with negation). Note that for bounded integral CRLs, we usually use 1 for

the multiplicative neutral element (which is also the greatest element), and 0 for

the least element. We denote the varieties of GMTL-algebras and MTL-algebras by

GMTL and MTL, respectively.

Note that in an MTL-algebra A “ pA,^,_, ¨,Ñ, 1, 0q, it is common practice to

define additional operations  and ` on A by

 x :“ xÑ 0 and x` y :“  p x ¨  yq.

So defined, ` is a commutative operation. Moreover,  satisfies the the De Morgan

laws due to the identities p^zq and p_zq, but may not satisfy the law of double

negation   x “ x. An MTL-algebra that satisfies the latter condition is called

involutive.

An MTL-algebra A is said to have no zero divisors if for all x, y P A, x ¨ y “ 0

implies x “ 0 or y “ 0. An MTL-algebra is called an SMTL-algebra if it satisfies
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the identity x^ x “ 0. The subvariety of MTL consisting of the SMTL-algebras

is denoted by SMTL.

The following appears in [44, Proposition 4.14] in the context of totally-ordered

algebras, but comes from [27] in its full generality.

Proposition 2.3.2. Let A be an MTL-algebra. Then A has no zero divisors if and

only if A is a directly-indecomposable SMTL-algebra.

Proof. Suppose that A has no zero divisors. If x P A, then x ¨  x “ x ¨ pxÑ 0q “ 0,

giving x “ 0 or  x “ xÑ 0 “ 0 by the hypothesis. If either x “ 0 or  x “ 0, then

x^ x “ 0 as well, and thus A is an SMTL-algebra. If A may be written as a direct

product A1 ˆ A2 of nontrivial MTL-algebras, then we have p1, 0q ¨ p0, 1q “ p0, 0q

although p1, 0q, p0, 1q are nonzero. This contradicts A having no zero divisors, so A

is directly indecomposable.

Conversely, if A is a directly-indecomposable SMTL-algebra, then A may be

written as an ordinal sum of the form 2 ‘ B, where 2 is the two-element MTL-

algebra and B is a GMTL-algebra (see, e.g., [1]). In this event, x ¨ y “ 0 only if

x “ 0 or y “ 0, completing the proof.

A CRL for which ^ coincides with ¨ is called a Brouwerian algebra, and the

bounded Brouwerian algebras are called Heyting algebras. We denote the varieties

of Brouwerian algebras and Heyting algebras by BrA and HA, respectively. The

semilinear Brouwerian algebras and Heyting algebras are called, respectively, relative

Stone algebras and Gödel algebras, and by the above they form varieties that we

denote by RSA and GA. Relative Stone algebras and Gödel algebras are examples

of integral semilinear residuated structures, and are therefore subvarieties of GMTL

and MTL, respectively. We will make use of the following special property of these

varieties in the sequel.
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Proposition 2.3.3 ([31, Lemma 4.1]). Let A P RSA and let a, b P A. Then the

following are equivalent.

1. aÑ b “ b and bÑ a “ a.

2. a_ b “ e.

An expansion of a CRL A “ pA,^,_, ¨,Ñ, eq by a unary operation  is called

an involutive CRL if it satisfies   x “ x and x Ñ  y “ y Ñ  x. It is easy to

show that involutive CRLs satisfy the De Morgan laws  px ^ yq “  x _  y and

 px _ yq “  x ^  y, and hence if pA,^,_, ¨,Ñ, e, q is an involutive CRL, then

pA,^,_, q is an i-lattice.

Note that an involutive CRL A “ pA,^,_, ¨,Ñ, e, q satisfies  x “ eÑ  x “

x Ñ  e, whence the involution of an involutive CRL is definable in terms of the

constant f :“  e. It turns out that involutive CRLs are term-equivalent to expan-

sions of CRLs by a constant f such that x “ px Ñ fq Ñ f for all x, whence we

may freely consider involutive CRLs as pointed CRLs. If pA,^,_, ¨,Ñ, e, q is an

integral involutive CRL, then for arbitrary x P A we have f “  e ď x as a conse-

quence of  x ď e. Thus integral involutive CRLs are bounded with f being the least

element. In particular, this means that our definition of involutive MTL-algebras

above agrees with our definition of involutive CRLs.

The following ties together much of the material introduced in this chapter.

Proposition 2.3.4. Let A “ pA,^,_, ¨,Ñ, e, q be a semilinear involutive CRL.

Then pA,^,_, q is a normal distributive i-lattice.

Proof. It suffices to check the claim on generating algebras, so suppose that A is a

linearly-ordered involutive CRL and let x, y P A. Then x ď y or y ď x. If x ď y,

then x^ x ď y ď y_ y. If y ď x, then  x ď  y and hence x^ x ď y_ y.
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Given a CRL A “ pA,^,_, ¨,Ñ, eq, a nucleus on A is a map N : A Ñ A such

that:

1. N is a closure operator on pA,^,_, ¨,Ñ, eq, i.e.

(a) N is expanding (x ď Nx for all x P A).

(b) N is isotone (if x, y P A with x ď y, then Nx ď Ny).

(c) N is idempotent (NNx “ Nx for all x P A).

2. Nx ¨Ny ď Npx ¨ yq for all x, y P A.

If A is a CRL and N is a nucleus on A, then the N -nuclear image of A is the

algebra AN “ pN rAs,^,_N , ¨N ,Ñ, Neq, where for all x, y P A,

x_N y “ Npx_ yq

x ¨N y “ Npx ¨ yq

Nuclear images of CRLs are again CRLs. The following gives an important example

of nuclei that we will return to later.

Example 2.3.5. Let A “ pA,^,_,Ñ, eq be a Brouwerian algebra. For each d P A,

the function N : A Ñ A defined by Na “ dÑ a is a nucleus on A.

2.3.1 srDL-algebras

An MTL-algebra is called an srDL-algebra if it satisfies the identities

 px2q Ñ p  xq “ 1 and px` xq2 “ x2 ` x2.
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The involutive srDL-algebras are called sIDL-algebras. The varieties of srDL-algebras

and sIDL-algebras are respectively denoted by srDL and sIDL.5

A deductive filter of an srDL-algebra A is a lattice filter x of A such that if

x, x Ñ y P x, then y P x, and the radical RpAq of an srDL-algebra A is the

intersection of A’s maximal deductive filters. From [1, Proposition 2.5], the radical

of A is exactly the set

RpAq “ tx P A :  x ă xu.

For any srDL-algebra A “ pA,^,_, ¨,Ñ, 1, 0q, RpAq is a subalgebra of the 0-free

reduct of A, and consequently it is a GMTL-algebra. If A is an srDL-algebra, then

the coradical of A is

C pAq :“ tx P A :  x P RpAqu.

The Boolean skeleton of an srDL-algebra A is the largest subalgebra of A that is a

Boolean algebra, and it is denoted by BpAq. For an srDL-algebra A, elements in

RpAq, C pAq, and BpAq are respectively called radical elements, coradical elements,

and Boolean elements.

The following two lemmas give information about these special subsets of an

srDL-algebra.

Lemma 2.3.6. [10, Lemma 1.5] Let A be an srDL-algebra. Then

1. If u P BpAq, then  u P BpAq and   u “ u.

2. An element u P A is Boolean if and only if u_ u “ 1.

If u P BpAq and a, b P A, then

3. u ¨ a “ u^ a,

5These names are drawn from [55].
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4. uÑ a “  u_ a,

5. a “ pa^ uq _ pa^ uq,

6. If a^ b ě  u and u^ a “ u^ b, then a “ b.

Lemma 2.3.7 ([1],[55]). Let A be an srDL-algebra. Then:

1. C pAq “ t x : x P RpAqu “ tx P A : x ă  xu.

2. For every y P RpAq, x P C pAq, x ă y.

3. If A is directly-indecomposable, then A – RpAq Y C pAq.

In any srDL-algebra A, there is a representation (see [1]) of each element of A

in terms of RpAq and BpAq. In particular, if a P A then there exist x P RpAq and

u P BpAq so that

a “ pu_ xq ^ p u_ xq “ pu^ xq _ p u^ xq. (2.3.1)

In Chapter 8, we make extensive use of this representation when we work with

srDL-algebras.

2.3.2 Sugihara monoids

A Sugihara monoid is a distributive, idempotent, involutive CRL. Sugihara

monoids turn out to be semilinear [2], and consequently Proposition 2.3.4 provides

that the p^,_, q-reduct of each Sugihara monoid lies in ISPpD3q. This observa-

tion proves crucial to our development of a duality theory for Sugihara monoids in

Chapter 6.

We provide several examples of Sugihara monoids, which we will return to in

later chapters.
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Example 2.3.8. Let S :“ pZ,^,_, ¨,Ñ, 0,´q, where the lattice order is the usual

order on the integers, ´ is the additive inversion on the integers, and the multipli-

cation ¨ is given by:

x ¨ y “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x |x| ą |y|

y |x| ă |y|

x^ y |x| “ |y|

The residual Ñ is given by:

xÑ y “

$

’

’

&

’

’

%

p´xq _ y x ď y

p´xq ^ y x ę y

Then S is a Sugihara monoid.

A Sugihara monoid is called odd if it satisfies  e “ e. The Sugihara monoid S

given above is odd.

Example 2.3.9. Let Szt0u :“ pZzt0u,^,_, ¨,Ñ, 1,´q, where each of ^,_, ¨,Ñ,

and ´ are as in Example 2.3.8. Then Szt0u is a Sugihara monoid where the monoid

identity is 1. Note that since  1 “ ´1, Szt0u is not odd.

Example 2.3.10. Given a positive integer n, we define a totally-ordered Sugihara

monoid with n elements as follows. If n “ 2m` 1 is odd, t´m, . . . ,´1, 0, 1, . . . ,mu

is the universe of a subalgebra of S that has n elements. If n “ 2m is even, then

the set t´m, . . . ,´1, 1, . . .mu is the universe of a subalgebra of Szt0u that has n

elements. In each case, the Sugihara monoid with n elements just defined will be

denoted by Sn. Note that Sn is an odd Sugihara monoid if and only if n is an odd

integer.
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‚ p2, 2q

‚p1, 1q

‚p0, 1q ‚ p1,´1q

‚ p0,´1q‚p´1, 1q

‚ p´1,´1q

‚ p´2,´2q

Figure 2.3: Labeled Hasse diagram for E

Example 2.3.11. In each of the previous examples, the Sugihara monoids defined

are chains. We give a nonlinear example as follows. Consider the set

E “ tp´2,´2q, p´1,´1q, p´1, 1q, p0,´1q, p0, 1q, p1,´1q, p1, 1q, p2, 2qu.

Then E forms the universe of a subalgebra of S5ˆS4. Figure 2.3 depicts the Hasse

diagram for E. We will use E to illustrate our work on Sugihara monoids in later

chapters.

We conclude our preliminary discussion of Sugihara monoids with the following

proposition, which shows the special role of the examples S and Szt0u in the theory

of Sugihara monoids (see, e.g., [48]).

Proposition 2.3.12. The Sugihara monoids are generated as a quasivariety by

tS,Szt0uu.

We denote the variety of Sugihara monoids by SM and the variety of odd Sugi-

hara monoids by OSM. Their varieties consisting of their bounded expansions will

be denoted by SMK and OSMK.

Remark 2.3.13. Note that whenever K is a class of similar algebras, we freely

consider K as a category whose objects are algebras in K and whose morphisms are

algebraic homomorphisms (in the appropriate similarity type) between them. In
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particular, we consider varieties and quasivarieties as categories in this fashion. We

thus use NDIL, KA, CRL, GMTL, MTL, srDL, BrA, HA, RSA, GA, SM, OSM, SMK,

and OSMK to denote the categories of algebras in each given class as well as the

varieties.
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Chapter 3

Duality theory

Having introduced in Chapter 2 the algebraic structures we are concerned with,

we turn to a discussion of our chief tool for their study: Topological dualities for

lattice-based algebras. Duality theory has its origin in Stone’s representation theo-

rem for Boolean algebras [53], and has been extended to distributive lattices [49, 50],

Heyting algebras [21], and expansions of these algebras by operators [39, 40, 35].

Duality theory is the subject of a vast literature. For background on natural

duality theory, we refer to [14]. For information on Stone duality we refer to [38],

and for the duality theory of Boolean algebras with operators, we refer to [34].

Most of this chapter introduces preliminary material, but the extension of the

Davey-Werner duality to normal distributive i-lattices (see Section 3.3) was devel-

oped in the author’s [24], and the duality for GMTL-algebras (see Section 3.4.1)

descends from the author’s [27].

3.1 Natural dualities

Natural duality theory gives one of the most general and highly-developed frame-

works available for discussing topological dualities. In addition to providing context
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for the classical dualities discussed in Section 3.2, natural duality theory is necessary

in Section 3.3 to obtain some preliminary results toward our duality for Sugihara

monoids in Chapter 6. Our treatment in this section is essentially drawn from [14].

Suppose that M is a finite algebra, and set A :“ ISPpMq. We consider an

enriched topological space M
Ă

“ pM,G,H,R, τq defined on the same carrier M as

M, where

• G is a set of total operations on M ,

• H is a set of partial operations on M ,

• R is a set of relations on M , and

• τ is the discrete topology on M .

Define a category S such that:

• The objects of S are enriched topological spaces in IScP`pM
Ă

q, the class of

isomorphic copies of topologically-closed subspaces of nonempty powers of M
Ă

.

• The morphisms of S are continuous homomorphisms between members of

IScP`pM
Ă

q.

Observe that the graph of each element of GYH, as well as each element of R, may

be considered as a subset of some direct power M, and when each of these subsets

is a subalgebra of the appropriate of power of M we say that M
Ă

is algebraic over

M. When M
Ă

is algebraic over M, there is an adjunction between A and S. The

functors D : AÑ S and E : SÑ A of this adjunction are defined on objects by

DpAq “ HomApA,Mq,

EpXq “ HomSpX,M
Ă

q
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where HomApA,Mq inherits its structure pointwise from M
Ă

, and HomSpX,M
Ă

q

inherits its structure pointwise from M. For morphisms h : A Ñ B in A and

α : X Ñ Y in S, Dphq : DpBq Ñ DpAq and Epαq : EpYq Ñ EpXq are defined by

Dphqpxq “ x ˝ h

Epαqpxq “ x ˝ α,

respectively. The unit of this adjunction is the natural transformation e given by

evaluation, i.e., for objects A of A, eA : A Ñ EDpAq is defined by eApaqpxq “ xpaq.

The counit is likewise defined for objects X of S by εX : X Ñ DEpXq given by

εXpxqpαq “ αpxq. With the above set-up, whenever each homomorphism eA is an

isomorphism, we say that the dual adjunction pD, E , e, εq is a natural duality. We

also say that the structure M
Ă

dualizes M. When each εX is also an isomorphism, we

say that the natural duality pD, E , e, εq is full. A duality is full precisely when it is a

dual equivalence between the categories A and S. When a natural duality pD, E , e, εq

associates embeddings in S with surjections in A (equivalently, embeddings in A with

with surjections in S) we say that the duality is strong. Strong dualities are full, but

the converse is not in general true.

Suppose that M
Ă

“ pM,G,H,R, τq and M
Ă

1 “ pM,G1, H 1, R1, τq are discrete topo-

logical structures that dualize the same finite algebra M, and let s be an algebraic

relation, operation, or term on M. We say that M
Ă

(or GYHYR) entails s on DpAq

if every continuous map α : DpAq ÑM preserving the all relations, operations, and

partial operations in GYH YR also preserves s. We say that GYH YR entails s

if G YH Y R entails s on DpAq for every A P A. If G YH Y R entails s for every

s P G1YH 1YR1 we say that GYH YR entails G1YH 1YR1 or that M
Ă

entails M
Ă

1.

If P is a set of (partial and total) operations on M of finite arity, A is a subalgebra
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of MS for some (not necessarily finite) set S, and h : AÑM is an algebraic (partial

or total) operation on M, then we say that P hom-entails h if every subset of a

power of M which is closed under the operations in P is closed under h. We say

that GYH YR strongly entails G1YH 1YR1 if GYH YR entails G1YH 1YR1 and

GYH hom-entails every operation in G1 YH 1.

For a finite algebra A, define irrpAq to be the least n P ω such that the diag-

onal congruence ∆ is the meet of n meet-irreducible congruences in the congru-

ence lattice of A. We define the irreducibility index of a finite algebra M to be

IrrpMq “ maxtirrpAq : A ď Mu. Also denote by K the set of one-element subal-

gebras of M, Bn the set of all n-ary relations algebraic over M, and Pn the set

of all n-ary partial operations algebraic over M. One of the fundamental tools for

producing strong dualities for the prevariety generated by a finite algebra with a

near-unanimity term is the following NU strong duality theorem.

Theorem 3.1.1 ([14], Theorem 3.3.8). Let k ě 2 and assume that M has a pk`1q-

ary near-unanimity term. If

M
Ă

“ pM,K,H,Bk, τq

where

H “
ď

tPn : 1 ď n ď IrrpMqu

then any structure that strongly entails M
Ă

yields a strong duality on M.

Since algebras with a lattice reduct always have a majority term, the above

theorem may be applied to lattice-based algebras to obtain the following.

Corollary 3.1.2 ([14], Corollary 3.3.9). Suppose that M is a finite algebra with a

lattice reduct, and that all the non-trivial subalgebras of M are subdirectly irreducible.
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Then any structure that strongly entails M
Ă

“ pM,K,P1,B2, τq yields a strong duality

on M.

The following M
Ă

-Shift Strong Duality Lemma underwrites the applications of

(strong) entailment to follow.

Theorem 3.1.3 ([14], Lemma 3.2.3). Consider the structure M
Ă

1 “ pM,G1, H 1, R1, τq.

1. If M
Ă

strongly entails M
Ă

1 and M
Ă

1 yields a strong duality on A, then M
Ă

also

yields a strong duality on A.

2. M
Ă

strongly entails M
Ă

1 if it is obtained from M
Ă

1 by

(a) enlarging G1, H 1, or R1,

(b) deleting members of G1 or H 1 which can be obtained as compositions of

the remaining members of G1 and H 1 and the projection mappings, or

(c) deleting a member h of H 1 which has an extension among the remaining

members of G1 YH 1 and adding domphq to R1.

3. M
Ă

strongly entails M
Ă

1 if M
Ă

entails M
Ă

1 and is obtained from M
Ă

1 by

(a) deleting members of R1, or

(b) deleting members of H 1 which have an extension in G1 or H 1.

Although the preceding results give a method for producing a category dual to

ISPpMq for many finite algebras M, the dual category IScP`pM
Ă

q is not especially

transparent. The final two results of this section provide a method for finding a more

user-friendly description of the members of IScP`pM
Ă

q. Given a first-order language

L, recall that the quasiatomic formulas of L consist of the atomic formulas of L,

the negated atomic formulas of L, and the expressions of the form

n
ľ

i“1

αi ñ αn`1,

39



where n ě 1 and αi is an atomic formula of L for each i P t1, . . . , n` 1u. The next

two results are often called the preservation and separation theorems. We delay

examples of how the foregoing machinery may be used until after the next section.

Theorem 3.1.4 ([14], Theorem 1.4.3). Let M
Ă

be a finite, discrete structured topo-

logical space and let X P IScP`pM
Ă

q.

1. X is a structured topological space which satisfies every quasiatomic formula

that is satisfied by M
Ă

, and as a topological space X is a compact Hausdorff

space with a basis of clopen sets.

2. If h is an n-ary function or partial function symbol, then the domain of hX is

is a closed subset of Xn and hX is continuous.

3. If r is an n-ary relation symbol, then rX is a closed subset of Xn.

Theorem 3.1.5 ([14], Theorem 1.4.4). Let X be a compact structured topological

space in the same language as the finite discretely topologized structured topological

space M
Ă

. Then X P IScP`pM
Ă

q if and only if there is at least one morphism from X

to M
Ă

, and the following conditions are satisfied.

1. For each x, y P X with x ‰ y, there is a morphism α : X Ñ M
Ă

such that

αpxq ‰ αpyq.

2. For each n-ary partial function symbol h and each n-tuple px1, . . . , xnq P X
n

outside the domain of hX, there exists a morphism α : X Ñ M
Ă

such that

pαpx1q, . . . , αpxnqq is not in the domain of hM
r

.

3. For each n-ary relation symbol r and each px1, . . . , xnq P X
nzrX, there is a

morphism α : X Ñ M
Ă

with pαpx1q, . . . , αpxnqq R r
M
r

.
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3.2 The Stone, Priestley, and Esakia dualities

Natural duality theory’s most important historical precursor is Stone-Priestley

duality [53, 49, 50], the special features of which we recall presently. Recall that if

pX,ďq is a poset, then S Ď X is upward closed or an up-set if

ÒS :“ ty P X : Dx P S, x ď yu

coincides with S. If pX,ď, τq is an ordered topological space, we say that pX,ď, τq is

a Priestley space provided that pX, τq is compact and for each x, y P X with x ę y,

there exists a clopen up-set U Ď X such that x P U and y R U (this demand is often

called the Priestley separation axiom, and ordered topological spaces satisfying it are

called totally order-disconnected). We denote by Pries the category whose objects

are Priestley spaces and whose morphisms are continuous isotone functions. We

also denote by DistKJ the category whose objects are bounded distributive lattices

and whose morphisms are lattice homomorphisms preserving the bounds. Pries and

DistKJ are dually equivalent categories via Priestley duality, which we describe as

follows.

Recall that if A “ pA,^,_q is a lattice, then x Ď A is a filter of A if is upward-

closed and closed under ^. A proper, nonempty filter x is called prime if for any

x, y P A, x_ y P x implies x P x or y P x. Given a bounded distributive lattice A, we

denote by SpAq its collection of prime filters. For a bounded distributive lattice A

and x P A, we define6

ϕApxq “ tx P SpAq : x P xu.

6When context makes it clear, we omit A and write ϕApxq as ϕpxq.
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If τ is the topology generated by the subbase tϕApxq, ϕApxq
c : x P Au, then one

may show that SpAq :“ pSpAq,Ď, τq is a Priestley space.

Moving in the reverse direction, if X “ pX,ď, τq is a Priestley space, then we

let ApXq be the collection of clopen up-sets of X and define

ApXq :“ pApXq,X,Y,H, Xq.

It is easy to see that ApXq is a bounded distributive lattice, and moreover for each

bounded distributive lattice A, the map ϕA : A Ñ ASpAq as defined above is an

isomorphism.

The maps A ÞÑ SpAq and X ÞÑ ApXq may be extended to contravariant functors

by defining their action on morphisms by taking inverse images. In detail, for

morphisms h : A Ñ B in DistKJ and α : X Ñ Y in Pries, we define morphisms

Sphq : SpBq Ñ SpAq and Apαq : ApYq Ñ ApXq by

Sphqpxq “ h´1rxs

ApαqpUq “ α´1rU s

The resulting functors S and A provide a dual equivalence of categories between

DistKJ and Pries, and the unit of the corresponding adjunction is given by the

sections ϕA. The sections of the counit are given by the maps ψX : X Ñ SApXq

defined by

ψXpxq “ tU P ApXq : x P Uu,

where X is a Priestley space.

Note that if A is the bounded distributive lattice reduct of a Boolean algebra,

then the prime filters of A coincide with its maximal proper filters (aka ultrafilters).
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In this setting, the order on the Priestley dual SpAq is the equality relation, and

SpAq may be viewed as a topological space without expanded structure. The topo-

logical spaces arising in this way are Stone spaces, i.e., compact Hausdorff spaces

having a basis of clopen sets. Because each DistKJ-morphism between Boolean alge-

bras is a Boolean algebra homomorphism, restricting Priestley duality to Boolean

algebras recovers Stone’s duality between Boolean algebras and Stone spaces [53].

Priestley duality may also be restricted to obtain dualities for other important

classes of bounded distributive lattices. We call a Priestley space X “ pX,ď, τq an

Esakia space if for every clopen subset U Ď X, the down-set

ÓU :“ tx P X : Dy P U, x ď yu

is clopen too. A continuous isotone map α : X Ñ Y is called an Esakia map or

Esakia function if for every x P X and z P Y such that αpxq ďY z, there exists

y P X such that x ďX y and αpyq “ z. We denote by Esa the subcategory of Pries

whose objects are Esakia spaces and whose morphisms are Esakia maps.

Esakia proved in [21] that Esa and HA are dually-equivalent categories. The

restrictions of the functors S and A witness this fact, with the modification that for

an Esakia space X we define7 for U, V P ApXq,

U Ñ V “ pÓpU X V cqqc “ pÓppU c Y V qcqqc

and set ApXq “ pApXq,X,Y,Ñ,H, Xq.

7A moment’s reflection shows U Ñ V “ tx P X : U X Òx Ď V u, which may be a more evocative
presentation in connection to relational semantics.
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Esakia duality is the first of many variations of Stone-Priestley duality that we

will encounter in the coming pages, and in order to ease our notational burden we

will use the symbols S and A for all these variations.

Note that Esakia duality may itself be restricted to obtain dualities for many

significant classes of Heyting algebras. Of these, we mention only its restriction to

Gödel algebras: An Esakia space pX,ď, τq is the Esakia dual of a Gödel algebra if

and only if pX,ďq is a forest8 (see, e.g., [12]). We will employ Esakia duality for

Gödel algebras in Chapter 6.

It is notable that the Stone and Priestley dualities are natural dualities in the

sense of Section 3.1. To see the connection, denote by 2 “ pt0, 1u,^,_, 0, 1q the

two-element bounded distributive lattice, and by 21 the two-element Boolean alge-

bra (i.e., the expansion of 2 by its uniquely-determined complementation opera-

tion). Then the variety of bounded distributive lattices coincides with ISPp2q, and

the variety of Boolean algebras coincides with ISPp21q. Moreover, if x is a prime

filter of the bounded distributive lattice A, then we may define a bounded lattice

homomorphism hx : A Ñ 2 by

hxpxq “

$

’

’

&

’

’

%

1 x P x

0 x R x

and every homomorphism A Ñ 2 is of this form for some x P SpAq. Moreover,

given a bounded lattice homomorphism h : A Ñ 2, the set h´1r1s is a prime filter

of A, and each prime filter of A is of this form. The analogous statements also

hold for Boolean algebras, and in this manner one may view S as a hom-functor as

in Section 3.1. Likewise, A may be presented in terms of the two-element linearly-

ordered Priestley space (or two-element Stone space). Note that both the Stone

8A poset P is a forest if Òx is totally-ordered for any x P P .
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and Priestley dualities may be obtained by using the NU strong duality theorem.

In contrast, Esakia duality is not a natural duality because HA is not ISPpAq for

any finite algebra A (or even any finite collection of finite algebras). This difficulty

persists even if one restricts one’s attention to Gödel algebras (but see [17, 12]).

From the perspective of natural duality theory, it is easy to see that Priestley

duality may be modified in order to account for the omission of one or both bounds

from the algebraic signature. Let DistJ be the category of distributive lattices with

a designated greatest element (and possibly missing a least element). A pointed

Priestley space is a structure of the form X “ pX,ď,J, τq, where pX,ď, τq is a

Priestley space and J is a constant designating the greatest element of pX,ďq.

We denote the category of pointed Priestley spaces (with continuous isotone maps

preserving J) by pPries. The categories DistJ and pPries are dually equivalent via

the functors S and A, subject to the following modifications:

1. For an object A of DistJ, we let SpAq “ tx : x is a prime filter of A or x “ Au.

2. For an object X of pPries, we letApXq “ tU Ď X : U is a clopen and U ‰ Hu.

Similar comments apply to the omission of the bottom bound or both bounds from

the signature. Each of these modifications of Priestley duality may be found by

application of the NU duality theorem. We sometimes refer to the elements of

tx : x is a prime filter of A or x “ Au as generalized prime filters of A.

Priestley duality for top-bounded distributive lattices may be restricted to give

a duality for Brouwerian algebras, just as Priestley duality in its fully-bounded

incarnation may be restricted to give Esakia duality for Heyting algebras. The

category BrA is hence dually equivalent to the category pEsa of pointed Esakia spaces

with pointed Esakia maps. The pointed Esakia spaces corresponding to relative

Stone algebras are precisely the pointed Esakia spaces whose order reducts are top-

bounded forests (aka trees).
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‚1

‚0

‚´1

‚0

‚©´1 ‚© 1

Figure 3.1: Hasse diagrams for the different personalities of the object K

3.3 The Davey-Werner duality

The variety of Kleene algebras (see Section 2.2) coincides with ISPpKq, where

K “ pt´1, 0, 1u,^,_, ,´1, 1q

is the expansion of the normal distributive i-lattice D3 by constants designating the

least and greatest elements. Davey and Werner gave a strong natural duality for

Kleene algebras in [19], using K as a dualizing object. Under the Davey-Werner

duality, the alter ego of K is

K
r

“ pt´1, 0, 1u,ď, Q,K0, τq,

where ď is the partial order determined by ´1 ă 0 and 1 ă 0, Q is the binary

relation given by xQy iff px, yq R tp´1, 1q, p1,´1qu, K0 “ t´1, 1u, and τ is the

discrete topology on t´1, 0, 1u (see Figure 3.1). The following provides a useful

external description of IScP`pK
r

q (see [14, p. 107] and [19]).

Proposition 3.3.1. pX,ď, Q,X0, τq is an isomorphic copy of a closed substructure

of a nonempty power of K
r

if and only if all the following hold.

1. pX,ď, τq is a Priestley space,

2. Q is a binary relation that is closed in X2,

3. X0 is a closed subspace, and
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4. For all x, y, z P X,

(a) xQx,

(b) xQy and x P X0 ùñ x ď y,

(c) xQy and y ď z ùñ zQx.

We say that pX,ď, Q,X0, τq is a Kleene space if it satisfies the conditions given

in Proposition 3.3.1, and denote the category of Kleene spaces with continuous

structure-preserving morphisms by KS. From the above, KA and KS are dually

equivalent categories.

Later on, we will restrict the Davey-Werner duality to a subcategory of KS that

provides a duality for bounded Sugihara monoids. To get a duality for Sugihara

monoids tout court, we need a variant of the Davey-Werner duality for normal dis-

tributive i-lattices (i.e., we must drop bounds from the signature). This variant

of the Davey-Werner duality originally comes from the author’s [24]. Recall that

NDIL “ ISPpD3q, where D3 “ pt´1, 0, 1u,^,_, q is the three-element i-lattice

chain with one zero.

Theorem 3.3.2. Let D
r

3 “ pt´1, 0, 1u,ď, Q,D0, 0, τq, where ď is the partial order

determined by ´1 ă 0 and 1 ă 0, D0 is the unary relation t´1, 1u, Q is the binary

relation given by xQy iff px, yq R tp´1, 1q, p1,´1qu, and 0 is a constant designating

the greatest element with respect to ď. Then D
r

3 dualizes D3, and this duality is

strong.

Proof. We will use Corollary 3.1.2. Let D3 “ t´1, 0, 1u be the universe of D3.

Direct computation verifies that the following are the carriers of subalgebras D2
3:

t0u,∆D0 ,ďX pD0 ˆD3q,ěX pD3 ˆD0q, D0 ˆD3, D3 ˆD0, D
2
3,∆D3 ,ď,

47



ě, Q,D0 ˆ t0u, t0u ˆD0, D3 ˆ t0u, t0u ˆD3, D
2
0,

where ∆S denotes the equality relation on a given set S. It is easy to see that

tď, D0, Q, 0u entails the above collection of relations (see, e.g., [14, Section 2.4]).

We next compute P1:

h0 : t0u Ñ D3 defined by h0p0q “ 0

h1 : t´1, 1u Ñ D3 defined by h1p´1q “ h1p1q “ 0

h2 : t´1, 1u Ñ D3 defined by h2p´1q “ ´1 and h2p1q “ 1

h3 : D3 Ñ D3 defined by h3p´1q “ h3p0q “ h3p1q “ 0

h4 : D3 Ñ D3 defined by h4pxq “ x for all x P t´1, 0, 1u

The graphs of the above are given by

grphph0q “ tp0, 0qu “ t0u ˆ t0u

grphph1q “ tp´1, 0q, p1, 0qu “ D0 ˆ t0u

grphph2q “ tp´1, 1q, p1, 1qu “ ∆D0

grphph3q “ tp´1, 0q, p0, 0q, p1, 0qu “ D3 ˆ t0u

grphph4q “ tp´1,´1q, p0, 0q, p1, 1qu “ D3 ˆ t0u

This proves that tď, 0, D0, Qu entails t0,P1,B2u.

To conclude the proof, it suffices to show that t0u hom-entails th0, h1, h2, h3, h4u.

Theorem 3.1.3(3)(b) guarantees that we may delete h0, h1, and h2 since h3 and h4

extend them. Since h4 is the identity endomorphism, it is hom-entailed by any set
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of partial operations. Because h3 is the constant endomorphism associated with 0,

it is hom-entailed by the constant 0. This proves the result.

We will provide an external characterization of the structured topological spaces

in IScP`pD
r

3q. This characterization and the arguments supporting it amount to

those in [14, Theorem 4.3.10], but for completeness—and because they will be useful

later—we recite them here. The structured topological spaces of interest are the

following.

Definition 3.3.3. A structure pX,ď, Q,D,J, τq is a pointed Kleene space if:

1. pX,ď, τq is a Priestley space whose greatest element is J R D,

2. Q is a binary relation that is closed in X2,

3. D is a closed subspace, and

4. For all x, y, z P X,

(a) xQx,

(b) xQy and x P D ùñ x ď y,

(c) xQy and y ď z ùñ zQx.

Lemma 3.3.4. Let X “ pX,ď, Q,D,J, τq be a pointed Kleene space. Then X

satisfies the following.

1. Q is symmetric.

2. If x ď y, then yQx.

3. If y ď x and x P D, then y “ x.

4. If x ď y and x ď z, then yQz.
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5. If x P D, then xQy if and only if x ď y.

Proof. Each of the above properties hold in every Kleene space by [14, p. 107], and

therefore hold in every pointed Kleene space as well.

Let X be a set. For each U, V Ď X with U Y V “ X, we define a function

CU,V : X Ñ t´1, 0, 1u by

CU,V pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, if x R V

0, if x P U X V

´1, if x R U

Note that the map CU,V is well-defined because U Y V “ X.

Lemma 3.3.5. Let X “ pX,ď, Q,D,J, τq be a structure in the language of pointed

Kleene spaces, and let U, V Ď X with U Y V “ X. Then CU,V is a continuous

structure-preserving morphism from X to D
r

3 if and only if U, V are clopen up-sets

with pXzU ˆXzV q XQ “ H and U X V Ď Dc.

Proof. Suppose that CU,V : X Ñ D
r

3 is a morphism. Then U and V are clopen

up-sets because they are the inverse images of clopen up-sets, viz. U “ C´1
U,V pt0, 1uq

and V “ C´1
U,V pt´1, 0uq. Observe that if x, y P X with x R U and y R V , then

CU,V pxq “ ´1 and CU,V pyq “ 1 are not Q-related in D
r

3. If follows that xQy fails in

X, whence pXzUˆXzV qXQ “ H. To see that UXV Ď Dc, notice that if x P UXV

then CU,V pxq “ 0 R D0. This gives x R D since CU,V is structure-preserving. Hence

x P Dc, and U X V Ď Dc follows.

To prove the converse, assume that U and V are clopen up-sets with

pXzU ˆXzV q XQ “ H and U X V Ď Dc.
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We will prove that CU,V is a continuous structure-preserving morphism. For conti-

nuity, it suffices to notice that

C´1
U,V rt0us “ U X V

C´1
U,V rt´1us “ U c

C´1
U,V rt1us “ V c

are all open in X.

For the preservation of the order relation, let x, y P X with x ď y. Were

CU,V pyq “ 0, we would have CU,V pxq ď CU,V pyq because 0 is the greatest element

of D
r

3. Were CU,V pyq “ 1, then by definition y R V . Because V is an up-set, this

implies x R V as well, and hence CU,V pxq “ 1. An identical argument shows that if

CU,V pyq “ ´1, then CU,V pxq “ ´1. Thus CU,V preserves ď.

