
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2018

Algorithmic Music Generation for Pedagogy of Sight Reading Algorithmic Music Generation for Pedagogy of Sight Reading

Ryan Stephen Davis
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Music Pedagogy Commons, Programming Languages and Compilers Commons, and the

Software Engineering Commons

Recommended Citation Recommended Citation
Davis, Ryan Stephen, "Algorithmic Music Generation for Pedagogy of Sight Reading" (2018). Electronic
Theses and Dissertations. 1536.
https://digitalcommons.du.edu/etd/1536

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1129?utm_source=digitalcommons.du.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.du.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.du.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1536?utm_source=digitalcommons.du.edu%2Fetd%2F1536&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

Algorithmic Music Generation for Pedagogy of Sight Reading Algorithmic Music Generation for Pedagogy of Sight Reading

Abstract Abstract
Autodeus is the name of the program that has been developed and was designed to aid guitar students in
the attainment and betterment of musical notation sight reading skills. Its primary goal is to provide a
very flexible tool that has the ability to generate virtually endless types of sight reading exercises at many
various skill levels.

A complimentary 2 year-long comprehensive guitar sight-reading course syllabus can be implemented via
Autodeus as it is capable of generating all the necessary exercises. It is able to generate these exercises
quickly and efficiently through the use of a back tracking algorithm that utilizes modular rules. In addition
to these modular rules, it allows users many input options: 9 different generation methods, the option of
which strings and frets will be utilized, the ability to input types of musical intervals and their probabilities,
the ability to input types of note durations and their probabilities, and the ability to input the probability of
rests, among others. It also has the ability to generate two voice species counterpoint that abides by
classical music rules.

A subset of Autodeus' capabilities are now available on a public URL for free. The genesis of this type of
online application is highly beneficial to any guitarist looking to expand and improve their sight-reading
capabilities as there is currently no system available that provides all of the developed features. It is
highly encouraged by any reader to go to this website and experiment with the various available inputs
and generation types.

Document Type Document Type
Thesis

Degree Name Degree Name
M.S.

Department Department
Computer Science

First Advisor First Advisor
Mario A. Lopez, Ph.D.

Second Advisor Second Advisor
Ricardo Iznaola, Ph.D.

Third Advisor Third Advisor
Ramakrishna Thurimella, Ph.D.

Keywords Keywords
Algorithmic, Generation, Guitar, Music, Sight reading

Subject Categories Subject Categories
Computer Sciences | Music Pedagogy | Programming Languages and Compilers | Software Engineering

Publication Statement Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.

This thesis is available at Digital Commons @ DU: https://digitalcommons.du.edu/etd/1536

https://digitalcommons.du.edu/etd/1536

Algorithmic Music Generation

for Pedagogy of Sight Reading

A Thesis

Presented to

the Faculty of the Daniel Ritchie School of Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Ryan S. Davis

November 2018

Advisor: Mario A. Lopez

© Copyright by Ryan S. Davis 2018

All Rights Reserved

Author: Ryan S. Davis
Title: Algorithmic Music Generation for Pedagogy of Sight Reading
Advisor: Mario A. Lopez
Degree Date: November 2018

Abstract

Autodeus is the name of the program that has been developed and was designed

to aid guitar students in the attainment and betterment of musical notation sight

reading skills. Its primary goal is to provide a very flexible tool that has the ability

to generate virtually endless types of sight reading exercises at many various skill

levels.

A complimentary 2 year-long comprehensive guitar sight-reading course syllabus

can be implemented via Autodeus as it is capable of generating all the necessary

exercises. It is able to generate these exercises quickly and efficiently through the

use of a back tracking algorithm that utilizes modular rules. In addition to these

modular rules, it allows users many input options: 9 different generation methods,

the option of which strings and frets will be utilized, the ability to input types of

musical intervals and their probabilities, the ability to input types of note durations

and their probabilities, and the ability to input the probability of rests, among

others. It also has the ability to generate two voice species counterpoint that abides

by classical music rules.

A subset of Autodeus’ capabilities are now available on a public URL for free.

The genesis of this type of online application is highly beneficial to any guitarist

looking to expand and improve their sight-reading capabilities as there is currently

no system available that provides all of the developed features. It is highly encour-

aged by any reader to go to this website and experiment with the various available

inputs and generation types.

ii

Acknowledgements
The two most important people involved in this project are Dr. Mario Lopez

(professor of Computer Science) and Dr. Ricardo Iznaola (professor and chair of

Lamonts Guitar and Harp Department). It is humbling and inspiring to work with

men of such accomplishment and brilliance. Having meetings and discussing the

project provided limitless possibilities and never-ending good ideas. It has been one

of the biggest opportunities of my life to work with them and I’ve felt insanely lucky

to be in a position where I get to help create a bridge between the worlds of music

and computer science. Without these awesome human beings, none of this would’ve

been possible.

Kyle Nesslein was an undergraduate student in the computer science depart-

ment who initially started this project. I would like to thank him very much for his

continued work and communication with us about the project even long after grad-

uation. It is very apparent to me how much work and time was put into creating a

great foundation for the software. His research into many open-source projects and

libraries definitely helped the whole project take off. The architecture and design

patterns laid down by him in the first stages of the code have proven to be highly

re-usable and flexible. Thanks!

Andrew Hannum is a friend and a graduate student in the computer science

department that helped with the HTML/CSS/Javascript portion of the frontend.

This provided a huge leap forward in progress as my lack of these types of skills

causes me to get lost pretty quickly in that realm of software. Without him, there

may very likely be no slick user interface or a clunky one at best. Thanks!

Lastly, I’d like to thank Dr. Ramakrishna Thurimella, professor and chair of the

Computer Science Department. In late summer of 2011, I embarked on a road trip

by myself with no destinations. I had been thinking about the possibility of graduate

schools and so stopped in Denver to meet with Ramki. That meeting profoundly

iii

changed the direction of my life and it really astonishes me how fast time has gone

since then. I’ve learned much valuable knowledge and have met and worked with

countless great people as a result. I could not possibly thank him enough.

iv

Contents

1 Introduction 1
1.1 Statement of Purpose . 1
1.2 Other Sight Reading Software . 2
1.3 Musical and Mathematical Connections 3

1.3.1 Pitch and Harmony . 3
1.3.2 Rhythm . 9

2 System Architecture 14
2.1 Overview . 14
2.2 Code Repository . 14
2.3 Open Source Dependencies . 16

2.3.1 Nginx/Gunicorn/Flask(Python3) 16
2.3.2 libmusicXML . 16
2.3.3 Lilypond . 17
2.3.4 MuseScore . 17
2.3.5 xvfb . 19
2.3.6 Mido . 20

2.4 Frontend . 20
2.4.1 HTML/CSS/Javascript . 20
2.4.2 Flask (Python3) Server . 20
2.4.3 How to Run on a Local Server 21
2.4.4 How to Setup and Run on an Amazon Web Server 21

2.5 Backend . 22
2.5.1 Building the C++ Source Code 23
2.5.2 Running GenLesson . 24

3 Generating Music XML 25
3.1 GenLesson Input Parameters . 25
3.2 Object Oriented Design and Data Structures 28

3.2.1 Note Class . 28
3.2.2 NChord Class . 30
3.2.3 Voice Class . 30
3.2.4 PitchSet . 31

v

3.2.5 Part Class . 31
3.2.6 Generator Object . 32
3.2.7 Generator Factory . 32
3.2.8 Rule Object . 33
3.2.9 LibWrapper Object . 33

