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Abstract

We present dual variants of two algebraic constructions of certain classes of
residuated lattices: The Galatos-Raftery construction of Sugihara monoids and their
bounded expansions, and the Aguzzoli-Flaminio-Ugolini quadruples construction
of srDL-algebras. Our dual presentation of these constructions is facilitated by
both new algebraic results, and new duality-theoretic tools. On the algebraic front,
we provide a complete description of implications among nontrivial distribution
properties in the context of lattice-ordered structures equipped with a residuated
binary operation. We also offer some new results about forbidden configurations
in lattices endowed with an order-reversing involution. On the duality-theoretic
front, we present new results on extended Priestley duality in which the ternary
relation dualizing a residuated multiplication may be viewed as the graph of a partial
function. We also present a new Esakia-like duality for Sugihara monoids in the

spirit of Dunn’s binary Kripke-style semantics for the relevance logic R-mingle.

ii



Acknowledgements

For me, mathematics is a great cooperative project going back to Euclid. Col-
laboration is its lifeblood, and therefore I thank first the fantastic researchers who
I have the honor of counting as collaborators on topics related to this thesis. Chief
among them is my doctoral supervisor Nick Galatos, who introduced me to many
of these topics, and, more importantly, taught me how to really think about them.
My other collaborators also have my deepest gratitude: Peter Jipsen, whose deep
insight and vision for mathematics have been a profound inspiration to me; Alessan-
dra Palmigiano, who welcomed me into her research community and kindly hosted
me at her home when I was writing this thesis; and Sara Ugolini, whose good sense
and technical know-how have been such an edifying force in my life.

My view of the topics addressed in this thesis have been shaped by conversa-
tions with a host of excellent researchers. Among them: Guram Bezhanishvili, Nick
Bezhanishvili, Michael Dunn, John Harding, Mai Gehrke, Giuseppe Greco, Julia Ilin,
Michael Kinyon, Alexander Kurz, Vincenzo Marra, George Metcalfe, Franco Mon-
tagna, Tommaso Moraschini, Drew Moshier, James Raftery, Luca Spada, Amanda
Vidal, and Jaime Wannenberg. Special recognition must go to Gavin St. John,
discussions with whom have transformed the way I understand logic, and who gen-
erously read this manuscript.

I have enjoyed the benefit of too many wonderful teachers to list. I offer special
thanks to four teachers from my mathematical childhood, who believed in me when
I knew nothing: Jim Barnes, Art Bukowski, LuAnn Walton, and Gerald Williams.

There are many others who have my gratitude, but whom I cannot list here. To

everyone who has contributed to making this thesis a reality: Thank you so much.

iii



Table of Contents

Acknowledgements . . . . . ... L. iii
List of Figures . . . . . . . . . .. vi
1 Introduction 1
2 Residuated algebraic structures 6
2.1 Residuated structures . . . . .. ... ... ... ... ... 7
2.1.1 Distributivelaws . . . . . . ... .. ... .. oL 10
2.2 Lattices with involution . . . . . ... ... ... ... ... .... 18
2.2.1 Forbidden configurations . . . . . . ... ... ... ... ... 20
2.3 Commutative residuated lattices and involutivity . . . . . .. .. .. 25
2.3.1 srDL-algebras . . . . . .. .. ... o 29
2.3.2 Sugihara monoids . . . .. . ... Lo 31
3 Duality theory 35
3.1 Natural dualities . . . . . . . .. ... .. ... ... 35
3.2 The Stone, Priestley, and Esakia dualities . . . . . ... ... .. .. 41
3.3 The Davey-Werner duality . . . . . . .. .. .. ... ... .. .... 46
3.4 Extended Priestley duality for residuated structures . . .. ... .. 54
3.4.1 Dropping lattice bounds . . . . . ... ... ... ... ... 58

4 Functional dualities for residuated
structures 62
4.1 Functional duality for semilinear residuated lattices . . . . . . . . .. 63
4.2 Characterizing functionality . . . . . . . . . ... ... ... 69
4.2.1 Residuation algebras and canonical extensions . . .. .. .. 69
4.2.2 The characterization . . . . . . ... ... ... .. ...... 73

5 Algebraic representations of Sugihara

monoids 79
5.1 The Galatos-Raftery construction . . . . . . .. ... ... ... ... 80
5.2 Algebras with Boolean constant . . . . . . ... ... ... ...... 83
5.3 Naturalizing involution . . . . . . . . . . .. ... ... ... ... .. 87
6 Esakia duality for Sugihara monoids 97
6.1 Esakia duality for algebras with Boolean constant . . . . . . .. . .. 98
6.1.1 bG-algebras as Heyting algebras with nuclei . . . . . . . . .. 104

6.2 Restricting the Davey-Werner duality . . . ... ... ... ... .. 110
6.2.1 Sugiharaspaces . . . . . . . . ... o 111
6.2.2 Theduality . ... ... ... ... .. . ... ... 119

6.3 Another formulation of the duality . . . . . ... ... ... ..... 130

iv



7 Dualized representations of Sugihara

monoids

7.1 Dual enriched negative cones . . . . . . . .. ... L.

7.2 Dual twist products .

7.3 An equivalence between SSand SMT . . . ..o

8 Dualized representations of
srDL-algebras

8.1 Algebraic representations by quadruples . . . . ... ... ... ...
8.2 Representing dual spaces by externally prime filter pairs . . . . . . .
8.3 Filter multiplication insrDL . . . . . .. .. ... ... oL
8.4 Dual quadruples and the dual construction . . .. .. ... ... ..

9 Open problems
9.1 Residuated structures

9.2 Duality theory for residuated structures . . . . . ... ... ... ..

9.3 Dualized constructions

Bibliography

135
136
142
154

164
165
168
192
197

204
205
206
206

208



List of Figures

1.1

21
2.2
2.3

3.1

6.1
6.2

7.1

8.1

Various equivalences among the categories in the vicinity of bounded

Sugihara monoids SM . . . . . .. ... Lo 4
Labeled Hasse diagrams for Dgand Dy . . . . . . . ... ... ... 19
Labeled Hasse diagram for Bg . . . . . . .. ... ... ........ 21
Labeled Hasse diagram for E . . . . . ... ... ... ........ 33
Hasse diagrams for the different personalities of the object K . . . . 46
Labeled Hasse diagram for S(Ew) . . . . . . . ... .. ... .. 103
Hasse diagrams for D(E) and D(E;) . . . . . . ... ... ... ... 129
Labeled Hasse diagram for D(E)™ . . . ... ... ... ... ... .. 152
Labeled Hasse diagram for Fy,. . ... ... ... .......... 192

vi



Chapter 1

Introduction

In the mathematical study of reasoning, algebraic logic is among the dominant
paradigms in part because it provides a powerful framework for comparing diverse
propositional logical systems. When algebraization of a propositional logic is achiev-
able, it reifies the logic by interpreting it in terms of tangible algebraic structures,
providing semantic content. This process often represents a vast simplification of the
logic, effectively permitting us to ignore much of the syntactic complexity of formal
reasoning and thereby see important features that would have otherwise remained
obscure. Surprisingly, many interesting fine-grained distinctions survive this simpli-
fication, at least in well-behaved cases. For instance, an algebraizable propositional
logic is so closely bound to its equivalent algebraic semantics (see [5]) that its lat-
tice of axiomatic extensions is dually-isomorphic to the lattice of subvarieties of its
algebraic semantics.

Perhaps even more impressively, the metalogical properties of a propositional
logic may often be faithfully recast in terms of its algebraic semantics. For one
well-known example: Under appropriate technical hypotheses, a logic possesses the

interpolation property if and only if its equivalent algebraic semantics has the amal-



gamation property (see [16]). Significantly, the amalgamation property is a categor-
ical property: It depends only on the ambient category of algebraic structures and
not on any internal features of the algebras (not even those as seemingly intrinsic to
the setting as their type). This underscores the importance of categorical properties
of logics’ algebraic semantics, and in particular relationships among such categories.
This thesis is about such relationships, especially those that present themselves
as algebraic constructions connecting one kind of algebraic semantics to another.
Often these constructions give categorical equivalences between varieties of logic
algebras, and often these constructions are spectacularly complicated. The leitmotif
of the present work is the repackaging of this complexity so as to reveal hidden
aspects of constructions on algebras of logic. Sometimes we achieve this aim by
purely algebraic means (e.g., in Chapter 5). More often, we rely on topological dual-
ities for lattice-based algebras to recast constructions in more pictorial and trans-
parent terms. Among other benefits, topological dualities afford representations of
algebraic structures that inform our analysis of the algebras themselves. Sometimes
the insight contributed by dual representations of algebras allows us to simplify
their theory in a manner that implicates new duality-theoretic results, initiating a
mutually-supporting feedback loop between algebraic analysis and duality theory.
We sketch our work as follows. Chapter 2 introduces the algebraic environment
in which we will work in the following chapters, in particular setting out needed
background on residuated lattices and lattices with involution (aka i-lattices). The
former provide the equivalent algebraic semantics for substructural logics, whereas
the latter provide a general and flexible framework for thinking about negation in

nonclassical logic.! Residuated lattices and i-lattices are married in our discussion

! Although we will neglect the syntactic aspects of the logics corresponding to these classes of
algebras, it is nevertheless conceptually valuable to think of them in logical rather than purely
algebraic terms.



of involutive residuated lattices, and we also discuss two classes of negation-bearing
residuated structures (i.e., Sugihara monoids and srDL-algebras) that will provide
case studies for later work. In addition to providing an exposition of the theory
of these algebras, Chapter 2 offers some new results about varieties of residuated
structures satisfying certain distributive laws (see Section 2.1.1), as well as some new
results regarding forbidden configurations in lattices with involution (see Section
2.2.1).

Chapter 3 offers background material on duality theory. This includes an intro-
duction to natural dualities, as well as generalities regarding the more classical
Stone-Priestley and Esakia dualities for distributive lattices and Heyting algebras.
We also discuss extended Stone-Priestley duality, an augmentation of Stone-Priestley
duality that accounts for the addition of residuated operations and involution.
Almost all of this chapter consists of well-known preliminary material, but Sections
3.3 and 3.4.1 provide new results regarding the omission of lattice bounds from the
algebraic signature. This provides a natural duality for distributive i-lattices satis-
fying the normality condition x A —z < y v —y, as well as a duality for bottom-free
reducts of monoidal t-norm based logic algebras (aka GMTL-algebras).

Chapter 4 explores the phenomenon of functionality in the context of extended
Stone-Priestley duality. Although residuated operations are typically presented on
dual spaces by a ternary relation, under appropriate hypotheses this ternary relation
may be interpreted as a partial binary operation. This is the case in the context of
Sugihara monoids and srDL-algebras, for example, and we lay out some of the theory
of functional extended Stone-Priestley duality for the pertinent classes of algebras.
We also provide a more abstract treatment of the functionality phenomenon, working
in the canonical extension of certain distributive lattices with operators in order to

obtain a new perspective. The results of this chapter come from the author’s [26, 27].



Figure 1.1: Various equivalences among the categories in the vicinity of bounded
Sugihara monoids SM .

Chapter 5 inaugurates our effort to use previous chapters’ duality-theoretic
machinery to simplify constructions. This chapter recalls the Galatos-Raftery con-
struction [30, 31] of Sugihara monoids (i.e., idempotent distributive commutative
residuated lattices with a compatible involution) from certain enriched relative Stone
algebras (i.e., semilinear residuated lattices where multiplication coincides with the
lattice meet). Together with the two following chapters, Chapter 5 offers a presen-
tation of the Galatos-Raftery construction on certain structured topological spaces.
This dual variant of the Galatos-Raftery construction implicates both the Davey-
Werner duality for normal distributive i-lattices, as well as the extended Priestley
duality specialized to Sugihara monoids (or, more precisely, their bounded expan-
sions). The web of categories tied together by the Galatos-Raftery construction, its
dual, and these topological dualities provides a multifaceted description of categories
providing semantics for the relevance logic R-mingle, as equipped with Ackermann
constants (see Figure 1.1). Chapter 5 contributes to this project through algebraic
work that simplifies the Galatos-Raftery construction, anchoring it in representa-
tions tailored to accentuate the i-lattice structure of Sugihara monoids. This is
necessary preprocessing for the duality-theoretic applications in subsequent chap-

ters. These results originally appeared in the author’s [24].



Chapter 6 introduces a new duality for Sugihara monoids that is focused on their
i-lattice structure. This duality shares much in common with Esakia’s celebrated
duality for Heyting algebras [21], and is obtained by restricting the Davey-Werner
duality for i-lattices to those i-lattices that appear as reducts of Sugihara monoids.
The duality of this chapter provides the diagonal of Figure 1.1, and it originally
appears in the author’s [24].

Chapter 7 utilizes the results of Chapters 5 and 6 to provide our dual variant
of the Galatos-Raftery construction. This dual variant is vastly more transparent
and pictorial than its algebraic counterpart, and completes our study of Sugihara
monoids. The results of this chapter come from [24].

Moving from Sugihara monoids to our second case study, Chapter 8 provides
a dual variant of the Aguzzoli-Flaminio-Ugolini construction [1] of large classes of
monoidal t-norm logic algebras from their Boolean skeletons and radicals. The dual
construction shares much in common with our dual variant of the Galatos-Raftery
construction, and makes plain conceptual similarities between the two constructions.
Moreover, our dual variant of the Aguzzoli-Flaminio-Ugolini construction reveals
hidden aspects of the order-theoretic structure of the algebraic version of the con-
struction, while presenting the monoidal /residuated content of the construction in

a much simpler fashion. This work is drawn from the author’s [27].



Chapter 2

Residuated algebraic structures

This preliminary chapter lays out background regarding the algebraic structures
pertinent to the work to follow. Much of the material presented here is folklore, and
will be summarized without proof. For a more leisurely presentation of the theory
of residuated structures, we refer the reader to the standard monograph [29] (but
see also [8], which provides a different perspective).

We strive to make our treatment as self-contained as possible, but presume
familiarity with the elements of lattice theory and universal algebra. For general
information on these subjects, we refer to the texts [18], [7], and [9]. Our results are
often framed in the language of category theory, information on which may be found
in [3] and [43]. We defer providing background on duality theory until Chapter 3.

Although the primary purpose of this chapter is to recall preliminaries, some
material is new. The results on distributive laws in Section 2.1.1 are the author’s
own [25], as are the results on forbidden configurations in i-lattices in Section 2.2.1.
In these cases, we offer a more thorough discussion and furnish proofs where relevant

and informative.



2.1 Residuated structures

A residuated binar?® is an algebra (A, A, v,-,\,/) of type (2,2,2,2,2), where

(A, A, v) is a lattice, and for all z,y,z € A,
y<za\z <= x-y<z < x<z/y.

The latter demand is often called the law of residuation. When - is a binary operation
on some lattice, - is said to be residuated when there exist binary operations \ and
/ for which the law of residuation holds. The division operations \ and / are called
the residuals of the multiplication -.

In order to promote readability, we often abbreviate x - y by zy. We will also
adopt the convention that - binds more strongly than \, /, which in turn bind more

strongly than A, v.

Proposition 2.1.1. /29, Theorem 3.10] Let A = (A, A, v, \,/) be a residuated

binar.

1. Multiplication preserves existing joins in each argument, i.e., if X, Y € A and

VX and \/Y exist, then

\/X-\/Yz\/{xy::ceX,er}.

2. Divisions preserve all existing meets in the numerator, and convert all existing

joins in the denominator to meets, i.e., if X, Y € A and \/ X, A\Y euxist, then

for any z € A each of N\ cx 2\2, Nyex 2/%: Nyey 2\ys and /\ ey y/z exists

2A binar is a set equipped with a binary operation. Binars are also commonly called groupoids
or magmas.



and

ANY) = A 2\, (/\Y)/z=/\v/=

yeYy yey
(\/ X)N\e = /A 2\z, 2/(\/ X) = )\ #/z.
xeX zeX

3. 2\z =max{y e A:xy < z} and z/y = max{r € A : zy < z}

Remark 2.1.2. Proposition 2.1.1 has a partial converse. Specifically, if (A, A, v) is
a complete lattice endowed with an additional binary operation -, then - is residuated
provided that it distributes over arbitrary joins in each coordinate. For finite lattices

(and somewhat more generally), it suffices for - to distribute over binary joins.
The following is an easy consequence of Proposition 2.1.1.

Proposition 2.1.3. [29, Corollary 3.14] Let A = (A, A, v,-,\,/) be a residuated
binar. Then - is isotone in each coordinate, and \ and / are isotone in their numer-
ators and antitone in their denominators. Moreover, A satisfies the following iden-

tities.

(V) 2y v z) = 2y v a2
(v?) (zvy)z=a2vyz
(\A) 2\(y A 2) = 2\y £ 2\e.
(n)) (& ~y)/z =2/z ny/z.
(V) o/(y v 2) = /y n /=
(V) (@ v gz = 2\z A9\

Observe that the law of residuation is not prima facie an equational condition.

However, one may show that residuated binars form a finitely-based variety.



Residuated binars need not have a multiplicative neutral element. If A is a
residuated binar with a multiplicative neutral element e, we say that an expansion of
A by a constant designating e is unital. If A is a residuated binar with multiplicative
neutral element e, then we say that A is integral if it satisfies © < e. The following

gives some properties of integral residuated binars.

Proposition 2.1.4. [29, see, e.g., Lemma 3.15] Let A be an integral residuated

binar with multiplicative neutral element e. Then A satisfies the following identities.
1. zy<zAy.
2. y <z\y.
3.z <uz/y.
4. x\z =z/T =e.

A residuated binar may also lack universal bounds with respect to its underlying
lattice order. However, if A is a residuated binar with least element L, then A
satisfies the equations - L = 1 -a = 1. Consequently, A also has a greatest
element T and T = 1\L = 1/1. We refer to an expansion of a residuated binar
by a constant designating a least element | as a bounded residuated binar. Note
that bounded residuated binars are term-equivalent to the expansions of residuated
binars by constants designating both least and greatest elements.

We say that an expansion of a residuated binar A = (A4, A, v,+,\,/) is modular,
distributive, complemented, or Boolean provided that (A, A, v) is. Likewise, we say
that A is commutative, associative, or idempotent provided that (A,-) is. Note
that if A is a commutative residuated binar, then A satisfies z\y = y/z. In this
event, we denote the common value of z\y and y/x by * — y. For commutative
residuated binars, we work with the term-equivalent signature involving the single

binary operation — rather than \ and /.



We will call an associative residuated binar a restduated semigroup. Unital resid-
uated semigroups are called residuated lattices, and comprise the most important
and thoroughly-studied class of residuated structures. We will return to residuated
lattices in Section 2.3.

If K is a class of similar algebras with lattice reducts, we say that A € K is
K-semilinear if A is a subalgebra of a product of linearly-ordered algebras in K,
and if K is clear from context we simply say that A is semilinear. Since chains are
distributive lattices, the lattice reduct of a semilinear algebra is always distributive.

2.1.1 Distributive laws

Owing to Proposition 2.1.1 and Remark 2.1.2, one may think of the law of
residuation as articulating a kind of strong distributive property. However, neither

lattice distributivity nor any of the identities

x(y Az)=xy A x2 (-n)

(@ Ay)z =22 A Yz (A
a\(y v z) = 2\y v o\z (\v)
(Tvy)/z=z/zvy/z (v/)
(z Ay\z =2\z v y\z (A\)
x/(y nz)=afyva/z (/)

hold in the variety of residuated binars (cf. the distributive laws in Proposition

2.1.3). Blount and Tsinakis showed in [6] that in a residuated lattice satisfying

10



distributivity at e, viz.

(xvy ne=(xnrne)v(yae),

the equations e < z/yvy/z, (/A), and (v/) are equivalent. Likewise, in the presence
of distributivity at e, the equations e < y\z v z\y, (A\), and (\Vv) are equivalent.
Semilinear residuated lattices satisfy all of these nontrivial distributive laws, but a
residuated lattice may satisfy all six of these identities but fail to be semilinear (this
is true of lattice-ordered groups, for example).

The goal of this section is to understand inferential relationships among these

six nontrivial distributive laws, a typical instance of which is given in the following.

Proposition 2.1.5. Let A be a distributive residuated binar. Then if A satisfies

both (v/) and (A\), A also satisfies (\V).

Proof. Note that (A\) is equivalent to the identity

(A y\(z Aw) <2\2 v y\w,

whereas (\Vv) is equivalent to the identity

(zvy\lzvw) <z\zvy\w.

Let u < (z v y)\(z v w). Then by residuation z,y < z v y < (2 v w)/u, and by
(v/) we have x < z/u v w/u and y < z/u v w/u. Observe that x = z A (z/u v w/u)
and y = y A (z/u v w/u), and by distributivity we obtain that z = x; v x93 and
Yy =y1 Vv Y2, where

x1 =1z A (2/u),
x2 = A (w/u),

11



Yy =Yy A (Z/’U,),
Y2 =y A (w/u).

Note that

x1 < z/u = u<z\z < (21 A Y2)\2,
xo S w/u = u < x2\w < (22 A yY1)\Ww,
y1 < z/u = u<y\z < (22 Ay1)\2,
Yo Sw/u = u <yp\w < (11 A y2)\w.

Hence u < (21 Ay2)\(z Aw) < z1\2 v ye\w and u < (22 Ay1)\(2 Aw) < z2\2 vy \w.

Also, u < z1\z < z1\z v y1\w and u < y2\w < x2\z v y2\w. This implies that:

u< (21\z2 v y2\w) A (2\z v yr\w) A (21\z v gn\w) A (22\2 v g2\w)
= ((w2\z A 21\2) v yi\w) A ((21\2 A 32\2) v g2\w)
= (z1\z A 22\2) v (11\w A y2\w)
= (21 v x2)\z v (41 v y2)\w

=2z\z v y\w.

This proves the claim.
Along the same lines, we obtain the following.

Proposition 2.1.6. Let A be a distributive residuated binar.
o If A satisfies both (\v) and (/A), then A also satisfies (v/).
o If A satisfies both (-A) and (v/), then A also satisfies (/A).
o If A satisfies both (A-) and (\Vv), then A also satisfies (A)\).

12



o If A satisfies both (A\) and (-A), then A also satisfies (A-).
o If A satisfies both (/A) and (A-), then A also satisfies (-A).

Remark 2.1.7. The previous results were originally proven by passing to equivalent
first-order conditions on dual structures via the Ackermann Lemma based algorithm
(ALBA) (see, e.g., [15]). This foreshadows the utility of the duality theory discussed
in Chapter 3. However, we shall not take a detour into first-order correspondence

theory here.

Proposition 2.1.8. Propositions 2.1.5 and 2.1.6 give the only implications among

the six nontrivial distributive laws.

Proof. We define residuated binars A; for i € {1,2,3,4,5,6}, each of whose lattice
reduct is the four-element Boolean algebra {1, a,b, T}, where L < a,b < T. Tables

for -,\,/ are given below. For A;:

L a b T \|[L a b T /L a b T
B Y O I I LT T T T LT T b b
a|l L L 1 a|T T T T a|T T b b
b|L L T T blb b b T b|T T b b
TIL L T T TIb b b T T T T T T

For As:

1l a b T \|[L a b T /L a b T
B Y R I I LT T T T LT a a a
a|l L 1 1 a|T T T T a|T T a a
blL a b T blL a b T b|T a a
T|L a b T T|L a b T T T T T T

13



For Aj:

1l a b 1l a b T 1l a b
/L 1 1 T T T T T T L
all 1 a a T a T T T a a
bl L L b a a T T T T b b
T|L L T a a a T T T T T
For Ay:
1l a b 1l a b T 1l a b T
/L 1L 1 T T T T T L T 4
all a L b T b T T 7T T T
b|lL a L b T b T T L T L
TlL a L b T b T T T T T
For As:
1l a b 1l a b T 1l a b T
L 1 1 T T T T T b b b
all a a L 7T 4L 7T T 7T T T
bl 1L L L T T T T T b b b
TIL a a L 7T 4L 7T T 7T T T
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For Ag:

1l a b \|L a b T /1L a b T
B I LT T T 7T 11T a b 1L
all L b b ala a T T a|T a b 1L
b|L b L b b|b b T T b | T T
T|L b b b TIL L T T T|T T

One may check by direct computation that

o Ail=(/A), (AN); (A0), (A) and Ag = (\V), (v/).

Az = (\WV), (AN, (A0), (A) and Ag k= (v/), (/A).

Az = (v/), (/A), (A), (A) and A = (\Vv), (AN).

AsE (V) (W), (/A), (A) and Ay = (A), (A°).

As b (v/), (W), (a\), (A7) and As b (/A), (-n):
o Mgk (v/), (W), (/A), (AY) and Ag B (-A), (A7),

For each o € {(v/), (\Vv), (/A), (A\), (A-), (-+A)}, there is a unique implication in
Proposition 2.1.5 or 2.1.6 having ¢ as its consequent. Let o1, 02 be equations in the
antecedent of the aforementioned implication. Then the above countermodels show
that if o ¢ X < {(Vv/), \V), (/A), (A\), (A+), (-A)} and either o1 ¢ X or o9 ¢ X,

then o is not an equational consequence of . This suffices to prove the claim. [J

The presence of complements and a neutral element in a residuated binar can
have a profound impact on whether it satisfies any of the six nontrivial distributive

laws, a stark example of which is illustrated by the following lemma.
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Lemma 2.1.9. Let A be a complemented residuated binar with neutral element e.

If A is integral, then A and - coincide.

Proof. From the fact that A is integral, we have that x -y <z A y for all z,y € A.
Consequently, for any x € A we have that x -2’ < z A 2/ = 1, where 2/ denotes
a complement of z. On the other hand, because the neutral element e is the top
element of A we also have that z v 2’ = e for any z € A. Multiplying by x and using

2o =22v L =22 Tt follows that

(v),weobtainz =x-e=z-(xva)=z
A is idempotent, whence for any x,y€e A, x Any=(zAry) - (xAry) <z -y<zAUY,

ie,x-y=x Ay. O

The above entails that the only complemented integral residuated binars are
Boolean algebras, and hence satisfy all six nontrivial distributive laws as well as
lattice distributivity. Moreover, it turns out that the satisfaction of non-trivial

distribution laws also often forces integrality in this setting.

Lemma 2.1.10. Let A be a residuated binar with neutral element e. If e has a
complement ¢’ and A satisfies any one of the distributive laws (-A), (A-), (A)),

(/N), then A is integral.

Proof. We prove the result for (-A) and (A\). The result will follow for (A-) and

(/A), respectively, by an entirely symmetric argument.
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First, suppose that A satisfies (-A). Note that

Thus ¢ = 1, whence e = T.

Second, suppose that A satisfies (A\). Observe that

T=1\1
— (e n Nl
= (\L) v (e\L)
= Lv(e\L)

=e\1,

from which it follows that T < ¢/\ L, and by residuation ¢’- T < L. Since e < T and
- is order-preserving, we thus have ¢ - e < ¢ - T < L. Therefore ¢/ < 1, i.e., ¢ = L.

It follows as before that e = e v L = e v € = T, and this gives the result. O
Combining the previous two lemmas yields the following.

Corollary 2.1.11. Let A be a complemented residuated binar with neutral element
e. If A satisfies any one of the distributive laws (-A), (A-), (A\), (/A), then A is a

Boolean algebra.
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Proof. Because A is complemented, e has a complement. Lemma 2.1.10 then pro-
vides that A is integral, and hence from Lemma 2.1.9 it follows that A is a Boolean

algebra. O

Lemma 2.1.12. Let A be a Boolean residuated binar with neutral element e, whose
complement is denoted by €'. If A satisfies any one of the distributive laws (-A),

(~9), (\V), (V)), (A\), or (/A), then A is integral, and hence is a Boolean algebra.

Proof. Corollary 2.1.11 settles the claim if A satisfies any of (-A), (A+), (A)), or
(/~). We therefore prove the claim for A satisfying (\v); it will follow if A satisfies

(v/) by a symmetric argument. Suppose that A satisfies (\v). We have:

T=T\T
=T\(ev¢)
=T\ev T\¢

<T\eveé

From the fact that Boolean algebras are a-residuated, we obtain from the above
that T = T Ae < T\e. Then from the residuation property for -, we get T < e. The

result follows. ]

Corollary 2.1.13. Let A be a Boolean residuated binar with a multiplicative neutral
element. Then each of the identities (-A), (A-), (\V), (V/), (A\), and (A\) is

logically-equivalent to the other five.

2.2 Lattices with involution

A lattice with involution (or i-lattice for short) is an algebra A = (4, A, v, —),

where (A, A, V) is a lattice and — is an anti-isomorphism, i.e., an isomorphism of

18



Figure 2.1: Labeled Hasse diagrams for D3 and Dy

(A, A, v) and (A, v, A). Note that the latter requirement may be met equationally

by stipulating that the identities

—(zvy)=—z Ay,
—(zry) =z v -y,

——r =2

hold in A, whence i-lattices form a variety. If A is an i-lattice, then x € A is called
a zero if —x = x. We call an i-lattice distributive (modular) if its lattice reduct is

distributive (modular), and we call it normal? if it satisfies the identity

TA-T <YV Y (N)

We will call expansions of normal distributive i-lattices by lattice bounds Kleene
algebras. Observe that if 1 and T are the least and greatest element of a Kleene
algebra, then =1 =T and =T = L.

There are just three subdirectly irreducible distributive i-lattices: The two-
element Boolean algebra with its usually involution; the three-element i-lattice chain
D3; and the four-element i-lattice D4 with two incomparable zeros. Kalman showed

in [41] that the variety of all distributive i-lattices is ISP(Dy4), and that the variety

3Note that our terminology differs from that introduced by Kalman [41]. In Kalman’s terms, a
normal i-lattice is one satisfying the given identity as well as distributivity.
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of all normal distributive i-lattices is ISP(D3).* We denote the latter variety by

NDIL, and the variety of Kleene algebras by KA.

2.2.1 Forbidden configurations

A lattice A is non-distributive if and only if neither of two forbidden sublattices
appear in A: The five-element non-modular lattice N5 and the five-element modular
(but non-distributive) lattice M. The forbidden configurations N5 and M3 provide
a pictorial test for distributivity, and in this section we give an analogous test to
determine whether a given modular i-lattice is normal.

Note that an i-lattice may have any number of zeros or no zero at all, but [41]
shows that a modular i-lattice with a zero is normal if and only if the zero is unique.

In light of this, we easily obtain the following.

Lemma 2.2.1. Let A be a modular i-lattice with a zero. Then A refutes (N) if and

only if Dy embeds into A.

Proof. Suppose first that D4 embeds into A, and let a and b be the incomparable
zeros of Dy. Then —a A a =a € b= b v —b, showing that A is not normal.
Conversely, suppose that A is not normal. Then A has two distinct zeros a and b
by the above cited result of [41]. Note that distinct zeros are incomparable, whence
a and b are incomparable. Then {a A b,a,b,a v b} is the universe of a subalgebra of

A that is isomorphic to Dy. O

An i-lattice with no zeros may refute (N), and in this case D4 obviously does not
appear as a subalgebra. Denote by Bg the i-lattice with no zeros whose lattice-reduct

is the Boolean cube (see Figure 2.2). Our aim is to prove the following.

“Here and throughout the sequel we use I, H, P, and S to denote the standard class operators
of taking isomorphic copies, homomorphic images, direct products, and subalgebras.
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—-a

Figure 2.2: Labeled Hasse diagram for Bg

Theorem 2.2.2. Let A be a modular i-lattice with no zeros. Then A refutes (N)

if and only if Bg embeds into A.
Toward this goal, we prove several technical lemmas.

Lemma 2.2.3. Let A be an i-lattice with no zeros, and suppose that a,b € A with
a A —a £ bv —b. Then there exist a’,b/ € A with a’ A —a’ £ b v =V and —d’' < d’,

-0 < b.

Proof. Set a’ :==a v —a and b’ := b v —b. It is obvious that —a’ < a’ and —b' < ¥'.
Moreover, were it the case that a’ A —a’ < b v =V, we would have a A —a < bv —b,

a contradiction. The result follows. O

Lemma 2.2.4. Let A be a modular i-lattice with no zeros, and suppose that a,be A

with a A —a £ bv —=b and —a < a, =b < b. Then:
1. a and b are incomparable.
2. —a and —b are incomparable.

3. —a and b are incomparable.

4. aAnb< —av b
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Proof. The first three claims are trivial. For the fourth claim, suppose on the
contrary that a A b < —a v —b. Note that a A (—a v —=b) < a A (—a v b) because

—b < b. On the other hand, observe that

an(bv —a)=—av (anb)
< —a v (—a v —b)

= —QqQ V —|b7

whence it follows that a A (bv —a) = a A (—a v —b). But notice that this implies that
=(an (bv—a))=—-av(—=bnaa)=an(—bv —a) by modularity, which contradicts

the assumption that A has no zeros. O

Lemma 2.2.5. Let A be a modular i-lattice with no zeros, and suppose that a,be A
with a A —a € bv —b and —a < a, —=b < b. Then the elements a,b, —a, —b,a A b,a v

b, —a A —b,—a v —b are pairwise distinct.

Proof. Note that a and b being incomparable, together with —a < a and —b < b,
gives that a # b, —b, —a,a A b,a v b,—~a A —b. That a # —a v —b follows because a
and —b are incomparable by Lemma 2.2.4. The same comments apply to b.

Were it the case that —a = a A b,a v b, —a A —b, or —a v —b, it would contradict
the fact that —a is incomparable to each of a, b, —b. The same holds for —b.

The above gives that each of a, b, —a, —b is distinct from each of the remaining
seven elements on the list. Lemma 2.2.4(4) gives that a A b # —a v —b, and
anb<a<avbsince a and b are incomparable. Were a Ab = —a v —b = —(a A b),
it would contradict the fact that A has no zeros. Similar comments show that a v b
is distinct from the remaining elements on the list. Finally, —a # —b implies that

—a A —b # —a v —b. This proves the claim. ]
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Lemma 2.2.6. Let A be a modular i-lattice with no zeros, and suppose that a,b e L

with a A —a £ b v —b and —a < a, —b < b. Further assume that

a<—avb

b<—-bva

Then S = {a,b, —a, —b,a Ab,av b, —a A —b, —a v —b} is the universe of a subalgebra

of A.

Proof. That S is closed under — follows from the De Morgan laws and the fact that
——x = g for all x € L. Because closure under — and either of the lattice connectives
implies closure under the other lattice connective, it suffices to show that S is closed
under v. There are only seven cases when this is not obvious, and we check them

in turn. Using modularity and a < —a v b, we have

avb<—-avbvb=—-avb<avb = —avb=avbd

bv—-av-b=—-avb=avb
—av (bra)=(-avb)ra=(avb) ra=a

Using b < —b v a,

avb<av-bva=av-b<avb= av-b=avd

av—-av-b=av-b=avb
—bv(anb)=(-bva)rb=(avb) Ab=Db
(@nb)v(—av—b)=((anrb)v—-a)v((@arb)v—-b)=avb
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Because S is closed under each of the operations of A, it follows that S is the

universe of a subalgebra of A. This proves the claim. O

Lemma 2.2.7. Let A be a modular i-lattice with no zeros, and suppose that a,b e A
withan—a € bv—b and —a < a, =b < b. Seta' := —av(bra) andV/ := —=bv (anb).
Then —a' < a', = <V, d A—ad €V v-=b,d <—ad vV, andl < —b va. Hence

A with a’ and V' satisfy the hypotheses of Lemma 2.2.6.

Proof. A direct calculation using modularity shows that —a’ < @’ and —b < ¥/, and

these inequalities are strict because A has no zeros. Observe that

—a' vt =—av(=bra)v —=bv(anb)
=(—av —b) v (arb)
>-av(bnaa)
=dad
This shows that @’ < —a’ v V', and by symmetry ' < —b' v da’.
For the rest, suppose toward a contradiction that a’ A —d’ < V' v =V, ie.,
/

—a' < b'. By modularity, this amounts to —a v (—=b A a) < b A (a v —b). But this

implies that —a < b, contradicting Lemma 2.2.4(3) and completing the proof. [

Theorem 2.2.2 follows immediately from the foregoing lemma, and combining

this with Lemma 2.2.1 we obtain the following.

Theorem 2.2.8. Let A be a modular i-lattice. Then A is normal if and only if

neither of the i-lattices Dy or Bg may be embedded in A.
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2.3 Commutative residuated lattices and involutivity

The variety of residuated lattices is probably the most important class of residu-
ated structures, and for our purposes certain expansions of commutative residuated
lattices (henceforth CRLs) occupy an especially central role. For us, their impor-
tance arises because of their deep connection to several nonclassical logics (especially
relevant and many-valued logics), for which they provide the equivalent algebraic
semantics in the sense of [5]. We shall not dwell on the details of this connection
here, but refer the reader to [29, Section 2.6] for details.

In addition to its logical importance, the variety CRL of CRLs also enjoys numer-
ous pleasant algebraic properties: It is an arithmetical variety with the congruence
extension property, and each congruence of a CRL is determined by the congruence
class of its multiplicative identity. The following gives some useful properties of CRL,
all of which are well-known in the literature (and many of which rephrase facts from

the general setting of residuated binars).