For the preservation of Q, let x, y P X with CU,V pyq “ 1 and CU,V pxq “ ´1.

Then y R V and x R U , so we have px, yq P XzU ˆXzV . It follows that px, yq R Q

because pXzU ˆXzV q XQ “ H, whence by taking the contrapositive we have that

xQy implies CU,V pxq Q CU,V pyq.

For the preservation of D, let x P D. Then x R U X V since U X V Ď Dc, and

thus CU,V pxq “ ´1 or CU,V pxq “ 1, i.e., CU,V pxq P D0.

Lastly, for the preservation of J, note that U, V being up-sets gives J P U X V .

Then CU,V pJq “ 0 by the definition of CU,V , and 0 is the greatest element of D
r

3.

This settles the proof.

Lemma 3.3.6. Let X “ pX,ď, Q,D,J, τq be a pointed Kleene space and let α : X Ñ

D
r

3 be a continuous structure-preserving morphism. Then there exist clopen up-sets

U, V Ď X such that α “ CU,V .
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Proof. Set U :“ α´1rt0, 1us and V :“ α´1rt´1, 0us. Then U and V are clopen

up-sets, being the inverse images of clopen up-sets. Moreover, CU,V pxq “ αpxq for

all x P X.

Theorem 3.3.7. IScP`pD
r

3q is exactly the class of pointed Kleene spaces.

Proof. We apply the preservation and separation theorems. Note that D
r

3 is a

pointed Kleene space, whence Theorem 3.1.4 gives that IScP`pD
r

3q consists of pointed

Kleene spaces.

For the reverse inclusion, we apply Theorem 3.1.5. Let X “ pX,ď, Q,D,J, τq be

a pointed Kleene space. Firstly, let x, y P X so that xQy fails. Note that tz : zQxu

is an up-set by Definition 3.3.3(4)(c). Moreover, since Q is closed in X2 and pX, τq

is compact, we have also that tz : zQxu is closed (i.e., since the projection maps

are closed maps in this setting). As X is a Priestley space, tz : zQxu is hence the

intersection of clopen up-sets. Because y R tz : zQxu, there exists a clopen up-set

U with y R U and z P U for every zQx. Set

W :“ tw P X : p@z P U cqpzQw failsqu.

Then W is open as a consequence of Q being closed and U c being compact, and is

down-set by Definition 3.3.3(4)(c). By Lemma 3.3.4(5), we have also that DXU c Ď

W . There is hence a clopen down-set W 1 Ď W such that txu Y pD X U cq Ď W 1.

Setting V “ pW 1qc, we have that V is a clopen up-set with x R V and U X V Ď Dc.

Moreover, pXzU ˆXzV q XQ “ H. It follows that CU,V separates x and y.

Secondly, let x, y P X with x ę y. In the case that xQy fails, we may use the

separating morphism constructed above. In the case that xQy, we have that x R D

by Lemma 3.3.4(5), and from 3.3.4(3) it follows that x ę z for each z P D. There
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hence exists a clopen up-set U disjoint from tyu Y D with x P U . The morphism

CU,X then separates x and y.

Thirdly, let x, y P X with x ‰ y. Then x ę y or y ę x, so x and y may be

separated by the above.

Fourthly, if x R D, then we consider two cases. First, if D “ H, then use CX,X .

If D ‰ H, then for any y P D we have that x ę y. In this case, we may use the

separating morphism constructed above.

The following is immediate by combining the results above.

Corollary 3.3.8. NDIL is dually equivalent to the category pKS is pointed Kleene

spaces and continuous structure-preserving morphisms.

In the remainder of our work, we will reserve the symbols D and E for the

functors of the Davey-Werner duality (whether for KA or NDIL).

We conclude this section by recalling some well-known technical results that

prove useful for working with the topologies of (pointed) Kleene spaces.

Lemma 3.3.9 ([14, Lemma B.6, p. 340]). Let A be an index set and L P tD3,Ku.

Consider LA as a topological space endowed with the product topology. For each

a P A and l P t´1, 0, 1u, let Ua,l “ tx P LA : xpaq “ lu. Then

tUa,l : a P A and l P t´1, 0, 1uu

is a clopen subbasis for the topology on LA.

Given an A P NDILYKA, the Davey-Werner dual of A has topology induced as

a subspace of LA as above. Hence from the previous lemma we obtain

Lemma 3.3.10. Let A P NDILY KA. Then the sets Ua,l “ th P DpAq : hpaq “ lu,

where l P t´1, 0, 1u and a P A, give a clopen subbasis for the topology on DpAq.
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3.4 Extended Priestley duality for residuated structures

Of the topological dualities we have seen so far, only Esakia duality provides a

dual equivalence between a category of structured topological spaces and a category

of residuated algebras. Esakia duality is a restriction of Priestley duality, and this

method of obtaining a dual equivalence relies on the fact that Heyting algebras

are uniquely determined by their lattice reducts. For most classes of distributive

residuated lattice-based structures, this method is hopeless: A single lattice typically

admits many different residuated expansions.9 We show in Chapter 6 that Sugihara

monoids and bounded Sugihara monoids are uniquely determined by their reduct

in NDIL, and enjoy an Esakia-like duality by restricting the Davey-Werner duality.

Except for the special cases of Heyting algebras, Sugihara monoids, and some of their

expansions and reducts, we must use another method to get topological dualities for

(distributive) residuated algebras—namely, augmenting the structure of Priestley

duals. We turn to this extended Priestley duality in the present section.

The ideas discussed here descend from Jónsson and Tarski’s celebrated work on

Boolean algebras with operators [39, 40] and Hansoul’s duality theory for them [36].

In the style depicted here, they come from various studies of Urquhart. This body

of work is probably most thoroughly synthesized in in Urquhart’s [56]. We draw

9To get a sense of the scale of this problem even for finite algebras, there are just two lattices
(both distributive) based on a four element set. Computer-assisted enumeration shows that up to
isomorphism there are 20 residuated lattices on four elements. Up to isomorphism, there are 1116
residuated binars on four elements.
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most of our exposition from the latter, but also rely on Galatos’s exposition [28].10

We also refer to [13, 11, 35] for further information.

We first provide some notational conventions. Suppose that pX, Rq is a structure

consisting of a Priestley space X and a ternary relation R Ď X3. Given U, V Ď X,

define

U ¨ V “ tz P X : pDx P U, y P V qRpx, y, zqu

U Ñ V “ tx P X : p@y, z P XqpRpx, y, zq and y P Uq ùñ z P V qu

The following specializes the dual spaces defined in [56] to the commutative and

associative case. Recall that if X is a Priestley space, then ApXq denotes the set of

clopen subsets of X (see Section 3.2).

Definition 3.4.1. A structure pX, R, ˚, Iq is a residuated Priestley space if X is

a Priestley space, R Ď X3, ˚ is a unary operation on X, and I Ď X, and for all

x, y, z, w, x1, y1, z1 P X:

1. There exists u P X such that Rpx, y, uq and Rpu, z, wq if and only if there

exists v P X such that Rpy, z, vq and Rpx, v, wq.

2. Rpx, y, zq if and only if Rpy, x, zq.

3. If x1 ď x, y1 ď y, and z ď z1 and Rpx, y, zq, then Rpx1, y1, z1q.

4. If Rpx, y, zq fails, then for some U, V P ApXq we have x P U , y P V , and

z R U ¨ V .

5. For all U, V P ApXq, the sets U ¨ V and U Ñ V are clopen.

10We note that each [56] and [28] is more general than the other in different directions. Urquhart
accounts for nonassociative residuated structures, but includes only one of the two residuals in
the language and adds an additional unary operation  satisfying the De Morgan laws. Galatos
includes both residuals in his treatment, but assumes associativity and does not include a negation-
like operation. Because our interest is commutative residuated lattices (where the two residuals
coincide) with negation, Urquhart’s treatment is most suitable for us.

55



6. I P ApXq, and U ¨ I “ I ¨ U “ U for all U P ApXq.

7. ˚ is continuous and antitone.

If X1 “ pX1,ď1, R1, I1,
˚, τ1q and X2 “ pX2,ď2, R2, I2,

˚, τ2q are residuated Priest-

ley spaces, a map α : X1 Ñ X2 is a bounded morphism if it satisfies the following

five conditions.

1. α is continuous and isotone.

2. R1px, y, zq implies R2pαpxq, αpyq, αpzqq.

3. If R2pu, v, αpzqq, then there are x, y P X1 such that u ď αpxq, v ď αpyq, and

R1px, y, zq.

4. If R2pαpxq, v, wq, then there are v, w P X1 such that y ď αpvq, αpwq ď z, and

R1px, v, wq.

5. α´1rI2s “ I1.

6. αpx˚q “ αpxq˚.

Residuated Priestley spaces and bounded morphisms form a category, which we

denote by RLτK.

Theorem 3.4.2 ([56]). The category of bounded distributive commutative residuated

lattices RLK with De Morgan negation is dually equivalent to RLτK.

To describe how to augment the functors A and S so as to obtain the duality of

Theorem 3.4.2, we introduce some more notation. For A a residuated lattice, the

complex product of filters x, y of A is the set x ¨ y “ txy : x P x, y P yu and the filter

product of x and y is

x ‚ y “ Òpx ¨ yq “ tz P A : pDx P x, y P yqpxy ď zqu.
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Obviously, if x, y, z are filters, then x ¨ y Ď z if and only if x ‚ y Ď z.

Let A “ pA,^,_, ¨,Ñ, e,K,J, q be a bounded distributive CRL expanded by

a negation  that satisfies the De Morgan laws. Moreover, let L be its reduct in

DistKJ. Define a ternary relation R on SpLq by

Rpx, y, zq iff x ‚ y Ď z.

Moreover, set

I :“ tx P SpLq : e P xu,

SpAq :“ pSpLq, R, Iq,

x˚ :“ tx P A :  x R xu

The operation ˚ defined above is sometimes called the Routley star (see [52, 51]).

For the other functor, if X “ pX,ď, R, I, ˚, τq is a residuated Priestley space, set

ApXq :“ pApX,ď, τq, ¨,Ñ, I, q,

where the operations ¨,Ñ are defined for U, V P ApX,ď, τq as above, and

 U “ tx P X : x˚ R Uu.

The foregoing augmentations of S and A give the dual equivalence between the

category of bounded distributive CRLs expanded by a negation and RLτK.

Remark 3.4.3. Observe that if A is a bounded CRL and the negation operation

 treated above is defined by x ÞÑ x Ñ K (e.g., as in MTL-algebras), then the
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inclusion of ˚ on the dual space is extraneous. In this situation, we will often drop

˚ from the signature.

[56] and [11] give correspondences between many equational properties of resid-

uated structures and their dual spaces, allowing us to formulate extrinsic axioma-

tizations of the dual spaces corresponding to the residuated lattices of interest. In

particular, one may explicitly axiomatize the categories SMτ
K and MTLτ that provide

extended Priestley duals of algebras in SMK and MTL. However, we will not need

to employ an explicit description of these categories, and are content that SMτ
K and

MTLτ exist and are dually equivalent to SMK and MTL, respectively, via restrictions

of the functors S and A.

3.4.1 Dropping lattice bounds

So far, we have followed previous authors by formulating extended Priestley

duality in terms of bounded residuated structures. However, we need a variant of

extended Priestley duality for GMTL for our work in Chapter 8, and we construct

the aforementioned variant in this section. The results of this section come from the

author’s work in [27], and were inspired by [37].

Denote by MTLdiv the full subcategory of MTL whose objects have no zero divi-

sors.

Theorem 3.4.4. MTLdiv and GMTL are equivalent.

Proof. We define a functor p´q0 : GMTL Ñ MTLdiv as follows. Given an object

A “ pA,^,_, ¨,Ñ, 1q of GMTL, we define an algebra A0 on the carrier A Y t0u,

where 0 R A is a new element.11 The lattice order on A0 is uniquely determined by

setting 0 ă a for all a P A. For the multiplication and its residual, we define a new

11Note that A0 is the ordinal sum 2‘A of 2 and A.
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operation ˚ on AY t0u by

a ˚ b “

$

’

’

&

’

’

%

a ¨ b a, b P A

0 a “ 0 or b “ 0

This uniquely determines a residual ´̊ of ˚ given by

a ´̊ b “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

aÑ b a, b P A

0 b “ 0 and a P A

1 a “ 0

One can readily check that A0 “ pAYt0u,^,_, ˚, ´̊ , 1, 0q is a bounded, distributive,

integral CRL. Moreover, A0 |ù px Ñ yq _ py Ñ xq “ 1, whence A0 is an MTL-

algebra. Since A is a subalgebra of A0, we have A is an object of MTLdiv.

Given GMTL-algebras A and B and a homomorphism h : A Ñ B, define a map

h0 : A0 Ñ B0 by

h0pxq “

$

’

’

&

’

’

%

hpxq x P A

0B x “ 0A

Then h is a homomorphism of MTL-algebras. It is easy to check that p´q0 is

functorial.

Note that if A and B are objects of GMTL and h : A0 Ñ B0 is a homomorphism,

then the restriction hæA of h to A is a homomorphism from A to B, and phæAq0 “ h.

This shows that p´q0 is full. It is obviously faithful as well.

To see that p´q0 is essentially surjective, let A be an object of MTLdiv. Observe

that Azt0u is closed under ¨ by the fact that A has no zero divisors. Moreover,

since y ď x Ñ y for any x, y P A, we have y ď x Ñ y ‰ 0 whenever y ‰ 0. This
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shows that Azt0u is closed under Ñ. Since x ¨ y ď x ^ y for any x, y P A, Azt0u

is closed under the lattice connectives too. It follows that Azt0u is the carrier of a

p^,_, ¨,Ñ, 1q-subalgebra A1 of A. A1 is a GMTL-algebra, and A1
0 – A.

The above proves that p´q0 is full, faithful, and essentially surjective, and there-

fore witnesses an equivalence of categories.

The dual equivalence between MTL and MTLτ may be restricted to obtain a

dual equivalence between MTLdiv and the corresponding full subcategory MTLτdiv of

MTLτ . Following Theorem 3.4.4, GMTL is dually equivalent to MTLτdiv by composing

the relevant functors. Spelling this out, let A be a GMTL-algebra. By the above,

A0 is an MTL-algebra with dual SpA0q in MTLτdiv. Notice that by construction A is

a prime filter of A0, giving that the dual space SpA0q has a greatest element. If A

and B are GMTL-algebras and h : A Ñ B is a homomorphism, the Sph0q preserves

the greatest element of SpB0q because h´1
0 rBs “ A.

For a top-bounded object X “ pX,ď, τ, R,Eq of MTLτ , the set of nonempty

members of ApXq is closed under the operations X, Y, ¨, and Ñ, and also E ‰ H.

Consequently, the nonempty clopen up-sets of X are the universe of a p^,_, ¨,Ñ, 1q-

subalgebra of ApXq. This subalgebra is a GMTL-algebra. Also, if JX and JY are

the greatest elements of top-bounded MTLτ -objects X and Y and α : X Ñ Y is

a morphism preserving the greatest element, then for each U P ApY q we have

JY P ApαqpUq gives that ApαqpUq ‰ H. This demonstrates that such a map α

restricts to the to GMTL-algebras of nonempty clopen up-sets of X and Y.

Definition 3.4.5. Let GMTLτ be the category with

• objects given by structures pX, R, I,Jq, where pX, R, Iq is an object of MTLτ

with maximum element J.
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• morphisms given by maps α : pX1, R1, I1,J1q Ñ pX2, R2, I2,J2q between objects

of GMTLτ , where α is a bounded morphism pX1, R1, I1q Ñ pX2, R2, I2q and

αpJ1q “ J2.

As an immediate consequence of the work in this section, we have:

Theorem 3.4.6. GMTL and GMTLτ are dually equivalent.

In analogy to Priestley duality for DistJ, we once again use the symbols A and

S for the duality between GMTL and GMTLτ . In particular, for an object A and

a morphism h of GMTL, by SpAq and Sphq we respectively mean SpA0q and Sph0q

(where the latter two occurrences of S refer to the variant of this functor for MTL).
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Chapter 4

Functional dualities for residuated

structures

Although Esakia duality is a standard tool in the study of Heyting algebras,

extended Priestley duality in the style of Section 3.4 has attracted comparatively

few applications to more general kinds of distributive residuated lattices. This is

probably a consequence of the complexity of residuated Priestley spaces vis-à-vis

Esakia spaces, and in particular the conceptual hurdle of working with the ternary

relation dual to the residuated operations. Sometimes this difficulty may be ame-

liorated because the ternary relations of a class of residuated Priestley spaces has a

particularly simple form. This chapter explores one such situation, focusing on resid-

uated Priestley spaces where the relation dualizing multiplication can be understood

as a (sometimes partially-defined) function. Section 4.1 explores this phenomenon in

the context of semilinear residuated lattices, and descends from the author’s work in

[27]. Section 4.2 adopts a more abstract approach to the functionality phenomenon,

and comes from the author’s [26].
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4.1 Functional duality for semilinear residuated lattices

Recall that for any residuated lattice A “ pA,^,_, ¨, z, {, eq and x and y filters

of A, the filter product of x and y is

x ‚ y “ tz P A : pDx P x, y P yq xy ď zu.

The next lemma provides an essential result for working with ‚.

Lemma 4.1.1. [28, Lemmas 6.8 and 6.9] Let A be a residuated lattice and let x, y,

and z be filters of A. Then we have:

1. x ‚ y is a filter of A.

2. If A has a distributive lattice reduct, z is prime, and x ‚ y Ď z, then there exist

prime filters x1 and y1 of A such that x Ď x1, y Ď y1, x1 ‚ y Ď z, and x ‚ y1 Ď z.

The operation ‚ on the filter lattice of A restricts to SpAqYtAu in some contexts.

Recall the distributive laws pz_q and p_{q from Section 2.1.1.

Lemma 4.1.2. Let A “ pA,^,_, ¨, z, {, eq be a residuated lattice and let x, y be

filters of A.

1. If A satisfies pz_q and y is prime, then x ‚ y P SpAq Y tAu.

2. If A satisfies p_{q and x is prime, then x ‚ y P SpAq Y tAu.

3. If A is a semilinear CRL, then x ‚ y P SpAq Y tAu provided that at least one

of x P SpAq or y P SpAq.

Proof. To prove (1), note that x ‚ y is a filter by Lemma 4.1.1(1). If y is prime, let

x_ y P x ‚ y. By definition there is then some x1 P x and y1 P y so that x1 ¨ y1 ď x_ y.

This entails that y1 ď x1zpx_yq, and applying pz_q gives y1 ď px1zxq_px1zyq, which
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is in y because filters are up-sets. By the primality of y, one of x1zx or x1zy is in y.

Hence one of x1 ¨ px1zxq ď x or x1 ¨ px1zyq ď y is in x ‚ y, whence x ‚ y is prime or

improper.

(2) follows from the a similar argument, and (3) follows because semilinear CRLs

satisfy both pz_q and p_{q.

Corollary 4.1.3. Let A be a bounded semilinear CRL. Then ‚ gives a partial binary

operation on SpAq, and is undefined exactly when x‚y “ A. In particular, this claim

holds if A P MTLYSMK. If instead A P GMTL, then ‚ is a total operation on SpAq.

The previous results are phrased in terms of (generalized) prime filters, but we

can also offer a treatment native to abstract spaces. Although we will only invoke

this abstract description for MTL and GMTL, to state the result in full generality

we let sCRLτK be the full subcategory of RLτK corresponding to semilinear bounded

CRLs.

Lemma 4.1.4. Let X “ pX,ď, τ,˚ , R, Iq be an object of sCRLτK. If x, y, z P X

satisfy Rpx, y, zq, then there exists a least element z1 P X such that Rpx, y, z1q. If

X is an object of GMTLτ , then for any x, y P X there exists a least z1 P X with

Rpx, y, z1q.

Proof. According to extended Priestley duality, there exists a bounded semilinear

CRL A so that X – SpAq. Let α : X Ñ SpAq be the map witnessing this iso-

morphism. Each of αpxq, αpyq, and αpzq are prime filters of A, and moreover

RSpAqpαpxq, αpyq, αpzqq. Thus αpxq ‚ αpyq Ď αpzq.

Lemma 4.1.2 provides that αpxq‚αpyq is either a prime filter of A or else coincides

with A. Because αpzq ‰ A and αpxq‚αpyq Ď αpzq, the latter possibility cannot hold

and thus αpxq ‚ αpyq P SpAq. Therefore RSpAqpαpxq, αpyq, αpxq ‚ αpyqq. It follows

that Rpx, y, α´1pαpxq ‚αpyqqq since α´1 is an isomorphism with respect to R. Also,
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if z P X and Rpx, y, zq, then αpxq ‚ αpyq Ď αpzq by the isomorphism. Since α is

an order isomorphism, we additionally have α´1pαpxqq ‚ αpyqq Ď α´1pαpzqq “ z. It

follows that z1 :“ α´1pαpxq ‚ αpyqq is the minimum element of tx P X : Rpx, y, zqu.

This proves the claim for sCRLτK.

The claim for GMTLτ follows by the same argument, noting that in this setting

if x, y P X then there always exists z P X with Rpx, y, zq as a consequence of ‚ being

total.

Given any object X of sCRLτK or GMTLτ , the previous lemma permits us to

define

x ‚ y “

$

’

’

&

’

’

%

mintz P X : Rpx, y, zqu, if tz P X : Rpx, y, zqu ‰ H

undefined, otherwise

Of course, the second clause is unnecessary if X is in GMTLτ .

Lemma 4.1.5. Let X be an object of sCRLτK or GMTLτ . Then each of the following

holds in every instance where the occurrences of ‚ are defined.

1. Rpx, y, zq iff x ‚ y ď z.

2. x ‚ py ‚ zq “ px ‚ yq ‚ z.

3. x ‚ y “ y ‚ x.

4. If x ď y, then x ‚ z ď y ‚ z and z ‚ x ď z ‚ y.

Proof. Note that if Rpx, y, zq, then there is a least z1 P X so that Rpx, y, z1q by

Lemma 4.1.4. We have that z1 “ x ‚ y by definition, and therefore x ‚ y ď z. On the

other hand, if x ‚ y is defined, then Rpx, y, x ‚ yq by the definition of ‚. Moreover, if

x ‚ y ď z then Rpx, y, zq since R is isotone in its third coordinate. This proves (1).

For the rest, let A be such that X – SpAq and let α : X Ñ SpAq be an isomor-

phism. The proof of Lemma 4.1.4 demonstrates that x‚y “ α´1pαpxq‚αpyqq. As an
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immediate consequence, αpx ‚ yq “ αpxq ‚ αpyq. Filter multiplication is associative,

commutative, and order-preserving for any CRL, so we obtain the result.

The next proposition serves primarily to communicate some definitions in Chap-

ter 8, but we again state it in more generality than necessary.

Proposition 4.1.6. Let A be a bounded semilinear CRL or GMTL-algebra, and

suppose that for y, z P SpAq there exists x P SpAq such that x ‚ y Ď z. Then

maxtx P SpAq : x ‚ y Ď zu

exists. Moreover, this maximum is given by yñ z, where

yñ z :“
ď

tx P SpAq : x ‚ y Ď zu.

Also, x ‚ y Ď z if and only if x Ď yñ z.

Proof. We begin by observing that y ñ z is a prime filter of A. To see why, note

that if x P y ñ z and x ď y, then there is x P SpAq such that x P x and x ‚ y Ď z.

It follows that y P x because filters are up-sets, whence y P y ñ z and y ñ z is an

up-set.

To see that y ñ z is close under ^, let x, y P y ñ z. By definition there exist

x1, x2 P SpAq such that x P x1, y P x2, x1‚y Ď z, and x2‚y Ď z. Let x1_x2 be the filter

generated by x1 Y x2. Because filters are closed under ^, this gives x ^ y P x1 _ x2.

We will prove that

px1 _ x2q ‚ y Ď z.

Pick q P px1 _ x2q ‚ y. By definition there is z P x1 _ x2 and w P y satisfying zw ď q.

From the standard characterization of generated filters and the fact that z P x1_ x2,

we know that there are z1 P x1, z2 P x2 with z1 ^ z2 ď z. From the assumption
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we know z1 ¨ w P x1 ‚ y Ď z and z2 ¨ w P x2 ‚ y Ď z, and by closure under ^ we get

pz1 ¨wq^ pz2 ¨wq P z. The distributive law p¨^q is satisfied in every semilinear CRL,

whence pz1 ^ z2q ¨ w P z. This implies that pz1 ^ z2q ¨ w ď z ¨ w ď q is in z, whence

px1 _ x2q ‚ y Ď z.

By Lemma 4.1.1(2), there exists a prime filter p such that x1_x2 Ď p and p‚y Ď z.

Thus x^ y P p and p ‚ y Ď z, giving x^ y P yñ z. This suffices to prove that yñ z

is a filter.

Next we prove that yñ z is prime, so pick x_ y P yñ z. By definition there is

x P SpAq with x _ y P x and x ‚ y Ď z. Because x is prime, we know that x _ y P x

gives x P x or y P x, whence x P y ñ z or y P y ñ z. Additionally, notice that

yñ z Ď z gives that yñ z ‰ A provided that z ‰ A. Therefore yñ z P SpAq.

To prove the residuation property, first let x, y, z P SpAq. Assume that x ‚ y Ď z.

For every x P x we have x P y ñ z by definition, so x Ď y ñ z. Conversely,

assume that x Ď y ñ z. Lemma 4.1.5 guarantees that ‚ is order-preserving and

commutative, so we have x ‚ y Ď y ‚ py ñ zq. Letting z P y ‚ py ñ zq, by definition

there exists x P y and y P y ñ z such that xy ď z. From y P y ñ z, we know

that there exists w P SpAq with y P w and w ‚ y Ď z. Since x P y and y P w,

this gives xy P w ‚ y Ď z. Because z is an up-set, this implies that z P z, whence

x ‚ y Ď y ‚ pyñ zq Ď z. This suffices to show x ‚ y Ď z if and only if x Ď yñ z, and

that completes the proof.

By importing the above result to an abstract space by extended Priestley duality,

we immediately obtain:

Corollary 4.1.7. Let X be an object of sCRLτK or GMTLτ . If for y, z P X there

exists some x P X such that Rpx, y, zq, then there is a least x1 P X with Rpx1, y, zq.

Moreover, x ‚ y ď z if and only if y ď x1.

We denote x1 in the above by y ñ z.
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We have seen that the (partial) prime filter operations ‚ and ñ may be defined

on an abstract object X in sCRLτK (or in GMTL). Specializing to MTL, we give a

similar analysis for the Routley star ˚.

Lemma 4.1.8. Let A “ pA,^,_, ¨,Ñ, 1, 0q be an MTL-algebra. For each x P SpAq,

x˚ “ maxty P SpAq : x ‚ y ‰ Au.

In particular, the maximum above exists.

Proof. Note at the outset that 0 R x ‚ x˚. To see this, suppose on the contrary that

there exists x P x, y P x˚ with xy ď 0. Then y ď x Ñ 0 “  x. The prime filter x˚

is an up-set, so this gives  x P x˚, and hence   x R x. Because x is an up-set and

x ď   x, it follows that x R x. This is a contradiction, so 0 R x ‚ x˚. It follows in

particular that x ‚ x˚ ‰ A.

Next suppose that y Ę x˚. Then there is y P y with y R x˚, so  y P x. This

implies  y ¨ y P x ‚ y. But  y ¨ y “ 0 in any MTL-algebra, so x ‚ y “ A. This proves

the lemma.

Corollary 4.1.9. Let X be in MTLτ . For each x P X, there exists a greatest y P X

so that there exists z P X with Rpx, y, zq. Equivalently, there is a greatest y P X

such that x ‚ y is defined.

Proof. From extended Priestley duality there is an MTL-algebra A with X – SpAq,

and we let α : X Ñ SpAq be an isomorphism witnessing this fact. From Lemma

4.1.8 we know that αpxq˚ is the greatest element of SpAq multiplying with αpxq to

give a proper filter, and in particular RSpAqpαpxq, αpxq˚, αpxq ‚ αpxq˚q. Using the

fact that α´1 is an isomorphism, it follows that Rpx, α´1pαpxq˚q, α´1pαpxq‚αpxq˚qq.

Let y P X, and suppose that there is z P X with Rpx, y, zq. Then α being

R-preserving gives αpxq ‚ αpyq Ď αpzq. This implies that αpxq ‚ αpyq ‰ A, and
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applying Lemma 4.1.8 yields αpyq Ď αpxq˚. Thus y ď α´1pαpxq˚q, proving that

α´1pαpxq˚q “ maxty P X : pDz P Xq Rpx, y, zqu as desired.

For an object X of MTLτ and x P X, define

x˚ :“ maxty P S : pDz P Xq Rpx, y, zqu.

This provides our abstract description of the Routley star.

4.2 Characterizing functionality

Section 4.1 reveals an unexpected connection between the functionality of extended

Priestley duals and the distributive laws pz_q and p_{q (see Section 2.1.1). The aim

of this section is to achieve a deeper understanding of the role these distributive laws

play in functionality. Our starting point is [32], where Gehrke explores the func-

tionality phenomenon in order to understand topological algebras12 as extended

Priestley duals of certain residuated structures. [32] provides a second-order char-

acterization of when extended Priestley duals are functional, but does not address

the role of the equational properties pz_q and p_{q. In order to do so, we recast

Gehrke’s results in the language of canonical extensions.

4.2.1 Residuation algebras and canonical extensions

The residuated structures in [32] are of a somewhat different kind than those

introduced in Chapter 2. In order to conform with [32], for the purposes of this

section we work with the algebraic structures defined as follows.

12A topological algebra of type σ is an algebra of type σ in the category of topological spaces.
In other words, it is a topological space equipped with a continuous operation interpreting each
function symbol in σ.
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Definition 4.2.1 (cf. [32], Definition 3.14). A residuation algebra is an algebra

A “ pA,^,_, z, {,K,Jq such that:

1. pA,^,_,K,Jq is a bounded distributive lattice.

2. z and { are binary operations on A that preserve finite meets in their numer-

ators.

3. For all x, y, z P A,

x ď z{y ðñ y ď xzz

As usual, the residuation law implies that z and { convert joins in their denom-

inators into meets.

Remark 4.2.2. Note that if pA,^,_, ¨, z, {,K,Jq is a distributive residuated binar

(see Chapter 2), then pA,^,_, z, {,K,Jq is a residuation algebra. In every residua-

tion algebra with a complete lattice reduct, the residuals of { and z may be defined

as usual for complete residuated structures. In this case, item (3) of the previous

definition entails that both { and z share a common residual. The work to fol-

low implies moreover that residuation algebras are exactly the multiplication-free

subreducts of residuated binars.

Up to this point, we have worked with particular topological-relational represen-

tations of duals. For this section, we adopt a more abstract point of view and work

in the setting of canonical extensions. A treatment of the theory of canonical exten-

sions would take us far afield of our main purpose, but we recall a few of the main

ideas. For more information on canonical extensions, see for example [29, Chapter

6] and [33].

Definition 4.2.3 ([33], Definition 1). Given any lattice L, a canonical extension of

L is a complete lattice Lδ together with an embedding L ãÑ Lδ satisfying:
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1. Every element in Lδ is a join of meets of elements of L and a meet of joins

of elements of L (Density).

2. If A,B Ď L and
Ź

A ď
Ž

B in Lδ, then there are finite subsets A1 Ď A and

B1 Ď B of with
Ź

A1 ď
Ž

B1 (Compactness).

Every lattice L has a canonical extension Lδ, and it is unique up to an isomor-

phism that fixes L (see, e.g., [33, Theorem 1]). We thus refer to Lδ as the canonical

extension of L.

If A “ pA,^,_, z, {,K,Jq is a residuation algebra, then the operations z, {,K,J

can be extended to the canonical extension of the lattice pA,^,_q (see [29, Section

6.1.2]) via the so-called π-extensions zπ and {π of the operations z and {, given by

xzπy :“
ł

tx1zy1 : x1, y1 P A and x ď x1 and y1 ď yu

x{πy :“
ł

tx1{y1 : x1, y1 P A and x1 ď x and y ď y1u

When the canonical extension of pA,^,_q is endowed with these operations, it

becomes a residuation algebra. We call the resulting residuation algebra the canon-

ical extension of the residuation algebra A, and denote it by Aδ. Because Aδ has a

complete lattice reduct, we may always define an operation ¨ on Aδ having zπ and

{π as its residuals. We will freely make use of this operation when we work in the

canonical extension of a residuation algebra. Note that by [15, Lemma 10.3.1], ¨

restricts to the elements of the meet-closure of A in Aδ. For convenience, we denote

the meet-closure of A in Aδ by KpAδq, and the join-closure of A in Aδ by OpAδq.

A variety of expanded lattices is called canonical if it is closed under taking

canonical extensions, and an identity is called canonical if the variety it defines

is canonical. The identities pz_q and p_{q are canonical (see, for example, [29,

Theorem 6.23]).
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If L is a lattice, then recall that x P L is completely join-irreducible if for any

subset A Ď L, x “
Ž

A implies x P A. The set of completely join-irreducible ele-

ments of L is denoted by J8pLq. Note that whenever L is distributive, its canonical

extension Lδ is completely distributive. This implies that each x P J8pLδq is com-

pletely join-prime; in other words, whenever A Ď Lδ with if x ď
Ž

A we have x ď a

for some a P A.

Canonical extensions play a role in duality theory because they provide an

entirely algebraic means of understanding duals. In particular, if L is a distributive

lattice, then J8pLδq plays the same role as the poset of prime filters in Priestley

duality. This leads us to the next definition

Definition 4.2.4. Let A be a residuation algebra. Then the relational dual structure

of A is Aδ
` :“ pJ8pAδq,ě, Rq, where R is a ternary relation on J8pAδq defined for

x, y, z P J8pAδq by

Rpx, y, zq iff x ď y ¨ z.

We say that the relation R is functional if y ¨ z P J8pAδq Y tKu when y, z P J8pAδq.

In this case, we also say that Aδ
` is functional.

We say that R is functional and defined everywhere if y ¨ z P J8pAδq whenever

y, z P J8pAδq, in which case we say Aδ
` is total.

As a caution, note that the dual relation R is defined somewhat differently in

the above than in previous chapters; we adopt this choice in order to conform with

[26] (which itself follows [32]).

Note also that functional relations as defined in [32] coincide with relations that

are functional and defined everywhere in Definition 4.2.4. The latter distinction is

particularly important to us in light of the contrast between the extended Priestley

dualities for MTL and GMTL (see Section 4.1) and the role of zero-divisors in that

72



setting. Accordingly, we say that a residuation algebra A extensionally has no

zero-divisors if x ¨ y ‰ K for all x, y P J8pAδq.

4.2.2 The characterization

We have already seen several examples of residuation algebras whose duals are

functional among semilinear CRLs (Section 4.1). In that setting, functionality is a

consequence of the identities pz_q or p_{q. Because these are equational conditions,

in that context we obtain the functionality of the dual of each algebra in an entire

variety of residuated structures. The next example shows that this is atypical.

Example 4.2.5. Let Z3 be the usual group of integers modulo 3. We consider its

complex algebra A :“ pPpZ3q,X,Y, ¨, z, {, t0uq, where the operations ¨, z, and { are

defined for U, V P PpZ3q by

U ¨ V :“ tn`m : x P U, y P V u,

UzV :“ tk : U ¨ tku Ď V u,

U{V :“ tk : tku ¨ V Ď Uu.

A is a commutative residuated lattice, and a fortiori a residuation algebra. Because

A is finite, we have Aδ “ A. Observe that for each n,m P Z3, we have that

tnu ¨ tmu “ tn`mu.

Consequently, the dual relation R on J8pPpZ3qq is functional and defined every-

where. This means that Aδ
` is functional and total.