3.3 GenLesson Overview . 34
3.4 The Primary Generation Algorithm 34
3.5 The Primary Algorithm’s Wrapper 37
3.6 Generators . 37

3.6.1 Single Note Melody . 39
3.6.2 NChord Generation . 42
3.6.3 Cantus Firmus . 46
3.6.4 Exercise Generators . 47
3.6.5 Species Generators . 49
3.6.6 Optimizations . 52

3.7 Other Algorithms . 54
3.7.1 Outlining Major/Minor Chords 54
3.7.2 Climax Note Production . 56
3.7.3 Notation Fix Functions . 58

3.8 Rule Sets . 59
3.8.1 Single Note Melody . 59
3.8.2 NChord Generation . 62
3.8.3 Cantus Firmus . 62
3.8.4 legalGeneralCounterpointMelody 62
3.8.5 legalGeneralTwoVoice . 64
3.8.6 legalSpecies1 . 64
3.8.7 legalSpecies2 . 64
3.8.8 legalSpecies3 . 65
3.8.9 legalSpecies4 . 66

4 Sample Syllabus 67
4.1 First Year Syllabus (Level I) . 68

4.1.1 Part I . 68
4.1.2 Part II . 71

4.2 Second Year Syllabus (Level II) . 74
4.2.1 User-Defined exercises . 74
4.2.2 Transformations of User-Defined exercises 74

5 Future Work 75

vi

List of Figures

1.1 Notes on Guitar Fretboard in Standard Tuning 4
1.2 E String on Fretboard with Half-Steps 5
1.3 Chromatic Scale with C as Root Note in Modular 12 Arithmetic . . 6
1.4 C major scale with Half and Whole Steps in Modular 12 Arithmetic 8
1.5 C major scale with Intervals in Modular 12 Arithmetic 8
1.6 D Dorian Mode with Intervals in Modular 12 Arithmetic 9
1.7 Modes and their Intervals . 10
1.8 Notation of Note Durations and Rests 11
1.9 Note Durations in 4/4 Measures . 11
1.10 Measures in 6/8 . 12
1.11 Dot Notation for Notes and Rests . 12
1.12 Tied Notes Examples . 13
1.13 Tied notes over Measure Bar . 13

2.1 Overall System Architecture . 15
2.2 Lilypond Format Conversions . 18
2.3 MuseScore Format Conversions . 19

3.1 Overview of Class Dependencies . 29
3.2 Note Class UML . 30
3.3 NChord Class UML . 30
3.4 Voice Class UML . 31
3.5 PitchSet Class UML . 31
3.6 Part Class UML . 31
3.7 Generator Class UML . 33
3.8 Rule Class UML . 33
3.9 Pseudocode for GenLesson Main Function 34
3.10 Pseudocode for Recursive Backtracking Algorithm 35
3.11 Tree Walk Example, Possible notes are A, B, C and rules are no

repeated notes . 36
3.12 Tree Walk Example, Possible notes are A, B, C and Rule is must end

with B then C . 36
3.13 Pseudocode for Primary Algorithm’s Wrapper 38

vii

3.14 Generators Class Inheritance . 38
3.15 Example of Duration Pool Pre-Computation 41
3.16 Example of Note Map Pre-Computation 41
3.17 Difficulty to Melodic Interval Mapping 43
3.18 Time Signature to Difficulty to Durations Mapping 44
3.19 Pseudocode for the NChord Generation Type 45
3.20 Species 1 Generated Example . 51
3.21 Species 2 Generated Example . 51
3.22 Species 3 Generated Example . 52
3.23 Species 4 Generated Example . 52
3.24 Modular 12 Note to Integer Conversion 55

viii

Chapter 1

Introduction

Statement of Purpose

Autodeus’ primary goal is to serve as an extremely flexible pedagogical tool

that outputs virtually endless guitar sight reading exercises for a 2 year-long sight-

reading course syllabus developed by Ricardo Iznaola. A copy of this syllabus can be

found in the sample syllabus chapter and serves as comprehensive guide for which

parameters students should use as input to Autodeus. The coupling of the web

application and syllabus fills an empty niche that is currently unavailable in any

form for guitarists seeking to improve their sight-reading abilities.

Traditionally, a music student learning guitar will sight read exercises from a

highly finite set of music resources such as books and paper sheet music. Sans the

inefficiencies of maintaining such a collection, inevitably the student will encounter

three issues: 1) The current piece of music they’ve set in front of themselves is too

difficult, 2)The current piece is too easy, or 3) They have previously practiced the

piece. Incurring issue number one will frustrate and deter a student from practicing.

The second, will not challenge the student sufficiently, thus they will not improve.

Lastly, the third issue, is simply not sight reading. Focused on creating many pitch,

1

rhythmic, and harmonic variations, Autodeus is designed to assure the student will

always be seeing and hearing new exercises at a skill level within a certain Goldilocks

zone ... not too hard, not too easy, but just right, allowing a student to continually

progress.

Cope defines creativity as “The initialization of connections between two or more

multifaceted things, ideas, or phenomena hitherto not otherwise considered actively

connected.” [1] His studies use many types of algorithmic generation strategies to

create music that attempts to pass what could be thought of as a musical Turing test.

Autodeus makes no attempt to approach this depth and breadth. Unfortunately, the

music it produces would not sound creative and be bland at best to the musically

trained ears. On the other hand, it does follow suit with much of Cope’s work

with respect to the narrowing of parameters involved in the various elements of

musicality: “pitch, rhythm, timbre, articulation, phrasing, dynamics, and so on,

to name but a few” [1] This allows Autodeus and it users to focus on only pitch,

rhythm, and harmony.

Other Sight Reading Software

With the proliferation of the Internet and smart phone apps, many various

software packages have been developed to help students learn to sight read mu-

sic. There’s a wealth of sight reading apps that do not focus on the guitar, but

instead intend to produce exercises in general for all instruments and these miss the

point completely of what Autodeus achieves. Ricardo Iznaola’s syllabus is designed

for focused work on specific differing areas of the guitar fretboard as a student

progresses, until they’ve mastered the entirety.

The following are some of the most popular guitar sight-reading web apps (ac-

cording to Google search results) that are currently available and reasons why they

fail to achieve the functionality of Autodeus.

2

• Sight Reading Factory[2]

This website has a very nice interface and a ton of options when generating

exercises for the guitar, but falls short of Autodeus due to the fact that one

cannot input strings and frets.

• Practice Sight Reading[3]

This falls short also due to the lack of being able to input strings and frets.

• http://thefluentguitarist.comThe Fluent Guitarist[4]

This has some great guitar sight-reading exercises in a searchable database,

but does not generate anything on the fly with sets of input parameters. This

would surely present students with the type of situation where they find them-

selves outside of the Goldilocks zone.

• SmartChord

This is a nice little app that offers a ton of features to help students learn the

guitar, including input of frets and strings to show scales/chords/arpeggios,

but does not generate sight-reading exercises.