Proposition 2.3.1. Let A = (A, A,v,,—,e) be a CRL. Then A satisfies the

following.
1. z(x —> y) <y.
2. x(yvz)=xy vz
3 x—(yrz)=(x—-y) Ax—2).
b@vy) =@ o) Ay —2).
5. (ay) mz=z—>(y—z2)=y—(z—2).
6. e—>z=uzx.
7. e<x—x.
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We introduce several subvarieties of CRL that will be important later. Note first
that a distributive CRL A = (A, A, v, -, —, e) is semilinear precisely when it satisfies
the identity

e<(r—y)v(y—a),

and therefore the semilinear members of CRL form a variety in their own right.
The integral semilinear CRLs are called generalized monoidal t-norm logic alge-
bras, or GMTL-algebras for short, due to the fact that they provide the equivalent
algebraic semantics for the negation-free fragment of Esteva and Godo’s monoidal
t-norm based logic [22]. Some authors also call GMTL-algebras prelinear semi-
hoops. Bounded GMTL-algebras are called monoidal t-norm logic algebras, or MTL-
algebras, and provide the equivalent algebraic semantics for monoidal t-norm based
logic (with negation). Note that for bounded integral CRLs, we usually use 1 for
the multiplicative neutral element (which is also the greatest element), and 0 for
the least element. We denote the varieties of GMTL-algebras and MTL-algebras by
GMTL and MTL, respectively.

Note that in an MTL-algebra A = (A, A, v,-,—, 1,0), it is common practice to

define additional operations — and + on A by

—z:=x—0and z +y:= —(—x-—y).

So defined, + is a commutative operation. Moreover, — satisfies the the De Morgan
laws due to the identities (A\) and (v\), but may not satisfy the law of double
negation ——x = x. An MTL-algebra that satisfies the latter condition is called
involutive.

An MTL-algebra A is said to have no zero divisors if for all x,y e A, x -y =0

implies x = 0 or y = 0. An MTL-algebra is called an SMTL-algebra if it satisfies
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the identity A —z = 0. The subvariety of MTL consisting of the SMTL-algebras
is denoted by SMTL.
The following appears in [44, Proposition 4.14] in the context of totally-ordered

algebras, but comes from [27] in its full generality.

Proposition 2.3.2. Let A be an MTL-algebra. Then A has no zero divisors if and

only if A is a directly-indecomposable SMTL-algebra.

Proof. Suppose that A has no zero divisors. If x € A, then z-—z =z -(z — 0) =0,
giving £ = 0 or —x = x — 0 = 0 by the hypothesis. If either z = 0 or —x = 0, then
x A—x =0 as well, and thus A is an SMTL-algebra. If A may be written as a direct
product A; x As of nontrivial MTL-algebras, then we have (1,0) - (0,1) = (0,0)
although (1,0), (0,1) are nonzero. This contradicts A having no zero divisors, so A
is directly indecomposable.

Conversely, if A is a directly-indecomposable SMTL-algebra, then A may be
written as an ordinal sum of the form 2 @ B, where 2 is the two-element MTL-
algebra and B is a GMTL-algebra (see, e.g., [1]). In this event, x -y = 0 only if

x =0 or y = 0, completing the proof. ]

A CRL for which A coincides with - is called a Brouwerian algebra, and the
bounded Brouwerian algebras are called Heyting algebras. We denote the varieties
of Brouwerian algebras and Heyting algebras by BrA and HA, respectively. The
semilinear Brouwerian algebras and Heyting algebras are called, respectively, relative
Stone algebras and Gddel algebras, and by the above they form varieties that we
denote by RSA and GA. Relative Stone algebras and Godel algebras are examples
of integral semilinear residuated structures, and are therefore subvarieties of GMTL
and MTL, respectively. We will make use of the following special property of these

varieties in the sequel.
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Proposition 2.3.3 ([31, Lemma 4.1]). Let A € RSA and let a,b € A. Then the

following are equivalent.
1.a—>b=bandb— a=a.
2.avb=e.

An expansion of a CRL A = (A, A, v,-,—,e) by a unary operation — is called
an involutive CRL if it satisfies ——x = z and x —» —y = y — —z. It is easy to
show that involutive CRLs satisfy the De Morgan laws —(z A y) = —z v —y and
—(z v y) = -z A —y, and hence if (4, A, v,-,—,e,—) is an involutive CRL, then
(A, A, v, —) is an i-lattice.

Note that an involutive CRL A = (A, A, v, -, —, e, —) satisfies —z = e —> —z =
xr — —e, whence the involution of an involutive CRL is definable in terms of the
constant f := —e. It turns out that involutive CRLs are term-equivalent to expan-
sions of CRLs by a constant f such that x = (x — f) — f for all z, whence we
may freely consider involutive CRLs as pointed CRLs. If (A, A, v,-, —,e,—) is an
integral involutive CRL, then for arbitrary x € A we have f = —e < x as a conse-
quence of —x < e. Thus integral involutive CRLs are bounded with f being the least
element. In particular, this means that our definition of involutive MTL-algebras
above agrees with our definition of involutive CRLs.

The following ties together much of the material introduced in this chapter.

Proposition 2.3.4. Let A = (A, A, v, ,—,e,—) be a semilinear involutive CRL.

Then (A, A, v, —) is a normal distributive i-lattice.

Proof. 1t suffices to check the claim on generating algebras, so suppose that A is a
linearly-ordered involutive CRL and let z,y € A. Then x < yory < z. If x <y,

thenz A~z <y <yv—y. Ify<z then —x < -y and hence x A —x < yv—y. O
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Given a CRL A = (A, A, v, ,—,€), a nucleus on A is a map N: A — A such

that:
1. N is a closure operator on (A, A, v,-,—,€), i.e.

(a) N is expanding (z < Nz for all z € A).
(b) N is isotone (if z,y € A with < y, then Nz < Ny).

(¢) N is idempotent (NNzx = Nz for all z € A).
2. No-Ny< N(z-y) for all z,y € A.
If A is a CRL and N is a nucleus on A, then the N-nuclear image of A is the
algebra Ay = (N[A], A, VN, N, —, Ne), where for all z,y € A,

zrvyny=N(zVvy)

r-yy=N(z-y)

Nuclear images of CRLs are again CRLs. The following gives an important example

of nuclei that we will return to later.

Example 2.3.5. Let A = (A, A, v,—,e) be a Brouwerian algebra. For each d € A,
the function N: A — A defined by Na = d — a is a nucleus on A.

2.3.1 srDL-algebras

An MTL-algebra is called an srDL-algebra if it satisfies the identities

—|(,f[,’2) — (——x) =1and (z + :E)2 — 22122
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The involutive srDL-algebras are called sIDL-algebras. The varieties of srDL-algebras
and sIDL-algebras are respectively denoted by srDL and sIDL.?

A deductive filter of an srDL-algebra A is a lattice filter ¢ of A such that if
x,x — y € r, then y € ¢, and the radical Z(A) of an srDL-algebra A is the
intersection of A’s maximal deductive filters. From [1, Proposition 2.5], the radical

of A is exactly the set
H(A)={xeA: -~z <z}

For any srDL-algebra A = (A, A, v, ,—,1,0), Z(A) is a subalgebra of the 0-free
reduct of A, and consequently it is a GMTL-algebra. If A is an srDL-algebra, then
the coradical of A is

C(A):={reA:—zeR(A))

The Boolean skeleton of an srDL-algebra A is the largest subalgebra of A that is a
Boolean algebra, and it is denoted by #(A). For an srDL-algebra A, elements in
Z(A), €(A), and B(A) are respectively called radical elements, coradical elements,
and Boolean elements.

The following two lemmas give information about these special subsets of an

srDL-algebra.

Lemma 2.3.6. [10, Lemma 1.5] Let A be an srDL-algebra. Then
1. If ue B(A), then —ue B(A) and ——u = u.
2. An element u € A is Boolean if and only if u v —u = 1.

If ue B(A) and a,be A, then

3. u-a=uAna,

"These names are drawn from [55].
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4. U —a="uvVa,
5. a=(aAu)v (an-—u),
6. Ifanb=z—-uanduna=unb, thena=b.
Lemma 2.3.7 ([1],[55]). Let A be an srDL-algebra. Then:
1. ¢(A)={—-z:2e Z(A)} ={re A:x < —x}.
2. For everyye Z(A), x€ €(A), v <y.
3. If A is directly-indecomposable, then A =~ Z(A) v € (A).

In any srDL-algebra A, there is a representation (see [1]) of each element of A
in terms of Z(A) and Z(A). In particular, if a € A then there exist z € Z(A) and
u € AB(A) so that

a=uv-z)A(~uvz)=(unrz)v (—~unsn—x). (2.3.1)

In Chapter 8, we make extensive use of this representation when we work with

srDL-algebras.

2.3.2  Sugihara monoids

A Sugihara monoid is a distributive, idempotent, involutive CRL. Sugihara
monoids turn out to be semilinear [2], and consequently Proposition 2.3.4 provides
that the (A, v, —)-reduct of each Sugihara monoid lies in ISP(Dg3). This observa-
tion proves crucial to our development of a duality theory for Sugihara monoids in
Chapter 6.

We provide several examples of Sugihara monoids, which we will return to in

later chapters.
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Example 2.3.8. Let S := (Z, A, v,-,—,0,—), where the lattice order is the usual
order on the integers, — is the additive inversion on the integers, and the multipli-

cation - is given by:

@ |z > [yl
Y=y |z < Jy]
zry o) =1yl

The residual — is given by:

(—z) vy x<y
T — Y=

(—z)ry zfy

Then S is a Sugihara monoid.

A Sugihara monoid is called odd if it satisfies —e = e. The Sugihara monoid S

given above is odd.

Example 2.3.9. Let S\{0} := (Z\{0}, A, v,-,—,1,—), where each of A,v,-,—,
and — are as in Example 2.5.8. Then S\{0} is a Sugihara monoid where the monoid

identity is 1. Note that since =1 = —1, S\{0} is not odd.

Example 2.3.10. Given a positive integer n, we define a totally-ordered Sugihara
monoid with n elements as follows. If n =2m+1 is odd, {—m,...,—1,0,1,...,m}
is the universe of a subalgebra of S that has n elements. If n = 2m is even, then
the set {—m,...,—1,1,...m} is the universe of a subalgebra of S\{0} that has n
elements. In each case, the Sugihara monoid with n elements just defined will be
denoted by S,,. Note that S, is an odd Sugihara monoid if and only if n is an odd

integer.
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(2,2)

(0,1) (1, -1)

(=1, 1) (0,-1)

Figure 2.3: Labeled Hasse diagram for E

Example 2.3.11. In each of the previous examples, the Sugihara monoids defined

are chains. We give a nonlinear example as follows. Consider the set

E ={(-2,-2),(-1,-1),(-1,1),(0,-1),(0,1),(1,-1),(1,1),(2,2)}.

Then E forms the universe of a subalgebra of S5 x Sy. Figure 2.8 depicts the Hasse
diagram for E. We will use E to illustrate our work on Sugihara monoids in later

chapters.

We conclude our preliminary discussion of Sugihara monoids with the following
proposition, which shows the special role of the examples S and S\{0} in the theory

of Sugihara monoids (see, e.g., [48]).

Proposition 2.3.12. The Sugihara monoids are generated as a quasivariety by
{S,8\{0}}.

We denote the variety of Sugihara monoids by SM and the variety of odd Sugi-
hara monoids by OSM. Their varieties consisting of their bounded expansions will

be denoted by SM; and OSM, .

Remark 2.3.13. Note that whenever K is a class of similar algebras, we freely
consider K as a category whose objects are algebras in K and whose morphisms are

algebraic homomorphisms (in the appropriate similarity type) between them. In
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particular, we consider varieties and quasivarieties as categories in this fashion. We
thus use NDIL, KA, CRL, GMTL, MTL, srDL, BrA, HA, RSA, GA, SM, OSM, SM |,
and OSM to denote the categories of algebras in each given class as well as the

varieties.
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Chapter 3

Duality theory

Having introduced in Chapter 2 the algebraic structures we are concerned with,
we turn to a discussion of our chief tool for their study: Topological dualities for
lattice-based algebras. Duality theory has its origin in Stone’s representation theo-
rem for Boolean algebras [53], and has been extended to distributive lattices [49, 50],
Heyting algebras [21], and expansions of these algebras by operators [39, 40, 35].

Duality theory is the subject of a vast literature. For background on natural
duality theory, we refer to [14]. For information on Stone duality we refer to [38],
and for the duality theory of Boolean algebras with operators, we refer to [34].

Most of this chapter introduces preliminary material, but the extension of the
Davey-Werner duality to normal distributive i-lattices (see Section 3.3) was devel-
oped in the author’s [24], and the duality for GMTL-algebras (see Section 3.4.1)

descends from the author’s [27].

3.1 Natural dualities

Natural duality theory gives one of the most general and highly-developed frame-

works available for discussing topological dualities. In addition to providing context

35



for the classical dualities discussed in Section 3.2, natural duality theory is necessary
in Section 3.3 to obtain some preliminary results toward our duality for Sugihara
monoids in Chapter 6. Our treatment in this section is essentially drawn from [14].

Suppose that M is a finite algebra, and set A := ISP(M). We consider an
enriched topological space M = (M,G,H, R, T) defined on the same carrier M as

M, where
e (7 is a set of total operations on M,
e H is a set of partial operations on M,
e R is a set of relations on M, and
e 7 is the discrete topology on M.
Define a category S such that:

e The objects of S are enriched topological spaces in IS.PT (M), the class of

isomorphic copies of topologically-closed subspaces of nonempty powers of M.

e The morphisms of S are continuous homomorphisms between members of

ISP+ (M).

Observe that the graph of each element of G U H, as well as each element of R, may
be considered as a subset of some direct power M, and when each of these subsets
is a subalgebra of the appropriate of power of M we say that M is algebraic over
M. When M is algebraic over M, there is an adjunction between A and S. The

functors D: A — S and £: S — A of this adjunction are defined on objects by

D(A) = Homa (A, M),

&(X) = Homs (X, M)
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where Homa (A, M) inherits its structure pointwise from M, and Homg(X, M)
inherits its structure pointwise from M. For morphisms h: A — B in A and

a: X —->Y inS,Dh): D(B) - D(A) and E(a): £(Y) — £(X) are defined by

D(h)(z) =z oh

E(a)(x) =z oa,

respectively. The unit of this adjunction is the natural transformation e given by
evaluation, i.e., for objects A of A, ea: A — ED(A) is defined by ea (a)(z) = z(a).
The counit is likewise defined for objects X of S by ex: X — DE(X) given by
ex(z)(a) = a(z). With the above set-up, whenever each homomorphism e is an
isomorphism, we say that the dual adjunction (D, &, e,¢€) is a natural duality. We
also say that the structure M dualizes M. When each ex is also an isomorphism, we
say that the natural duality (D, &, e,€) is full. A duality is full precisely when it is a
dual equivalence between the categories A and S. When a natural duality (D, &, e, ¢)
associates embeddings in S with surjections in A (equivalently, embeddings in A with
with surjections in S) we say that the duality is strong. Strong dualities are full, but
the converse is not in general true.

Suppose that M = (M, G, H,R,7) and M' = (M, G’, H', R, 7) are discrete topo-
logical structures that dualize the same finite algebra M, and let s be an algebraic
relation, operation, or term on M. We say that M (or Gu H U R) entails s on D(A)
if every continuous map a: D(A) — M preserving the all relations, operations, and
partial operations in G U H U R also preserves s. We say that G U H U R entails s
if G U H U R entails s on D(A) for every A€ A. If G U H U R entails s for every
s€ G U H' U R we say that G U H U R entails G’ U H' U R or that M entails M’.

If P is a set of (partial and total) operations on M of finite arity, A is a subalgebra
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of M® for some (not necessarily finite) set S, and h: A — M is an algebraic (partial
or total) operation on M, then we say that P hom-entails h if every subset of a
power of M which is closed under the operations in P is closed under h. We say
that G U H U R strongly entails G' 0 H' U R if G U H U R entails G’ U H' U R’ and
G U H hom-entails every operation in G’ u H'.

For a finite algebra A, define irr(A) to be the least n € w such that the diag-
onal congruence A is the meet of n meet-irreducible congruences in the congru-
ence lattice of A. We define the irreducibility index of a finite algebra M to be
Irr(M) = max{irr(A) : A < M}. Also denote by K the set of one-element subal-
gebras of M, B,, the set of all n-ary relations algebraic over M, and P, the set
of all n-ary partial operations algebraic over M. One of the fundamental tools for
producing strong dualities for the prevariety generated by a finite algebra with a

near-unanimity term is the following NU strong duality theorem.
Theorem 3.1.1 ([14], Theorem 3.3.8). Let k > 2 and assume that M has a (k+1)-
ary near-unanimity term. If
:,'-.\\_,/-[ = (M7K7H)Bk77—)
where
H = U{P” 1<n<ir(M)}
then any structure that strongly entails M yields a strong duality on M.

Since algebras with a lattice reduct always have a majority term, the above

theorem may be applied to lattice-based algebras to obtain the following.

Corollary 3.1.2 ([14], Corollary 3.3.9). Suppose that M is a finite algebra with a

lattice reduct, and that all the non-trivial subalgebras of M are subdirectly irreducible.
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Then any structure that strongly entails M = (M, K, P1, B2, T) yields a strong duality
on M.

The following M-Shift Strong Duality Lemma underwrites the applications of

(strong) entailment to follow.
Theorem 3.1.3 ([14], Lemma 3.2.3). Consider the structure M' = (M,G',H', R, 7).

1. If M strongly entails M' and M’ yields a strong duality on A, then M also

yields a strong duality on A.
2. M strongly entails M if it is obtained from M’ by

(a) enlarging G', H', or R/,
(b) deleting members of G' or H' which can be obtained as compositions of
the remaining members of G' and H' and the projection mappings, or

(c) deleting a member h of H' which has an extension among the remaining

members of G' U H' and adding dom(h) to R'.
3. M strongly entails M if M entails M’ and is obtained from M’ by

(a) deleting members of R, or

(b) deleting members of H' which have an extension in G' or H'.

Although the preceding results give a method for producing a category dual to
ISP(M) for many finite algebras M, the dual category IS.P™ (M) is not especially
transparent. The final two results of this section provide a method for finding a more
user-friendly description of the members of IS.P*(M). Given a first-order language
L, recall that the quasiatomic formulas of L consist of the atomic formulas of L,

the negated atomic formulas of £, and the expressions of the form

n
/\ o = Qny1,
i=1
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where n > 1 and «; is an atomic formula of £ for each i € {1,...,n + 1}. The next
two results are often called the preservation and separation theorems. We delay

examples of how the foregoing machinery may be used until after the next section.

Theorem 3.1.4 ([14], Theorem 1.4.3). Let M be a finite, discrete structured topo-
logical space and let X € IS.PT(M).

1. X is a structured topological space which satisfies every quasiatomic formula
that is satisfied by M, and as a topological space X is a compact Hausdorff

space with a basis of clopen sets.

2. If h is an n-ary function or partial function symbol, then the domain of h* is

is a closed subset of X™ and hX is continuous.
3. If r is an n-ary relation symbol, then r* is a closed subset of X™.

Theorem 3.1.5 ([14], Theorem 1.4.4). Let X be a compact structured topological
space in the same language as the finite discretely topologized structured topological
space M. Then X € IS.PT(M) if and only if there is at least one morphism from X

to M, and the following conditions are satisfied.

1. For each z,y € X with x # y, there is a morphism a: X — M such that
a(z) # a(y).

2. For each n-ary partial function symbol h and each n-tuple (x1,...,z,) € X"
outside the domain of hX, there exists a morphism a: X — M such that

(a(z1),...,a(zy)) is not in the domain of .

3. For each n-ary relation symbol r and each (x1,...,7,) € X"\rX, there is a

morphism a: X — M with (a(x1),...,a(x,)) ¢ =g
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3.2 The Stone, Priestley, and Esakia dualities

Natural duality theory’s most important historical precursor is Stone-Priestley
duality [53, 49, 50], the special features of which we recall presently. Recall that if

(X, <) is a poset, then S € X is upward closed or an up-set if

1S :={yeX:3zxe S,z <y}

coincides with S. If (X, <, 7) is an ordered topological space, we say that (X, <, 7) is
a Priestley space provided that (X, 7) is compact and for each z,y € X with z € y,
there exists a clopen up-set U € X such that € U and y ¢ U (this demand is often
called the Priestley separation axiom, and ordered topological spaces satisfying it are
called totally order-disconnected). We denote by Pries the category whose objects
are Priestley spaces and whose morphisms are continuous isotone functions. We
also denote by Dist| T the category whose objects are bounded distributive lattices
and whose morphisms are lattice homomorphisms preserving the bounds. Pries and
Dist| T are dually equivalent categories via Priestley duality, which we describe as
follows.

Recall that if A = (A, A, v) is a lattice, then r € A is a filter of A if is upward-
closed and closed under A. A proper, nonempty filter ¢ is called prime if for any
x,y€ A, xvyerimplies x € r or y € r. Given a bounded distributive lattice A, we
denote by S(A) its collection of prime filters. For a bounded distributive lattice A

and x € A, we define®

oa(x) ={reS(A):zer}

5When context makes it clear, we omit A and write @a () as p(z).
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If 7 is the topology generated by the subbase {pa (x),pa(z)¢ : x € A}, then one
may show that S(A) := (S(A), <, 7) is a Priestley space.
Moving in the reverse direction, if X = (X, <, 7) is a Priestley space, then we

let A(X) be the collection of clopen up-sets of X and define

AX) := (AX),n,u, T, X).

It is easy to see that A(X) is a bounded distributive lattice, and moreover for each
bounded distributive lattice A, the map ¢a: A — AS(A) as defined above is an
isomorphism.

The maps A — S(A) and X — A(X) may be extended to contravariant functors
by defining their action on morphisms by taking inverse images. In detail, for
morphisms h: A — B in Dist;7 and a: X — Y in Pries, we define morphisms

S(h): S(B) —» S(A) and A(a): A(Y) — A(X) by

The resulting functors S and A provide a dual equivalence of categories between
Dist; T and Pries, and the unit of the corresponding adjunction is given by the
sections pa. The sections of the counit are given by the maps ¢¥x: X — SA(X)
defined by

Yx(z) ={U € A(X) :z e U},

where X is a Priestley space.
Note that if A is the bounded distributive lattice reduct of a Boolean algebra,

then the prime filters of A coincide with its maximal proper filters (aka ultrafilters).
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In this setting, the order on the Priestley dual S(A) is the equality relation, and
S(A) may be viewed as a topological space without expanded structure. The topo-
logical spaces arising in this way are Stone spaces, i.e., compact Hausdorff spaces
having a basis of clopen sets. Because each Dist | T-morphism between Boolean alge-
bras is a Boolean algebra homomorphism, restricting Priestley duality to Boolean
algebras recovers Stone’s duality between Boolean algebras and Stone spaces [53].
Priestley duality may also be restricted to obtain dualities for other important
classes of bounded distributive lattices. We call a Priestley space X = (X, <,7) an

Esakia space if for every clopen subset U <€ X, the down-set

WUi={zeX :yelUx <y}

is clopen too. A continuous isotone map «: X — Y is called an Esakia map or
Esakia function if for every z € X and z € Y such that a(z) <y z, there exists
y € X such that x <x y and «a(y) = z. We denote by Esa the subcategory of Pries
whose objects are Esakia spaces and whose morphisms are Esakia maps.

Esakia proved in [21] that Esa and HA are dually-equivalent categories. The
restrictions of the functors S and A witness this fact, with the modification that for

an Esakia space X we define” for U,V € A(X),

U—V=(1UnV))" = (LU vV)))S*

and set A(X) = (A(X),n,u,—, &, X).

"A moment’s reflection shows U — V = {x € X : U n fx € V}, which may be a more evocative
presentation in connection to relational semantics.
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Esakia duality is the first of many variations of Stone-Priestley duality that we
will encounter in the coming pages, and in order to ease our notational burden we
will use the symbols S and A for all these variations.

Note that Esakia duality may itself be restricted to obtain dualities for many
significant classes of Heyting algebras. Of these, we mention only its restriction to
Godel algebras: An Esakia space (X, <, 7) is the Esakia dual of a Godel algebra if
and only if (X, <) is a forest® (see, e.g., [12]). We will employ Esakia duality for
Godel algebras in Chapter 6.

It is notable that the Stone and Priestley dualities are natural dualities in the
sense of Section 3.1. To see the connection, denote by 2 = ({0,1}, A, v,0,1) the
two-element bounded distributive lattice, and by 2’ the two-element Boolean alge-
bra (i.e., the expansion of 2 by its uniquely-determined complementation opera-
tion). Then the variety of bounded distributive lattices coincides with ISP(2), and
the variety of Boolean algebras coincides with ISP(2"). Moreover, if ¢ is a prime
filter of the bounded distributive lattice A, then we may define a bounded lattice

homomorphism h;: A — 2 by

1 zex
he(x) =

0 xé¢r

and every homomorphism A — 2 is of this form for some r € S(A4). Moreover,
given a bounded lattice homomorphism h: A — 2, the set h~1[1] is a prime filter
of A, and each prime filter of A is of this form. The analogous statements also
hold for Boolean algebras, and in this manner one may view S as a hom-functor as
in Section 3.1. Likewise, A may be presented in terms of the two-element linearly-

ordered Priestley space (or two-element Stone space). Note that both the Stone

8A poset P is a forest if 1z is totally-ordered for any x € P.
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and Priestley dualities may be obtained by using the NU strong duality theorem.
In contrast, Esakia duality is not a natural duality because HA is not ISP(A) for
any finite algebra A (or even any finite collection of finite algebras). This difficulty
persists even if one restricts one’s attention to Godel algebras (but see [17, 12]).
From the perspective of natural duality theory, it is easy to see that Priestley
duality may be modified in order to account for the omission of one or both bounds
from the algebraic signature. Let Distt be the category of distributive lattices with
a designated greatest element (and possibly missing a least element). A pointed
Priestley space is a structure of the form X = (X,<,T,7), where (X, <,7) is a
Priestley space and T is a constant designating the greatest element of (X, <).
We denote the category of pointed Priestley spaces (with continuous isotone maps
preserving T) by pPries. The categories Distt and pPries are dually equivalent via

the functors S and A, subject to the following modifications:

1. For an object A of Dist, we let S(A) = {r : ¢ is a prime filter of A or r = A}.

2. For an object X of pPries, we let A(X) = {U < X : U is a clopen and U # J}.

Similar comments apply to the omission of the bottom bound or both bounds from
the signature. Each of these modifications of Priestley duality may be found by
application of the NU duality theorem. We sometimes refer to the elements of
{r:ris a prime filter of A or r = A} as generalized prime filters of A.

Priestley duality for top-bounded distributive lattices may be restricted to give
a duality for Brouwerian algebras, just as Priestley duality in its fully-bounded
incarnation may be restricted to give Esakia duality for Heyting algebras. The
category BrA is hence dually equivalent to the category pEsa of pointed FEsakia spaces
with pointed Esakia maps. The pointed Esakia spaces corresponding to relative
Stone algebras are precisely the pointed Esakia spaces whose order reducts are top-

bounded forests (aka trees).
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Figure 3.1: Hasse diagrams for the different personalities of the object K

3.3 The Davey-Werner duality

The variety of Kleene algebras (see Section 2.2) coincides with ISP(K), where

K= ({_1707 1}7 Ny V, T, _17 1)

is the expansion of the normal distributive i-lattice D3 by constants designating the
least and greatest elements. Davey and Werner gave a strong natural duality for
Kleene algebras in [19], using K as a dualizing object. Under the Davey-Werner

duality, the alter ego of K is

IS = ({_17 07 1}7 <, Q; KO: T)a

where < is the partial order determined by —1 < 0 and 1 < 0, @ is the binary
relation given by zQy iff (z,y) ¢ {(—1,1),(1,-1)}, Ko = {—1,1}, and 7 is the
discrete topology on {—1,0,1} (see Figure 3.1). The following provides a useful
external description of IS.P*(K) (see [14, p. 107] and [19]).

Proposition 3.3.1. (X, <,Q, Xo,7) is an isomorphic copy of a closed substructure

of a nonempty power of K if and only if all the following hold.
1. (X,<,7) is a Priestley space,
2. Q is a binary relation that is closed in X2,
3. Xy is a closed subspace, and
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4. Forall z,y,z€e X,

(a) 2Qux,
(b) xQy and x € X9 = x <y,

(c) xQy and y < z = zQ=x.

We say that (X, <,Q, Xo,7) is a Kleene space if it satisfies the conditions given
in Proposition 3.3.1, and denote the category of Kleene spaces with continuous
structure-preserving morphisms by KS. From the above, KA and KS are dually
equivalent categories.

Later on, we will restrict the Davey-Werner duality to a subcategory of KS that
provides a duality for bounded Sugihara monoids. To get a duality for Sugihara
monoids tout court, we need a variant of the Davey-Werner duality for normal dis-
tributive i-lattices (i.e., we must drop bounds from the signature). This variant
of the Davey-Werner duality originally comes from the author’s [24]. Recall that
NDIL = ISP(D3), where D3 = ({—1,0,1}, A, v, —) is the three-element i-lattice

chain with one zero.

Theorem 3.3.2. Let D3 = ({—1,0,1}, <,Q, Dy, 0,7), where < is the partial order
determined by —1 < 0 and 1 < 0, Dy is the unary relation {—1,1}, Q is the binary
relation given by xQy iff (x,y) ¢ {(—=1,1),(1,—1)}, and 0 is a constant designating
the greatest element with respect to <. Then D3 dualizes D3, and this duality is

strong.

Proof. We will use Corollary 3.1.2. Let D3 = {—1,0,1} be the universe of Ds.

Direct computation verifies that the following are the carriers of subalgebras D%:

{O}7AD07 <N (DO X D3)7 =N (D3 X D0)7D0 X D37D3 X DOaDgaADygv
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>7Q7D0 X {0}7{0} X D07D3 X {0}7{0} X D37D(%7

where Ag denotes the equality relation on a given set S. It is easy to see that
{<, Dy, @, 0} entails the above collection of relations (see, e.g., [14, Section 2.4]).

We next compute P;:

ho: {0} — Dg3 defined by hy(0) = 0

hi: {—1,1} — D3 defined by hi(—1) = hy(1) =0
ho: {—1,1} — D3 defined by ho(—1) = —1 and ho(1) =1
hs: D3 — Dy defined by hs(—1) = h3(0) = hs(1) = 0
hy: D3 — D3 defined by hy(z) = x for all z € {—1,0, 1}

The graphs of the above are given by

grph(ho) = {(0,0)} = {0} x {0}

grph(h1) = {(=1,0), (1,0)} = Do x {0}
grph(hg) = {(=1,1),(1,1)} = Ap,
grph(h3) = {(=1,0),(0,0), (1,0)} = D3 x {0}
grph(hs) = {(=1,-1),(0,0), (1, 1)} = D3 x {0}

This proves that {<,0, Dy, Q} entails {0, Py, Ba}.
To conclude the proof, it suffices to show that {0} hom-entails {hq, h1, ha, hs, ha}.
Theorem 3.1.3(3)(b) guarantees that we may delete hg, hi, and hy since hz and hq

extend them. Since hy is the identity endomorphism, it is hom-entailed by any set
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of partial operations. Because hj is the constant endomorphism associated with 0,

it is hom-entailed by the constant 0. This proves the result. O

We will provide an external characterization of the structured topological spaces
in IS.P*(D3). This characterization and the arguments supporting it amount to
those in [14, Theorem 4.3.10], but for completeness—and because they will be useful
later—we recite them here. The structured topological spaces of interest are the

following.

Definition 3.3.3. A structure (X,<,Q, D, T,7) is a pointed Kleene space if:
1. (X,<,7) is a Priestley space whose greatest element is T ¢ D,
2. Q is a binary relation that is closed in X2,
3. D is a closed subspace, and

4. Forallz,y,z€e X,

(a) 2Qu,
(b) xQy andx e D = x <y,

(c) xQy and y < z = zQ=.

Lemma 3.3.4. Let X = (X,<,Q,D, T,7) be a pointed Kleene space. Then X

satisfies the following.
1. Q is symmetric.
2. If x <y, then yQux.
3. Ify<z andx e D, theny = x.

4. If e <y and ¢ < z, then yQz.

49



5. If x € D, then xQy if and only if v < y.

Proof. Each of the above properties hold in every Kleene space by [14, p. 107], and

therefore hold in every pointed Kleene space as well. O
Let X be a set. For each U,V € X with U uV = X, we define a function
CUJ/: X — {—1,0, 1} by

-

1, ifzg¢V

Cuov(r) =140 ifzeUnV

-1, ifz¢U

Note that the map Cy,y is well-defined because U U V = X.

Lemma 3.3.5. Let X = (X, <,Q, D, T,7) be a structure in the language of pointed
Kleene spaces, and let U,V < X with U vV = X. Then Cyy is a continuous
structure-preserving morphism from X to D3 if and only if U,V are clopen up-sets

with (X\U x X\V)nQ = and U n'V < D°.

Proof. Suppose that Cyy: X — D3 is a morphism. Then U and V' are clopen
up-sets because they are the inverse images of clopen up-sets, viz. U = CE}/({O, 1})
and V = Cpy,({~1,0}). Observe that if z,y € X with z ¢ U and y ¢ V, then
Cuyv(z) = —1 and Cyy(y) = 1 are not Q-related in D3. If follows that xQy fails in
X, whence (X\U x X\V)nQ = . To see that UnV < D€, notice thatifx e UnV
then Cyy(z) = 0 ¢ Dy. This gives z ¢ D since Cyy is structure-preserving. Hence
rz e D and U n'V < D€ follows.

To prove the converse, assume that U and V are clopen up-sets with

(X\UxX\V)nQ=gand U nV < D".
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We will prove that Cyy is a continuous structure-preserving morphism. For conti-

nuity, it suffices to notice that

Coy {01 =UnV
Covl{-1}] =U®

Covl{j]=Vve

are all open in X.

For the preservation of the order relation, let z,y € X with z < y. Were
Cuv(y) = 0, we would have Cyy(z) < Cyy(y) because 0 is the greatest element
of D3. Were Cyy(y) = 1, then by definition y ¢ V. Because V is an up-set, this
implies « ¢ V' as well, and hence Cpy(z) = 1. An identical argument shows that if
Cuyv(y) = —1, then Cyy(xz) = —1. Thus Cyy preserves <.

For the preservation of @, let z,y € X with Cyv(y) = 1 and Cyy(z) = —1.
Then y ¢ V and z ¢ U, so we have (x,y) € X\U x X\V. It follows that (z,y) ¢ Q
because (X\U x X\V) n Q = &J, whence by taking the contrapositive we have that
zQy implies Cy v (z) Q Cuy (y).

For the preservation of D, let z € D. Then © ¢ U nV since U n'V € D, and
thus Cyv(z) = —1 or Cyy(x) =1, i.e., Cyy(x) € Dy.

Lastly, for the preservation of T, note that U,V being up-sets gives T e U n V.
Then Cyv(T) = 0 by the definition of Cyy, and 0 is the greatest element of Dj.

This settles the proof. O

Lemma 3.3.6. Let X = (X, <,Q, D, T,7) be a pointed Kleene space and let a: X —
D3 be a continuous structure-preserving morphism. Then there exist clopen up-sets

U,V € X such that o = Cyy.
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Proof. Set U := a7 ![{0,1}] and V := o ![{—1,0}]. Then U and V are clopen
up-sets, being the inverse images of clopen up-sets. Moreover, Cyy(z) = a(x) for

all x € X. O
Theorem 3.3.7. IS.P*(D3) is exactly the class of pointed Kleene spaces.

Proof. We apply the preservation and separation theorems. Note that Ds3 is a
pointed Kleene space, whence Theorem 3.1.4 gives that ISP (D3) consists of pointed
Kleene spaces.

For the reverse inclusion, we apply Theorem 3.1.5. Let X = (X, <,Q, D, T, 1) be
a pointed Kleene space. Firstly, let x,y € X so that zQy fails. Note that {z : 2Qx}
is an up-set by Definition 3.3.3(4)(c). Moreover, since @ is closed in X? and (X, )
is compact, we have also that {z : zQz} is closed (i.e., since the projection maps
are closed maps in this setting). As X is a Priestley space, {z : zQz} is hence the
intersection of clopen up-sets. Because y ¢ {z : zQz}, there exists a clopen up-set

U with y ¢ U and z € U for every zQx. Set

W:={we X : (VzeU")(2Qu fails)}.

Then W is open as a consequence of () being closed and U being compact, and is
down-set by Definition 3.3.3(4)(c). By Lemma 3.3.4(5), we have also that D n U <
W. There is hence a clopen down-set W/ < W such that {z} U (D nU®) € W".
Setting V' = (W'), we have that V is a clopen up-set with z ¢ V and U n'V < D*.
Moreover, (X\U x X\V) n Q = . It follows that Cyy separates  and y.
Secondly, let x,y € X with x € y. In the case that xQy fails, we may use the
separating morphism constructed above. In the case that xQy, we have that x ¢ D

by Lemma 3.3.4(5), and from 3.3.4(3) it follows that = € z for each z € D. There
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hence exists a clopen up-set U disjoint from {y} U D with z € U. The morphism
Cy,x then separates x and y.

Thirdly, let x,y € X with x # y. Then x € y or y € z, so z and y may be
separated by the above.

Fourthly, if x ¢ D, then we consider two cases. First, if D = ¢, then use Cx x.
If D # &, then for any y € D we have that x € y. In this case, we may use the

separating morphism constructed above. O

The following is immediate by combining the results above.

Corollary 3.3.8. NDIL is dually equivalent to the category pKS is pointed Kleene

spaces and continuous structure-preserving morphisms.

In the remainder of our work, we will reserve the symbols D and & for the
functors of the Davey-Werner duality (whether for KA or NDIL).
We conclude this section by recalling some well-known technical results that

prove useful for working with the topologies of (pointed) Kleene spaces.

Lemma 3.3.9 ([14, Lemma B.6, p. 340]). Let A be an index set and L € {D3,K}.
Consider L as a topological space endowed with the product topology. For each

aeAandle{-1,0,1}, let Uy = {z € LA : x(a) = 1}. Then

{Ugi:aeAandle{-1,0,1}}

is a clopen subbasis for the topology on L.