Notice that tH, t0u, t1, 2u,Z3u is the universe of a subalgebra of A. In this

subalgebra, we have t1, 2u ¨ t1, 2u “ Z3, which is not join-irreducible despite the
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fact that t1, 2u is join-irreducible. Now since universal first-order sentences that are

satisfied in some structure must also be satisfied in its substructures, this example

illustrates that there is no universal first-order property in the language of residuated

lattices that characterizes the functionality of the relational dual structure.

Although we cannot offer a characterization of functionality in terms of universal

sentences (much less equations), we will provide a second-order characterization.

We begin with two technical lemmas that rephrase in the language of canonical

extensions one of the key properties of prime filters (to wit, that each prime filter

determines a maximal filter-ideal pair given by the prime filter and its complement).

Lemma 4.2.6. Let L be a lattice. Suppose that k P KpLδq is finitely prime and set

o :“
Ž

ty P L : y ğ ku. Then k ę o.

Proof. Suppose on the contrary that
Ź

tx P L : k ď xu “ k ď o. Compactness

implies that there are finite sets A Ď tx P L : k ď xu and B Ď ty P L : y ğ ku

satisfying

x1 :“
ľ

A ď
ł

B “: y1

This yields x1 ě k, and y1 ğ k. To see why, note that if otherwise then the primality

of k gives y ě k for some y P B (a contradiction). From this we obtain k ď x1 ď y1,

which contradicts y1 ğ k.

Lemma 4.2.7. Let L be a lattice. If k P KpLδq is finitely prime, then k P J8pLδq.

Proof. By the density property of canonical extensions, it suffices to show that if

k “
Ž

A for some A Ď KpLδq, then k “ a for some a P A. Set

o :“
ł

tx P L : x ğ ku.
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We argue by contradiction, assuming a ă k for all a P A. Observe that for every

a P A we have

a “
ľ

tx P L : x ě au

as a consequence of A Ď KpLδq. This implies that for each a P A there is xa P L

such that xa ě a and xa ğ k. Consequently, for each a P A we have xa ď o. This

proves
Ž

txa : a P Au ď o, and thus

o ě
ł

txa : a P Au ě
ł

A “ k.

This is a contradiction to Lemma 4.2.6, and that settles the claim.

The above lemmas hold for an arbitrary lattice L. The rest of the results of this

section rely on the distributivity of the lattice reducts of residuation algebras.

Proposition 4.2.8. Let A be a residuation algebra. If A |ù pz_q, then Aδ
` is

functional.

Proof. Because pz_q is canonical, the hypothesis gives that Aδ |ù pz_q. Let x, y P

J8pAδq and suppose that x ¨ y ‰ K. From x, y P J8pAδq Ď KpAδq, we have

x ¨ y P KpAδq because ¨ restricts to KpAδq. From Lemma 4.2.7, it suffices to show

that x ¨ y is finitely prime.

Suppose that x ¨ y ď
Ž

S for a finite S Ď Aδ. Residuating gives

y ď xzπ
ł

S ď
ł

txzπs : s P Su

by pz_q. Because the lattice reduct of A is distributive and y is prime, this gives

y ď xzs for some s P S. Hence x ¨ y ď s for some s P S, concluding the proof.
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The following is an immediate consequence of Proposition 4.2.8.

Corollary 4.2.9. Let A be a residuation algebra. If A satisfies pz_q and exten-

sionally has no zero-divisors, then Aδ
` is total.

Remark 4.2.10. Although Proposition 4.2.8 and Corollary 4.2.9 address residua-

tion algebras satisfying pz_q, one may obtain the same results by entirely symmetric

proofs if one replaces pz_q by p_{q.

Our last proposition of this chapter emends [32, Proposition 3.16], and provides

our characterization of functionality on relational dual structures. (2) and (3) of

Proposition 4.2.11 below reformulate (2) and (3) of [32, Proposition 3.16] in the

language of canonical extensions. On the other hand, the condition given in Propo-

sition 4.2.11(1) is weaker than that of [32, Proposition 3.16(1)]. In particular, it

does not demand that the dual relation corresponding to ¨ is defined everywhere.

Although the proof of (1)ñ(2) is essentially that given in [32, Proposition 3.16], the

proof of (3)ñ(1) is simpler than the corresponding proof in [32, Proposition 3.16],

and is where the emendation occurs.

Proposition 4.2.11. Let A “ pA,^,_, {, z,K,Jq be a residuation algebra. The

following are equivalent.

1. Aδ
` is functional.

2. For all x, y, z P A and all j P J8pAδq, if j ď x then there exists x1 P A such

that j ď x1 and xzpy _ zq ď px1zyq _ px1zzq.

3. For all j P J8pAδq, the map jzπp´q : OpAδq Ñ OpAδq is _-preserving.

Proof. To prove (1)ñ(2), let x, y, z P A and j P J8pAδq with j ď x. Suppose that

k P J8pAδq with k ď xzpy_zq. Then x ¨k ď y_z, so j ¨k ď y_z. By the hypothesis

we have j ¨ k P J8pAδq Y tKu. Since completely join-irreducibles in a distributive
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lattice are prime, this implies that j ¨k ď y or j ¨k ď z. Residuating, we obtain that

one of

k ď jzπy “
ł

tazy : a P A and j ď au

k ď jzπz “
ł

tazz : a P A and j ď au

holds. Hence from k P J8pAq we get that there is xk P A such that j ď xk and one

of k ď xkzy or k ď xkzz holds. The latter fact gives k ď pxkzyq _ pxkzzq. Since

xk P A and j ď xk for all such xk, we get

xzpy _ zq “
ł

tk P J8pAq : k ď xzpy _ zqu ď
ł

tpazyq _ pazzq : a P A and j ď xu.

By compactness and because z is antitone in its denominator, there exist elements

a1, . . . , an P A such that

xzpy _ zq ď
ł

tpaizyq _ paizzq : 1 ď i ď nu ď px1zyq _ px1zzq

where x1 :“
Źn
i“1 ai P A. Because j ď x1, this proves (1)ñ(2).

To prove (2)ñ(3), let j P J8pAδq and o1, o2 P OpA
δq. Because zπ is isotone in

its numerator, it suffices to show

xzπpo1 _ o2q ď pxz
πo2q _ pxz

πo2q. (4.2.1)

The definition of the π-extension shows:

jzπpo1 _ o2q “
ł

txzw : x,w P A and j ď x and w ď o1 _ o2u

jzπo1 “
ł

tx1zy : x1, y P A and j ď x1 and y ď o1u
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jzπo2 “
ł

tx1zz : x1, z P A and j ď x1 and y ď o2u

It suffices to show that for all x,w P A with j ď x and w ď o1 _ o2, there are

x1, y, z P A for which j ď x1, y ď o1, z ď o2 and xzw ď px1zyq _ px1zzq. We have

w ď o1 _ o2 “
Ž

ty P A : y ď o1u _
Ž

tz P A : z ď o2u, and from compactness

it follows that there exist y, z P A with w ď y _ z and y ď o1, z ď o2. From the

hypothesis, there exists x1 P A so that j ď x1 and xzw ď xzpy_ zq ď px1zyq _ px1zzq

as required.

To prove (3)ñ(1), let j, k P J8pAδq. Then j ¨k P KpAδq because of general facts

about canonical extensions of maps. From Lemma 4.2.7, it suffices to prove that if

x, y P Aδ and j ¨k ‰ K, then j ¨k ď x_y implies j ¨k ď x or j ¨k ď y. Density provides

that it is enough to prove the claim for x, y P OpAδq, and compactness provides that

it is enough to prove the claim for x P A and y P A. Note that if j ¨ k ď x_ y, then

by residuation and the hypothesis we get k ď jzπpx_ yq “ pjzπxq _ pjzπyq. But k

is prime, so k ď jzπx or k ď jzπy. Hence j ¨ k ď x or j ¨ k ď y as needed.
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Chapter 5

Algebraic representations of Sugihara

monoids

The array of duality-theoretic methods assembled in the foregoing chapters pro-

vides a toolkit for addressing algebraic questions, and now we begin deploying these

tools. The next three chapters provide a duality-theoretic analysis of Sugihara

monoids, and in particular of the equivalences of SM and SMK to categories con-

sisting of certain expansions of relative Stone algebras, first articulated in [30, 31].

Existing presentations of this equivalence are not amenable to our methods, so our

task in the present chapter is to provide a more convenient rendition of these cate-

gorical equivalences. The version of the equivalence for SMK obtained in this chapter

provides the left-hand side of the diagram give in Figuer 1.1. After this algebraic

preprocessing, Chapter 6 gives Esakia-like dualities for SM and SMK via restriction

of the Davey-Werner duality. Then Chapter 7 describes the equivalence for SMK in

terms of the relationship between this Esakia-like duality and the extended Priestley

duality for SMK. The ideas in this chapter originally come from the author’s [24].
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5.1 The Galatos-Raftery construction

Recall that a Sugihara monoid is a distributive, idempotent, involutive CRL. A

relative Stone algebra is a semilinear CRL for which ¨ and ^ coincide, and a Gödel

algebra is a bounded relative Stone algebra (see Section 2.3).

Definition 5.1.1. Define EnSM´ to be the class of algebras pA,^,_,Ñ, e,N, fq

satisfying the following.

1. pA,^,_,Ñ, eq is a relative Stone algebra.

2. N : AÑ A is a nucleus on pA,^,_,Ñ, eq.

3. f P A, and for all a P A

(a) x_ pxÑ fq “ e

(b) NpNaÑ aq “ e

(c) Na “ e if and only if f ď a.

Also define EnSM´
K

to be the class of expansions of members of EnSM´ by a desig-

nated least element.

Notwithstanding condition 3(c) in the previous definition, EnSM´ and EnSM´
K

are varieties (see [31]).

Let A “ pA,^,_, ¨,Ñ, e, q be a Sugihara monoid. Define

A´ :“ ta P A : a ď eu
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and call the elements of A´ negative. The enriched negative cone13 of A is the

algebra

A´ :“ pA´,^,_, ¨,Ñ´, e,N, eq,

where the operations Ñ´ and N are defined by

aÑ´ b :“ paÑ bq ^ e

Na :“ paÑ eq Ñ e

For any Sugihara monoid A, we have A´ P EnSM´. The analogous claim also

holds for bounded Sugihara monoids and EnSM´
K

, where we modify the definition

of enriched negative cones to include a constant designating the least element. For

both variants, the map A ÞÑ A´ becomes a functor by defining h´ :“ hæA´ for

a homomorphism h : A Ñ B. The main result of [31] establishes that p´q´ is one

functor of a categorical equivalence between SM (SMK) and EnSM´ (EnSM´
K

). The

reverse functor produces a (bounded) Sugihara monoid from an arbitrary algebra in

EnSM´ (respectively, EnSM´
K

) by a process we call the Galatos-Raftery construction.

This goes as follows. Let A “ pA,^,_,Ñ, e,N, fq P EnSM´. Define

ΣpAq “ tpa, bq P AˆA : a_ b “ e and Nb “ bu,

and set ΣpAq :“ pΣpAq,[,\, ˝,Ù, pe, eq, q, where the operations are defined

presently. Set

s :“ paÑ dq ^ pcÑ bq

13In the theory of residuated lattices, the notation A´ usually refers to the negative cone of A,
which coincides with the reducts of our enriched negative cones that are missing N and  e. We
will not have occasion to refer to (unenriched) negative cones, so we repurpose this notation for our
needs.
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t :“ paÑ cq ^ pdÑ bq

and define

pa, bq [ pc, dq “ pa^ c, b_ dq

pa, bq \ pc, dq “ pa_ c, b^ dq

pa, bq ˝ pc, dq “ psÑ pa^ cq, Nsq

pa, bq Ù pc, dq “ pt,NptÑ pa^ dqqq

 pa, bq “ pa, bq Ù pf, eq

“ ppaÑ fq ^ b,NpppaÑ fq ^ bq Ñ aqq

If h : A Ñ B is a homomorphism between algebras in EnSM´, define a morphism

Σphq : ΣpAq Ñ ΣpBq by Σphqpa, bq “ phpaq, hpbqq. With this, Σ defines a functor

from EnSM´ to SM. Moreover, the functor Σ can of modified to account for bounds:

If pA,Kq is an algebra in EnSM´
K

, extend Σ by associating with pA,Kq the Sugihara

monoid SpAq with designated least element pK, tq. Together with p´q´, Σ gives a

covariant equivalence of categories between SM and EnSM´ (as well as SMK and

EnSM´
K

).

Σ is a variant of the twist product construction, which was first introduced by

Kalman [41] in the context of normal distributive i-lattices (but twist products are

now the subject of a considerable literature; see, e.g., [23, 42, 45, 46, 47, 54]). In

Kalman’s version of the construction, normal distributive i-lattices are represented

as algebras built on a set of ordered pairs and the i-lattice involution is given by the

operation pa, bq ÞÑ pb, aq. Although the p^,_, q-reduct of any Sugihara monoid is

a normal distributive i-lattice (see Proposition 2.3.4), observe that the involution  

in the definition of Σ is not given by pa, bq ÞÑ pb, aq. On the other hand, for odd
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Sugihara monoids the involution defined in Σ is given by pa, bq ÞÑ pb, aq (see [30],

an antecedent of [31] for odd Sugihara monoids). This mismatch between the usual

twist product involution and that given by Σ is unsuitable for our purposes, so we

rephrase the construction outlined above in order to restore the natural involution

pa, bq ÞÑ pb, aq. Doing so demands further scrutiny of the algebraic structure EnSM´,

which we carry forth in the next section.

5.2 Algebras with Boolean constant

If A is a Brouwerian algebra and a is a filter of A, we say that a is a Boolean

filter of A if a is a Boolean lattice14 under the operations of A. Note that teu is a

Boolean filter for any Brouwerian algebra A with top element e.

Lemma 5.2.1. Let A “ pA,^,_,Ñ, eq be a Brouwerian algebra, and let a be a

Boolean filter of A whose least element is f . Then for each a P a, the complement

of a in a is aÑ f .

Proof. We have a Ñ f P a because a Ñ f ě f . Since a P a, this implies a ^ pa Ñ

fq P a. From a ^ pa Ñ fq ď f and f being the least element of a, we obtain that

a ^ pa Ñ fq “ f . On the other hand, a being a Boolean filter means that a P a

has a complement c in a. This gives that a ^ c ď f , whence c ď a Ñ f . Then

e “ a_ c ď a_ paÑ fq, giving a_ paÑ fq “ e. This proves the result.

Proposition 5.2.2. Let A “ pA,^,_,Ñ, eq be a Brouwerian algebra and let f P A.

Then the following are equivalent.

1. a_ paÑ fq “ e for all a P Òf .

2. a_ paÑ fq “ e for all a P A.

14In other words, a is a complemented bounded distributive lattice. Of course, we do not assume
that the lattice bounds are distinguished.
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3. Òf is a Boolean lattice.

Proof. First, we show (1) implies (3). Suppose that a _ pa Ñ fq “ e for all a P Òf

and let a P Òf . Then a^paÑ fq ď f . Since aÑ f ě f , we get a, aÑ f P Òf . This

yields a^ paÑ fq “ f . Since a_ paÑ fq “ e by assumption, this shows that each

a P Òf has a complement (i.e., aÑ f) in Òf , and hence that Òf is a Boolean filter.

Second, we show (3) implies (2). Suppose that Òf is a Boolean filter. Let a P A.

Then a Ñ f ě f gives a _ pa Ñ fq P Òf . Thus a _ pa Ñ fq has a complement

in Òf , given by pa _ pa Ñ fqq Ñ f according to Lemma 5.2.1. Note that since

a ď a_ paÑ fq we get pa_ paÑ fqq Ñ f ď aÑ f , so

e “ pa_ paÑ fqq _ ppa_ paÑ fqq Ñ fq

ď a_ paÑ fq

This gives that a_ paÑ fq “ e as claimed.

Since (2) implies (1) trivially holds, the result follows.

Following Proposition 5.2.2, we say that an expansion of a Brouwerian algebra

(Heyting algebra) A by a constant f satisfying a _ pa Ñ fq “ e is a Brouwerian

algebra with Boolean constant (respectively, Heyting algebra with Boolean constant).

Our interest is in the semilinear members of these classes, and we denote the variety

of relative Stone algebras with Boolean constant by bRSA and variety of Gödel

algebras with Boolean constant by bGA. Algebras in these varieties are called bRS-

algebras and bG-algebras, respectively.

We note that the comments on pp. 3207 and 3192 of [31] characterize the

subdirect irreducibles in EnSM´ as follows.
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Proposition 5.2.3. pA,^,_,Ñ, e,N, fq P EnSM´ is subdirectly irreducible if and

only if it is totally ordered, ta P A : a ă eu has a greatest element, and one of the

following holds:

1. f “ e and N is the identity function on A, or

2. f is the greatest element of ta P A : a ă eu, Nf “ e, and Na “ a whenever

a ‰ f .

The previous proposition leads us to the following important fact.

Lemma 5.2.4. EnSM´ satisfies the identity Na “ f Ñ a.

Proof. It is enough to show that Na “ f Ñ a holds for subdirectly irreducibles, so

let A “ pA,^,_,Ñ, e,N, fq be a subdirectly irreducible algebra in EnSM´. There

are two cases. First, if f “ e and N is the identity function on A, the result is trivial

since f Ñ a “ eÑ a “ a “ Na for every a P A.

In the second case, A is a chain and N satisfies

Na “

$

’

’

&

’

’

%

e a “ f, e

a a ‰ f, e

Note that in any totally-ordered Brouwerian algebra,

xÑ y “

$

’

’

&

’

’

%

e x ď y

y x ę y

so

f Ñ a “

$

’

’

&

’

’

%

e f ď a

a f ę a
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Since e covers f in the second case, we get f ď a iff a “ f or a “ e, proving the

claim.

Proposition 5.2.5. EnSM´ is term-equivalent to bRSA, and EnSM´
K

is term-equivalent

to bGA.

Proof. Lemma 5.2.4 shows that N is definable in the p^,_,Ñ, e, fq-reduct of any

A “ pA,^,_,Ñ, e,N, fq P EnSM´. The p^,_,Ñ, e, fq-reduct of any such A satis-

fies a_ paÑ fq “ e by definition, hence is a bRS-algebra.

Now suppose that A “ pA,^,_,Ñ, e, fq is a bRS-algebra. Define N : A Ñ A

by Na “ f Ñ a. Then N is a nucleus from Example 2.3.5. Also, for any a P A,

NpNaÑ aq “ f Ñ ppf Ñ aq Ñ aq

“ pf Ñ aq Ñ pf Ñ aq

“ e

whence we have the identity NpNaÑ aq “ e.

To see that we also have the condition that Na “ e if and only if f ď a, observe

Na “ e ðñ f Ñ a “ e

ðñ e ď f Ñ a

ðñ f ď a.

Thus every bRS-algebra is the p^,_,Ñ, e, fq-reduct of some algebra in EnSM´. It

follows that EnSM´ is term-equivalent to bRSA, and the result for EnSM´
K

and bGA

follows by an identical argument.

According to Proposition 5.2.5, we need not enrich the negative cones of Sugihara

monoids by a nucleus in order to achieve categorical equivalence; the addition of a
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constant f satisfying a _ pa Ñ fq “ e suffices. In particular, SM is categorically

equivalent to bRSA. This equivalence is given as before, except with the following

adjustments:

1. We modify the functor Σ by eliminating all occurrences of N in the definitions

of ˝ and Ù using the identity Na “ f Ñ a.

2. We replace the functor p´q´ with p´q’ : SMÑ bRSA, defined for a Sugihara

monoid A “ pA,^,_, ¨,Ñ, e, q by A’ “ pA
´,^,_,Ñ´, e, eq.

Similar remarks apply to SMK and bGA, which are equivalent by functors modified

analogously to the above.

5.3 Naturalizing involution

The goal of this section is to replace Σ by an alternative functor p´q’. Together

with p´q’, the functor p´q’ yields an equivalence of categories between SM and

bRSA (as well as between SMK and bGA). However, p´q’ yields a representation of

Sugihara monoids that ties them more closely to their i-lattice reducts and hence to

existing work on twist products.

For a bRS-algebra A “ pA,^,_,Ñ, e, fq, define15

A’ “ tpa, bq P AˆA : a_ b “ e and a^ b ď fu

For pa, bq, pc, dq P AˆA, define

pa, bq [ pc, dq “ pa^ c, b_ bq

15The notation ’ comes from the theory of twist products. However, we caution that this is not
to be confused with what is sometimes called in the literature the full twist product.
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pa, bq \ pc, dq “ pa_ c, b^ dq

as in the definition of Σ. Then pAˆA,[,\q is a lattice (and in fact coincides with

the product of the lattice reduct of A and its order dual).

Lemma 5.3.1. Let A “ pA,^,_,Ñ, e, fq be a bRS-algebra. Then ΣpAq and A’

are universes of sublattices of pAˆA,[,\q.

Proof. Let pa, bq, pc, dq P A ˆ A. First, suppose a _ b “ c _ d “ e. Then by the

distributivity of the lattice reduct of A,

pa^ cq _ pb_ dq “ ppa_ bq ^ pc_ bqq _ d

“ pe^ pc_ bqq _ d

“ e

Similarly, pa_ cq _ pb^ dq “ e.

Second, suppose pa, bq, pc, dq P A ˆ A with Nb “ b and Nd “ d, where Nx “

f Ñ x as above. Then Npb^ dq “ b^ d since A satisfies pz^q, and Npb_ dq “ b_ d

since A satisfies pz_q.

Third, suppose that pa, bq, pc, dq P A ˆ A with a ^ b ď f and c ^ d ď f . This

gives

pa^ cq ^ pb_ dq “ pa^ c^ bq _ pa^ c^ dq

ď pf ^ cq _ pf ^ aq

ď f

Similarly, pa_ cq ^ pb^ dq ď f .
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The first and second paragraphs above prove that ΣpAq is closed under [ and

\. The first and third paragraphs prove that A’ is closed under [ and \. Hence

both ΣpAq and A’ are universes of sublattices of pAˆA,[,\q as claimed.

Given A “ pA,^,_,Ñ, e, fq P bRSA, define δA : AˆAÑ AˆA by

δApa, bq “ pa, f Ñ bq “ pa,Nbq,

where Nb “ f Ñ b as usual.

Lemma 5.3.2. δA is a lattice endomorphism of pAˆA,[,\q.

Proof. Direct calculation using the identities pz^q and pz_q shows

δAppa, bq [ pc, dqq “ δApa, bq [ δApc, dq, and

δAppa, bq \ pc, dqq “ δApa, bq \ δApc, dq

for any pa, bq, pc, dq P AˆA.

Suppose that pa, bq P A ˆ A satisfies a _ b “ e. The identity f Ñ b ě b implies

that that a_ pf Ñ bq “ e. Also, the second coordinate of

δApa, bq “ pa, f Ñ bq “ pa,Nbq

is an N -fixed element of A. These remarks show that δArA
’s Ď ΣpAq, whence

δA : pA’,[,\q Ñ pΣpAq,[,\q defined by δA “ δAæA’ is a lattice homomorphism.

Lemma 5.3.3. δA is a lattice isomorphism whose inverse is given by

δ´1
A pa, bq “ pa, b^ paÑ fqq.
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Proof. It is enough to show that δA is a bijection.

To see that δA is one-to-one, let pa, bq, pc, dq P A’ with δApa, bq “ δApc, dq.

Then pa, f Ñ bq “ pc, f Ñ dq, i.e., a “ c and f Ñ b “ f Ñ d. It follows that

f Ñ b ď f Ñ d, so f ^ b “ f ^pf Ñ bq ď d. Because pa, bq P A’, we have a^ b ď f

and a_ b “ e. By lattice distributivity, pa_ fq ^ pb_ fq “ pa^ bq _ f “ f . Also,

pa _ fq _ pb _ fq “ e _ f “ e. It follows that a _ f and b _ f are complements in

the Boolean lattice Òf . Since pa, dq P A’ as well, an identical argument shows that

a_ f and d_ f are complements in Òf too. But complements in a Boolean lattice

are unique, whence b_ f “ d_ f . Using b^ f ď d and distributivity, we obtain

b “ b^ pb_ fq

“ b^ pd_ fq

“ pb^ dq _ pb^ fq

ď pb^ dq _ d

“ d

so that b ď d. Similarly, we may prove d ď b. It follows that b “ d, and hence δ is

one-to-one.

For proving that δA is onto, let pa, bq P ΣpAq. Then by definition a_ b “ e and

b “ f Ñ b. Note that a^ b^ paÑ fq “ a^ f ^ b ď f . Applying distributivity,

a_ pb^ paÑ fqq “ pa_ bq ^ pa_ paÑ fqq

“ e_ e

“ e,
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whence pa, b^ paÑ fqq P A’. Moreover:

f Ñ pb^ paÑ fqq “ pf Ñ bq ^ pf Ñ paÑ fqq

“ pf Ñ bq ^ ppf ^ aq Ñ fqq

“ pf Ñ bq ^ e

“ f Ñ b

“ b

This shows that δApa, b ^ pa Ñ fqq “ pa, bq, and thus that δA is onto. And the

computation above actually proves more, viz. that the inverse of δA is given by

pa, bq ÞÑ pa, b^ paÑ fqq.

Since pΣpAq,[,\q is the lattice reduct of the residuated lattice ΣpAq, we may

transport structure along the lattice isomorphism δA in order to equip A’ with a

residuated multiplication. By Lemma 5.3.3, δA has an inverse δ´1
A defined by

δ´1
A pa, bq “ pa, b^ paÑ fqq.

We define binary operations ‚ and ñ on A’ by

pa, bq ‚ pc, dq “ δ´1
A pδApa, bq ˝ δApc, dqq

pa, bq ñ pc, dq “ δ´1
A pδApa, bq Ù δApc, dqq

Unpacking this definition, ‚ is given by pa, bq ‚ pc, dq “ ps, tq, where

s “ ppa^ fq Ñ dq ^ rppc^ fq Ñ dq Ñ pa^ cqs
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and

t “ ppa^ fq Ñ dq ^ ppc^ fq Ñ dq ^ psÑ fq.

Along the same lines, ñ is given by pa, bq ñ pc, dq “ pw, vq, where

w “ paÑ cq ^ ppf ^ dq Ñ bq

and

v “ rpf ^ paÑ cq ^ pdÑ bqq Ñ pa^ pf Ñ dqqs ^ pw Ñ fq.

By transport of structure, we immediately obtain:

Proposition 5.3.4. Let A “ pA,^,_,Ñ, e, fq P bRSA. Then the algebra

pA’,[,\, ‚,ñ, pe, fqq

is an idempotent, distributive CRL.

We may expand pA’,[,\, ‚,ñ, pe, fqq by the natural involution „ given by

„pa, bq “ pb, aq. Since pa, bq P A’ implies pb, aq P A’, „ is a well-defined binary

operation on A’. We will show that pA’,[,\, ‚,ñ, pe, fqq P SM. Toward this aim,

we begin with a lemma.

Lemma 5.3.5. If pa, bq P A’, then paÑ fq ^ pf Ñ bq “ b.

Proof. Let pa, bq P A’, and note that by definition a ^ b ď f and a _ b “ e. From

a ^ b ď f we have b ď a Ñ f , whence b “ b ^ pf Ñ bq ď pa Ñ fq ^ pf Ñ bq.

Also, Proposition 2.3.3 together with a _ b “ e yields a Ñ b “ b. Notice that

a ^ pa Ñ fq ^ pf Ñ bq ď f ^ pf Ñ bq ď b, so by applying the law of residuation

paÑ fq ^ pf Ñ bq ď aÑ b “ b. This settles the claim.
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Proposition 5.3.6. Let A P bRSA. Then for all pa, bq P A’,  δApa, bq “ δAp„pa, bqq.

Thus δA is an isomorphism of SM.

Proof. Let pa, bq P A’. Then a _ b “ e, whence a Ñ b “ b and b Ñ a “ a by

Proposition 2.3.3. Lemma 5.3.5 provides that pa Ñ fq ^ pf Ñ bq “ b. From these

facts, we get

 δApa, bq “  pa, f Ñ bq

“ pa, f Ñ bq Ù pf, eq

“ ppaÑ fq ^ peÑ pf Ñ bqq, f Ñ rppaÑ fq ^ peÑ pf Ñ bqq Ñ pa^ eqsq

“ ppaÑ fq ^ pf Ñ bq, f Ñ rppaÑ fq ^ pf Ñ bqq Ñ aq

“ pb, f Ñ pbÑ aqq

“ pb, f Ñ aq

“ δAp„pa, bqq.

This implies that δA preserves „ as well as the other operations. It follows that

pA’,[,\, ‚,ñ, pe, fq,„q is a Sugihara monoid that is isomorphic to ΣpAq under

δA for every A P bRSA.

Define a functor p´q’ : bRSAÑ SM as follows. If A “ pA,^,_,Ñ, e, fq P bRSA

then set

A’ :“ pA’,[,\, ‚,ñ, pe, fq,„q.

For a homomorphism h : A Ñ B of bRSA, define a function h’ : A’ Ñ B’ by

h’pa, bq “ phpaq, hpbqq.

Lemma 5.3.7. Let h : A Ñ B be a morphism in bRSA. Then h’ is a morphism in

SM.
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Proof. Let h : A Ñ B be a homomorphism between bRS-algebras. From [31],

Σphq : ΣpAq Ñ ΣpBq defined by Σphqpa, bq “ phpaq, hpbqq is a homomorphism

between Sugihara monoids. For any pa, bq P A’, we have

ΣphqpδApa, bqq “ Σphqpa, fA Ñ bq

“ phpaq, hpfA Ñ bqq

“ phpaq, hpfAq Ñ hpbqq

“ phpaq, fB Ñ hpbqq

“ δBphpaq, hpbqq

“ δBph
’pa, bqq.

This demonstrates that h’ “ δ´1
B ˝ Σphq ˝ δA. The latter is a composition of

morphisms in SM, which proves the claim.

Lemma 5.3.8. p´q’ is functorial.

Proof. Observe first that p´q’ preserves the identity map. Let g : A Ñ B and

h : B Ñ C be homomorphisms between bRS-algebras. Because Σ is a functor,

ph ˝ gq’ “ δ´1
C ˝ Σph ˝ gq ˝ δA

“ δ´1
C ˝ Σphq ˝ Σpgq ˝ δA

“ δ´1
C ˝ Σphq ˝ δB ˝ δ

´1
B ˝ Σpgq ˝ δA

“ h’ ˝ g’.

We have seen that p´q’ : bRSAÑ SM is a functor. We will show that it provides

a reverse functor for p´q’.
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Lemma 5.3.9. Let A P bRSA. Then A – pA’q’.

Proof. We have A’ – ΣpAq under δA. From [31] we have ΣpAq’ – A, and thus

pA’q’ – A.

Lemma 5.3.10. Let A P SM. Then A – pA’q
’.

Proof. From [31] and δA’
, A – SpA’q – pA’q

’.

Lemma 5.3.11. bRSApA,Bq and SMpA’,B’q are in bijective correspondence.

Proof. bRSApA,Bq is in bijective correspondence with SMpΣpAq,ΣpBqq by [31].

Also, for h : ΣpAq Ñ ΣpBq, the map h ÞÑ δ´1
B ˝ h ˝ δA gives a bijection between the

SMpΣpAq,ΣpBqq and SMpA’,B’q. This proves the lemma.

Combining the results above:

Theorem 5.3.12. p´q’ and p´q’ give an equivalence of categories between bRSA

and SM.

The work above shows that p´q’ and Σ are both adjoints of p´q’. Consequently,

p´q’ and Σ are isomorphic functors. We therefore dispense with the functor Σ

outright, and subsequently we will work exclusively with p´q’ due to its more

convenient involution. Of course, all of the above applies equally-well to bounded

Sugihara monoids and bG-algebras.

Example 5.3.13. Recall that we introduced the Sugihara monoid E in Example

2.3.11. The enriched negative cone of E is the bRS-algebra E’ with

f “  p0, 1q “ p´0,´1q “ p0,´1q.

Its labeled Hasse diagram is
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‚

e “ p0, 1q

‚ f “ p0,´1q‚c “ p´1, 1q

‚ b “ p´1,´1q

‚ a “ p´2,´2q

The nucleus N : E’ Ñ E’ defined by Nx “ f Ñ x is given by the equations

Ne “ Nf “ e, Nb “ Nc “ c, Na “ a.

and thus

ΣpE’q “ tpx, yq P E
´ ˆ E´ : x_ y “ e and Ny “ yu

“ tpa, eq, pb, eq, pc, eq, pf, eq, pe, eq, pe, aq, pe, cq, pf, cqu.

If we instead use p´q’, we get

pE’q
’ “ tpx, yq P E´ ˆ E´ : x_ y “ e and x^ y ď fu

“ tpa, eq, pe, aq, pb, eq, pe, bq, pe, fq, pf, eq, pf, cq, pc, fqu.

The labeled Hasse diagrams for ΣpE’q and pE’q
’ are, respectively,

‚ pe, aq

‚pe, cq

‚pe, eq ‚ pf, cq

‚ pf, eq‚pc, eq

‚ pb, eq

‚ pa, eq

‚ pe, aq

‚pe, bq

‚pe, fq ‚ pf, cq

‚ pf, eq‚pc, fq

‚ pb, eq

‚ pa, eq

Notice that ΣpE’q and pE’q
’ differ by only three pairs, including the monoid iden-

tity.
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Chapter 6

Esakia duality for Sugihara monoids

In [20], Dunn provides a relational semantics for the relevance logic R-mingle

that employs a binary accessibility relation. In Dunn’s terms, a model structure

for R-mingle is a triple pM,K,ďq, where M is a set, ď is a linear order on M , and

K PM is the least element of M . If V is the collection of propositional variables over

which the language of R-mingle is defined, a model for a model structure pM,ď,Kq

is a function α : V ˆM Ñ ttT u, tF u, tT, F uu satisfying

(Heredity) If x, y PM and x ď y, then αpp, xq Ď αpp, yq for all p P V .

After extending models to provide truth values in ttT u, tF u, tT, F uu for complex

sentences as well, Dunn defines a semantic consequence relation and shows that

R-mingle is sound and complete with respect to this semantics.

Dunn’s models for R-mingle are familiar: The heredity condition stipulates that

the map x ÞÑ αpp, xq is an isotone map from pM,ďq into the poset

‚tT, Fu

‚tTu ‚ tFu

which is nothing more than the poset reduct of the dualizing object D
r

3 for NDIL (see

Section 3.3). Sugihara monoids give the algebraic (rather than relational) semantics
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for R-mingle, and from Proposition 2.3.4 we know that they possess reducts in NDIL.

We will see in this chapter that these connections to normal distributive i-lattices and

their Davey-Werner duals manifests a duality for Sugihara monoids (as well as their

bounded expansions). This duality is akin to Esakia duality, and we will obtain it

by restricting the Davey-Werner duality in much the same way that Esakia duality

is obtained by restricting Priestley duality. For SMK, this Esakia-style duality is

rendered as the diagonal in Figuer 1.1.

Of course, Chapter 5 shows that SM (SMK) is equivalent to bRSA (bGA). The

latter consists of expansions of certain Brouwerian algebras, which already enjoy

the Esakia duality. It is natural to ask whether Esakia duality can be modified to

account for the expansion by a Boolean constant. Constructing such a modification

is our first order of business, and is the subject of Section 6.1. This modification

of Esakia duality to account for the Boolean constant appears as the bottom of the

diagram in Figuer 1.1. With this new variant of Esakia duality in hand, in Section

6.2 we will construct our duality for Sugihara monoids (with and without designated

bounds) by restricting the Davey-Werner duality. Along the way, in Section 6.1.1

we will comment on the relationship between our variant of the Esakia duality for

bGA and Bezhanishvili and Ghilardi’s duality [4] for Heyting algebras expanded by

nuclei. The content of this chapter is based on the author’s [24].

6.1 Esakia duality for algebras with Boolean constant

We will show that bRSA is dually equivalent to the category of structured topo-

logical spaces defined in the following.

