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Abstract

This paper presents techniques developed for algorithmic composition of

both polyphonic music, and of simulated jazz improvisation, using multiple novel

data sources and the character-based recurrent neural network architecture char-

rnn. In addition, techniques and tooling are presented aimed at using the results of

the algorithmic composition to create exercises for musical pedagogy.
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Chapter 1

Introduction

1.1 History of Algorithmic Composition

Algorithmic composition is the process of composing music by automated sys-

tems or formal sets of rules, rather than by human intuition or inspiration. Im-

plementations of algorithmic composition can be found dating back centuries, far

in advance of computer systems - a notable early example from the 18th century

is Musikalisches Würfelspiel, a system attributed to Mozart [2] of using dice to

randomly generate music from pre-composed options. With the advent of comput-

ers, algorithmic composition systems have become more commonplace, and have

expanded greatly in their variety and complexity.

Many of these early systems, including computer implementations, could be gen-

erally lumped into one of two categories: stochastic systems, and formal grammars.

Stochastic systems, like Mozart’s dice game, make use of randomness and probabil-

ity to generate their compositions. Formal grammars are rule-based systems that

follow a strict set of steps for composition, though these are often combined with

stochastic approaches to create hybrid systems.
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In recent years, a new category of algorithmic composition has been developing

- that of systems based on artificial intelligence techniques. Artificial intelligence

systems share characteristics with both stochastic and formal systems, but they

differ fundamentally in that their compositional rules are “learned” by the use of

machine learning techniques. Usually, learning architectures are devised that take

existing music as input in some form, and learn to mimic the features of the learned

music in their output.

Even within the category of artificial intelligence systems, there are many vari-

eties of implementations using different learning architectures, different music data

sets, and different compositional goals [4] [7] [8] [10]. Such systems display a wide

range of success or failure, with some systems producing unmusical results, some

systems producing impressive and interesting music, and many systems producing

results somewhere in between.

1.2 Motivations of This Project

Much of the motivation of developing algorithmic composition systems is simply

to create interesting or entertaining music. However, there is potential for such sys-

tems to be used for other purposes which might lend themselves better to systematic

approaches. One such potential use is the creation of exercises for musical pedagogy.

When learning to play an instrument, students will inevitably have to learn fully

(human) composed pieces of “good” music. However, for many serious students of

music, much time is also spent on pieces of music which have been composed not for

entertainment value or beauty, but for their effectiveness in teaching specific skills.

There are books full of short pieces of music known as études whose purpose

is entirely pedagogical, usually developed for learning specific techniques for an

instrument, or a certain style of music. These musical études are often much more

2



mechanical and rule-based than normal music, and so perhaps such pieces would

lend themselves well to algorithmic composition techniques.

Creating a formal system for composing musical exercises is tempting but previ-

ous attempts have shown a tendency to often produce somewhat unmusical-sounding

results [3]. This project attempts to use an artificial intelligence system that has al-

ready shown a promising degree of musicality in its compositions to create exercises

for musical pedagogy which sound reasonably musical.
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Chapter 2

Background

2.1 Music in Audio vs Abstractions

The ultimate experience of any music is that of pressure vibrations, propagated

most often through the medium of air, perceived by the human brain via inner-ear

membranes that stimulate neural signaling via auditory nerves. However, music

conceptually exists on a spectrum, with one side of the spectrum being the material

reality of the sound waves, and the other side of the spectrum being the theoretical

abstraction of music in the form of notes, harmonies, rhythms, and the language

used to communicate about those abstractions. Both sides of the spectrum are

music, but for the purposes of discussion it is important to distinguish between the

two different senses of music.

Instruments, from this perspective, are a means of translating from the abstract

concepts of music (as it might be written on sheet music for example) into the

objective reality of sound waves. Sheet music is a representation of abstract musical

concepts, whereas a recording (or a sound wave itself) is a representation of the

objective reality of the final form of music before being experienced.
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2.2 Digital Representation Format for Physical Audio

The Waveform Audio File (WAV) format is one of the rawest forms of audio data

structure used in digital applications. It is, essentially, just an array of time slices

containing measurements of the amplitude of the sound wave. This is the initial file

format used for most forms of audio recordings.

2.3 Music Theoretical Concepts

Pitch Refers to the perceptual property of a sound as it related to its fundamental

frequencies - whether a sound is perceived as “higher” or “lower”.

Note Designation for a specific pitch and duration of sound. In modern music

theory, notes are divided into conceptually equidistant pitch classes where a

note is in one of 12 pitch classes: A, A#/Bb, B, C, C#/Db, D, D#/Eb, E,

F, F#/Gb, and G.

Beat The basic unit of time used to indicate rhythm.

Time Signature A measurement used to subdivide and group beats (esp. in a

written or visual notation system). It indicates how many beats occur per

measure, the divisions of each beat, and how those beat divisions should be

notated. For example a time signature of 3/4 indicates a grouping of 3 beats

per measure where each beat is notated with a quarter-note.

Measure One unit of beats grouped based on time signature.

Step, Tone, Interval The distance between two notes within the set of standard

pitch classes is known as the interval between them. By convention, the dis-

tance between two immediately adjacent pitch classes is a half-step or semi-

tone, with the next largest interval being a whole-step or whole tone.

5



Octave Two notes with frequencies in a ratio of any power of two belong to the

same pitch class, and are called octaves. For example, 220 Hz and 440 Hz are

octaves, both with the pitch class A.

Chord A set of notes played simultaneously. Chords have a deep set of music theory

conventions for naming, where the name or symbol for a chord is usually based

on the lowest pitch present in the chord, and the intervals present between the

set of pitches.

Key Signature Refers to a subset of the possible pitch classes which are empha-

sized in the piece. Most often a key signature is a subset of 7 pitch classes

with a specific interval relationship known as the diatonic scale (two half steps

separated from each other by either two or three whole steps).

For a more detailed explanation of relevant music theory concepts please refer

to Music in Theory and Practice [1].

2.4 Digital Representation Format for Abstract Music

Musical Instrument Digital Interface (MIDI) is a widely-used format for rep-

resenting abstract musical data consisting of notes, chords, rhythms, keys, time

signatures - essentially the data at the opposite end of the music spectrum from

sound waves.

MIDI consists of a stream of messages, the most important of which to this

project are the Note-On and Note-Off messages. With these messages, most of the

musical content of a performance or of a written music piece can be represented

digitally. When mapped as pairs of On/Off intervals, such data can be visualized as

a piano roll - a more intuitive way of understanding the data that MIDI messages

are representing, and often a more intuitive way of working with the data (see

Figure 2.1).

6



Figure 2.1: A MIDI piano-roll visualization

MIDI by itself can not be directly listened to, it requires the use of digital

instruments to convert the abstract music representation to sound waves. There are

many such digital instruments available with varying levels of quality and realism.

2.5 Artificial Neural Networks (NNs)

Artificial neural networks (NNs) are a wide class of machine learning architec-

tures that resemble the networks of neurons observed in biological neural systems.

Figure 2.2: A standard artificial neural network architecture

They are characterized by groups of connected nodes arranged in layers (see

Figure 2.2), where each node in an active network has a scalar “activation” value

that is calculated based on inputs to that node. The activation values propagate

7



forward through the network to transform the input into some output, dependent

on the connections between the nodes and their activation states.