Given an A € NDIL u KA, the Davey-Werner dual of A has topology induced as

a subspace of L4 as above. Hence from the previous lemma we obtain

Lemma 3.3.10. Let A € NDIL U KA. Then the sets U,y = {h € D(A) : h(a) =},

where [ € {—1,0,1} and a € A, give a clopen subbasis for the topology on D(A).
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3.4 Extended Priestley duality for residuated structures

Of the topological dualities we have seen so far, only Esakia duality provides a
dual equivalence between a category of structured topological spaces and a category
of residuated algebras. Esakia duality is a restriction of Priestley duality, and this
method of obtaining a dual equivalence relies on the fact that Heyting algebras
are uniquely determined by their lattice reducts. For most classes of distributive
residuated lattice-based structures, this method is hopeless: A single lattice typically
admits many different residuated expansions.” We show in Chapter 6 that Sugihara
monoids and bounded Sugihara monoids are uniquely determined by their reduct
in NDIL, and enjoy an Esakia-like duality by restricting the Davey-Werner duality.
Except for the special cases of Heyting algebras, Sugihara monoids, and some of their
expansions and reducts, we must use another method to get topological dualities for
(distributive) residuated algebras—namely, augmenting the structure of Priestley
duals. We turn to this extended Priestley duality in the present section.

The ideas discussed here descend from Jonsson and Tarski’s celebrated work on
Boolean algebras with operators [39, 40] and Hansoul’s duality theory for them [36].
In the style depicted here, they come from various studies of Urquhart. This body

of work is probably most thoroughly synthesized in in Urquhart’s [56]. We draw

9To get a sense of the scale of this problem even for finite algebras, there are just two lattices
(both distributive) based on a four element set. Computer-assisted enumeration shows that up to
isomorphism there are 20 residuated lattices on four elements. Up to isomorphism, there are 1116
residuated binars on four elements.
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most of our exposition from the latter, but also rely on Galatos’s exposition [28].1
We also refer to [13, 11, 35] for further information.

We first provide some notational conventions. Suppose that (X, R) is a structure
consisting of a Priestley space X and a ternary relation R € X3. Given U,V < X,
define

U-V={2eX:3zxelUyeV)R(z,y,2)}

U—->V={reX:(Vy,ze X)(R(z,y,z) and ye U) = zeV)}

The following specializes the dual spaces defined in [56] to the commutative and
associative case. Recall that if X is a Priestley space, then A(X) denotes the set of

clopen subsets of X (see Section 3.2).

Definition 3.4.1. A structure (X, R,*,I) is a residuated Priestley space if X is
a Priestley space, R < X3, * is a unary operation on X, and I < X, and for all

/ / / .
x,y, z,w,x' Yy, 2 e X:

1. There exists u € X such that R(z,y,u) and R(u,z,w) if and only if there

exists v € X such that R(y, z,v) and R(x,v,w).
2. R(z,y,z) if and only if R(y,z,z).
3. Ifr’ <,y <y, and 2 < 2’ and R(z,y, z), then R(z',y', 7).

4. If R(x,y,z) fails, then for some U,V € A(X) we have x € U, y € V, and
z¢U-V.

5. For all U,V € A(X), the sets U -V and U — V are clopen.

OWe note that each [56] and [28] is more general than the other in different directions. Urquhart
accounts for nonassociative residuated structures, but includes only one of the two residuals in
the language and adds an additional unary operation — satisfying the De Morgan laws. Galatos
includes both residuals in his treatment, but assumes associativity and does not include a negation-
like operation. Because our interest is commutative residuated lattices (where the two residuals
coincide) with negation, Urquhart’s treatment is most suitable for us.
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6. Ie AX), andU -1 =1-U=U foralUeAX).
7. * is continuous and antitone.

If Xy = (X1,<1,Ri, 1, %, 1) and Xo = (X9, <o, Ra, I2,*,72) are residuated Priest-
ley spaces, a map o: X1 — X9 is a bounded morphism if it satisfies the following

five conditions.
1. « is continuous and isotone.
2. Ri(z,y, z) implies Ro(a(x), a(y), a(z)).

3. If Ro(u,v,(z)), then there are x,y € X1 such that u < a(z), v < a(y), and

Rl(x7y7 Z)'

4. If Ro(a(x),v,w), then there are v,w € X such that y < a(v), a(w) < z, and

Ri(z,v,w).
5. 0571[12] = 1.
6. a(z*) = a(x)*.

Residuated Priestley spaces and bounded morphisms form a category, which we

denote by RLT .

Theorem 3.4.2 ([56]). The category of bounded distributive commutative residuated

lattices RL with De Morgan negation is dually equivalent to RLT .

To describe how to augment the functors A and S so as to obtain the duality of
Theorem 3.4.2, we introduce some more notation. For A a residuated lattice, the
complex product of filters ¢, y of A is the set r-y = {zy: z € r,y € y} and the filter

product of ¢ and 1y is

rey="10r-9)={zeA:(Freryecy)(zy<2)}

56



Obviously, if 1, 9,3 are filters, then r -y < 3 if and only if rey < 3.
Let A = (A, A, v,,—,e, L, T,—) be a bounded distributive CRL expanded by
a negation — that satisfies the De Morgan laws. Moreover, let L be its reduct in

Dist| 7. Define a ternary relation R on S(L) by

R(x,v,3) iff ren < 3.

Moreover, set

I'={reS(L):eey},
S(A):=(S(L),R,I),

Fi={zeAd:—xdr}

The operation * defined above is sometimes called the Routley star (see [52, 51]).

For the other functor, if X = (X, <, R, I,*,7) is a residuated Priestley space, set

where the operations -, — are defined for U,V € A(X, <, 7) as above, and

-U={zxeX:2*¢U}.

The foregoing augmentations of S and A give the dual equivalence between the

category of bounded distributive CRLs expanded by a negation and RL7 .

Remark 3.4.3. Observe that if A is a bounded CRL and the negation operation

— treated above is defined by z — z — L (e.g., as in MTL-algebras), then the
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inclusion of * on the dual space is extraneous. In this situation, we will often drop

* from the signature.

[56] and [11] give correspondences between many equational properties of resid-
uated structures and their dual spaces, allowing us to formulate extrinsic axioma-
tizations of the dual spaces corresponding to the residuated lattices of interest. In
particular, one may explicitly axiomatize the categories SM7 and MTL” that provide
extended Priestley duals of algebras in SM| and MTL. However, we will not need
to employ an explicit description of these categories, and are content that SM7 and
MTL" exist and are dually equivalent to SM| and MTL, respectively, via restrictions

of the functors S and A.

3.4.1 Dropping lattice bounds

So far, we have followed previous authors by formulating extended Priestley
duality in terms of bounded residuated structures. However, we need a variant of
extended Priestley duality for GMTL for our work in Chapter 8, and we construct
the aforementioned variant in this section. The results of this section come from the
author’s work in [27], and were inspired by [37].

Denote by MTLg;, the full subcategory of MTL whose objects have no zero divi-

sors.
Theorem 3.4.4. MTLg;, and GMTL are equivalent.

Proof. We define a functor (—)p: GMTL — MTLy;, as follows. Given an object
A = (A A, v,,—,1) of GMTL, we define an algebra Ay on the carrier A u {0},
where 0 ¢ A is a new element.'! The lattice order on Ag is uniquely determined by

setting 0 < a for all a € A. For the multiplication and its residual, we define a new

"' Note that Ag is the ordinal sum 2@ A of 2 and A.
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operation # on A U {0} by

a-b abeA

a*b=
0 a=0o0rb=0

This uniquely determines a residual — of * given by

-

a—b abeA
a—-xb=140 b=0andaec A
1 a=20

One can readily check that Ag = (Au{0}, A, v, *, —,1,0) is a bounded, distributive,
integral CRL. Moreover, Ay = (zr — y) v (y — ) = 1, whence Ay is an MTL-
algebra. Since A is a subalgebra of Ay, we have A is an object of MTLg;,.

Given GMTL-algebras A and B and a homomorphism h: A — B, define a map
ho: Ag — Bg by

h(z) zeA
ho(x) =
0B  z=04
Then h is a homomorphism of MTL-algebras. It is easy to check that (—)g is
functorial.

Note that if A and B are objects of GMTL and h: Ag — By is a homomorphism,
then the restriction Al 4 of h to A is a homomorphism from A to B, and (h4)o = h.
This shows that (—) is full. It is obviously faithful as well.

To see that (—)g is essentially surjective, let A be an object of MTLgj,. Observe
that A\{0} is closed under - by the fact that A has no zero divisors. Moreover,

since y < x — y for any x,y € A, we have y < x — y # 0 whenever y # 0. This

59



shows that A\{0} is closed under —. Since z -y < z A y for any =,y € A, A\{0}
is closed under the lattice connectives too. It follows that A\{0} is the carrier of a
(A, v, —, 1)-subalgebra A’ of A. A’ is a GMTL-algebra, and Af, =~ A.

The above proves that (—)o is full, faithful, and essentially surjective, and there-

fore witnesses an equivalence of categories. O

The dual equivalence between MTL and MTL™ may be restricted to obtain a
dual equivalence between MTLg;, and the corresponding full subcategory MTLY;,, of
MTL". Following Theorem 3.4.4, GMTL is dually equivalent to MTL},, by composing
the relevant functors. Spelling this out, let A be a GMTL-algebra. By the above,
Ay is an MTL-algebra with dual S(Ag) in MTL}; . Notice that by construction A is
a prime filter of Ay, giving that the dual space S(Ay) has a greatest element. If A
and B are GMTL-algebras and h: A — B is a homomorphism, the S(hg) preserves
the greatest element of S(Bg) because hy'[B] = A.

For a top-bounded object X = (X,<,7, R, E) of MTL", the set of nonempty
members of A(X) is closed under the operations N, U, -, and —, and also E # (.
Consequently, the nonempty clopen up-sets of X are the universe of a (A, v, -, —, 1)-
subalgebra of A(X). This subalgebra is a GMTL-algebra. Also, if Tx and Ty are
the greatest elements of top-bounded MTL"-objects X and Y and a: X — Y is
a morphism preserving the greatest element, then for each U € A(Y) we have
Ty € A(a)(U) gives that A(a)(U) # &. This demonstrates that such a map «

restricts to the to GMTL-algebras of nonempty clopen up-sets of X and Y.
Definition 3.4.5. Let GMTLT be the category with

e objects given by structures (X, R, 1, T), where (X, R,I) is an object of MTLT

with maximum element T.
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e morphisms given by maps : (X1, Ry, I1, T1) — (Xo, Ra, I2, To) between objects
of GMTL", where « is a bounded morphism (X1, Ri,I1) — (X2, Ra,I2) and
Oé(Tl) = TQ.

As an immediate consequence of the work in this section, we have:
Theorem 3.4.6. GMTL and GMTLT are dually equivalent.

In analogy to Priestley duality for Dist, we once again use the symbols A and
S for the duality between GMTL and GMTL™. In particular, for an object A and
a morphism h of GMTL, by S(A) and S(h) we respectively mean S(Ag) and S(ho)

(where the latter two occurrences of S refer to the variant of this functor for MTL).
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Chapter 4

Functional dualities for residuated

structures

Although Esakia duality is a standard tool in the study of Heyting algebras,
extended Priestley duality in the style of Section 3.4 has attracted comparatively
few applications to more general kinds of distributive residuated lattices. This is
probably a consequence of the complexity of residuated Priestley spaces vis-a-vis
Esakia spaces, and in particular the conceptual hurdle of working with the ternary
relation dual to the residuated operations. Sometimes this difficulty may be ame-
liorated because the ternary relations of a class of residuated Priestley spaces has a
particularly simple form. This chapter explores one such situation, focusing on resid-
uated Priestley spaces where the relation dualizing multiplication can be understood
as a (sometimes partially-defined) function. Section 4.1 explores this phenomenon in
the context of semilinear residuated lattices, and descends from the author’s work in
[27]. Section 4.2 adopts a more abstract approach to the functionality phenomenon,

and comes from the author’s [26].
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4.1 Functional duality for semilinear residuated lattices

Recall that for any residuated lattice A = (A, A, v,-,\,/,e) and ¢ and p filters

of A, the filter product of ¢ and y is

tey={zeA:(Jrxer,yen) zy < z}.

The next lemma provides an essential result for working with e.

Lemma 4.1.1. [28, Lemmas 6.8 and 6.9] Let A be a residuated lattice and let ¢, v,
and 3 be filters of A. Then we have:

1. ren is a filter of A.

2. If A has a distributive lattice reduct, 3 is prime, and ey < 3, then there exist

prime filters ¢’ and v’ of A such thatr <, 9v< vy, ey 3, andreny < 3;.

The operation e on the filter lattice of A restricts to S(A)u{A} in some contexts.

Recall the distributive laws (\v) and (v/) from Section 2.1.1.

Lemma 4.1.2. Let A = (A, A, v, \,/,e) be a residuated lattice and let r,y be
filters of A.

1. If A satisfies (\v) and vy is prime, then reye S(A) u {A}.
2. If A satisfies (v/) and ¢ is prime, then reye S(A) u {A}.

3. If A is a semilinear CRL, then r ey € S(A) u {A} provided that at least one
ofte S(A) orye S(A4).

Proof. To prove (1), note that ¢ ey is a filter by Lemma 4.1.1(1). If y is prime, let
x vy € rey. By definition there is then some 2’ € r and 3/ € y so that 2/ -9/ <z v y.

This entails that ¥’ < 2/\(x v y), and applying (\v) gives ¥/ < (z/\z) v (z/\y), which
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is in y because filters are up-sets. By the primality of 1, one of z'\x or z/\y is in v.
Hence one of 2’ - (2'\z) < z or 2’ - (2’\y) < y is in r e y, whence r e y is prime or
improper.

(2) follows from the a similar argument, and (3) follows because semilinear CRLs

satisfy both (\v) and (v/). O

Corollary 4.1.3. Let A be a bounded semilinear CRL. Then e gives a partial binary
operation on S(A), and is undefined exactly when rey = A. In particular, this claim

holds if A € MTLUSM . If instead A € GMTL, then e is a total operation on S(A).

The previous results are phrased in terms of (generalized) prime filters, but we
can also offer a treatment native to abstract spaces. Although we will only invoke
this abstract description for MTL and GMTL, to state the result in full generality
we let sCRL" be the full subcategory of RL] corresponding to semilinear bounded

CRLs.

Lemma 4.1.4. Let X = (X,<,7,*,R,I) be an object of sCRLT. If z,y,z € X
satisfy R(x,y,z), then there exists a least element z' € X such that R(x,y,2"). If
X is an object of GMTL", then for any x,y € X there exists a least 2z’ € X with
R(z,y,2").

Proof. According to extended Priestley duality, there exists a bounded semilinear
CRL A so that X =~ S(A). Let a: X — S(A) be the map witnessing this iso-
morphism. Each of a(x), a(y), and a(z) are prime filters of A, and moreover
RSB (a(z), a(y), a(2)). Thus a(z) e a(y) S a(z).

Lemma 4.1.2 provides that o(z)ea(y) is either a prime filter of A or else coincides
with A. Because a(z) # A and a(x) e a(y) S a(z), the latter possibility cannot hold
and thus a(z) e a(y) € S(A). Therefore RS (a(z), a(y), a(z) o a(y)). It follows

1

that R(z,y,a ' (a(z) e a(y))) since a~! is an isomorphism with respect to R. Also,
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if z € X and R(zx,y,z), then a(z) e a(y) € «a(z) by the isomorphism. Since « is
an order isomorphism, we additionally have a~!(a(x)) e a(y)) € a 1 (a(2)) = 2. It
follows that 2’ := a~!(a(z) e a(y)) is the minimum element of {z € X : R(x,y, 2)}.
This proves the claim for sCRL7 .

The claim for GMTL" follows by the same argument, noting that in this setting
if x,y € X then there always exists z € X with R(x,y, z) as a consequence of e being

total. =

Given any object X of sCRL] or GMTL", the previous lemma permits us to

define
min{z € X : R(x,y,2)}, if{ze X:R(x,y,2)} # &

Tey =
undefined, otherwise

Of course, the second clause is unnecessary if X is in GMTL".

Lemma 4.1.5. Let X be an object of sSCRL} or GMTL". Then each of the following

holds in every instance where the occurrences of e are defined.
1. R(z,y,2) iff cey < z.
2. xe(yez)=(rey)ez.
3. rey=yez.
4. Ifx <y, thenxez<yezand zex < zey.

Proof. Note that if R(z,y,z), then there is a least 2’ € X so that R(z,y,2’) by
Lemma 4.1.4. We have that 2’ = z e y by definition, and therefore z e y < 2. On the
other hand, if z e y is defined, then R(x,y,z e y) by the definition of e. Moreover, if
x ey < z then R(x,y, z) since R is isotone in its third coordinate. This proves (1).

For the rest, let A be such that X >~ S(A) and let a.: X — S(A) be an isomor-

phism. The proof of Lemma 4.1.4 demonstrates that zey = a~!(a(x)ea(y)). Asan
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immediate consequence, o(z o y) = a(x)  a(y). Filter multiplication is associative,

commutative, and order-preserving for any CRL, so we obtain the result. O

The next proposition serves primarily to communicate some definitions in Chap-

ter 8, but we again state it in more generality than necessary.

Proposition 4.1.6. Let A be a bounded semilinear CRL or GMTL-algebra, and

suppose that for v,3 € S(A) there exists t € S(A) such that r ey < 3. Then
max{r € S(A) :r ey < 3}
exists. Moreover, this mazimum is given by ) = 3, where
p=3:=|J{reS(4):rency).

Also, ey S 3 if and only if t S 9y =3.

Proof. We begin by observing that n = 3 is a prime filter of A. To see why, note
that if x € y = 3 and < y, then there is r € S(A) such that x € r and repy < 3.
It follows that y € ¢ because filters are up-sets, whence y € y = 3 and ) = 3 is an
up-set.

To see that y = 3 is close under A, let z,y € vy = 3. By definition there exist
11,82 € S(A) such that x € r1, y € ro, r109 < 3, and roen < 3. Let r1 v 12 be the filter
generated by r; U ro. Because filters are closed under A, this gives x A y € 11 Vv o.

We will prove that

(r1virz)encs.

Pick g € (r1 v r2) ® y. By definition there is z € p1 v 12 and w € y satisfying zw < q.
From the standard characterization of generated filters and the fact that z € r1 v zo,

we know that there are z; € r1, 29 € r9 with z; A 29 < z. From the assumption
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we know z; -w e ;e C 3and zo-w € o o) C 3, and by closure under A we get
(z1-w) A (22-w) € 3. The distributive law (-A) is satisfied in every semilinear CRL,
whence (z1 A z2) - w € 3. This implies that (21 A 22) - w < z-w < ¢ is in 3, whence
(r1 viz)en S

By Lemma 4.1.1(2), there exists a prime filter p such that r; vrs € p and pey C 3.
Thus x Ay epand pen C 3, giving x Ay € y = 3. This suffices to prove that n = 3
is a filter.

Next we prove that ) = 3 is prime, so pick x v y € ) = 3. By definition there is
€ S(A) with z vy € r and r ey € 3. Because ¢ is prime, we know that z v y € ¢
gives x € r or y € ¢, whence x € y = 3 or y € y = 3. Additionally, notice that
n = 3 C 3 gives that y = 3 # A provided that 3 # A. Therefore y = 3 € S(A).

To prove the residuation property, first let r,1,3 € S(A). Assume that r ey C 3.
For every « € ¢ we have x € vy = 3 by definition, so ¢ € y = 3. Conversely,
assume that r € y = 3. Lemma 4.1.5 guarantees that e is order-preserving and
commutative, so we have ren S ne (h = 3). Letting z € y e (y = 3), by definition
there exists x € ) and y € y = 3 such that zy < 2. From y € y = 3, we know
that there exists v € S(A) with y € tv and w ey < 3. Since z € y and y € 1,
this gives zy € to e ) € 3. Because 3 is an up-set, this implies that z € 3, whence
rey S pe(n=3) <3 This suffices to show ren < 3 if and only if r £ y = 3, and

that completes the proof. O
By importing the above result to an abstract space by extended Priestley duality,
we immediately obtain:

Corollary 4.1.7. Let X be an object of sCRLT or GMTL". If for y,z € X there
exists some x € X such that R(xz,y, z), then there is a least ¥’ € X with R(2',y, 2).

Moreover, x o y < z if and only if y < .

We denote 2’ in the above by y = z.
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We have seen that the (partial) prime filter operations e and = may be defined
on an abstract object X in sCRL7T (or in GMTL). Specializing to MTL, we give a

similar analysis for the Routley star *.

Lemma 4.1.8. Let A = (A, A, v, -, —,1,0) be an MTL-algebra. For each € S(A),

P =max{ne S(A) :ren # A}.

In particular, the mazimum above exists.

Proof. Note at the outset that 0 ¢ r e t*. To see this, suppose on the contrary that
there exists x € r,y € t* with zy < 0. Then y < z — 0 = —z. The prime filter ¢*
is an up-set, so this gives —x € r*, and hence ——x ¢ r. Because r is an up-set and
r < ——ux, it follows that x ¢ r. This is a contradiction, so 0 ¢ ¢ e r*. It follows in
particular that p e r* # A.

Next suppose that y &€ ¢*. Then there is y € y with y ¢ ¢*, so —y € ¢. This
implies —y -y e ren. But —y-y = 0 in any MTL-algebra, so r ey = A. This proves

the lemma. O

Corollary 4.1.9. Let X be in MTL". For each x € X, there exists a greatest y € X
so that there exists z € X with R(x,y,z). Equivalently, there is a greatest y € X

such that x e y is defined.

Proof. From extended Priestley duality there is an MTL-algebra A with X =~ S(A),
and we let a: X — S(A) be an isomorphism witnessing this fact. From Lemma
4.1.8 we know that a(z)* is the greatest element of S(A) multiplying with «(x) to
give a proper filter, and in particular RS®)(a(x), a(z)*, a(z) e az)*). Using the
fact that a~! is an isomorphism, it follows that R(z, o~ (a(x)*),a  (a(z)ea(x)*)).

Let y € X, and suppose that there is z € X with R(x,y,z). Then « being

R-preserving gives a(x) e a(y) < a(z). This implies that a(z) e a(y) # A, and
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applying Lemma 4.1.8 yields a(y) € a(z)*. Thus y < o !(a(x)*), proving that
a Y a(r)*) =max{ye X : (3z€ X) R(x,y,2)} as desired. O

For an object X of MTL" and = € X, define

¥ :==max{ye S: (Iz€ X) R(z,y,2)}.

This provides our abstract description of the Routley star.

4.2 Characterizing functionality

Section 4.1 reveals an unexpected connection between the functionality of extended
Priestley duals and the distributive laws (\v) and (v/) (see Section 2.1.1). The aim
of this section is to achieve a deeper understanding of the role these distributive laws
play in functionality. Our starting point is [32], where Gehrke explores the func-
tionality phenomenon in order to understand topological algebras!? as extended
Priestley duals of certain residuated structures. [32] provides a second-order char-
acterization of when extended Priestley duals are functional, but does not address
the role of the equational properties (\v) and (v/). In order to do so, we recast

Gehrke’s results in the language of canonical extensions.

4.2.1 Residuation algebras and canonical extensions

The residuated structures in [32] are of a somewhat different kind than those
introduced in Chapter 2. In order to conform with [32], for the purposes of this

section we work with the algebraic structures defined as follows.

12A topological algebra of type o is an algebra of type o in the category of topological spaces.
In other words, it is a topological space equipped with a continuous operation interpreting each
function symbol in o.
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Definition 4.2.1 (cf. [32], Definition 3.14). A residuation algebra is an algebra
A= (A n,v,\,/,L,T) such that:

1. (A, A, v, L, T) is a bounded distributive lattice.

2. \ and / are binary operations on A that preserve finite meets in their numer-

ators.

3. Forall x,y,z€ A,

r<z/y = y<a\z

As usual, the residuation law implies that \ and / convert joins in their denom-

inators into meets.

Remark 4.2.2. Note that if (4, A, v,-,\,/, L, T) is a distributive residuated binar
(see Chapter 2), then (A, A, v,\,/, L, T) is a residuation algebra. In every residua-
tion algebra with a complete lattice reduct, the residuals of / and \ may be defined
as usual for complete residuated structures. In this case, item (3) of the previous
definition entails that both / and \ share a common residual. The work to fol-
low implies moreover that residuation algebras are exactly the multiplication-free

subreducts of residuated binars.

Up to this point, we have worked with particular topological-relational represen-
tations of duals. For this section, we adopt a more abstract point of view and work
in the setting of canonical extensions. A treatment of the theory of canonical exten-
sions would take us far afield of our main purpose, but we recall a few of the main
ideas. For more information on canonical extensions, see for example [29, Chapter

6] and [33].

Definition 4.2.3 ([33], Definition 1). Given any lattice L, a canonical extension of

L is a complete lattice L® together with an embedding L — L? satisfying:
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1. Every element in L0 is a join of meets of elements of L and a meet of joins

of elements of L (Density).

2. IfA,B< L and A\ A <\/ B inL°, then there are finite subsets A’ € A and
B’ € B of with \ A’ <\/ B’ (Compactness).

Every lattice L has a canonical extension L, and it is unique up to an isomor-
phism that fixes L (see, e.g., [33, Theorem 1]). We thus refer to L’ as the canonical
extension of L.

If A= (A n,v,\,/,L,T)is aresiduation algebra, then the operations \,/, L, T
can be extended to the canonical extension of the lattice (A, A, v) (see [29, Section

6.1.2]) via the so-called w-extensions \™ and /™ of the operations \ and /, given by
x\Ty = \/{x'\y' 2’y e Aand v < 2’ and ¥ <y}

x/Ty = \/{x'/y' 2’y e Aand 2’ <z and y <y}

When the canonical extension of (A, A, Vv) is endowed with these operations, it
becomes a residuation algebra. We call the resulting residuation algebra the canon-
ical extension of the residuation algebra A, and denote it by A%. Because A’ has a
complete lattice reduct, we may always define an operation - on A% having \™ and
/™ as its residuals. We will freely make use of this operation when we work in the
canonical extension of a residuation algebra. Note that by [15, Lemma 10.3.1], -
restricts to the elements of the meet-closure of A in A°. For convenience, we denote
the meet-closure of A in A% by K(A%), and the join-closure of A in A% by O(A%).
A variety of expanded lattices is called canonical if it is closed under taking
canonical extensions, and an identity is called canonical if the variety it defines
is canonical. The identities (\v) and (v/) are canonical (see, for example, [29,

Theorem 6.23]).
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If L is a lattice, then recall that x € L is completely join-irreducible if for any
subset A € L, x = \/ A implies € A. The set of completely join-irreducible ele-
ments of L is denoted by J*(L). Note that whenever L is distributive, its canonical
extension L% is completely distributive. This implies that each z € J*(L°) is com-
pletely join-prime; in other words, whenever A € L°® with if z < \/ A we have z < a
for some a € A.

Canonical extensions play a role in duality theory because they provide an
entirely algebraic means of understanding duals. In particular, if L is a distributive
lattice, then J®(L°) plays the same role as the poset of prime filters in Priestley

duality. This leads us to the next definition

Definition 4.2.4. Let A be a residuation algebra. Then the relational dual structure
of A is A := (J®(A%), >, R), where R is a ternary relation on J*(A°) defined for
z,y,z € JP(A%) by

R(z,y,z) iff x<y-=z.

We say that the relation R is functional ify - z € J©(A%) U {L} when y,z e JP(A?).
In this case, we also say that A‘i is functional.
We say that R is functional and defined everywhere if y - z € J*(A?) whenever

y, z € JP(A?), in which case we say A’ is total.

As a caution, note that the dual relation R is defined somewhat differently in
the above than in previous chapters; we adopt this choice in order to conform with
[26] (which itself follows [32]).

Note also that functional relations as defined in [32] coincide with relations that
are functional and defined everywhere in Definition 4.2.4. The latter distinction is
particularly important to us in light of the contrast between the extended Priestley

dualities for MTL and GMTL (see Section 4.1) and the role of zero-divisors in that
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setting. Accordingly, we say that a residuation algebra A extensionally has no

zero-divisors if -y # L for all z,y e JP(A?).

4.2.2 The characterization

We have already seen several examples of residuation algebras whose duals are
functional among semilinear CRLs (Section 4.1). In that setting, functionality is a
consequence of the identities (\v) or (v/). Because these are equational conditions,
in that context we obtain the functionality of the dual of each algebra in an entire

variety of residuated structures. The next example shows that this is atypical.

Example 4.2.5. Let Zg be the usual group of integers modulo 3. We consider its
complex algebra A := (P(Z3),n,u,-,\,/,{0}), where the operations -, \, and / are
defined for U,V € P(Zs) by

U-Vi={n+m:xelUyeV},

U\V :={k:U-{k} <V},
UV = {k:{k} -V cU.

A is a commutative residuated lattice, and a fortiori a residuation algebra. Because

A s finite, we have A% = A. Observe that for each n,m € Zs, we have that

{n}-{m} = {n +mj}.

Consequently, the dual relation R on J®(P(Zs3)) is functional and defined every-
where. This means that A‘i is functional and total.
Notice that {,{0},{1,2},Z3} is the universe of a subalgebra of A. In this

subalgebra, we have {1,2} - {1,2} = Zs, which is not join-irreducible despite the
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fact that {1,2} is join-irreducible. Now since universal first-order sentences that are
satisfied in some structure must also be satisfied in its substructures, this example
illustrates that there is no universal first-order property in the language of residuated

lattices that characterizes the functionality of the relational dual structure.

Although we cannot offer a characterization of functionality in terms of universal
sentences (much less equations), we will provide a second-order characterization.
We begin with two technical lemmas that rephrase in the language of canonical
extensions one of the key properties of prime filters (to wit, that each prime filter

determines a maximal filter-ideal pair given by the prime filter and its complement).

Lemma 4.2.6. Let L be a lattice. Suppose that k € K(L°) is finitely prime and set

o:=\{yeL:y*k} Thenk<o.

Proof. Suppose on the contrary that A{x € L : k < 2} = k < o. Compactness
implies that there are finite sets A S {x e L: k< z}and B< {ye L:y * k}

satisfying
x = /\AS \/BZZZ//

This yields 2’ > k, and 3/ # k. To see why, note that if otherwise then the primality

of k gives y = k for some y € B (a contradiction). From this we obtain k < 2’ < ¢/,

which contradicts 1y’ * k. O
Lemma 4.2.7. Let L be a lattice. If k € K(L%) is finitely prime, then k € J*(L?).

Proof. By the density property of canonical extensions, it suffices to show that if

k=\/ A for some A < K(L°%), then k = a for some a € A. Set

0:=\/{$€L:x}k}.
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We argue by contradiction, assuming a < k for all a € A. Observe that for every

a € A we have

CLZ/\{CBELICL'ZCL}

as a consequence of A € K(L%). This implies that for each a € A there is z, € L
such that z, > a and z, * k. Consequently, for each a € A we have x, < o. This

proves \/{z, : a € A} < o, and thus

OZV{xa:aeA}Z\/Azk.

This is a contradiction to Lemma 4.2.6, and that settles the claim. ]

The above lemmas hold for an arbitrary lattice L. The rest of the results of this

section rely on the distributivity of the lattice reducts of residuation algebras.

Proposition 4.2.8. Let A be a residuation algebra. If A = (\v), then AJ is

functional.

Proof. Because (\Vv) is canonical, the hypothesis gives that A’ = (\v). Let z,y €
J®(A%) and suppose that z -y # L. From z,y € J®(4A%) < K(A°), we have
x -y € K(A%) because - restricts to K(A%). From Lemma 4.2.7, it suffices to show
that = - y is finitely prime.

Suppose that z -y < \/ S for a finite S < A% Residuating gives

yéx\”\/Sg\/{m\’rs:seS}

by (\v). Because the lattice reduct of A is distributive and y is prime, this gives

y < x\s for some s € S. Hence z -y < s for some s € S, concluding the proof. O
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The following is an immediate consequence of Proposition 4.2.8.

Corollary 4.2.9. Let A be a residuation algebra. If A satisfies (\v) and exten-

stonally has no zero-divisors, then A‘i is total.

Remark 4.2.10. Although Proposition 4.2.8 and Corollary 4.2.9 address residua-
tion algebras satisfying (\v ), one may obtain the same results by entirely symmetric

proofs if one replaces (\v) by (v/).

Our last proposition of this chapter emends [32, Proposition 3.16], and provides
our characterization of functionality on relational dual structures. (2) and (3) of
Proposition 4.2.11 below reformulate (2) and (3) of [32, Proposition 3.16] in the
language of canonical extensions. On the other hand, the condition given in Propo-
sition 4.2.11(1) is weaker than that of [32, Proposition 3.16(1)]. In particular, it
does not demand that the dual relation corresponding to - is defined everywhere.
Although the proof of (1)=>(2) is essentially that given in [32, Proposition 3.16], the
proof of (3)=(1) is simpler than the corresponding proof in [32, Proposition 3.16],

and is where the emendation occurs.

Proposition 4.2.11. Let A = (A, A, v,/,\, L, T) be a residuation algebra. The

following are equivalent.
1. A‘i is functional.

2. For all z,y,z € A and all j € J®(A®), if j < x then there exists ' € A such

that j <2’ and 2\(y v z) < (2"\y) v (2'\z2).
3. For all j € J®(A%), the map j\™(—) : O(A%) — O(A?) is v-preserving.

Proof. To prove (1)=(2), let z,y,z € A and j € J*(A®) with j < 2. Suppose that
ke J®(A%) with k < 2\(yvz). Then 2-k < yv z, 50 j-k < yv 2. By the hypothesis

we have j -k € J?(A%) U {L}. Since completely join-irreducibles in a distributive
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lattice are prime, this implies that j-k < y or j-k < z. Residuating, we obtain that

one of

kéj\”yz\/{a\y:aeAandjéa}
kzéj\”zz\/{a\z:aeAandjéa}

holds. Hence from k € J*(A) we get that there is x; € A such that j < xj, and one
of k < xi\y or k < x\z holds. The latter fact gives k < (zx\y) v (z\z). Since

i € A and j < x; for all such zp, we get

x\(yvz)z\/{kEJOO(A):k:< (yv2)} \/{ a\y) v (a\z) :a€ A and j < z}.

By compactness and because \ is antitone in its denominator, there exist elements

ai,...,ay € A such that

v ) < Vi) v (@\e) :1<i<n) < (@\y) v (2\2)

where 2’ := A]_, a; € A. Because j < 2/, this proves (1)=(2).
To prove (2)=(3), let j € J®(A%) and o1, 00 € O(A?). Because \™ is isotone in

its numerator, it suffices to show
2\"(01 v 02) < (x\"02) v (z\"02). (4.2.1)
The definition of the m-extension shows:
J\" (o1 v 02) \/{x\w z,we Aand j <z and w< o1 Vv o2}

J\"o1 = \/{x’\y c2',ye Aand j <2’ and y < 01}
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J\Tog = \/{x'\z :2',z2€ Aand j < 2’ and y < 09}

It suffices to show that for all x,w € A with j < x and w < 01 Vv 09, there are
#',y,z € A for which j < 2/, y < 01, 2 < 02 and z\w < (2"\y) v (2/\z). We have
w<ovo =\{yeAd:y<o}v\V{zeA:z <o} and from compactness
it follows that there exist y,z € A with w < y v z and y < 01, z < 02. From the
hypothesis, there exists 2’ € A so that j < 2’ and z\w < z\(y v 2) < (2'\y) v (z\2)
as required.

To prove (3)=(1), let j, k € J®(A?). Then j-k € K(A®) because of general facts
about canonical extensions of maps. From Lemma 4.2.7, it suffices to prove that if
z,y€ A%and j-k # L, then j-k < xvyimplies j-k < z or j-k < y. Density provides
that it is enough to prove the claim for z,y € O(A‘s)7 and compactness provides that
it is enough to prove the claim for x € A and y € A. Note that if j -k < z v y, then
by residuation and the hypothesis we get k£ < j\"(z v y) = (j\"z) v (j\"y). But k

is prime, so k < j\"z or k < j\"y. Hence j -k < x or j - k < y as needed. O
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Chapter 5

Algebraic representations of Sugihara

monoids

The array of duality-theoretic methods assembled in the foregoing chapters pro-
vides a toolkit for addressing algebraic questions, and now we begin deploying these
tools. The next three chapters provide a duality-theoretic analysis of Sugihara
monoids, and in particular of the equivalences of SM and SM; to categories con-
sisting of certain expansions of relative Stone algebras, first articulated in [30, 31].
Existing presentations of this equivalence are not amenable to our methods, so our
task in the present chapter is to provide a more convenient rendition of these cate-
gorical equivalences. The version of the equivalence for SM | obtained in this chapter
provides the left-hand side of the diagram give in Figuer 1.1. After this algebraic
preprocessing, Chapter 6 gives Esakia-like dualities for SM and SM | via restriction
of the Davey-Werner duality. Then Chapter 7 describes the equivalence for SM | in
terms of the relationship between this Esakia-like duality and the extended Priestley

duality for SM . The ideas in this chapter originally come from the author’s [24].
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5.1 The Galatos-Raftery construction

Recall that a Sugihara monoid is a distributive, idempotent, involutive CRL. A
relative Stone algebra is a semilinear CRL for which - and A coincide, and a Gddel

algebra is a bounded relative Stone algebra (see Section 2.3).

Definition 5.1.1. Define EnSM~ to be the class of algebras (A, n,v,—, e, N, f)

satisfying the following.
1. (A, A, v,—,€) is a relative Stone algebra.
2. N: A — A is a nucleus on (A, A, v,—,e).
3. feA, and for allae A

(a) zv (x— f)=e
(b) N(Na —a)=c¢

(¢) Na = e if and only if f < a.