Definition 6.1.1. A structure pX,ď, D,J, τq is called a bRS-space if

1. pX,ď,J, τq is a pointed Esakia space,
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2. pX,ďq is a forest, and

3. D is a clopen subset of X consisting of designated ď-minimal elements.

For bRS-spaces pX,ďX , DX ,JX , τXq and pY,ďY , DY ,JY , τY q, a function α from

pX,ďX , DX ,JX , τXq to pY,ďY , DY ,JY , τY q is called a bRSS-morphism if

1. α is a pointed Esakia map from pX,ďX ,JX , τXq to pY,ďY ,JY , τY q,

2. αrDXs Ď DY , and

3. αrDc
Xs Ď Dc

Y .

We designate the category of bRS-spaces with bRSS-morphisms by bRSS.

As usual, to obtain a duality between bRSA and bRSS we will introduce new

variants of S and A. If A “ pA,^,_,Ñ, e, fq and X “ pX,ď, D,J, τq are objects

of bRSA and bRSS, respectively, define

SpAq “ pSpA,^,_,Ñ, eq, ϕpfqcq

ApX,ď, D,J, τq “ pApX,ď,J, τq, Dcq

where S and A appearing on the right-hand sides of the above are their variants

for Brouwerian algebras/pointed Esakia spaces. For morphisms, the definitions of

S and A remain unmodified.

Lemma 6.1.2. Let A “ pA,^,_,Ñ, e, fq be an object of bRSA. Then SpAq is an

object of bRSS.

Proof. The duality for Brouwerian algebras guarantees that SpAq is a pointed Esakia

space whose underlying order is a forest. ϕpfqc is basic clopen, so it is enough to

show that ϕpfqc consists of Ď-minimal elements. To see this, let y P ϕpfqc and
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assume x P SpAq with x Ď y. Let y P y. Then py Ñ fq _ y “ e P x, so by the

primality of x either y P x or y Ñ f P x. If y Ñ f P x, then y Ñ f P y. This gives

y^py Ñ fq P y. But y^py Ñ fq ď f and y an up-set gives f P y, which contradicts

the choice of y. It follows that y P x, so that y Ď x. Since x Ď y as well, this shows

that x “ y and thus y is Ď-minimal.

Lemma 6.1.3. Let X “ pX,ď, D,J, τq be an object of bRSS. Then ApXq is an

object of bRSA.

Proof. The duality for Brouwerian algebras guarantees that ApXq is a relative Stone

algebra. We must show that Dc is a clopen up-set of X, and that for any clopen

up-set U Ď X we have U Y pU Ñ Dcq “ X. That D is clopen immediately implies

that Dc is clopen, and that D consists of minimal elements immediately implies

that Dc is an up-set.

For the rest, let U Ď X be a clopen up-set and let x P X. If x R U , then we

claim that x P U Ñ Dc “ ty P X : Òy X U Ď Dcu. Let y P Òx X U . It suffices to

show that y is not minimal. Note that x ď y and y P U , so x R U gives x ‰ y.

Thus y is not ď-minimal, and hence x P U Ñ Dc. Thus x P U Y pU Ñ Dcq, so that

U Y pU Ñ Dcq “ X.

Lemma 6.1.4. Let h : A Ñ B be a morphism of bRSA. Then Sphq : SpBq Ñ SpAq

is a morphism of bRSS.

Proof. Sphq is a morphism of pointed Esakia spaces by the duality for Brouwerian

algebras, so we need only show SphqrϕpfBqs Ď ϕpfAq and SphqrϕpfBqcs Ď ϕpfAqc.

First, if x P SphqrϕpfBqs, then there is y P ϕpfBq such that x “ Sphqpyq. As

hpfAq “ fB P y, we have fA P h´1rys “ Sphqpyq “ x. Thus x P ϕpfAq, whence

SphqrϕpfBqs Ď ϕpfAq.
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Second, if x P SphqrϕpfBqcs, then there is y P ϕpfBqc so that x “ Sphqpyq “ h´1rys.

If fA P x, then fB “ hpfAq would give that fB P y, contradicting y R ϕpfBq. Hence

fA R x, yielding SphqrϕpfBqcs Ď ϕpfAqc.

Lemma 6.1.5. Let α : X Ñ Y be a morphism of bRSS. Then Apαq : ApYq Ñ ApXq

is a morphism of bRSA.

Proof. The duality for Brouwerian algebras shows that Apαq is a morphism of BrA,

so we need only show ApαqpDc
Y q “ Dc

X .

α being a bRSS-morphism gives that αrDXs Ď DY and αrDc
Xs Ď Dc

Y . From the

latter, it follows that Dc
X Ď α´1rαrDc

Xss Ď α´1rDc
Y s. Hence Dc

X Ď ApαqpDc
Y q.

For the reverse inclusion, DX Ď α´1rαrDXss Ď α´1rDY s follows from the other

condition. Taking complements gives

Dc
X Ě X ´ α´1rDY s “ α´1rY s ´ α´1rDY s “ α´1rDc

Y s “ ApαqpDc
Y q.

This proves the claim.

Lemma 6.1.6. Let A be an object of bRSA. Then ASpAq – A.

Proof. Esakia duality gives that ϕ : A Ñ ASpAq is an p^,_,Ñ, eq-isomorphism of

A with ASpAq, so it is enough that ϕ preserves f . This follows from the equalities

fASpAq “ SpAq ´ pϕpfAqcq “ ϕpfAq.

Lemma 6.1.7. Let X and Y be objects of bRSS. If α : X Ñ Y is a pEsa-isomorphism,

then α is an isomorphism of bRSS if and only if αrDXs “ DY .

Proof. For the forward direction, assume α is an isomorphism of bRSS. Then α

has an inverse morphism in bRSS. From α being an isomorphism in pEsa we have

that α is an isomorphism of posets, thus a bijection. Moreover, αrDXs Ď DY and

101



αrDc
Xs Ď Dc

Y . Because α is a bijection, taking complements in the latter inclusion

gives DY Ď αrDc
Xs

c “ αrDXs, so αrDXs “ DY .

For the backward implication, assume that αrDXs “ DY . α being an isomor-

phism of pEsa gives that α is a bijection and its set-theoretic inverse α´1 coincides

with its inverse in pEsa. That α is a bijection gives αrDc
Xs “ αrDXs

c “ Dc
Y . This

shows that α is a morphism in bRSS. Also, αrDXs “ DY implies α´1rDY s “ DX

and αrDc
Xs “ Dc

Y provides α´1rDc
Y s “ Dc

X . Hence α´1 is a morphism in bRSS.

Therefore α is an isomorphism in bRSS, proving the result.

Lemma 6.1.8. Let X be an object of bRSS. Then SApXq – X.

Proof. ψ : X Ñ SApXq is an isomorphism of pEsa by the duality for Brouwerian

algebras. We aim to show that ψ is also an isomorphism of bRSS. Lemma 6.1.7

shows that it suffices to prove that ψrDs “ ϕpDcqc “ tU P ApXq : Dc R Uu.

Let p P ψrDs. Then there exists x P D with p “ ψpxq, so p “ tU P ApXq : x P Uu.

From x R Dc we obtain Dc R p, whence p P ϕpDcqc. This shows ψrDs Ď ϕpDcqc.

For the reverse inclusion, let p P ϕpDcqc. Then Dc R p. If x P Dc such that

ψpxq “ p, then Dc P tU P ApXq : x P Uu “ ψpxq “ p. This is a contradiction, so

p R ψrDcs. As ψ is a bijection we have ψrDcs “ ψrDsc so that p R ψrDsc, which

provides p P ψrDs. Hence ϕpDcqc Ď ψrDs, and it follows that ψrDs “ ϕpDcqc.

Theorem 6.1.9. bRSA and bRSS are dually-equivalent categories.

Proof. This is immediately from Lemmas 6.1.2, 6.1.3, 6.1.4, 6.1.5, 6.1.6, and 6.1.8,

noting that naturality follows from the proof that S and A give an equivalence

between pEsa and the BrA.

The foregoing work is phrased in terms of bRS-algebras, but the same analysis

gives a duality for bG mutatis mutandis. The necessary modification amounts to

dropping J from the signature of bRSS.
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‚E’

‚Òb

‚Òf ‚© Òc

Figure 6.1: Labeled Hasse diagram for SpE’q

Definition 6.1.10. A structure pX,ď, D, τq is called a bG-space if

1. pX,ď, τq is an Esakia space,

2. pX,ďq is a forest, and

3. D is a clopen subset of X consisting of ď-minimal elements.

For bG-spaces X “ pX,ďX , DX , τXq and Y “ pY,ďY , DY , τY q, a map α from X to

Y is called a bGS-morphism if

1. ϕ is an Esakia map from pX,ďX , τXq to pY,ďY , τY q,

2. ϕrDXs Ď DY , and

3. ϕrDc
Xs Ď Dc

Y .

We designate the category of bG-spaces with bGS-morphisms by bGS.

Theorem 6.1.11. bGA and bGS are dually-equivalent categories.

Proof. The proof is identical to that of Theorem 6.1.9, except that we replace all

references to Esakia duality for RSA by references to the Esakia duality for Gödel

algebras.

Example 6.1.12. Recall the bRS-algebra E’ of Example 5.3.13. Its dual space is

pictured in Figure 6.1. The elements of the designated subset are circled.
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6.1.1 bG-algebras as Heyting algebras with nuclei

Chapter 5 shows that bG-algebras are term-equivalent to their expansions by

certain nuclei, viz. those given by x ÞÑ f Ñ x. In [4], Bezhanishvili and Ghilardi

introduced a duality for Heyting algebras equipped with nuclei, and in this section

we compare our duality for bG-algebras with that of Bezhanishvili and Ghilardi. It

turns out that the nucleus x ÞÑ f Ñ x of a bG-algebra presents itself in a very simply

fashion on the dual space. Although nuclei are eliminable from the signature for

our purposes, this nevertheless provides a different perspective for thinking about

bG-spaces.

Definition 6.1.13. A nuclear Heyting algebra is an algebraic structure of the form

A “ pA,^,_,Ñ, 1, 0, Nq, where pA,^,_,Ñ, 1, 0q is a Heyting algebra and N is

nucleus on pA,^,_,Ñ, 1, 0q. We designate the category of nuclear Heyting algebras

by nHA.

Definition 6.1.14. We call pX,ď, R, τq a nuclear Esakia space if pX,ď, τq is an

Esakia space and R is a binary relation on X satisfying

1. xRz if and only if pDy P XqpyRy and x ď y ď zq,

2. Rrxs “ ty P X : xRyu is closed for each x P X, and

3. whenever A Ď X is clopen, so is R´1rAs “ tx P X : pDy P Aq xRyu.

A nuclear Esakia map is an Esakia map α : X Ñ Y between nuclear Esakia spaces

such that

1. if x, y P X with xRXy, then αpxqRYαpxq, and

2. for all x P X and z P Y such that αpxqRYz, there exists y P X such that

xRXy and αpyq “ z.

104



We denote the category of whose objects are nuclear Esakia spaces and whose mor-

phisms are nuclear Esakia maps by nEsa.

We once again augment the functors S and A. For a nuclear Heyting algebra

A “ pA,^,_,Ñ, 1, 0, Nq and a nuclear Esakia space X “ pX,ď, R, τq, define

SpAq “ pSpA,^,_,Ñ, 1, 0q, RAq

ApXq “ pApX,ď, τq, NXq

where

• RA is the binary relation on SpAq defined by xRAy if and only if N´1rxs Ď y,

• NX : ApXq Ñ ApXq is defined by NXpUq “ X ´R´1rX ´ U s

Define S and A on morphisms as usual. This set-up yields the following.

Theorem 6.1.15 ([4, Theorem 14]). S and A give a dual equivalence of categories

between nHA and nEsa.

For each A “ pA,^,_,Ñ, 1, 0, fq P bGA, define NA : AÑ A by

NApxq “ f Ñ x.

Then NA is a nucleus on A, and pA,^,_,Ñ, 1, 0, NAq P nHA. We will characterize

the relation RA corresponding to NA.

Given x P SpAq, set x´1 :“ N´1
A rxs and observe that for any x, y P SpAq,

xRAy ðñ x´1 Ď y.

Lemma 6.1.16. Let A “ pA,^,_,Ñ, 1, 0, fq P bGA and let x P SpAq. Then

x´1 P SpAq Y tAu.
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Proof. Note that the laws pz_q and pz^q give

NApx^ yq “ NApxq ^NApyq and NApx_ yq “ NApxq _NApyq

for all x, y P A, whence NA is a lattice homomorphism. The rest follows by noting

that the inverse image of a prime filter under a lattice homomorphism must be prime

or improper.

Remark 6.1.17. [4, Lemma 11] gives that p´q´1 is a closure operator on the lattice

of filters of A. Combining this with Lemma 6.1.16, we obtain that p´q´1 is a closure

operator on SpAq Y tAu.

Lemma 6.1.18. Let A “ pA,^,_,Ñ, 1, 0, fq P bGA and let x, y P SpAq. Then we

have the following.

1. If x´1 P SpAq, then x´1 is the least RA-successor of x.

2. xRAx iff f P x.

3. If x is an RA-successor, then xRAx.

4. If x Ă y, then xRAy.

Proof. To prove (1), suppose x´1 P SpAq. Since x´1 Ď x´1, we have xRAx´1. Now if

y P SpAq is an RA-successor of x, then x´1 Ď y and x´1 is the least RA-successor of

x.

To prove (2), note that

NApNApxq Ñ xq “ 1 and

NApxq “ 1 ðñ f ď x,
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whence f ď NApxq Ñ x for all x P A. This implies that f ^ NApxq ď x for each

x P A. Suppose x is a filter with f P x. Then for each x P x´1, we have NApxq P x.

Since x is a filter we have that f ^ NApxq P x also, whence x P x. Thus x´1 Ď x,

so xRAx. Conversely, if xRAx then x is an RA-successor of x. But x´1 is the least

RA-successor of x, so x´1 Ď x. Noting that NApfq “ 1 P x, we have f P x´1 and

hence f P x.

To prove (3), suppose that y is such that yRAx. Then y´1 Ď x. As y´1RAy´1,

part (2) yields f P y´1 and hence f P x. Therefore xRAx by part (2).

To prove (4), let y P SpAq with x Ă y. Then there is x P y´x. From the definition

of bG-algebras, x _ px Ñ fq “ 1. Since x _ px Ñ fq P x and x is prime with x R x,

we get x Ñ f P x. This provides x, x Ñ f P y, and therefore x ^ px Ñ fq P y.

But x ^ px Ñ fq ď f , and since y is an up-set this implies f P y. It follows from

(2) that yRAy, whence y´1 Ď y. Since y Ď y´1 always holds (i.e., since p´q´1 is a

closure operator), we get y´1 “ y. From x Ď y and p´q´1 being isotone, we obtain

x´1 Ď y´1 “ y. Thus xRAy.

According to Lemma 6.1.18(4), only minimal elements of SpAq may fail to be

reflexive under RA. From Definition 6.1.14(1), the accessibility relation of a nuclear

Esakia space is determined by its order along with the collection of non-reflexive

points. This motivates the following.

Definition 6.1.19. Let X “ pX,ď, D, τq be a bG-space. Define a binary relation

ď
7

X on X by

ď
7

X “ ďX tpx, xq P X ˆX : x P Duc.

Call ď7X the sharp order on X.

Proposition 6.1.20. Let A “ pA,^,_,Ñ, 1, 0, fq P bGA. Then RA coincides with

the sharp order on SpAq.
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Proof. First, suppose xRAy. From Lemma 6.1.18(3), we have that yRAy and from

Lemma 6.1.18(2) it follows that f P y. This entails that y P ϕpfq, whence

px, yq R tpz, zq P SpAq ˆ SpAq : z P ϕpfqcu.

Since x Ď y follows from xRAy, this shows x ď7SpAq y.

Conversely, suppose that x ď7SpAq y. Then x Ď y and

px, yq R tpz, zq : z P ϕpfqcu.

We consider two cases. For the first case, suppose x ‰ y. Then Lemma 6.1.18(4)

implies that xRAy. For the second case, suppose that x “ y R ϕpfqc. Then f P y, so

yRAy by Lemma 6.1.18(2). But since x “ y, this gives xRAy.

We now have a complete description of the accessibility relation arising from NA

for any given A P bGA. The fact that together the order and ϕpfqc characterize RA

reflects the term-definability of NA in the underlying bG-algebra (see Chapter 5),

another aspect of which is recorded in the following.

Proposition 6.1.21. Let pX,ď, D, τq be a bG-space. Then the image of X under

ď
7

X is precisely Dc.

Proof. First, let y P ď7X rXs. Then there is x P X with x ď7X y. It follows that

x ď y and one of x ‰ y or x “ y R D must hold. In the first case, y is not ď-minimal

and this gives y R D. In the second case, y R D by hypothesis. This implies y R D

and ď7X rXs Ď Dc.

Second, let y P Dc. Then y ď y and py, yq R tpx, xq : x P Du, whence y ď7X y. It

follows that y Pď7 rXs and Dc Ď ď7 rXs. Equality follows.
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Propositions 6.1.20 and 6.1.21 describe the relationship between the duality for

bGA and the Bezhanishvili-Ghilardi duality for objects. What about morphisms? It

turns out that not all nEsa-morphisms between objects of bGS are bGS-morphisms,

but we obtain the appropriate morphisms if restrict our attention to nEsa-morphisms

that preserve D.

Proposition 6.1.22. Let pX,ďX , DX , τXq and pY,ďY , DY , τY q be bG-spaces and

let α : X Ñ Y be a bGS-morphism. Then α is a nuclear Esakia map with respect to

the relation ď7.

Proof. Note that α is an Esakia map by definition. We first show that α preserves

ď7, so let x, y P X with x ď7X y. Then x ďX y, so αpxq ďY αpyq follows from α

preserving ď. Because px, yq R tpz, zq : z P DXu, either x ‰ y or x “ y R DX .

In the first case, y R DX since y is not minimal, hence as αrDc
Xs Ď Dc

Y we have

αpyq R DY . In the second case, if x “ y R DX then αpyq R DY as well. This proves

pαpxq, αpyqq R tpz, zq : z P DY u in either case, so αpxq ď7Y αpyq.

Second, let x P X, z P Y such that αpxq ď7Y z. Then by definition

pαpxq, zq R tpw,wq : w P DY u,

and thus αpxq ‰ z or αpxq “ z R DY . In the first case, αpxq ď7Y z gives αpxq ďY z.

Then since α is an Esakia map we have that there exists y P X with x ď y and

αpyq “ z. From αpxq ‰ z “ αpyq, we infer x ‰ y. Since x ď y, this yields that y

is not minimal, whence y R DX . This implies that x ď7X y and αpyq “ z. In the

second case, αpxq R DY and α preserving Dc
Y gives x R DX , whence x ď7X x and

αpxq “ z. This proves the result.

Proposition 6.1.23. Let pX,ďX , DX , τXq and pY,ďY , DY , τY q be bG-spaces and

let α : X Ñ Y be an Esakia map that such that
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1. for all x, y P X, x ď7X y implies αpxq ď7Y αpyq,

2. for all x P X and z P Y with αpxq ď7Y z, there exists y P X such that αpyq “ z

and x ď7X y, and

3. αrDXs Ď DY .

Then α is a bGS-morphism.

Proof. It is enough to show that αrDc
Xs Ď Dc

Y , so let y P αrDc
Xs. Then there is

x P Dc
X such that αpxq “ y. Since x P Dc

X we have x ď7X x, so αpxq ď7Y αpxq. Thus

αpxq ď7Y y, which entails that y P ď7Y rY s “ Dc
Y as desired.

Remark 6.1.24. We note that the term-equivalence of bGA to EnSM´
K

announced in

Proposition 5.2.5 was originally discovered by applying the Bezhanishvili-Ghilardi

duality. This provided valuable insight leading to the purely algebraic work of

Chapter 5, which in turn supported the duality-theoretic innovations of this chapter.

This offers a prime example of the mutually-supporting relationship between purely

algebraic investigation and duality-theoretic study, as alluded to in Chapter 1.

6.2 Restricting the Davey-Werner duality

Proposition 2.3.4 gives that the p^,_, q-reduct of each Sugihara monoid is a

normal distributive i-lattice, and an analogous statement holds for bounded Sugihara

monoids and Kleene algebras. Let U : SM Ñ NDIL (or U : SMK Ñ KA) be the

forgetful functor that associates to each (bounded) Sugihara monoid its reduct in

NDIL (KA). Recalling that we denote the functors of the Davey-Werner duality by

D and E , the composite functor DU associates to each (bounded) Sugihara monoid

the pointed Kleene space (respectively Kleene space) of its reduct. In order to

simplify notation, we suppress U and simply write the Davey-Werner dual of (the
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appropriate reduct of) A P SM Y SMK as DpAq (see Figuer 1.1). We also write

DpAq for the carrier of DpAq as usual, and make note that for A P SM (SMK) we

have that DpAq inherits its structure pointwise from D
r

3 (K
r

). For clarity, we will

write the order on DpAq, D
r

3, and K
r

by À, and write the order on D3 and K by

ď. We will characterize subcategories of pKS and KS that are dually-equivalent via

D to SM and SMK, respectively. To this end, we first identify the subcategories of

interest and identify their connection to the dualities of the previous section.

6.2.1 Sugihara spaces

Definition 6.2.1. We call a pointed Kleene space pX,ď, Q,D,J, τq a Sugihara

space if

1. pX,ď,J, τq is a pointed Esakia space,

2. Q is the relation of comparability with respect to ď (in other words, set-

theoretically Q “ ď Y ě), and

3. D is open.

Since Q is comparability with respect to ď, we typically suppress it and say that

pX,ď, D,J, τq is a Sugihara space.

Remark 6.2.2. Since D is closed in any pointed Kleene space, the condition that

D is open in Definition 6.2.1 implies that D is clopen.

The following gives a connection to bRS-spaces.

Lemma 6.2.3. Let pX,ď, D,J, τq be a bRS-space. Then pX,ď,ď Y ě, D,J, τq is

a Sugihara space.

Proof. We first verify the conditions listed in Definition 3.3.3 for pX,ď,J, τq. Note

that pX,ď,J, τq is a pointed Esakia space with D clopen, and Q “ ďYě is closed
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in X2 since ď is closed in X2 in any Priestley space. For the rest, let Q “ ďYě

be the relation of comparability with respect to ď.

For (4)(a), x Q x holds for each x P X since x ď x.

For (4)(b), let x, y P X with x Q y and x P D. From x Q y we have that x ď y

or y ď x. The former case gives x ď y immediately. If y ď x, then the ď-minimality

of elements of D provides that x “ y. Hence x ď y in either case.

For (4)(c), let x, y, z P X be such that x Q y and y ď z. Again x Q y gives

x ď y or y ď x. In the first case, x ď y and y ď z gives x ď z by transitivity. In

the second case, y ď x and y ď z gives x, z P Òy. The underlying poset pX,ďq of

a bRS-space is a forest, so Òy is a chain and thus x ď z or z ď x. This shows that

z Q x, and thus the lemma.

Lemma 6.2.4. Let pX,ď, Q,D,J, τq be a Sugihara space. Then pX,ď, D,J, τq is

a bRS-space.

Proof. Definition 6.2.1 gives that pX,ď,J, τq is a pointed Esakia space with D

clopen, and it remains only to show that D consists of ď-minimal elements and that

pX,ďq is a forest.

To show that D consists of minimal elements, let y P D and suppose x ď y.

Because x ď y we get y Q x, whence y Q x by Lemma 3.3.4(1). Since y P D, this

implies y ď x by Definition 3.3.3(4)(b). Since x ď y, by antisymmetry x “ y.

To show that pX,ďq is a forest, let x P X and let y, z P Òx. Observe that x ď y

gives y Q x, and from x ď z and Definition 3.3.3(4)(c) we conclude z Q y. Then

z ď y or y ď z, which gives that Òx is a chain.

bRS-spaces and Sugihara spaces are essentially the same objects according to

Lemmas 6.2.3 and 6.2.4. However, they arise from entirely different duality-theoretic

contexts: bRS-spaces are enriched Esakia duals of bRS-algebras, and Sugihara
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spaces are Davey-Werner duals of some normal distributive i-lattices. We will

develop the connection between bRS-spaces and Sugihara spaces further, and exploit

it to show that Sugihara spaces are duals of i-lattice reducts of Sugihara monoids.

Lemma 6.2.5. Let A P SM Y SMK and let h P DpAq. Then h´1rt0, 1us X A´ is a

prime filter of A’.

Proof. This is immediate because t0, 1u is a prime filter of each of D3 and K, and

h is a lattice homomorphism.

For A P SMY SMK, define ξA : DpAq Ñ SpA’q by

ξAphq “ h´1rt0, 1us XA´.

Note that ξA is well-defined from Lemma 6.2.5.

Lemma 6.2.6. Let A P SMY SMK. Then ξA is isotone.

Proof. Let h1, h2 P DpAq with h1 À h2. If a P ξAph1q, then a ď e and more-

over h1paq P t0, 1u. Since h1 À h2, this gives 1 À h1paq À h2paq. Therefore

a P h´1
2 rt0, 1us, whence a P ξAph2q. This shows ξAph1q Ď ξAph2q.

Lemma 6.2.7. Let A P SMY SMK and let h P DpAq. Then hpeq P t0, 1u.

Proof. Note that  e ď e holds in A. If hpeq “ ´1, then hp eq “  hpeq “ 1. But

 e ď e gives hp eq ď hpeq, a contradiction since 1 ę ´1. The result follows.

Lemma 6.2.8. Let A P SMY SMK. Then ξA is order-reflecting.

Proof. Let h1, h2 P DpAq such that ξAph1q Ď ξAph2q. If h1 Â h2, then there exists

a P A such that h1paq Â h2paq. Then one of h2paq “ ´1 and h1paq ‰ ´1, or

h2paq “ 1 and h1paq ‰ 1 must hold.
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In the first case, h1paq P t0, 1u and from Lemma 6.2.7 it follows that

h1pa^ eq “ h1paq ^ h1peq P t0, 1u.

Since a^e P A´, this implies a^e P ξAph1q. Hence a^e P ξAph2q. But h2paq “ ´1

and h2peq P t0, 1u implies h2pa^ eq “ ´1, a contradiction.

In the second case, h1paq P t´1, 0u and h2paq “ 1, so h1p aq P t0, 1u and

h2p aq “ ´1. The second case therefore reduces to the first case, and we arrive at

a contradiction again. It follows that h1 À h2, which proves the claim.

Lemma 6.2.9. Let A P SMY SMK. Then ξA is an order isomorphism.

Proof. If is enough to show that ξA is surjective. For the case when A P SM, observe

that h : AÑ A defined by hpaq “ 0 for all a P A is a p^,_, q-morphism such that

ξAphq “ A´. Thus the improper filter is in the image of ξA.

For the rest, let x be a prime filter of A’. Because A has a distributive lattice

reduct, I “ ta P A´ : a R xu is a prime ideal of A’ since it is the complement of a

prime filter. It is easy to see also that I is an ideal of A. Moreover,

F “ ÒAx “ tb P A : a ď b for some a P xu

is a filter of A, and F X I “ H. The prime ideal theorem then asserts that there

is a prime ideal J of A with I Ď J and F X J “ H. One may show that the set

 J “ t a : a P Ju is a prime filter of A as well. We define h : AÑ t´1, 0, 1u by:

hpaq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 if a P  J

0 if a R J Y J

´1 if a P J
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If a, a P J , then from the fact that J is an ideal we have a_ a P J . The identity

e ď a_ a holds in any Sugihara monoid, so J being a down-set implies e P J . But

this is impossible as J X x “ H and e P x (i.e., from x being a prime filter of A’).

The foregoing comments show that for each a P A, either a R J or  a R J , whence

J X  J “ H. Therefore at most one of a P  J , a P J , or a R J Y  J holds. At

least one of a P J , a P  J , or a R J Y  J must hold as well, so h is a well-defined

function.

It is a straightforward proof by cases to show that h is an i-lattice homomor-

phism, and must preserve the lattice bounds if they exist in A. This shows that

h P DpAq, and it is easy to see that ξAphq “ x. It follows that ξA is surjective, and

Lemmas 6.2.6 and 6.2.8 show that ξA is an order embedding. This suffices to settle

the claim.

Example 6.2.10. The algebra E from Example 2.3.11 has labeled Hasse diagram

‚  a

‚ b

‚e ‚  c

‚ f‚c

‚ b

‚ a

Consider the filter x “ tb, c, f, eu of E´. In the proof of Lemma 6.2.9, we have that

I is tau, F is Aztau, J is tau, and  J is t au. If x “ tc, eu instead, then I is

ta, b, fu, F is tc, e, b, au, J is ta, b, f, cu, and  J is tc, e, b, au. For a final

example, if x “ te, fu, then I is ta, b, cu, F is te, f, b, c, au, J is ta, b, cu, and

 J is t c, b, au.

Remark 6.2.11. Note that the partitions tJ, pJ Y  Jqc, Ju provide a concrete

rendering of the i-lattice homomorphisms into the i-lattice D3, just as prime filters

provide a concrete rendering of morphisms into 2 in Priestley duality. Analogously,
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the pairs of clopens tU, V u that determine the maps CU,V (see Section 3.3) provide a

concrete representation of morphisms into D
r

3 akin to how clopen up-sets provide a

concrete representation of morphisms into the two-element linearly-ordered Priestley

space. More will be said of such concrete representations in Section 6.3.

The following lemmas involve the topological structure of DpAq, and we refer to

the description of the subbasis on duals given in Lemma 3.3.10.

Lemma 6.2.12. Let A P SMY SMK. Then ξA is continuous.

Proof. We show that inverse image under ξA of each subbasis element is open. Let

a P A´. Then we have:

ξ´1
A rϕpaqs “ ξ´1

A rtx P SpA’q : a P xus

“ th P DpAq : a P ξAphqu

“ th P DpAq : a P h´1rt0, 1us XA´u

“ th P DpAq : hpaq P t0, 1uu

“ th P DpAq : hpaq “ 0u Y th P DpAq : hpaq “ 1u

“ Ua,0 Y Ua,1.

Thus ξA is continuous.

Lemma 6.2.13. Let A P SM (respectively, SMK). Then DpAq and SpA’q are

isomorphic in Pries (respectively, pPries).

Proof. ξA is an order isomorphism from Lemma 6.2.9, and preserves J in the pointed

case. This implies that ξA is a bijection. Since continuous bijections of compact

Hausdorff spaces are homeomorphisms, Lemma 6.2.12 implies that ξA is a homeo-

morphism. Isomorphisms in Pries (respectively pPries) are (top-preserving) homeo-

morphisms that are order isomorphisms, so the result follows.
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As a consequence of the above, we obtain

Lemma 6.2.14. Let A P SM (respectively, SMK). Then the (pointed) Priestley

space reduct of DpAq is a (pointed) Esakia space.

Proof. Every (pointed) Priestley space that is isomorphic to a (pointed) Esakia

space is itself a (pointed) Esakia space. Thus Lemma 6.2.13 implies the result.

Lemma 6.2.15. Let A P SM. If DpAq “ pDpAq,À, QA, D,J, τAq is its Davey-

Werner dual, then pDpAq,À, D,J, τAq is a bRS-space. If instead A P SMK and

DpAq “ pDpAq,À, QA, D, τAq is its Davey-Werner dual, then pDpAq,À, D, τAq is a

bG-space.

Proof. Lemma 6.2.14 provides that pDpAq,À,J, τAq is a pointed Esakia space.

Since ξA is an order isomorphism, it follows from pSpA’q,Ďq being a forest that

pDpAq,Àq is a forest as well. All that is left to show is that D is a clopen col-

lection of À-minimal elements. That D consists of minimal elements follows from

the fact DpAq is a pointed Kleene space. In order to prove that D is clopen, let

x “ ξAphq “ h´1rt0, 1us XA´. For each a P x, note that hpaq P t0, 1u and

x P ϕp eq ðñ  e P x

ðñ hp eq P t0, 1u

ðñ hpeq P t0,´1u.

Applying Lemma 6.2.7 then yields that x P ϕp eq if and only if hpeq “ 0.

Note that by definition hpaq P t´1, 1u for all h P D and a P A. It fol-

lows from this and the observation above that ξAphq R ϕp eq for all h P D,

whence ξArDs Ď ϕp eqc. Moreover, if x P ϕp eqc, then from the above we have

hpeq R t0,´1u, whence hpeq “ 1. Were it the case that hpaq “ 0 for some a P A,
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then hp aq “ 0 and we get hpa_ aq “ 0. This is impossible since e ď a_ a and

h is isotone, so the image of h is contained in t´1, 1u. Hence ϕp eq Ď ξArDs, and

ϕp eq “ ξArDs. Because ξA is a homeomorphism and ϕp eq is clopen, we get that

D is clopen as claimed.

The analogous result for A P SMK follows similarly.

Lemma 6.2.16. Let A P SM. Then ξA is an isomorphism of bRS-spaces. If instead

A P SMK, then ξA is an isomorphism of bG-spaces.

Proof. Note that ξA is an isomorphism of pointed Priestley spaces by Lemma 6.2.13,

and hence a pointed Esakia function. We show that ξA preserves the top element,

the designated subset, and its complement. Observe that the map J : AÑ t´1, 0, 1u

defined by Jpaq “ 0 is the greatest element of DpAq, and

ξApJq “ J
´1rt0, 1us XA´ “ A´.

Since A´ is the Ď-greatest element of SpA’q, the top element is preserved.

To show that ξA preserves the designated subset and its complement, we show

ξArth P DpAq : p@a P Aqphpaq P t´1, 1uuqs “ ϕp eqc.

To verify the forward inclusion, let h P DpAq such that the image of h is contained

in t´1, 1u. Since hpeq P t0, 1u this implies hpeq “ 1, whence hp eq “ ´1. Were it

the case that ξAphq P ϕp eq, this would imply  e P h´1rt0, 1us, a contradiction to

hp eq “ ´1. It follows that ξAphq P ϕp eq
c.

To verify the reverse inclusion, let x P ϕp eqc so that  e R x. By the surjectivity

of ξA, there exists h P DpAq with ξAphq “ x. Toward a contradiction, suppose that
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there is a P A such that hpaq “ 0. The identities

x^ x ď  e ď e ď y _ y

hold in all Sugihara monoids, so in particular a ^  a ď  e ď e ď a _  a. As

hp aq “  hpaq “ 0, h being isotone provides

0 “ hpa^ aq ď  e ď e ď hpa_ aq “ 0,

This yields hp eq “ hpeq “ 0, whence  e P h´1rt0, 1us X A´ “ x. This contradicts

 e R x, and therefore hpaq P t´1, 1u for all a P A. The reverse containment follows,

and hence equality.

The above shows in particular that the designated subset is preserved by ξA,

and we only need show

ξArth P A` : pDa P Aqphpaq “ 0qus “ σp tq.

But this follows immediately by taking complements in the above since ξA is a

bijection.

The case for A P SMK follows analogously.

6.2.2 The duality

Section 6.2.1 lays the groundwork for connecting Sugihara monoids to Sugihara

spaces by (1) demonstrating a close connection between DpAq and SpA’q for any

given (bounded) Sugihara monoid A, and (2) developing the connection between

bRS-spaces and Sugihara spaces. In this section, we tie the remaining threads

together to provide our Esakia-style duality for Sugihara monoids.
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Recall the functions CU,V were defined in Section 3.3 by

CU,V pxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, if x R V

0, if x P U X V

´1, if x R U

These functions completely characterize the morphisms X Ñ D
r

3 for any object X of

pKS by Lemmas 3.3.5 and 3.3.6, and the same argument shows the analogous result

in the J-free setting. The following technical lemma demonstrates how to compute

with the representation of normal distributive i-lattices afforded by the maps CU,V

and the Davey-Werner duality.