In most cases, there is at least one input layer, some number of intermediate

“hidden” layers, and an output layer. Each node has a number of input connections

from some other nodes, usually in preceding layers, with each connection having a

variable weight, that the individual node combines via some mathematical function

to calculate that node’s activation value (which is, in turn, used as input to some

number of other nodes in other layers). A simple example of a node activation

function would be a threshold, where the node activates only if its aggregate inputs

exceed some set value.

In a broad sense, artificial neural networks can be thought of as learning to

approximate a function, where some set of inputs are mapped to some set of outputs.

This is done primarily by adjusting connection weights until the input produces the

correct output.

Figure 2.3: A simple NN including XOR, NOT AND, and AND gates

To help visualize how neural network nodes and connection weights can be used

to approximate simple functions, see Figure 2.3: a neural network which reproduces

the functionality of three simple logic gates. Each input node sends an activation

value of either 0 or 1. That activation value is multiplied by the connection weights

8



and summed in the subsequent hidden layer nodes. The value seen on the hidden

layer nodes is a threshold - only if the sum of its inputs exceeds that threshold will

the node send it’s own activation value of 1, otherwise it sends 0.

Learning to approximate a function (a process called ”training”) occurs by pre-

senting the input and output layers of the network with known examples of correct

input/output mappings, and calculating the changes that need to be made to the

inter-node connection weights in order for the input layer to ultimately produce the

desired output in the output layer.

The aggregate difference between the output produced by the current state of

the network, given some input, and the theoretically correct output of the network,

given the same input, is known as the “loss” or “error”. While training the network

on known correct input/output pairs the loss, called the “training loss”, is used

to incrementally update the connection weights of the hidden layer nodes to more

reliably produce the desired output via a process known as “backpropagation”.

By making incremental corrections to the connection weights between nodes,

over training with many correct input/output pairs, the expectation is that the

network learns to generalize strategies or functions that will reliably produce the

desired output given any input.

The final ability of the network to map an input to the correct output is usu-

ally measured by maintaining some known correct input/output pairs (called the

“validation set”) aside from the training data set, and testing the trained network

for the loss associated with this untrained data (called the “validation loss”). Thus

the validation loss is used as an indicator of how successful the network was in its

training - a measure of how effectively and reliably it can produce the desired output

from a never-before-seen input.

For a more detailed explanation of artificial neural networks please refer to Fun-

damentals of Artificial Neural Networks [6].
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2.6 Recurrent Neural Networks (RNNs)

A recurrent neural network (RNN) is an artificial neural network that attempts

to make use of the sequential nature of some kinds of input by adding to hidden

layer nodes additional “recurrent” connections from themselves to themselves in a

future “time step”. See Figure 2.4 for a simplified example, where each layer of the

network consists of a single node with a recurrent connection to itself.

Figure 2.4: A simplified recurrent neural network architecture

Figure 2.5: A RNN unrolled through time

These networks are trained on sequences of input by considering one step of

the input sequence at a time, and then “unrolling” the network for some sequence

length (see Figure 2.5) - a process where the nodes in the network at one time

step are used as inputs to the same nodes in the next time step by way of their

recurrent connections. After unrolling the network for the given training sequence

10



length, backpropagation happens over the entire unrolled sequence (a technique

called “backpropagation through time” or BPTT) to recalculate weights for both

the inter-layer connections, as well as the recurrent connections for each node.

These style of networks have been shown to produce much better results for many

types of sequential inputs than non-recurrent neural networks. RNNs have been

anecdotally described as learning to approximate a state-machine, where standard

NNs learn to approximate a function.

2.7 Long Short-Term Memory (LSTM) RNNs

Long short-term memory is a modification to RNNs whereby hidden layers are

made up of LSTM units containing an “input gate”, an “output gate” and a “forget

gate” (see Figure 2.6). Each gate has essentially the same functionality as a node

in a standard RNN, but by grouping them together into units the use of the gates

allows the units to “remember” information for an arbitrary length of time. At

each time step, given the activation input from preceding units and the activation

of itself in a prior time step, the LSTM unit “decides” whether or not to forget the

information that it is currently “remembering”.

Figure 2.6: A long short-term memory unit

11



LSTM networks have been found to be effective at predicting time series where

unknown or irregular time intervals occur between important events. In a loose

sense, LSTM networks have an explicit memory system that standard RNNs do

not.

2.8 char-rnn

char-rnn1 is a LSTM RNN implementation by Andrei Karpathy that learns a

character-level predictive language model from a large data set of input text.

The primary aim is that, given an input sequence of characters, the network

learns to predict the next character in the sequence. The most interesting aspect

of the project is that once it has been trained to predict the next character in a

sequence, the network can be used to generate texts “in the style” of the training

texts. This is done by having the network predict the next character after an input

sequence, adding that character to the end of the sequence, and using that as the

new input sequence, ad infinitum.

Given a sufficiently large set of training data, the results of such generation are

found to be impressively coherent, especially in short sequences, but even with some

larger structural characteristics of the input text. The resultant pieces when trained

on something like the English language could not be confused for true literacy, but

they seem to capture something characteristic about the “style” of the input.

For example of char-rnn’s output after being trained on the collected works of

Shakespeare, see Figure 2.7.

1https://github.com/karpathy/char-rnn
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PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain’d into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,

Breaking and strongly should be buried, when I perish

The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,

Whose noble souls I’ll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I’ll drink it.

Figure 2.7: Example output from char-rnn trained on Shakespeare
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2.9 ABC Notation

ABC notation2 is a simple textual representation format for abstract musical

data. It uses simple lettering to represent notes, along with modifiers for pitch,

ornamentation, durations, and other details. It is designed to be limited to the

ASCII character set.

For a short example of ABC notation and the resulting music, see Figure 2.8.

X:1

M: 4/4

L: 1/8

K: Emin

D2|EBBA B2 EB|B2 AB dBAG|

Figure 2.8: Example of ABC notation and the resulting sheet music

2.10 Lisl’s Stis

Lisl’s Stis is a project by Bob Sturm that uses a large, freely-available corpus of

ABC-notated Irish Folk music3 as training input into the char-rnn network. After

training, the network is made to generate text “in the style” of the ABC-notated

Irish Folk music.

The music that results from letting the trained network freely generate are often

impressive, in part due to their cleanliness (which is perhaps just a factor of the

notation system used) but also in their subjective adherence to the Irish Folk style.

Some of the results could reasonably be confused with actual Irish Folk melodies,

to an inexpert listener.

2http://abcnotation.com/

3https://thesession.org/tunes
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The pieces also have entertaining value resulting from some artifacts of the for-

mat of ABC notation - specifically the pieces have auto-generated titles which are

reminiscent of the titles of real Irish Folk tunes. One such title gave the project its

name: “Lisl’s Stis”.

For an example of the output from Lisl’s Stis, see Figure 2.9.

T:Lat canny I. the dlas.

M:C

L:1/8

Q:1/2=100

K:D

A>A|:F>DEA|F2dF|A/F/A/B/ AF|G/E/E FD |DDDG|Edec|

defd |eged|fdgd|dcd2||

e|g2ef gef(e/c/)|ddfe fdAA|F3 A c4|efef g{e}d4 |

gfga afgf|eggb ad’eg|fgdB edAB|BedA BABg|fdde ddd:|

Figure 2.9: Example output from Lisl’s Stis
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Chapter 3

New Contributions

3.1 Leveraging MIDI to Access Other Data Sets

Given that the results of the original Irish Folk music char-rnn/ABC project

appear promising, it is tempting to try applying the same techniques to other styles

of music. However, the size of the freely available corpus of ABC-notated Irish Folk

melodies appears to have been a lucky break. ABC notation is not used extensively

enough for there to exist any other comparably large corpuses of ABC-notated music

to try. Thus, further experimentation in the usage of these techniques is difficult

due to a lack of adequate data sets.