Musical and Mathematical Connections

Pitch and Harmony

The music harmonic theory utilized by Autodeus is based on classical and West-

ern musical styles. In these, the most common tuning system for the past few

hundred years has been twelve-tone equal temperament, which divides frequencies

within an octave (frequencies double or half of each other) into 12 parts, all of which

are equal on a logarithmic scale. These 12 notes then form what is called a chromatic

scale which names all the notes using the letters A through G with combinations of

3

Figure 1.1: Notes on Guitar Fretboard in Standard Tuning

the symbols] and [. The naming scheme is arbitrary, but their widespread common

acceptance is based on a long history of musical composition. A guitar fretboard (in

standard tuning) can be seen in Figure 1.1 and has all of the notes of the chromatic

scale and their corresponding locations labeled.

Almost all of the musical theory in this document and the code to implement

Autodeus relies heavily on the notion of a musical interval. This is simply a distance

between 2 notes where (in a vast majority of western music) the smallest atomic

distance is called a half-step. The interval of a half-step translates visually to the

fretboard of a guitar in an elegant manner as each fret up or down is a half step from

the previous note as can be seen in Figure 1.2. In musical notation a] indicates a

note half-step up the chromatic scale and a [indicates half-step down. All other

intervals can be defined as a sum of half steps where each has one or more verbose

names and a shorthand notation in the form of a possible [or] concatenated with a

digit. Some of the most common are the following with their corresponding number

of half-steps listed:

4

Figure 1.2: E String on Fretboard with Half-Steps

• Half Step, Minor 2nd or [2 - 1 half step is the smallest interval

• Whole Step, Major 2nd or 2 - 2 half steps

• Minor 3rd or [3 - 3 half steps

• Major 3rd or 3 - 4 half steps

• Perfect 4th or 4 - 5 half steps

• Augmented 4th or]4 - 6 half steps

• Diminished 5th or [5 - 6 half steps

• Perfect 5th or 5 - 7 half steps

• Minor 6th or [6 - 8 half steps

• Major 6th or 6 - 9 half steps

• Minor 7th or [7 - 10 half steps

• Major 7th or 7 - 11 half steps

• Octave - 12 half steps, Both notes have the same name, but are double or half

each other’s frequencies

Note that there are intervals larger than an octave, but for the purposes of Autodeus,

intervallic considerations were made only for those enumerated here.

There have been vast amounts of connections made between music and mathe-

matics, in particular graph theory and abstract algebra.[5] Some of these connections

5

Figure 1.3: Chromatic Scale with C as Root Note in Modular 12 Arithmetic

were used to an advantage when programming Autodeus. A mapping of note names

to integers was extremely useful in manipulation of notes and in understanding the

relationship between them. The lowest note Autodeus is capable of producing is

an A[0 (also named G]0) which is a half-step lower than the lowest note (A0) on

a standard 88 key piano. Thus, A]0/G[0 is mapped to an integer value of 0, A0 is

mapped to 1, A]/B[mapped to 2, and so on and so fourth up to the maximum pos-

itive integer value which can describe notes far past the human hearing frequency

range. Each half-step can be thought of as an increment of +/-1 and any other

intervallic relationship between any given two notes is easily found using modular

12 arithmetic. Consider Figure 1.3 where moving around the circle clockwise is as-

cending the note frequencies and visa versa. For example, we can say that C to G

ascending is an interval of a perfect 5th (7 half-steps) and descending from C to G

is an interval of a perfect 4th (5 half-steps).

A scale is a set of notes starting from an initial note called the root which

ascends and/or descends to an octave above or below. Using any combination of

6

the aforementioned intervals relative to a root note, one can define a scale. This

is akin to starting on 0 in Figure 1.3 and picking notes around the circle until we

arrive back to the top and the circle can be thought of as a guitar string where

each integer value is a fret. Obviously, there are many permutations that can be

generated in this manner. There are resources widely available which enumerate

many guitar scales and their patterns. [6] [7]

7-note scales in Western music are often studied and can be defined in 2 ways:

a series of half-steps (difference of 1) notated as “H” and whole-steps (difference of

2) notated as “W” that separate each adjacent note starting from a root note, or

by declaring each interval present relative to the starting root note (R notates root

note). One the most common scales in Western music is the Major scale which can

be described as in steps as W-W-H-W-W-W-H or intervals present as R-2-3-4-5-6-

7-R. If we apply this sequence to our modular 12 note circle starting with C and

moving clockwise, we see attain the notes C-D-E-F-G-A-B-C which are conveniently

all of the white keys on a piano. See Figures 1.4 and 1.5 for a visual representation

of these derivations.

From a major scale, 6 other scales can be derived that are known as modes of

the major scale. This is done by selecting a note in the major scale, considering

it a new root note, going around the modular 12 circle clockwise, and noting the

sequence of steps and intervals produced using the same initial notes. For example,

a mode called Dorian starts on the second note of the major scale and goes around

producing the steps W-H-W-W-W-H-W and intervals R-2-[3-4-5-6-[7-R. Notice how

Dorian mode now includes 2 of the minor intervals, [3 and [7. See Figure 1.6 for a

visual representation of the D Dorian mode.

One can repeat this process for the other notes of the major scale and derive

Figure 1.7 which is a table that enumerates all of the names and possible modes

of the major scale and their intervals. It should be noted that Ionian is the modal

7

Figure 1.4: C major scale with Half and Whole Steps in Modular 12 Arithmetic

Figure 1.5: C major scale with Intervals in Modular 12 Arithmetic

8

Figure 1.6: D Dorian Mode with Intervals in Modular 12 Arithmetic

name for the major scale. Modes can be thought of as “flavors” where each has

characteristic sounds. Autodeus is able to generate exercises in any mode starting

from any root note as input parameters.

Rhythm

Musical rhythm notation has many connections with mathematics as it denotes

the amount of time to play (or not play) notes and tells us how a set amount of

time is sub-divided. The following are common musical rhythm notation terms and

their definitions which should be understood in order to comprehend how Autodeus

generates rhythm. (Please note that this section is meant to define these concepts

within the context of this thesis and Autodeus’ code as there are likely many other

definitions and ways to explain them.)

1. Tempo - Defines the number of pulses (or beats) per minute used to count the

speed of music. This is in units of Beats Per Minute (BPM).

2. Measure - Segment of time comprised of a specific number of beats whose

contents is contained within 2 vertical lines in musical notation See Figure 1.9

9

Figure 1.7: Modes and their Intervals

3. Whole Note - Notation that means play a note for 4 beats

4. Half Note - play a note for 1/2 of a Whole Note’s value or 2 beats

5. Quarter Note - play a note for 1/4 of a Whole Note’s or 1 beat

6. Eighth Note - play a note for 1/8th of a Whole Note’s or 1/2 of a beat

7. 16th Note - play a note for 1/16th of a Whole Note’s or 1/4th of a beat

8. 32nd Note - play a note for 1/32th of a Whole Note’s or 1/8th of a beat

9. 64th Note - play a note for 1/64th of a Whole Note’s or 1/16th of a beat

10. Rest - A type of notation used to indicate that silence or nothing should be

played for a certain amount of time. All of these have a direct correlation to

the aforementioned Note values. See Figure 1.8

11. Time Signature - A musical notation comprised of 2 numbers that look like

a numerator and a denominator in a fraction. The numerator defines how

many beats there are per measure and the denominator defines which of the

aforementioned note values is used for each of those beats.