Also define EnSM| to be the class of expansions of members of EnSM~ by a desig-

nated least element.

Notwithstanding condition 3(c) in the previous definition, EnSM~ and EnSM7
are varieties (see [31]).

Let A = (A, A, v,+,—,e,—) be a Sugihara monoid. Define

A" :={aeA:a<e}
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and call the elements of A~ negative. The enriched negative cone'® of A is the

algebra

where the operations —~ and N are defined by

a—"b:=(a—>b re

Na:=(a—e)—e

For any Sugihara monoid A, we have A~ € EnSM~. The analogous claim also
holds for bounded Sugihara monoids and EnSM7, where we modify the definition
of enriched negative cones to include a constant designating the least element. For
both variants, the map A — A~ becomes a functor by defining h~™ := h|4- for
a homomorphism h: A — B. The main result of [31] establishes that (—)~ is one
functor of a categorical equivalence between SM (SM 1) and EnSM~ (EnSM7). The
reverse functor produces a (bounded) Sugihara monoid from an arbitrary algebra in
EnSM™ (respectively, EnSM7) by a process we call the Galatos-Raftery construction.
This goes as follows. Let A = (A, A, v,—, e, N, f) € EnSM~. Define

Y(A)={(a,b)e Ax A:avb=eand Nb=b},

and set X(A) := (3¥(A),m,u,0,=,(e,e),—), where the operations are defined
presently. Set
s:=(a—d) A (c—Db)

131n the theory of residuated lattices, the notation A~ usually refers to the negative cone of A,
which coincides with the reducts of our enriched negative cones that are missing N and —e. We
will not have occasion to refer to (unenriched) negative cones, so we repurpose this notation for our
needs.
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t:=(a—c)An(d—0D)

and define

(a,b) M (c,d) = (a A c,bv d)
(a,b) L (c,d) = (a v e,b A d)
(a,b) o (c,d) = (s — (a A ¢),Ns)
(a,5) = (e.d) = (. N(t > (a A d)))
—(a,b) = (a,b) = (fe)
= ((a— f) ~b,N(((@a = f) A b) > a))

If h: A — B is a homomorphism between algebras in EnSM™, define a morphism
Y(h): ¥(A) — 3(B) by X(h)(a,b) = (h(a),h(b)). With this, ¥ defines a functor
from EnSM™ to SM. Moreover, the functor 3 can of modified to account for bounds:
If (A, 1) is an algebra in EnSM 7, extend X by associating with (A, 1) the Sugihara
monoid S(A) with designated least element (L,t¢). Together with (=)™, X gives a
covariant equivalence of categories between SM and EnSM~ (as well as SM; and
EnSM7).

Y. is a variant of the twist product construction, which was first introduced by
Kalman [41] in the context of normal distributive i-lattices (but twist products are
now the subject of a considerable literature; see, e.g., [23, 42, 45, 46, 47, 54]). In
Kalman’s version of the construction, normal distributive i-lattices are represented
as algebras built on a set of ordered pairs and the i-lattice involution is given by the
operation (a,b) — (b,a). Although the (A, v, —)-reduct of any Sugihara monoid is
a normal distributive i-lattice (see Proposition 2.3.4), observe that the involution —

in the definition of 3 is not given by (a,b) — (b,a). On the other hand, for odd
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Sugihara monoids the involution defined in ¥ is given by (a,b) — (b,a) (see [30],
an antecedent of [31] for odd Sugihara monoids). This mismatch between the usual
twist product involution and that given by X is unsuitable for our purposes, so we
rephrase the construction outlined above in order to restore the natural involution
(a,b) — (b,a). Doing so demands further scrutiny of the algebraic structure EnSM™,

which we carry forth in the next section.

5.2 Algebras with Boolean constant

If A is a Brouwerian algebra and a is a filter of A, we say that a is a Boolean
filter of A if a is a Boolean lattice!* under the operations of A. Note that {e} is a

Boolean filter for any Brouwerian algebra A with top element e.

Lemma 5.2.1. Let A = (A, A, v,—,e) be a Brouwerian algebra, and let a be a
Boolean filter of A whose least element is f. Then for each a € a, the complement

ofainaisa— f.

Proof. We have a — f € a because a — f > f. Since a € a, this implies a A (a —
f)ea. Froma A (a — f) < f and f being the least element of a, we obtain that
a A (a — f) = f. On the other hand, a being a Boolean filter means that a € a
has a complement ¢ in a. This gives that a A ¢ < f, whence ¢ < a — f. Then

e=avc<av(a— f), giving av (a — f) = e. This proves the result. O

Proposition 5.2.2. Let A = (A, A, v, —,¢e) be a Brouwerian algebra and let f € A.

Then the following are equivalent.
I.av(a— f)=e foralac’f.

2.av(a— f)=e foralacA.

11 other words, a is a complemented bounded distributive lattice. Of course, we do not assume
that the lattice bounds are distinguished.
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3. 1f is a Boolean lattice.

Proof. First, we show (1) implies (3). Suppose that a v (a — f) =efor allae 1f
and let a € 1f. Thena A (a — f) < f. Since a — f = f, we get a,a — f € 1f. This
yields a A (a — f) = f. Since a v (a — f) = e by assumption, this shows that each
a € 1f has a complement (i.e., a — f) in 1f, and hence that 1 f is a Boolean filter.

Second, we show (3) implies (2). Suppose that 1f is a Boolean filter. Let a € A.
Then a — f = f gives a v (a — f) € 1f. Thus a v (a — f) has a complement
in 1f, given by (a v (a — f)) — f according to Lemma 5.2.1. Note that since

a<av(a— f)weget (av(a—f)— f<a—f,so0

e=(avi@—=f)vlavie—=1[)—1F)

<av(a—f)

This gives that a v (e — f) = e as claimed.

Since (2) implies (1) trivially holds, the result follows. O

Following Proposition 5.2.2, we say that an expansion of a Brouwerian algebra
(Heyting algebra) A by a constant f satisfying a v (a — f) = e is a Brouwerian
algebra with Boolean constant (respectively, Heyting algebra with Boolean constant).
Our interest is in the semilinear members of these classes, and we denote the variety
of relative Stone algebras with Boolean constant by bRSA and variety of Gddel
algebras with Boolean constant by bGA. Algebras in these varieties are called bRS-
algebras and bG-algebras, respectively.

We note that the comments on pp. 3207 and 3192 of [31] characterize the

subdirect irreducibles in EnSM™ as follows.
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Proposition 5.2.3. (A, A, v,—,e,N, f) € EnSM~ is subdirectly irreducible if and
only if it is totally ordered, {a € A : a < e} has a greatest element, and one of the

following holds:
1. f=e and N is the identity function on A, or

2. f is the greatest element of {a € A:a < e}, Nf = e, and Na = a whenever

a# f.
The previous proposition leads us to the following important fact.
Lemma 5.2.4. EnSM~ satisfies the identity Na = f — a.

Proof. 1t is enough to show that Na = f — a holds for subdirectly irreducibles, so
let A = (A, A,v,—,e, N, f) be a subdirectly irreducible algebra in EnSM~. There
are two cases. First, if f = e and N is the identity function on A, the result is trivial
since f > a=¢e — a=a= Na for every a € A.

In the second case, A is a chain and N satisfies

e a=fe
Na =

a a#f,e

Note that in any totally-ordered Brouwerian algebra,

e Ty
T — Yy =<

Y Ty

SO

.

e f<a
f—a=+

a f<a
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Since e covers f in the second case, we get f < a iff a = f or a = e, proving the

claim. O

Proposition 5.2.5. EnSM™ is term-equivalent to bRSA, and EnSM| is term-equivalent
to bGA.

Proof. Lemma 5.2.4 shows that N is definable in the (A, v, —, e, f)-reduct of any
A= (A n,v,—,e,N, f)e EnSM™. The (A, v,—,e, f)-reduct of any such A satis-
fies a v (a — f) = e by definition, hence is a bRS-algebra.

Now suppose that A = (A, A, v, —, e, f) is a bRS-algebra. Define N: A — A

by Na = f — a. Then N is a nucleus from Example 2.3.5. Also, for any a € A,

N(Na—a) = f—((f = a)—a)

=(f—a)=(f—a)

=€

whence we have the identity N(Na — a) = e.

To see that we also have the condition that Na = e if and only if f < a, observe

Na=e < f—oa=c¢
— e< f-oa

— f<a.

Thus every bRS-algebra is the (A, v, —, e, f)-reduct of some algebra in EnSM™. It
follows that EnSM™ is term-equivalent to bRSA, and the result for EnSM7 and bGA

follows by an identical argument. O

According to Proposition 5.2.5, we need not enrich the negative cones of Sugihara

monoids by a nucleus in order to achieve categorical equivalence; the addition of a
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constant f satisfying a v (a — f) = e suffices. In particular, SM is categorically
equivalent to bRSA. This equivalence is given as before, except with the following

adjustments:

1. We modify the functor ¥ by eliminating all occurrences of N in the definitions

of o and = using the identity Na = f — a.

2. We replace the functor (—)~ with (—).: SM — bRSA, defined for a Sugihara

monoid A = (A, A, v,-,—,e,—) by Ay = (A7, A, v, > ,e,—e).

Similar remarks apply to SM; and bGA, which are equivalent by functors modified

analogously to the above.

5.3 Naturalizing involution

The goal of this section is to replace ¥ by an alternative functor (—)™. Together
with (—)uw, the functor (—)™ yields an equivalence of categories between SM and
bRSA (as well as between SM; and bGA). However, (—)™ yields a representation of
Sugihara monoids that ties them more closely to their i-lattice reducts and hence to
existing work on twist products.

For a bRS-algebra A = (4, A, v, —, e, f), define!®

A" ={(a,b)e Ax A:avb=ecand a Ab< f}

For (a,b), (c,d) € A x A, define

(a,b) M (c,d) = (a nc,bv D)

15The notation ™ comes from the theory of twist products. However, we caution that this is not
to be confused with what is sometimes called in the literature the full twist product.
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(a,b) u(c,d) = (avc,bnd)

as in the definition of ¥. Then (A x A, M, u) is a lattice (and in fact coincides with

the product of the lattice reduct of A and its order dual).

Lemma 5.3.1. Let A = (A, A, v,—,e, f) be a bRS-algebra. Then X(A) and A™

are universes of sublattices of (A x A, m,u).

Proof. Let (a,b),(c,d) € A x A. First, suppose a v b = ¢ v d = e. Then by the

distributivity of the lattice reduct of A,

(anc)v(ibvd)=({(avbd) A(cvd)vd
=(en(cvd)vd

=e

Similarly, (a v ¢) v (bAd) =e.

Second, suppose (a,b), (c,d) € A x A with Nb = b and Nd = d, where Nz =
f — x as above. Then N(b A d) = b A d since A satisfies (\n), and N(bvd) =bvd
since A satisfies (\Vv).

Third, suppose that (a,b), (¢,d) € A x A with a A b < f and ¢ A d < f. This

gives

(@anc)n(bvd)=(ancnb)v(ancnd)
S(fre)v(fra)
<f

Similarly, (a v ¢) A (b A d) < f.
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The first and second paragraphs above prove that ¥(A) is closed under m and
L. The first and third paragraphs prove that A™ is closed under m and u. Hence

both ¥(A) and A™ are universes of sublattices of (A x A, m, 1) as claimed. O

Given A = (A, A, v, —,e, f) € bRSA, define 6p: A x A — A x A by

6A(avb) = (a’f - b) = (a” Nb),

where Nb = f — b as usual.
Lemma 5.3.2. 4 is a lattice endomorphism of (A x A, L).

Proof. Direct calculation using the identities (\A) and (\v) shows
oa((a,b) M (c,d)) = 5a(a,b) mdale d), and

da((a,b) L (c,d)) = 6a(a,b) Ldalc,d)
for any (a,b),(c,d) € A x A. O

Suppose that (a,b) € A x A satisfies a v b = e. The identity f — b > b implies

that that a v (f — b) = e. Also, the second coordinate of

5A(aa b) = (aaf - b) = (a7Nb)

is an N-fixed element of A. These remarks show that 6o[A™] < X(A), whence

Sa: (A% M, u) — (B(A),m, 1) defined by da = 0A | 4= is a lattice homomorphism.

Lemma 5.3.3. Ja is a lattice isomorphism whose inverse is given by

521 (a,b) = (@,b A (a — f)).
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Proof. 1t is enough to show that §a is a bijection.

To see that da is one-to-one, let (a,b),(c,d) € A™ with da(a,b) = da(c,d).
Then (a,f — b) = (¢,f —> d), ie., a =cand f - b= f — d. It follows that
f—=b<f—d,sofarb=fnA(f—b)<d Because (a,b) e A™, we have a A b < f
and a v b = e. By lattice distributivity, (a v f) A (bv f) = (a A b) v f = f. Also,
(av fyv(bv f)=ev f=ec. It follows that a v f and b v f are complements in
the Boolean lattice 1f. Since (a,d) € A™ as well, an identical argument shows that
av fand dv f are complements in 1f too. But complements in a Boolean lattice

are unique, whence bv f =d v f. Using b A f < d and distributivity, we obtain

b=bn(bv f)
—ba(dvf)
—(brd)v(baf)
<(bnrd)vd

=d

so that b < d. Similarly, we may prove d < b. It follows that b = d, and hence 0 is
one-to-one.
For proving that da is onto, let (a,b) € X(A). Then by definition a v b = e and

b= f —b. Note that a Ab A (a— f) =an f Ab< f. Applying distributivity,

av(bala—f)=(avb)lav(a—f)

267
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whence (a,b A (a — f)) € A™. Moreover:

f=brla=)=({F—=b)A(f—=(a—))
=(f=0) A ((fra)—)))
= (/=B ne
=f—b

=b

This shows that da(a,b A (e — f)) = (a,b), and thus that do is onto. And the
computation above actually proves more, viz. that the inverse of da is given by

(a,b) — (a,b A (a — f)). O

Since (X(A), m,w) is the lattice reduct of the residuated lattice ¥(A), we may
transport structure along the lattice isomorphism 4 in order to equip A™ with a

residuated multiplication. By Lemma 5.3.3, do has an inverse 5;1 defined by
531(a,b) = (a,b A (a— f).
We define binary operations e and = on A™ by

(a,b) o (c,d) = 6, (a(a,b) o da(c,d))

(a,b) = (¢, d) = 64" (9a(a,b) = da(c, d))
Unpacking this definition, e is given by (a,b) ® (¢,d) = (s, t), where

s=((anf)=d) r[(crf)—d)—(anc)]
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and

t=anf)=d)r((cnf)—d)nr(s—])
Along the same lines, = is given by (a,b) = (¢, d) = (w,v), where
w=(a—c) A ((f nd)—Db)
and
v=I[(frla—=c)r(d—D)) = (anr (f—d)]r(w—f)
By transport of structure, we immediately obtain:

Proposition 5.3.4. Let A = (A, A, v,—, e, f) € bRSA. Then the algebra

(A%, m,0,0,=, (e, f))

is an idempotent, distributive CRL.

We may expand (A, m,u,e,=, (e, f)) by the natural involution ~ given by
~(a,b) = (b,a). Since (a,b) € A™ implies (b,a) € A™, ~ is a well-defined binary
operation on A™. We will show that (A™, m,u,e,= (e, f)) € SM. Toward this aim,

we begin with a lemma.
Lemma 5.3.5. If (a,b) € A, then (a — f) A (f — b) =b.

Proof. Let (a,b) € A™, and note that by definition a A b < f and a v b = e. From
anb< fwehave b < a — f, whence b =b A (f > b) < (a— f)A(f — D).
Also, Proposition 2.3.3 together with a v b = e yields a — b = b. Notice that
an(a— f)YA(f—>0b) <fAar(f—Db) <b, so by applying the law of residuation
(@ — f) A (f = b) <a— b=>. This settles the claim. O
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Proposition 5.3.6. Let A € bRSA. Then for all (a,b) € A™, —=da(a,b) = da(~(a,b)).

Thus da is an isomorphism of SM.

Proof. Let (a,b) € A”. Then a v b = e, whence a - b =b and b — a = a by
Proposition 2.3.3. Lemma 5.3.5 provides that (a — f) A (f — b) = b. From these

facts, we get

—da(a,b) = =(a, f —b)
= (a,f =) = (f,e)
=((a=frle=(f=0)f=(a=f)rle—=(f—=0)—=(ane)])
=(l@a=HAf=0b),f=[la=f)r(f—b)—a)
= (b, f = (b—a))
= (b, f—a)

= 5a(~(a,b)).

This implies that §5 preserves ~ as well as the other operations. It follows that
(A™, m,u,e,= (e, f),~) is a Sugihara monoid that is isomorphic to X(A) under

oa for every A € bRSA. O

Define a functor (—)™: bRSA — SM as follows. If A = (A, A, v, —, e, f) € bRSA
then set

AN = (AM7 M, U, e, =, (e7f)’ N)'

For a homomorphism h: A — B of bRSA, define a function A™: A™ — B™ by
B(a,8) = (h(a), h(b)).

Lemma 5.3.7. Let h: A — B be a morphism in bRSA. Then h™ is a morphism in
SM.
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Proof. Let h: A — B be a homomorphism between bRS-algebras. From [31],
Y(h): ¥(A) — X(B) defined by 3(h)(a,b) = (h(a),h(b)) is a homomorphism

between Sugihara monoids. For any (a,b) € A™, we have

S(h)(da(a;b)) = (k) (a, fA —b)
= (h(a), h(f* — 1))
= (h(a), h(f*) — h(b))
= (h(a), f® — h(b))
= dn(h(a), h(b))

= 0g(h™(a,b)).
This demonstrates that h*™ = dg' o (k) o a. The latter is a composition of
morphisms in SM, which proves the claim. O
Lemma 5.3.8. (—)™ is functorial.
Proof. Observe first that (—)™ preserves the identity map. Let g: A — B and

h: B — C be homomorphisms between bRS-algebras. Because X is a functor,

(hog)™ =dg' oS(hog)oda
=0g' o B(h) 0 B(g) 0 da
=0g' o %(h) 0 dp o dgtoX(g) 0 da

= h"og™.

O]

We have seen that (—)™: bRSA — SM is a functor. We will show that it provides

a reverse functor for (—)u.
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Lemma 5.3.9. Let A € bRSA. Then A = (A™).

Proof. We have A™ =~ 3(A) under da. From [31] we have 3(A), =~ A, and thus
(A™) = A. O

Lemma 5.3.10. Let A € SM. Then A =~ (A,)™.
Proof. From [31] and da,,, A = S(Ax) = (Aw)™. O
Lemma 5.3.11. bRSA(A,B) and SM(A™,B™) are in bijective correspondence.

Proof. bRSA(A,B) is in bijective correspondence with SM(X(A),X(B)) by [31].
Also, for h: %(A) — %(B), the map h +— d5' o hoda gives a bijection between the
SM(32(A),X(B)) and SM(A™,B™). This proves the lemma. O

Combining the results above:

Theorem 5.3.12. (—)™ and (—)w give an equivalence of categories between bRSA

and SM.

The work above shows that (—)* and 3 are both adjoints of (—),. Consequently,
(=)™ and ¥ are isomorphic functors. We therefore dispense with the functor X
outright, and subsequently we will work exclusively with (=)™ due to its more
convenient involution. Of course, all of the above applies equally-well to bounded

Sugihara monoids and bG-algebras.

Example 5.3.13. Recall that we introduced the Sugihara monoid E in Example

2.3.11. The enriched negative cone of E is the bRS-algebra E,, with

f= _'(0’ 1) = (*0’*1) = (O’*l)'
Its labeled Hasse diagram is
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e=(0,1)

c=(-1,1) f=1(0,-1)
b=(-1,-1)
a=(-2,-2)

The nucleus N : Ey, — Ey defined by Nx = f — x is given by the equations

Ne=Nf=e, Nb=Nc=c¢, Na=a.

and thus

Y(Ex)={(z,y) e E= xE :xvy=ceand Ny =y}

= {(CL, 6), (b7 6), (07 6), (f: e)v (ev 6), (67 a)? (6, C)7 (fv C)}

If we instead use (—)™, we get

(Ex)” ={(z,y) e E=- xE :xvy=eandz rny< f}

= {<a7 8)7 (ev CL), (b7 6)7 (67 b)? (67 f)? (fa 6)7 (f7 C)? (Ca f)}

The labeled Hasse diagrams for X(Ew) and (Ewx)™ are, respectively,

(e,a) (e,a)

(f,e) (es f)
(f,e) (e, f)
(b,e)

(a,€) (a,e)

(e, e)
(e, e)

Notice that X(Ew) and (Ew)™ differ by only three pairs, including the monoid iden-

tity.
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Chapter 6

Esakia duality for Sugihara monoids

In [20], Dunn provides a relational semantics for the relevance logic R-mingle
that employs a binary accessibility relation. In Dunn’s terms, a model structure
for R-mingle is a triple (M, 1, <), where M is a set, < is a linear order on M, and
1 € M is the least element of M. If V is the collection of propositional variables over
which the language of R-mingle is defined, a model for a model structure (M, <, 1)

is a function a: V- x M — {{T'},{F},{T, F'}} satisfying
(Heredity) If z,y € M and x < y, then a(p,z) € a(p,y) for all pe V.

After extending models to provide truth values in {{T'},{F},{T, F'}} for complex
sentences as well, Dunn defines a semantic consequence relation and shows that
R-mingle is sound and complete with respect to this semantics.

Dunn’s models for R-mingle are familiar: The heredity condition stipulates that

the map = — «a(p, x) is an isotone map from (M, <) into the poset
{T, 1}
() /\ {F}
which is nothing more than the poset reduct of the dualizing object D3 for NDIL (see

Section 3.3). Sugihara monoids give the algebraic (rather than relational) semantics
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for R-mingle, and from Proposition 2.3.4 we know that they possess reducts in NDIL.
We will see in this chapter that these connections to normal distributive i-lattices and
their Davey-Werner duals manifests a duality for Sugihara monoids (as well as their
bounded expansions). This duality is akin to Esakia duality, and we will obtain it
by restricting the Davey-Werner duality in much the same way that Esakia duality
is obtained by restricting Priestley duality. For SM, this Esakia-style duality is
rendered as the diagonal in Figuer 1.1.

Of course, Chapter 5 shows that SM (SM| ) is equivalent to bRSA (bGA). The
latter consists of expansions of certain Brouwerian algebras, which already enjoy
the Esakia duality. It is natural to ask whether Esakia duality can be modified to
account for the expansion by a Boolean constant. Constructing such a modification
is our first order of business, and is the subject of Section 6.1. This modification
of Esakia duality to account for the Boolean constant appears as the bottom of the
diagram in Figuer 1.1. With this new variant of Esakia duality in hand, in Section
6.2 we will construct our duality for Sugihara monoids (with and without designated
bounds) by restricting the Davey-Werner duality. Along the way, in Section 6.1.1
we will comment on the relationship between our variant of the Esakia duality for
bGA and Bezhanishvili and Ghilardi’s duality [4] for Heyting algebras expanded by

nuclei. The content of this chapter is based on the author’s [24].

6.1 Esakia duality for algebras with Boolean constant

We will show that bRSA is dually equivalent to the category of structured topo-

logical spaces defined in the following.
Definition 6.1.1. A structure (X, <, D, T,7) is called a bRS-space if

1. (X, <, T,7) is a pointed Esakia space,
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2. (X,<) is a forest, and
3. D is a clopen subset of X consisting of designated <-minimal elements.

For bRS-spaces (X,<x,Dx,Tx,7x) and (Y,<y,Dy, Ty,7y), a function o from

(X,<x,Dx,Tx,7x) to (Y,<y,Dy, Ty, 7y) is called a bRSS-morphism if
1. « is a pointed Esakia map from (X,<x, Tx,7x) to (Y, <y, Ty,7y),
2. a|Dx] < Dy, and
3. a|D%] < DY, .

We designate the category of bRS-spaces with bRSS-morphisms by bRSS.

As usual, to obtain a duality between bRSA and bRSS we will introduce new
variants of S and A. If A = (A, A, v,—,e,f) and X = (X, <, D, T,7) are objects
of bRSA and bRSS, respectively, define

S(A) = (S(Av Ny V=, e)? Qo(f)c)

AX,<,D, T,7) = (AX,<,T,7),D

where & and A appearing on the right-hand sides of the above are their variants
for Brouwerian algebras/pointed Esakia spaces. For morphisms, the definitions of

S and A remain unmodified.

Lemma 6.1.2. Let A = (A, A, v,—, e, f) be an object of bRSA. Then S(A) is an
object of bRSS.

Proof. The duality for Brouwerian algebras guarantees that S(A) is a pointed Esakia

space whose underlying order is a forest. ¢(f)< is basic clopen, so it is enough to

C

show that ¢(f)¢ consists of —-minimal elements. To see this, let y € ¢(f)¢ and
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assume ¢ € S(A) with r € y. Let y € p. Then (y —> f) vy = e € r, so by the
primality of ¢ either yerory — fer. If y > f e, then y — f €. This gives
yn(y— f)ey. Butya(y — f) < f and y an up-set gives f € vy, which contradicts
the choice of y. It follows that y € r, so that § < r. Since ¢ € y as well, this shows

that ¢ = y and thus vy is S-minimal. O

Lemma 6.1.3. Let X = (X, <, D, T,7) be an object of bRSS. Then A(X) is an
object of bRSA.

Proof. The duality for Brouwerian algebras guarantees that A(X) is a relative Stone
algebra. We must show that D¢ is a clopen up-set of X, and that for any clopen
up-set U € X we have U u (U — D) = X. That D is clopen immediately implies
that D€ is clopen, and that D consists of minimal elements immediately implies
that D¢ is an up-set.

For the rest, let U < X be a clopen up-set and let x € X. If x ¢ U, then we
claim that e U > D = {ye X : flyn U < D}. Let y € tz n U. It suffices to
show that y is not minimal. Note that * < y and y € U, so z ¢ U gives = # y.
Thus y is not <-minimal, and hence x € U — D€. Thus 2 € U u (U — D), so that

Uu(U— DY) =X. 0

Lemma 6.1.4. Let h: A — B be a morphism of bRSA. Then S(h): S(B) — S(A)

is a morphism of bRSS.

Proof. S(h) is a morphism of pointed Esakia spaces by the duality for Brouwerian
algebras, so we need only show S(h)[0(fP)] < ¢(f*) and S(h)[(fP)] = w(f*)°.

First, if ¢t € S(h)[p(fB)], then there is y € ¢(fB) such that r = S(h)(n). As
h(f2) = fB ep, we have fA € h™'[y] = S(h)(y) = r. Thus r € p(fA), whence
SMp(fB)] = w(F4).
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Second, if r € S(h)[¢(fB)¢], then thereis v € o(fB)¢ so that r = S(h)(n) = h~'[y].
If fA ey, then fB = h(f2) would give that fB €1, contradicting 1 ¢ ¢(fB). Hence
fA ¢ v, yielding S(h)[¢(fB)] < o (f4)<. O
Lemma 6.1.5. Let a: X — Y be a morphism of bRSS. Then A(a): A(Y) — A(X)
is a morphism of bRSA.

Proof. The duality for Brouwerian algebras shows that A(«a) is a morphism of BrA,
so we need only show A(a)(D5 ) = D%.

a being a bRSS-morphism gives that a[Dx]| € Dy and a[D$] < D§.. From the
latter, it follows that DS < o~ ![a[D5]] € o L[DS]. Hence D = A(a)(DS).

For the reverse inclusion, Dy € a~![a[Dx]] € a~![Dy] follows from the other

condition. Taking complements gives

DS 2 X —a”'[Dy] = a7 '[Y] - o' [Dy] = " '[D§] = A(e)(D5).

This proves the claim. O
Lemma 6.1.6. Let A be an object of bRSA. Then AS(A) =~ A.

Proof. Esakia duality gives that ¢: A — AS(A) is an (A, v, —, e)-isomorphism of
A with AS(A), so it is enough that ¢ preserves f. This follows from the equalities
FASA) = S(A) = (p(fA)) = o(F4). O

Lemma 6.1.7. Let X andY be objects of bRSS. If : X — Y is a pEsa-isomorphism,

then « is an isomorphism of bRSS if and only if «[Dx] = Dy .

Proof. For the forward direction, assume « is an isomorphism of bRSS. Then «
has an inverse morphism in bRSS. From « being an isomorphism in pEsa we have

that « is an isomorphism of posets, thus a bijection. Moreover, a[Dx]| € Dy and
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a[D%] < Dy§,. Because « is a bijection, taking complements in the latter inclusion
gives Dy < o[ D] = a[Dx], so a[Dx]| = Dy.
For the backward implication, assume that a[Dx]| = Dy. « being an isomor-

L coincides

phism of pEsa gives that « is a bijection and its set-theoretic inverse a™
with its inverse in pEsa. That « is a bijection gives a[D%] = o[Dx]| = D§,. This
shows that a is a morphism in bRSS. Also, a[Dx] = Dy implies a~![Dy] = Dx
and a[D%] = D$ provides o [D$] = D%. Hence a~! is a morphism in bRSS.

Therefore « is an isomorphism in bRSS, proving the result. O

Lemma 6.1.8. Let X be an object of bRSS. Then SA(X) = X.

Proof. ¥: X — SA(X) is an isomorphism of pEsa by the duality for Brouwerian
algebras. We aim to show that v is also an isomorphism of bRSS. Lemma 6.1.7
shows that it suffices to prove that ¥[D] = (D) = {U € A(X) : D° ¢ U}.

Let p € ¢[D]. Then there exists x € D withp = ¢(x),sop = {U € A(X) : z € U}.
From z ¢ D¢ we obtain D¢ ¢ p, whence p € ¢(D®)¢. This shows ¢[D] S p(D°)".

For the reverse inclusion, let p € ¢(D)°. Then D¢ ¢ p. If x € D such that
Y(x) = p, then D e {U € A(X) : x € U} = ¢p(z) = p. This is a contradiction, so
p ¢ Y[DC]. As 9 is a bijection we have ¢[D] = ¥[D]® so that p ¢ ¥[D]¢, which
provides p € ¥[D]. Hence p(D)¢ < ¢[D], and it follows that ¥[D] = p(D)°. O

Theorem 6.1.9. bRSA and bRSS are dually-equivalent categories.

Proof. This is immediately from Lemmas 6.1.2, 6.1.3, 6.1.4, 6.1.5, 6.1.6, and 6.1.8,
noting that naturality follows from the proof that & and A give an equivalence

between pEsa and the BrA. ]

The foregoing work is phrased in terms of bRS-algebras, but the same analysis
gives a duality for bG mutatis mutandis. The necessary modification amounts to

dropping T from the signature of bRSS.
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Figure 6.1: Labeled Hasse diagram for S(E)

Definition 6.1.10. A structure (X, <, D, ) is called a bG-space if
1. (X,<,7) is an Esakia space,
2. (X, <) is a forest, and
3. D is a clopen subset of X consisting of <-minimal elements.

For bG-spaces X = (X,<x,Dx,7x) and Y = (Y, <y, Dy, 7y ), a map « from X to

Y is called o bGS-morphism if

1. ¢ is an Esakia map from (X, <x,7x) to (Y, <y, 7vy),

2. ¢|Dx] € Dy, and

3. p|D%] < D5 .
We designate the category of bG-spaces with bGS-morphisms by bGS.
Theorem 6.1.11. bGA and bGS are dually-equivalent categories.

Proof. The proof is identical to that of Theorem 6.1.9, except that we replace all

references to Esakia duality for RSA by references to the Esakia duality for Godel

algebras. 0

Example 6.1.12. Recall the bRS-algebra By, of Fxample 5.3.13. Its dual space is

pictured in Figure 6.1. The elements of the designated subset are circled.
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6.1.1 bG-algebras as Heyting algebras with nuclei

Chapter 5 shows that bG-algebras are term-equivalent to their expansions by
certain nuclei, viz. those given by x — f — z. In [4], Bezhanishvili and Ghilardi
introduced a duality for Heyting algebras equipped with nuclei, and in this section
we compare our duality for bG-algebras with that of Bezhanishvili and Ghilardi. It
turns out that the nucleus x — f — x of a bG-algebra presents itself in a very simply
fashion on the dual space. Although nuclei are eliminable from the signature for
our purposes, this nevertheless provides a different perspective for thinking about

bG-spaces.

Definition 6.1.13. A nuclear Heyting algebra is an algebraic structure of the form
A = (A A, v,—>,1,0,N), where (A, A,v,—,1,0) is a Heyting algebra and N is
nucleus on (A, A, v,—,1,0). We designate the category of nuclear Heyting algebras

by nHA.

Definition 6.1.14. We call (X, <, R,7) a nuclear Esakia space if (X, <,7) is an

Esakia space and R is a binary relation on X satisfying
1. xRz if and only if (Jy € X)(yRy and x <y < 2),
2. Rlz] = {y € X : xRy} is closed for each x € X, and
3. whenever A € X is clopen, so is R™1[A] = {x € X : (Jy € A) xRy}.

A nuclear Esakia map is an FEsakia map o: X — Y between nuclear Fsakia spaces

such that
1. if x,y € X with vRxy, then a(x)Rya(x), and

2. for all x € X and z € Y such that a(x)Ryz, there exists y € X such that

zRxy and o(y) = z.
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We denote the category of whose objects are nuclear Fsakia spaces and whose mor-

phisms are nuclear FEsakia maps by nEsa.

We once again augment the functors & and A. For a nuclear Heyting algebra

A = (A, A, v,—,1,0,N) and a nuclear Esakia space X = (X, <, R, 7), define

S(A)=(S(A, A, v,—,1,0),RA)

AX) = (A(X, <, 7), Nx)

where
e Rp is the binary relation on S(A) defined by tRa¥Y if and only if N~![r] < v,
e Nx: A(X) — A(X) is defined by Nx(U) = X — R1[X — U]

Define S and A on morphisms as usual. This set-up yields the following.

Theorem 6.1.15 ([4, Theorem 14]). S and A give a dual equivalence of categories

between nHA and nEsa.

For each A = (A, A, v,—, 1,0, f) € bGA, define Na: A — A by

Na(z) = f— .

Then Nj is a nucleus on A, and (A, A, v,—,1,0,Na) € nHA. We will characterize
the relation Ra corresponding to Na.

Given r € S(A), set 7! := N, '[x] and observe that for any 1,y € S(A),

1

tRAy <= 1 S0

Lemma 6.1.16. Let A = (A, A,v,—,1,0,f) € bGA and let ¢t € S(A). Then
rleS(A4)u{A}.
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Proof. Note that the laws (\v) and (\A) give

Na(x A y) = Na(x) A Na(y) and Na(z v y) = Na(z) v Na(y)

for all z,y € A, whence Ny is a lattice homomorphism. The rest follows by noting
that the inverse image of a prime filter under a lattice homomorphism must be prime

or improper. O

Remark 6.1.17. [4, Lemma 11] gives that (—) ! is a closure operator on the lattice
of filters of A. Combining this with Lemma 6.1.16, we obtain that (—)~! is a closure
operator on S(A) u {A}.

Lemma 6.1.18. Let A = (A, A, v,—,1,0, f) € bGA and let r,y € S(A). Then we

have the following.

1. Ifr=t e S(A), then t™! is the least Ra-successor of x.

2. tRar iff fer.

3. If v is an Ra-successor, then tRAr.

4. Ifr < v, then tRAY.

1

Proof. To prove (1), suppose t 1 € S(A). Since r=! < 7!, we have tRar~!. Now if

1 is the least Ra-successor of

pe S(A) is an Ra-successor of ¢, then r~! €y and ¢~
X

To prove (2), note that
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whence f < Na(z) — x for all x € A. This implies that f A Na(z) < x for each

1

x € A. Suppose ¢ is a filter with f € p. Then for each = € r™*, we have Na(x) € .

Since 1 is a filter we have that f A Na(z) € ¢ also, whence z € r. Thus ™! C 1,

1

so tRar. Conversely, if tRar then ¢ is an Ra-successor of r. But r=" is the least

1

Ra-successor of ¢, so ™! < r. Noting that Nao(f) = 1 € r, we have f € ™! and

hence f €.

To prove (3), suppose that 1 is such that §Rax. Then p=! C 1. As y~'Rap~!,
part (2) yields f € p~! and hence f € r. Therefore tRar by part (2).

To prove (4), let y € S(A) with ¢ < y. Then there is = € p—p. From the definition
of bG-algebras, v (z — f) = 1. Since z v (z — f) € ¢ and ¢ is prime with = ¢ r,
we get x — f € r. This provides z,x — f € v, and therefore x A (z — f) € 1.
But z A (x — f) < f, and since y is an up-set this implies f € y. It follows from
(2) that yRAY, whence n~! < 1. Since n < n~! always holds (i.e., since (—)7! is a
closure operator), we get =1 = . From r 1y and (—)~! being isotone, we obtain

Pyt =y, Thus rRaY. O

According to Lemma 6.1.18(4), only minimal elements of S(A) may fail to be
reflexive under Ra. From Definition 6.1.14(1), the accessibility relation of a nuclear
Esakia space is determined by its order along with the collection of non-reflexive

points. This motivates the following.

Definition 6.1.19. Let X = (X, <, D, 7) be a bG-space. Define a binary relation
éﬁx on X by

<ﬁX: <n{(z,z)e X x X : z e D}".
Call <% the sharp order on X.