This project addresses this lack of alternative data sets by leveraging the avail-

ability of sufficiently large corpuses of MIDI-notated music (a much more commonly

used format) and freely available format-conversion software to convert such cor-

puses into the appropriate ABC-notated format. The conversion process, though

smoothly automated once fully implemented, comes with many of its own difficulties

and caveats that are detailed in the methods.
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3.2 Application of Same Techniques to Polyphonic Data

Set

The use of MIDI-notated corpuses opens the doors to many potential new data

sets, however, in the interest of progress it seemed important that experiments be

run on a corpus which was in some way fundamentally different than the original

Irish Folk corpus. For example: music that is either more varied, or more complex,

than the relatively simple and highly-regular Irish melodies. At the same time, an

ideal corpus would be one which differs from the Irish Folk corpus in only that one

fundamental way and not in many ways at once (i.e.: one that is not so drastically

different that there can be no expectation of comparison).

The first corpus used was a collection of freely available MIDI-notated classical

guitar pieces1. Without needing to exhaustively analyze each piece of music in

this corpus, the fact that it is composed entirely of classical guitar pieces from the

common practice period provides many expectations about the regularity of the

pieces that make it a reasonable fit for the above requirements. Pieces are most

likely in a similar musical range, and in similar musical keys, due to being written

for the same instrument. In addition, because all pieces share a similar style of

music, one with a reasonably characteristic “sound”, it is likely that similar musical

motifs can be found in between the pieces. In these ways the classical guitar corpus

is analogous to the Irish Folk music corpus - regularity of musical range, musical

keys, and stylistic motifs.

The classical guitar corpus differs from the Irish Folk corpus in that its music

is generally more complex, and most significantly that it consists almost entirely

of pieces of music that make heavy use of homophony (music with chords) and

polyphony (music with more than one voice playing simultaneously). This increase

1http://www.classicalguitarmidi.com/
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in complexity and the use of musical structures that are absent in the Irish Folk

corpus provides a contrast that, combined with the similarities mentioned, make

the classical guitar corpus a good candidate for pushing the limitations of the char-

rnn/ABC technique in a controlled way.

3.3 Contextually Constrained Improvisation

After obtaining satisfying results with the classical guitar data set by directly

replicating the techniques from the Irish Folk project, another musical corpus was

chosen with the more ambitious goal of developing a new technique: using the RNN’s

priming features to simulate contextually constrained improvisation.

The details of this technique will be discussed in the methods section, however

it’s worth noting here that such a technique requires that the input to the RNN

contain both the improvised music and the context constraints in which it was

improvised. This is simply to say that a corpus full of digitized improvisation would

be worthless if those improvisations did not also contain the context (in this case

the harmonic context, or chord progressions). Some other approach might try to

introduce the idea of context as an input by altering the architecture of the NN,

however in this case no architectural changes were made - harmonic context was

simply added as an additional feature of the notation.

3.4 Gypsy Jazz Improvisation

Jazz music is an obvious choice when looking for examples of well-structured

contextual improvisation, in the form of improvised jazz solos: pieces of single-

instrument music which are improvised in real-time around accompaniment with a

set rhythm and known chord progression structure. Furthermore, although jazz has

become more free-form as it has developed over time, and “playing outside” has
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become more acceptable and expected within improvised solos, historically older

forms of jazz have the benefit (in this case) of being more regularly structured, and

adhering closer to a set of “rules” regarding “correctness”.

Gypsy jazz in particular is an older style of jazz pioneered by guitarist Django

Reinhardt, which presents a number of features that (as with the classical guitar

corpus) lend themselves well to maintaining a degree of regularity between pieces.

As with the classical guitar corpus, such pieces are all exclusively played on guitar,

and the musical keys used are often chosen to work well on the guitar (although

other forms of jazz may also feature such regularity, but in a form that favors horn-

centric keys such as Bb). In addition, the vocabulary of phrases in gypsy jazz is

more uniform and limited than in jazz as whole. In the gypsy jazz community there

is heavy emphasis on learning and employing stylistic licks and phrases (in an effort

to sound like Django), and as a result gypsy jazz has a stronger characteristic style

than most other forms of jazz.

That being said, attempts to find a sufficiently large corpus of well-structured

digitized jazz solos, let alone gypsy jazz solos, proved impractical - especially given

the above-mentioned requirement that they include a digitized version of their har-

monic context. There are many examples of MIDI-notated jazz solos, but the vast

majority lack any kind of harmonic context, or in some few cases have difficult-to-

parse and non-uniform ways of representing the chord progressions (MIDI does not

have a built-in way of representing accompanied chord progressions beyond explic-

itly notating them using polyphony). As a result, for this data set leveraging an

existing MIDI corpus was not an option.

In the end, a corpus was obtained by generous contributions from Ben Givan2

and Denis Chang3, who have both spent significant amounts of time meticulously

2https://www.skidmore.edu/music/faculty/givan.php

3https://www.dc-musicschool.com/
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transcribing gypsy jazz solos for their own research or commercial purposes. The

original transcriptions were received in the format of music typesetting programs

Sibelius4 and Finale5, converted by various means to ABC, and combined with a

custom representation of harmonic context, which will be discussed later.

Improvisation was simulated using the network trained on this data set by inter-

rupting the output generation at appropriate intervals, “injecting” the appropriate

harmonic context cues into the output, and then continuing output after the injected

context cues - as discussed in the methods section.

4http://www.avid.com/sibelius

5https://www.finalemusic.com/
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Chapter 4

Methods

4.1 Some Methodological Considerations

At all stages in the process, some heuristics guided the decision making pro-

cess, which should be mentioned before detailing the specific methodologies. These

heuristics are vague and somewhat unjustified, and not necessarily backed by con-

crete experimental results or theoretical rigor. They are rules of thumb based on

general observations and abstract analogous reasoning about neural networks and

the way that they learn. Despite the lack of rigor, some heuristics were needed and

these were some of the main guiding assumptions. It is always assumed that:

• Simpler (less verbose) input is desirable because it will be learned more easily

than complex (more verbose) input, when representing the same data.

• More regular input is desirable because it will exhibit higher predictability, and

thus be more easily learned by the network, and also because it will produce

more consistency in output than less regular (highly varied) input.

• Less repetitive input is desirable because it will reduce the chance of output

getting stuck in repetitive loops, and because repetition is an easy way for the
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network to “cheat” at predictability while missing the intended content (it is

also implicitly assumed that the desired content is not highly repetitive).

• Input data which is not directly related to the desired output is a waste,

because the attempt to learn it will occupy some amount of network resources

that could otherwise be used to learn the desired output.

4.2 Sorting and Rejection of Bad Data

A first pass was made of the raw classical guitar MIDI files to improve regularity

of what would ultimately be input into the neural network. MIDI files were sorted by

time signature into groups of common binary time signatures (where the numerator

is divisible by 2, e.g.: 4/4, 2/4, 8/8, etc.), common ternary or compound time

signatures (numerator divisible by 3, e.g.: 3/4, 6/8, etc.) and otherwise unusual

time signatures. The binary time signature group was the largest by far, the only

group large enough to appear sufficient for training, so it was the group that was

used for most experiments.

Additionally, at this stage MIDI files were removed if they appeared to be mostly

or entirely empty of substantive musical data, or were otherwise deemed bad (erro-

neous MIDI data for example). This consisted of a mostly insignificant portion of

the overall data set (less than 1%).