Lemma 6.2.17. Let L
r

P tD
r

3,K
r

u and let α1, α2 : X Ñ L
r

be morphisms (in KS or

pKS, as appropriate) with α1 “ CU1,V1 and α2 “ CU2,V2. Then

1.  CU1,V1 “ CV1,U1.

2. CU1,V1 ^ CU2,V2 “ CU1XU2,V1YV2, and

3. CU1,V1 _ CU2,V2 “ CU1YU2,V1XV2,

Proof. To prove (1), note that for each x P X we have

α1pxq “ 1 ðñ CU1,V1pxq “ 1

ðñ x R V1

ðñ CV1,U1pxq “ ´1.

Similarly α1pxq “ ´1 if and only if CV1,U1pxq “ 1. Also, α1pxq “ 0 if and only if

CV1,U1pxq “ 0, whence  α1 “ CV1,U1 .
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To prove (2), note that in L P tD3,Ku we have a ^ b “ 1 if and only if a “ 1

and b “ 1, and also a^ b “ ´1 if and only if a “ ´1 or b “ ´1. For each x P X we

have

α1pxq ^ α2pxq “ 1 ðñ α1pxq “ 1 and α2pxq “ 1

ðñ CU1,V1pxq “ 1 and CU2,V2pxq “ 1

ðñ x R V1 and x R V2

ðñ x R V1 Y V2

ðñ CU1XU2,V1YV2pxq “ 1.

By the same token,

α1pxq ^ α2pxq “ ´1 ðñ α1pxq “ ´1 or α2pxq “ ´1

ðñ CU1,V1pxq “ ´1 or CU2,V2pxq “ ´1

ðñ x R U1 or x R U2

ðñ x R U1 X U2

ðñ CU1XU2,V1YV2pxq “ ´1.

Similarly, α1pxq ^ α2pxq “ 0 if and only if CU1XU2,V1YV2pxq “ 0. Hence we obtain

that α1 ^ α2 “ CU1XU2,V1YV2 .

(3) follows by a similar argument.

For each bRS-space X, we define µX : ApXq’ Ñ EpX,ďYěq by

µXpU, V q “ CU,V .
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Note that for every pU, V q P ApXq’ we have U Y V “ X and U X V Ď Dc. Also,

for px, yq P pX ´ Uq ˆ pX ´ V q we have x R U and y R V . Since U Y V “ X, this

gives that y P U and x P V . If x ď y, then V being an up-set would give y P V , a

contradiction. Likewise, if y ď x, then U being an up-set would give x P U , again

a contradiction. It follows that rpX ´ Uq ˆ pX ´ V qs X pď Y ěq “ H, and Lemma

3.3.5 provides that µX is a well-defined pKS-morphism.

Lemma 6.2.18. Let A P bRSA. Then EpSpAq,Ď Y Ěq and A’ are isomorphic in

NDIL.

Proof. Note that pSpAq,ĎYĚq is a pointed Kleene space by Lemma 6.2.3, whence

EpSpAq,ĎYĚq P NDIL. Lemma 6.1.6 gives ASpAqq – A as bRS-algebras (and in

particular as i-lattices), so it is enough show that EpSpAq,Ď Y Ěq is isomorphic as

an i-lattice to ASpAq’. We will show µ “ µSpAq is an i-lattice isomorphism.

Lemma 6.2.17 shows that µ is an i-lattice homomorphism from ASpAq’ to

EpSpAq,ĎYĚq, and Lemma 3.3.6 gives that µ is surjective. We will show that µ

is one-to-one, so let pU1, V1q, pU2, V2q P ASpAq’ with µpU1, V1q “ µpU2, V2q. Then

CU1,V1 “ CU2,V2 , whence for all x P X,

x P U1 ðñ CU1,V1pxq ‰ ´1

ðñ CU2,V2pxq ‰ ´1

ðñ x P U2

Thus U1 “ U2. One may likewise verify that V1 “ V2, so pU1, V1q “ pU2, V2q. Hence

µ is an i-lattice isomorphism.

We may now give our Esakia-style duality for Sugihara monoids. To do so, we

define the appropriate morphisms.
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Definition 6.2.19. Let

X “ pX,ďX ,ďX YěX , DX ,JX , τXq

Y “ pY,ďY ,ďY YěY , DY ,JY , τY q

be Sugihara spaces. A bRSS-morphism α from the bRS-space pX,ďX , D,JX , τXq to

the bRS-space pY,ďY , DY ,JY , τY q is said to be a Sugihara space morphism. We

denote the category of Sugihara spaces with Sugihara space morphisms by pSS.16

Remark 6.2.20. Each morphism of pSS is automatically a morphism of pKS despite

the fact that the preservation of the relation ďYě is not explicitly demanded. This

follows because a morphism always preserves the comparability relation when it

preserves ď.

We construct augmented variants of D and E as follows. Given A P SM, let

DpAq be the Davey-Werner dual of the i-lattice reduct of A. Given a morphism

h : A Ñ B of SM, define Dphq : DpBq Ñ DpAq by hpxq “ x ˝ h as usual.

For the other functor, if X “ pX,ď, D,J, τq is a Sugihara space we endow the

Davey-Werner dual of X with additional binary operations ¨ andÑ as follows. Given

α1 “ CU1,V1 and α2 “ CU2,V2 maps in EpXq, define

CpU1,V1q ¨ CpU2,V2q “ α1 ¨ α2 “ CpU1,V1q‚pU2,V2q

CpU1,V1q Ñ CpU2,V2q “ α1 Ñ α2 “ CpU1,V1qñpU2,V2q,

16Observe that here we include the leading p as a reminder that Sugihara spaces are top-bounded.
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where ‚ and ñ are the operations on the Sugihara monoid ApXq’ (see Section 5.3).

If ^, _, and  are the operations of the Davey-Werner dual of X, we set

EpXq “ pEpXq,^,_, ¨,Ñ, CX,Dc , q,

where EpXq denotes the collection of pKS-morphisms X Ñ D
r

3 as usual. Given a

morphism α : X Ñ Y of pSS, define Epαq : EpYq Ñ EpXq by Epαqpβq “ β ˝ α as

usual.

Remark 6.2.21. Note that the above augmentations make the map µX into a

Sugihara monoid isomorphism by construction.

Lemma 6.2.22. Let A P SM. Then EpAq is a Sugihara space.

Proof. Let pDpAq,À, QA, D,J, τAq be the Davey-Werner dual of the i-lattice reduct

of A. Lemma 6.2.15 gives that pDpAq,À, D,J, τAq is a bRS-space. From Lemma

6.2.3 it is enough to show that the relation QA is À-comparability.

The Davey-Werner duality provides that EDpAq and A are isomorphic as lat-

tices with involution. Since pA’q
’ and A are isomorphic Sugihara monoids, they are

also isomorphic as i-lattices. Lemma 6.2.18 gives that pA’q
’ and EpSpA’q,Ď Y Ěq

are isomorphic as i-lattices, and hence A is isomorphic as an i-lattice to both

EpSpAq,Ď Y Ěq and EDpAq. This implies that

pSpA’q,ĎYĚq – DEpSpAq,ĎYĚq – DEDpAq – DpAq
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as pointed Kleene spaces. Pick a pKS-isomorphism α : DpAq Ñ pSpA’q,Ď Y Ěq.

Note that for h, k P DpAq,

h QA k ðñ αphq and αpkq are Ď-comparable

ðñ αphq Ď αpkq or αpkq Ď αphq

ðñ h À k or k À h

ðñ h and k are À-comparable.

Hence QA is the relation of À-comparability, which proves the claim.

Lemma 6.2.23. Let X “ pX,ď, D,ď Y ě,J, τq be a Sugihara space. Then EpXq

is a Sugihara monoid.

Proof. Note that pX,ď, D,J, τq is bRS-space by Lemma 6.2.4. It follows that

EpX,ď, D,J, τq P bRSA. By Lemma 6.2.18 we get that EpSApX,ď, D,J, τq,Ď Y Ěq

is isomorphic as an i-lattice to ApX,ď, D,J, τq’. We have also that

SApX,ď, D,J, τq – pX,ď, D,J, τq

as bRS-spaces, whence

ApX,ď, D,J, τq’ – EppX,ď, D,J, τq,ď Y ěq

as i-lattices. The last of these is exactly the i-lattice reduct of EpXq, so it follows

that EpXq is isomorphic as an i-lattice to the Sugihara monoid ApX,ď, D,J, τq’.

The operations Ñ and ¨ hence make the i-lattice reduct of EpXq into a Sugihara

monoid by transport of structure.
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Lemma 6.2.24. Let A,B P SM and let h : A Ñ B be a morphism in SM. Then

Dphq “ ξ´1
A ˝Dph’q ˝ ξB.

Proof. Let x P DpBq and let a P A. Note that if a P A´, then

h’paq “ hæA´paq “ hpaq.

Moreover, hæ´1
A´
rB´s “ A´. From these observations, we have

a P pξA ˝Dphqqpxq ðñ a P ξApx ˝ hq

ðñ a P px ˝ hq´1rt0, 1us XA´

ðñ px ˝ hqpaq P t0, 1u and a P A´

ðñ px ˝ h’qpaq P t0, 1u and a P A´

ðñ xphæA´paqq P t0, 1u and a P A´

ðñ a P hæ´1
A´
rx´1rt0, 1uss XA´

ðñ a P hæ´1
A´
rx´1rt0, 1us XB´s

ðñ a P Sph’qpx
´1rt0, 1us XB´q

ðñ a P Sph’qpξBpxqq

ðñ a P pSph’q ˝ ξBqpxq.

Hence ξA ˝Dphq “ Sph’q ˝ ξB. As ξA is an isomorphism of bRS-spaces by Lemma

6.2.16, it has an inverse ξ´1
A . This implies that Dphq “ ξ´1

A ˝ Sph’q ˝ ξB.

Corollary 6.2.25. Let A,B P SM and let h : A Ñ B be a morphism in SM. Then

Dphq is a morphism of pSS.

Proof. Lemma 6.2.24 writes Dphq as a composition of bRSS-morphisms, and hence

Dphq is a bRSS-morphism.
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Lemma 6.2.26. Let X and Y be Sugihara spaces and let α : X Ñ Y be a morphism

in pSS. Then Epαq “ µX ˝Apαq’ ˝ µ´1
Y .

Proof. Let pU, V q P ApY q’ and let x P X. Then

ppµX ˝Apαq’qpU, V qqpxq “ µXpApαq’pU, V qqpxq

“ µXpApαqpUq,ApαqpV qqpxq

“ µXpα
´1rU s, α´1rV sqpxq

“ Cα´1rUs,α´1rV spxq.

Also note,

ppEpαq ˝ µYqpU, V qqpxq “ EpαqpµYpU, V qqpxq

“ pCU,V ˝ αqpxq

“ CU,V pαpxqq.

Observe that αpxq P U if and only if x P α´1rU s, αpxq P V if and only if x P α´1rV s,

and αpxq P U X V if and only if x P α´1rU X V s “ α´1rU s X α´1rV s. From the

definition of CU,V we get

CU,V pαpxqq “ Cα´1rUs,α´1rV spxq.

This yields µX ˝ Apαq’ “ Epαq ˝ µY. As µY is a Sugihara monoid isomorphism

(thus invertible), it follows that Epαq “ µX ˝Apαq’ ˝ µ´1
Y .

Corollary 6.2.27. Let X and Y be Sugihara spaces and let α : A Ñ B be a mor-

phism in pSS. Then Epαq is a morphism of SM.
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Proof. Epαq is the composition of morphisms in SM by Lemma 6.2.26, so Epαq is a

morphism of SM.

Lemma 6.2.28. Let A P SM. Then EDpAq – A.

Proof. DpAq and SpA’q are isomorphic as bRS-spaces to via ξA. Moreover, we have

ASpA’q – A’ as bRS-algebras, and thus pASpA’qq
’ – pA’q

’ – A as Sugihara

monoids. Since µSpA’q is a Sugihara monoid isomorphism from pASpA’qq
’ to

EpSpA’q,Ď Y Ěq from Remark 6.2.21, we obtain EDpAq – A as claimed.

Lemma 6.2.29. Let X “ pX,ď,ďYě, D,J, τq be a Sugihara space. Then DEpXq –

X.

Proof. Note that EpXq is isomorphic as a Sugihara monoid to ApX,ď, D,J, τq’

via µX. Also, DEpXq and SpEpXq’q are isomorphic as bRS-spaces via ξEpXq. Thus

DEpXq and SppApX,ď, D,J, τq’q’q are isomorphic as bRS-spaces. The last of these

is isomorphic to pX,ď, D,J, τq, whenceDEpXq and pX,ď, D,J, τq are isomorphic as

bRS-spaces. The bRSS-isomorphism witnessing this is a pSS-isomorphism between

DEpXq and pX,ď,ďYě, D,J, τq by definition, and the latter is exactly X.

Theorem 6.2.30. SM and pSS are dually-equivalent.

Proof. This follows from Lemmas 6.2.22, 6.2.23, 6.2.24, 6.2.26, 6.2.28, 6.2.29, and

Corollaries 6.2.25 and 6.2.27. Functoriality and naturality are immediate from the

Davey-Werner duality.

Of course, mutatis mutandis all of the above applies to bounded Sugihara monoids

as well.

Definition 6.2.31. A Kleene space pX,ď, Q,D, τq is called an unpointed Sugihara

space if
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‚J

‚h0

‚h1 ‚© h2

‚h0

‚h1 ‚© h2

Figure 6.2: Hasse diagrams for DpEq and DpEKq

1. pX,ď, τq is an Esakia space,

2. Q is the relation of comparability with respect to ď, i.e., Q “ ďYě, and

3. D is open.

We typically say that pX,ď, D, τq is an unpointed Sugihara space, leaving Q to be

inferred.

A bGS-morphism between unpointed Sugihara spaces is called an unpointed Sug-

ihara space morphism, and we denote the category of unpointed Sugihara spaces with

unpointed Sugihara space morphisms by SS.

The arguments above apply to the bounded setting with only trivial modification,

and we may obtain the following.

Corollary 6.2.32. SMK and SS are dually-equivalent.

Example 6.2.33. Recall the Sugihara monoid E of Example 2.3.11. Figure 6.2

gives the labeled Hasse diagram of DpEq, where the maps J, h0, h1, h2 are uniquely

determined by Jpaq “ 0 for all a P E, h0paq “ 0 for all a except p2, 2q, p´2,´2q,

h1paq “ 0 for a “ p0, 1q or p0,´1q, and h2paq “ 1 for all a P Òp´1, 1q and h2paq “ ´1

for a P Óp1,´1q. Observe that of these maps, only h2 lies in the designated subset

(i.e., since its image does not contain 0). Letting EK be the expansion of E by

universal lattice bounds, we may obtain the dual of EK by excluding the map J (i.e.,

since J is not a morphism in the bounded signature).
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6.3 Another formulation of the duality

Topological dualities of different kinds offer different strengths. In contrast to

Esakia duality, the topological side of a natural duality is well-behaved on a cat-

egorical level (e.g., products may be computed as Cartesian products). However,

natural dualities lack much of the pictorial insight that drives Priestley duality and

its various modifications. As a restriction of the Davey-Werner natural duality, the

duality for Sugihara monoids articulated in this chapter is less geometric in character

than Priestley duality. This final section of Chapter 6 aims to offer some pictorial

insight.

If A is an odd Sugihara monoid, we may understand its dual in terms of certain

algebraic substructures that are ordered by containment. This representation by

convex prime subalgebras has much of the pictorial flavor of the Esakia duality’s

representation of duals by prime filers.

For Sugihara monoids that are not odd, the convex prime subalgebra represen-

tation is unavailable. In its stead we offer another representation in terms of certain

filters, a perspective that proves important in Chapter 7.

Definition 6.3.1. Let A “ pA,^,_, ¨,Ñ, e, q be an odd Sugihara monoid. A

p^,_, e, q-subalgebra C of A is said to be a convex prime subalgebra if for all

a, b, c P A,

1. If a, c P C and a ď b ď c, then b P C, and

2. If a^ b P C, then a P C or b P C.

We designate the collection of convex prime subalgebras of A by ConvpAq.
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If C P ConvpAq and a _ b P C, then  a ^  b “  pa _ bq P C. Hence  a P C

or  b P C, so a P C or b P C by  -closure. It follows that each convex prime

subalgebra is prime with respect to _ as well as ^.

Proposition 6.3.2. Let A P OSM. Then DpAq is order isomorphic to the poset

pConvpAq,Ďq.

Proof. Note that DpAq is order isomorphic to SpA’q from Lemma 6.2.9. Thus it

is enough to show pConvpAq,Ďq is order isomorphic to SpA’q. Define a function

Ω: ConvpAq Ñ SpA’q by ΩpCq “ C XA´.

We first show that ΩpCq is a filter. If a P ΩpCq and b P A´ with a ď b, then

a ď b ď e P C implies b P C by convexity. Thus ΩpCq is an up-set. For closure

under meets, let a, b P ΩpCq. Then C being ^-closed implies a^ b P C, and a, b ď e

implies a^ b ď e. Hence a^ b P ΩpCq, so ΩpCq is a filter.

For primality, let a, b P A´ with a _ b P ΩpCq. Then a _ b P C and a _ b ď e.

The latter gives a ď e and b ď e, so one of a P ΩpCq or b P ΩpCq follows from the

_-primality of C. Hence Ω is well-defined.

Ω is obviously isotone. To prove that Ω reflects the order, let C1,C2 P ConvpAq

such that ΩpC1q Ď ΩpC2q and let a P C1. Then  a P C1, and moreover we have that

a^ e, a^ e P ΩpC1q, whence a^ e, a^ e P ΩpC2q. Since a^ e, a^ e P ΩpC2q,

it follows that a ^ e, a ^ e P C2. From the fact that  a ^ e P C2, we obtain that

 p a^ eq “ a_ e P C2. As a^ e ď a ď a_ e, convexity gives a P C2. Therefore

C1 Ď C2.

We now show Ω is onto, so let x P SpA’q. Let

ÒAx “ ta P A : pDp P xqpp ď aqu,

 x “ t a : a P xu,
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ÓA x “ ta P A : pDp P  xqpa ď pqu, and

C “ ÒAxX ÓA x.

We claim that C is the universe of a convex prime subalgebra C, and that ΩpCq “ x.

First, note that since x P SpA’q we have that e P x, whence e P C.

Second, observe that if a P C, then there exists p, q P x such that p ď a ď  q.

Then q ď  a ď  p, so  a P C.

Third, suppose that a, b P C. Then there are p1, p2, q1, q2 P x so that p1 ď a ď

 q1 and p2 ď b ď  q2. This yields

p1 ^ p2 ď a^ b ď  q1 ^ q2 “  pq1 _ q2q.

Since x is a filter, p1 ^ p2, q1 _ q2 P x. Thus a^ b P C. Moreover, since

p1 _ p2 ď a_ b ď  q1 _ q2 “  pq1 ^ q2q

we have a_ b P C. Since e P x, e ď e ď  e “ e gives e P C, and this shows that C

is a p^,_, , eq-subalgebra.

To see that C is convex, suppose that a, c P C and b P A with a ď b ď c. Since

a, c P C, there are p1, p2, q1, q2 P x with p1 ď a ď  q1 and p2 ď c ď  q2. This gives

p1 ď a ď b ď c ď  q2, so b P C as well. Thus C is a convex prime subalgebra.

Finally, to prove ΩpCq “ x, suppose that a P ΩpCq “ CXA´. Then there exists

p, q P x with p ď a ď  q, and a P A´. Since x is and up-set, p ď a and p P x implies

a P x. Hence ΩpCq Ď x. On the other hand, if a P x, then a ď a ď e “  e gives that

a P ΩpCq as desired. This proves the proposition.
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If A is a Sugihara monoid (or bounded Sugihara monoid) with monoid identity

e, define17

IpAq :“ tx P SpAq : e P xu.

The set IpAq provides us with a pictorial representation of the dual of an arbitrary

Sugihara monoid.

Proposition 6.3.3. Let A P SM Y SMK. Then EpAq is order isomorphic to the

poset pIpAq,Ďq.

Proof. Define ΩA : EpAq Ñ IpAq by Ωphq “ h´1rt0, 1us. That t0, 1u is a prime filter

and h is a p^,_q-homomorphism implies ΩAphq P SpAq. Also, hpeq P t0, 1u implies

e P h´1rt0, 1us for each h P DpAq, whence ΩA is well-defined.

An identical proof to that offered in Lemma 6.2.6 shows ΩA is order-preserving.

To prove ΩA is order-reflecting, let h1, h2 P DpAq with ΩAph1q Ď ΩAph2q. Were it

the case that h1 Â h2, then there exists a P A such that h2paq “ ´1 and h1paq ‰ ´1,

or else h2paq “ 1 and h1paq ‰ 1.

For the first case, we have that h1paq P t0, 1u. Then a P ΩAph1q Ď ΩAph2q,

so h2paq P t0, 1u, a contradiction. For the second case, h1paq P t´1, 0u, and it

follows that h1p aq P t0, 1u. Then h2p aq P t0, 1u, but this contradicts h2paq “ 1.

Therefore h1 À h2.

Finally, to see that ΩA is onto, let x P IpAq and set  x “ t a : a P xu. From

e P x and the identity e ď a_ a we get a_ a P x for all a P A, whence by primality

a P x or  a P x. This implies a P x or a P  x, and therefore each a P A is contained

in exactly one of the disjoint sets x ´  x, x X  x, or  x ´ x. We may define a map

17Observe that IpAq is the subset encoding the monoid identity in the extended Priestley duality
(see Section 3.4).
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h : AÑ t´1, 0, 1u by

hpaq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 a P x´ x

0 a P xX x

´1 a P  x´ x

Case analysis readily shows that h is a homomorphism with respect to ^,_, , and

the lattice bounds (when applicable). Hence h P EpAq. Also,

ΩAphq “ h´1rt0, 1us “ h´1rt0us Y h´1rt1us “ px´ xq Y pxX xq “ x.

This provides ΩA is a surjection. Because ΩA is a order-preserving, order-reflecting,

and onto, the result follows.
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Chapter 7

Dualized representations of Sugihara

monoids

Previous chapters have articulated two distinct topological dualities for bounded

Sugihara monoids:

• The extended Priestley duality linking SMK and SMτ
K (Section 3.4), which is

a functional duality in the sense of Chapter 4.

• The Esakia-style duality linking SMK and SS (Chapter 6).

These two dualities have a rather different character. The extended Priestley duality

achieves categorical equivalence by expanding the structure of duals of a suitably-

chosen reduct. In contrast, the Esakia-style duality achieves equivalence by identi-

fying a reduct that completely determines algebras in the full signature, and then

pinpointing the duals of algebras that arise as such reducts.

In addition to the above, SMK also enjoys a covariant equivalence to bGA via the

functors p´q’ and p´q’ (see Section 5.3). However, the construction of a bounded

Sugihara monoid from a bG-algebra is a rather complicated affair, as the definitions
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of the operations inherent in the functor p´q’ attest. The chief goal of this chapter is

to provide a dualized account of the covariant equivalence given by p´q’ and p´q’,

in particular offering a greatly simplified presentation of the construction underlying

p´q’ on duals. This project implicates both of the dualities for SMK, and in fact the

connection between the two dualities is the key to understanding p´q’ and p´q’ in

duality-theoretic terms. The results of this chapter come from the author’s [24].

We proceed as follows. First, in Section 7.1 we provide a dual analogue of the

functor p´q’ that constructs an object of SS from an object of SMτ
K. Then in Section

7.2 we present a construction of objects of SMτ
K from objects of SS, yielding a dual

analogue of p´q’. Lastly, in Section 7.3 we tie these two constructions together and

attend to categorical details.

7.1 Dual enriched negative cones

In order to present a dual analogue of the functor p´q’, we first require some

technical results. Given A P SMK, recall that IpAq “ tx P SpAq : e P xu, and that

ΩA : DpAq Ñ IpAq defined by

ΩAphq “ h´1rt0, 1us

is an order isomorphism between DpAq and pIpAq,Ďq (see Proposition 6.3.3).

Lemma 7.1.1. When IpAq is given with the topology inherited as a subspace of

SpAq, ΩA is continuous.

Proof. We show that the inverse image of each subbasis element is open. The

subbasis elements of IpAq have the form

ϕpaq “ tx P IpAq : a P xu
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ϕpaqc “ tx P IpAq : a R xu.

With this in mind, we have for each a P A that

Ω´1
A rϕpaqs “ th P DpAq : ΩAphq P ϕpaqu

“ th P DpAq : a P h´1rt0, 1usu

“ th P DpAq : hpaq P t0, 1uu

“ th P DpAq : hpaq “ 0u Y th P DpAq : hpaq “ 1u

Each of the latter sets is a subbasis element of EpAq by Lemma 3.3.10. Moreover,

Ω´1
A rϕpaq

cs “ th P DpAq : ΩAphq P ϕpaq
cu

“ th P DpAq : a R h´1rt0, 1usu

“ th P DpAq : hpaq R t0, 1uu

“ th P DpAq : hpaq “ ´1u

The above is also a subbasis element, which proves the claim.

Lemma 7.1.2. ΩA is a homeomorphism.

Proof. Note that SpAq is a Hausdorff space, whence its subspace IpAq is also Haus-

dorff. DpAq is compact because it is a Priestley space. Hence ΩA is a continuous

bijection from a compact space to a Hausdorff space, and therefore a homeomor-

phism.

From the foregoing observations, we get the following.

Lemma 7.1.3. IpAq is an Esakia space.
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Proof. We first show that IpAq is a Priestley space. Note that IpAq is compact

since ΩA is a homeomorphism of IpAq with a compact space. Let x, y P IpAq such

that x Ę y. This implies that Ω´1
A pxq ę Ω´1

A pyq since Ω´1
A is an order isomorphism.

Because DpAq is a Priestley space among other things, there exists a clopen up-set

U Ď DpAq such that Ω´1
A pxq P U and Ω´1

A pyq R U . This implies ΩArU s is a clopen

up-set of IpAq and x P ΩArU s and y R ΩArU s, showing that IpAq is a Priestley

space.

For the rest, note that ΩA is an order isomorphism and a homeomorphism. This

means that ΩA is an isomorphism of Priestley spaces. As IpAq is a Priestley space

that is isomorphic to the Esakia space DpAq, we have that IpAq is an Esakia space

too.

Recall that for a prime filter x of A, we have

x˚ “ ta P A :  a R xu.

Note that if A is involutive (and in particular a bounded Sugihara monoid), then

x˚˚ “ x.

Lemma 7.1.4. Let A P SMK. The following hold for all x P SpAq.

1. x P IpAq or x˚ P IpAq.

2. x Ď x˚ or x˚ Ď x.

3. The larger of x and x˚ lies in IpAq.

4. The following are equivalent.

(a) x “ x˚,

(b) e P x and  e R x,
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(c) x, x˚ P IpAq.

Proof. For (1), suppose e R x. Since  e ď e, we have  e R x too. Hence e P x˚.

For (2), assume that x Ę x˚. Then there exists a P x with a R x˚. The latter

provides that  a P x, whence we obtain a^ a P x. Let b P x˚. Then  b R x. By the

normality of the i-lattice reduct of A we get that a ^  a ď b _  b, so b _  b P x.

Since x is prime, this implies that b P x or  b P x. But the latter is a contradiction,

so we get b P x and hence x˚ Ď x.

from (1) we may suppose without loss of generality that e P x˚. Let a P x. If

a R x˚, then  p aq R x, whence  a P x. It follows that a, a P x, so a ^  a ď  e

gives  e P x. This is a contradiction, so x Ď x˚ follows.

(3) is obvious from (1) and (2).

For (4), we prove first (a) implies (b), so suppose x “ x˚. If e R x, then e “

  e R x, whence  e P x˚. It follows that  e P x. But  e ď e implies that e P x,

so this is impossible. Thus e P x, and e P x˚ as well. Were  e P x, we would have

 e P x˚ and this implies   e R x. This is a contradiction to e P x, whence e P x and

 e R x.

For (b) implies (c), suppose that e P x and  e R x. The second of these provides

that e P x˚, whence x, x˚ P IpAq is immediate.

For (c) implies (a), suppose x, x˚ P IpAq. This means e P x, x˚, so e P x and

 e R x. Let a P x. Were it the case that  a P x, we would have a, a P x, which

implies a ^  a ď  e P x, a contradiction. This gives  a R x, whence a P x˚ and

x Ď x˚. For the other inclusion, let a P x˚. Then  a R x. Note that a _  a ě e

and e P x gives a_ a P x, whence a P x by primality. Therefore x˚ Ď x, and we get

equality. This settles (4).
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For A P SMK, let SpAq “ pSpAq,Ď, R, ˚, IpAq, τq be its extended Priestley dual.

We define

D “ tx P SpAq : x “ x˚u,

and let τ’ the topology on IpAq induced as a subspace of SpAq.

Lemma 7.1.5. pIpAq,Ď, D, τ’q is an unpointed Sugihara space.

Proof. By Lemma 7.1.3 we have that pIpAq,Ď, τ’q is an Esakia space. It suffices

to prove that pIpAq,Ďq is a forest and D is a clopen subset of Ď-minimal elements.

The first of these demands is met since ΩA is an order isomorphism and DpAq is a

forest.

For the second demand, note that D Ď IpAq by Lemma 7.1.4(4). To see that

each x P D is minimal, let y P IpAq such that y Ď x “ x˚. This gives e P y, and from

˚ being antitone we obtain x “ x˚ Ď y˚. Thus e P y˚. It follows that e P y, y˚, so

y “ y˚ by Lemma 7.1.4. This implies that x Ď y Ď x, so x “ y.

To prove D is clopen, note that x P D iff x “ x˚ iff e P x and  e R x iff

x P ϕpeq X ϕp eqc. Since D “ ϕpeq X ϕp eqc is a clopen subset of SpAq, it is also

clopen in the subspace IpAq.

Remark 7.1.6. It is easy to see that if h P DpAq has its image contained in t´1, 1u,

then setting x “ ΩAphq yields x “ x˚. On the other hand, if x “ x˚ P SpAq, then

by the surjectivity of ΩA there exists h P DpAq with x “ ΩAphq. Were there

a P A with hpaq “ 0, this would imply hp aq “ 0. Also, this would give that

a, a P ΩAphq “ x “ x˚. But a P x˚ gives  a R x, a contradiction. Therefore the

image of h must lie in t´1, 1u, whence

ΩArth P DpAq : p@a P Aqphpaq P t´1, 1uus “ tx P SpAq : x “ x˚u.
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It follows that ΩA preserves the designated subset D. Since ΩA is a bijection, this

guarantees that it is an isomorphism in the category of unpointed Sugihara spaces.

The stage is set to describe the dual of the enriched negative cone functor.

Definition 7.1.7. Given X “ pX,ď, R,˚ , I, τq an object of SMτ
K, set

X’ :“ I

D :“ tx P X : x “ x˚u

and let τ’ be the topology on X’ inherited as a subspace of X. Define

X’ “ pX’,ď, D, τ’.q

For a morphism α : X Ñ Y of SMτ
K, define α’ “ αæX’

.

Remark 7.1.8. In the previous definition, we overload the notation p´q’ to provide

a description of a construction on SMτ
K. This anticipates that p´q’ as defined above

will provide a dual analogue of the enriched negative cone functor, and we use the

same symbol by analogy (and may readily distinguish these uses by the type of the

argument). When we introduce a dual analogue of the Galatos-Raftery construction

in Section 7.2, we will make a similar use of p´q’.

We now show that Definition 7.1.7 makes sense for objects, leaving an account

of morphisms for Section 7.3.

Lemma 7.1.9. Let X “ pX,ď, R, ˚, I, τq be an object of SMτ
K. Then X’ is an

unpointed Sugihara space.

Proof. Extended Priestley duality implies that there exists A P SMK with SpAq – X

in SMτ
K. Let α : SpAq Ñ X be an isomorphism witnessing this. Then αrIpAqs “ I,
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and αæIpAq is a continuous order isomorphism. I inherits being a Hausdorff space

from SpAq, and since IpAq is compact by Lemma 7.1.3 we have that ϕæIpAq is

a homeomorphism. As before, we get that I is a Priestley space isomorphic to

IpAq and thus an Esakia space. That pI,ďq is a forest also follows from this order

isomorphism, together with the fact that pIpAq,Ďq is a forest by Lemma 7.1.5.

We need only prove that D Ď I and that D is a clopen set of minimal elements.

To this end, let y P D. As α is a bijection, there exists x P SpAq with αpxq “ y.

We have y “ y˚ from y P D, whence y˚ “ αpxq. Since α preserves ˚, this implies

y “ ϕpx˚q “ ϕpxq. From α being one-to-one we get x˚ “ x, and

D Ď αrtx P SpAq : x “ x˚us.

As tx P SpAq : x “ x˚u Ď IpAq by Lemma 7.1.4(4), we have that D Ď I as

αrIpAqs “ I. Moreover, if x “ x˚ in SpAq, then αpxq “ αpx˚q “ αpxq˚ implies

αpxq P D. Thus αrtx P SpAq : x “ x˚us Ď D, whence αrtx P SpAq : x “ x˚us “ D.

Since tx P SpAq : x “ x˚u is a clopen collection of minimal elements by Lemma 7.1.5,

we infer that D is also a clopen collection of minimal elements of I (i.e., as α is an

order isomorphism and homeomorphism). This means that X’ “ pI,ď, D, τ’q is

an unpointed Sugihara space, yielding the result.

7.2 Dual twist products

We now refocus our efforts to providing a dual presentation of p´q’. This

demands more detailed scrutiny of filter multiplication ‚ in SMK. Note that ‚ is

a binary operation on SpAq Y tAu for any bounded Sugihara monoid A, as from

Chapter 4, and we freely make use of the fact that ‚ is associative, commutative,

and order-preserving (cf. Lemma 4.1.5). For the following lemmas, let A P SMK.
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Lemma 7.2.1. Let x, y P SpAq Y tAu. Then the following hold.

1. y P IpAq implies x Ď x ‚ y.

2. x ‚ x “ x.

3. ab P x implies a P x or b P x.

4. a, b P x implies ab P x.

Proof. For (1), note that a P x implies a “ ae P x ‚ y, whence x Ď x ‚ y.

For (2), let a P x. Then a “ a ¨ a P x ‚ x since A is idempotent, and thus

x Ď x ‚ x. For the reverse inclusion let c P x ‚ x. Then there are a, b P x such that

ab ď c, whence a ď b Ñ c. Thus b Ñ c P x from x being an up-set. We have

b^ pbÑ cq ď bpbÑ cq ď c, whence c P x.

For (3), note that ab ď a _ b in any bounded Sugihara monoids, and therefore

the result follows from the primality of x.

For (4), use the fact that a^ b ď ab in any bounded Sugihara monoid.

Lemma 7.2.2. Let x P SpAq. Then x^ x˚ exists, and moreover x^ x˚ “ x ‚ x˚.

Proof. From Lemma 7.1.4(2) either x Ď x˚ or x˚ Ď x, so the meet of x and x˚ certainly

exists.

For the rest, assume without loss of generality that x˚ Ď x. Then e P x, whence

x˚ Ď x˚ ‚ x by Lemma 7.2.1(1). For the reverse inclusion, let c P x˚ ‚ x. By definition

there are a P x˚ and b P x so that ab ď c. The latter condition holds if and only if

a ¨  c ď  b. Were it the case that  c P x, then b ¨  c ď  a would give  a P x, a

contradiction to a P x˚. Hence  c R x, and consequently c P x˚. This implies that

x˚ ‚ x Ď x˚, proving equality.

Lemma 7.2.3. If x, y P IpAq, then x _ y exists in SpAq Y tAu, and moreover

x_ y “ x ‚ y.
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Proof. The hypothesis gives x, y Ď x‚y by Lemma 7.2.1(1). Let z P SpAqYtAu with

x, y Ď z. The monotonicity of ‚ gives x ‚ y Ď z ‚ z “ z, so x ‚ y “ x_ y as claimed.

In the following, we use } to denote incomparability with respect to the order.