Proposition 6.1.20. Let A = (A, A, v,—,1,0, f) € bGA. Then Ra coincides with

the sharp order on S(A).
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Proof. First, suppose tRap. From Lemma 6.1.18(3), we have that yRat and from
Lemma 6.1.18(2) it follows that f € y. This entails that y € ¢(f), whence

(,9) ¢ {(3:3) € S(A) x S(A) 15 € (f)}-

i

Since ¢ €y follows from rRa¥Y, this shows ¢ <sa) M

Conversely, suppose that ¢ <g( INRL Then ¢ € y and

(x,9) ¢ {(G:3) 13 € 0(f)F}-

We consider two cases. For the first case, suppose ¢ # y. Then Lemma 6.1.18(4)
implies that rRaY. For the second case, suppose that r =y ¢ o(f)°. Then f €, so
pRav by Lemma 6.1.18(2). But since ¢ = v, this gives tRa¥Y. O

We now have a complete description of the accessibility relation arising from Na
for any given A € bGA. The fact that together the order and ¢(f)¢ characterize R
reflects the term-definability of Na in the underlying bG-algebra (see Chapter 5),

another aspect of which is recorded in the following.

Proposition 6.1.21. Let (X,<,D,7) be a bG-space. Then the image of X under

<ﬂx is precisely D°.

Proof. First, let y € <g( [X]. Then there is z € X with = <§( y. It follows that
r<yandoneofx #yorxz=ye¢ D must hold. In the first case, y is not <-minimal
and this gives y ¢ D. In the second case, y ¢ D by hypothesis. This implies y ¢ D
and <% [X] < Dc.

Second, let y € D. Then y < y and (y,y) ¢ {(x,x) : € D}, whence y <§( y. It

follows that y e<! [X] and D¢ < <* [X]. Equality follows. O
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Propositions 6.1.20 and 6.1.21 describe the relationship between the duality for
bGA and the Bezhanishvili-Ghilardi duality for objects. What about morphisms? It
turns out that not all nEsa-morphisms between objects of bGS are bGS-morphisms,
but we obtain the appropriate morphisms if restrict our attention to nEsa-morphisms

that preserve D.

Proposition 6.1.22. Let (X,<x,Dx,7x) and (Y,<y,Dy,7y) be bG-spaces and
let a: X =Y be a bGS-morphism. Then « is a nuclear Esakia map with respect to

the relation <!.

Proof. Note that « is an Esakia map by definition. We first show that a preserves
<! solet z,y € X with z <§( y. Then x <x v, so a(x) <y a(y) follows from «
preserving <. Because (z,y) ¢ {(2,2) : z € Dx}, either z # y or x = y ¢ Dx.
In the first case, y ¢ Dx since y is not minimal, hence as a[D$ | < D§, we have
a(y) ¢ Dy. In the second case, if x = y ¢ Dx then a(y) ¢ Dy as well. This proves
(a(z),a(y)) ¢ {(2,2) : z € Dy} in either case, so a(x) <Q{ a(y).

Second, let z € X, z € Y such that a(x) <i( z. Then by definition

(a(@),2) ¢ {(w,w) : w e Dy},

and thus a(x) # z or a(z) = z ¢ Dy. In the first case, a(x) <%( z gives a(z) <y z.

Then since « is an Esakia map we have that there exists y € X with z < y and
a(y) = z. From a(x) # z = a(y), we infer x # y. Since x < y, this yields that y
is not minimal, whence y ¢ Dx. This implies that x <§( y and a(y) = z. In the
second case, a(x) ¢ Dy and « preserving DS, gives ¢ Dy, whence z <§( z and

a(z) = z. This proves the result. O

Proposition 6.1.23. Let (X,<x,Dx,7x) and (Y,<y,Dy,7y) be bG-spaces and

let a: X — Y be an Esakia map that such that
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1. forallz,ye X, x <§( y implies a(x) <i{ aly),

2. forallze X and z € Y with a(x) <i( z, there exists y € X such that a(y) = z

and x s%i y, and
3. Oé[Dx] c Dy.
Then « is a bGS-morphism.

Proof. 1t is enough to show that a[D$] < DY, so let y € a[DS]. Then there is
x € DS such that a(z) = y. Since z € D we have z <§( x, so a(x) <Q{ a(x). Thus

a(z) <§( y, which entails that y € <§( [Y] = Dy as desired. O

Remark 6.1.24. We note that the term-equivalence of bGA to EnSM7 announced in
Proposition 5.2.5 was originally discovered by applying the Bezhanishvili-Ghilardi
duality. This provided valuable insight leading to the purely algebraic work of
Chapter 5, which in turn supported the duality-theoretic innovations of this chapter.
This offers a prime example of the mutually-supporting relationship between purely

algebraic investigation and duality-theoretic study, as alluded to in Chapter 1.

6.2 Restricting the Davey-Werner duality

Proposition 2.3.4 gives that the (A, v, —)-reduct of each Sugihara monoid is a
normal distributive i-lattice, and an analogous statement holds for bounded Sugihara
monoids and Kleene algebras. Let U: SM — NDIL (or U: SM; — KA) be the
forgetful functor that associates to each (bounded) Sugihara monoid its reduct in
NDIL (KA). Recalling that we denote the functors of the Davey-Werner duality by
D and &, the composite functor DU associates to each (bounded) Sugihara monoid
the pointed Kleene space (respectively Kleene space) of its reduct. In order to

simplify notation, we suppress U and simply write the Davey-Werner dual of (the
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appropriate reduct of) A € SM U SM, as D(A) (see Figuer 1.1). We also write
D(A) for the carrier of D(A) as usual, and make note that for A € SM (SM_ ) we
have that D(A) inherits its structure pointwise from D3 (K). For clarity, we will
write the order on D(A), D3, and K by <, and write the order on D3 and K by
<. We will characterize subcategories of pKS and KS that are dually-equivalent via
D to SM and SM |, respectively. To this end, we first identify the subcategories of

interest and identify their connection to the dualities of the previous section.

6.2.1 Sugihara spaces

Definition 6.2.1. We call a pointed Kleene space (X,<,Q,D,T,7) a Sugihara

space if
1. (X,<,T,7) is a pointed Esakia space,

2. @ is the relation of comparability with respect to < (in other words, set-

theoretically Q =< U =), and
3. D 1is open.

Since @ is comparability with respect to <, we typically suppress it and say that

(X,<,D, T,7) is a Sugihara space.

Remark 6.2.2. Since D is closed in any pointed Kleene space, the condition that

D is open in Definition 6.2.1 implies that D is clopen.
The following gives a connection to bRS-spaces.

Lemma 6.2.3. Let (X,<,D,T,7) be a bRS-space. Then (X,<,<u >=,D,T,7) is

a Sugihara space.

Proof. We first verify the conditions listed in Definition 3.3.3 for (X, <, T, 7). Note

that (X, <, T,7) is a pointed Esakia space with D clopen, and @ = < u > is closed
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in X? since < is closed in X? in any Priestley space. For the rest, let Q = < U >
be the relation of comparability with respect to <.

For (4)(a), x @ = holds for each x € X since z < z.

For (4)(b), let z,y € X with x Q y and = € D. From x @ y we have that x <y
or y < x. The former case gives z < y immediately. If y < z, then the <-minimality
of elements of D provides that © = y. Hence x < y in either case.

For (4)(c), let z,y,z € X be such that z @ y and y < z. Again = Q y gives
x < yory <z In the first case, z < y and y < z gives x < z by transitivity. In
the second case, y < x and y < z gives z,z € Ty. The underlying poset (X, <) of
a bRS-space is a forest, so Ty is a chain and thus z < z or z < z. This shows that

z @ x, and thus the lemma. O

Lemma 6.2.4. Let (X,<,Q,D, T,7) be a Sugihara space. Then (X,<,D,T,T) is

a bRS-space.

Proof. Definition 6.2.1 gives that (X,<,T,7) is a pointed Esakia space with D
clopen, and it remains only to show that D consists of <-minimal elements and that
(X, <) is a forest.

To show that D consists of minimal elements, let y € D and suppose z < y.
Because z < y we get y @ x, whence y @ x by Lemma 3.3.4(1). Since y € D, this
implies y < x by Definition 3.3.3(4)(b). Since x < y, by antisymmetry x = y.

To show that (X, <) is a forest, let z € X and let y,z € Tz. Observe that x <y
gives y @ x, and from z < z and Definition 3.3.3(4)(c) we conclude z @ y. Then

z <y ory < z, which gives that Tx is a chain. O

bRS-spaces and Sugihara spaces are essentially the same objects according to
Lemmas 6.2.3 and 6.2.4. However, they arise from entirely different duality-theoretic

contexts: bRS-spaces are enriched Esakia duals of bRS-algebras, and Sugihara
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spaces are Davey-Werner duals of some normal distributive i-lattices. We will
develop the connection between bRS-spaces and Sugihara spaces further, and exploit

it to show that Sugihara spaces are duals of i-lattice reducts of Sugihara monoids.

Lemma 6.2.5. Let A € SM U SM | and let h € D(A). Then h=[{0,1}] n A~ is a

prime filter of An.

Proof. This is immediate because {0,1} is a prime filter of each of D3 and K, and

h is a lattice homomorphism. O

For A € SM U SM |, define {a: D(A) — S(Aw) by

éa(h) = h7[{0,1}] n A™.

Note that &4 is well-defined from Lemma 6.2.5.
Lemma 6.2.6. Let A € SMUSM . Then £a is isotone.

Proof. Let hy,he € D(A) with hy < ha. If a € {a(h1), then a < e and more-
over hi(a) € {0,1}. Since h; < hg, this gives 1 < hi(a) < ha(a). Therefore

a € hy'[{0,1}], whence a € £ (hg). This shows &a (h1) € Ea(h2). O
Lemma 6.2.7. Let A € SMuSM| and let h € D(A). Then h(e) € {0,1}.

Proof. Note that —e < e holds in A. If h(e) = —1, then h(—e) = —h(e) = 1. But

—e < e gives h(—e) < h(e), a contradiction since 1 € —1. The result follows. O
Lemma 6.2.8. Let A € SMuUSM|. Then £a is order-reflecting.

Proof. Let hy,hy € D(A) such that {a(h1) S Ea(ha). If hi £ ho, then there exists
a € A such that hi(a) £ ha(a). Then one of hy(a) = —1 and hy(a) # —1, or
ha(a) =1 and hi(a) # 1 must hold.
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In the first case, hi(a) € {0,1} and from Lemma 6.2.7 it follows that

hi(a A e) = hi(a) A hi(e) € {0,1}.

Since a A e € A7, this implies a A e € Ea(h1). Hence a A e € Ea(hg). But he(a) = —1
and ha(e) € {0,1} implies ho(a A €) = —1, a contradiction.

In the second case, hi(a) € {—1,0} and ha(a) = 1, so hi(—a) € {0,1} and
ha(—a) = —1. The second case therefore reduces to the first case, and we arrive at

a contradiction again. It follows that hq < ho, which proves the claim. ]
Lemma 6.2.9. Let A € SMuUSM,. Then £a is an order isomorphism.

Proof. 1If is enough to show that £ is surjective. For the case when A € SM, observe
that h: A — A defined by h(a) =0 for all a € A is a (A, v, —)-morphism such that
&a(h) = A~. Thus the improper filter is in the image of &4 .

For the rest, let ¢ be a prime filter of A,. Because A has a distributive lattice
reduct, [ = {a € A™ : a ¢ r} is a prime ideal of A, since it is the complement of a

prime filter. It is easy to see also that I is an ideal of A. Moreover,

F=1t={beA:a<bfor some aer}

is a filter of A, and ' n I = . The prime ideal theorem then asserts that there
is a prime ideal J of A with I € J and FF'n J = ¢gJ. One may show that the set
—J = {—a:ae€ J} is a prime filter of A as well. We define h: A — {—1,0,1} by:

1 ifae —J
h(a) =<0 ifa¢g Ju—J

-1 ifaeJ
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If a, —a € J, then from the fact that J is an ideal we have a v —a € J. The identity
e < a v —a holds in any Sugihara monoid, so J being a down-set implies e € J. But
this is impossible as J N = ¢J and e € ¢ (i.e., from ¢ being a prime filter of A,).
The foregoing comments show that for each a € A, either a ¢ J or —a ¢ J, whence
J n—J = . Therefore at most one of a € —=J, a € J, or a ¢ Ju —J holds. At
least one of a € J, a € —J, or a ¢ J U —J must hold as well, so h is a well-defined
function.

It is a straightforward proof by cases to show that h is an i-lattice homomor-
phism, and must preserve the lattice bounds if they exist in A. This shows that
h € D(A), and it is easy to see that £a(h) = r. It follows that {a is surjective, and
Lemmas 6.2.6 and 6.2.8 show that £ is an order embedding. This suffices to settle

the claim. n

Example 6.2.10. The algebra E from Example 2.3.11 has labeled Hasse diagram

—c

Consider the filter t = {b,c, f,e} of E~. In the proof of Lemma 6.2.9, we have that
I is {a}, F is A\{a}, J is {a}, and —J is {—a}. If ¢ = {c,e} instead, then I is
{a,b, f}, F is {c,e,—b,—a}, J is {a,b, f,—c}, and —J is {c,e, —b,—a}. For a final
example, if t = {e, f}, then I is {a,b,c}, F is {e, f,—b,—c,—a}, J is {a,b,c}, and

=J is {—c, —b, —a}.

Remark 6.2.11. Note that the partitions {J, (J u —J)¢, —J} provide a concrete
rendering of the i-lattice homomorphisms into the i-lattice D3, just as prime filters

provide a concrete rendering of morphisms into 2 in Priestley duality. Analogously,
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the pairs of clopens {U, V'} that determine the maps Cy,1 (see Section 3.3) provide a
concrete representation of morphisms into D3 akin to how clopen up-sets provide a
concrete representation of morphisms into the two-element linearly-ordered Priestley

space. More will be said of such concrete representations in Section 6.3.

The following lemmas involve the topological structure of D(A), and we refer to

the description of the subbasis on duals given in Lemma 3.3.10.
Lemma 6.2.12. Let A € SMuUSM . Then &a is continuous.

Proof. We show that inverse image under £a of each subbasis element is open. Let

a € A~. Then we have:

Ea'lp(@)] = €4 [{r e S(Aw) 1 ae )]
— {heD(A): aeéa(h)
—{(heD(A):aeh [{0,1}] n A}
— {heD(A) : hia) € {0,1}}
— {heD(A) : h(a) = 0} U {h e D(A) : h(a) = 1}

= Ug,0 Y Ua,l-

Thus €4 is continuous. O

Lemma 6.2.13. Let A € SM (respectively, SMy ). Then D(A) and S(A) are

isomorphic in Pries (respectively, pPries).

Proof. €4 is an order isomorphism from Lemma 6.2.9, and preserves T in the pointed
case. This implies that £5 is a bijection. Since continuous bijections of compact
Hausdorff spaces are homeomorphisms, Lemma 6.2.12 implies that {5 is a homeo-
morphism. Isomorphisms in Pries (respectively pPries) are (top-preserving) homeo-

morphisms that are order isomorphisms, so the result follows. ]
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As a consequence of the above, we obtain

Lemma 6.2.14. Let A € SM (respectively, SM} ). Then the (pointed) Priestley

space reduct of D(A) is a (pointed) Esakia space.

Proof. Every (pointed) Priestley space that is isomorphic to a (pointed) Esakia

space is itself a (pointed) Esakia space. Thus Lemma 6.2.13 implies the result. [

Lemma 6.2.15. Let A € SM. If D(A) = (D(A),<,Qa,D, T,7a) is its Davey-
Werner dual, then (D(A),<,D,T,7a) is a bRS-space. If instead A € SM| and
D(A) = (D(A),<,QA, D, 7a) is its Davey-Werner dual, then (D(A), <, D,7TA) is a

bG-space.

Proof. Lemma 6.2.14 provides that (D(A), <, T,7a) is a pointed Esakia space.
Since €A is an order isomorphism, it follows from (S(Aw), <) being a forest that
(D(A), <) is a forest as well. All that is left to show is that D is a clopen col-
lection of <-minimal elements. That D consists of minimal elements follows from

the fact D(A) is a pointed Kleene space. In order to prove that D is clopen, let
t=&a(h) = h71[{0,1}] n A~. For each a € r, note that h(a) € {0,1} and

reEp(—e) < —eeyx
< h(—e) e {0,1}

< h(e) e {0,—1}.

Applying Lemma 6.2.7 then yields that ¢ € p(—e) if and only if h(e) = 0.

Note that by definition h(a) € {—1,1} for all h € D and a € A. It fol-
lows from this and the observation above that &a(h) ¢ (—e) for all h € D,
whence £a[D] € ¢(—e)¢. Moreover, if r € p(—e)¢, then from the above we have

h(e) ¢ {0, —1}, whence h(e) = 1. Were it the case that h(a) = 0 for some a € A,
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then h(—a) = 0 and we get h(a v —a) = 0. This is impossible since e < a v —a and
h is isotone, so the image of h is contained in {—1,1}. Hence p(—e) € £a[D], and
p(—e) = Ea[D]. Because £a is a homeomorphism and ¢(—e) is clopen, we get that
D is clopen as claimed.

The analogous result for A € SM follows similarly. O

Lemma 6.2.16. Let A € SM. Then £ is an isomorphism of bRS-spaces. If instead

A € SM |, then &a is an isomorphism of bG-spaces.

Proof. Note that 4 is an isomorphism of pointed Priestley spaces by Lemma 6.2.13,
and hence a pointed Esakia function. We show that £a preserves the top element,
the designated subset, and its complement. Observe that the map T: A — {—1,0,1}
defined by T(a) = 0 is the greatest element of D(A), and

EA(T) =T{0,1}]n A~ = A",

Since A~ is the S-greatest element of S(A ), the top element is preserved.

To show that £a preserves the designated subset and its complement, we show

Eal{h e D(A) : (Vae A)(h(a) € {=1, 1}}] = p(—e)".

To verify the forward inclusion, let h € D(A) such that the image of h is contained
in {—1,1}. Since h(e) € {0,1} this implies h(e) = 1, whence h(—e) = —1. Were it
the case that €4 (h) € ¢(—e), this would imply —e € h=1[{0, 1}], a contradiction to
h(—e) = —1. It follows that £a (h) € p(—e).

To verify the reverse inclusion, let r € p(—e)¢ so that —e ¢ r. By the surjectivity

of {a, there exists h € D(A) with {a(h) = r. Toward a contradiction, suppose that
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there is a € A such that h(a) = 0. The identities

TATTS eSesyyVv Ty

hold in all Sugihara monoids, so in particular a A —a < —e < e < a v —a. As

h(—a) = —h(a) = 0, h being isotone provides

0=nh(an—a)<—e<e<h(av —a)=0,

This yields h(—e) = h(e) = 0, whence —e € h~1[{0,1}] n A~ = ¢. This contradicts
—e ¢ ¢, and therefore h(a) € {—1,1} for all a € A. The reverse containment follows,
and hence equality.

The above shows in particular that the designated subset is preserved by &a,

and we only need show

al{he Ay (ae A)(h(a) = 0)}] = o(—1).

But this follows immediately by taking complements in the above since £ is a
bijection.

The case for A € SM follows analogously. O

6.2.2 The duality

Section 6.2.1 lays the groundwork for connecting Sugihara monoids to Sugihara
spaces by (1) demonstrating a close connection between D(A) and S(A,) for any
given (bounded) Sugihara monoid A, and (2) developing the connection between
bRS-spaces and Sugihara spaces. In this section, we tie the remaining threads

together to provide our Esakia-style duality for Sugihara monoids.
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Recall the functions Cyy, were defined in Section 3.3 by

1, ifxgV
Cuv(z) =10, ifrelnV

1, ifz¢U

\

These functions completely characterize the morphisms X — D3 for any object X of
pKS by Lemmas 3.3.5 and 3.3.6, and the same argument shows the analogous result
in the T-free setting. The following technical lemma demonstrates how to compute
with the representation of normal distributive i-lattices afforded by the maps Cyy

and the Davey-Werner duality.

Lemma 6.2.17. Let L € {D3,K} and let ay,a0: X — L be morphisms (in KS or

pKS, as appropriate) with oy = Cy, v, and as = Cy, v,. Then
1. =Cuy,vy = Cyy v, -
2. Cuyn A Cuy vy = Cuyntin,Viovs, and
3. Cuyvi Vv Cuy vy = Cuy o, ViaVa s
Proof. To prove (1), note that for each x € X we have
ai(z) =1 < Cy,yp(x)=1

= ¢V

— Cvu (z) = —1.

Similarly aq(z) = —1 if and only if Cy, y,(z) = 1. Also, ai(x) = 0 if and only if

Cvy v, (z) = 0, whence —ay = Cy, 1, .
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To prove (2), note that in L € {D3, K} we have a A b = 1 if and only if a = 1

and b=1, and also a A b= —1 if and only if a = —1 or b = —1. For each z € X we

have

a1(z) A ag(z) =1

By the same token,

a1(x) A ag(z) = —1

a1(z) =1 and as(z) =1

Cu, vi(z) =1 and Cy, v, (z) =1

r¢Viand x ¢ Vs

rgViuVs

CUU\Uz,VuJVz(x) = 1.

ai(x) = —1or ag(x) = —1
Cu,vi(z) = =1or Cy,v(x) = —1

x¢ Ui orxzé¢ls
acgéUlng

CUlﬂUz,Vluvz (:L‘) =—1.

Similarly, a1(z) A aa(x) = 0 if and only if Cy,~v,,v,uv,(2) = 0. Hence we obtain

that a1 A a9 = CUlng,V1uV2-

(3) follows by a similar argument.

For each bRS-space X, we define ux: A(X)™ — £(X,< U =) by

NX(U, V) = CU,V~
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Note that for every (U,V) € A(X)™ we have U UV = X and U n'V < D°. Also,
for (z,y) e (X —=U) x (X —V) we have x ¢ U and y ¢ V. Since U UV = X this
gives that y e U and x € V. If x < y, then V being an up-set would give y € V, a
contradiction. Likewise, if y < x, then U being an up-set would give x € U, again
a contradiction. It follows that [(X —U) x (X = V)] n (€U =) = ¢, and Lemma

3.3.5 provides that ux is a well-defined pKS-morphism.

Lemma 6.2.18. Let A € bRSA. Then E(S(A),< u D) and A™ are isomorphic in
NDIL.

Proof. Note that (S(A),< u D) is a pointed Kleene space by Lemma 6.2.3, whence
E(S(A),c u D) e NDIL. Lemma 6.1.6 gives AS(A)) =~ A as bRS-algebras (and in
particular as i-lattices), so it is enough show that £(S(A), S u 2) is isomorphic as
an i-lattice to AS(A)™. We will show 1 = pg(a) is an i-lattice isomorphism.
Lemma 6.2.17 shows that p is an i-lattice homomorphism from AS(A)™ to
E(S(A),c u D), and Lemma 3.3.6 gives that u is surjective. We will show that p
is one-to-one, so let (U1, V1), (U2, V2) € AS(A)™ with p(Ur, Vi) = u(Usz, Vo). Then

Cu,vi = Cu, v, whence for all x € X,

rel; < CUI’Vl(x) # —1
= Cupnp(z) # -1

— x el

Thus Uy = Uy. One may likewise verify that Vi = Vs, so (Uy, Vi) = (Usa, V2). Hence

1 is an i-lattice isomorphism. O

We may now give our Esakia-style duality for Sugihara monoids. To do so, we

define the appropriate morphisms.
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Definition 6.2.19. Let

X =(X,<x,<xvu=2x,Dx, Tx,7x)

Y = (Y, <y,<y u>=y,Dy, Ty, 1y)

be Sugihara spaces. A bRSS-morphism « from the bRS-space (X,<x,D,Tx,Tx) to
the bRS-space (Y,<y,Dy, Ty,Ty) is said to be a Sugihara space morphism. We

denote the category of Sugihara spaces with Sugihara space morphisms by pSS.'6

Remark 6.2.20. Each morphism of pSS is automatically a morphism of pKS despite
the fact that the preservation of the relation < u > is not explicitly demanded. This
follows because a morphism always preserves the comparability relation when it

preserves <.

We construct augmented variants of D and £ as follows. Given A € SM, let
D(A) be the Davey-Werner dual of the i-lattice reduct of A. Given a morphism
h: A — B of SM, define D(h): D(B) — D(A) by h(z) = z o h as usual.

For the other functor, if X = (X, <, D, T,7) is a Sugihara space we endow the
Davey-Werner dual of X with additional binary operations - and — as follows. Given

a1 = Cy, v, and o = Cyp, 1, maps in £(X), define

C(UlvVl) ’ C(Uz,Vé) =01 = C(UlvVl)'(U%Vz)

Ciunn) = Cwsve) = 1 = @2 = Cluy vi)=(1s,10)

18 Observe that here we include the leading p as a reminder that Sugihara spaces are top-bounded.
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where o and = are the operations on the Sugihara monoid A(X)™ (see Section 5.3).

If A, v, and — are the operations of the Davey-Werner dual of X, we set

5(X) = (g(X)a Ny Vo _)70X,D°7 _')a

where £(X) denotes the collection of pKS-morphisms X — D3 as usual. Given a
morphism a: X — Y of pSS, define E(«): E(Y) — E(X) by E(a)(f) = Boa as

usual.

Remark 6.2.21. Note that the above augmentations make the map ux into a

Sugihara monoid isomorphism by construction.
Lemma 6.2.22. Let A € SM. Then E(A) is a Sugihara space.

Proof. Let (D(A),<,Qa, D, T,7a) be the Davey-Werner dual of the i-lattice reduct
of A. Lemma 6.2.15 gives that (D(A),<,D, T,7a) is a bRS-space. From Lemma
6.2.3 it is enough to show that the relation QA is <-comparability.

The Davey-Werner duality provides that ED(A) and A are isomorphic as lat-
tices with involution. Since (A )™ and A are isomorphic Sugihara monoids, they are
also isomorphic as i-lattices. Lemma 6.2.18 gives that (A,)™ and £(S(Aw), S U 2)
are isomorphic as i-lattices, and hence A is isomorphic as an i-lattice to both

E(S(A),< u D) and ED(A). This implies that

(S(Ax),cu2) =DES(A),cu2) =DED(A) = D(A)
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as pointed Kleene spaces. Pick a pKS-isomorphism a: D(A) — (S(An),S U D).
Note that for h,k € D(A),

h Qa k < «a(h) and a(k) are S-comparable
— a(h) < a(k) or a(k) < a(h)
> hkork<h

<= h and k are <-comparable.

Hence Q4 is the relation of <-comparability, which proves the claim. ]

Lemma 6.2.23. Let X = (X, <,D,< u =, T,7) be a Sugihara space. Then E(X)

is a Sugihara monoid.

Proof. Note that (X,<,D,T,7) is bRS-space by Lemma 6.2.4. It follows that
E(X,<,D, T,7) € bRSA. By Lemma 6.2.18 we get that £(SA(X,<,D, T,7),S u 2)

is isomorphic as an i-lattice to A(X, <, D, T,7)™. We have also that

SA(X7<7D7 T7T) = (X7<7D7 T7T)

as bRS-spaces, whence

AX,<.D,T,7)" = £(X,<,D,T,7),< U 2)

as i-lattices. The last of these is exactly the i-lattice reduct of £(X), so it follows
that £(X) is isomorphic as an i-lattice to the Sugihara monoid A(X,<, D, T, 7).
The operations — and - hence make the i-lattice reduct of £(X) into a Sugihara

monoid by transport of structure. O
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Lemma 6.2.24. Let A,B € SM and let h: A — B be a morphism in SM. Then
D(h) = €41 0 D(hw) o €B.

Proof. Let x € D(B) and let a € A. Note that if a € A™, then

Moreover, h le [B7] = A~. From these observations, we have

a€(€acD(h)(x) <= aela(zoh)
— ae(zoh) ' [{0,1}]n A”
— (zoh)(a)e{0,1} and ae A~
— (zohw)(a)e{0,1} andae A~
— 2(hls-(a)) € {0,1} and a e A~
= aeh| 27 '[{0,1}]]n A~
= aeh| ' [z7'[{0,1}] n B7]
— aeS(h)(x"'[{0,1}] n BY)
> a€S(hw)(€B())

< a € (8(hw)o&B)().
Hence £a 0o D(h) = S(hw) 0. As €a is an isomorphism of bRS-spaces by Lemma
6.2.16, it has an inverse fgl. This implies that D(h) = 5;1 0S(hw) o &B. O

Corollary 6.2.25. Let A,B € SM and let h: A — B be a morphism in SM. Then
D(h) is a morphism of pSS.

Proof. Lemma 6.2.24 writes D(h) as a composition of bRSS-morphisms, and hence

D(h) is a bRSS-morphism. O
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Lemma 6.2.26. Let X and Y be Sugihara spaces and let a: X — Y be a morphism
in pSS. Then E(a) = pux o A(a)™ o uy'.

Proof. Let (U,V) e A(Y)™ and let € X. Then

((ux o A(@)™)(U, V))(z) = px(Ale)" (U, V))(x)

Also note,

((E(a) o py)(U, V) (2) = E(a)(py (U, V)) ()
= (Cyy o a)(x)

= Cyy(a(x)).

Observe that a(z) € U if and only if z € o [U], a(x) € V if and only if z € a1 [V],
and a(r) € U 0V if and only if z € a7 [U n V] = a7 {U] n a7 [V]. From the

definition of Cp 1 we get

Cuy(a(z)) = Corj,a-1[v(T)-

This yields ux o A(a)™ = E(a) o wy. As py is a Sugihara monoid isomorphism

(thus invertible), it follows that £(a) = px o A(a)™ o ' O

Corollary 6.2.27. Let X and Y be Sugihara spaces and let a: A — B be a mor-
phism in pSS. Then E(«) is a morphism of SM.
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Proof. £(a) is the composition of morphisms in SM by Lemma 6.2.26, so £(«) is a

morphism of SM. O
Lemma 6.2.28. Let A € SM. Then ED(A) ~ A.

Proof. D(A) and S(A ) are isomorphic as bRS-spaces to via 4. Moreover, we have
AS(A) = A, as bRS-algebras, and thus (AS(A))™ = (Aw)™ = A as Sugihara
monoids. Since pis(a,,) is a Sugihara monoid isomorphism from (AS(Ax))™ to

E(S(An), < U D) from Remark 6.2.21, we obtain ED(A) =~ A as claimed. O

Lemma 6.2.29. Let X = (X, <, < v >, D, T,7) be a Sugihara space. Then DE(X) =~
X.

Proof. Note that £(X) is isomorphic as a Sugihara monoid to A(X,<,D, T, 7)™
via pux. Also, DE(X) and S(E(X)w) are isomorphic as bRS-spaces via {g(x). Thus
DE(X) and S((A(X, <, D, T,7)™)w) are isomorphic as bRS-spaces. The last of these
is isomorphic to (X, <, D, T, 1), whence DE(X) and (X, <, D, T, 1) are isomorphic as
bRS-spaces. The bRSS-isomorphism witnessing this is a pSS-isomorphism between

DE(X) and (X, <, <u >=,D, T,7) by definition, and the latter is exactly X. O
Theorem 6.2.30. SM and pSS are dually-equivalent.

Proof. This follows from Lemmas 6.2.22, 6.2.23, 6.2.24, 6.2.26, 6.2.28, 6.2.29, and
Corollaries 6.2.25 and 6.2.27. Functoriality and naturality are immediate from the

Davey-Werner duality. O

Of course, mutatis mutandis all of the above applies to bounded Sugihara monoids

as well.

Definition 6.2.31. A Kleene space (X,<,Q, D, T) is called an unpointed Sugihara

space if
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.
ho ho

Figure 6.2: Hasse diagrams for D(E) and D(E) )
1. (X,<,7) is an Esakia space,
2. @Q 1is the relation of comparability with respect to <, i.e., Q@ = < U =, and
3. D 1is open.

We typically say that (X, <, D,T) is an unpointed Sugihara space, leaving Q to be
inferred.

A bGS-morphism between unpointed Sugihara spaces is called an unpointed Sug-
ihara space morphism, and we denote the category of unpointed Sugihara spaces with

unpointed Sugihara space morphisms by SS.

The arguments above apply to the bounded setting with only trivial modification,

and we may obtain the following.

Corollary 6.2.32. SM| and SS are dually-equivalent.

Example 6.2.33. Recall the Sugihara monoid E of Example 2.3.11. Figure 6.2
gives the labeled Hasse diagram of D(E), where the maps T, hg, h1, ho are uniquely
determined by T(a) = 0 for all a € E, ho(a) = 0 for all a except (2,2),(—2,-2),
hi(a) =0 fora = (0,1) or (0,—1), and ha(a) = 1 for alla € 1(—1,1) and ha(a) = —1
for a € [(1,—1). Observe that of these maps, only hy lies in the designated subset
(i.e., since its image does not contain 0). Letting E | be the expansion of E by
universal lattice bounds, we may obtain the dual of E| by excluding the map T (i.e.,

since T is not a morphism in the bounded signature).
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6.3 Another formulation of the duality

Topological dualities of different kinds offer different strengths. In contrast to
Esakia duality, the topological side of a natural duality is well-behaved on a cat-
egorical level (e.g., products may be computed as Cartesian products). However,
natural dualities lack much of the pictorial insight that drives Priestley duality and
its various modifications. As a restriction of the Davey-Werner natural duality, the
duality for Sugihara monoids articulated in this chapter is less geometric in character
than Priestley duality. This final section of Chapter 6 aims to offer some pictorial
insight.

If A is an odd Sugihara monoid, we may understand its dual in terms of certain
algebraic substructures that are ordered by containment. This representation by
conver prime subalgebras has much of the pictorial flavor of the Esakia duality’s
representation of duals by prime filers.

For Sugihara monoids that are not odd, the convex prime subalgebra represen-
tation is unavailable. In its stead we offer another representation in terms of certain

filters, a perspective that proves important in Chapter 7.

Definition 6.3.1. Let A = (A, A, v,:,—,e,—) be an odd Sugihara monoid. A
(A, v,e,—)-subalgebra C of A is said to be a convex prime subalgebra if for all

a,b,ce A,
1. Ifa,ce C anda<b<c, thenbe C, and
2. IfanbeC, thenaeC orbe(C.

We designate the collection of convex prime subalgebras of A by Conv(A).
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If C e Conv(A) and a v b e C, then —a A =b = —(a v b) € C. Hence —a € C
or ~be C,s0a¢€e C orbe C by —-closure. It follows that each convex prime

subalgebra is prime with respect to v as well as A.

Proposition 6.3.2. Let A € OSM. Then D(A) is order isomorphic to the poset
(Conv(A), <).

Proof. Note that D(A) is order isomorphic to S(A.) from Lemma 6.2.9. Thus it
is enough to show (Conv(A), <) is order isomorphic to S(Ay). Define a function
Q: Conv(A) - S(A) by Q(C)=Cn A™.

We first show that Q(C) is a filter. If a € Q(C) and b € A~ with a < b, then
a <b<eeC implies b € C by convexity. Thus (C) is an up-set. For closure
under meets, let a,b € Q(C). Then C being A-closed implies a A be C, and a,b < e
implies a A b < e. Hence a A be Q(C), so Q(C) is a filter.

For primality, let a,b € A~ with a v be Q(C). Thenavbe C and a v b < e.
The latter gives a < e and b < e, so one of a € Q(C) or b € Q(C) follows from the
v-primality of C. Hence € is well-defined.

) is obviously isotone. To prove that 2 reflects the order, let C1, Cy € Conv(A)
such that Q(C;) € Q(C3) and let a € C;. Then —a € Cy, and moreover we have that
a e —anecfCq), whence a A e, —a A e € Q(Csz). Since a A e,—a A e € Q(Cy),
it follows that a A e, —a A e € (5. From the fact that —a A e € Cs, we obtain that
—(—ane)=av—-ecCy Asane<a<av —e, convexity gives a € Cy. Therefore
Cy < Cs.

We now show (2 is onto, so let r € S(Aw). Let

tar={aeA:(3per)(p<a),

—rt={—a:ac}
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la—r={aeA:(3pe—r)(a<p)}, and
C=1Tarnla—r

We claim that C is the universe of a convex prime subalgebra C, and that Q(C) =r.
First, note that since r € S(A) we have that e € ¢, whence e € C.
Second, observe that if a € C, then there exists p,q € r such that p < a < —q.
Then ¢ < —a < —p, so —a e C.
Third, suppose that a,b € C. Then there are pi,ps,q1,g2 € ¢ so that p; < a <

—q1 and py < b < —go. This yields

prLAp2<anb<—q A—q==—(qVq)

Since ¢ is a filter, p1 A p2,q1 v g2 € t. Thus a A b e C. Moreover, since

prvp<avb<-—qv-g=—(qnAq)

we have a v be C. Since eer, e < e < —e = e gives e € C, and this shows that C
isa (A, v, —,e)-subalgebra.

To see that C is convex, suppose that a,c€ C and b e A with a < b < ¢. Since
a,c € C, there are p1,p2,q1,q2 € r with p; < a < —¢; and p2 < ¢ < —¢qo. This gives
pr<a<b<c<—qo,s0beC as well. Thus C is a convex prime subalgebra.

Finally, to prove (C) = g, suppose that a € Q(C) = C n A™. Then there exists
p,q € x with p < a < —q, and a € A™. Since ¢ is and up-set, p < a and p € ¢ implies
a € r. Hence Q(C) < r. On the other hand, if a € ¢, then a < a < e = —e gives that

a € Q(C) as desired. This proves the proposition. O
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If A is a Sugihara monoid (or bounded Sugihara monoid) with monoid identity
e, define!”

I(A):={reS(A):ecr}.

The set I(A) provides us with a pictorial representation of the dual of an arbitrary

Sugihara monoid.

Proposition 6.3.3. Let A € SM U SM,. Then E(A) is order isomorphic to the
poset (I(A),<).

Proof. Define Q4 : E(A) — I(A) by Q(h) = h~1[{0,1}]. That {0,1} is a prime filter
and h is a (A, v)-homomorphism implies Q4 (h) € S(A). Also, h(e) € {0,1} implies
e € h=1[{0,1}] for each h € D(A), whence 4 is well-defined.