4.3 Splitting and Cleaning Raw MIDI

The MIDI files being used were not all created by the same author and so

exhibited a wide variety of formatting inconsistencies between files in their usage of

headers, track layouts, instrument choices, timing, and MIDI message conventions

(e.g.: the use of SYSEX messages, program changes, note on/off lengths, etc.). To

improve regularity a few techniques were used.
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First, files were parsed manually using a custom Ruby1 script and the midilib

library and transformed as follows:

1. Separate tracks were identified (some MIDI files used separate tracks to rep-

resent separate voices) and recombined into a single track. Any tracks which

were not guitar (metronome or other instruments for example) were removed.

2. The single remaining instrument track was stripped of all MIDI events other

than note-on and note-off events.

3. All existing headers were stripped from the file and replaced with a consistent

set of headers: track name, instrument, and initial program change (PC)

message (specifies the patch used to emulate the instrument sound).

4.4 Increasing Data Set Size

At one point, after a few experiments with the original data set, an attempt

was made to increase the size of the available data set by transposing MIDI files

to other musical keys. The assumption being that a piece of music in the key of G

major, for example, would still be a valid example of desirable output if it were in

the key of A major, or D major. Such additional examples can be easily produced

by transposing all notes in the file up or down by the same interval.

In the interest of not producing too much artificial variation a limited number

of transpositions were used - all files were transposed into the major keys of A, C,

D, E, F and G (or the relative minor keys).

It was at this stage of the process, while still in raw MIDI format, that transpo-

sitions were created, again using a Ruby script and the midilib library.

It was unclear in the end whether this artificial increase in data set size improved

the results (especially lacking a metric that could measure such an improvement),

1A widely-used programming language
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but subjectively it did seem to provide some more variation in the output. There is

no quantitative evidence of this, however.

4.5 Cleaning MIDI with MuseScore

As the last step of cleanup on the raw MIDI level, all MIDI files were imported

into MuseScore2 and directly re-exported again as a MIDI file. MuseScore contains

a robust set of logic rules for importing and interpreting MIDI files into sheet music

format. At this stage, the sheet music representation is irrelevant, however, because

the import system is designed to work with inexact MIDI data (even MIDI files

of human performances) the interpretive logic was found to be immensely helpful

in producing better regularity in note event timing and removing subtle errors or

inconsistencies, while leaving well-formed data unchanged.

4.6 Converting MIDI to ABC Notation

Conversion from MIDI files to ABC notation was achieved simply by using the

midi2abc binary from the abcmidi3 package. Pieces in ABC notation were stored

simply as text files.

4.7 Cleaning ABC

Despite efforts made to ensure uniformity between MIDI files, there remained

some irregularities and artifacts after conversion to ABC notation. Rather than

track down the source of these artifacts, a Ruby script was used to clean the resulting

text files.

2https://musescore.com/

3https://github.com/leesavide/abcmidi
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Some ABC files still contained an additional empty second voice, or the main

voice was labeled as a second voice, so all extra voices were removed and remaining

voices were labeled as voice one.

The conversion process also produced some text components that were deemed

unnecessary, such as comments and superfluous line breaks, which were removed.

Eventually, in keeping with the heuristic that any input data not directly related

to the desired output is a waste, the titles of the pieces were also removed or made

uniform at this stage as well (both approaches were tested, without resulting in

significant differences).

4.8 Training RNN on Classical Guitar Data Set

The resulting ABC notations files were concatenated together into a single text

file, and fed into the char-rnn network for training. The char-rnn code exposes a

number of variable parameters that affect the training and network architecture.

The parameters that were deemed relevant are:

rnn size Number of nodes in the LSTM internal state. For all experiments run,

this was set to 512 (at the recommendation of the author of char-rnn).

num layers Number of layers in the LSTM. The recommended number of layers is

2 or 3. One experiment was run with 2 layers, but the results were subjectively

worse, and all following experiments were run with 3 layers.

dropout Dropout for regularization, used after each RNN hidden layer. This is

a percentage of nodes in the NN which are randomly not trained during a

training pass, in order to prevent over-fitting. The majority of experiments

were run with dropout of 0.5. One experiment was run with a dropout of 0.75,

but it did not seem to significantly affect the results.
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seq length Number of timesteps to unroll for. This is essentially how far back in

“time” should the network calculate loss function, in this case it is the length

of the character sequence that the network trains on during each round of

training. For the classical guitar corpus, values of 100, 150, and 250 were

tried. There was subjectively no significant difference between 150 and 250,

however larger values overall seemed to produce better results, so the highest

value of 250 was used for most experiments. For the gypsy jazz corpus, smaller

values appeared to produce better results - the value used in the final examples

was 100.

At regular intervals during training, char-rnn saves a checkpoints of the state

of the network to a file, and labels it with the validation loss of that state of the

network. As mentioned before, the validation loss is assumed to be an indicator of

the quality of the state of the network.

The network was trained until the checkpoints produced appeared to hit a rela-

tive minimum in their validation loss numbers.

4.9 Let Network Generate Results from Scratch

The checkpoint with the lowest validation loss from each training run was se-

lected, and then used to generate samples either freely, or in the case of some

experiments, with priming text intended to produce a specific output (for exam-

ple, in attempts to produce outputs in certain musical keys, or outputs that were

elaborations of existing musical pieces).

For experiments on entirely freely generated samples, a priming text was still

provided, but was limited to generic ABC notation headers that were uniform across

all pieces, and would not bias the network towards any specific output.
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For the sampling process, char-rnn takes as an input parameter the temperature

of the sampling. Temperature is a value from 0 to 1 representing the degree of

randomness to apply to sampling from the network’s distribution of “best guesses”

for the next character in the sequence. A value of 0 will always choose the network’s

“best guess”, usually resulting in an infinite repetition of some small snippet of

text, while a value of 1 will result in near-randomness. Through experimentation,

a temperature of 0.7 was deemed to produce the results with the best balance of

producing correctly-formed ABC notation, while also producing interesting musical

content.

Some amount of incorrectly-formed ABC was still usable, as the software used

to convert ABC notation to MIDI has a degree of fault-tolerance.

4.10 Post-Processing Network Output

Given that the network was trained on a multi-piece concatenated file, with full

ABC notation headers, the sampling stage would often produce multiple pieces in

ABC notation, one after the other. A Ruby script was written to process the text

samples and split them into separate pieces.

Additionally, although at this point the hope was always to have produced results

consisting of valid ABC notation, there was still always a chance of artifacts, and

so during post-processing some cleanup was done as well - mostly re-introducing

necessary headers if they were missing. It was found that often the network would

skip including the necessary voice header “V: 1”, for unclear reasons.

4.11 Converting from ABC to MIDI

Having a number of ABC notation samples that were generated by the network,

the results were converted from ABC notation back into MIDI using the abc2midi
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binary from the abcmidi package. This would sometimes produce errors if the ABC

notation was not well-formed, but the abc2midi program generally fails gracefully,

by correcting errors where it can, so the majority of samples pieces were successfully

converted to MIDI format.

4.12 Rendering MIDI Results to Sheet Music

Achieving a substantial degree of accuracy in music typesetting, especially for

multi-voice polyphonic music, is a large problem in itself, and would be impractical

to try to solve fully for the purposes of this project. For the sake of ease MuseScore

was used again to render the MIDI files to sheet music, to make use of its robust

MIDI import capabilities.