10

Figure 1.8: Notation of Note Durations and Rests

Figure 1.9: Note Durations in 4/4 Measures

As an example, consider one of the most common time signatures, 4/4. The

numerator tells us that there are 4 beats per measure and the denominator tells

us to use quarter notes. In other words, 1 measure = 4 * (1/4) notes. Figure 1.9

Another common time signature is 6/8 which indicates 1 measure = 6 * (1/8) notes

or 6 eighth notes per measure. See Figure 1.10

Another set of musical notation commonly used is the dot notation. A dot

appended to a note or rest indicates to add half its value to the amount of time to

play the note. For example, a quarter note (1 beat) with a dot indicates to play

11

Figure 1.10: Measures in 6/8

Figure 1.11: Dot Notation for Notes and Rests

the note for 1 and a half beats (a quarter note plus an eighth note). Although

less commonly used, if 2 dots are appended to the note, this indicates to add half

the value of the first dot to the overall time. Adding more dots can be repeated

recursively, but this would be very rare due to its difficulty to interpret by human

sight readers. See 1.11 for visual examples.

Lastly, another common musical rhythm notation is a tie. A tie is used to denote

that note values should be added together. For example (see Figure 1.12), a half

note (2 beats) tied with a quarter note (1 beat) denotes that the note should be

played for a total of 3 beats. This can also be used to denote that a note should be

played over a measure bar. (See Figure 1.13) for an example of this.

Autodeus is capable of generating and notating any time signature where the

denominator is 1, 2, 4, 8, 16, 32, or 64 and this time signature is used as an input

parameter. It is also capable of notation using dot notation and ties.

12

Figure 1.12: Tied Notes Examples

Figure 1.13: Tied notes over Measure Bar

13

Chapter 2

System Architecture

Overview

Autodeus has several layers of software that allow it to run with the interface

at its public URL. This chapter describes how all of these layers interact to create

the whole and how one can setup the system to run a server on a local computer or

on a headless web server. Figure 2.1 visually summarizes the entire software stack

used.

Code Repository

All of the code necessary to get an instance of Autodeus running is available on

a private Github[8] repository at the following URL (Email me at ryandavisbusi-

ness@gmail.com to request access):

https://github.com/ryansdavis/GenLessonRefactored.git

14

Figure 2.1: Overall System Architecture

Clone the repository to a desired location locally to view the repository’s contents

which are the following directories:

• GenLesson Contains all of the source code, scripts, and other text files written

for Autodeus. Contains the following sub-directories:

– trunk/

This directory holds all of the C++ source code for the executable “Gen-

Lesson”.

– build/

Location for scripts and build files when compiling “GenLesson”

– GenerateLessonFiles/

Location containing scripts for testing/running the “GenLesson” exe-

cutable and a directory full of example input text files.

15

– frontend/

This directory holds all of the Python/JavaScript/HTML/CSS source

code for running the front end web app along with deployment scripts

and configuration.

• libmusicxml-3.00-ubuntu-x86 64 Contains all the source files, shared object

library, and other documentation for the musicXML C++ library

• Writeup Contains all of the documentation for this project

Open Source Dependencies

Nginx/Gunicorn/Flask(Python3)

The stack of Nginx/Gunicorn/Flask(Python) serves as the front-end to Au-

todeus. This layer of software is quite common on modern-day production systems

for serving up static and dynamic content on websites.[9] Flask itself is a Python

micro-framework that can handle only one HTTP request at a time. Gunicorn is

used to spawn several identical Flask worker processes and Nginx forwards all HTTP

requests on port 80 to these workers. This stack is then run on an Amazon Web

Service’s EC2 instance in the cloud, providing access to the public URL.

libmusicXML

Music XML is a widely accepted standard for sharing and editing sheet music

online and is compatible with almost all popular music software suites.[10] Autodeus

uses an open source musicXML library in the backend which is dynamically linked

to an executable called “GenLesson” written in C++.[11] “GenLesson” accepts an

input text file that defines all of the input parameters and then outputs a text file

in musicXML format.

16

An open source library is utilized called “libmusicxml” and is dynamically linked

during the the build process and during execution of Autodeus[12][13] It must be

placed in the directory ‘/usr/local/lib/’ and have a link to it which likely will require

super user permissions. There is a script at ‘GenLessonRefactored/libmusicxml-

3.00-ubuntu-x86 64/setup library.sh’ that performs this action. After successful

completion of this script, ‘/usr/local/lib’ should contain ‘libmusicxml2.so.3.00’ and

have a link to it called ‘libmusicxml2.so’

Lilypond

Lilypond is a project which is based upon a markup language for creating sheet

music.[14] Autodeus uses Lilypond to create nicely formatted .PNG images of the

musicXML for exercises where the rhythm is strictly pre-defined and codified in

the musicXML output. Figure 2.1 shows a block converting musicXML straight to

a .PNG image, but this is somewhat of an over-simplification. Autodeus actually

converts the musicXML to a ‘.ly’ file first (Lilypond’s markup language) and then

calls the “lilypond” binary with arguments to convert the Lilypond markup to a

.PNG image. This can be seen in Figure 2.2

MuseScore

MuseScore is a project popular on Linux distributions for creating, reading, and

playing sheet music.[15] Autodeus uses MuseScore as a command line utility (sans

the GUI) to convert musicXML to MIDI and to .PNG files.

MuseScore has proven very useful in producing properly notated rhythms which

simplifies much of the musicXML creation. When an exercise is produced in a

manner where rhythm is not pre-defined, MuseScore takes the musicXML, converts

it to MIDI and then converts the MIDI to the .PNG image as in Figure 2.3. This

17

Figure 2.2: Lilypond Format Conversions

18

Figure 2.3: MuseScore Format Conversions

allows MuseScore to interpret and produce the rhythms in a more readable manner

when outputting the image.

xvfb

Musescore requires an output X windowing system server in order to display its

contents. Autodeus, running on an Amazon EC2 instance, has no graphical output

and thus no X server. ”xvfb” (X Virtual Frame Buffer) serves as a way for Musescore

to run without failure in this environment due to its dependency on the C++ Qt

library and graphical output.

19

Mido

Mido is a Python module (used within the Flask server) for working with MIDI

files.[16] This library was used to append a metronomic click track to the beginning

of a generated MIDI file. Initially, a user had no indication of when the exercise

playback was going to begin after pressing the web app’s button that started playing

the MIDI. Adding a number of beats according to the time signature before playback

improved the user’s experience greatly.

Frontend

HTML/CSS/Javascript

The frontend consists of a combination of HTML, CSS, and Javascript. This

allows users to access a clean interface to create, play, and listen to guitar sight

reading exercises with ease on any device that has a web browser. It works as a

Facade design pattern [17], vastly reducing the number of input options available

to a user and therefore greatly simplifying the interface. Most of the pages in the

web app are static content, except when generating a sight reading exercise. The

interface consists of several drop-down menu options and a GENERATE button.

Pressing the GENERATE button causes the Javascript to produce an HTTP POST

with a JSON argument containing all of the parameters from user input which gets

passed to the Python Flask server.