An identical proof to that offered in Lemma 6.2.6 shows 24 is order-preserving.
To prove Q4 is order-reflecting, let hi, ho € D(A) with Qa (k1) € Qa(h2). Were it
the case that h; £ ha, then there exists a € A such that hy(a) = —1 and hi(a) # —1,
or else ha(a) = 1 and hqy(a) # 1.

For the first case, we have that hi(a) € {0,1}. Then a € Qa(h1) S Qa(h2),
so ha(a) € {0,1}, a contradiction. For the second case, hi(a) € {—1,0}, and it
follows that hi(—a) € {0,1}. Then ha(—a) € {0,1}, but this contradicts ha(a) = 1.
Therefore hy < hs.

Finally, to see that {2 is onto, let r € I(A) and set —r = {—a : a € t}. From
e € ¢ and the identity e < a v —a we get a v —a € ¢ for all a € A, whence by primality
a € ¢ or —a € p. This implies a € ¢ or a € —r, and therefore each a € A is contained

in exactly one of the disjoint sets r — —r, t » —g, or —r —r. We may define a map

17Observe that I(A) is the subset encoding the monoid identity in the extended Priestley duality
(see Section 3.4).
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h: A— {-1,0,1} by

1 aEr—

ha) =40 aerm—¢

-1 ae—-r—1x

\

Case analysis readily shows that h is a homomorphism with respect to A,v,—, and
the lattice bounds (when applicable). Hence h € £(A). Also,

Qa(h) = h7'[{0, 1] = A {0} u AT [{1}] = (e = ~1) v (k0 —p) =1

This provides €24 is a surjection. Because {24 is a order-preserving, order-reflecting,

and onto, the result follows. ]
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Chapter 7

Dualized representations of Sugihara

monoids

Previous chapters have articulated two distinct topological dualities for bounded

Sugihara monoids:

e The extended Priestley duality linking SM; and SM7 (Section 3.4), which is

a functional duality in the sense of Chapter 4.
e The Esakia-style duality linking SM; and SS (Chapter 6).

These two dualities have a rather different character. The extended Priestley duality
achieves categorical equivalence by expanding the structure of duals of a suitably-
chosen reduct. In contrast, the Esakia-style duality achieves equivalence by identi-
fying a reduct that completely determines algebras in the full signature, and then
pinpointing the duals of algebras that arise as such reducts.

In addition to the above, SM also enjoys a covariant equivalence to bGA via the
functors (—). and (—)™ (see Section 5.3). However, the construction of a bounded

Sugihara monoid from a bG-algebra is a rather complicated affair, as the definitions
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of the operations inherent in the functor (—)™ attest. The chief goal of this chapter is
to provide a dualized account of the covariant equivalence given by (—), and (—)™,
in particular offering a greatly simplified presentation of the construction underlying
(=)™ on duals. This project implicates both of the dualities for SM , and in fact the
connection between the two dualities is the key to understanding (—), and (—)™ in
duality-theoretic terms. The results of this chapter come from the author’s [24].
We proceed as follows. First, in Section 7.1 we provide a dual analogue of the
functor (—) that constructs an object of SS from an object of SM7 . Then in Section
7.2 we present a construction of objects of SM7 from objects of SS, yielding a dual
analogue of (—)™. Lastly, in Section 7.3 we tie these two constructions together and

attend to categorical details.

7.1 Dual enriched negative cones

In order to present a dual analogue of the functor (—)., we first require some
technical results. Given A € SM, recall that I(A) = {r € S(A) : e € ¢}, and that
Qa: D(A) - I(A) defined by

Qa(h) = A~'[{0, 1}]

is an order isomorphism between D(A) and (I(A), <) (see Proposition 6.3.3).

Lemma 7.1.1. When I(A) is given with the topology inherited as a subspace of

S(A), Qa is continuous.

Proof. We show that the inverse image of each subbasis element is open. The

subbasis elements of I(A) have the form

pla) ={rel(A):aer}
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pla) = {rel(A):a¢r}
With this in mind, we have for each a € A that
Q' [p(a)] = {h e D(A) : Qa(h) € p(a)}
= {heD(A):aeh '[{0,1}]}

— {he D(A) : h(a) € {0,1}}

={heD(A):h(a) =0} u{heD(A): h(a) =1}
Each of the latter sets is a subbasis element of £(A) by Lemma 3.3.10. Moreover,

Q' [p(a)] = {h e D(A) : Qa(h) € p(a)°}
={heD(A):a¢h '[{0,1}]}
= {heD(A) : h(a) ¢ {0,1}}

={heD(A): h(a) = -1}
The above is also a subbasis element, which proves the claim. O

Lemma 7.1.2. QA s a homeomorphism.

Proof. Note that S(A) is a Hausdorff space, whence its subspace I(A) is also Haus-
dorff. D(A) is compact because it is a Priestley space. Hence {24 is a continuous
bijection from a compact space to a Hausdorff space, and therefore a homeomor-

phism. O
From the foregoing observations, we get the following.

Lemma 7.1.3. I(A) is an Esakia space.
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Proof. We first show that I(A) is a Priestley space. Note that I(A) is compact
since QA is a homeomorphism of I(A) with a compact space. Let r,n € I(A) such
that r & v. This implies that Q" (r) £ Q' (y) since Q' is an order isomorphism.
Because D(A) is a Priestley space among other things, there exists a clopen up-set
U < D(A) such that Q' (r) € U and Q' (y) ¢ U. This implies Qa[U] is a clopen
up-set of I(A) and r € Qa[U] and y ¢ Qa[U], showing that I(A) is a Priestley
space.

For the rest, note that 24 is an order isomorphism and a homeomorphism. This
means that Q4 is an isomorphism of Priestley spaces. As I(A) is a Priestley space
that is isomorphic to the Esakia space D(A), we have that I(A) is an Esakia space

too. [

Recall that for a prime filter ¢ of A, we have

" ={aeA:—ad¢r}

Note that if A is involutive (and in particular a bounded Sugihara monoid), then
Lemma 7.1.4. Let A € SMy. The following hold for all x € S(A).

1. reI(A) or* e I(A).

2. r<crfort*cr.

3. The larger of ¢ and ¢* lies in I(A).

4. The following are equivalent.

(a) r =1r%,

(b) ecy and —e ¢,

138



(c) v.r* e I(A).

Proof. For (1), suppose e ¢ . Since —e < e, we have —e ¢ ¢ too. Hence e € ¢*.

For (2), assume that ¢ & ¢*. Then there exists a € ¢ with a ¢ ¢*. The latter
provides that —a € ¢, whence we obtain a A —a € . Let b € t*. Then —b ¢ . By the
normality of the i-lattice reduct of A we get that a A —a < bv —b, so bv —b e r.
Since ¢ is prime, this implies that b € ¢ or —b € r. But the latter is a contradiction,
so we get b € r and hence t* C .

from (1) we may suppose without loss of generality that e € t*. Let a € ¢. If
a ¢ t*, then —(—a) ¢ r, whence —a € ¢. It follows that a, —a € ¢, so a A —a < —e
gives —e € r. This is a contradiction, so ¢ < ¢* follows.

(3) is obvious from (1) and (2).

For (4), we prove first (a) implies (b), so suppose ¢ = ¢*. If e ¢ r, then e =
——e ¢ ¢, whence —e € ¢*. It follows that —e € r. But —e < e implies that e € g,
so this is impossible. Thus e € ¢, and e € t* as well. Were —e € ¢, we would have
—e € ¢* and this implies ——e ¢ . This is a contradiction to e € ¢, whence e € r and
—eér.

For (b) implies (c), suppose that e € r and —e ¢ r. The second of these provides
that e € r*, whence r,r* € I(A) is immediate.

For (c) implies (a), suppose r,t* € I(A). This means e € r,1*, so e € ¢ and
—e ¢ . Let a € r. Were it the case that —a € r, we would have a, —a € ¢, which
implies a A —a < —e €, a contradiction. This gives —a ¢ r, whence a € t* and
r € r*. For the other inclusion, let a € t*. Then —a ¢ . Note that a v —a > e
and e € ¢ gives a v —a € ¢, whence a € ¢ by primality. Therefore t* < r, and we get

equality. This settles (4). O
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For A e SM, let S(A) = (S(A4),<, R, *, I(A), T) be its extended Priestley dual.
We define
D={reS(4):r=r"}

and let 7 the topology on I(A) induced as a subspace of S(A).
Lemma 7.1.5. (I(A),<, D, ) is an unpointed Sugihara space.

Proof. By Lemma 7.1.3 we have that (I(A), <, 7w) is an Esakia space. It suffices
to prove that (I(A),<) is a forest and D is a clopen subset of C-minimal elements.
The first of these demands is met since Q24 is an order isomorphism and D(A) is a
forest.

For the second demand, note that D < I(A) by Lemma 7.1.4(4). To see that
each ¢ € D is minimal, let y € I(A) such that y < ¢ = ¢*. This gives e € y, and from
* being antitone we obtain r = t* < p*. Thus e € y*. It follows that e € p,9*, so
» = v* by Lemma 7.1.4. This implies that rt S 9 S, sor = 1.

*

To prove D is clopen, note that r € D iff t = 1™ iff e € ¢ and —e ¢ ¢ iff
r€ p(e) np(—e). Since D = p(e) N p(—e) is a clopen subset of S(A), it is also

clopen in the subspace I(A). O

Remark 7.1.6. It is easy to see that if h € D(A) has its image contained in {—1, 1},
then setting r = Qa(h) yields ¥ = ¢*. On the other hand, if ¢t = t* € S(A), then
by the surjectivity of Qa there exists h € D(A) with ¢t = Qa(h). Were there
a € A with h(a) = 0, this would imply h(—a) = 0. Also, this would give that
a,—a € Qa(h) = =*. But a € t* gives —a ¢ r, a contradiction. Therefore the

image of h must lie in {—1,1}, whence

Qal{he D(A) : (Vae A)(h(a) € {~1,1}}] = {re S(A) : t = £*).
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It follows that Qo preserves the designated subset D. Since 4 is a bijection, this

guarantees that it is an isomorphism in the category of unpointed Sugihara spaces.
The stage is set to describe the dual of the enriched negative cone functor.

Definition 7.1.7. Given X = (X, <,R,*,I,7) an object of SM7 , set

Xo:=1

D:={zxeX :x=ua"*}

and let Ty be the topology on Xy inherited as a subspace of X. Define

Xl><l = (Xl><17 <7D7T><1-)

For a morphism a: X =Y of SM7, define aq = ol x,,.

Remark 7.1.8. In the previous definition, we overload the notation (—), to provide
a description of a construction on SM7 . This anticipates that (—). as defined above
will provide a dual analogue of the enriched negative cone functor, and we use the
same symbol by analogy (and may readily distinguish these uses by the type of the
argument). When we introduce a dual analogue of the Galatos-Raftery construction

in Section 7.2, we will make a similar use of (—)™.

We now show that Definition 7.1.7 makes sense for objects, leaving an account

of morphisms for Section 7.3.

Lemma 7.1.9. Let X = (X,<,R,*,I,7) be an object of SM7. Then Xy is an

unpointed Sugihara space.

Proof. Extended Priestley duality implies that there exists A € SM | with S(A) =~ X

in SM7. Let a: S(A) — X be an isomorphism witnessing this. Then a[I(A)] = I,
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and alj(a) is a continuous order isomorphism. I inherits being a Hausdorff space
from S(A), and since I(A) is compact by Lemma 7.1.3 we have that ¢l;4) is
a homeomorphism. As before, we get that I is a Priestley space isomorphic to
I(A) and thus an Esakia space. That (I, <) is a forest also follows from this order
isomorphism, together with the fact that (I(A), <) is a forest by Lemma 7.1.5.

We need only prove that D < I and that D is a clopen set of minimal elements.
To this end, let y € D. As « is a bijection, there exists r € S(A) with a(r) = y.
We have y = y* from y € D, whence y* = «a(r). Since a preserves *, this implies

y = p(*) = ¢(r). From a being one-to-one we get * =, and

Dcaffre S(A):x = *}l.

As {r € S(A) : r = *} < I(A) by Lemma 7.1.4(4), we have that D < I as
alI(A)] = I. Moreover, if r = * in S(A), then a(r) = a(r*) = a(r)* implies
a(r) € D. Thus of{r € S(A) : r = t*}] € D, whence o[{r € S(A) : ¢t = 1*}] = D.
Since {r € S(A) : r = r*} is a clopen collection of minimal elements by Lemma 7.1.5,
we infer that D is also a clopen collection of minimal elements of I (i.e., as « is an
order isomorphism and homeomorphism). This means that X, = (I, <, D, 7y) is

an unpointed Sugihara space, yielding the result. O

7.2 Dual twist products

We now refocus our efforts to providing a dual presentation of (—)™. This
demands more detailed scrutiny of filter multiplication e in SM . Note that e is
a binary operation on S(A) u {A} for any bounded Sugihara monoid A, as from
Chapter 4, and we freely make use of the fact that e is associative, commutative,

and order-preserving (cf. Lemma 4.1.5). For the following lemmas, let A € SM .
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Lemma 7.2.1. Letr,n e S(A) u {A}. Then the following hold.
1. ye I(A) impliesg S rey.
2. rer=r1p.
3. aber impliesacy orber.
4. a,beyx implies ab € t.

Proof. For (1), note that a € ¢ implies a = ae € r o1y, whence r S reov.

For (2), let a € r. Then a = a-a € r e since A is idempotent, and thus
r C r ey For the reverse inclusion let ¢ € r e x. Then there are a,b € ¢ such that
ab < ¢, whence a < b — ¢. Thus b — ¢ € ¢ from ¢ being an up-set. We have
ba(b—c)<bb— c)<c, whence cer.

For (3), note that ab < a v b in any bounded Sugihara monoids, and therefore
the result follows from the primality of .

For (4), use the fact that a A b < ab in any bounded Sugihara monoid. O

*

Lemma 7.2.2. Let r € S(A). Then ¢ A t* exists, and moreover ¢ A t* = o r*.

Proof. From Lemma 7.1.4(2) either ¢ € ¢* or t* < r, so the meet of ¢ and t* certainly
exists.

For the rest, assume without loss of generality that t* < r. Then e € ¢, whence
t* S t* er by Lemma 7.2.1(1). For the reverse inclusion, let ¢ € t* e r. By definition
there are a € t* and b € ¢ so that ab < ¢. The latter condition holds if and only if
a - —c < —b. Were it the case that —c € ¢, then b+ —¢ < —a would give —a € r, a
contradiction to a € r*. Hence —c¢ ¢ ¢, and consequently ¢ € ¢*. This implies that

™ e C ¥, proving equality. O
Lemma 7.2.3. If r,y € I(A), then ¢ v vy exists in S(A) u {A}, and moreover
rvp=rey.

143



Proof. The hypothesis gives r,y € zey by Lemma 7.2.1(1). Let 3 € S(A) u{A} with

t, € 3. The monotonicity of e givesren S 303 =3,s0reh =1 vy asclaimed. [
In the following, we use || to denote incomparability with respect to the order.

Lemma 7.2.4. Let t,y € S(A). Ifr | v, then ¢ v vy exists in S(A) u {4}, and

rvy=ten.

Proof. Let a et —p and b€ y—p. From a ¢ ) we have —a € H*, and from b ¢ ¢
we have —b € ¢*. Consequently, a-—a € rep* and b- —be ner* =r*eny. Also,
a-—a =a-(a > —e) < —e < e Similarly, b- —b < —e < e. It follows that
—e,e €ren™ 1™ ey since r e n* and r* ey are up-sets. There are four cases.

First, suppose r,9 ¢ I(A). Then from Lemma 7.1.4 we have ¢ < ¢* and y < p*,
whence ¢ o t* = p and y e p* =y by Lemma 7.2.2. Since e € p ® y*, Lemma 7.2.1(1)
implies ) S ren* ey =rey. A similar argument gives r < r ey, whence r,5 S re.
Note that g,y < 3, then r e y < 3 follows from the monotonicity and idempotence of
o, and thusren=rvy.

Second, suppose ¢ ¢ I(A) and y € I(A). This implies ¢ < ¢* and p* < v, so from
the latter r e p* < r e y. It follows that ec rey as e e r e n*. Hence r,n S ren, and
r ey must be the least among upper bounds for the same reason as before.

The case for y ¢ I(A) and ¢ € I(A) follows by symmetry. The case where
r,9 e I(A) follows from Lemma 7.2.3. O

We caution that r v y need not exist in S(A) in the previous two lemmas.
Lemma 7.2.5. Letr,ne S(A). Ifr Sy ™, thenren =r.

Proof. The monotonicity and idempotence of e provides g =rer S rety < r o™,

But rer* = Ar* =1 by Lemma 7.2.2, whence r ey = . d
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Lemma 7.2.6. Let r,n € S(A). If r and v* are comparable, then ¢ and vy are also

comparable.

Proof. Suppose that r and y* are comparable. We suppose without loss of generality
that r € p*; the case where p* <  follows from exchanging the roles of ¢ and ) and
the identity ¢ = t**. There are three cases.

Case 1: r € I(A). Then Lemma 7.1.4(3) and (4) provides that t* < r, whence
™ <€ r < p*. It follows that y < ¢.

Case 2: n* ¢ I(A). Then from Lemma 7.1.4(3) we have p* < p, whence from
rSn* wegetrcy.

Case 3: ¢ ¢ I(A) and v* € I(A). If p € I(A), then Lemma 7.1.4(4) gives that
p = p* as n,p* € I(A). We immediately get ¢t < y from this. Thus we assume
that y ¢ I(A). Then ¢ c * and y < p*, and by assumption r < p* and y < r*.
Then r ey < t* p* follows from the monotonicity and idempotence of e. Were it
the case that r ey e I(A), we would have t*,9* € 1(r e y), the up-set considered in
I(A). From this, t* and y* are comparable since I(A) is a forest, whence we get the
comparability of r and . On the other hand, if r e y ¢ I(A), then we argue toward
a contradiction. If ¢ and t) are incomparable, then Lemma 7.2.4 implies ¢ v ) exists
and reyp=rvy Thenr,nSren andifren¢ I(A) we have r,n € [(ren) in the
*-image of I(A). But * is a dual order isomorphism of I(A) and {3* : 3€ I(A)}, so
the *-image of I(A) is a dual forest. This is a contradiction, and it follows that r

and y are comparable. O

Lemma 7.2.6 provides an important piece of information about the order of S(A),

which is further developed in the following.

Corollary 7.2.7. Let r,9 € S(A) with ¢ and vy comparable. Then {x,9,r*,9*} is a

chain under subset inclusion.
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Proof. Each of the pairs ¢ and n* and r* and vy are comparable by Lemma 7.2.6.
Any 3 € S(A) is comparable to 3* by Lemma 7.1.4(2), so it follows that r* and r
are comparable and p* and y are comparable. Because z and y being comparable
implies that t* and n* are comparable too, this means any two of r,y,r*,p* are

comparable. ]

Lemma 7.2.8. Let r,n € S(A). Ifr ¢ I(A), n e I(A), t € v, and vy & 1*, then

ren=m.

Proof. ¢* and y are comparable by Corollary 7.2.7. Also, t* < y follows since y & ¢*.
This implies r € t* < 1, and from the monotonicity and idempotence of e we get
repCrfency. Ast* <, we get ¥ c 1. Let a € ¢ with a ¢ y*. Then the second
of these implies that —a € 1, so a- —a € rey. Thus since a- —a < e, we get e r ey

and consequently n S reyet =ren. This yieldsren=1. O

Given A € SM |, we define the absolute value of r € S(A) by

t| =1 v

Lemma 7.1.4 provides that the absolute value always exists, that |[¢| = ¢ or [r| = ¢¥,

and that |r| € I(A).
Lemma 7.2.9. Letr,ne S(A). If || < |y| and x S v, thenren = 1.

Proof. Notice that |y| = p* cannot occur: If |p| = v*, then [r| < |y| implies that
™ € |r] € »*, and thus y < ¢. This is a contradiction to ¢ € . Hence |y| = y from
the definition of the absolute value. We consider two cases.
Case 1: |t| =¢. Then r,pe [(A), and rey = v y =1y from Lemma 7.2.3.
Case 2: [r| = ¢*. If ¢ = ¢*, then Case 1 applies. Suppose that ¢ # r*, whence

from Lemma 7.1.4(4) we have ¢ ¢ I(A). Since |y| = n by the remarks above, we
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have that y € I(A). The hypothesis gives t* < 1, so we have also that y & ¢*. Thus
r¢I(A),veI(A), r vy, and y & r*, and Lemma 7.2.8 implies that r ey = y as

claimed. O
Lemma 7.2.10. Letr,n € S(A). If [t| < |y| and y S, then rey = 1.

Proof. Note that |n| # n. To see this, observe that if |y| = y then we would have

rv it =|t| < |y| =y S, a contradiction. Hence |y| = p*, and

pcrcrve =y <y ="

Then r oy = y follows from Lemma 7.2.5. U
Lemma 7.2.11. Letr,n € S(A). If [t| = |y| andr S v, thenrey=r =71 AWY.

Proof. From [g| = [y| we havex =por* =p. If y =y, thenrenp=rer=r=rny
because e is idempotent. If t* =y, then r €y < *, and r ey =1 = 1 Ay follows

from Lemma 7.2.5. O

We have amassed enough information about e to offer a complete description.

We summarize the results above in the following.

Lemma 7.2.12. Let A € SM, and let t,n € S(A). We write ¢ | vy if t and v are

incomparable, and x L vy if t and v are comparable. Then

rvy ifr,yel(A) orx|y

n ift Ly and || < |y
ren =<

r ift Ly and |y| < |x|

rAy  ifr Ly and x| = |y

\

where A and v are evaluated in S(A) u {A}.
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Proof. Lemma 7.2.3 provides that rey = r v nif r,n € I(A), and Lemma 7.2.4
providesren=rvyifr|n.

In the remaining cases ¢ L t holds. If either [¢| < |p| or |y| < |¢|, then Lemmas
7.2.9 and 7.2.10 show that r e is whichever of ¢ or y has the greater absolute value.

Ifr L yand |g| = |y, then r-y = ¢ A y by Lemma 7.2.11. This proves the claim. [

Remark 7.2.13. Corollary 7.2.7 implies that if r and 1y are comparable, then exactly
one of |z| < |y|, |z| = |y|, or |y| < |z| holds. This entails that Lemma 7.2.12

completely describes o for a Sugihara monoid A.

Remark 7.2.14. Compare Lemma 7.2.12 with the definition of - on the Sugihara
monoids S and S\{0} (see Examples 2.3.8 and 2.3.9), which generate SM as a qua-

sivariety by Proposition 2.3.12.

We will now construct our dual analogue (—)™ on the level of objects. Let
X = (X,<,D,7) be an unpointed Sugihara space, and let —D° = {—x : x € D} be

a formal copy of D¢ disjoint from X. Set
X" :=Xu-D"
We extend — to give a unary operation on X™ by defining —(—z) = z for —x € — D€,
and —x = z for z € D. We also define a partial order <™ on X™ by
1. If z,y € X, then z <™ y if and only if x <y,
2. If —z,—y € —D€, then —x <™ —y if and only if y < z,
3. If —z e —Dand y € X, then —x <™ y if and only if z and y are <-comparable.

For each A € SM |, define T'p: S(A) — I(A)™ by
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s ifreI(A)
La(r) =
—(r*) ifr¢ I(A)
According to Lemma 7.1.4, one of r € I(A) or t* € I(A) holds for all r € S(A), and

moreover ¢ = t* = —r if both hold. This yields that I'p is well-defined.
Lemma 7.2.15. T'p is an order isomorphism.

Proof. We first prove that I's is isotone, so let r,n € S(A) withr € v. If r,p e I(A),
then the result is obvious. If r,p ¢ I(A), then Ta(x) = —(r*) <™ —(v*) = Ta(y)
from p* < ¢*. If r ¢ I(A) and y € I(A), then there is 3 € I(A) with ¢ = 3*. As
t and y are S-comparable, we get that y and r* = 3 are comparable as well. Then
—3 <" pgives Ta(r) <™ Ta(y).

Second, we prove that I'a reflects the order. Let r,n € S(A) be such that
Ta(z) <™ Ta(y). If r,p € I(A), then ¢ < v follows immediately. If r,n ¢ I(A),
then we have that there are u,v € I(A) with r = u* and y = v* and I'a(x) = —u
and I'a(y) = —v. This gives —u <™ —v. By definition, the latter holds if and only
if b € u, whence ¢t = u* < v* = . In the final case, suppose that r ¢ I(A) and
y € I(A). Then there is u € I(A) such that r = u*, and we have T'A(z) = —u,
I'a(y) = p. By definition, —u <™ y if and only if u and y are S-comparable. If
u S p, then u* € u € y provides that r € y. If y < u, then ¢ = u* < y* < py gives
the result. Hence I' is order-reflecting.

Third and finally, we prove I'p surjective. Let x € I(A)™. If x € I(A),
then T'a(z) = z. If © ¢ I(A), then there is y € I(A) such that x = —y. Then

I'a(y*) = —y = x, which proves the claim. O

Lemma 7.2.16. Let A € SM| and let r € S(A). Then Ta(r*) = —Ta(r).
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Proof. If r € I(A) and * ¢ I(A), we get that Ta(r*) = —(**) = —rt = Ta(r). If
r,r* € I(A), then Lemma 7.1.4 yields that r = ¢/, whence T'a (r*) = * =t = Ta(p).
In the last case, if r ¢ I(A) and t* € I(A), then I'p (r*) = t* = —(—(z*)) = —Ta ().

The claim hence holds in all cases, which settles the proof. ]

Lemmas 7.2.15 and 7.2.16 provide that (S(A4),<,’) and (I(A),<™, —) are iso-
morphic structures for any A € SM;. Keeping with our by-now-familiar modus
operandi, we enrich these structures in order to expand the structure-preserving
properties of I'a. Let 7™ be the disjoint union topology on X u —D°€, where the

topology on —D°¢ is comes from considering it as a (copy of a) subspace of X.
Lemma 7.2.17. When I(A)™ is given the topology 7, T'a is continuous.

Proof. Let U < I(A) and V < —{r € I(A) : r = r*}° be open. Notice that
U is an open subset of a clopen subspace of S(A), whence U is open in S(A).
Also, the definition of V' being open in —{r € I(A) : ¢ = r*}° gives exactly that
{r € I(A) : —r € V'} is open in the clopen subspace {r € I(A) : ¢t # *} of S(A),
and hence is open in S(A) too. Note that *: S(A) — S(A) is continuous, whence
inverse image {t* : —r € V} of {r € I(A) : —r € V} under * is open in S(A). This

implies

FA'UuV]I=T3'[UJuTR'[V]

=Uu{t"eSA): —reV}

is open. Because an arbitrary 7™-open set has the form U vV for U and V as above,
the result follows. ]
Lemma 7.2.18. Let (X,<,D,7) be an object of SS. Then (X™,7) is a compact

Hausdorff space.
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Proof. D is clopen, so D¢ is a closed subspace of the compact Hausdorff space
(X, 7). This implies that —D€¢ (being a copy of D) is a compact Hausdorff space.
Because (X™,7%) is a disjoint union of two compact Hausdorff spaces, the claim is

proven. O
Lemma 7.2.19. I'p is a homeomorphism.

Proof. Lemma 7.1.5 gives us that (I(A), <, D, ) is an object of SS, where as usual
D ={reI(A):r=r"} and 7 is the subspace topology coming from S(A). This
implies I(A)™ is a compact Hausdorff space by Lemma 7.2.18. Because S(A) is also

compact, I'p is a continuous bijection from a compact space to a Hausdorff space,

hence a homeomorphism. O

Take an object X = (X,<,D,7) of SS, and let A € SM| with D(A) = X. As a

consequence of Remark 7.1.6 we have

and hence

where the last isomorphism is witnessed by I'a. Note that for any A, the partial
operation e on S(A) is completely determined by the order and the involution by

Lemma 7.2.12. This means that for each object X = (X, <, D, 7) of SS we may
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,,,,,,, — Ry — — -

Figure 7.1: Labeled Hasse diagram for D(E)™

define a partial multiplication e on X™ by

vy if z,y € X or x| y, provided the join exists

z if o Ly, |yl # |z],2 € {z,y}, and |2 = max{[z], [y[}
TeY =

TAY if z Ly and |z| = |y|

undefined otherwise

where |z| =z if x € X, and | — 2| =  if —x € —D°. We can also define a ternary
relation R on X™ by R(x,y, z) if and only if = e y exists and x ey <™ z. This is the

last ingredient needed to define our dual analogue of (—)™.

Definition 7.2.20. For an unpointed Sugihara space X = (X, <, D, 1), let X™, <™,
—, R, and 7™ be as above. Define X™ = (X™, <™ R, —, X, 7). Given a morphism

a: (X, <x,Dx,7x) — (Y, <y, Dy,1y) of SS, define a™: X" — Y™ by
a(x) if ve X,
—a(—z) ifre—-D%

Before we prove that Definition 7.2.20 makes sense on the level of objects, we

offer an example to build intuition.

Example 7.2.21. In Ezample 6.2.33, we introduced the bounded expansion E|

of the Sugihara monoid E (which was first described in Example 2.3.11). Figure
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7.2.21 gives the result of applying the construction of Definition 7.2.20 to D(E]).

™ 4s pictorial: It proceeds

Unlike its algebraic counterpart, the dual version of (—)
by copying each element in D(E,) besides ho (which is the sole element of the
designated subset), and reflecting the copied points across the axis determined by
the designated subset. The fact that the copied elements are refiected “below” the

aforementioned axis motivates our decoration of the copied elements with —. It is

easy to verify that D(E )™ and S(E) are isomorphic.
The next lemma establishes that Definition 7.2.20 makes sense for objects.

Lemma 7.2.22. Let X = (X, <, D, 1) be an unpointed Sugihara space. Then X™

is an object of SMT .
Proof. Because SS and SM are dually-equivalent there exists A € SM, such that
X =~ D(A) in SS. This observation and Remark 7.1.6 gives that, via Qa,

X ~D(A) = (I(A),g, Dy, 1),

where as before Dy = {r € S(A) : ¢ = r*} and 77 is the topology that I(A) inherits

as a subspace of S(A). Thus in SS we have
X = (I(A),<, Dy, 7).

Note that there is a map a: (X™, <™, —, 7™) — (I(A)™, <™, —, 7/") that is an order
isomorphism, homeomorphism, and preserves —. Also, I'a: S(4) — I(A)™ is an
order isomorphism (by Lemma 7.2.15), a homeomorphism (by 7.2.19), and preserves
the involution (by Lemma 7.2.16). This implies that ¢ := F: o ¢ is an order

isomorphism, homeomorphism, and preserves the involution. As S(A) is an object
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of SM7, it is enough to show that 6[X] = I(A) and that ¢ is an isomorphism with
respect to R (i.e., for all z,y,z € X™, R(z,y, z) if and only if R(d(z),d(y),d(z))).

From the fact that both I'o and « are bijections,
0[X] = (Fx o a)[X] =T 7H[I(A)] = I(A)

To see that ¢ is an isomorphism with respect to R, let z,y,2z € X™. Note that 0
preserves the involution and preserves and reflects the order, whence because e is
characterized entirely in terms of the involution and order we have that the following

are equivalent
e ey exists and x ey <™ .
e §(z) € S(A) and d(z) e d(y) < 6(2).

Hence R(z,y, z) if and only if R(d(x),d(y),d(z)) as desired. Thus X™ is an object

of SM7 and is isomorphic in that category to S(A). O

7.3 An equivalence between SS and SM’

In this final section of the chapter, we attend to categorical details. Although the

primary interest in the dual variants of (=), and (—)™

arises from the representa-
tions they give us for objects, we may also describe the action of these constructions
on morphisms and show that they give the functors of a categorical equivalence. Our

first goal is to verify that Definitions 7.1.7 and 7.2.20 make sense for morphisms.

Lemma 7.3.1. Let a: X — Y be a morphism of SM7 . Then o is a morphism of
SS.
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Proof. Since « is a bounded morphism, we have a~![V,] = X,. This yields
a[Xw] = a[a™![Vu]] € Y, and it follows that oy, has its image in Y. This
means o, is well-defined.

e is the restriction of a continuous isotone map, hence is itself a continu-
ous isotone map. To prove that o, is an Esakia map, let x € X, z € Y, such
that aw(z) < z. Then as «a(z),z € Y, from the definition of e we get that
a(z) e z = a(z) v z = z. This gives Ry a(x)zz. Because « is a bounded morphism,
there hence are u,v € X with Rxzuv, z < a(u), and a(v) < z. From z < o(u)
and z € Y, we obtain that a(u) € Y. Applying that « is a bounded morphism
again, we have that a(u) € Y implies that u € a7 ![Vi] = X. The definition of
e and z,u € X, provide that x e u = x v u. But Rxzuv yields x e u < v, whence
z,u < x v u < v. By monotonicity we obtain a(v) < z < a(u) < a(v), and thus
x < v and z = a(v). Thus ay is an Esakia function.

For the rest, observe that if x € X and z* = z, then an(z) = an(z)* since
o preserves *. Also, if © # x*, then without loss of generality x € X, and
¥ ¢ Xy = a ![Vi], whence a(x) € Yy and a(z*) ¢ Yi. This implies a(z) # a(x)¥,

proving the claim. O

The proof that o™ is a bounded morphism for each morphism of SS is compli-
cated, and involves some case analysis. For clarity of exposition, we divide the proof

into several lemmas.
Lemma 7.3.2. Let a: X — Y be a morphism of SS. Then o™ is isotone.

Proof. Let z,y € X™ with x <™ y.

Case 1: z,y € X. In this case, o™(z) = a(z) < a(y) = o™ (y) follows because
« is isotone.

Case 2: z,y ¢ X. Here z <™ y implies —y < —z, and from the isotonicity of «

we obtain —a™(y) = a(—y) < a(—z) = —a™(z). Thus o™ (z) <™ o™ (y).
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Case 3: ¢ ¢ X and y € X. For this case, ¢ ¢ X gives that —x € X, and
x <™ y implies —z and y are <-comparable. Since « is isotone, this gives that
—a”(z) = a(—z) and o™(y) = a(y) are <-comparable. The definition of o™ and
the fact that ¢ X imply that o™ (z) ¢ Y, whence from the definition of <™ we get

a™(x) <™ a™(y). This settles the claim. O

Lemma 7.3.3. Let a: X — Y be a morphism of SS. Then o™ (—x) = —a™(z) for

all x € X™.

Proof. There are three cases.

Case 1: z € X\Dyx. Here we have that —x € —D5, and this gives that
a”(—z) = —a(=(-x)) = —a(r) = —a"(z).

Case 2: z € Dx. In this situation, we have o™(—z) = o™ (z) = —a™(z).

Case 3: z € —D%. We have that —z € X\Dx, and from this we obtain that

a™(—z) = a(—zx) = —(—a(—x)) = —a™(x). O

Lemma 7.3.4. Let a: X — Y be a morphism of SS. Then o™ (|z|) = |a™(z)| for

each T € X™.

Proof. Let x € X™, and note that one of —z <™ x or x <™ —z holds. As o™ pre-
serves <™ by Lemma 7.3.2 and preserves — by Lemma 7.3.3, we get —a™(z) <™ o™ ()
in the first case. In the second case, we obtain o™ (x) <™ —a™(x). Thus either

a™(z) v —a™(z) = o™ (z) = o™ (|z|) (in the first case), or else

a”(x) v —a(z) = —a”(z) = a”(—x) = " (|z])

(in the second case). O

Lemma 7.3.5. Let a: X — Y be a morphism of SS. Then o™ preserves the ternary

relation R.
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Proof. Let x,y,z € X" such that Rx(x,y,z). Then by definition x e y exists and
x oy <™ z. There are two cases.

Case 1: rey = xvy. In this situation, xvy <™ z,s0x <™ zand y <™ 2. As o™
preserves the order, o™ (z),a™(y) <™ o™ (z). Since e is order-preserving and idem-
potent, this implies o™ (z) ® o™ (y) <™ o”™(2). Therefore Ry (a™(z), a™(y),a™(z)).

Case 2: z ey # x v y. By the definition e, we have = e y is one of x or y, and
also z L y. Suppose without loss of generality that = <™ y and (since z oy # x v y)
that x e y = . Then |y| <™ |z| from the definition of e. From Lemma 7.3.2 we get
a™(x) <™ a™(y), whence o™ (x) e ™ (y) must exist by the definition of . Moreover,
ly| <™ |z| together with Lemmas 7.3.2 and 7.3.4 yields |a™(y)| <™ |o*(z)|. Thus
o™ (x) e a™(y) is either o™ (z) A a™(y) or whichever of o™ (x) and o™ (y) has greater
absolute value by the definition of e. This implies o™ (x) ® a™(y) = o™ (x) in either
case. Since v = z oy <™ 2z, we get a”(x) e &™(y) = a™(x) <™ a™(z), and thus

Ry (a™(z), o™ (y), a™(2)). =

Lemma 7.3.6. Let a: X — Y be a morphism of SS. Then if Ry (z,y,a™(2)), there

exists u,v € X™ such that Rx(u,v,z), x <™ o™ (u), and y <™ o™ (v).

Proof. Suppose that Ry (z,y,a"™(z)). By definition x e y exists and z e y <™ o™(z),
and there are two possibilities.

Case 1: x ey =z v y. Here x <™ o™(z) and y <™ o™(z). Taking u = v = z
gives the claim as Rx(z, z, 2).