Despite the relative ease and initial quality of the results, for the sake of produc-

ing some better visual results and consistency in the output, some extra tools were

developed as part of this thesis for use with MuseScore: a MIDI import options

XML file, and a QML plugin to move rests so that they would not overlap with

notes on the staff.

4.13 Listening to MIDI Results of the Classical Guitar

Corpus

MIDI files can usually be listened to directly by opening with programs included

in most modern operating systems. Standard MIDI instrument banks are included

in the operating system and the rendering is done automatically. At this point, the

results were ready to be listened to and evaluated for musicality.

For results that were deemed most interesting, and extra step was taken to

manually render the MIDI file to audio using more professional-sounding instruments

than the ones included in an operating system sound bank.
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Rendering for the classical guitar corpus was done using the Native Instruments

Kontakt4 orchestral string sound banks. Though the music was supposed to mimic

guitar music, the orchestral strings produced a more interesting final result.

4.14 Priming the Network to Produce Specific Target

Pieces

Attempts were made to use the “priming text” feature in char-rnn to produce

a targeted output. With the classical guitar corpus, this was limited to simple

attempts at elaboration of a musical idea. The network was primed with an ABC

notation sequence of 8 measures, and then sampled for its “guess” at what the next 8

measures would be. Results were rendered to sheet music and audio in order to judge

the subjective similarity and coherence of the priming piece and the elaboration.

4.15 Converting Proprietary Notation Formats to ABC

Notation

Gypsy jazz transcriptions were received from Ben Givan in the form of .musx

(Finale) files, and from Denis Chang in the form of .sib (Sibelius) files. With no

means of converting directly to ABC notation, both sets of files were converted

first to MusicXML as an intermediary step. Batch conversion is possible directly in

Sibelius, and in Finale, via their own means. Pieces were converted from MusicXML

to ABC format using the xml2abc python script5.

4https://www.native-instruments.com/en/products/komplete/samplers/kontakt-5/

5https://wim.vree.org/svgParse/xml2abc.html
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4.16 Cleaning ABC Derived from XML

The results of conversion using xml2abc produced far messier results than the

MIDI to ABC conversion, including text with no musical content. For this reason a

much more elaborate Ruby script was used to clean the results.

As before, all headers except the necessary ones (voice, title, program change)

were removed, and all voices were combined into a single voice. In addition, the

following cleanup steps were also necessary:

• Remove quoted parentheses

• Remove numbers and special characters followed by exclamation points

• Remove cash signs

• Ensure spaces appear after quotes

• Move all quotes symbols to their own line

• Remove line numbers

• Move chord symbols to their own line

• Add measure bar lines for empty chords

• Remove quoted caret characters

• Remove quoted backslashes

• Remove excessive repetitive rests

30



4.17 Development of Symbolic Representation of Har-

mony

ABC notation does not have a built-in way of representing harmony, but it has

a notation for displaying text above the music staff. This has, by convention, been

used as a way of displaying chord symbols, and the conversion from Sibelius or

Finale, to XML, to ABC, resulted in rough chord names being prepended to the

measures in the form of this double-quoted text.

For the sake of concision in number of characters used, simplifications were

made to chord extensions based on personal understanding of jazz harmony and

improvisation. These changes apply only to jazz and represent the commutability

of some differently notated chords. The following changes were made to chord

symbols:

• ”dim” → “o”

• ”m7b5” → “0”

• ”7b9” → “7”

• ”9” → “7”

• ”6” → removed

• ”#5” → removed

• ”maj” → “mj”

After cleanup, this was determined to be a sufficiently unique way of representing

harmony for the purposes of simulated jazz improvisation.
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4.18 Extension of Harmonic Symbols to Include Chord

Changes

After a number of experiments using only the chord prepended to measure,

results were somewhat disappointing. After consideration, a change was made based

on an insight into the way that real jazz musicians approach improvisation.

An experienced musician is not only aware of the chord currently being played,

but also the next chord that will be played, and improvises not just based on the

chord-of-the-moment, but also based on where that chord is headed. One often hears

reference to “playing the changes”. For example, a dominant 7 chord resolving to

a major chord will have different considerations than the same dominant 7 chord

resolving to a minor chord. A solo that plays only based on the current chord will

likely sound stale or sterile, and will lack a sense of direction.

Given that the network is designed to “guess” at the next upcoming character

(thus, notes in the case of ABC notation) based on previously seen characters, then

in order to have the same predictive ability as real musician it must have knowledge

of the next upcoming chord before it has “seen” the next measure of music. With

the chord symbols only prepended to each measure, the network lacks this same

“awareness” of the upcoming chord.

In an attempt to fix this, the chord symbols prepended to each measure were

extended to include the next upcoming chord as well - resulting in a set of “changes”

prepended to the measures, instead of individual chords. The notation of the com-

bined chord-change symbols ended up as in the following example.

A tune with this chord progression:

• C — Am — G — C

would be notated with these combined changes:
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• “C”->Am

• “Am”->G

• “G”->C

4.19 Training Network on Jazz Data Set

Training for the gypsy jazz corpus proceeded in the same way as the classical

guitar corpus, albeit with a shorter sequence length seeming to lend itself to better

results - which is not surprising given that the gypsy jazz corpus contained almost

no polyphony and so used fewer characters on average for the same length of music

(polyphony requires more characters to represent).

4.20 Harmonic Context Injection During Sampling

Sampling for the gypsy jazz corpus proceeded similarly to the elaboration-

targeted classical guitar experiments, with the following addition, used to simulate

constrained improvisation:

A standard tune was selected to “improvise” over, with known chord changes.

The set of combined chord-change pairs was pre-computed for the tune by manually

typing the chord progression and using a script to process into adjacent pairs.

The sampling process was initiated by priming with the standard headers, the

key of the chosen tune, and the first combined chord-change pair.

The network was then allowed to sample for a sufficient length to guarantee that

it would reach the end of a measure (invariably it would “improvise” many measures

of music with many “improvised” chord changes that were not necessarily the desired

changes). The resulting sample was cut off at the end of the first “improvised”

measure, and the next pair of combined chord-changes from the selected tune was
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appended. Sampling then proceeded again, and was cut again, and the process

repeated as such until the end of the tune was reached.

4.21 Converting Simulated Improvisation Results from

ABC to MIDI

Conversion of gypsy jazz results back to MIDI proceeded essentially the same

as the classical guitar corpus, but with the addition of a script to remove chord

change symbols from the results in order to have valid ABC notation before using

the abc2midi program to convert back to MIDI.