Lemma 7.2.4. Let x, y P SpAq. If x } y, then x _ y exists in SpAq Y tAu, and

x_ y “ x ‚ y.

Proof. Let a P x ´ y and b P y ´ x. From a R y we have  a P y˚, and from b R x

we have  b P x˚. Consequently, a ¨  a P x ‚ y˚ and b ¨  b P y ‚ x˚ “ x˚ ‚ y. Also,

a ¨  a “ a ¨ pa Ñ  eq ď  e ď e. Similarly, b ¨  b ď  e ď e. It follows that

 e, e P x ‚ y˚, x˚ ‚ y since x ‚ y˚ and x˚ ‚ y are up-sets. There are four cases.

First, suppose x, y R IpAq. Then from Lemma 7.1.4 we have x Ď x˚ and y Ď y˚,

whence x ‚ x˚ “ x and y ‚ y˚ “ y by Lemma 7.2.2. Since e P x ‚ y˚, Lemma 7.2.1(1)

implies y Ď x ‚ y˚ ‚ y “ x ‚ y. A similar argument gives x Ď x ‚ y, whence x, y Ď x ‚ y.

Note that x, y Ď z, then x ‚ y Ď z follows from the monotonicity and idempotence of

‚, and thus x ‚ y “ x_ y.

Second, suppose x R IpAq and y P IpAq. This implies x Ď x˚ and y˚ Ď y, so from

the latter x ‚ y˚ Ď x ‚ y. It follows that e P x ‚ y as e P x ‚ y˚. Hence x, y Ď x ‚ y, and

x ‚ y must be the least among upper bounds for the same reason as before.

The case for y R IpAq and x P IpAq follows by symmetry. The case where

x, y P IpAq follows from Lemma 7.2.3.

We caution that x_ y need not exist in SpAq in the previous two lemmas.

Lemma 7.2.5. Let x, y P SpAq. If x Ď y Ď x˚, then x ‚ y “ x.

Proof. The monotonicity and idempotence of ‚ provides x “ x ‚ x Ď x ‚ y Ď x ‚ x˚.

But x ‚ x˚ “ x^ x˚ “ x by Lemma 7.2.2, whence x ‚ y “ x.
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Lemma 7.2.6. Let x, y P SpAq. If x and y˚ are comparable, then x and y are also

comparable.

Proof. Suppose that x and y˚ are comparable. We suppose without loss of generality

that x Ď y˚; the case where y˚ Ď x follows from exchanging the roles of x and y and

the identity x “ x˚˚. There are three cases.

Case 1: x P IpAq. Then Lemma 7.1.4(3) and (4) provides that x˚ Ď x, whence

x˚ Ď x Ď y˚. It follows that y Ď x.

Case 2: y˚ R IpAq. Then from Lemma 7.1.4(3) we have y˚ Ď y, whence from

x Ď y˚ we get x Ď y.

Case 3: x R IpAq and y˚ P IpAq. If y P IpAq, then Lemma 7.1.4(4) gives that

y “ y˚ as y, y˚ P IpAq. We immediately get x Ď y from this. Thus we assume

that y R IpAq. Then x Ă x˚ and y Ă y˚, and by assumption x Ă y˚ and y Ă x˚.

Then x ‚ y Ď x˚, y˚ follows from the monotonicity and idempotence of ‚. Were it

the case that x ‚ y P IpAq, we would have x˚, y˚ P Òpx ‚ yq, the up-set considered in

IpAq. From this, x˚ and y˚ are comparable since IpAq is a forest, whence we get the

comparability of x and y. On the other hand, if x ‚ y R IpAq, then we argue toward

a contradiction. If x and y are incomparable, then Lemma 7.2.4 implies x_ y exists

and x ‚ y “ x_ y. Then x, y Ď x ‚ y, and if x ‚ y R IpAq we have x, y P Ópx ‚ yq in the

˚-image of IpAq. But ˚ is a dual order isomorphism of IpAq and tz˚ : z P IpAqu, so

the ˚-image of IpAq is a dual forest. This is a contradiction, and it follows that x

and y are comparable.

Lemma 7.2.6 provides an important piece of information about the order of SpAq,

which is further developed in the following.

Corollary 7.2.7. Let x, y P SpAq with x and y comparable. Then tx, y, x˚, y˚u is a

chain under subset inclusion.
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Proof. Each of the pairs x and y˚ and x˚ and y are comparable by Lemma 7.2.6.

Any z P SpAq is comparable to z˚ by Lemma 7.1.4(2), so it follows that x˚ and x

are comparable and y˚ and y are comparable. Because x and y being comparable

implies that x˚ and y˚ are comparable too, this means any two of x, y, x˚, y˚ are

comparable.

Lemma 7.2.8. Let x, y P SpAq. If x R IpAq, y P IpAq, x Ď y, and y Ę x˚, then

x ‚ y “ y.

Proof. x˚ and y are comparable by Corollary 7.2.7. Also, x˚ Ă y follows since y Ę x˚.

This implies x Ď x˚ Ď y, and from the monotonicity and idempotence of ‚ we get

x ‚ y Ď x˚ ‚ y Ď y. As x˚ Ă y, we get y˚ Ă x. Let a P x with a R y˚. Then the second

of these implies that  a P y, so a ¨  a P x ‚ y. Thus since a ¨  a ď e, we get e P x ‚ y

and consequently y Ď x ‚ y ‚ y “ x ‚ y. This yields x ‚ y “ y.

Given A P SMK, we define the absolute value of x P SpAq by

|x| “ x_ x˚.

Lemma 7.1.4 provides that the absolute value always exists, that |x| “ x or |x| “ x˚,

and that |x| P IpAq.

Lemma 7.2.9. Let x, y P SpAq. If |x| Ă |y| and x Ď y, then x ‚ y “ y.

Proof. Notice that |y| “ y˚ cannot occur: If |y| “ y˚, then |x| Ă |y| implies that

x˚ Ď |x| Ă y˚, and thus y Ă x. This is a contradiction to x Ď y. Hence |y| “ y from

the definition of the absolute value. We consider two cases.

Case 1: |x| “ x. Then x, y P IpAq, and x ‚ y “ x_ y “ y from Lemma 7.2.3.

Case 2: |x| “ x˚. If x “ x˚, then Case 1 applies. Suppose that x ‰ x˚, whence

from Lemma 7.1.4(4) we have x R IpAq. Since |y| “ y by the remarks above, we
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have that y P IpAq. The hypothesis gives x˚ Ă y, so we have also that y Ę x˚. Thus

x R IpAq, y P IpAq, x Ď y, and y Ę x˚, and Lemma 7.2.8 implies that x ‚ y “ y as

claimed.

Lemma 7.2.10. Let x, y P SpAq. If |x| Ă |y| and y Ď x, then x ‚ y “ y.

Proof. Note that |y| ‰ y. To see this, observe that if |y| “ y then we would have

x_ x˚ “ |x| Ă |y| “ y Ď x, a contradiction. Hence |y| “ y˚, and

y Ď x Ď x_ x˚ “ |x| Ă |y| “ y˚.

Then x ‚ y “ y follows from Lemma 7.2.5.

Lemma 7.2.11. Let x, y P SpAq. If |x| “ |y| and x Ď y, then x ‚ y “ x “ x^ y.

Proof. From |x| “ |y| we have x “ y or x˚ “ y. If x “ y, then x ‚ y “ x ‚ x “ x “ x^ y

because ‚ is idempotent. If x˚ “ y, then x Ď y Ď x˚, and x ‚ y “ x “ x ^ y follows

from Lemma 7.2.5.

We have amassed enough information about ‚ to offer a complete description.

We summarize the results above in the following.

Lemma 7.2.12. Let A P SMK and let x, y P SpAq. We write x } y if x and y are

incomparable, and x K y if x and y are comparable. Then

x ‚ y “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

x_ y if x, y P IpAq or x } y

y if x K y and |x| Ă |y|

x if x K y and |y| Ă |x|

x^ y if x K y and |x| “ |y|

where ^ and _ are evaluated in SpAq Y tAu.
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Proof. Lemma 7.2.3 provides that x ‚ y “ x _ y if x, y P IpAq, and Lemma 7.2.4

provides x ‚ y “ x_ y if x } y.

In the remaining cases x K y holds. If either |x| Ă |y| or |y| Ă |x|, then Lemmas

7.2.9 and 7.2.10 show that x ‚ y is whichever of x or y has the greater absolute value.

If x K y and |x| “ |y|, then x ¨ y “ x^ y by Lemma 7.2.11. This proves the claim.

Remark 7.2.13. Corollary 7.2.7 implies that if x and y are comparable, then exactly

one of |x| Ă |y|, |x| “ |y|, or |y| Ă |x| holds. This entails that Lemma 7.2.12

completely describes ‚ for a Sugihara monoid A.

Remark 7.2.14. Compare Lemma 7.2.12 with the definition of ¨ on the Sugihara

monoids S and Szt0u (see Examples 2.3.8 and 2.3.9), which generate SM as a qua-

sivariety by Proposition 2.3.12.

We will now construct our dual analogue p´q’ on the level of objects. Let

X “ pX,ď, D, τq be an unpointed Sugihara space, and let ´Dc “ t´x : x P Dcu be

a formal copy of Dc disjoint from X. Set

X’ :“ X Y´Dc.

We extend ´ to give a unary operation on X’ by defining ´p´xq “ x for ´x P ´Dc,

and ´x “ x for x P D. We also define a partial order ď’ on X’ by

1. If x, y P X, then x ď’ y if and only if x ď y,

2. If ´x,´y P ´Dc, then ´x ď’ ´y if and only if y ď x,

3. If ´x P ´Dc and y P X, then ´x ď’ y if and only if x and y are ď-comparable.

For each A P SMK, define ΓA : SpAq Ñ IpAq’ by
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ΓApxq “

$

’

’

&

’

’

%

x if x P IpAq

´px˚q if x R IpAq

According to Lemma 7.1.4, one of x P IpAq or x˚ P IpAq holds for all x P SpAq, and

moreover x “ x˚ “ ´x if both hold. This yields that ΓA is well-defined.

Lemma 7.2.15. ΓA is an order isomorphism.

Proof. We first prove that ΓA is isotone, so let x, y P SpAq with x Ď y. If x, y P IpAq,

then the result is obvious. If x, y R IpAq, then ΓApxq “ ´px
˚q ď’ ´py˚q “ ΓApyq

from y˚ Ď x˚. If x R IpAq and y P IpAq, then there is z P IpAq with x “ z˚. As

x and y are Ď-comparable, we get that y and x˚ “ z are comparable as well. Then

´z ď’ y gives ΓApxq ď
’ ΓApyq.

Second, we prove that ΓA reflects the order. Let x, y P SpAq be such that

ΓApxq ď
’ ΓApyq. If x, y P IpAq, then x Ď y follows immediately. If x, y R IpAq,

then we have that there are u, v P IpAq with x “ u˚ and y “ v˚ and ΓApxq “ ´u

and ΓApyq “ ´v. This gives ´u ď’ ´v. By definition, the latter holds if and only

if v Ď u, whence x “ u˚ Ď v˚ “ y. In the final case, suppose that x R IpAq and

y P IpAq. Then there is u P IpAq such that x “ u˚, and we have ΓApxq “ ´u,

ΓApyq “ y. By definition, ´u ď’ y if and only if u and y are Ď-comparable. If

u Ď y, then u˚ Ď u Ď y provides that x Ď y. If y Ď u, then x “ u˚ Ď y˚ Ď y gives

the result. Hence ΓA is order-reflecting.

Third and finally, we prove ΓA surjective. Let x P IpAq’. If x P IpAq,

then ΓApxq “ x. If x R IpAq, then there is y P IpAq such that x “ ´y. Then

ΓApy
˚q “ ´y “ x, which proves the claim.

Lemma 7.2.16. Let A P SMK and let x P SpAq. Then ΓApx
˚q “ ´ΓApxq.
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Proof. If x P IpAq and x˚ R IpAq, we get that ΓApx
˚q “ ´px˚˚q “ ´x “ ΓApxq. If

x, x˚ P IpAq, then Lemma 7.1.4 yields that x “ x1, whence ΓApx
˚q “ x˚ “ x “ ΓApxq.

In the last case, if x R IpAq and x˚ P IpAq, then ΓApx
˚q “ x˚ “ ´p´px˚qq “ ´ΓApxq.

The claim hence holds in all cases, which settles the proof.

Lemmas 7.2.15 and 7.2.16 provide that pSpAq,Ď,1 q and pIpAq,Ď’,´q are iso-

morphic structures for any A P SMK. Keeping with our by-now-familiar modus

operandi, we enrich these structures in order to expand the structure-preserving

properties of ΓA. Let τ’ be the disjoint union topology on X Y ´Dc, where the

topology on ´Dc is comes from considering it as a (copy of a) subspace of X.

Lemma 7.2.17. When IpAq’ is given the topology τ’, ΓA is continuous.

Proof. Let U Ď IpAq and V Ď ´tx P IpAq : x “ x˚uc be open. Notice that

U is an open subset of a clopen subspace of SpAq, whence U is open in SpAq.

Also, the definition of V being open in ´tx P IpAq : x “ x˚uc gives exactly that

tx P IpAq : ´x P V u is open in the clopen subspace tx P IpAq : x ‰ x˚u of SpAq,

and hence is open in SpAq too. Note that ˚ : SpAq Ñ SpAq is continuous, whence

inverse image tx˚ : ´x P V u of tx P IpAq : ´x P V u under ˚ is open in SpAq. This

implies

Γ´1
A rU Y V s “ Γ´1

A rU s Y Γ´1
A rV s

“ U Y tx˚ P SpAq : ´x P V u

is open. Because an arbitrary τ’-open set has the form UYV for U and V as above,

the result follows.

Lemma 7.2.18. Let pX,ď, D, τq be an object of SS. Then pX’, τ’q is a compact

Hausdorff space.
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Proof. D is clopen, so Dc is a closed subspace of the compact Hausdorff space

pX, τq. This implies that ´Dc (being a copy of Dc) is a compact Hausdorff space.

Because pX’, τ’q is a disjoint union of two compact Hausdorff spaces, the claim is

proven.

Lemma 7.2.19. ΓA is a homeomorphism.

Proof. Lemma 7.1.5 gives us that pIpAq,Ď, D, τq is an object of SS, where as usual

D “ tx P IpAq : x “ x˚u and τ is the subspace topology coming from SpAq. This

implies IpAq’ is a compact Hausdorff space by Lemma 7.2.18. Because SpAq is also

compact, ΓA is a continuous bijection from a compact space to a Hausdorff space,

hence a homeomorphism.

Take an object X “ pX,ď, D, τq of SS, and let A P SMK with DpAq – X. As a

consequence of Remark 7.1.6 we have

X – DpAq – IpAq.

and hence

pX’,ď’,´q – pIpAq’,Ď’,´q – pSpAq,Ď,˚ q,

where the last isomorphism is witnessed by ΓA. Note that for any A, the partial

operation ‚ on SpAq is completely determined by the order and the involution by

Lemma 7.2.12. This means that for each object X “ pX,ď, D, τq of SS we may
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‚h0

‚h1
‚© h2

‚´h1

‚´h0

Figure 7.1: Labeled Hasse diagram for DpEq’

define a partial multiplication ‚ on X’ by

x ‚ y “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

x_ y if x, y P X or x } y, provided the join exists

z if x K y, |y| ‰ |x|, z P tx, yu, and |z| “ maxt|x|, |y|u

x^ y if x K y and |x| “ |y|

undefined otherwise

where |x| “ x if x P X, and | ´ x| “ x if ´x P ´Dc. We can also define a ternary

relation R on X’ by Rpx, y, zq if and only if x ‚ y exists and x ‚ y ď’ z. This is the

last ingredient needed to define our dual analogue of p´q’.

Definition 7.2.20. For an unpointed Sugihara space X “ pX,ď, D, τq, let X’, ď’,

´, R, and τ’ be as above. Define X’ “ pX’,ď’, R,´, X, τ’q. Given a morphism

α : pX,ďX , DX , τXq Ñ pY,ďY , DY , τY q of SS, define α’ : X’ Ñ Y’ by

α’pxq “

$

’

’

&

’

’

%

αpxq if x P X,

´αp´xq if x P ´Dc
X

Before we prove that Definition 7.2.20 makes sense on the level of objects, we

offer an example to build intuition.

Example 7.2.21. In Example 6.2.33, we introduced the bounded expansion EK

of the Sugihara monoid E (which was first described in Example 2.3.11). Figure
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7.2.21 gives the result of applying the construction of Definition 7.2.20 to DpEKq.

Unlike its algebraic counterpart, the dual version of p´q’ is pictorial: It proceeds

by copying each element in DpEKq besides h2 (which is the sole element of the

designated subset), and reflecting the copied points across the axis determined by

the designated subset. The fact that the copied elements are reflected “below” the

aforementioned axis motivates our decoration of the copied elements with ´. It is

easy to verify that DpEKq’ and SpEKq are isomorphic.

The next lemma establishes that Definition 7.2.20 makes sense for objects.

Lemma 7.2.22. Let X “ pX,ď, D, τq be an unpointed Sugihara space. Then X’

is an object of SMτ
K.

Proof. Because SS and SMK are dually-equivalent there exists A P SMK such that

X – DpAq in SS. This observation and Remark 7.1.6 gives that, via ΩA,

X – DpAq – pIpAq,Ď, DI , τIq,

where as before DI “ tx P SpAq : x “ x˚u and τI is the topology that IpAq inherits

as a subspace of SpAq. Thus in SS we have

X – pIpAq,Ď, DI , τIq.

Note that there is a map α : pX’,ď’,´, τ’q Ñ pIpAq’,Ď’,´, τ’
I q that is an order

isomorphism, homeomorphism, and preserves ´. Also, ΓA : SpAq Ñ IpAq’ is an

order isomorphism (by Lemma 7.2.15), a homeomorphism (by 7.2.19), and preserves

the involution (by Lemma 7.2.16). This implies that δ :“ Γ´1
A ˝ ϕ is an order

isomorphism, homeomorphism, and preserves the involution. As SpAq is an object
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of SMτ
K, it is enough to show that δrXs “ IpAq and that δ is an isomorphism with

respect to R (i.e., for all x, y, z P X’, Rpx, y, zq if and only if Rpδpxq, δpyq, δpzqq).

From the fact that both ΓA and α are bijections,

δrXs “ pΓ´1
A ˝ αqrXs “ Γ´1rIpAqs “ IpAq

To see that δ is an isomorphism with respect to R, let x, y, z P X’. Note that δ

preserves the involution and preserves and reflects the order, whence because ‚ is

characterized entirely in terms of the involution and order we have that the following

are equivalent

• x ‚ y exists and x ‚ y ď’ x.

• δpzq P SpAq and δpxq ‚ δpyq Ď δpzq.

Hence Rpx, y, zq if and only if Rpδpxq, δpyq, δpzqq as desired. Thus X’ is an object

of SMτ
K and is isomorphic in that category to SpAq.

7.3 An equivalence between SS and SMτ
K

In this final section of the chapter, we attend to categorical details. Although the

primary interest in the dual variants of p´q’ and p´q’ arises from the representa-

tions they give us for objects, we may also describe the action of these constructions

on morphisms and show that they give the functors of a categorical equivalence. Our

first goal is to verify that Definitions 7.1.7 and 7.2.20 make sense for morphisms.

Lemma 7.3.1. Let α : X Ñ Y be a morphism of SMτ
K. Then α’ is a morphism of

SS.
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Proof. Since α is a bounded morphism, we have α´1rY’s “ X’. This yields

αrX’s “ αrα´1rY’ss Ď Y’, and it follows that αæX’
has its image in Y’. This

means α’ is well-defined.

α’ is the restriction of a continuous isotone map, hence is itself a continu-

ous isotone map. To prove that α’ is an Esakia map, let x P X’, z P Y’ such

that α’pxq ď z. Then as αpxq, z P Y’, from the definition of ‚ we get that

αpxq ‚ z “ αpxq _ z “ z. This gives RY αpxqzz. Because α is a bounded morphism,

there hence are u, v P X with RXxuv, z ď αpuq, and αpvq ď z. From z ď αpuq

and z P Y’ we obtain that αpuq P Y’. Applying that α is a bounded morphism

again, we have that αpuq P Y’ implies that u P α´1rY’s “ X’. The definition of

‚ and x, u P X’ provide that x ‚ u “ x _ u. But RXxuv yields x ‚ u ď v, whence

x, u ď x _ u ď v. By monotonicity we obtain αpvq ď z ď αpuq ď αpvq, and thus

x ď v and z “ αpvq. Thus α’ is an Esakia function.

For the rest, observe that if x P X and x˚ “ x, then α’pxq “ α’pxq
˚ since

α preserves ˚. Also, if x ‰ x˚, then without loss of generality x P X’ and

x˚ R X’ “ α´1rY’s, whence αpxq P Y’ and αpx˚q R Y’. This implies αpxq ‰ αpxq˚,

proving the claim.

The proof that α’ is a bounded morphism for each morphism of SS is compli-

cated, and involves some case analysis. For clarity of exposition, we divide the proof

into several lemmas.

Lemma 7.3.2. Let α : X Ñ Y be a morphism of SS. Then α’ is isotone.

Proof. Let x, y P X’ with x ď’ y.

Case 1: x, y P X. In this case, α’pxq “ αpxq ď αpyq “ α’pyq follows because

α is isotone.

Case 2: x, y R X. Here x ď’ y implies ´y ď ´x, and from the isotonicity of α

we obtain ´α’pyq “ αp´yq ď αp´xq “ ´α’pxq. Thus α’pxq ď’ α’pyq.
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Case 3: x R X and y P X. For this case, x R X gives that ´x P X, and

x ď’ y implies ´x and y are ď-comparable. Since α is isotone, this gives that

´α’pxq “ αp´xq and α’pyq “ αpyq are ď-comparable. The definition of α’ and

the fact that x R X imply that α’pxq R Y , whence from the definition of ď’ we get

α’pxq ď’ α’pyq. This settles the claim.

Lemma 7.3.3. Let α : X Ñ Y be a morphism of SS. Then α’p´xq “ ´α’pxq for

all x P X’.

Proof. There are three cases.

Case 1: x P XzDX . Here we have that ´x P ´Dc
X , and this gives that

α’p´xq “ ´αp´p´xqq “ ´αpxq “ ´α’pxq.

Case 2: x P DX . In this situation, we have α’p´xq “ α’pxq “ ´α’pxq.

Case 3: x P ´Dc
X . We have that ´x P XzDX , and from this we obtain that

α’p´xq “ αp´xq “ ´p´αp´xqq “ ´α’pxq.

Lemma 7.3.4. Let α : X Ñ Y be a morphism of SS. Then α’p|x|q “ |α’pxq| for

each x P X’.

Proof. Let x P X’, and note that one of ´x ď’ x or x ď’ ´x holds. As α’ pre-

servesď’ by Lemma 7.3.2 and preserves´ by Lemma 7.3.3, we get´α’pxq ď’ α’pxq

in the first case. In the second case, we obtain α’pxq ď’ ´α’pxq. Thus either

α’pxq _ ´α’pxq “ α’pxq “ α’p|x|q (in the first case), or else

α’pxq _ ´α’pxq “ ´α’pxq “ α’p´xq “ α’p|x|q

(in the second case).

Lemma 7.3.5. Let α : X Ñ Y be a morphism of SS. Then α’ preserves the ternary

relation R.
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Proof. Let x, y, z P X’ such that RXpx, y, zq. Then by definition x ‚ y exists and

x ‚ y ď’ z. There are two cases.

Case 1: x‚y “ x_y. In this situation, x_y ď’ z, so x ď’ z and y ď’ z. As α’

preserves the order, α’pxq, α’pyq ď’ α’pzq. Since ‚ is order-preserving and idem-

potent, this implies α’pxq ‚ α’pyq ď’ α’pzq. Therefore RY pα
’pxq, α’pyq, α’pzqq.

Case 2: x ‚ y ‰ x _ y. By the definition ‚, we have x ‚ y is one of x or y, and

also x K y. Suppose without loss of generality that x ď’ y and (since x ‚ y ‰ x_ y)

that x ‚ y “ x. Then |y| ď’ |x| from the definition of ‚. From Lemma 7.3.2 we get

α’pxq ď’ α’pyq, whence α’pxq‚α’pyq must exist by the definition of ‚. Moreover,

|y| ď’ |x| together with Lemmas 7.3.2 and 7.3.4 yields |α’pyq| ď’ |α’pxq|. Thus

α’pxq ‚α’pyq is either α’pxq^α’pyq or whichever of α’pxq and α’pyq has greater

absolute value by the definition of ‚. This implies α’pxq ‚ α’pyq “ α’pxq in either

case. Since x “ x ‚ y ď’ z, we get α’pxq ‚ α’pyq “ α’pxq ď’ α’pzq, and thus

RY pα
’pxq, α’pyq, α’pzqq.

Lemma 7.3.6. Let α : X Ñ Y be a morphism of SS. Then if RY px, y, α
’pzqq, there

exists u, v P X’ such that RXpu, v, zq, x ď
’ α’puq, and y ď’ α’pvq.

Proof. Suppose that RY px, y, α
’pzqq. By definition x ‚ y exists and x ‚ y ď’ α’pzq,

and there are two possibilities.

Case 1: x ‚ y “ x _ y. Here x ď’ α’pzq and y ď’ α’pzq. Taking u “ v “ z

gives the claim as RXpz, z, zq.

Case 2: x‚y ‰ x_y. Then from the definition of ‚ we have that x K y and x‚y

is one of x or y. Suppose without loss of generality that x ď’ y, that x‚y “ x (for if

x‚y “ y, then we obtain the contradiction x‚y “ x_y), and that |y| ď’ |x|. Were

it the case that x, y P Y , we would have x‚y “ x_y by the definition of ‚. Thus we

may further suppose that x R Y , whence |x| “ ´x (for otherwise x ď’ y and Y being

an up-set would give x, y P Y ). The hypothesis that x “ x ‚ y ď’ α’pzq implies
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α’p´zq ď’ ´x. Therefore α’p|z|q must be comparable to ´x by Corollary 7.2.7

(as transferred along the obvious isomorphism). This means either α’p|z|q ď’ ´x

or ´x ď’ α’p|z|q.

Subcase 2.1: α’p|z|q ď’ ´x. In this setting, αp|z|q ď ´x and α being an Esakia

map provides that there are u P X such that |z| ď u and αpuq “ ´x. Then

´u ď’ ´|z| ď’ z and y ď’ |y| ď’ |x| “ ´x ď’ α’puq, so x ď’ α’p´uq,

y ď’ α’puq, and p´uq ‚ u “ ´u ď’ z gives the result.

Subcase 2.2: ´x ď’ α’p|z|q. Here we have |y| ď’ |x| “ ´x yields that y ď’

α’p|z|q. Noting z ‚ |z| “ z ^ |z| “ z, we have x ď’ α’pzq, y ď’ α’p|z|q, and

RXpz, |z|, zq.

Lemma 7.3.7. Let α : X Ñ Y be a morphism of SS. If RY pα
’pxq, y, zq, there exists

u, v P X’ such that RXpx, u, vq, y ď
’ α’puq, and α’pvq ď’ z.

Proof. By the definition of R, α’pzq ‚ y exists and α’pxq ‚ y ď’ z. There are four

cases, each with some subcases.

Case 1: α’pxq ‚ y “ α’pxq _ y ď’ z. Here α’pxq ď’ z and y ď’ z.

Subcase 1.1: α’pxq P Y . From the fact that α is an Esakia map, there exists

u P X with x ď u and αpuq “ α’puq “ z. Then y ď’ α’puq, α’puq ď’ z,

and RXpx, u, uq since x ‚ u ď’ u is a consequence of x ď’ u by monotonicity and

idempotence.

Subcase 1.2: α’pxq R Y . We may suppose α’pxq and y are incomparable (i.e.,

since we are in the case where α’pxq‚y “ α’pxq_y). Also, ´α’pxq “ α’p´xq P Y

and ´z ď’ α’p´xq, ´z ď’ ´y. Were it the case that ´z P Y , this would contradict

the fact that Y is a forest. Hence ´z R Y and therefore z P Y . The fact that ´z

and α’p´xq are comparable gives that z and α’p´xq are comparable.

Subcase 1.2.1: z ď’ α’p´xq. Here y ď’ α’p´xq and α’pxq ď’ ´z ď’ z.

We obtain the result from ´x ‚ x “ x, which gives RXpx,´x, xq.
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Subcase 1.2.2: α’p´xq ď’ z. In this case, observe that α’pxq R Y implies

α’p´xq P Y and ´x P X. Then α being an Esakia function proves u P X with

´x ď u and αpuq “ α’puq “ z. As x R X, we have x ď’ ´x ď’ u and this yields

x ‚ u ď’ u. Since y ď’ z “ α’puq and α’puq ď’ z hold, we get the result from

RXpx, u, uq.

In all remaining cases, we may assume that α’pxq and y are comparable and

that not both of α’pxq P Y and y P Y hold.

Case 2: |α’pxq| “ |y|. This gives α’pxq ‚ y “ α’pxq ^ y.

Subcase 2.1: α’pxq ď’ y. Here we have α’pxq ‚ y “ α’pxq ď’ z. From

|α’pxq| “ |y|, we may obtain that α’pxq “ y or α’pxq “ ´y. If α’pxq “ y,

then RXpx, x, xq yields the result. If α’pxq “ ´y, then α’p´xq “ y and we use

RXpx,´x, xq instead.

Subcase 2.2: y ď’ α’pxq. In this setting α’pxq ‚ y “ y ď’ z. Again,

|α’pxq| “ |y| provides that α’pxq “ y or α’pxq “ ´y. The former implies the

result by noting that RXpx, x, xq. The latter provides that α’p´xq “ y ď’ z,

whence RXpx,´x,´xq proves the claim.

Case 3: |y| ă |α’pxq|. Note that in this case α’pxq ‚ y “ α’pxq ď’ z.

Subcase 3.1: y ď’ α’pxq. This subcase is immediate from RXpx, x, xq.

Subcase 3.2: α’pxq ď’ y. Here we may suppose α’pxq R Y , and therefore

α’p´xq P Y . This implies α’p´xq “ |α’pxq|, whence y ď’ |y| ď’ α’p´xq. Then

RXpx,´x, xq settles the third case.

Case 4: |α’pxq| ă |y|. In this case we have α’pxq ‚ y “ y ď’ z.

Subcase 4.1: α’pxq, y R Y . We have |α’pxq| “ ´α’pxq ď’ ´y “ |y|. Hence

α’p´xq ď ´y, and using the fact that α is an Esakia map gives u P Y with ´x ď u

and α’puq “ αpuq “ ´y. It follows that α’p´uq “ y ď’ z. Thus ´u ď’ x, and

from ´u, x R X we conclude that x ‚ p´uq “ ´u since the value of x ‚ p´uq is either
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the meet or the one with the larger absolute value. This implies RXpx,´u,´uq and

y “ α’p´uq ď’ z settles the subcase.

Subcase 4.2: α’pxq P Y and y R Y . Here |α’pxq| “ α’pxq ď’ ´y “ |y|. As α

is an Esakia function, there exists u P X with x ď u and α’puq “ αpuq “ ´y. Then

y “ α’p´uq and y ď’ z hence yields α’p´uq ď’ z. As x ď’ u, ‚ being monotone

implies that x ‚ p´uq ď’ u ‚ p´uq “ u ^ ´u ď’ ´u. Hence RXpx,´u,´uq, and

since y ď’ α’p´uq and α’p´uq ď’ z this gives us the fourth case.

Lemma 7.3.8. Let α : X Ñ Y be a morphism of SS. Then α’ is continuous.

Proof. Let U Y V Ď Y’ be open, where U Ď Y and V Ď Dc
Y are open. The map

´ : Y’ Ñ Y’ is a continuous bijection of compact Hausdorff spaces, whence it is a

homeomorphism. Notice that pα’qq´1rV s is precisely tx P Y ’ : ´αp´xq P V u. This

is the same as t´x P Y ’ : αp´xq P V u, so it is the inverse image of V under the

continuous composite map α ˝ ´. Thus the inverse image of V under this map is

open. Because pα’q´1rU YV s “ pα’q´1rU sYpα’q´1rV s, we obtain the lemma.

Lemma 7.3.9. Let α : X Ñ Y be a morphism of SS. Then α’ is a bounded mor-

phism.

Proof. This is immediate from the previous lemmas.

Lemma 7.3.10. p´q’ : SMτ
K Ñ SS is functorial.

Proof. Let α : Y Ñ Z and β : X Ñ Y be morphisms in SMτ
K. We need

pα ˝ βq’ “ α’ ˝ β’.

Let x P X’. Then we have pα ˝ βq’pxq “ αpβpxqq “ α’pβ’pxqq as a consequence of

the fact that p´q’ acts by restriction. It is obvious that p´q’ preserves the identity

morphism.
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Lemma 7.3.11. p´q’ : SSÑ SMτ
K is functorial.

Proof. Consider objects X “ pX,ďX, DX, τXq and Y “ pY,ďY, DY, τYq, and

Z “ pZ,ďZ, DZ, τZq of SS, and let α : Y Ñ Z and β : X Ñ Y be morphisms of

SS. Let x P X’. Either x P X or x P t´y : y R DXu. In the first situation, we have

pα ˝ βq’pxq “ pα ˝ βqpxq “ αpβpxqq “ α’pβ’pxqq.

In the second situation, write x “ ´y where y R DX. From this we get

pα ˝ βq’pxq “ ´pα ˝ βqpyq “ ´αpβpyqq.

Also, β’pxq “ ´βpyq is not in Y , whence α’p´βpyqq “ ´αpβpyqq. Therefore

pα ˝ ψq’ “ α’ ˝ ψ’ in each case. It is obvious that p´q’ preserves the identity

morphism, so the lemma follows.

Lemma 7.3.12. Let X “ pX,ď, R,˚ , I, τq be an object of SMτ
K. Then pX’q

’ – X.

Proof. Define θX : pX’q
’ Ñ X by

θXpxq “

$

’

’

&

’

’

%

x if x P I

p´xq˚ if x R I

This function is well-defined because x R I implies that ´x P I is an element of X.

We will prove that θX is an isomorphism in SMτ
K. It is enough to show that θX is

an order isomorphism, homeomorphism, preserves the involution, is an isomorphism

with respect to R, and satisfies θXrIs “ I.

We first show that θX is an order isomorphism. Let x, y P pX’q
’ with x ď’ y. If

x, y P X’, then θXpxq “ x ď y “ θXpyq. If x, y R X’, then ´x,´y P X’ and x ď’ y

gives ´y ď ´x, whence p´xq˚ ď p´yq˚. Then θXpxq “ p´xq
˚ ď p´yq˚ “ θXpyq.
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If x R X’ and y P X’, then x ď’ y gives that ´x and y are ď-comparable. If

´x ď y, then p´xq˚ ď ´x ď y, and if y ď ´x, then p´xq˚ ď y˚ ď y. In both cases

we obtain θXpxq ď θXpyq. This shows that θX is isotone.

To show θX is order-reflecting, let x, y P pX’q
’ with θXpxq ď θXpyq. If x, y P

X’, then x ď’ y follows immediately. If x, y R X’, then p´xq˚ ď p´yq˚, and

thus ´y ď ´x. In this case, ´x,´y P X’, so x ď’ y by definition. If x P X’

and y R X’, then x “ θXpxq ď θXpyq “ p´yq
˚. But y R X’ gives p´yq˚ R X’, a

contradiction to the fact that X’ is an upset. In the last case, suppose that x R X’

and y P X’. Then p´xq˚ ď y by hypothesis. Since y and ´x are comparable, we get

that ´x and y are comparable and that ´x, y P X’. The definition of ď’ entails

that x “ ´p´xq ď’ y. θX is thus order-reflecting.

To finish the proof that θX is an order isomorphism, we must show surjectivity.