Case 2: roy # x v y. Then from the definition of e we have that z | y and z ey
is one of = or y. Suppose without loss of generality that z <™ y, that zey = z (for if
x ey =y, then we obtain the contradiction zey = z v ), and that |y| <™ |z|. Were
it the case that x,y € Y, we would have z ey = x v y by the definition of . Thus we
may further suppose that x ¢ Y, whence |z| = —z (for otherwise x <™ y and Y being

an up-set would give z,y € V). The hypothesis that x = x e y <™ o™(z) implies
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a™(—z) <™ —x. Therefore a”(|z|) must be comparable to —x by Corollary 7.2.7
(as transferred along the obvious isomorphism). This means either a™(|z]) <™ —x
or —z <™ a™(|z]).

Subcase 2.1: o™(|z|) <™ —=z. In this setting, a(|z]) < —z and « being an Esakia
map provides that there are uw € X such that |z|] < u and a(u) = —z. Then
—u < —|z| < zand y <7 Jy] <7 Jz] = —x <™ a™(u), so z < a”(—u),
y <" a™(u), and (—u) e u = —u <™ z gives the result.

Subcase 2.2: —z <™ o”(]z|). Here we have |y| <™ |z| = —x yields that y <™
a™(|z]). Noting z e |z| = z A |z]| = z, we have =z <™ a™(2), y <™ o™(|z]), and

Rx(z, |z, 2). O

Lemma 7.3.7. Let a: X — Y be a morphism of SS. If Ry (o™ (z),y, z), there exists

u,v € X™ such that Rx(z,u,v), y <™ o™ (u), and o™ (v) <™ z.

Proof. By the definition of R, a®(z) e y exists and o”*(x) @ y <™ z. There are four
cases, each with some subcases.

Case 1: o™(z) ey = o™(x) v y <™ z. Here o™ (z) <™ z and y <™ 2.

Subcase 1.1: o™ (z) € Y. From the fact that « is an Esakia map, there exists
uw € X with 2 < v and a(u) = o™(u) = 2. Then y <™ o™(u), ™ (u) <™ 2,
and Ry (z,u,u) since z e u <™ wu is a consequence of z <™ w by monotonicity and
idempotence.

Subcase 1.2: o™ (z) ¢ Y. We may suppose o”(z) and y are incomparable (i.e.,
since we are in the case where o™ (z) ey = o™ (z) v y). Also, —a™(z) = a™(—x) €Y
and —z <™ o™(—x), —z <™ —y. Were it the case that —z € Y, this would contradict
the fact that Y is a forest. Hence —z ¢ Y and therefore z € Y. The fact that —z
and o™(—x) are comparable gives that z and o™(—x) are comparable.

Subcase 1.2.1: z <™ o™(—x). Here y <™ o™(—z) and o™(z) <™ —z <™ 2.

We obtain the result from —z e x = x, which gives Rx(x, —z, x).
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Subcase 1.2.2: o™(—x) <™ z. In this case, observe that a™(x) ¢ Y implies

a™(—z) € Y and —z € X. Then «a being an Esakia function proves u € X with
—z <wuand a(u) = a™(u) = 2. Asz ¢ X, we have z <™ —z <™ u and this yields
xeou <™ u. Since y <™ z = o™(u) and o™ (u) <™ z hold, we get the result from
Rx(x,u,u).

In all remaining cases, we may assume that o™ (x) and y are comparable and
that not both of o™ (z) € Y and y € Y hold.

Case 2: |a™(z)| = |y|. This gives o™ (z) o y = o™ (z) A y.

Subcase 2.1: o™ (z) <™ y. Here we have o™(z) e y = o™ (z) <™ z. From
|a™(x)| = |y|, we may obtain that o™(z) = y or o™(z) = —y. If a™(x) = y,
then Rx(z,z,z) yields the result. If a™(z) = —y, then o™ (—z) = y and we use
Rx (z, —x,x) instead.

Subcase 2.2: y <™ o™(z). In this setting o™(z) ey = y <™ 2. Again,
|a™(z)| = |y| provides that o™(z) = y or &™(z) = —y. The former implies the
result by noting that Rx(x,z,z). The latter provides that o™(—z) = y <™ 2,
whence Ry (z, —z, —z) proves the claim.

Case 3: |y| < |a™(z)|. Note that in this case a™(z) o y = o™ (z) <™ 2.

Subcase 3.1: y <™ o™ (z). This subcase is immediate from Rx(z,z, ).

Subcase 3.2: o™ (z) <™ y. Here we may suppose o™ (z) ¢ Y, and therefore
a™(—x) € Y. This implies o™ (—z) = |a™(x)|, whence y <™ |y| <™ o™(—x). Then
Rx (x,—x,x) settles the third case.

Case 4: |a™(z)| < |y|. In this case we have o™ (z) e y = y <™ 2.

Subcase 4.1: o™ (z),y ¢ Y. We have |a™(z)| = —a™(z) <™ —y = |y|. Hence
o™(—x) < —y, and using the fact that « is an Esakia map gives u € Y with —x < u
and o™ (u) = a(u) = —y. It follows that o™(—u) = y <™ 2. Thus —u <™ z, and

from —u,z ¢ X we conclude that x e (—u) = —u since the value of x e (—u) is either
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the meet or the one with the larger absolute value. This implies Rx (x, —u, —u) and
y = a™(—u) <™ z settles the subcase.

Subcase 4.2: o™(xz) e Y and y ¢ Y. Here |0 ()| = o™ (z) <™ —y = |y|. As «
is an Esakia function, there exists u € X with z < u and o™ (u) = a(u) = —y. Then
y = o™(—u) and y <™ z hence yields o™ (—u) <™ z. As z <™ u, o being monotone
implies that z e (—u) <™ ue (—u) = u A —u <™ —u. Hence Rx(x,—u,—u), and

since y <™ o™(—u) and o™ (—u) <™ z this gives us the fourth case. O
Lemma 7.3.8. Let a: X — Y be a morphism of SS. Then o™ is continuous.

Proof. Let U uV < Y™ be open, where U € Y and V' < D5, are open. The map
—: Y™ — Y™ is a continuous bijection of compact Hausdorff spaces, whence it is a
homeomorphism. Notice that (a™))~[V] is precisely {x € Y™ : —a(—2) € V}. This
is the same as {—z € Y™ : a(—x) € V}, so it is the inverse image of V' under the
continuous composite map « o —. Thus the inverse image of V' under this map is

open. Because (o) U U V] = (a*) 7 [U]u («*)~L[V], we obtain the lemma. [

Lemma 7.3.9. Let a: X — Y be a morphism of SS. Then o™ is a bounded mor-

phism.
Proof. This is immediate from the previous lemmas. O
Lemma 7.3.10. (—)w: SM7 — SS is functorial.

Proof. Let a:' Y — Z and $: X — Y be morphisms in SM7. We need

(aoﬂ)m = Qg © B-

Let € X,. Then we have (o 8)u(z) = a(f(x)) = aw(Bu(z)) as a consequence of
the fact that (—), acts by restriction. It is obvious that (—), preserves the identity

morphism. ]
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Lemma 7.3.11. (—)™: SS — SM7 is functorial.
Proof. Consider objects X = (X,<x,Dx,mx) and Y = (Y,<y,Dy,7y), and

Z = (Z,<z,Dz,77) of SS, and let a: Y — Z and $: X — Y be morphisms of

SS. Let x € X™. Either x € X or z € {—y : y ¢ Dx}. In the first situation, we have

(2o B)7(z) = (ae f)(z) = a(B(z)) = o™ (87 (z)).

In the second situation, write x = —y where y ¢ Dx. From this we get

(aoB)"(z) = (o B)(y) = —a(B(y))-

Also, p™(x) = —f(y) is not in Y, whence o™(—f(y)) = —a(B(y)). Therefore
(o)™ = o™ o¢p™ in each case. It is obvious that (—)™ preserves the identity

morphism, so the lemma follows. O
Lemma 7.3.12. Let X = (X, <, R,*,1,7) be an object of SM7 . Then (X,)™ = X.

Proof. Define 0x: (X)™ — X by

T ifxel
Ox(x) =
(—x)* ifxe¢l

This function is well-defined because x ¢ I implies that —x € I is an element of X.
We will prove that fx is an isomorphism in SM7 . It is enough to show that 6x is
an order isomorphism, homeomorphism, preserves the involution, is an isomorphism
with respect to R, and satisfies Ox[I] = I.

We first show that 0x is an order isomorphism. Let z,y € (Xq)™ with x <™ y. If
2,y € Xy, then Ox(z) = 2 <y = 0x(y). f 2,y ¢ X\, then —x,—y € X, and x <™ y

gives —y < —x, whence (—z)* < (—y)*. Then Ox(z) = (—2)* < (—y)* = Ox(y).
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If x ¢ X and y € X, then x <™ y gives that —x and y are <-comparable. If

* *

—x <y, then (—z)* < —x <y, and if y < —z, then (—z)* < y* <y. In both cases
we obtain 0x (z) < 0x(y). This shows that fx is isotone.

To show 6x is order-reflecting, let x,y € (X)™ with Ox(x) < O0x(y). If z,y €
X, then z <™ y follows immediately. If z,y ¢ X, then (—z)* < (—y)*, and
thus —y < —z. In this case, —z,—y € X, so x <™ y by definition. If x € X
and y ¢ X, then z = 0x(z) < O0x(y) = (—y)*. But y ¢ Xy gives (—y)* ¢ X, a
contradiction to the fact that X, is an upset. In the last case, suppose that x ¢ X
and y € X,. Then (—z)* < y by hypothesis. Since y and —x are comparable, we get
that —x and y are comparable and that —x,y € X,,. The definition of <™ entails
that © = —(—x) <™ y. 0x is thus order-reflecting.

To finish the proof that fx is an order isomorphism, we must show surjectivity.
Let z € X. If z € I, then z € (X)™ and 6x(z) = x. If © ¢ I, then 2™ € I and hence
—(z*) € (Xw)™ and —(z*) ¢ Xy. Then Ox(—(z*)) = (—(—(2*)))* = 2™* = 2. Thus
fx is onto, whence it is an order isomorphism.

We next show that fx is a homeomorphism. From the above, fx is a bijection
so from (X,)™ and X being compact Hausdorff spaces, it is enough to show that
fx is continuous. Let W < X be open, and set U =W nlT and V = W n I°. As
I is open by definition, both U and V are open as well. 0)_(1 [U] = U by definition.
Observe that Ox(z) ¢ [ implies that = ¢ I because x € I would imply Ox(x) = =.

From this, we have

9;(1[1/] ={ze (Xn)":0x(x) eV}

={re (X)) :(—x)" eV}
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Now *: X — X and —: (X)™ — (X)™ are continuous bijections by defini-
tion, and the above is precisely the inverse image of V' under the composition of
— and *. Thus V is an open subset of (Xq)™ disjoint from X, and it follows that
0x'[W] = 0x'[U] U 6x'[V] is open. This gives that 6x is a homeomorphism.

To prove that 6x preserves the involution, let z € (X)™. If —x ¢ X, then
x € Xy and Ox(—x) = (—(—x))* = 2* = Ox(x)*. If —z € X\ with —x = z, then
x =a% and Ox(—z) = —x = ¢ = z* = Ox(x)*. If —z € X\ with —z # z, then
x ¢ X and Ox(—2x) = —z = (—2)** = Ox(z)*.

From the fact that 0x (x) = z for x € I we easily obtain 6x[I] = I. All that is left
is to prove that 6x is an isomorphism with respect to R. But this is an immediate
consequence of the fact that R is determined by meet, join, and involution, and 0x

is an involution-preserving order isomorphism. O
Lemma 7.3.13. Let X be an object of SS. Then (X™), = X.

Proof. Let ix: (X™), — X be the identity map. Then ix is an isomorphism of SS,

and the result is immediate. O

Theorem 7.3.14. (=) and (—)™ give a covariant equivalence of categories between

SM7 and SS.

Proof. Naturality is all that remains to show. It is obvious that ix gives a natural
isomorphism. To prove this for fx, let &: X — Y be a morphism of SM'. It is
enough to show that o 0x = Oy o ()™, so let z € (X)™. If © € X, then taking
x as the argument of the maps above gives a(x) on both sides of the equation. If
x ¢ X, then evaluating each side of the equation yields a(—z)*. This proves the

claim. =
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Chapter 8

Dualized representations of

srDL-algebras

The previous chapter provides a case study in how a duality-theoretic perspec-
tive can make an algebraic construction more transparent; we have seen that much
of the complexity of the Galatos-Raftery construction dissolves when presented on
dual spaces. In particular, the order-theoretic content of the construction is cap-
tured by simply reflecting points in the dual space across a designated subset, and
the complicated multiplication inherent in the algebraic variant of the construction
is captured dually by a simple piecewise-defined partial multiplication (compare:
the multiplication in the algebraic variant of (—)™ defined in Chapter 5, the par-
tial multiplication dual variant of (—)™ given in Chapter 7, and the definition of
multiplication on S and S\{0} in Example 2.3.8).

This chapter provides a second case study. Here we apply duality-theoretic
methods to simplify the construction in [1] of srDL-algebras (see Section 2.3.1) from
quadruples (B, A, v, N), where B is a Boolean algebra, A is a GMTL-algebra,

and v, and N are maps that parametrize how B and A are assembled. Our dual

164



analogue of this construction builds the extended Priestley duals of srDL-algebras
from the extended Priestley duals of B and A, together with some data dualizing

ve and N. The content of this chapter is based on the author’s [27].

8.1 Algebraic representations by quadruples
We begin by recounting the pertinent aspects the Aguzzoli-Flaminio-Ugolini
quadruples construction of [1].

Definition 8.1.1. By an algebraic quadruple we mean an ordered tuple (B, A, v¢, N)

consisting of:
e A Boolean algebra B.

o A GMTL-algebra A with B n A = {1}.

o A nucleus N: A — A that is also a lattice homomorphism (sometimes called

a wdl-admissible map ).

e An external join v, i.e., a map ve: B x A — A that satisfies the conditions
enumerated below (where for each uw € B and x € A, we employ the abbrevia-

tions vy (y) :=u vey and Ay (v) :=v v, x),

(V1) For everyu € B, and x € A, v, is an endomorphism of A and the map A,

is a lattice homomorphism from (the lattice reduct of ) B into (the lattice

reduct of) A.

(V2) v is the identity on A and vy is constantly equal to 1, where 0 and 1

denote the bounds of B.

(V3) For all u,v € B and for all x,y € A,

V() V VoY) = Vuve(T vV y) = Vu(vo(z v ).
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If (B1, A1, v, Np) and (Bg, Ag, va, Ny) are algebraic quadruples, say that a pair

(h, k) is a good morphism pair provided it satisfies:
e h: B; — Bs is a homomorphism of Boolean algebras.
e k: Ay — Ay is a homomorphism of GMTL-algebras.
o k(uvyx)=h(u) ve k(z) whenever (u,z) € B x A.
o k(Ni(z)) = Na(k(z)) for all x € A;.

With good morphisms pairs as arrows, algebraic quadruples form a category QgmTL-

The construction that we aim to dualize proceeds as follows. Starting from an
algebraic quadruple (B, A, v, N), define a relation ~ on on B x A by (u,z) ~ (v,y)
if and only if u = v, v, (x) = v_yu(y), and v, (Na(z)) = V4 (Na(y)). One may show

that ~ is an equivalence relation. We define an algebra

B@) A =(Bx A/~ 0,=,m,u,[0,1],[1,1])

whose operations are defined on representatives [u, z], [v,y] € B x A/~ by

[w, 2] © [0, y] = [u A v, Vuy—o(Y = 2) A Vouvo(@ = Y) A Vauy—o(-y)]

[u, 2] = v, y] = [u = 0, Vuyo(N(Yy) = N(2)) A Vouyo (N (@) A Vouy (2 = )]
[w, 2] P [0, 9] = [ A v, Vavo (@ V Y) A Vay=0(@) A Veuvo(Y) A Veuy—o(@ A Y)]
[u, 2] 1 [v,y] = [ v v, Vavo (@ A Y) A Vay oY) A Vouvo(@) A Veuy (@ V Y)]

It turns out that B®év A is an srDL-algebra, and indeed ®éV provides one functor of
a categorical equivalence. In fact, for each subvariety H of GMTL, let srDLy be the

full subcategory of srDL whose objects are srDL-algebras A such that Z(A) e H.18

!8Recall that Z(A) denotes the radical of A. Radicals, coradicals, and Boolean skeletons of
srDL-algebras are pervasive in this chapter. For pertinent definitions and basic results, see Section
2.3.1.
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Moreover, let Qu the full subcategory of QgmTL Whose objects are algebraic quadru-
ples (B, A, ve, N) such that A € H. We may define functors @y : srDLy — QemTL

and EH : QGMTL — erLH by

Py(A) = (B(A),%(A), v, Na)

Py (k) = (kF@(A) ) kf‘%(A))’

where Na: Z(A) — Z(A) is the wdl-admissible map defined by Na(z) = ——z,

and

From [1], Qq and srDLy are (covariantly) equivalent categories via the above func-

tors.

Remark 8.1.2. A word on notation is in order. Because the construction outlined
above involves many different types, we will make an effort to reserve a, b, ¢ for gen-
eral elements of srDL-algebras, whereas we will reserve u, v, w for Boolean elements
and x,y, z for radical elements. Where possible, we will hold to the same convention
for prime filters of these algebras, except that filters will be denoted by a Gothic
typeface. Thus a, b, ¢ are used for prime filters of an srDL-algebra, whereas u, v, tv
are used for ultrafilters of its Boolean skeleton and g, 1,3 are used for generalized

prime filters of its radical.
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8.2 Representing dual spaces by externally prime filter pairs

Our goal is to understand the extended Priestley dual of a given srDL-algebra
in terms of the extended Priestley duals of its Boolean skeleton and radical, and we
take our first steps in that direction in this section. For each srDL-algebra A and
each a € S(A), an easy argument verifies that a n %(A) is an ultrafilter of #(A)

and a n Z(A) is a generalized prime filter of Z(A).

Definition 8.2.1. Let A € srDL. Say that (u,r) € S(#B(A)) xS(Z(A)) is externally
prime if

V(u,x) € B(A) x Z(A),u v x € implies u € u or x € . (8.2.1)

Moreover, define
Fa ={(un,r) e S(B(A)) x S(Z(A)) : (u,x) is externally prime}

Remark 8.2.2. We often understand Fa as bearing the product order, i.e., we
have (u,r) < (v,9) if and only if u € v and r  y. Because u and v are ultrafilters

(and in particular maximal), the condition that u € v is equivalent to u = v.

The definition of the functor ®y(A) employs the wdl-admissible map Na on
Z(A) defined by Na (z) = ——z, and this nucleus will be fundamental to our inves-
tigation. As for any nucleus, Na[Z(A)] is a residuated lattice in its own right, and

we observe that for each prime filter r of Na[Z(A)] we have

N '[f] = max{y € S(#(A)) : Naly] = 1.

It is simple to verify this by checking that N '[x] is a prime filter, and that any 1

with Na[p] =t is contained in N, '[x].
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In order to tie the duals of srDL-algebras to the duals of their radicals and
Boolean skeletons, we will give a representation of S(A), A € srDL, in terms of
externally prime filter pairs. However, it turns out that only some of the points in
S(A) may be represented by such filter pairs (in fact, the members of F turn out
to correspond to those prime filters of A that do not contain all of Z(A), as we
shall see). In order to represent every a € S(A), we create a (modified) copy of some
points and place them “above” the poset Fa (cf. the dual construction of (=)™ by

a reflection “below” the set of designated elements). To achieve this, define
Fa = {+(w): (wy)e P}
where
P = {(u,n) € S(B(A)) x S(NA[Z(A)]) : (w, N5 '[9]) € Fa and Nx'[v] # 2(A)}.

The decoration + comes by analogy from our work in Chapter 7, and intuitively we
think of ]:z as corresponding to an intuitively “upper” or “positive” piece of S(A).

The following definition makes this precise.

Definition 8.2.3. Let Fy := FAUFY, and define a partial order = on Fy byp E q

if and only if one of the following holds.
1. p = (u,x) and q = (v,9) for some (u,r), (v,9) € Fa with (u,z) < (v,1).
2. p=+(u,r) and q = +(v,9) for some +(u,x), +(v,9) € .7:2 with (v,9) < (u,1).
3. p=(ur) and q = +(v,9) for some (u,r) € Fa, (v,9) € ]-"z with u = v.
Our definition of the pair (u,r) being externally prime seems to intrinsically

depend on u and ¢ being filters (i.e., as opposed to abstract points in some Priestley
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space). However, we presently provide an entirely abstract treatment of external
primality, for which the following observation is crucial.

Let a € S(A), where A € srDL. For each u € #(A) we have u v —u =1 € a
by Lemma 2.3.6(2), and since a is prime one of u € a or —u € a must hold. This
implies that each a € S(A) contains an ultrafilter of Z(A). Because ultrafilters are

maximal and each a € S(A) is proper, this ultrafilter is unique.

Definition 8.2.4. For a € S(A) denote by u, the unique ultrafilter u of B(A) with
u < a. We call uy the ultrafilter of a.
We say that an ultrafilter uw € B(A) fixes r € S(Z(A)) if there exists a € S(A)

with u € a (equivalently u = u,) and r = an Z(A).

It is obvious that u, fixes a N Z(A) for each a € S(A). In order to explain the
terminology of an ultrafilter “fixing” a radical filter,'® we define for each u € %(A)

amap f,: S(Z(A)) — S(#(A)) by

p(t) = {z € Z(A) tuv zex}t = v, '[x],

where the notation v, (x) = u v = was introduced in Definition 8.1.1. Observe that
1y is the extended Priestley dual of the GMTL-endomorphism v,,. The following

technical lemma gives some useful properties of the maps .

Lemma 8.2.5. Let A € stDL, let r € S(#Z(A)), and let u,v € B(A). Then the
following hold.

L. Huo(x) is one of pu(x) or po(p).
2. uno(z) is one of 1u(x) o i (x).

3. pu(r) =1 or p—u(x) =1

9Note that we call the elements of S(Z(A)) radical filters.
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4 pu(x) =1 or pu(r) = Z(A).
5. pu(pu(r)) = pu()-

Proof. Let x € Z(A). If either of x vu e or x vv e holds, thenzvuvverasy
is an up-set. Also, z v (u A v) €r gives z v u € ¢t and x v v € p. These facts provide
that fu(x), o (t) S puve(r) and pluay(¥) S pru(r), o ().

For (1), suppose on the contrary that both of 1, (r) € pyve(r) and py(r) S fhyvw(2).
It follows that there exist z,y € Z(A) with x vuvuv,yvuvover, butxvué¢r
and x v v ¢ r. From ¢ being an up-set and x v u v v,y v u v v € r, this means
xrvyvuvovuer Aspisprimein Z(A) and x v u,y v v e Z(A), it follows that
(xvu)v(yvoev)=xzvyvuvuvergimpliesxzvuegoryvovery Thisisa
contradiction, so either iy, (r) = pu(r) or tyve(r) = o (r).

For (2), suppose on the contrary that pu,.,(r) © po(r) and pyau(r) < we(r).
Then there are x,y € Z(A) with z v (u A v),y v (u Av) ¢ r but x v u € ¢ and
y v v € . Distributivity of the lattice reduct implies that (x v u) A (z v v) ¢ ¢, and
as v u € we have x v v ¢ r. Likewise, (y v u) A (y vov)¢rand yv v e together
imply that y v u ¢ g. Since ¢ is prime, this yields x v y v v v v ¢ g. This contradicts
xvuersincexr vu<zvyvuvuandryisisan up-set, giving (2).

For (3), we have r = 110(x) = ptur—u(r), which is either p,(r) or p—y(r) from (2).

For (4), suppose that u,(r) # r and ¢ # Z(A) (so in particular u,(r) # Z(A)).
Item (3) gives that pi—(x) = r, and Z(A) = p1(r) = puy—u(r) gives pu(r) = Z(A)
or p—y(r) = Z(A) from (1). Since r # Z(A), the second of these possibilities is
excluded. Thus Z(A) = p(x).

Item (5) is a direct consequence of (4). O

Lemma 8.2.6. Let A be an srDL-algebra. Then we have the following.
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1. anZ(A) is a generalized prime filter of Z(A), and is a fized-point of each of

the maps [y, for u ¢ ug.

2. Conversely, if t = a n Z(A) is proper and u is an ultrafilter of #(A) such

that ¢ is fived by each p,, for u ¢ u, then u S a. In particular, u = u,.

Proof. To prove (1), note first that a n Z(A) € S(#Z(A)) is an obvious consequence
of the definitions. To prove the rest, let u ¢ u, and set ¥ = a n Z(A). For z € ¢
we have that © < u v x implies u v x € ¢, whence z € p,(r). Thus ¢ € py(z). For
the reverse inclusion, let x € p,(r). Then u v z € ¢, and as t € a we get u v = € a.
Since a is a prime filter of A, it follows that u € a or x € a. As u ¢ u,, the first of
these cannot occur. Thus = € a. It follows that x € a n Z(A), giving p,(r) =t as
claimed.

To prove (2), let u € u. Then u being an ultrafilter implies —u ¢ u, so r is a
fixed-point of p—, by assumption. Were u ¢ a, we would have —u € a since a is
prime and u v —~u € a. Let x € Z(A). Then —u,x < —u v z, and as both Z(A) and
a are up-sets it follows that —u v x € a n Z(A) = . Since ¢ is fixed by g, this
implies that x € 1, (r) = r. Therefore Z(A) C r, a contradiction to the assumption
that ¢ is proper. We thus obtain v € a, and u € a. Since the ultrafilter of a is unique

by the remarks above, we get u = u, as well. 0

Remark 8.2.7. Observe that it would be more natural to work with prime ideals
of #(A) rather than ultrafilters. By the above, u € S(#(A)) fixes a proper filter
r € S(Z(A)) if and only if u,(r) = ¢ for u € u¢, and the sets of the form uc for
u € S(#(A)) are exactly the prime ideals of Z(A). Because we have adopted a
variant of Priestley duality that employs prime filters rather than prime ideals, we

will continue working with filters in the present setting.

Lemma 8.2.8. Let yr € S(#(A)). Then there is ue S(#B(A)) such that u fizes r.

172



Proof. We will use the prime ideal theorem for distributive lattices. For this, let

i =Z(A)\r and observe that i is an ideal of Z(A). Also, its down-set

li={ae A:a<ifor some i€ i}

is an ideal of A as well. Note moreover that  is a filter of A (and not just of Z(A)).
Since r N |1 = (J, there exists a € S(A) such that a n |i = ¢J and ¢ € a. It is easy

to see that u, fixes ¢, which settles the claim. ]

Remark 8.2.9. Note that Lemma 8.2.8 also shows that an arbitrary r € S(Z(A))
is of the form r = a n Z(A) for some a € S(A).

Every radical filter is fixed by at least one ultrafilter by the foregoing lemma.
One consequence of the following is that a given radical filter may be fixed by many

ultrafilters.
Lemma 8.2.10. Let A € stDL and ue S(#A(A)). Then u fizes Z(A).

Proof. We must show that there exists a € S(A) such that a n Z(A) = Z(A) and
u < a. Let f be the filter of A generated by uu Z(A). Then f is proper. To see this,
toward a contradiction suppose that 0 € f. Then there exists u € u and = € Z(A)
such that u A < 0. From the fact that a -b < a A b holds in every integral CRL,
we get u - x < 0. Thus x < u — 0 = —u by residuating. As Z(A) is an up-set, this
implies —u € Z(A). The only Boolean element in Z(A) is 1 (see, e.g., [1]), whence
—u = 1. From this we obtain v = 0, a contradiction to the assumption that u is an
ultrafilter (i.e., since ultrafilters are proper). Thus f # A, and we may extend f to
a prime filter a of A by the prime filter theorem. It is easy to see that u € a and

H(A) < a, which proves the lemma. O
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The following lemma provides a crucial step in making external primality extrin-
sic (i.e., rendering external primality on abstract spaces rather than spaces whose

points are filters).

Lemma 8.2.11. Let A € stDL and let x € S(Z(A)). Then (u,r) is externally prime

if and only if u fizes r.

Proof. For the forward implication, let (u,r) € Fa. If t = #Z(A), then the result
follows from Lemma 8.2.10. Suppose ¢ # Z(A). We will apply Lemma 8.2.6, so let
u ¢ u. Since ¢ € ,(r) always holds, it is enough to show that pu,(r) € r and we let
x € fy(r). Then u v x € ¢, so by external primality we have that w € u or = € .
Since u ¢ u by assumption, it follows that x € r. Thus pu,(r) = ¢ for every u ¢ u, and
the result follows from Lemma 8.2.6(2).

For the backward implication, suppose that u fixes r. Let u € #(A) and
x € Z(A) be such that u v z € ¢, and suppose that u ¢ u. Then from Lemma
8.2.6(1) and u fixing r, we get that r = p,(r). But = € p,(r) means u v x € ¢, whence

x € p. This implies that v € u or z € ¢, so (u,r) is externally prime. O

The next two lemmas are never invoked in the sequel, but provide some intuition

about ultrafilters that fix a given radical filter. For each radical filter ¢, define

fo = ﬂ{u : u fixes 1}
Notice that f; is a nonempty and proper filter, and f, is an ultrafilter if and only if
there is just one ultrafilter fixing z.
Lemma 8.2.12. Let u ¢ f;. Then p, fizes x.

Proof. Note that if u ¢ f, then there exists an ultrafilter u of (A) with u fixing ¢

and u ¢ u. Then Lemma 8.2.6 provides p,(r) = r. O
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The filter f, characterizes exactly which ultrafilters fix r.

Lemma 8.2.13. Let u be an ultrafilter of Z(A) and let x € S(A). Then u fizes ¢ if

and only if f, < u.

Proof. It is obvious that if u fixes r, then f; < u. For the converse, observe that if
r=%(A), then Lemma 8.2.10 implies that u fixes . If ¢ # Z(A), then by Remark
8.2.9 we have that there is a € S(A) with r = a n Z(A). Let u ¢ u. Note that u ¢ f;
since f, < u, and from Lemma 8.2.12 we get p,, fixes r. It follows that r is fixed by
each map p,, for u ¢ u, and by Lemma 8.2.6(2) this yields that u € a. It follows

that u fixes r, settling the claim. O

The following technical lemma helps to link external primality of filter pairs to

prime filters of srDL-algebras.

Proposition 8.2.14. Let A € srDL, let (u,r) € S(B(A)) x S(Z(A)), and let

p=Qurp

be the filter of A generated by w o r. Then if (u,r) is externally prime (equivalently,

if u fizes t), we have that p is prime.

Proof. The filters u and ¢ being closed under A implies that

p={acA|unz<aforsomeueuzxecr}.

In order to prove p is prime, we will make use of the decomposition of elements in
an srDL-algebra in terms of Boolean and radical elements (see Equation 2.3.1 of

Section 2.3.1). Let a; v ag € p, and write

ap = (u1 v —z1) A (—ur v 1)
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az = (ug v —x2) A (—ug v x2)

for some u1,up € A(A) and z1,x2 € Z(A). We must prove that a; € p or ag € p, and
that p # A. Since a; v as € p, there exist u € u and z € ¢ such that u A x < ay Vv as.

A calculation using the distributivity of the lattice reduct of A shows that

ar v az = ((ug vug) v (—x1 v —x2)) A (U1 v ~u2) v xe) A ((—u1 v ug) v 1)

A(—ur v —ug2) v (1 v x2)).

The right-hand side of the above is a meet, and this implies that u A x is a lower
bound of each of the meetands (uj vug) v (—z1v —x2), (u1v—uz)ves, (—upvug)ver,
and (—uj v —u2) v (1 v z2).

We further scrutinize the first of these, viz. u A z < (u1 v u2) v (—z1 v —x2).
This inequality holds if and only if v < u; v uz. In order to prove this, recall that
A is isomorphic to Z(A) @A Z(A) via the construction of Section 8.1, and in

particular there are isomorphisms

Ap: B(A) - B(B(A) QN Z#(A))

Ap: Z(A) — Z(B(A) QA Z(A)).

By direct computation, we obtain:

(A(b) M Ar(x)) = [u, 1] m [1, 2] = [u, —u v z],
Ap(ur v ug) U —Ag(x1 A x2) = [u1 v ug, 1] U [0,21 A x2]

= [u1 Vv U2, (u1 \% U2) \% (331 A 552)]
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Further, [u, ~u v ] A [u1 v ug, (u1 v u2) v (z1 A x2)] = [u A (u1 v u2), ], where
Z € #Z(A) is some term of the radical calculated via the operations given Section
8.1. Using the isomorphism we may obtain that u A x < (u1 v u2) v (—z1 v —x32)
holds if and only if [u A (u1 v u2),Z] = [u, —u v z], and this holds, which in turn
holds if and only if u < u; v ug. Since u is prime in Z(A), it follows that not both

of u1 ¢ u, uo ¢ u may hold. Now note that each of

(u1 \ —'UQ) VvV X9

(—‘ul Vv UQ) VvV X1
(—‘ul Vv ﬁUQ) \ (1‘1 \ 332)

is in Z(A) since the latter is an up-set. Observe that if y € Z(A) with u A x < y,
then we have x < —u v y by residuating and applying Lemma 2.3.6(4). This gives
—u v y €, and from external primality we get that either —u € u or y € r. But
—u € u is impossible since u € u, whence y € r. We may apply this argument to the

three terms above to obtain the following conclusions:

T2 EXOr uyp v Uz €U

1 ELOr —U1 VU EU
T1 VT2 €ELOr UL V UQ E U

From the above, we have:

Uy, "MU2 EU = a1 €P

UL, U2 EU = a2 EP
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u,ugeuand x1 €r = a; €P
up,ug €euwand xg €r = a9 €.

Since not both of u; ¢ u, us ¢ u hold and z; € ¢ or x9 € , it follows that a; € p or
az € p. To finish the proof, note that p is proper if u is proper: u A z > 0 for any
u € uand x € r, whence 0 ¢ p. It is immediate that pn B(A) =u, and pnZ(A) =1

as u A x < a for a € Z(A) implies a € ¢ by the above. O
The following indicates an especially important application of Proposition 8.2.14.
Definition 8.2.15. Let A € stDL and let ue S(#(A)). Define Ry := (uu Z(A)).

Note that Ry, € S(A) follows immediately from Proposition 8.2.14 and Lemma
8.2.10.

Lemma 8.2.16. Let A € srDL. The following hold.
1. Ifte S(Z(A)), Nalr] # Na[Z(A)], and u fizes ¢, then we have
vy ={ae A|lun —x<a, for someueu ——xe Na[Z(A)\Nalr]}
(8.2.2)

2. Under the hypotheses of (1),

uup)* nE(A) ={—z:——x e NaA[Z(A)]\Nalz]}

and (uu ) € (uup)*.
3. Ifre S(#Z(A)) with Na[x] = Na[Z(A)], then {u U r)* = R,.

Proof. To prove item (1), we check Equation 8.2.2 directly. Let a € A be such that

u A~z < a for some u € u,——x € NA[Z(A)\Na[r]. Then —a < —u v ——uz.
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Were it the case that —a € (u U ), we would have —u v ——z € (u U r). But this
contradicts u € u, ~x ¢ u, ——x ¢ Na[r] S r, whence we have —a ¢ (uuy). It follows
that a € (uup)*. This proves that the right-hand side of Equation 8.2.2 is contained
in (uup)*

For the reverse inclusion, let a € {u U r)*. Then by definition —a ¢ (u U ). We
again invoke Equation 2.3.1 of Section 2.3.1, and write a = (u A x) v (—u A —z) for
some Boolean element u and radical element x. It follows from this decomposition
that —a = (—u A =—x) v (u A —x) by the representation given in Section 8.1. Note
that if v € u, then from Lemma 2.3.7(2) we have a = u A z = u A —y for every
y € Z(A). Note that there exists z € Z(A) such that ——z ¢ r and a = u A —z since
Nalx] # Na[Z(A)]. To see why, observe that if otherwise, —u € u provided that
u ¢ u, and since —u A —m—x < —a ¢ (MU ), we get that ——z ¢ r. It follows that
a>—u A —zand ——x € NA[Z(A)\Na[r]. (1) follows.

For (2), we first show (uuy) < (wup)*. Let a € (uur), so that uAx < a for some
ueuand x € r. Asabove, we have =—x € NA[Z(A)[\Na[r] and un—z < urz < a,

whence a € (u U p)*. For the rest of (2), note that

up)* N E(A) ={—x:——x e NoA[Z(A)\Nalr]}

follows directly from the definition of *.

For (3), note that (uur)* < Ry, follows from another computation using Equation
2.3.1 of Section 2.3.1. To prove the reverse inclusion, let a € R, and let v € u and
x € ¢ be such that unz < a. It follows that —a < —uv —x. Note that if —a € (uuy),
then by primality —u € (4 U ) or =z € (u U ). From Lemma 2.3.7 we get that
—u ¢ uand —z € €(A), whence u, —x ¢ (uu ). This implies —a ¢ (MU ), and thus

ae{uurp*. O
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Although srDL-algebras are not involutive, the negation operation — greatly
influences their structure. In the next several lemmas, we identify pertinent prop-

erties of the Routley star * on the dual spaces of srDL-algebras.
Lemma 8.2.17. Let A € stDL and let a € S(A). Then either a € a* or a* C a.

Proof. Suppose that a ¢ a*, and let a € a with a ¢ a*. Then —a € a, whence
a,—a € a and a A —a € a. Since srDL-algebras have normal i-lattice reducts,
a A —a < b v —b holds for any elements a and b. For b € a*, we thus get bv —be a
as filters are up-sets. From the primality of a, we get b € a or —b € a. In the latter
situation, we would have b ¢ a*, contradicting the fact that b was chosen from a*.

Thus b € a, so a* C a. O

Observe that if a < b for some a,b € S(A), then it immediately follows that

ug = Up. This implicates the following definition.

Definition 8.2.18. Let A € srDL and let ue S(#(A)). Define

Syi={aeS(A):u=u}={aeS(A) :ucal

We call S, the site of u in A.