4.22 Listening to MIDI Results of the Gypsy Jazz Cor-

pus

Rendering for the gypsy jazz corpus was done using the Native Instruments

Kontakt classical guitar and jazz guitar sound banks, with the results aligned on

top of a pre-recorded backing track for the particular tune that was improvised over.
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Chapter 5

Results

5.1 Classical Guitar Data Set

5.1.1 Audio Examples

Some hand-selected audio examples:

• http://lapompejazz.com/public/classical_guitar_sample_1.mp3

• http://lapompejazz.com/public/classical_guitar_sample_2.mp3

• http://lapompejazz.com/public/classical_guitar_sample_3.mp3

5.1.2 Network Output Example

A truncated example of sampling results from the classical guitar data set:
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X: 1
M: 2/4
L : 1/16
Q:1/4=70
K:F % 1 f l a t s
V: 1
%%MIDI program 24
[A/2−A, / 2 ] [A/2−C/ 2 ] [A/2−F / 2 ] [A/2C/2 ] [ c/2−A, / 2 ] [ c/2−C/ 2 ] [ c

/2−A, / 2 ] [ c /2C/2 ] [A/2−F , / 2 ] [A/2−A, / 2 ] [A/2−C/ 2 ] [A/2A, / 2 ] [
D/2−A, / 2 ] [D/2−A, / 2 ] [D/2−C/ 2 ] [D/2A, / 2 ] | [F/2−D,/2 − ] [F/2C
/2−D,/2 − ] [E/2−C/2D,/2 − ] [E/2D/2D, / 2 ] F/2−[F/2−A, / 2 ] [ F/2−B
, / 2 ] [ F/2D/2 ] [D/2G,/2 − ] [F/2G,/2 − ] [E/2G,/2 − ] [D/2G, / 2 ] C/2B
,/2A,/2G, / 2 | [F/2−D,/2 − ] [F/2−E/2D,/2 − ] [F/2−D/2D,/2 − ] [F/2C
/2D, / 2 ] B,/2A,/2G,/2F,/2 [E/2−C,/2 − ] [E/2−C/2C,/2 − ] [E/2−B
,/2C,/2 − ] [E/2C/2C,/2− ] [G/2−C,/2 − ] [G/2C/2C,/2 − ] [D/2C
,/2 − ] [E/2C, / 2 ] | [F/2−D,/2 − ] [F/2−A,/2D,/2 − ] [F/2−D/2D,/2 − ] [
F/2F,/2D, / 2 ] F,/2E,/2F,/2G,/2 [A,/2−F,/2 − ] [A,/2−G,/2F
,/2 − ] [A,/2−A,/2F,/2 − ] [B,/2A,/2F,/2− ] [C/2−F,/2 − ] [C/2F,/2E
, / 2 ] [D/2−F,/2 − ] [D/2G,/2F , / 2 ] |

[C/2−A,/2 − ] [C/2B,/2A,/2 − ] [C/2A,/2 − ] [A,/2A, / 2 ] [F/2−B,/2 − ] [F
/2−B,/2−A, / 2 ] [ F/2−B,/2−G, / 2 ] [ F/2B,/2F , / 2 ] E,/2− [E/2E
,/2 − ] [D/2E,/2 − ] [C/2E, / 2 ] B,/2A,/2B,/2C/2 | A,/2− [A,/2−A
, , / 2 ] [A,/2−C, / 2 ] [ A,/2A, / 2 ] E,/2− [C/2E,/2 − ] [F/2E,/2 − ] [E/2E
, / 2 ] D/2E/2 [F/2A,/2 − ] [E/2A,/2− ] [D/2A,/2 − ] [C/2A,/2 − ] [D/2A
,/2 − ] [F/2A, / 2 ] | [G/2E,/2 − ] [F/2E,/2 − ] [G/2E,/2 − ] [A/2E,/2− ]
[B/2−E,/2 − ] [B/2−F/2E,/2 − ] [B/2−E/2E,/2 − ] [B/2D/2E, / 2 ] [E/2−
A,/2 − ] [E/2−C/2A,/2 − ] [E/2−B,/2A,/2 − ] [E/2C/2A,/2− ] [D/2−A
,/2 − ] [D/2−A,/2−F , / 2 ] [D/2−A,/2−E , / 2 ] [D/2A,/2D, / 2 ] | E,/2F
,/2G,/2A,/2 B,/2− [B,/2−G, / 2 ] [ B,/2−F , / 2 ] [ B,/2E, / 2 ] C,/2F
,/2G,/2F,/2 E,/2D,/2C,/2B, , / 2 |

. . . e t c

Figure 5.1: Classical guitar network output - ABC notation
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5.1.3 Sheet Music Examples

Examples of sheet music results from the classical guitar data set:

Figure 5.2: Classical guitar network output - sheet music example 1
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Figure 5.3: Classical guitar network output - sheet music example 2

Figure 5.4: Classical guitar network output - sheet music example 3
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5.2 Gypsy Jazz Data Set

5.2.1 Audio Examples

Some hand-selected audio examples:

• https://soundcloud.com/andyhannum/djangos-tiger-june-6-2016

• https://soundcloud.com/andyhannum/nuages-combo

5.2.2 Network Output Example

An example of sampling results from simulated improvisation, to the tune of

Django Reinhardt’s composition Nuages:
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M:4/4

L:1/8

K:G

V:1

"Eb7"->D7 z4 d’bbg |

"D7"->G ed B2 b3 d’- |

"G"->G d’2 c’a g^feg |

"G"->Eb7 fe c2 B3 z |

"Eb7"->D7 z2 GA cegb |

"D7"->G d’2 ad’- d’2 d2 |

"G"->G d’2 c’=c’ bggd |

"G"->F#0 {/^d} e3 f- g2 z2 |

"F#0"->B7 z4 f’c’af |

"B7"->Em dd- d4 z2 |

"Em"->Em z2 ^c’d’ d’c’ba |

"Em"->Ab7 fe a2

"Em"->Ab7 ec B2 |

"Ab7"->A7 b3 a- a4 |

"A7"->Db7 z2 a2

"A7"->Db7 b4 |

"Db7"->D7 z4 a2 c’2 |

"D7"->Eb7 d’2 ba fe=dd- |

"Eb7"->D7 d4 z2 d2 |

"D7"->G ec ^c2 d4 |

"G"->G z4 d’_e’d’c’- |

"G"->Ab7 c’=b e2 e2 z2 |

"Ab7"->G7 z2 ^cd fd_dd- |

"G7"->C dc B2 c4 |

"C"->C z4 d’c’ag |

"C"->Cm ed _B2 c4 |

"Cm"->Cm z4 c’_d’c’b |

"Cm"->G {b_b}

"Cm"->G af c2 c3 z |

"G"->G z4 d’_e’d’c’- |

"G"->Eb7 c’3 b- b2 z2 |

"Eb7"->D7 z4 b2 c’2 |

"D7"->G d’2 b4 g2 |

"G"->G g4 z2 ed |

"G"->NC

Figure 5.5: Simulated improvisation network output - ABC notation
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5.2.3 Sheet Music Example

An example of sheet music results from simulated improvisation, to the tune of

Django Reinhardt’s composition Django’s Tiger :

Figure 5.6: Simulated improvisation network output - sheet music
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Chapter 6

Discussion

6.1 Perils of Large Data Sets and Consistency

There may be concerns with the use of large, uncurated data sets regarding the

consistency and cleanliness of the data.

For example, if training on an English-language data set that included a large

number of spelling errors, it may be that such errors (or even new errors due to

inconsistencies) would be reproduced in the sampled output. If such errors in output

were observed, it might be difficult and time-consuming to track down their source

(i.e.: was it errors in the input data, or in the learning of the network?).

With music, some degree of imprecision is acceptable that might not be in other

applications. If cleanliness and consistency were more important, rather than clean-

ing based on some heuristics it might have been necessary to do a large-scale analysis

of the data set to find and fix such problems.

In this case such rigorousness seems to have been unnecessary to produce ac-

ceptable results.
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6.2 Ideal Text Format for Neural Network Learning

Despite being the format used for the original Irish Folk project, considerable

deliberation happened before settling on using ABC notation for this project. In the

case of the Irish Folk project, it is entirely possible that ABC notation was selected

simply because of the availability of the corpus, rather than any notion that ABC

was an ideal format for training the network. Other formats that were considered

for this project were MusicXML and LilyPond1. See Figure 6.1 for examples of each.

The most significant feature in favor of ABC notation over these formats was

ultimately its concision and level of abstraction. Both MusicXML and LilyPond

are not simply music notation formats, but rather sheet music typesetting formats.