Let x P X. If x P I, then x P pX’q
’ and θXpxq “ x. If x R I, then x˚ P I and hence

´px˚q P pX’q
’ and ´px˚q R X’. Then θXp´px

˚qq “ p´p´px˚qqq˚ “ x˚˚ “ x. Thus

θX is onto, whence it is an order isomorphism.

We next show that θX is a homeomorphism. From the above, θX is a bijection

so from pX’q
’ and X being compact Hausdorff spaces, it is enough to show that

θX is continuous. Let W Ď X be open, and set U “ W X I and V “ W X Ic. As

I is open by definition, both U and V are open as well. θ´1
X rU s “ U by definition.

Observe that θXpxq R I implies that x R I because x P I would imply θXpxq “ x.

From this, we have

θ´1
X rV s “ tx P pX’q

’ : θXpxq P V u

“ tx P pX’q
’ : p´xq˚ P V u
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Now ˚ : X Ñ X and ´ : pX’q
’ Ñ pX’q

’ are continuous bijections by defini-

tion, and the above is precisely the inverse image of V under the composition of

´ and ˚. Thus V is an open subset of pX’q
’ disjoint from X’, and it follows that

θ´1
X rW s “ θ´1

X rU s Y θ´1
X rV s is open. This gives that θX is a homeomorphism.

To prove that θX preserves the involution, let x P pX’q
’. If ´x R X’, then

x P X’ and θXp´xq “ p´p´xqq
˚ “ x˚ “ θXpxq

˚. If ´x P X’ with ´x “ x, then

x “ x˚ and θXp´xq “ ´x “ x “ x˚ “ θXpxq
˚. If ´x P X’ with ´x ‰ x, then

x R X’ and θXp´xq “ ´x “ p´xq
˚˚ “ θXpxq

˚.

From the fact that θXpxq “ x for x P I we easily obtain θXrIs “ I. All that is left

is to prove that θX is an isomorphism with respect to R. But this is an immediate

consequence of the fact that R is determined by meet, join, and involution, and θX

is an involution-preserving order isomorphism.

Lemma 7.3.13. Let X be an object of SS. Then pX’q’ – X.

Proof. Let iX : pX’q’ Ñ X be the identity map. Then iX is an isomorphism of SS,

and the result is immediate.

Theorem 7.3.14. p´q’ and p´q’ give a covariant equivalence of categories between

SMτ
K and SS.

Proof. Naturality is all that remains to show. It is obvious that iX gives a natural

isomorphism. To prove this for θX, let α : X Ñ Y be a morphism of SMτ
K. It is

enough to show that α ˝ θX “ θY ˝ pα’q
’, so let x P pX’q

’. If x P X’, then taking

x as the argument of the maps above gives αpxq on both sides of the equation. If

x R X’, then evaluating each side of the equation yields αp´xq˚. This proves the

claim.
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Chapter 8

Dualized representations of

srDL-algebras

The previous chapter provides a case study in how a duality-theoretic perspec-

tive can make an algebraic construction more transparent; we have seen that much

of the complexity of the Galatos-Raftery construction dissolves when presented on

dual spaces. In particular, the order-theoretic content of the construction is cap-

tured by simply reflecting points in the dual space across a designated subset, and

the complicated multiplication inherent in the algebraic variant of the construction

is captured dually by a simple piecewise-defined partial multiplication (compare:

the multiplication in the algebraic variant of p´q’ defined in Chapter 5, the par-

tial multiplication dual variant of p´q’ given in Chapter 7, and the definition of

multiplication on S and Szt0u in Example 2.3.8).

This chapter provides a second case study. Here we apply duality-theoretic

methods to simplify the construction in [1] of srDL-algebras (see Section 2.3.1) from

quadruples pB,A,_e, Nq, where B is a Boolean algebra, A is a GMTL-algebra,

and _e and N are maps that parametrize how B and A are assembled. Our dual

164



analogue of this construction builds the extended Priestley duals of srDL-algebras

from the extended Priestley duals of B and A, together with some data dualizing

_e and N . The content of this chapter is based on the author’s [27].

8.1 Algebraic representations by quadruples

We begin by recounting the pertinent aspects the Aguzzoli-Flaminio-Ugolini

quadruples construction of [1].

Definition 8.1.1. By an algebraic quadruple we mean an ordered tuple pB,A,_e, Nq

consisting of:

• A Boolean algebra B.

• A GMTL-algebra A with B XA “ t1u.

• A nucleus N : A Ñ A that is also a lattice homomorphism (sometimes called

a wdl-admissible map).

• An external join _e, i.e., a map _e : B ˆAÑ A that satisfies the conditions

enumerated below (where for each u P B and x P A, we employ the abbrevia-

tions νupyq :“ u_e y and λxpvq :“ v _e xq,

(V1) For every u P B, and x P A, νu is an endomorphism of A and the map λx

is a lattice homomorphism from (the lattice reduct of) B into (the lattice

reduct of) A.

(V2) ν0 is the identity on A and ν1 is constantly equal to 1, where 0 and 1

denote the bounds of B.

(V3) For all u, v P B and for all x, y P A,

νupxq _ νvpyq “ νu_vpx_ yq “ νupνvpx_ yqq.
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If pB1,A1,_1, N1q and pB2,A2,_2, N2q are algebraic quadruples, say that a pair

ph, kq is a good morphism pair provided it satisfies:

• h : B1 Ñ B2 is a homomorphism of Boolean algebras.

• k : A1 Ñ A2 is a homomorphism of GMTL-algebras.

• kpu_1 xq “ hpuq _2 kpxq whenever pu, xq P B ˆA.

• kpN1pxqq “ N2pkpxqq for all x P A1.

With good morphisms pairs as arrows, algebraic quadruples form a category QGMTL.

The construction that we aim to dualize proceeds as follows. Starting from an

algebraic quadruple pB,A,_e, Nq, define a relation „ on on BˆA by pu, xq „ pv, yq

if and only if u “ v, ν upxq “ ν upyq, and νupNApxqq “ νupNApyqq. One may show

that „ is an equivalence relation. We define an algebra

BbNe A “ pB ˆA{„,d,ñ,[,\, r0, 1s, r1, 1sq

whose operations are defined on representatives ru, xs, rv, ys P B ˆA{„ by

ru, xs d rv, ys “ ru^ v,νu_ vpy Ñ xq ^ ν u_vpxÑ yq ^ ν u_ vpx ¨ yqs

ru, xs ñ rv, ys “ ruÑ v,νu_vpNpyq Ñ Npxqq ^ ν u_vpNpx ¨ yqq ^ ν u_ vpxÑ yqs

ru, xs [ rv, ys “ ru^ v,νu_vpx_ yq ^ νu_ vpxq ^ ν u_vpyq ^ ν u_ vpx^ yqs

ru, xs \ rv, ys “ ru_ v,νu_vpx^ yq ^ νu_ vpyq ^ ν u_vpxq ^ ν u_ vpx_ yqs

It turns out that BbNe A is an srDL-algebra, and indeed bNe provides one functor of

a categorical equivalence. In fact, for each subvariety H of GMTL, let srDLH be the

full subcategory of srDL whose objects are srDL-algebras A such that RpAq P H.18

18Recall that RpAq denotes the radical of A. Radicals, coradicals, and Boolean skeletons of
srDL-algebras are pervasive in this chapter. For pertinent definitions and basic results, see Section
2.3.1.
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Moreover, let QH the full subcategory of QGMTL whose objects are algebraic quadru-

ples pB,A,_e, Nq such that A P H. We may define functors ΦH : srDLH Ñ QGMTL

and ΞH : QGMTL Ñ srDLH by

ΦHpAq “ pBpAq,RpAq,_, NAq

ΦHpkq “ pkæBpAq
, kæRpAq

q,

where NA : RpAq Ñ RpAq is the wdl-admissible map defined by NApxq “   x,

and

ΞHppB,A,_e, Nqq “ BbNe A

ΞHph, kqpru, xsq “ rhpuq, kpxqs.

From [1], QH and srDLH are (covariantly) equivalent categories via the above func-

tors.

Remark 8.1.2. A word on notation is in order. Because the construction outlined

above involves many different types, we will make an effort to reserve a, b, c for gen-

eral elements of srDL-algebras, whereas we will reserve u, v, w for Boolean elements

and x, y, z for radical elements. Where possible, we will hold to the same convention

for prime filters of these algebras, except that filters will be denoted by a Gothic

typeface. Thus a, b, c are used for prime filters of an srDL-algebra, whereas u, v,w

are used for ultrafilters of its Boolean skeleton and x, y, z are used for generalized

prime filters of its radical.
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8.2 Representing dual spaces by externally prime filter pairs

Our goal is to understand the extended Priestley dual of a given srDL-algebra

in terms of the extended Priestley duals of its Boolean skeleton and radical, and we

take our first steps in that direction in this section. For each srDL-algebra A and

each a P SpAq, an easy argument verifies that a XBpAq is an ultrafilter of BpAq

and aXRpAq is a generalized prime filter of RpAq.

Definition 8.2.1. Let A P srDL. Say that pu, xq P SpBpAqqˆSpRpAqq is externally

prime if

@pu, xq P BpAq ˆRpAq, u_ x P x implies u P u or x P x. (8.2.1)

Moreover, define

FA “ tpu, xq P SpBpAqq ˆ SpRpAqq : pu, xq is externally primeu

Remark 8.2.2. We often understand FA as bearing the product order, i.e., we

have pu, xq Ď pv, yq if and only if u Ď v and x Ď y. Because u and v are ultrafilters

(and in particular maximal), the condition that u Ď v is equivalent to u “ v.

The definition of the functor ΦHpAq employs the wdl-admissible map NA on

RpAq defined by NApxq “   x, and this nucleus will be fundamental to our inves-

tigation. As for any nucleus, NArRpAqs is a residuated lattice in its own right, and

we observe that for each prime filter x of NArRpAqs we have

N´1
A rxs “ maxty P SpRpAqq : NArys “ xu.

It is simple to verify this by checking that N´1
A rxs is a prime filter, and that any y

with NArys “ x is contained in N´1
A rxs.
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In order to tie the duals of srDL-algebras to the duals of their radicals and

Boolean skeletons, we will give a representation of SpAq, A P srDL, in terms of

externally prime filter pairs. However, it turns out that only some of the points in

SpAq may be represented by such filter pairs (in fact, the members of FA turn out

to correspond to those prime filters of A that do not contain all of RpAq, as we

shall see). In order to represent every a P SpAq, we create a (modified) copy of some

points and place them “above” the poset FA (cf. the dual construction of p´q’ by

a reflection “below” the set of designated elements). To achieve this, define

FBA “ t`pu, yq : pu, yq P P u

where

P “ tpu, yq P SpBpAqq ˆ SpNArRpAqsq : pu, N´1
A rysq P FA and N´1

A rys ‰ RpAqu.

The decoration ` comes by analogy from our work in Chapter 7, and intuitively we

think of FBA as corresponding to an intuitively “upper” or “positive” piece of SpAq.

The following definition makes this precise.

Definition 8.2.3. Let F’
A :“ FA 9YFBA, and define a partial order Ď on F’

A by p Ď q

if and only if one of the following holds.

1. p “ pu, xq and q “ pv, yq for some pu, xq, pv, yq P FA with pu, xq Ď pv, yq.

2. p “ `pu, xq and q “ `pv, yq for some `pu, xq,`pv, yq P FBA with pv, yq Ď pu, xq.

3. p “ pu, xq and q “ `pv, yq for some pu, xq P FA, pv, yq P FBA with u “ v.

Our definition of the pair pu, xq being externally prime seems to intrinsically

depend on u and x being filters (i.e., as opposed to abstract points in some Priestley
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space). However, we presently provide an entirely abstract treatment of external

primality, for which the following observation is crucial.

Let a P SpAq, where A P srDL. For each u P BpAq we have u _  u “ 1 P a

by Lemma 2.3.6(2), and since a is prime one of u P a or  u P a must hold. This

implies that each a P SpAq contains an ultrafilter of BpAq. Because ultrafilters are

maximal and each a P SpAq is proper, this ultrafilter is unique.

Definition 8.2.4. For a P SpAq denote by ua the unique ultrafilter u of BpAq with

u Ď a. We call ua the ultrafilter of a.

We say that an ultrafilter u Ď BpAq fixes x P SpRpAqq if there exists a P SpAq

with u Ď a (equivalently u “ ua) and x “ aXRpAq.

It is obvious that ua fixes a XRpAq for each a P SpAq. In order to explain the

terminology of an ultrafilter “fixing” a radical filter,19 we define for each u P BpAq

a map µu : SpRpAqq Ñ SpRpAqq by

µupxq “ tx P RpAq : u_ x P xu “ ν´1
u rxs,

where the notation νupxq “ u_ x was introduced in Definition 8.1.1. Observe that

µu is the extended Priestley dual of the GMTL-endomorphism νu. The following

technical lemma gives some useful properties of the maps µu.

Lemma 8.2.5. Let A P srDL, let x P SpRpAqq, and let u, v P BpAq. Then the

following hold.

1. µu_vpxq is one of µupxq or µvpxq.

2. µu^vpxq is one of µupxq or µvpxq.

3. µupxq “ x or µ upxq “ x.

19Note that we call the elements of SpRpAqq radical filters.
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4. µupxq “ x or µupxq “ RpAq.

5. µupµupxqq “ µupxq.

Proof. Let x P RpAq. If either of x_u P x or x_ v P x holds, then x_u_ v P x as x

is an up-set. Also, x_ pu^ vq P x gives x_ u P x and x_ v P x. These facts provide

that µupxq, µvpxq Ď µu_vpxq and µu^vpxq Ď µupxq, µvpxq.

For (1), suppose on the contrary that both of µupxq Ă µu_vpxq and µvpxq Ă µu_vpxq.

It follows that there exist x, y P RpAq with x _ u _ v, y _ u _ v P x, but x _ u R x

and x _ v R x. From x being an up-set and x _ u _ v, y _ u _ v P x, this means

x _ y _ u _ v P x. As x is prime in RpAq and x _ u, y _ v P RpAq, it follows that

px _ uq _ py _ vq “ x _ y _ u _ v P x implies x _ u P x or y _ v P x. This is a

contradiction, so either µu_vpxq “ µupxq or µu_vpxq “ µvpxq.

For (2), suppose on the contrary that µu^vpxq Ă µupxq and µu^vpxq Ă µvpxq.

Then there are x, y P RpAq with x _ pu ^ vq, y _ pu ^ vq R x but x _ u P x and

y _ v P x. Distributivity of the lattice reduct implies that px_ uq ^ px_ vq R x, and

as x_ u P x we have x_ v R x. Likewise, py_ uq ^ py_ vq R x and y_ v P x together

imply that y_ u R x. Since x is prime, this yields x_ y_ u_ v R x. This contradicts

x_ u P x since x_ u ď x_ y _ u_ v and x is is an up-set, giving (2).

For (3), we have x “ µ0pxq “ µu^ upxq, which is either µupxq or µ upxq from (2).

For (4), suppose that µupxq ‰ x and x ‰ RpAq (so in particular µupxq ‰ RpAq).

Item (3) gives that µ upxq “ x, and RpAq “ µ1pxq “ µu_ upxq gives µupxq “ RpAq

or µ upxq “ RpAq from (1). Since x ‰ RpAq, the second of these possibilities is

excluded. Thus RpAq “ µupxq.

Item (5) is a direct consequence of (4).

Lemma 8.2.6. Let A be an srDL-algebra. Then we have the following.
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1. aXRpAq is a generalized prime filter of RpAq, and is a fixed-point of each of

the maps µu for u R ua.

2. Conversely, if x “ a X RpAq is proper and u is an ultrafilter of BpAq such

that x is fixed by each µu for u R u, then u Ď a. In particular, u “ ua.

Proof. To prove (1), note first that aXRpAq P SpRpAqq is an obvious consequence

of the definitions. To prove the rest, let u R ua and set x “ a X RpAq. For x P x

we have that x ď u _ x implies u _ x P x, whence x P µupxq. Thus x Ď µupxq. For

the reverse inclusion, let x P µupxq. Then u _ x P x, and as x Ď a we get u _ x P a.

Since a is a prime filter of A, it follows that u P a or x P a. As u R ua, the first of

these cannot occur. Thus x P a. It follows that x P a XRpAq, giving µupxq “ x as

claimed.

To prove (2), let u P u. Then u being an ultrafilter implies  u R u, so x is a

fixed-point of µ u by assumption. Were u R a, we would have  u P a since a is

prime and u_ u P a. Let x P RpAq. Then  u, x ď  u_x, and as both RpAq and

a are up-sets it follows that  u _ x P a XRpAq “ x. Since x is fixed by µ u, this

implies that x P µ upxq “ x. Therefore RpAq Ď x, a contradiction to the assumption

that x is proper. We thus obtain u P a, and u Ď a. Since the ultrafilter of a is unique

by the remarks above, we get u “ ua as well.

Remark 8.2.7. Observe that it would be more natural to work with prime ideals

of BpAq rather than ultrafilters. By the above, u P SpBpAqq fixes a proper filter

x P SpRpAqq if and only if µupxq “ x for u P uc, and the sets of the form uc for

u P SpBpAqq are exactly the prime ideals of BpAq. Because we have adopted a

variant of Priestley duality that employs prime filters rather than prime ideals, we

will continue working with filters in the present setting.

Lemma 8.2.8. Let x P SpRpAqq. Then there is u P SpBpAqq such that u fixes x.
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Proof. We will use the prime ideal theorem for distributive lattices. For this, let

i “ RpAqzx and observe that i is an ideal of RpAq. Also, its down-set

Ói “ ta P A : a ď i for some i P iu

is an ideal of A as well. Note moreover that x is a filter of A (and not just of RpAq).

Since xX Ói “ H, there exists a P SpAq such that aX Ói “ H and x Ď a. It is easy

to see that ua fixes x, which settles the claim.

Remark 8.2.9. Note that Lemma 8.2.8 also shows that an arbitrary x P SpRpAqq

is of the form x “ aXRpAq for some a P SpAq.

Every radical filter is fixed by at least one ultrafilter by the foregoing lemma.

One consequence of the following is that a given radical filter may be fixed by many

ultrafilters.

Lemma 8.2.10. Let A P srDL and u P SpBpAqq. Then u fixes RpAq.

Proof. We must show that there exists a P SpAq such that aXRpAq “ RpAq and

u Ď a. Let f be the filter of A generated by uYRpAq. Then f is proper. To see this,

toward a contradiction suppose that 0 P f. Then there exists u P u and x P RpAq

such that u ^ x ď 0. From the fact that a ¨ b ď a ^ b holds in every integral CRL,

we get u ¨ x ď 0. Thus x ď uÑ 0 “  u by residuating. As RpAq is an up-set, this

implies  u P RpAq. The only Boolean element in RpAq is 1 (see, e.g., [1]), whence

 u “ 1. From this we obtain u “ 0, a contradiction to the assumption that u is an

ultrafilter (i.e., since ultrafilters are proper). Thus f ‰ A, and we may extend f to

a prime filter a of A by the prime filter theorem. It is easy to see that u Ď a and

RpAq Ď a, which proves the lemma.
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The following lemma provides a crucial step in making external primality extrin-

sic (i.e., rendering external primality on abstract spaces rather than spaces whose

points are filters).

Lemma 8.2.11. Let A P srDL and let x P SpRpAqq. Then pu, xq is externally prime

if and only if u fixes x.

Proof. For the forward implication, let pu, xq P FA. If x “ RpAq, then the result

follows from Lemma 8.2.10. Suppose x ‰ RpAq. We will apply Lemma 8.2.6, so let

u R u. Since x Ď µupxq always holds, it is enough to show that µupxq Ď x and we let

x P µupxq. Then u _ x P x, so by external primality we have that u P u or x P x.

Since u R u by assumption, it follows that x P x. Thus µupxq “ x for every u R u, and

the result follows from Lemma 8.2.6(2).

For the backward implication, suppose that u fixes x. Let u P BpAq and

x P RpAq be such that u _ x P x, and suppose that u R u. Then from Lemma

8.2.6(1) and u fixing x, we get that x “ µupxq. But x P µupxq means u_x P x, whence

x P x. This implies that u P u or x P x, so pu, xq is externally prime.

The next two lemmas are never invoked in the sequel, but provide some intuition

about ultrafilters that fix a given radical filter. For each radical filter x, define

fx “
č

tu : u fixes xu

Notice that fx is a nonempty and proper filter, and fx is an ultrafilter if and only if

there is just one ultrafilter fixing x.

Lemma 8.2.12. Let u R fx. Then µu fixes x.

Proof. Note that if u R fx then there exists an ultrafilter u of BpAq with u fixing x

and u R u. Then Lemma 8.2.6 provides µupxq “ x.
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The filter fx characterizes exactly which ultrafilters fix x.

Lemma 8.2.13. Let u be an ultrafilter of BpAq and let x P SpAq. Then u fixes x if

and only if fx Ď u.

Proof. It is obvious that if u fixes x, then fx Ď u. For the converse, observe that if

x “ RpAq, then Lemma 8.2.10 implies that u fixes x. If x ‰ RpAq, then by Remark

8.2.9 we have that there is a P SpAq with x “ aXRpAq. Let u R u. Note that u R fx

since fx Ď u, and from Lemma 8.2.12 we get µu fixes x. It follows that x is fixed by

each map µu for u R u, and by Lemma 8.2.6(2) this yields that u Ď a. It follows

that u fixes x, settling the claim.

The following technical lemma helps to link external primality of filter pairs to

prime filters of srDL-algebras.

Proposition 8.2.14. Let A P srDL, let pu, xq P SpBpAqq ˆ SpRpAqq, and let

p “ xuY xy

be the filter of A generated by uY x. Then if pu, xq is externally prime (equivalently,

if u fixes x), we have that p is prime.

Proof. The filters u and x being closed under ^ implies that

p “ ta P A | u^ x ď a for some u P u, x P xu.

In order to prove p is prime, we will make use of the decomposition of elements in

an srDL-algebra in terms of Boolean and radical elements (see Equation 2.3.1 of

Section 2.3.1). Let a1 _ a2 P p, and write

a1 “ pu1 _ x1q ^ p u1 _ x1q

175



a2 “ pu2 _ x2q ^ p u2 _ x2q

for some u1, u2 P BpAq and x1, x2 P RpAq. We must prove that a1 P p or a2 P p, and

that p ‰ A. Since a1_ a2 P p, there exist u P u and x P x such that u^ x ď a1_ a2.

A calculation using the distributivity of the lattice reduct of A shows that

a1 _ a2 “ ppu1 _ u2q _ p x1 _ x2qq ^ ppu1 _ u2q _ x2q ^ pp u1 _ u2q _ x1q

^pp u1 _ u2q _ px1 _ x2qq.

The right-hand side of the above is a meet, and this implies that u ^ x is a lower

bound of each of the meetands pu1_u2q_p x1_ x2q, pu1_ u2q_x2, p u1_u2q_x1,

and p u1 _ u2q _ px1 _ x2q.

We further scrutinize the first of these, viz. u ^ x ď pu1 _ u2q _ p x1 _  x2q.

This inequality holds if and only if u ď u1 _ u2. In order to prove this, recall that

A is isomorphic to BpAq bNA
e RpAq via the construction of Section 8.1, and in

particular there are isomorphisms

λB : BpAq Ñ BpBpAq bNA
e RpAqq

λR : RpAq Ñ RpBpAq bNA
e RpAqq.

By direct computation, we obtain:

pλBpbq [ λRpxqq “ ru, 1s [ r1, xs “ ru, u_ xs,

λBpu1 _ u2q \  λRpx1 ^ x2q “ ru1 _ u2, 1s \ r0, x1 ^ x2s

“ ru1 _ u2, pu1 _ u2q _ px1 ^ x2qs.
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Further, ru, u _ xs ^ ru1 _ u2, pu1 _ u2q _ px1 ^ x2qs “ ru ^ pu1 _ u2q, x̄s, where

x̄ P RpAq is some term of the radical calculated via the operations given Section

8.1. Using the isomorphism we may obtain that u ^ x ď pu1 _ u2q _ p x1 _  x2q

holds if and only if ru ^ pu1 _ u2q, x̄s “ ru, u _ xs, and this holds, which in turn

holds if and only if u ď u1 _ u2. Since u is prime in BpAq, it follows that not both

of u1 R u, u2 R u may hold. Now note that each of

pu1 _ u2q _ x2

p u1 _ u2q _ x1

p u1 _ u2q _ px1 _ x2q

is in RpAq since the latter is an up-set. Observe that if y P RpAq with u^ x ď y,

then we have x ď  u_ y by residuating and applying Lemma 2.3.6(4). This gives

 u _ y P x, and from external primality we get that either  u P u or y P x. But

 u P u is impossible since u P u, whence y P x. We may apply this argument to the

three terms above to obtain the following conclusions:

x2 P x or u1 _ u2 P u

x1 P x or  u1 _ u2 P u

x1 _ x2 P x or  u1 _ u2 P u.

From the above, we have:

u1, u2 P u ùñ a1 P p

 u1, u2 P u ùñ a2 P p
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u1, u2 P u and x1 P x ùñ a1 P p

u1, u2 P u and x2 P x ùñ a2 P p.

Since not both of u1 R u, u2 R u hold and x1 P x or x2 P x, it follows that a1 P p or

a2 P p. To finish the proof, note that p is proper if u is proper: u ^ x ą 0 for any

u P u and x P x, whence 0 R p. It is immediate that pXBpAq “ u, and pXRpAq “ x

as u^ x ď a for a P RpAq implies a P x by the above.

The following indicates an especially important application of Proposition 8.2.14.

Definition 8.2.15. Let A P srDL and let u P SpBpAqq. Define Ru :“ xuYRpAqy.

Note that Ru P SpAq follows immediately from Proposition 8.2.14 and Lemma

8.2.10.

Lemma 8.2.16. Let A P srDL. The following hold.

1. If x P SpRpAqq, NArxs ‰ NArRpAqs, and u fixes x, then we have

xuY xy˚ “ ta P A | u^ x ď a, for some u P u,  x P NArRpAqszNArxsu

(8.2.2)

2. Under the hypotheses of (1),

xuY xy˚ X C pAq “ t x :   x P NArRpAqszNArxsu

and xuY xy Ď xuY xy˚.

3. If x P SpRpAqq with NArxs “ NArRpAqs, then xuY xy˚ “ Ru.

Proof. To prove item (1), we check Equation 8.2.2 directly. Let a P A be such that

u ^  x ď a for some u P u,  x P NArRpAqszNArxs. Then  a ď  u _   x.

178



Were it the case that  a P xu Y xy, we would have  u _   x P xu Y xy. But this

contradicts u P u, x R u,  x R NArxs Ď x, whence we have  a R xuY xy. It follows

that a P xuYxy˚. This proves that the right-hand side of Equation 8.2.2 is contained

in xuY xy˚

For the reverse inclusion, let a P xuY xy˚. Then by definition  a R xuY xy. We

again invoke Equation 2.3.1 of Section 2.3.1, and write a “ pu^ xq _ p u^ xq for

some Boolean element u and radical element x. It follows from this decomposition

that  a “ p u^  xq _ pu^ xq by the representation given in Section 8.1. Note

that if u P u, then from Lemma 2.3.7(2) we have a ě u ^ x ě u ^  y for every

y P RpAq. Note that there exists z P RpAq such that   z R x and a ě u^ z since

NArxs ‰ NArRpAqs. To see why, observe that if otherwise,  u P u provided that

u R u, and since  u ^   x ď  a R xu Y xy, we get that   x R x. It follows that

a ě  u^ x and   x P NArRpAqszNArxs. (1) follows.

For (2), we first show xuYxy Ď xuYxy˚. Let a P xuYxy, so that u^x ď a for some

u P u and x P x. As above, we have   x P NArRpAqszNArxs and u^ x ď u^x ď a,

whence a P xuY xy˚. For the rest of (2), note that

xuY xy˚ X C pAq “ t x :   x P NArRpAqszNArxsu

follows directly from the definition of ˚.

For (3), note that xuYxy˚ Ď Ru follows from another computation using Equation

2.3.1 of Section 2.3.1. To prove the reverse inclusion, let a P Ru and let u P u and

x P x be such that u^x ď a. It follows that  a ď  u_ x. Note that if  a P xuYxy,

then by primality  u P xu Y xy or  x P xu Y xy. From Lemma 2.3.7 we get that

 u R u and  x P C pAq, whence u, x R xuY xy. This implies  a R xuY xy, and thus

a P xuY xy˚.
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Although srDL-algebras are not involutive, the negation operation  greatly

influences their structure. In the next several lemmas, we identify pertinent prop-

erties of the Routley star ˚ on the dual spaces of srDL-algebras.

Lemma 8.2.17. Let A P srDL and let a P SpAq. Then either a Ď a˚ or a˚ Ď a.

Proof. Suppose that a Ę a˚, and let a P a with a R a˚. Then  a P a, whence

a, a P a and a ^  a P a. Since srDL-algebras have normal i-lattice reducts,

a^ a ď b_ b holds for any elements a and b. For b P a˚, we thus get b_ b P a

as filters are up-sets. From the primality of a, we get b P a or  b P a. In the latter

situation, we would have b R a˚, contradicting the fact that b was chosen from a˚.

Thus b P a, so a˚ Ď a.

Observe that if a Ď b for some a, b P SpAq, then it immediately follows that

ua “ ub. This implicates the following definition.

Definition 8.2.18. Let A P srDL and let u P SpBpAqq. Define

Su :“ ta P SpAq : u “ uau “ ta P SpAq : u Ď au.

We call Su the site of u in A.

Lemma 8.2.19. Let A P srDL and let a P SpAq. Then a and a˚ have the same

ultrafilter. Consequently, Su is closed under ˚ for every u P SpBpAqq.

Proof. This is immediate from Lemma 8.2.17 and the remarks above.

Lemma 8.2.20. Let A P srDL and let a P SpAq. Then one of a or a˚ contains

RpAq.

Proof. Let a P RpAqza. Note that Lemma 2.3.7 gives  a ă a for each a P RpAq,

whence  a R a. This follows because if  a P a were to hold, then a P a as a is an

up-set. From this we obtain a P a˚ and thus RpAqza Ď a˚.
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Assume that RpAq Ę a. Then we have RpAqza ‰ H, and the previous para-

graph implies that there is a P a˚ with a R a. As a Ď a˚ or a˚ Ď a by Lemma 8.2.17,

it follows that a Ď a˚. Therefore RpAqza Ď a˚ and RpAq X a Ď a Ď a˚, whence

RpAq “ pRpAq X aq Y pRpAqzaq Ď a˚.

Lemma 8.2.21. Let A P srDL and let a P SpAq. Then either a Ď Rua Ď a˚ or

a˚ Ď Rua Ď a.

Proof. Note that one of a Ď a˚ or a˚ Ď a holds by Lemma 8.2.17. Suppose that

a˚ Ď a, and set u :“ ua. Note that RpAq Ď a from Lemma 8.2.20, and this yields

that Ru “ xRpAq Y uy Ď a. We consider two cases.

Case 1: Ru Ę a˚. We will show that a˚ Ď Ru. Let a P a˚, and using Equation

2.3.1 write a “ pu ^ xq _ p u ^  xq for some u P BpAq and x P RpAq. As a˚ is

prime, one of u ^ x P a˚ or  u ^  x P a˚ holds. Were it the case that u R u, this

would imply that  u^ x P a˚ and  x P a˚. But a˚ being an up-set and  x ď y for

every y P RpAq together imply that RpAq Ď a˚, a contradiction to the assumption.

This entails that u P u and u^ x P a˚. Because u^ x ď a and u^ x P Ru, it follows

that a˚ Ď Ru.

Case 2: Ru Ď a˚. Pick x P C pAq. Lemma 2.3.7 entails that

 x P RpAq Ď Ru Ď a˚ Ď a.

Then as x ď   x we get that x R a˚ and   x R a by the definition of ˚.

It follows that x R a. Now let a P a, and applying Equation 2.3.1 again write

a “ pu^ yq _ p u^ yq for some u P BpAq and y P RpAq. We must have either

u ^ y P a or  u ^  y P a by primality. The comments above imply that since

 y P C pAq, we have  y R a. Hence u^ y P a, which implies u P u and u^ y P Ru.

This shows that Ru “ a “ a˚ as u^ y ď a.
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If instead a Ď a˚, then a Ď Rua Ď a˚ follows by similar reasoning.

Lemma 8.2.22. Let A P srDL and let u P SpBpAqq. Then Ru “ R˚u .

Proof. Let a P Ru, and from Equation 2.3.1 write

a “ p u_ xq ^ pu_ xq “ pu^ xq _ p u^ xq

for some u P BpAq and x P RpAq. Observe that in every srDL-algebra, we have

that u ^ y ď  x iff u “ 0 for every u P BpAq, x, y P RpAq; this may be shown

in BpAq bNA
e RpAq and using the fact that Boolean elements, radical elements,

and coradical elements have the form ru, 1s, r1, xs, and r0, ys, respectively (see [1]

for details). It follows that  x R Ru, whence u ^ x P Ru and u P u. Note that

 a “ pu ^  xq _ p u ^   xq, and suppose that  a P Ru. It follows that either

u^ x P Ru or u^  x P Ru. But u^ x P Ru implies  x P Ru and u^  x P Ru

implies  u P Ru, and each of these is a contradiction. Therefore  a R Ru, whence

a P R˚u and Ru Ď R˚u .

For the reverse inclusion, let a P R˚u . Then  a R Ru and by Equation 2.3.1,

Section 2.3.1, there exist u P BpAq and x P RpAq with

a “ pu^ xq _ p u^ xq

 a “ pu^ xq _ p u^  xq.

Notice that if u R u, we have  u P u. This would imply  u ^   x P Ru since

  x P RpAq, entailing that  a P Ru as  u^  x ď  a. This is a contradiction,

so u P u. It follows that u^ x P Ru, whence a P Ru and Ru “ R˚u .
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For each A P srDL, we define a map αA : SpAq Ñ F’
A by

αApaq “

$

’

&

’

%

paXBpAq, aXRpAqq, if a Ď a˚,

`pa˚ XBpAq, NAra
˚ XRpAqsq otherwise,

Note that by Lemma 8.2.17, the second clause obtains precisely when a˚ Ă a. Since

A is usually clear from context, we will typically write αA simply as α.

Lemma 8.2.23. Let A P srDL. Then αA is well-defined.

Proof. All that demands verification is that the output of αA is in F’
A. Let a P SpAq.

Suppose first that a Ď a˚, and let u P BpAq and x P RpAq with u_ x P aXRpAq.

From a being prime we have that u P a (in which case u P a XBpAq) or x P a (in

which case x P aXRpAqq. This gives that αApaq P F’
A.

Now suppose that if a˚ Ă a. It is straightforward to verify that NAra
˚ XRpAqs

is a prime filter of NArRpAqs, and we need only check that

pa˚ XBpAq, N´1
A rNAra

˚ XRpAqssq P FA.

Let u P BpAq and x P RpAq with u_ x P N´1
A rNAra

˚ XRpAqss. Then

NApu_ xq “   pu_ xq “ u_  x P NAra
˚ XRpAqs Ď a˚ XRpAq Ď a˚.

Since a˚ is a prime filter, it follows that u P a˚ or NApxq P a˚. From this we

have u P a˚ X BpAq or else NApxq P NAra
˚ X RpAqs. Since the latter implies

x P N´1
A rNAra

˚ XRpAqss, the result follows.

Lemma 8.2.24. Let A P srDL. Then αA is a bijection.

Proof. One may readily show the injectivity of αA by using the representation

offered in Equation 2.3.1. We address surjectivity, so first let pu, xq P FA. Set
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a :“ xuY xy, and observe that Proposition 8.2.14 gives that a P SpAq. From Lemma

8.2.16 we have also that a XBpAq “ u, that a X RpAq “ x, and that a Ď a˚. It

follows from this that αApaq “ pu, xq.

Second, let `pu, yq P FBA. Then if we set x :“ N´1
A rys, we have pu, xq P FA.