Flask (Python3) Server

When the Flask server receives a JSON POST request from the front end it goes

through the following process:

20

• Validates the JSON parameters and uses them to create an exercise in XML

(more on this later)

• Converts the XML to MIDI and adds a click track to the beginning so that

the MIDI player on the front end can play the exercise audibly.

• Creates a “.png” image according to the XML produced and passes it back to

the front end for the web page to display.

How to Run on a Local Server

For development and debugging purposes, it is nice to have a server running

locally on a computer. This sections describes how to get a Flask server running

locally which removes the dependencies on Nginx and Gunicorn. The following are

steps to setting up a local server:

• Clone the Git repository locally to a development computer. See the Code

Repository section if this has not already been done.

• Put the music XML library in place. See section libmusicXML and follow

instructions there if the libmusicXML library has not been put in place at this

point.

• Run the script at the following to get all necessary open source dependencies

installed: ’GenLessonRefactored/GenLesson/frontend/get local server dependencies.sh’

How to Setup and Run on an Amazon Web Server

Autodeus is currently running a headless server setup which provides a public-

facing IP address and URL. This public server setup necessitates a couple extra

layers of complexity in the setup. The web application uses an Amazon EC2 server

with an Ubuntu 16.04 operating system. In order to setup on an Amazon Web

21

Server, one must first have a running EC2 instance configured to connect with an

SSH key pair and make sure its security group allows incoming traffic on ports 22

and 80 (SSH and HTTP, respectively)[18]

• SSH into the EC2 instance

• Clone the Git repository to a preferred location. See the section “Code Repos-

itory” on how to do this.

• Put the music XML library in place with reference to the section libmusicXML

• Navigate to ’GenLessonRefactored/GenLesson/frontend/server setup and config/’

and with sudo privileges, perform the following:

– Run the script ”get headless server dependencies.sh” with the sudo’s ”-

H” flag and answer affirmative to all prompts. This installs all of the

required packages that Autodeus needs.

– Run the script ”config server.sh”. This configures Nginx, Gunicorn, and

the Flask app so that the EC2 instance is able to serve the website on a

public URL.

– Run the script ”restart server.sh”. This restarts the Nginx and Gunicorn

services so they use the most recently made configuration changes.

If everything was successful, the public URL/IP address for the created EC2 instance

should display the Autodeus web app in a web browser.

Backend

The engine that runs Autodeus is contained in the executable called “GenLes-

son”. This executable, written in C++, has the responsibility of reading and parsing

through an input file containing all of the desired parameters and then generating

22

music XML on the cout output stream after utilizing various algorithms to generate

an exercise.

Building the C++ Source Code

Building the executable for Autodeus requires a 64-bit Linux Operating System

and following the steps below:

• Use the following command to install all of the required packages:

sudo apt-get install git cmake build-essential

• Navigate on a command line to where the code repository is to be checked out

and clone the Git repository.

• Put the music XML library in place. See section libmusicXML and follow

instructions there if the libmusicXML library has not been put in place at this

point.

• Run the shell script in the repository, ’GenLessonRefactored/GenLesson/build/rebuild.sh’,

which compiles and links everything with cmake and make.

• If all of the steps above succeeded, there should now be an executable in the

directory ’GenLessonRefactored/GenLesson/build/src/’ called “GenLesson”

A working up-to-date executable has been committed into the Git repository. If

new changes are made in the code and a successful build is created, this makes it

easy to push the locally created “GenLesson” executable to Git, then SSH into the

Amazon web server and pull it from the Git repository. “GenLesson” is not terribly

large so this is much more convenient than performing the build on an Amazon

server.

23

Running GenLesson

For development debugging and testing, running the executable “GenLesson” by

itself is extremely useful. Doing so also exemplifies the full capabilities of Autodeus

when the facade front end is not present (The frontend intentionally limits input pa-

rameters to users). In the directory ’GenLessonRefactored/GenLesson/GenerateLessonFiles’

there is a script and a directory.

• doAllThatStuff.sh

Runs “GenLesson” with a given input file and uses Lilypond and MuseScore

to create a series of files from the created music XML file that was output

from “GenLesson”. This script accepts 2 positional arguments: 1st argument

is the path to an input “.fmt” file and the 2nd argument is a string name that

will be used for all of the files that are created as a result of running the script

(extensions ‘.xml’, ‘.ly’, ‘.mid’, and ‘.png’ files).

• input files

Directory with a variety of example input ‘.fmt’ text files. These files are used

to specify all of the parameters/constraints that a generator will use when

generating an exercise. See the subsection “GenLesson Input Parameters” for

full definitions of the key/value pairs in these files.

All logging information is written to stdout throughout the process of the pro-

gram running and this provides useful insight as to the inner-workings of the code.

Many internal boolean flags in the source code may be set to disable/enable logging

features upon re-compilation.

24

Chapter 3

Generating Music XML

This chapter describes the true power and flexibility of Autodeus as it goes into

detail of how the executable “GenLesson” operates.

GenLesson Input Parameters

The GenLesson executable built with instructions from the previous subsection

“Building the C++ Source Code” accepts 2 positional arguments: the 1st specifies

the path to an input ‘.fmt’ file and the 2nd specifies the name of the ‘.xml’ file

to be output. While the Flask frontend limits the options available to users to

avoid an over-complicated interface and remove many error-prone combinations of

inputs, an input ‘.fmt’ file has none of these limitations. To see an example of every

single possible input param in a ‘.fmt’ file, refer to the file in the Git repository

‘GenLesson/GenerateLessonFiles/input files/master input.fmt’. This file has many

comments throughout (denoted via a starting ‘#’ character) that explain what all of

the possible inputs are and how to format them. The very first key is ‘gen method’

which defines which type of generation will be used. All possible generation types

and their unique parameters are enumerated in the subsection of this chapter, section

25

“Generators”, but they all have some parameters in common which are defined as

follows here:

• title

Metadata for the musicXML file

• part name

Metadata for the musicXML file

• instrument name

Metadata for the musicXML file

• composer

Metadata for the musicXML file

• beats

Number of beats per measure. In other words, the “numerator” of the time

signature

• beat type

Beat type for time signature. In other words, the “denominator” of the time

signature

• divisions

A unit-less value which defines the length of a quarter (1 beat) note. This is

set to 64 currently as a 64th note is the smallest time division possible.

• key fifths

This defines the number of sharps or flats in the key signature to be used.

Positive numbers from 0 to 7 add that number of sharps and Negative numbers

from -1 to -7 add that many (absolute value) flats

26

• key mode

Mode to be used for the given key signature where the following mapping

applies: 0 Ionian, 1 Dorian, 2 Phrygian, 3 Lydian, 4 Mixolydian, 5 Aeolian,

and 6 Locrian

• clef sign

The clef sign to be used for the exercise. Autodeus always assumes a treble

clef at this juncture

• clef line

Vertical alignment of the clef sign.

• avail frets

A space separated list of fret numbers to be used in creating an exercise. 0

denotes an open string, 1 is first fret, etc... These should be in ascending order

and have unique fret numbers, but not all fret integers need to be adjacent.

For example, ‘0 3 5 7 10 12’ is valid input.

• avail strings

A space separated list of string number to be used in creating an exercise. The

string tuning and their numbers are defined with the next set of key/value

pairs. Once again, these should be in ascending order and have unique num-

bers, but not all defined string numbers need to be present.