Meaning they are intended not just to represent music, but to represent the visual

layout of the sheet music. The characters used to represent the type-setting aspects

are superfluous to the actual music content (which is the main target of the net-

work training). For this reason, both of those formats use more text on average

than ABC notation to represent that same amount of music. As mentioned in the

methodological considerations, simplicity was preferred and non-essential charac-

ters were considered a waste of resources, so ABC notation seemed a better fit for

training than the other text notation formats.

In addition, the use of ABC notation was motivated out of practicality - not

because of the availability of a large corpus, but because of the availability of the

necessary conversion tools.

1http://lilypond.org/
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ABC Notation:

C4 G4 | (3FED c4 G2 |

Lilypond:

c’2 g’2 \times 2/3 { f8 e d } c’2 g4

MusicXML:

<note default-x="75.18" default-y="-50.00">

<pitch>

<step>C</step>

<octave>4</octave>

</pitch>

<duration>6</duration>

<voice>1</voice>

<type>half</type>

<stem>up</stem>

</note>

<note default-x="306.14" default-y="-30.00">

<pitch>

<step>G</step>

<octave>4</octave>

</pitch>

<duration>6</duration>

<voice>1</voice>

<type>half</type>

<stem>up</stem>

</note>

</measure>

...etc

Figure 6.1: Comparison of ABC Notation, Lilypond, and MusicXML
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6.3 Properties of the Classical Guitar Network’s Out-

put

Evaluation of the results is primarily subjective - the main metric of quality

being something akin to “musicality” of the resulting music. However, there are

nevertheless still some objective evaluations that can be made of the results.

The main takeaway from the classical guitar corpus is that the network has

successfully learned to reproduce polyphonic music, with little to no errors, and

thus validated the main experimental premise on which the corpus was chosen. As

well, the polyphony it has learned to reproduce is musically coherent and not just

random.

By the metric of musicality, compared to the results of other RNN attempts, this

network has performed as well as, or better than, other results. It has maintained

the musical coherence achieved by the Irish Folk corpus, while making progress in

complexity by way of polyphony.

6.4 Working with a Smaller Data Set for Jazz

As with large data sets, working with a smaller data set in the case of the gypsy

jazz corpus came with its own concerns.

The primary concern was that there might not be enough data to train the

network effectively. The credibility of that concern was confirmed in the difference

between minimum validation loss seen in the classical guitar corpus training versus

that seen in the gypsy jazz corpus training. The classical guitar validation loss

usually bottomed out below 0.5, while the gypsy jazz corpus reached a minimum

around 1.0, never going below 0.9. This result is not surprising, as it seems to be the

case that a larger data set will always produce better (more generalizable) results

in any machine learning approach.

45



What is impressive is that the gypsy jazz corpus training results nevertheless

resulted in reasonably musical results. This is perhaps a result of the degree of

imprecision that using a musical data set allows, especially in the genre of jazz

where sometimes “outside” playing is not only acceptable but encouraged.

6.5 Choice of Chord Representation Format

Chords and chord changes were represented symbolically by a standard text for-

mat commonly found in jazz charts. This choice of representation format was not

an intentional choice, but rather proceeded directly from the original source tran-

scriptions that were obtained, and the conversion processes that followed. Although

the format that resulted produced reasonably impressive results, it is possible that

another choice of representation format may have benefits over the one used.

As it stands, the text format used does not reveal anything about the rela-

tionship (the harmonic similarities or dissimilarities) between different chords. For

example, just based on the chord symbols alone there is nothing to indicate that a

“Bm7b5” chord and a “Dm6” chord consist of entirely the same notes. However, an

experienced improviser would likely be aware of that connection, and may not even

necessarily distinguish between the two chords in their improvisations.

With a large enough data set, it might be expected that such similarities would

be intuitively gleaned by the network by learning what types of melodies are played

over such chords. But given the small size of the data set used, there may not

have been enough examples to generalize the similarities based on the melodies

played over the different chords. It might have been more effective to use a chord

representation format that made such harmonic similarities explicit. For example,

by representing chords with their constituent notes instead of by their symbols:
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• Bm7b5 → [B, D, F, A]

• Dm6 → [D, F, A B]

or perhaps even a 12-note binary formatting simply indicating the presence or

absence of a note in a chord:

• [A Bb B C Db D Eb E F Gb G] = [111111111111]

• Bm7b5 → [101001001000]

• Dm6 → [101001001000]

Without further experimentation it’s not obvious what effect such a change

would have, but given that this would inevitably reduce the number of different

chord symbols seen by the network, it wouldn’t be surprising if this allowed the

network to make more generalizations and play more varied lines over the same

chords. To play a D minor line over a F major chord, for example - something that

would be unsurprising for a true jazz musician.

6.6 Properties of the Gypsy Jazz Network’s Output

Subjectively, the network appears to be generating reasonably coherent improvi-

sations, albeit in some cases not very interesting. They are generally more rhythmi-

cally uniform than might be expected in a real jazz solo - the network seems to get

caught in long lines of notes with the same note length. However, such uniformity

might not be completely unexpected in a beginning improvisor’s solo, and compar-

ing the network’s output to the improvisations of jazz greats may be unfair at such

an early stage of research.

The pieces generated by the network appear to follow the chord changes at least

to some degree. At each chord, the output can usually be observed to hit one or
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more of the chord tones (the most “inside” or “correct” sounding notes for a given

chord).

In addition, the network appears to produce some stereotypical licks in the style

of gypsy jazz. For example, there is a very stylistic formula identified by Ben Givan

(F1 from The Music of Django Reinhardt [5]) that appears a number of times in

the results (see Figure 6.2).

A pleasing and somewhat surprising result is the appearance of chords in the

output. The classical guitar corpus proved that homophony and polyphony could

be learned and reproduced, but it was a corpus full of such examples, whereas the

gypsy jazz corpus very rarely features chords. Despite that, the network occasionally

produces chordal pieces of solos at seemingly appropriate places.
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Figure 6.2: Highlighted instances of Ben Givan’s formula F1
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Chapter 7

Applications

7.1 Generating Musical Exercises Using the Trained Net-

work

Given that the results of the algorithmic generation process were found to be

generally musical-sounding, the next step was to attempt to use the trained network

to generate exercises aimed at musical pedagogy.

Development of such exercises is not as simple as producing musical-sounding

content, it is also a matter of controlling the parameters of the generated music in

a way that is effective for teaching. The final use of such parameterization would

be best determined by a teacher (say, a classical guitar teacher) so the techniques

developed here were aimed at giving such an end-user as many options as possible,

to use at their discretion.

There are multiple ways this parameterization could have been approached, with

perhaps the most obvious being to attempt to control the network’s output during

the sampling stage to produce the desired properties. Such an approach bears

further investigation, however the technique chosen here was to make no changes
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to the output of the network, and instead develop a set of post-processing tools to

achieve this end.

7.2 Post-Processing Tools for Exercise Parameteriza-

tion

A web application was developed as an all-in-one tool to maintain a database

of potential exercises, to allow an end-user to filter and select appropriate exercises

based on a variety of parameters, and ultimately to continue to grow the database

of exercises based on user feedback.

The network is allowed to generate large amounts of non-constrained musical

ideas, all of which are then split into equal-length musical phrases (8 measures by

default).

Each piece, now considered a “potential” musical exercise, is run through a

custom Ruby script that analyzes the MIDI for a set of filtering properties, and

through a custom MuseScore script that both renders the MIDI to sheet music in

PNG format, and analyzes the resulting sheet music for an additional set of filtering

properties.