Let a “ xu Y xy˚. Then a˚ Ď a from Lemma 8.2.16, and a XBpAq “ u from from

Lemma 8.2.19. Direct computation shows that NArb
˚ X RpAqs “  pC pAqzbq for

each b P SpAq. It follows from Lemma 8.2.16 that

C pAqza “ t x :   x P NArys XNArRpAqsu,

whence  pC pAqzaq “ NArys. This yields αApaq “ `pu, yq, giving surjectivity.

Theorem 8.2.25. Let A be a srDL-algebra. Then SpAq and F’
A are order-

isomorphic.

Proof. We show that αA is an order isomorphism, for which it suffices (by Lemma

8.2.24) to show that if a1, a2 P SpAq, then

a1 Ď a2 iff αApa1q ď αApa2q

It is easy to see from the definition that a1 Ď a2 implies αApa1q ď αApa2q, so we

address the converse. Suppose that αApa1q ď αApa2q, and abbreviate

u1 :“ a1 XBpAq

x1 :“ a1 XRpAq

y1 :“ NAra1 XRpAqs

u2 :“ a2 XBpAq
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x2 :“ a2 XRpAq

y2 :“ NAra2 XRpAqs

We consider four cases.

Case 1: a1 Ď a˚1 and a2 Ď a˚2 . Note that in this case, by hypothesis we have

a1XRpAq Ď a2XRpAq and a1XBpAq “ a2XBpAq. Let a P a1, and by Equation

2.3.1 let u P BpAq and x P RpAq be such that a “ p u _ xq ^ pu _  xq. Then

 u _ x, u _  x P a1. By primality and  u _ x P a1, we get that  u P u1 Ď u2 or

x P x1 Ď x2. In either case,  u _ x P a2. Since u _  x P a1 we get that u P a1

(as a consequence of  x R a1 by Lemma 8.2.21 and the fact that  x ď y for every

y P RpAq), we have that u _  x P a2. It follows from this that a P a2, giving

a1 Ď a2.

Case 2: a˚1 Ď a1 and a2 Ď a˚2 . This case is impossible from the definition of the

order on F’
A.

Case 3: a1 Ď a˚1 and a˚2 Ď a2. The hypothesis implies that u1 “ u2, whence by

Lemma 8.2.21 we have a1 Ď Ru1 Ď a2.

Case 4: a˚1 Ď a1 and a˚2 Ď a2. Because NAra
˚ XRpAqs “  pC pAqzaq for each

a P SpAq, it follows that  pC pAqza2q Ď  pC pAqza1q. From this we may obtain that

a1 X C pAq Ď a2 X C pAq. To see this, note that  pC pAqza2q Ď  pC pAqza1q yields

  pC pAqza2q Ď   pC pAqza1q, and as   pC pAqzaiq “ pC pAqzaiq (for i “ 1, 2),

we have that C pAqza2 Ď C pAqza1. Hence a1XC pAq Ď a2XC pAq. Let a P a1, and

as usual we write a “ p u_xq^ pu_ xq for some u P BpAq and x P RpAq. Then

 u _ x, u _  x P a1 since a1 is an up-set. As an arbitrary x P RpAq is both in a1

and a2 in the present case, we get  u_x is in a2. Since u_ x P a1, primality gives

u P u1 Ď u2, or  x P a1 X C pAq Ď a2 X C pAq. This shows u _  x P a2, whence

a P a2. This completes the proof.
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Following our usual approach, we endow F’
A with additional structure in a man-

ner that conserves α’s being an isomorphism. The next definition provides the

appropriate topological structure.

Definition 8.2.26. Let A P srDL. For clopen up-sets U Ď SpBpAqq, V Ď SpRpAqq,

define

WpU,V q “ rpU ˆ V q Y `pU ˆ SpNArRpAqsq Y SpBpAqq ˆNArV s
cqs X F’

A,

where NArV s “ tNArxs : x P V u, and for a subset P Ď SpBpAqq ˆ SpRpAqq,

`P “ t`p : p P P u.

Remark 8.2.27. Let ∆: SpRpAqq Ñ SpRpAqq be the dual of the lattice homo-

morphism NA, i.e. ∆pxq “ N´1
A rxs. Then ∆ is a closure operator on SpRpAqq, and

we let

SpRpAqq∆ :“ ∆rSpRpAqqs “ tx P SpRpAqq : ∆pxq “ xu

be the set of ∆-fixed points. Defining a map β : SpRpAqq∆ Ñ SpNArRpAqsq by

βpxq “ xXNArRpAqs, one may obtain by an argument identical to that given in

[4, Theorem 12 and Lemma 25] that β is an isomorphism of Priestley spaces when

SpRpAqq∆ is viewed as a subspace of SpRpAqq. The inverse morphism of β is given

by x ÞÑ ∆pxq.

Also, if V Ď SpRpAqq is a clopen up-set, one may show that image

NArV s “ tNArxs : x P V u

under β´1 is

∆rV s “ tx P V : ∆pxq “ xu “ V X SpRpAqq∆.
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From these observations, we may identify SpNArRpAqsq and SpRpAqq∆, as well as

∆rV s and NArV s, in the definition of the topology on F’
A offered above. Hence the

sets WpU,V q may be rewritten in a manner that depends only on ∆, and not on NA.

Lemma 8.2.28. Let A P srDL. Then NArϕRpAqpxqs “ ϕNArRpAqspNApxqq for all

x P RpAq.

Proof. Let y P NArϕRpAqpxqs. Then there exists x P ϕRpAqpxq such that NArxs “ y.

Since NA is a wdl-admissible map, we may show that y “ NArxs P SpNArRpAqsq.

Also, NApxq P NArxs “ y since x P x. From this it follows that y P ϕNArRpAqspNApxqq,

whence NArϕRpAqpxqs Ď ϕNArRpAqspNApxqq.

To prove the reverse inclusion, let y P ϕNArRpAqspNApxqq, and set x “ N´1
A rys.

From NA being a lattice homomorphism, we obtain x P SpRpAqq. Also, NApxq P y

implies x P N´1
A rys “ x, whence x P ϕRpAqpxq. An easy argument shows NArxs “ y,

from which the result follows.

Henceforth we consider F’
A endowed with the topology generated by the sets

WpU,V q and W c
pU,V q, where pU, V q P ASpBpAqq ˆASpRpAqq.

Lemma 8.2.29. Let A P srDL. Then αA is continuous.

Proof. We will show that inverse image under αA of the subbasis elements WpU,V q

and W c
pU,V q are open. Let U Ď SpBpAqq and V Ď SpRpAqq be clopen up-sets.

According to extended Priestley duality, the functions ϕBpAq : BpAq Ñ ASpBpAqq

and ϕRpAq : RpAq Ñ ASpRpAqq are isomorphisms. Thus there are u P BpAq and

x P RpAq with U “ ϕBpAqpuq and V “ ϕRpAqpxq. Set a :“ pu _  xq ^ p u _ xq.

We will prove α´1
A rWpU,V qs “ ϕApaq.

For the forward inclusion, let a P α´1
A rWpU,V qs so that αApaq P WpU,V q. There

are two cases.
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Case 1: In this situation, a Ď a˚. αApaq “ pa X BpAq, a X RpAqq P U ˆ V

and a X BpAq P ϕBpAqpuq, a X RpAq P ϕRpAqpxq. It follows that u P a X BpAq

and x P a X RpAq, and u, x P a in particular. Since a is an up-set, this yields

a “ pu_ xq ^ p u_ xq P a, so a P ϕApaq.

Case 2: a˚ Ă a. In this case, we have

αApaq “ `pa
˚ XBpAq, NAra

˚ XRpAqsq,

where

a˚ XBpAq P U “ ϕBpAqpuq, or

NAra
˚ XRpAqs P NArV s

c “ NArϕRpAqpxqs
c.

In the first situation, a˚ X BpAq P ϕBpAqpuq and u P a˚. It follows that u P a

(i.e., as a and a˚ have the same ultrafilter from Lemma 8.2.19). Then u_ x P a

as a is an up-set. In the second situation, NAra
˚ X RpAqs P NArϕRpAqpxqs

c

and we have that NArϕRpAqpxqs
c “ ϕNArRpAqspNApxqq

c by Lemma 8.2.28. Thus

NApxq R NAra
˚ XRpAqs. This implies x R a˚ X RpAq, and as x P RpAq we

get x R a˚. Hence  x P a by the definition of ˚, and therefore u _  x P a.

As a˚ Ă a, applying Lemma 8.2.21 yields a˚ Ď Rua Ď a. Thus RpAq Ď a

and x P a, whence  u _ x P a as a is an up-set. This implies that both of

u _  x, u _ x P a, so a “ pu_ xq ^ p u_ xq P a. We obtain a P ϕApaq, and

hence that α´1
A rWpU,V qs Ď ϕApaq.

For the backward inclusion, let a P ϕApaq. Then a “ pu _  xq ^ p u _ xq P a,

whence u _  x, u _ x P a. The primality of a implies that the following two

propositions hold: (1) Either u P a or  x P a, and (2) either  u P a or x P a. Again,

there are two cases.
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Case 1: a Ď a˚. Here Lemma 8.2.21 implies a Ď Rua Ď a˚. Observe that

since since  x P C pAq and a Ď Rua we obtain  x R a, so by (1) we get u P a.

Then  u R a, whence by (2) we have x P a. This implies u, x P a, and therefore

aXBpAq P ϕBpAqpuq and aXRpAq P ϕRpAqpxq, so αApaq P U ˆ V .

Case 2: a˚ Ă a. We have

αApaq “ `pa
˚ XBpAq, NAra

˚ XRpAqsq.

By (1) either u P a or  x P a. In the situation that u P a, we get

a˚ XBpAq “ aXBpAq P ϕBpAqpuq “ U,

whence pa˚ X BpAq, NAra
˚ X RpAqsq P U ˆ SpNArRpAqsq. On the other hand,

if  x P a, then    x “  x implies    x P a. This gives NApxq “   x R a˚.

Hence NApxq R a
˚ XRpAq, and thus NApxq R NAra

˚ XRpAqs, i.e.,

NAra
˚ XRpAqs P ϕNArRpAqspNApxqq

c “ NArV s
c.

It follows that

pa˚ XBpAq, NAra
˚ XRpAqsq P SpBpAqq ˆNArV s

c,

so αApaq P `pU ˆ SpNArRpAqsq Y SpBpAqq ˆ NArV s
cq. This demonstrates that

ϕApaq “ α´1
A rWpU,V qs.

To finish the proof, note that since αA is a bijection we have

α´1
A rW

c
pU,V qs “ pα

´1
A rWpU,V qsq

c “ ϕApaq
c
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when a is as above. Thus the αA-inverse image of subbasis elements are open, and

thus αA is continuous.

Remark 8.2.30. The proof given above shows more. Clopen subbasis elements of

SpAq and F’
A precisely correspond under αA, so since αA is an order isomorphism

we have that all structure is transported from SpAq to F’
A. Thus F’

A is a Priestley

space that is isomorphic in Pries to SpAq.

Example 8.2.31. Let A “ t´3,´2,´1, 1, 2, 3u. If we view t1, 2, 3u as the three-

element Gödel algebra with order given by 1 ă 2 ă 3 and residual Ñ, then we may

make A into an srDL-algebra by defining the order by ´3 ă ´2 ă ´1 ă 1 ă 2 ă 3

and

a ¨ b “

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

a^ b a, b ą 0

´paÑ ´bq a ą 0, b ă 0

´pbÑ ´aq a ă 0, b ą 0

´3 a, b ă 0

Denote the resulting srDL-algebra by A. Then

BpA2q “ tp´3,´3q, p´3, 3q, p3,´3q, p3, 3qu

and

RpA2q “ Òt1, 1u.

It follows that SpBpA2qq “ tu, vu is the two-element Stone space, where

u “ Òp´3, 3q XBpA2q and v “ Òp3,´3q XBpA2q.

The Priestley space of RpA2q has labeled Hasse diagram
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‚Òp1, 1q

‚Òp1, 2q ‚ Òp2, 1q

‚Òp1, 3q ‚ Òp3, 1q

We may obtain F’

A2 by determining which proper x P SpRpA2qq are fixed by u

(respectively v). For this, note that

µp´3,3qpÒp1, 3qq “ Òp1, 1q “ RpA2q

µp´3,3qpÒp1, 2qq “ Òp1, 1q “ RpA2q

µp´3,3qpÒp2, 1qq “ Òp2, 1q

µp´3,3qpÒp3, 1qq “ Òp1, 1q

and

µp3,´3qpÒp1, 3qq “ Òp1, 3q

µp3,´3qpÒp1, 2qq “ Òp1, 2q

µp3,´3qpÒp2, 1qq “ Òp1, 1q “ RpA2q

µp3,´3qpÒp3, 1qq “ Òp1, 1q “ RpA2q

It follows that u fixes Òp1, 3q and Òp1, 2q, whereas v fixes Òp2, 1q and Òp3, 1q. To get

F’

A2, we append a copy of each x below u (respectively v) if it is fixed by u (respectively

v), and a fresh copy of the poset obtained in this way is then reflected upward, as

pictured in Figure 8.1.
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‚ `Òp1, 2q‚`Òp2, 1q

‚ `Òp1, 3q‚`Òp3, 1q

‚©v ‚© u

‚ Òp1, 2q‚Òp2, 1q

‚ Òp1, 3q‚Òp3, 1q

Figure 8.1: Labeled Hasse diagram for F’

A2 .

8.3 Filter multiplication in srDL

Section 8.2 lays out the necessary ingredients to construct the Priestley space

of (the lattice reduct of) an srDL-algebra A from the Priestley duals of SpBpAqq

and SpRpAqq. This section attends to characterizing the filter multiplication on an

srDL-algebra in terms of these components, in particular defining a ternary relation

on F’
A that makes αA into an isomorphism of MTLτ . Recall that the site of u in A

is the set

Su “ ta P SpAq : u “ uau.

Our first lemma permits us to focus on the sets Su in our analysis of filter multipli-

cation.

Lemma 8.3.1. Let A P srDL, and let a, b P SpAq. Then ua ‰ ub implies that

a ‚ b “ A.

Proof. Suppose without loss of generality that there exists u P ua Ď a with u R ub.

Then  u P ub Ď b since ub is an ultrafilter. Therefore u ¨  u “ u^ u “ 0 P a ‚ b,

whence a ‚ b “ A.

Lemma 8.3.2. Let A P srDL and let a P SpAq with RpAq Ď a. Then a “ a˚˚.

Proof. The definition of ˚ provides that a P a˚˚ if and only if   a P a, whence it is

necessary and sufficient to show a P a if and only if   a P a. Since a is an up-set,
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the identity a ď   a implies that   a P a for each a P a. Conversely, suppose that

  a P a. Using Equation 2.3.1, write a “ pu^ xq _ p u^ xq for some u P BpAq

and x P RpAq. Then

  a “ pu^   xq _ p u^  xq

“ pu^ xq _ p u^  xq P a

Primality yields that u ^  x P a or  u ^   x P a. In the first case, a P a follows

because u ^  x ď a. In the second case,  u ^   x ď  u implies that  u P a, so

as x P RpAq Ď a we get  u ^ x P a. Thus by  u ^ x ď a and a being being an

up-set, we have a P a. This proves the claim.

The following provides a characterization of filter multiplication on any srDL-

algebra.

Lemma 8.3.3. Let A P srDL, let u P SpBpAqq, and let a, b P Su. Denote by ‚RpAq

and ñRpAq the operations on SpRpAqq defined as in Section 4.1. Then the following

hold.

1. If a, b Ď Ru, then a ‚ b “ xuY rpaXRpAqq ‚RpAq pbXRpAqqsy.

2. If a Ď b˚ Ď Ru Ď b, then a ‚ b “ xuY rppaXRpAqq ñRpAq pb˚ XRpAqqqsy˚.

3. If none of a, b Ď Ru, a Ď b˚ Ď Ru Ď b, or b Ď a˚ Ď Ru Ď a hold, then

a ‚ b “ A.

Proof. To prove (1), note that a ‚ b P Su, and that a ‚ b Ď Ru since ‚ is order-

preserving and Ru ‚Ru “ Ru. We will show that

a ‚ bXRpAq “ paXRpAqq ‚RpAq pbXRpAqq.
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For this, let c P a ‚ b X RpAq. Then c P RpAq, and there exist a P a and b P b

with a ¨ b ď c. From a, c ď a_ c, b, c ď b_ c, and a, b,RpAq being up-sets, we infer

a_ c P aXRpAq and b_ c P bXRpAq. Note that

pa_ cq ¨ pb_ cq “ ab_ ac_ bc_ c2 ď c,

so c P paXRpAqq‚RpAqpbXRpAqq. Hence a‚bXRpAq Ď paXRpAqq‚RpAqpbXRpAqq.

To obtain the other inclusion, let c P paXRpAqq ‚RpAq pbXRpAqq. Then there

exist a P aXRpAq, b P bXRpAq, with a ¨ b ď c. Note that a ¨ b P RpAq as RpAq is

closed under ¨, so c P RpAq. Thus a P a, b P b, and c P RpAq give c P a ‚ bXRpAq,

whence we obtain equality.

To prove (2), let a “ xu Y yy and b˚ “ xu Y xy, so we have b “ b˚˚ “ xu Y xy˚

by Lemma 8.3.2. From a Ď b˚ we have a X RpAq Ď b˚ X RpAq. It follows that

t1u ‚RpAq pa XRpAqq Ď b˚ XRpAq, and applying Lemma 4.1.1(2) we get a prime

filter z P SpRpAqq with z ‚RpAq paXRpAqq Ď b˚ XRpAq. Consequently,

yñRpAq x “ paXRpAqq ñRpAq pb˚ XRpAqq ‰ H,

and thus y ñRpAq x P SpRpAqq, i.e., ñRpAq is defined in this situation. We claim

that

xuY yy ‚ xuY xy˚ “ xuY pyñRpAq xqy˚.

Let a P xu Y yy ‚ xu Y xy˚. Then there exist w P xu Y yy and z P xu Y xy˚ such that

z ¨w ď a. By Lemma 8.2.16 this implies that there exist b, b1 P u,   c P RpAqzx, and

d P y with b^ c ď z and b1^d ď w. Hence pb^ cq¨pb1^dq ď z ¨w ď a. By checking

on directly indecomposable components, we get pb^ cq ¨ pb1^dq “ pb ¨ b1q^ p c ¨dq.

Now observe that  c ¨d P C pAq, whence there is z P RpAq with  z “  c ¨d. We will

show that z R NAryñ
RpAq xs, from which it will follow that a P xuY pyñRpAq xqy˚
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by Lemma 8.2.16. Toward a contradiction, assume z P yñRpAq x. Then z ¨ y P x for

every y P y, and in particular z ¨d P x. We have z ¨ z “ z ¨ p c ¨dq “ 0, and therefore

z ¨ d ď   c and   c P x. This contradicts   c R x. This yields the left-to-right

inclusion.

For the other inclusion, let a P xuYpyñRpAq xqy˚. Then by Lemma 8.2.16 there

exists u P u,   z R NAryñ
RpAq xs such that u^ z ď a. As   z R NAryñ

RpAq xs,

it follows that z R yñRpAq x, whence there exists y P y such that yz R x. This implies

that yz R xuY xy, and since b˚ “ xuY xy we have that   pyzq R xuY xy. To see this,

note that by the definition of ˚,

  x P b˚ ðñ    x R b ðñ  x R b ðñ x P b˚.

Now since   pyzq R xuY xy, it follows that  pyzq P xuY xy˚. Observe that

 pyzq “ pyzq Ñ 0

“ y Ñ pz Ñ 0q

“ y Ñ  z

Thus y Ñ  z P xuY xy˚, and thus  z P xuY yy ‚ xuY xy˚ as ypy Ñ  zq ď  z. Since

u P xuY yy ‚ xuY xy˚, we obtain that u^ z P xuY yy ‚ xuY xy˚, from which we get

that a is contained in the latter set as u^ z ď a. This gives the reverse inclusion,

yielding equality and (2).

To prove (3), observe that a Ę b˚ and b Ę a˚ follow from the hypothesis. Lemma

4.1.8 asserts that c˚ is the largest element of SpAq such that c ‚ c˚ ‰ A, so we get

a ‚ b “ A.
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Lemma 8.3.3 offers us a complete description of the partial operation ‚ on SpAq

for A P srDL, showing how to identify this operation in terms of the operation

‚RpAq and partial operation ñRpAq on SpRpAqq. The next corollary rephrases

Lemma 8.3.3 in the context of F’
A, using Proposition 8.2.14 and the isomorphism

αA to transport structure.

Corollary 8.3.4. Let A P srDL and let a, b P Su for some u P SpBpAqq. Then the

following hold.

1. If αApaq “ pu, xq, and αApbq “ pu, yq are in FA, then αApa‚bq “ pu, x‚
RpAqyq.

2. If αApaq “ pu, xq P FA and αApbq “ `pu, yq P FBA with pu, xq Ď pu, N´1
A rysq,

then αApa ‚ bq “ `pu, xñ
RpAq N´1

A rysq.

In light of the facts assembled above, for A P srDL we may define a partial

operation ˝ on F’
A by

1. pu, xq ˝ pu, yq “ pu, x ‚RpAq yq for any pu, xq, pu, yq P FA.

2. pu, xq ˝ `pu, yq “ `pu, xñRpAq N´1
A rysq for any pu, xq P FA, `pu, yq P FBA with

pu, xq Ď pu, N´1
A rysq.

3. `pu, yq ˝ pu, xq “ `pu, xñRpAq N´1
A rysq for any pu, xq P FA, `pu, yq P FBA with

pu, xq Ď pu, N´1
A rysq.

4. ˝ undefined otherwise.

If A P srDL and a, b P SpAq, then a ‚ b is defined if and only if αApaq ˝ αApbq is

defined, when this occurs αApa ‚ bq “ αApaq ˝αApbq. By augmenting F’
A with (the

ternary relation associated to) ˝, the map αA becomes as isomorphism of MTLτ and

not just an isomorphism in Pries.
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8.4 Dual quadruples and the dual construction

We now offer our dualized account of the construction of [1]. The following

definitions rephrase key notions from this chapter in more abstract terms.

Definition 8.4.1. We call a structure pS,X,Υ,∆q a dual quadruple if it satisfies

the following.

1. S is a Stone space.

2. X is an object of GMTLτ .

3. Υ “ tυUuUPApSq is an indexed family of GMTLτ -morphisms υU : X Ñ X such

that the map _e : ApSq ˆApXq Ñ ApXq defined by

_epU, V q “ υ´1
U rV s

is an external join.

4. ∆ : X Ñ X is a continuous closure operator such that Rpx, y, zq implies

Rp∆x,∆y,∆zq.

Definition 8.4.2. Let pS,X,Υ,∆q be a dual quadruple. We say that u P S fixes

x P X if for every U Ď S clopen with u R U , υU pxq “ x.

Definition 8.4.3. Let pS,X,Υ,∆q be a dual quadruple. Define

D “ tpu, xq P S ˆX : u fixes xu

DB “ t`pu,∆pxqq : pu, xq P D, x ‰ Ju

T “ D YDB.
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Furthermore, define a partial order Ď on T by p Ď q if and only if

1. p “ pu, xq and q “ pv, yq for some pu, xq, pv, yq P D with u “ v and x ď y,

2. p “ `pu, xq and q “ `pv, yq for some `pu, xq,`pv, yq P DB with u “ v and

y ď x, or

3. p “ pu, xq and q “ `pv, yq for some pu, xq P D, pv, yq P DB with u “ v.

For every U P ApSq, V P ApXq, define

WpU,V q “ rpU ˆ V q Y `pU ˆ∆rXs Y S ˆ∆rV scqs X T,

Let S b∆
Υ X be the partially-ordered topological space with the order given above,

and the topology generated by the subbase consisting of the sets WpU,V q and W c
pU,V q.

Additionally, define a partial operation ˝ on S b∆
Υ X as follows, where ‚ and ñ

denote the partial operations on X arising as in Section 4.1.

1. pu, xq ˝ pu, yq “ pu, x ‚ yq for any pu, xq, pu, yq P FA.

2. pu, xq ˝ `pu, yq “ `pu, x ñ ∆pyqq for any pu, xq P FA, `pu, yq P FBA with

pu, xq Ď pu,∆pyqq.

3. `pu, yq ˝ pu, xq “ `pu, x ñ ∆pyqq for any pu, xq P FA, `pu, yq P FBA with

pu, xq Ď pu,∆pyqq.

4. ˝ is undefined otherwise.

We lastly expand Sb∆
Υ X by the ternary relation R defined by Rpp, q, rq if and only

if p ˝ q exists and p ˝ q Ď r.

Theorem 8.4.4. Let pS,X,Υ,∆q be a dual quadruple. Then Sb∆
Υ X is the extended

Priestley dual of some srDL-algebra.
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Proof. Extended Priestley duality guarantees that there exist a Boolean algebra B

and a GMTL-algebra A with S – SpBq and X – SpAq. For the sake of simplicity

of exposition, we identify these spaces. As S is full and ∆ is a Priestley space

morphism, there is a lattice homomorphism N : A Ñ A such that SpNq “ ∆. We

will show that N is a wdl-admissible map on A.

First, N is a closure operator: To get that N is expanding, suppose on the

contrary x P A with x ę Npxq. Then there exists a prime filter x of A such that

x P x and Npxq R x by the prime ideal theorem for distributive lattices. This implies

that x P x and x R N´1rxs “ ∆pxq, contradicting ∆ being expanding. It follows that

x ď Npxq for all x P A. N is idempotent by a proof similar to the one just given,

and N is isotone because it is a lattice homomorphism. It follows that N is a closure

operator.

Second, N is a nucleus: Let x, y P A. We show that NpxqNpyq ď Npxyq, and

for this we assume on the contrary that there exists a prime filter z of A with

NpxqNpyq P z and Npxyq R z. This implies that ÒNpxq ‚ ÒNpyq Ď z. From Lemma

4.1.1(2) we obtain prime filters x and y with Npxq P x, Npyq P y and x ‚ y Ď z. It

follows that Rpx, y, zq, so ∆pxq‚∆pyq Ď ∆pzq. But this is a contradiction to Npxyq R z

because x P N´1rxs “ ∆pxq and y P N´1rys “ ∆pyq, whence xy P ∆pzq. Hence N is

a wdl-admissible map.

For the rest, observe that by extended Stone-Priestley duality we have that for

each u P B, there exists a homomorphism νu : A Ñ A such that Spνuq “ υϕBpuq.

Define for each u P B, x P A, a map _e by

u_e x “ νupxq.
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We prove that _e is an external join. For this, observe that for all x P A, u P B,

and x P SpAq,

x P υ´1
ϕBpuq

rϕApxqs ðñ υϕBpuqpxq P ϕApxq

ðñ ν´1
u rxs P ϕApxq

ðñ x P ν´1
u rxs

ðñ νupxq P x

ðñ x P ϕApνupxqq.

This provides υ´1
ϕBpuq

rϕApxqs “ ϕApνupxqq. From this and Definition 8.4.1(3), we

may readily show that _e satisfies condition (V1), (V2), and (V3) of Definition

8.1.1. For instance, for every x P A, the map defined by λxpuq “ u _e x gives a

lattice homomorphism from B Ñ A (as in (V1)). To see this, observe that

ϕApλxpu_ vqq “ ϕApνu_vpxqq

“ υ´1
ϕBpu_vq

rϕApxqs

“ υ´1
ϕBpuqYϕBpvq

rϕApxqs

“ υ´1
ϕBpuq

rϕApxqs Y υ´1
ϕBpvq

rϕApxqs

“ ϕApνupxqq Y ϕApνvpxqq

“ ϕApλxpuqq Y ϕApλxpvqq,

whence λxpu _ vq “ λxpuq _ λxpvq for every x P A, u, v P B. The other com-

ponents of Definition 8.1.1(V1,V2,V3) may be checked by similar reasoning, using

the assumption that pU, V q ÞÑ υ´1
U rV s is an external join. Hence pB,A,_e, Nq is

an algebraic quadruple. It follows that S b∆
Υ X is the extended Priestley space of

BbNe A by construction.
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Theorem 8.4.5. Let Y be the extended Priestley dual of an srDL-algebra. Then

there exists a dual quadruple pS,X,Υ,∆q with Y – Sb∆
Υ X.

Proof. Let A “ pA,^,_, ¨,Ñ, 1, 0q P srDL with Y “ SpAq, and let S :“ SpBpAqq

and X :“ SpRpAqq. Define ∆: X Ñ X by

∆pxq “ tx P RpAq :   x P xu.

Moreover, for each U P ApSq define υU : X Ñ X by

υU pxq “ µϕ´1pUqpxq “ tx P RpAq : ϕ´1pUq _ x P xu.

Let Υ “ tυUuUPApSq. We claim that pS,X,Υ,∆q is a dual quadruple.

Requirements (1) and (2) of Definition 8.4.1 are satisfied by hypothesis. For (4),

let x, y, z P X with Rpx, y, zq, so that x‚y Ď z. We claim ∆pxq‚∆pyq Ď ∆pzq. To prove

this, let z P ∆pxq ‚∆pyq. Then there exists x P ∆pxq and y P ∆pyq with x ¨ y ď z.

It follows that   x P x and   y P y, whence   x ¨   y P x ‚ y Ď z. This yields

  px ¨ yq P z as a consequence of   x ¨   y ď   px ¨ yq, and therefore   z P z.

Thus z P ∆pzq, giving (4).

For requirement (3) of Definition 8.4.1, observe that for every U P ApSq we

have that υU is a morphism of GMTLτ as υU is the dual of the GMTL-morphism

x ÞÑ ϕ´1pUq _ x. Define

_epU,W q “ υ´1
U rW s.

for U P ApSq and W P ApXq. We claim that _e : ApSq ˆ ApXq Ñ ApXq gives an

external join, viz. that it satisfies Definition 8.1.1(V1,V2,V3).

For (V1), observe that for all U P ApSq the map _epU,´q is an endomorphism of

ApXq by extended Priestley duality. Let λW pUq :“ _epU,W q, and let U, V P ApSq.
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Note that λW pUq Y λW pV q Ď λW pU Y V q follows as a consequence of ϕ´1 being a

lattice homomorphism and W being an up-set. Also, application of Lemma 8.2.5(1)

yields the reverse inclusion. It follows that λW pUqYλW pV q “ λW pU YV q. We may

obtain that λW pU X V q “ λW pUq X λW pV q in a similar fashion, which shows that

(V1) is satisfied.

For (V2), note that since µ0pxq “ x for any x P X we get that υ´1
H

is the

identity on ApXq. Moreover, υ´1
S pW q “ W for any W P ApXq is a consequence of

µ1pxq “ RpAq for any x P X.

To prove (V3), we must show

υ´1
U rW s Y υ´1

V rW
1s “ υ´1

UYV rW YW 1s “ υ´1
U rυ

´1
V rW YW 1ss.

One may easily show that

µϕ´1pUqYϕ´1pV qpxq “ µϕ´1pV qpµϕ´1pUqpxqq.

This yields υ´1
UYV rW YW 1s “ υ´1

U rυ
´1
V rW YW 1ss.

Now let x P υ´1
U rW sYυ

´1
V rW

1s. Then x P υ´1
U rW s or x P υ´1

V rW
1s, so µϕ´1pUqpxq PW

or µϕ´1pV qpxq PW
1. The setsW andW 1 are up-sets, so this provides that µϕ´1pUYV qpxq

is in each of W,W 1, so certainly υUYV pxq P W YW 1. Hence x P υ´1
UYV rW YW 1s,

giving υU rW s Y υV rW
1s Ď υUYV rW YW 1s.

To obtain the last inclusion, let x P υ´1
UYV rW YW 1s “ υ´1

U rυ
´1
V rW YW 1ss. Then

µϕ´1pUqYϕ´1pV qpxq PW YW 1. Lemma 8.2.5(1) implies that we may assume without

loss of generality that

µϕ´1pUqYϕ´1pV qpxq “ µϕ´1pUqpxq.
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This gives µϕ´1pUqpxq P W Y W 1, and thus µϕ´1pUqpxq P W or µϕ´1pUqpxq P W 1.

That x P υ´1
U rW s Y υ´1

V rW
1s follows immediately in the first case, so suppose that

µϕ´1pUqpxq RW . From RpAq PW , we get µϕ´1pUqpxq ‰ RpAq and consequently

µϕ´1pUqpxq “ x PW 1

by Lemma 8.2.5(4). AsW 1 is an up-set and x Ď µϕ´1pV qpxq, we obtain µϕ´1pV qpxq PW
1.

It follows that x P υ´1
U rW s Y υ´1

V rW
1s in any case, giving (V3) and that S b∆

Υ X is

a dual quadruple.

The proof is finished by observing that Sb∆
Υ X – SpAq – Y by the isomorphism

αA defined in Section 8.2 and by the construction of Sb∆
Υ X.
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Chapter 9

Open problems

The research program developed in the foregoing pages consists of three inter-

locking components:

1. Duality-theoretic tools for residuated structures, especially those tailored to

simplify certain features of particular varieties of interest.

2. Dualized presentations of algebraic constructions on residuated structures,

facilitated by and informing the development of the tools alluded to in (1).

3. Purely algebraic analysis of certain varieties of residuated structures and their

reducts, aimed both at recasting algebraic structures in a manner amendable

to the tools of (1) and discovering aspects of their theory that supports new

duality-theoretic results.

We conclude our discussion by offering a few directions for future inquiry in each of

these areas.
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9.1 Residuated structures

Residuated binars satisfying certain distributive properties (see Section 2.1.1)

and normal i-lattices (see Section 2.2) provide the background algebraic theory for

the foregoing study. Both of these theories present interesting and difficult open

questions, the answers to some of which may implicate duality-theoretic phenom-

ena. The extension of the results we have presented to non-distributive settings is

especially relevant.

Question 9.1.1. What is the relationship between the nontrivial distributive laws

pz_q, p_{q, p^¨q, p¨^q, p^zq, p{^q in the absence of lattice distributivity?

The methods used to address the above question in the distributive case are

inapplicable in general.

Question 9.1.2. What can be said of the i-lattice reducts of involutive residuated

lattices?

The duality developed in Chapter 6 answers the above question for Sugihara

monoids (albeit very indirectly), but aside from this instance little seems to be

known regarding this question.

Question 9.1.3. What is the quasivariety generated by the forbidden i-lattice B8,

and does it admit a useful natural duality?

Note that the quasivariety generated by the forbidden i-lattice D4 is the variety

of all distributive i-lattices, and its natural duality is a very well known case study

(see, e.g., [14]).
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9.2 Duality theory for residuated structures

The functional dualities developed in Chapter 4 offered a useful perspective for

the dual construction in Chapters 7 and 8. They admit many open questions.

Question 9.2.1. Do residuation algebras with functional duals generate the variety

of all residuation algebras? If not, what is the variety that they generate?

Question 9.2.2. Is functionality equivalent to any first-order property of residua-

tion algebras or residuated lattices?

Although it provides the most generally-applicable framework, extended Priest-

ley duality is often unwieldy in comparison to more tailored duality-theoretic tools

(e.g., Esakia duality and the duality for Sugihara monoids given by Chapter 6).

Question 9.2.3. Are there other simple, Esakia-style dualities for suitably-chosen

classes of residuated lattices?

A residuated lattice A is called conic if each element of A is comparable to the

monoid identity of A. Residuated lattices in the variety generated by the conic

residuated lattices are called semiconic. Due to their proximity to semilinear struc-

tures, semiconic residuated lattices seem to be a natural place to look for other

well-behaved Esakia-like dualities.

9.3 Dualized constructions

There are many constructions on residuated structures that may admit dualized

treatments along the lines of Sugihara monoids and srDL-algebras. Of these, we

mention only those for lattice-ordered groups.

Question 9.3.1. Is there an illuminating dual presentation of the Mundici functor

between MV-algebras and lattice-ordered groups with strong order unit?
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Question 9.3.2. Is there an illuminating dual presentation of the construction of

lattice-ordered groups from their negative cones?
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