• string *

These parameters define the string numbers and their tuning. This allows

Autodeus to create exercises with not only a standard tuned 6 string guitar,

but exercises for other stringed and fretted instruments with various tunings

and numbers of strings. These must start with ‘string 1’, ‘string 2’, ...etc. and

27

the integers must be in ascending order. The two integers values set for these

keys denote pitch and octave information, respectively. Pitch starts with 0-C,

1-C#/Db, 2-D, 3-D#/Eb, 4-E,...etc. and octave 3 is the octave of a low E

string in standard tuning, 5 is octave of high E string.

• min num bars

The minimum number of measures to generate.

• max num bars

The maximum number of measures to generate. Note that this must be at

least 1 greater than min num bars or infinite loops will happen.

Object Oriented Design and Data Structures

All of the GenLesson executable was written with C++11 and uses data struc-

tures from the standard template library, namely, vector and map.[11] The source

code uses a class hierarchy to organize its code which is depicted visually in Fig-

ure 3.1 where arrows represent the relationship “depends on”. For example, Part

depends on Voice as it has Voice objects within it. The following subsections de-

scribe these classes from the bottom up. (Please note that the UML diagrams are

meant to be an overview of the most important features of each class and are not

meant to be comprehensive, that’s what the source code is for...)

Note Class

The Note class is the lowest level abstraction in GenLesson as it contains all

pertinent information for a single note. This class also has many static functions

that were created as helper functions that make comparing notes and understanding

their intervallic relationships much more convenient. Figure 3.2 is a UML diagram

with its most relevant member variables.

28

Figure 3.1: Overview of Class Dependencies

• char step - the musical note name,

• int octave - octave number according to scientific pitch notation

• int alter- indicates accidental where a positive number indicates number of

sharps and a negative number indicates number of flats

• int string - string where note is located

• int fret - fret where note is located

• bool tieStart - indicates whether or not the note is the start of a rhythmic tie

• bool tieEnd - indicates whether or not the note is the end of a rhtyhmic tie

• int numOfDots - indicates the number of dots to append to note for rhythmic

notation

29

Figure 3.2: Note Class UML

Figure 3.3: NChord Class UML

• bool stemUp - indicates if the stem of the note in the musical notation should

go up or down

NChord Class

The NChord has proven to be a useful data structure for the purposes of gen-

eration. It has a vector of Notes so that it can hold none or many Notes. If this

vector is empty, then it is interpreted as a musical rest when the XML is output.

NChord also has 2 integer values: one for its duration and another for its end time.

Figure 3.3 is UML diagram showing some of this classes main features.

Voice Class

A voice in music terminology is a set of notes meant to be played by one in-

strument. This class is a representation of that, containing a vector of NChords.

Figure 3.4 is a UML diagram of this class.

30

Figure 3.4: Voice Class UML

Figure 3.5: PitchSet Class UML

PitchSet

A PitchSet is essentially a wrapper for a vector of notes and its UML diagram

can be seen in Figure 3.5.

Part Class

A Part object’s responsibility is to act as a data structure that holds all the

information for a sight reading exercise. A Part has a vector of Voice objects and,

thus, is a composition of Voices, NChords, and Notes. There is a direct correspon-

dence between this data structure’s layout and the music XML schema so that it

can be parsed by a LibWrapper object into an XML file.

Figure 3.6: Part Class UML

31

Generator Object

A Generator’s responsibility is to take a Part object and fill the data structure

with an exercise that abides by the constraints of the input parameters. In the

directory ‘GenLesson/trunk/src/Generators/’, there is an abstract base class which

has a pure virtual method ‘bool generate(Part* aPart)’ that performs this duty.

A Generator’s constructor takes input in the form of a text file and upon reading

the “input.fmt” file, the Lesson object fills 4 PitchSets class members with Note

objects according to the “input.fmt” format file’s constraints (among setting many

other states and preparing other data depending on the generation type). These

PitchSets are as follows:

• masterPitchSet

Set of notes including all chromatic notes on available strings and frets

• keyPitchNames

Set of 7 notes in scale, octaves are all -1000

• keyPitchSet

Set of all notes in a given scale and on available strings and frets

• keyPitchSetM6M7

A superset of keyPitchset that includes a major 6th for the Aeolian scale

mode and a major 7th for Aeolian, Dorian, and Mixolydian scale modes for

the purpose of cadential endings in 2 voice counterpoint exercises

Generator Factory

A Generator Factory’s responsibility is to take an input “.fmt” file and return

an instantiated Generator object.

32

Figure 3.7: Generator Class UML

Figure 3.8: Rule Class UML

Rule Object

Rule objects are a very important part of Autodeus’ ability to be extensible. The

abstract rule base class has many static helper functions and, most importantly, a

pure virtual function called “bool is followed(RuleData* the RuleData)”. The Gen-

erator base class has a vector called “generator rules” that it iterates through when

generating a lesson, calling “is followed()” on each to validate that all constraints

are being kept, thus allowing any rule to be programmed for experimentation and

creation of a variety of musical exercises.

LibWrapper Object

This class acts as a wrapper for the libmusicxml library and its responsibility is

to parse through a Part data structure and output XML based on the contents of

said Part.

33

Figure 3.9: Pseudocode for GenLesson Main Function

GenLesson Overview

The highest level pseudocode of how GenLesson works can be seen in Figure 3.9

A Generator instance is created using a GeneratorFactory with a input configuration

file as a parameter. A Part instance is then created and passed to the generator’s

generate method. If this generation is successful, the generated Part instance is used

to output a musicXML file.

The Primary Generation Algorithm

The most prominent algorithm used to generate exercises is a recursive back

tracking algorithm. The recursion causes the program to take a random walk down

a tree of note choices while maintaining that all of the rules are followed. The

pseudocode of how this algorithm works can be seen in Figure 3.10 Eventually, the

34

Figure 3.10: Pseudocode for Recursive Backtracking Algorithm

algorithm will find a solution and return True or it will exhaust all possibilities and

return False, that it could not find a solution for the given random seed and rules.

This algorithm was chosen to allow flexibility for all of the various input param-

eters and lends itself well to the creation of modular melodic rules. Figure 3.11 is

an example where our possible notes are always A, B, or C and the only rule is that

notes cannot be repeated. This is an example of the rules being broken and the

algorithm backtracking to try a different note. Figure 3.12 is an example where the

possible notes are again always A, B, or C and the only rule is that the exercise

must end with a B then a C. This serves to exemplify how the algorithm can enter

a node where there are no possible legal notes, try all of them, and then backtrack

when the list of possible notes is empty.

35

Figure 3.11: Tree Walk Example, Possible notes are A, B, C and rules are no
repeated notes

Figure 3.12: Tree Walk Example, Possible notes are A, B, C and Rule is must end
with B then C

36

The Primary Algorithm’s Wrapper

The biggest downfall of this algorithm is its random nature. For an arbitrary

set of rules, random seed, and input parameters, various outcomes are possible:

• The algorithm finds a solution quickly on the order of milliseconds.

• The algorithm finds a solution slowly on the order of seconds.

• The algorithm gets unlucky because a combination of rules and a random seed

don’t find a solution even though one exists. This is unlikely but possible.