The full set of properties analyzed and saved for each potential exercise is as

follows:

time signature The time signature of the piece.

musescore shortest duration The shortest note duration.

musescore longest duration The longest note duration.

musescore longest repeat The length of the longest chain of repetition of the

same note or chord in a row.
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musescore num elements The total number of visual elements in the sheet music

rendering.

musescore num durations The total number of different note durations.

musescore num chords The total number of chords.

musescore num notes The total number of notes.

musescore num ties The total number of ties.

musescore num rests The total number of rests.

musescore num sharp flat The total number of accidentals not already in the

key signature.

musescore key signature The key signature in number of flats (-) or sharps (+).

entropy pitch class The entropy1 calculated from all pitch names.

entropy interval The entropy calculated from all intervals between adjacent notes.

entropy rhythm The entropy calculated from all note durations.

low note The pitch value of the lowest note.

high note The pitch value of the highest note.

interval range The difference between pitch value of the lowest note and the high-

est note.

The web application stores these exercises along with their properties in a SQLite

database, and displays a simple interface to the end-user allowing them to directly

view and listen to exercises, and successively filter the exercises based on ranges for

any of the above parameters.

1H(X) = −
∑

P (xi) logb P (xi)
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Figure 7.1: Exercise filtering web application
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7.3 Growing Exercises via Human Feedback and Evo-

lutionary Algorithm

After finding exercises that fit some criteria, the end-user can save selected ex-

ercises to be used for “growing” the database.

The selected exercises are re-introduced to the trained network and elaborated

upon using the technique previously detailed in the methods. The results of the

elaborations are then split into exercises and re-processed back into the application

to be added back into the database of exercises.

The intention is that such elaborations will be similar to, but distinct from, the

exercises that were selected by the user to fit their criteria. So, by repeating this

process of selection and elaboration the user will be able to “grow” a database of

exercises that fit their specific needs from potentially only a few original example

exercises.

Ultimately, if a hand-selected database was grown large enough, the resulting

exercises could be used to further train the network so that the results of the im-

mediate generation step are more in line with the desired output. With enough

examples it could be feasible to train a network that exclusively generates exercises

with the desired parameters, and requires no post-processing filtering.

This labeling and evolutionary strategy could also potentially be used to grow

databases of musical snippets which conform to other hand-selected characteristics

that are not necessarily quantitative. For example, a human could label pieces of

music with their emotional mood, and eventually grow a database of music snippets

that match specific moods.
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Figure 7.2: Example of original exercise

Figure 7.3a: Exercise elaboration 1

Figure 7.3b: Exercise elaboration 2

Figure 7.3c: Exercise elaboration 3
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Chapter 8

Future Work

8.1 Obtaining Larger and More Specialized Data Sets

The main limiting factor of these experiments, and the impetus of the project as

a whole, was the limited availability of appropriate data sets for training. Despite

the subjective quality of the results, there remain a number of reasons to continue

attempts to procure more input data. The most obvious being that more data simply

provides more examples for the network to learn from, which should theoretically

produce better results if the additional examples exhibit the qualities that we would

like the network to reproduce.

More to the point, the size of the data set used in the classical guitar exper-

iments was small enough to warrant artificial inflation (by way of transposing to

different keys) and the size of the data set used in the gypsy jazz experiments was

small enough that the addition of less than 25% more examples noticeably improved

results. Both data sets seem ripe for more input examples.

In addition to increasing the amount of data overall, it would be interesting

to be able to run experiments that were more focused stylistically. In the case of

the classical guitar experiments, pieces from all composers were combined in the
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training input, despite many of the composers having drastically different styles,

and indeed having composed during drastically different time periods. If a larger

corpus of pieces were available from a single composer, or from stylistically similar

composers, then experiments could be run with better expectations about the style

of the output than simple subjective musicality. Output might be expected to

display certain predefined characteristics of the input composers’ styles.

Such stylistically-focused experiments may be more useful to the production of

pedagogical exercises, as the output would be expected to exhibit more regularity

and be more formulaic in general (due to higher expected regularity in the input)

than output of experiments where the input was an amalgamation of composers of

different styles.

This approach can somewhat be seen in the gypsy jazz experiments (where

some stylistic Django formulas were seen in the output), though even there the final

experiments used a combination of pieces from different gypsy jazz performers due

to lack of sufficient examples of a single composer.

Searching for new data sources remains an ongoing process. Two potential

sources that might be worth investigating are commercial sheet music and tran-

scription services (i.e. buying the digitized sheet music), or crowd-sourcing (i.e.

asking the public at large for donations of their transcriptions).

8.2 Controlling Different Aspects of Complexity Inde-

pendently

Despite the tooling developed for the post-processing style of exercise generation,

there remains a strong appeal regarding the ability to control different aspect of

music complexity at the network level - during the actual sampling stage, rather
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than afterwards. Not only would such a solution likely be more efficient, but it

would also be more elegant.

The sampling temperature parameter in some ways provides a loose approxima-

tion at this kind of control. Sampling with significantly higher temperature will

almost always produce more complex results, whereas sampling with significantly

lower temperature will almost always produce simpler results.

However, complexity is a multidimensional aspect of music, and as such temper-

ature is a poor approximation of a true musical complexity “knob” for a number

of reasons. Foremost is that it does not distinguish between different dimensions of

complexity - for example it cannot distinguish between a piece that is rhythmically

complex but melodically simple, or melodically complex but rhythmically simple.

Furthermore, changes to the temperature parameter also often negatively affect the

degree of musicality of the output (both more complex and less complex output is

often less musical; there appears to be a sweet spot in temperature for musicality)

and also the coherence of the output (higher temperature results in more errors in

the ABC notation produced).

In theory it seems that the ideal setup would be to have additional inputs into

the network that parameterize different aspects of the musical complexity (rhyth-

mic vs melodic complexity for example). During training, pieces presented to the

network could be analyzed for their relative complexities on these scales, and the

resulting measurements could be added to the input layer. Then after training, dur-

ing sampling, these additional inputs should theoretically be able to provide control

of the complexity of the output on independent axes. One difficulty in such an

implementation would be developing a useful way of measuring ”complexity” in the

different domains.

This is just one of many possible approaches that could be explored in the future

to provide a better model for directly generating musical exercises.
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8.3 Learning Larger-Scale Musical Structures

As seen through the artistic/entertainment lens, a significant weakness in the

output from the network is that, although the music can be observed to exhibit

coherence in local structures (within measures and between adjacent measures), it

fails to exhibit any sort of “understanding” of large scale structures that would be

necessary for composing fully-formed songs.

If the ultimate goal is fully algorithmic music composition (as opposed to exercise

generation, for example) then solving the problem of creating larger scale structures

might be a good next step.

Attempting to solve this problem using a neural network like char-rnn seems

tempting, and indeed there have been attempts to do something like this [9]. A

potential future project might try to apply such techniques to the classical guitar

data set.

Another approach, beyond modifying the neural network architecture, and hop-

ing that it will learn via examples, would be to algorithmically generate large-scale

song structure via other, more traditional means, and then once the structure has

been decided, use a network such as this one to “fill in the details” of local musical

ideas. The results of this project have shown that structure can be effectively forced

on the output of this particular network during the sampling stage by the use of

priming.

Results of a somewhat similar approach using LSTMs to generate music given a

pre-defined rhythmic structure were published in 2016, with audio examples being

quite pleasing to listen to [11].
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