Lemma 8.2.19. Let A € srDL and let a € S(A). Then a and a* have the same

ultrafilter. Consequently, S, is closed under * for every ue S(#A(A)).

Proof. This is immediate from Lemma 8.2.17 and the remarks above. O

Lemma 8.2.20. Let A € srDL and let a € S(A). Then one of a or a* contains
H(A).

Proof. Let a € Z(A)\a. Note that Lemma 2.3.7 gives —a < a for each a € Z(A),
whence —a ¢ a. This follows because if —a € a were to hold, then a € a as a is an

up-set. From this we obtain a € a* and thus Z(A)\a < a*.
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Assume that Z(A) € a. Then we have Z(A)\a # &, and the previous para-
graph implies that there is a € a* with a ¢ a. As a € a* or a* < a by Lemma 8.2.17,
it follows that a < a*. Therefore Z(A)\a € a* and Z(A) na € a < a*, whence

Z(A) = (Z(A) A a) U (Z(A)\a) < a*. O

Lemma 8.2.21. Let A € stDL and let a € S(A). Then either a  %,, < a* or

a* C %y, < a.

Proof. Note that one of a € a* or a* € a holds by Lemma 8.2.17. Suppose that
a* € a, and set u := u,. Note that Z(A) < a from Lemma 8.2.20, and this yields
that R, = (Z(A) uu) < a. We consider two cases.

Case 1: R, ¢ a*. We will show that a* € R,. Let a € a*, and using Equation
2.3.1 write a = (u A z) v (—u A —z) for some u € Z(A) and x € Z(A). As a* is
prime, one of u A x € a* or —u A —x € a* holds. Were it the case that u ¢ u, this
would imply that —u A —z € a* and —x € a*. But a* being an up-set and —x < y for
every y € Z(A) together imply that Z(A) < a*, a contradiction to the assumption.
This entails that v € u and u A x € a*. Because u A x < a and u A x € Ry, it follows
that a* € R,,.

Case 2: R, < a*. Pick x € ¥(A). Lemma 2.3.7 entails that

Then as x < ——x we get that z ¢ a* and ——z ¢ a by the definition of *.
It follows that = ¢ a. Now let a € a, and applying Equation 2.3.1 again write
a=(uny)v (—uA —y) for some u e A(A) and y € Z(A). We must have either
U Ay €Eaor ~u A —y € a by primality., The comments above imply that since
—y € €(A), we have —y ¢ a. Hence u A y € a, which implies u € u and u A y € Z,,.

This shows that Z, = a=a* asu A y < a.
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If instead a < a*, then a € R,, < a* follows by similar reasoning. O
Lemma 8.2.22. Let A € stDL and let ue S(#(A)). Then R, = R;;.

Proof. Let a € Ry, and from Equation 2.3.1 write

a=(-uvz)A(uv—-z)=(uAz)v(-uA -

for some u € A(A) and v € Z(A). Observe that in every srDL-algebra, we have
that u A y < —x iff u = 0 for every u € B(A),z,y € Z(A); this may be shown
in B(A) @Y¥a #Z(A) and using the fact that Boolean elements, radical elements,
and coradical elements have the form [u,1],[1,z], and [0,y], respectively (see [1]
for details). It follows that —z ¢ R,, whence u A x € R, and u € u. Note that
—a = (u A —z) v (-u A —=—x), and suppose that —a € Ry. It follows that either
un—x € Ryor —un——x € R,. But un—z € R, implies =z € R, and ~un——x € R
implies —u € Ry, and each of these is a contradiction. Therefore —a ¢ R,, whence
a€ R} and R, € R;.

For the reverse inclusion, let a € RY. Then —a ¢ R, and by Equation 2.3.1,

Section 2.3.1, there exist u € #(A) and x € Z(A) with

a=(unz)v (—un-—x)

—a = (uA—x) Vv (-uA—-—x).

Notice that if v ¢ u, we have —u € u. This would imply —u A ——x € R, since
——x € Z(A), entailing that —a € R, as ~u A ——x < —a. This is a contradiction,

so u € u. It follows that v A x € Ry, whence a € R, and R, = R}. ]
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For each A € srDL, we define a map aa: S(A) — Fy by

(an B(A), an Z(A)), if a € a*,
aA(a) =
+(a* " B(A), Nal[a* n Z(A)]) otherwise,
Note that by Lemma 8.2.17, the second clause obtains precisely when a* < a. Since

A is usually clear from context, we will typically write ap simply as a.
Lemma 8.2.23. Let A € stDL. Then aa is well-defined.

Proof. All that demands verification is that the output of aa isin Fy. Let a € S(A).
Suppose first that a € a*, and let u e B(A) and z € Z(A) withu vz e an Z(A).
From a being prime we have that w € a (in which case u € a n #(A)) or x € a (in
which case z € a n Z(A)). This gives that aa(a) € Fy.

Now suppose that if a* < a. It is straightforward to verify that Na[a* n Z(A)]

is a prime filter of Na[#(A)], and we need only check that

(a* " B(A), Ny [Na[a* 0 Z(A)]]) € Fa.

Let ue B(A) and z € Z(A) with u v x € Ny [Na[a* n Z(A)]]. Then

Na(uvz)=—=(uvz)=uv —-—x€Npla* "nZ(A)] S a* " Z(A) < a”.

*

Since a* is a prime filter, it follows that u € a* or Na(z) € a*. From this we

have u € a* N A(A) or else Na(x) € Na[a* n Z(A)]. Since the latter implies

z € Ny [Na[a* n Z(A)]], the result follows. O

Lemma 8.2.24. Let A € stDL. Then aa is a bijection.

Proof. One may readily show the injectivity of aa by using the representation

offered in Equation 2.3.1. We address surjectivity, so first let (u,r) € Fa. Set
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a:= (uur), and observe that Proposition 8.2.14 gives that a € S(A4). From Lemma
8.2.16 we have also that a n #(A) = u, that a n Z(A) = r, and that a < a*. It
follows from this that aa(a) = (u,z).

Second, let +(u,y) € F4. Then if we set 1 := N;l[t)], we have (u,r) € Fa.
Let a = (uu p)*. Then a* < a from Lemma 8.2.16, and a n #(A) = u from from
Lemma 8.2.19. Direct computation shows that Na[b* n Z(A)] = = (€ (A)\b) for

each b € S(A). It follows from Lemma 8.2.16 that
C(A)\a = {—z:——x e Na[y] n Na[Z(A)]},

whence —(€(A)\a) = Na[y]. This yields aa(a) = +(u, ), giving surjectivity. O

Theorem 8.2.25. Let A be a srDL-algebra. Then S(A) and Fy are order-

isomorphic.

Proof. We show that ap is an order isomorphism, for which it suffices (by Lemma

8.2.24) to show that if a1, a3 € S(A), then
a; C ag iff ozA(al) < aA(az)

It is easy to see from the definition that a; € ag implies aa(a;) < aa(az), so we

address the converse. Suppose that aa(a1) < aa(az), and abbreviate
u=arnN %(A)
ni=a;nZ(A)
91 := Na[mg n Z(A)]

ug :=as N B(A)
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ri=ax N Z(A)
n2 := Nalaa n Z(A)]

We consider four cases.

Case 1: a; < af and ap < a3. Note that in this case, by hypothesis we have
ai NZ(A) CaanZ(A) and a; " B(A) = ayn AB(A). Let a € a;, and by Equation
2.3.1 let u € B(A) and © € Z(A) be such that a = (—u v z) A (u v —z). Then
—u Vv x,u Vv -z € a;. By primality and —u v x € a1, we get that —u e u; < uy or
T € r1 € r9. In either case, —u v x € as. Since u v —x € a; we get that u € a;
(as a consequence of —x ¢ a; by Lemma 8.2.21 and the fact that —z < y for every
y € #Z(A)), we have that u v —z € ag. It follows from this that a € ag, giving
a; < ap.

Case 2: a] < a; and ap < a3. This case is impossible from the definition of the
order on Fy.

Case 3: a; € af and aj < ay. The hypothesis implies that u; = ug, whence by
Lemma 8.2.21 we have a; € Ry,  as.

Case 4: af < a; and a < ay. Because Na[a* n Z(A)] = —(¢(A)\a) for each
a e S(A), it follows that —(€'(A)\a2) € —(€(A)\a1). From this we may obtain that
a1 N E(A) € ag nE(A). To see this, note that —=(€(A)\az) S —(€(A)\a1) yields
—=(F(A)\az) € ——(F(A)\a1), and as =——(F(A)\a;) = (€(A)\a;) (for i = 1,2),
we have that ¢ (A)\a2 € € (A)\a;. Hence a1 n € (A) < a; n € (A). Let a € a;, and
as usual we write a = (—u v ) A (u v —x) for some u € B(A) and x € Z(A). Then
—u Vv x,u Vv —r € a; since a; is an up-set. As an arbitrary x € Z(A) is both in a;
and ao in the present case, we get —u v x is in as. Since u v —x € a1, primality gives
ueu Sug, or ~xea NE(A) S ayn E(A). This shows u v —z € az, whence

a € ay. This completes the proof. O
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Following our usual approach, we endow F) with additional structure in a man-
ner that conserves a’s being an isomorphism. The next definition provides the

appropriate topological structure.

Definition 8.2.26. Let A € srDL. For clopen up-sets U < S(#(A)), V € S(Z(A)),
define

Wwyy=[UxV)u +(U x S(Na[Z(A)]) v S(B(A)) x Na[V])] n Fy,

where NA[V] = {Nalt] : t € V}, and for a subset P < S(#A(A)) x S(Z(A)),

+P ={+p:pe P}.

Remark 8.2.27. Let A: S(#Z(A)) — S(#(A)) be the dual of the lattice homo-
morphism Na, i.e. A(r) = Ny'[r]. Then A is a closure operator on S(%(A)), and
we let

S(Z(A))a = A[S(Z(A))] = {re S(Z(A)) : AQk) = 1}

be the set of A-fixed points. Defining a map 8: S(Z(A))a — S(Na[Z(A)]) by
B(x) =t n Na[Z(A)], one may obtain by an argument identical to that given in
[4, Theorem 12 and Lemma 25] that 8 is an isomorphism of Priestley spaces when
S(Z(A))a is viewed as a subspace of S(Z(A)). The inverse morphism of § is given
by r — A(x).

Also, if V € S(#Z(A)) is a clopen up-set, one may show that image

Na[V] = {Nalt]:zeV}

under 81 is

AlV]={reV:AQF) =1} =V nS(Z(A))a.
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From these observations, we may identify S(Na[Z(A)]) and S(Z(A))a, as well as
A[V] and Na[V], in the definition of the topology on Fy offered above. Hence the

sets W(y,y) may be rewritten in a manner that depends only on A, and not on Na.

Lemma 8.2.28. Let A € stDL. Then Nal[eza)()] = onaza)(Na(z)) for all
reZ(A).

Proof. Let v € Na[pza)(x)]. Then there exists r € ppa)(z) such that Nafr] = v.
Since Na is a wdl-admissible map, we may show that y = Na[r] € S(Na[Z(A)]).
Also, Na(z) € Na[r] = ysince z € r. From this it follows that y € vy, (2(a)] (VA (7)),
whence Na[oz(a)(@)] S ©naza) (NVa(2)).

To prove the reverse inclusion, let v € o, (%) (Na(2)), and set ¢ = Ny'[y].
From Na being a lattice homomorphism, we obtain r € S(Z(A)). Also, Na(x) €y
implies © € N '[y] = r, whence 1 € ¢a)(T). An easy argument shows Na[r] =1,

from which the result follows. O

Henceforth we consider F}' endowed with the topology generated by the sets
Wiw,vy and W, ., where (U, V)e AS(B(A)) x AS(Z(A)).

Lemma 8.2.29. Let A € srDL. Then aa is continuous.

Proof. We will show that inverse image under aa of the subbasis elements Wy,
and W, are open. Let U < S(#A(A)) and V < S(Z(A)) be clopen up-sets.
According to extended Priestley duality, the functions pga): #(A) — AS(%(A))
and ppa): Z(A) — AS(Z(A)) are isomorphisms. Thus there are u € Z(A) and
v e Z(A) with U = pga)(u) and V = ppa)(7). Set a := (uv —z) A (-u v ).
We will prove a,* Wwv)l = pala).

For the forward inclusion, let a € a' [Ww,v)] so that aa(a) € Wyyy. There

are two cases.
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Case 1: In this situation, a € a*. aa(a) = (an B(A),an Z(A)) e U xV
and a N B(A) € pga)(u), a n Z(A) € ppa)(x). It follows that u € a n B(A)
and x € a n Z(A), and u,x € a in particular. Since a is an up-set, this yields
a=(uv—z)A(-uvz)ea soacpala).

Case 2: a* < a. In this case, we have
aa(a) = +(a* n B(A), Na[a* n 2(A)]),

where

a* N HB(A)eU = pgya)(u), or
Nala* n Z(A)] € NA[V] = Nalesza)(z)]

In the first situation, a* N #(A) € pga)(u) and u € a*. It follows that u € a
(i.e., as a and a* have the same ultrafilter from Lemma 8.2.19). Then u v -z €a
as a is an up-set. In the second situation, Na[a* n Z(A)] € Naleza)(®)]°
and we have that Nal[eza)(2)] = ¢najza)(Na(z)) by Lemma 8.2.28. Thus
Na(x) ¢ Nala* nZ(A)]. This implies = ¢ a* n Z(A), and as * € Z(A) we
get x ¢ a*. Hence —z € a by the definition of *, and therefore v v —z € a.
As a* < a, applying Lemma 8.2.21 yields a* < %, € a. Thus Z(A) € a
and x € a, whence —u v x € a as a is an up-set. This implies that both of
uv -z, -uv T Ead soa=(uv-—x)A(—-uvze)ea We obtain a € pa(a), and
hence that o' Wwv)l € pala).

For the backward inclusion, let a € pa(a). Then a = (u v —x) A (—u v ) € q,
whence v v —x, —u v & € a. The primality of a implies that the following two
propositions hold: (1) Either u € a or —x € a, and (2) either —u € a or z € a. Again,

there are two cases.
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Case 1: a < a*. Here Lemma 8.2.21 implies a < %#,, < a*. Observe that
since since —x € ¢ (A) and a S %,, we obtain —z ¢ a, so by (1) we get u € a.
Then —u ¢ a, whence by (2) we have € a. This implies u,x € a, and therefore
an HB(A) € ppa)(u) and an Z(A) € pza)(7), so aa(a) e U x V.

Case 2: a* < a. We have
aa(a) = +(a* n B(A), Na[a* n Z(A))]).
By (1) either u € a or —x € a. In the situation that u € a, we get
a* N B(A) =an B(A) € pga)(u) =T,

whence (a* N B(A), Na[a* n Z(A)]) € U x S(Na[#(A)]). On the other hand,
if —x € a, then ———z = —x implies ———x € a. This gives Na(z) = ——z ¢ a*.

Hence N () ¢ a* n Z(A), and thus N (z) ¢ Na[a* A Z(A)], ie.,
Nala® N Z(A)] € pnppza)(Na(@)) = Na[V]
It follows that
(a N B(A),Nala® 0 Z(A)]) € S(#B(A)) x Na[V]S,

so aa(a) € +(U x S(NaA[Z(A)]) u S(AB(A)) x NA[V]¢). This demonstrates that

pa(a) = ax' W)l

To finish the proof, note that since ap is a bijection we have

C

ap (Wil = (ax' [Wwn))© = pala)
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when @ is as above. Thus the a-inverse image of subbasis elements are open, and

thus «a is continuous. ]

Remark 8.2.30. The proof given above shows more. Clopen subbasis elements of
S(A) and Fy precisely correspond under aa, so since g is an order isomorphism
we have that all structure is transported from S(A) to F,. Thus FY is a Priestley

space that is isomorphic in Pries to S(A).

Example 8.2.31. Let A = {—3,-2,—1,1,2,3}. If we view {1,2,3} as the three-
element Godel algebra with order given by 1 < 2 < 3 and residual —, then we may
make A into an srDL-algebra by defining the order by —3 < -2 < -1 <1<2<3

and

anb a,b>0
—(a—>—=b) a>0,b<0
—(b—>—-a) a<0,b>0

-3 a,b<0

Denote the resulting srDL-algebra by A. Then
‘%(AQ) = {(_37 _3)7 (_37 3)? (37 _3)7 (37 3)}

and

(A?) = 11,1},

It follows that S(%(A?)) = {u,v} is the two-element Stone space, where
u=1(=3,3) n B(A?) and v = 1(3,—3) N B(A?).
The Priestley space of Z(A?) has labeled Hasse diagram
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We may obtain Fy, by determining which proper ¢ € S(Z(A?)) are fived by u

(respectively v). For this, note that
p-s(1(1,3) = 1(1,1) = 2(A%)

-3 (1(1,2)) = 1(1,1) = Z(A?)
r-33)(1(2,1)) = 1(2,1)
w-3,3(1(3,1)) = 1(1,1)

and

(s, (1(1,3)) = 1(1,3)
(s, (1(1,2)) = 1(1,2)
ns-(1(2,1)) = 1(1,1) = Z(A?)
nes -3 (1(3.1) = 1(L,1) = Z(A?)

It follows that u fizes 1(1,3) and 1(1,2), whereas v fizes 1(2,1) and 1(3,1). To get
.7-":2, we append a copy of each ¢ below u (respectively v) if it is fixed by u (respectively
v), and a fresh copy of the poset obtained in this way is then reflected upward, as

pictured in Figure 8.1.

191



+1(2,1) +1(1,2)
1(2,1) 1(1,2)
1(3,1) 1(1,3)

Figure 8.1: Labeled Hasse diagram for F,.

8.3 Filter multiplication in srDL

Section 8.2 lays out the necessary ingredients to construct the Priestley space
of (the lattice reduct of) an srDL-algebra A from the Priestley duals of S(#(A))
and S(Z(A)). This section attends to characterizing the filter multiplication on an
srDL-algebra in terms of these components, in particular defining a ternary relation
on F that makes ap into an isomorphism of MTL”. Recall that the site of u in A

is the set

Sy={aeS(A) :u=uy}.

Our first lemma permits us to focus on the sets Sy in our analysis of filter multipli-

cation.

Lemma 8.3.1. Let A € stDL, and let a,b € S(A). Then uq # uy, implies that
aeb=A.

Proof. Suppose without loss of generality that there exists u € uy S a with u ¢ .
Then —u € up S b since uy is an ultrafilter. Therefore u-—u=u A —u=0€ a e b,

whence ae b = A. O

Lemma 8.3.2. Let A € srDL and let a € S(A) with Z(A) < a. Then a = a**.

*%

Proof. The definition of * provides that a € a** if and only if ——a € a, whence it is

necessary and sufficient to show a € a if and only if ——a € a. Since a is an up-set,
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the identity a < ——a implies that ——a € a for each a € a. Conversely, suppose that
——a € a. Using Equation 2.3.1, write a = (u A =) v (—u A x) for some u € ZA(A)

and z € Z(A). Then

—=a = (u A ———x) Vv (-u A —-—x)

=(un—x)v(-un—-—z)Ea

Primality yields that u A =2 € a or —u A ==z € a. In the first case, a € a follows
because u A —x < a. In the second case, —u A ——x < —u implies that —u € a, so
as x € Z(A) € a we get —u A x € a. Thus by —u A < a and a being being an

up-set, we have a € a. This proves the claim. ]

The following provides a characterization of filter multiplication on any srDL-

algebra.

Lemma 8.3.3. Let A € srDL, let ue S(#(A)), and let a,b € Sy. Denote by o7A)
and =7A) the operations on S(Z(A)) defined as in Section 4.1. Then the following
hold.

1. Ifa,b € %y, then aeb = (uu[(anZ(A)) ¥R (b~ Z(A))].
2. Ifacb*C %, b, thenaeb =(uu[((an Z(A) =7B) (b* A Z(A)))]D*.

3. If none of a,b € %, a S b* € X, = b, orb < a* € %, < a hold, then

aeb=A.

Proof. To prove (1), note that a e b € S, and that a e b < %, since e is order-

preserving and %, e %, = %,. We will show that

aebn Z(A) = (anZ(A))e”™) (b~ Z(A)).
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For this, let ¢ € a e b n Z(A). Then c € Z(A), and there exist a € a and b € b
with a-b < ¢. From a,c < av e, bye <bve, and a,b,Z(A) being up-sets, we infer

avceanZ(A)and bv cebn Z(A). Note that

(ave)-(bve)=abvacvbev<c,

soce (anZ(A))e”A) (b6nZ(A)). Hence asbnZ(A) < (anZ(A))e”A) (6nZ(A)).

To obtain the other inclusion, let ¢ € (a 1 Z(A)) ##A) (b A %Z(A)). Then there
exist a€c anZ(A), be bn Z(A), with a-b < ¢. Note that a-be Z(A) as Z(A) is
closed under -, so ce Z(A). Thusae€a, be b, and ce Z(A) give ce aebn Z(A),
whence we obtain equality.

To prove (2), let a = (uu y)y and b* = (u U ), so we have b = b™* = (u U p)*
by Lemma 8.3.2. From a € b* we have a n Z(A) < b* n Z(A). It follows that
{1} «”A) (a 7 Z(A)) € b* A Z(A), and applying Lemma 4.1.1(2) we get a prime

filter 3 € S(Z(A)) with 3 ¢#(A) (a 1 Z(A)) < b* n Z(A). Consequently,
p =78 ¢ = (an 2(A)) 7P (6" 1 R(A)) # @

and thus n =7A) r e S(Z(A)), ie., =%A) is defined in this situation. We claim
that

oy ewon® =y (n =" )"

Let a € (uunyeuur)*. Then there exist w e (u U y) and z € (u U r)* such that
z-w < a. By Lemma 8.2.16 this implies that there exist b, b’ € u, =—c € Z(A)\r, and
deywithba—c < zand ¥ Ad < w. Hence (ba—c)- (V' Ad) < z-w < a. By checking
on directly indecomposable components, we get (b A —¢)- (V) Ad) = (b-b') A (—c-d).
Now observe that —c-d € € (A), whence there is z € Z(A) with —z = —¢-d. We will

show that z ¢ N[y =7 ], from which it will follow that a € (u U () =7(A) p))*
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#(A) ¢ Then z-y € ¢ for

by Lemma 8.2.16. Toward a contradiction, assume z € ) =
every y € v, and in particular z-d € z. We have z-—z = z-(—c-d) = 0, and therefore
z+-d < ——c and ——c € ¢r. This contradicts ——c ¢ r. This yields the left-to-right
inclusion.

For the other inclusion, let a € (uu () =#A) r))*. Then by Lemma 8.2.16 there
exists u € u, 7=z ¢ Na[n =7 r] such that un—z < a. As —~—z ¢ Na[p =7 ¢,
it follows that z ¢ vy =7(A) 1 whence there exists y € ysuch that yz ¢ r. This implies
that yz ¢ (uu ), and since b* = (uu r) we have that ——(yz) ¢ (uu ). To see this,

note that by the definition of *,

——x€b" = ———ax¢b = —-ax¢b < zecb*

Now since ——(yz) ¢ (u U 1), it follows that —(yz) € (u U r)*. Observe that

—(yz) = (y2) = 0
=y—(2—0)

=y — —z

Thus y —» —z € (uur)*, and thus —z e (uuyye{uup)* as y(y — —z) < —z. Since
ueuuyyeluur)*, we obtain that u A —z € (uun)euur)*, from which we get
that a is contained in the latter set as u A —z < a. This gives the reverse inclusion,
yielding equality and (2).

To prove (3), observe that a & b* and b & a* follow from the hypothesis. Lemma
4.1.8 asserts that ¢* is the largest element of S(A) such that c e ¢* # A, so we get

aeb=A. O
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Lemma 8.3.3 offers us a complete description of the partial operation e on S(A)
for A € srDL, showing how to identify this operation in terms of the operation
o”(A) and partial operation =% on S(#(A)). The next corollary rephrases
Lemma 8.3.3 in the context of F', using Proposition 8.2.14 and the isomorphism

aa to transport structure.

Corollary 8.3.4. Let A € stDL and let a,b € S, for some ue S(ZA(A)). Then the
following hold.

1. Ifaa(a) = (u,1), and aa(b) = (u,9) are in Fa, then aa(aeb) = (u,re?A)y).

2. If aa(a) = (u,r) € Fa and aa(b) = +(u,n) € FQ with (u,1) = (u, Ny [v]),

then aa(aeb) = +(u,r =#(A) NXI[U])-

In light of the facts assembled above, for A € srDL we may define a partial

operation o on Fy by
L (u,2) 0 (w,9) = (u,r «”™) ) for any (u,1), (u,) € Fa.

2. (u,r) o+ (u,n) = +(u,x =%(A) N;l[n]) for any (u,r) € Fa, +(u,p) € }'z with

(u,1) = (u, Ny [v]).

3.+, ) o (1) = +(u,r =7 N y]) for any (u,1) € Fa, +(u,9) € F§ with

(w,r)  (u, N3 '[v]).
4. o undefined otherwise.

If A e srDL and a,b € S(A), then a e b is defined if and only if aa(a) o aa(b) is
defined, when this occurs aa (a e b) = aa(a) o s (b). By augmenting F, with (the
ternary relation associated to) o, the map aa becomes as isomorphism of MTL” and

not just an isomorphism in Pries.
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8.4 Dual quadruples and the dual construction

We now offer our dualized account of the construction of [1]. The following

definitions rephrase key notions from this chapter in more abstract terms.

Definition 8.4.1. We call a structure (S,X,Y,A) a dual quadruple if it satisfies

the following.
1. S is a Stone space.
2. X is an object of GMTL.
3. Y ={vulveas) is an indered family of GMTL™-morphisms vy : X — X such
that the map v¢: A(S) x A(X) — A(X) defined by

ve(U, V) = v [V]

is an external join.

4. A X — X is a continuous closure operator such that R(z,y,z) implies

R(Az, Ay, Az).

Definition 8.4.2. Let (S,X,Y,A) be a dual quadruple. We say that u € S fixes

x € X if for every U < S clopen with u ¢ U, vy(x) = =.

Definition 8.4.3. Let (S,X,Y,A) be a dual quadruple. Define
D= {(u,x) e S x X :u fives x}

D7 = {+(u,A(@)) : (u,2) € D,a = T)

T =D uDC.
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Furthermore, define a partial order & on T by p E q if and only if
1. p=(u,x) and q = (v,y) for some (u,z), (v,y) € D with u =v and x < y,

2. p=+(u,z) and ¢ = +(v,y) for some +(u,z), +(v,y) € D? with v = v and

y<x, or
3. p=(u,x) and ¢ = +(v,y) for some (u,z) € D, (v,y) € D° with u = v.

For every U € A(S), V € A(X), define
Wit = [(U x V) 0 +(U x A[X] U S x A[VI9] A T,

Let S ®$ X be the partially-ordered topological space with the order given above,
and the topology generated by the subbase consisting of the sets W,y and W(CU V)
Additionally, define a partial operation o on S ®$ X as follows, where o and =

denote the partial operations on X arising as in Section 4.1.
1. (u7x) © (U,y) = (uvx hd y) for any (u,a:), (ua y) € Fa.

2. (u,x) o +(u,y) = +(u,z = A(y)) for any (u,x) € Fa, +(u,y) € F§ with
(u, ) E (u, A(y))-

3. +(u,y) o (u,x) = +(u,z = A(y)) for any (u,x) € Fa, +(u,y) € Fg with
(u, ) E (u, A(y))-

4. o is undefined otherwise.

We lastly expand S®$ X by the ternary relation R defined by R(p,q,r) if and only

if poq exists and poq & r.

Theorem 8.4.4. Let (S,X,Y,A) be a dual quadruple. Then S®$X is the extended

Priestley dual of some srDL-algebra.
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Proof. Extended Priestley duality guarantees that there exist a Boolean algebra B
and a GMTL-algebra A with S =~ §(B) and X =~ S(A). For the sake of simplicity
of exposition, we identify these spaces. As S is full and A is a Priestley space
morphism, there is a lattice homomorphism N: A — A such that S(N) = A. We
will show that N is a wdl-admissible map on A.

First, IV is a closure operator: To get that N is expanding, suppose on the
contrary x € A with z € N(z). Then there exists a prime filter ¢ of A such that
x € rand N(x) ¢ ¢ by the prime ideal theorem for distributive lattices. This implies
that x € xr and ¢ N~ ![x] = A(x), contradicting A being expanding. It follows that
x < N(z) for all x € A. N is idempotent by a proof similar to the one just given,
and N is isotone because it is a lattice homomorphism. It follows that N is a closure
operator.

Second, N is a nucleus: Let xz,y € A. We show that N(z)N(y) < N(zy), and
for this we assume on the contrary that there exists a prime filter 3 of A with
N(xz)N(y) € 3 and N(xy) ¢ 3. This implies that {N(x) ¢ 1N(y) € 3. From Lemma
4.1.1(2) we obtain prime filters ¢ and y with N(z) € ¢, N(y) e p and repn < 3. It
follows that R(r,1,3), so A(r)eA(y) < A(3). But this is a contradiction to N(zy) ¢ 3
because z € N™!z] = A(x) and y € N~![y] = A(p), whence zy € A(3). Hence N is
a wdl-admissible map.

For the rest, observe that by extended Stone-Priestley duality we have that for
each u € B, there exists a homomorphism v, : A — A such that S(vi) = Vg w)-

Define for each u € B, x € A, a map v, by

U Ve T = Vyu(T).
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We prove that v, is an external join. For this, observe that for all z € A, u € B,

and r € S(A),

rev L ylpa@)] = Vypw)() € pa(2)

< 1€ pa(vu(z)).

This provides v;é(u) [eA ()] = @A (Vy(x)). From this and Definition 8.4.1(3), we
may readily show that v. satisfies condition (V1), (V2), and (V3) of Definition
8.1.1. For instance, for every = € A, the map defined by A\, (u) = u v, x gives a

lattice homomorphism from B — A (as in (V1)). To see this, observe that

oA (Az(u v v)) = pA(Vuvo())

= U;é(uvv) [¢a(z)]

1
Uepw)ops () [PA([2)]

;]i(u) [pa(z)] v v;};(v) [pa(z)]

=v
= pAa(Vu(2)) U 9 (Vo())

= pa(Aa(u) v pa(Ae(v)),

whence A\z(u v v) = Ag(u) v A\z(v) for every = € A, w,v € B. The other com-
ponents of Definition 8.1.1(V1,V2,V3) may be checked by similar reasoning, using
the assumption that (U, V) — val[V] is an external join. Hence (B, A, v, N) is
an algebraic quadruple. It follows that S ®$ X is the extended Priestley space of

B ®é\7 A by construction. O
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Theorem 8.4.5. Let Y be the extended Priestley dual of an srDL-algebra. Then
there exists a dual quadruple (S, X,Y,A) with Y =~ S ®$ X.

Proof. Let A = (A, A, v,,—,1,0) € srDL with Y = S(A), and let S := S(#(A))
and X := S(Z(A)). Define A: X — X by

AlR) ={xeZ(A): ——zx e}
Moreover, for each U € A(S) define vy: X — X by

Vo (r) = pg-1(y (1) = {r € Z(A) 1 7 (U) v z €t}

Let Y = {vy}yeacs). We claim that (S,X,Y,A) is a dual quadruple.

Requirements (1) and (2) of Definition 8.4.1 are satisfied by hypothesis. For (4),
let r, 9,3 € X with R(r,1,3), so that ren < 3. We claim A(r)e A(h) < A(3). To prove
this, let z € A(zr) ® A(y). Then there exists z € A(x) and y € A(y) with z -y < 2.
It follows that ——x € r and ——y € vy, whence ——z - ——y € r ey < 3. This yields
—=(z - y) € 3 as a consequence of ——x - ——y < ——(x - y), and therefore ——z € 3.
Thus z € A(3), giving (4).

For requirement (3) of Definition 8.4.1, observe that for every U € A(S) we
have that vy is a morphism of GMTLT as vy is the dual of the GMTL-morphism
x— ¢ 1(U) v x. Define

ve(U,W) = v [W].

for U € A(S) and W € A(X). We claim that v.: A(S) x A(X) — A(X) gives an
external join, viz. that it satisfies Definition 8.1.1(V1,V2,V3).

For (V1), observe that for all U € A(S) the map v.(U, —) is an endomorphism of
A(X) by extended Priestley duality. Let Ay (U) := v (U, W), and let U,V € A(S).
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Note that Ay (U) U Aw (V) € Aw (U U V) follows as a consequence of ¢! being a
lattice homomorphism and W being an up-set. Also, application of Lemma 8.2.5(1)
yields the reverse inclusion. It follows that Ay (U) u A\w (V) = A (U 0 V). We may
obtain that Ay (U n' V) = Aw(U) n Aw (V) in a similar fashion, which shows that
(V1) is satisfied.

For (V2), note that since uop(r) = ¢ for any r € X we get that vg is the
identity on A(X). Moreover, vg' (W) = W for any W € A(X) is a consequence of
pi(x) = Z(A) for any ¢ € X.

To prove (V3), we must show
v WO v W] = vl [W o W =g up ! W o W)
One may easily show that

Pt (0)yoe-1(v) (&) = M1 vy (1) (F))-

This yields vj;L, [W U W'] = v vy [W v W]

Now let ¢ € v, [W]uvy [W’]. Thent e v [W]orr e vy [W'], so 1) (x) € W
or i1y (r) € W'. The sets W and W' are up-sets, so this provides that p,-1 7,y (r)
is in each of W, W', so certainly vy y(x) € W u W’. Hence r € v{]bv[W u W',
giving vy [W] v vy [W'] € vyov [W u W].

To obtain the last inclusion, let r € v;L , [W U W'] = vy [vy [W U W']]. Then
P U)oe-1(v) () € WU W' Lemma 8.2.5(1) implies that we may assume without

loss of generality that

Po=1(0yop-1(v) (&) = to-10)(x)-
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This gives p,-10(x) € W u W', and thus p,-1)(x) € W oor ps-11)(x) € W'
That ¢ € vj;' [W] U vy [W'] follows immediately in the first case, so suppose that

po-1(y(x) ¢ W. From Z(A) e W, we get 1) (x) # #(A) and consequently

o1y (@) =re W'

by Lemma 8.2.5(4). As W'is an up-set and t S fi,-1(y)(x), we obtain p,-1(y(x) € W'
It follows that r € vy, [W] U vy, [W’] in any case, giving (V3) and that S ®% X is
a dual quadruple.

The proof is finished by observing that S®9 X =~ S(A) = Y by the isomorphism

aa defined in Section 8.2 and by the construction of S ®$ X. O
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Chapter 9

Open problems

The research program developed in the foregoing pages consists of three inter-

locking components:

1. Duality-theoretic tools for residuated structures, especially those tailored to

simplify certain features of particular varieties of interest.

2. Dualized presentations of algebraic constructions on residuated structures,

facilitated by and informing the development of the tools alluded to in (1).

3. Purely algebraic analysis of certain varieties of residuated structures and their
reducts, aimed both at recasting algebraic structures in a manner amendable
to the tools of (1) and discovering aspects of their theory that supports new

duality-theoretic results.

We conclude our discussion by offering a few directions for future inquiry in each of

these areas.
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9.1 Residuated structures

Residuated binars satisfying certain distributive properties (see Section 2.1.1)
and normal i-lattices (see Section 2.2) provide the background algebraic theory for
the foregoing study. Both of these theories present interesting and difficult open
questions, the answers to some of which may implicate duality-theoretic phenom-
ena. The extension of the results we have presented to non-distributive settings is

especially relevant.

Question 9.1.1. What is the relationship between the nontrivial distributive laws

(\V), (V/)), (A), (A), (AN), (/A) in the absence of lattice distributivity?

The methods used to address the above question in the distributive case are

inapplicable in general.

Question 9.1.2. What can be said of the i-lattice reducts of involutive residuated

lattices?

The duality developed in Chapter 6 answers the above question for Sugihara
monoids (albeit very indirectly), but aside from this instance little seems to be

known regarding this question.

Question 9.1.3. What is the quasivariety generated by the forbidden i-lattice Bg,

and does it admit a useful natural duality?

Note that the quasivariety generated by the forbidden i-lattice Dy is the variety
of all distributive i-lattices, and its natural duality is a very well known case study

(see, e.g., [14]).
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9.2 Duality theory for residuated structures

The functional dualities developed in Chapter 4 offered a useful perspective for

the dual construction in Chapters 7 and 8. They admit many open questions.

Question 9.2.1. Do residuation algebras with functional duals generate the variety

of all residuation algebras? If not, what is the variety that they generate?

Question 9.2.2. Is functionality equivalent to any first-order property of residua-

tion algebras or residuated lattices?

Although it provides the most generally-applicable framework, extended Priest-
ley duality is often unwieldy in comparison to more tailored duality-theoretic tools

(e.g., Esakia duality and the duality for Sugihara monoids given by Chapter 6).

Question 9.2.3. Are there other simple, Esakia-style dualities for suitably-chosen

classes of residuated lattices?

A residuated lattice A is called conic if each element of A is comparable to the
monoid identity of A. Residuated lattices in the variety generated by the conic
residuated lattices are called semiconic. Due to their proximity to semilinear struc-
tures, semiconic residuated lattices seem to be a natural place to look for other

well-behaved Esakia-like dualities.

9.3 Dualized constructions

There are many constructions on residuated structures that may admit dualized
treatments along the lines of Sugihara monoids and srDL-algebras. Of these, we

mention only those for lattice-ordered groups.

Question 9.3.1. Is there an illuminating dual presentation of the Mundici functor

between MV-algebras and lattice-ordered groups with strong order unit?
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Question 9.3.2. Is there an illuminating dual presentation of the construction of

lattice-ordered groups from their negative cones?
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