• The algorithm cannot find a solution because the search space is over-constrained

and it’s impossible.

For the reasons of an exponential explosion of possible inputs and for a good user

experience, the front-end wraps the primary algorithm with retries and a timeout.

Doing so gives a user 2 outcomes: a quickly revealed exercise or a message that

tells them to loosen the constraints. The pseudocode is shown in Figure 3.13. The

overall algorithm is then a ”Las Vegas Type” algorithm [19] meaning that it always

gives a correct solution or indicates that it cannot find one.

Generators

The directory located at ‘GenLesson/trunk/src/Generators’ contains all the source

code for the Generator base class, GeneratorFactory, and all the various classes that

inherit from the Generator base class. Figure 3.14 shows how each of these classes

relate to each other inheritance-wise. The rest of this section enumerates each gen-

erator class, explaining the variations that they accomplish.

37

Figure 3.13: Pseudocode for Primary Algorithm’s Wrapper

Figure 3.14: Generators Class Inheritance

38

Single Note Melody

This is one of the simplest forms of generation. It uses notes from the “keyP-

itchSet” Pitchset in the Generator class to generate an exercise with one voice (no

rests) and corresponds to Generation Type “Melody” on the web app. This type

of generation utilizes some special input parameters in the “input.fmt” file. These

input keys are described as follows:

• note durations

Relative to the “divisions” key’s integer value being set as a quarter note,

these are space separated integers that define which rhythmic durations are

allowed in the generated musicXML.

• note duration p

A space separated list of integers defining the probabilistic weights assigned

to each of the integers in “note durations”. This must be the same length as

“note durations” so that each weight corresponds to each duration.

• mel intervals

A space separated list of the musical intervals that are allowed in the generated

musicXML in terms of half steps.

• mel interval probs

A space separated list of integers defining the probabilistic weights assigned

to each of the integers in “mel intervals”. This must be the same length as

“mel intervals” so that each weight corresponds to each interval.

39

• mel rules

A space separated list of integers (including only 1, 2, 3, 4, or 5) that indicate

which rules to abide by when searching for a solution. For a full description

of these 5 rules, see the next chapter.

Before starting generation, Single Note Melody generation pre-computes 2 data

structures within its class:

• vector<int>duration pool

This is created using ‘note durations’ and ‘note durations p’. It is a multiset of

all the durations in ‘note durations’ where each duration has multiplicity of its

corresponding weight in ‘mel interval probs’. Getting a rhythmic duration at

random (with the proper weights) is then quick and easy by picking a random

duration from this “duration pool”. See visual example of this in Figure 3.15

• map<Note*, Pitchset*>noteMap

This is a little more involved than the “duration pool”, but serves as a great

optimization for when generation is occurring and a node needs to find a new

note to add to the generated exercise that abides by the intervallic proba-

bilities prescribed by ‘mel intervals’ and ‘mel interval probs’. It serves as a

hash from a Note to a Pitchset of possible notes to go to next. Somewhat

like the “duration pool” generation, this Pitchset is a multiset of notes where

the multiplicity of each note corresponds to the weight of the interval set in

‘mel interval probs’. To generate this, each note is considered in “keyPitch-

Set” individually as every other note is iterated through and if the distance

between those notes have a matching interval, then that note is added to the

Pitchset (which is mapped to from the note under consideration) a number of

times equal to the weight in ‘mel interval probs’. See a visual example of this

process in Figure 3.16.

40

Figure 3.15: Example of Duration Pool Pre-Computation

Figure 3.16: Example of Note Map Pre-Computation

41

The aforementioned special input parameters for the Single Note Melody gener-

ator are all obfuscated from the user by the frontend and are hard-coded depending

upon the difficulty level and time signatures that are selected. The idea is that

easier exercises have larger durations and smaller intervals and the harder exercises

visa versa. There are two types of mappings from difficulty to how the intervals and

rhythmic that are defined as follows:

• DEF DIFFICULTY SETTINGS

This is a python dictionary which maps difficulty setting to ‘mel intervals’ and

‘mel interval probs’ (also to ‘rest prob’ which is NOT used by this generator

but becomes relevant in other types of generation). The hard coded values

used by the frontend are shown in Figure 3.17

• DEF TIME SIG DIFFICULTY DURATION SETTINGS

This is another python dictionary which maps a time signature setting to

difficulty level to the already known ‘note durations p’ and a new float list of

‘note durations mult’. These float values indicate how to create the ‘note durations’

used in the exercise by defining coefficients to be multiplied times a quarter

note (‘divisions’ setting). For example, a setting of ‘3/8’ time and ‘Moder-

ate’ difficulty uses multipliers of [1.5, 1, 0.5] which would indicate to use,

respectively, dotted quarter notes, quarter notes, and eighth notes with equal

probability weight when generating the exercise. These hard coded values can

be seen in Figure 3.18

NChord Generation

The name for this type of generation may be somewhat misleading as all types

of generation use the NChord data structure, but this type of generation refers to

the creation of musical exercises that (within 1 Voice) may include from 1 to 6

42

Figure 3.17: Difficulty to Melodic Interval Mapping

notes or a rest in a single NChord data structure. It also differs from all other of

the generation types because it is the only type that does not use the “Primary

Generation Algorithm” described in 3.4.

On the frontend, this type of generation can be utilized by selecting “Melody

with up to 6 Note Chords” in the generation type drop-down menu. In the backend,

this type of generation has the following special types of parameter keys that can

be defined/modified in the ‘input.fmt’ file:

1. ‘nchord size p’

This a list of 7 space separated integers that define the weights that are consid-

ered when generating an exercise for the size of NChord (how many notes) to

be used. If labeling these 7 values with 0 indexing starting from the leftmost,

each index refers to the number of notes to be used (0 notes in an NChord is

a rest).

43

Figure 3.18: Time Signature to Difficulty to Durations Mapping

44

Figure 3.19: Pseudocode for the NChord Generation Type

2. ‘note durations’ and ‘note duration p’

These defines are the same as in Single Note Melody generation

3. ‘nchord rules’

This is a space separated list of integers which defines which rules to include.

Currently there is only 1 rule written for this type of generation and the infras-

tructure is present to stay consistent with design patterns and for extensibility.

This type of generation utilizes a while loop instead of the recursive style of

generation and its pseudocode can be seen in Figure 3.19. This pseudocode has

several function calls explained as follows:

• ‘get weighted random nchord num()’

This method uses the weights from ‘nchord size p’ to return an integer from

0 to 6 with the correct probability. It does this using the “alias method” [20]

which essentially is an algorithm, in a sense, that rolls a weighted dice.

45

• ‘get num possible nchords(notes in nchord)’

This method essentially calculates the number of possible permutations of

notes in ‘KeyPitchset’ for a given integer. In other words it calculates the

length of ‘KeyPitchset’ choose ‘notes in nchord’ (variable in pseudocode)

• ‘get random nchord with n notes(num possible nchords, notes in nchord)’

This function utilizes a rather interesting little algorithm called “Buckles Al-

gorithm 515” [21] This algorithm allows Autodeus to randomly pick an index

from 0 to (‘num possible nchords’ - 1), call it X, and use this to get a list of

indices in ‘KeyPitchset’ that are the Xth permutation.

• ‘legal()’

As stated earlier, this type of generation currently has only 1 rule. This rule is

designed to make sure that the Nchord generated by ‘get random nchord with n notes(...)’

is actually physically able to be played on a guitar.

Cantus Firmus

A Cantus Firmus can be loosely described as a pre-existing base (and bass)

melody meant to be sung by a single voice (literally a vocal part and not our Voice

data structure). It serves as a basis for many other more complex voices/melodies

to be built around it and this process is comprehensively described in Joseph Fux’s

Gradus Ad Parnassum [22]. While very subjective, within the context of this thesis,

a Cantus Firmus is defined as a melody with all whole notes that starts and ends

on a root note and is typically 12 or 16 measures long.

As the previously described ‘Single Note Melody’ generation does, the ‘Cantus

Firmus’ generation uses 2 lists of space separated integers as its inputs to define

allowable musical intervals and their corresponding weighted probabilities. These

are named ‘cantus firmus intervals’ and ‘cantus firmus interval probs’ and these are

46

used to pre-compute a member variable of the ‘cantusFirmusGenerator’ class called

‘noteMap’ in the exact same way as the “Single Note Melody” generator. Unlike the

‘Single Note Melody’, there is no rhythmic duration settings as the Cantus Firmus

generation uses all whole notes by definition. For a complete listing of all the rules

that the Cantus Firmus generation uses, see the next chapter’s subsection 3.8.3

A Cantus Firmus generation also has the ability to generate exercises within a

given mode. A mode parameter assigns a root note to the exercise that it should

begin and end on. Musically this assures that the exercise “sounds” like it is in that

mode.

Lastly, this type of generation has a special rule that creates a “climax” note. As

music is subjective, one of the guidelines to creating a Cantus Firmus is that it should

have a highest or lowest note “somewhere” in the middle”. This is accomplished

with the ‘cantus firmus mid radius’ setting in the ‘input.fmt’ file. This defines a

number of measures from the middle-most measure of an exercise where this climax

note should be located and a rule is used to ensure that a climax note is indeed

present within this constraint.

Exercise Generators

The “Exercise” generators are an off-shoot variety of Cantus Firmus generation.

As can be seen in Figure 3.14, they both have a base class that they inherit from.

In a nutshell, these types of generation first produce a Cantus Firmus melody (The

‘exerciseBaseClass’ has a Cantus Firmus generator within it) and then modify the

produced Cantus Firmus notes by adding rests and changing the rhythmic durations.

This is done with a new input in the format file named ‘rest prob’ which is an integer

from 0 to 9 that defines the probability of rests out of 10. This is the other hard-

coded values that are set in Figure 3.17. Before generation, an Exercise generator

47

estimates how many Cantus Firmus whole notes will be needed based on the the

inputs of ‘note durations’, ‘note durations p’, and ‘rest prob’.

Exercise 1

This generation method attempts to create a lesson that has a number of mea-

sures halfway between ‘min num of bars’ and ‘max num of bars’ by calculating the

weighted average duration of each NChord from the ‘duration pool’ and figures out

how many notes are needed by calculating the following:

max num of bars + min num of bars

2
∗ measure length

average duration
(3.1)

A Cantus Firmus with the same number of measures as notes needed is generated

and then the ‘Exercise 1’ generator randomly permutes the duration of each NChord

(which are all whole notes initially) and then continues on to use the ‘rest prob’ to

make a correct ratio of those generated notes into rests (by removing all the notes

in the NChord). This generation type is not currently hooked up to work with

the frontend, but is still available to the backend ‘GenLesson’ executable via the

‘input.fmt’ file settings.

Exercise 2

This varies slightly from Exercise 1 generation because it figures out the number

of notes needed AND rests before generation. It does this by using the same weighted

average to estimate the number of notes needed but then subtracts a number so

that when rests are added later, it will have the approximate proportion of rests to

notes according to ‘rest prob’. After generation of a Cantus Firmus is completed, it

then randomly chooses indices and inserts rests throughout the exercise to satisfy

‘rest prob’. This generation type can be used on the frontend app via the selection

of “Melody with Rests” in the Generation type drop-down box.

48

Species Generators

Species generators are another whole type of subclass that can be seen in Fig-

ure 3.14. 2 voice species counterpoint are a step-by-step method of teaching music

students to learn voice-leading rules in composition. A species exercise is comprised

of an initially generated Cantus Firmus and then a second voice is generated with

rules in relation to that initially generated voice to begin creating harmony. This

creates 2 separate melodies that sound good by themselves and while played simul-

taneously.

Like the Cantus Firmus generation, mode is an input parameter and some modes

have special characteristics that allow for notes outside the usual ‘keyPitchSet’ to

be used. Thus, a ‘speciesGenerator’ class has an extra Pitchset called a ‘keyP-

itchSetM6M7’ which, for the modes of mixolydian, aeolian, and dorian, includes 2

extra intervals for the major 6th and major 7th. When generating any second voice

in species generation, this is the Pitchset that is used and then rules are used to

constrain when or if these notes should be included in the exercise being generated.

Every species two voice generation has a common set of input keys in ‘input.fmt’

file which are as follows:

1. general counterpoint melody rules

A space separated list of integers (only including 1, 2, 3, and 4) which defines

which rules to use. These rules are used as constraints for all types of species

2-voice generation types.

2. repeated note odds

This is a single integer which defines the probability out of 100 that a repeated

note will be allowed. Subjective music rules dictate that a counterpoint melody

rarely repeats a note so a “weighted dice” is rolled (in a manner of speaking)

49

every time a repeated note is encountered to decide if the rule will allow it to

happen or not.

3. counterpoint intervals

A space separated list of integers like that used with other generation types

that defines the allowable intervals to be used when generating the second

voice.

4. counterpoint interval probs

A space separated list of integers like that used with other generation types

that defines the corresponding probabilistic weights of the above defined in-

tervals.

5. counterpoint mid radius

This is an integer value (like the Cantus Firmus generation’s ‘cantus firmus mid radius’)

that defines the largest distance from the middle-most measure that a climax

note in the counterpoint voice can be located. Once again, a rule is then used

to force this constraint when generation is occurring.

Species 1

This generation type generates a second voice with the Cantus Firmus such

that each note has a whole note rhythmic duration. This creates a one-note-per-

cantus-firmus-note harmony. An example of this can be seen in Figure 3.20. On the

frontend, this generation type can be used by setting ‘Species 1’ in the Generation

type drop-down menu.

Species 2

This generation type generates a second voice with the Cantus Firmus such that

each note in the Cantus Firmus has 2 notes that coincide with it (2 half notes per

50

Figure 3.20: Species 1 Generated Example

Figure 3.21: Species 2 Generated Example

Cantus Firmus whole note). This creates a 2-note-per-cantus-firmus-note harmony.

An example of this can be seen in Figure 3.21. On the frontend, this generation

type can be used by setting ‘Species 2’ in the Generation type drop-down menu.

Species 3

This generation type generates a second voice with the Cantus Firmus such that

each note in the Cantus Firmus has 4 quarter notes that coincide with it. This

creates a 4-note-per-cantus-firmus-note harmony. An example of this can be seen in

Figure 3.22. On the frontend, this generation type can be used by setting ‘Species

3’ in the Generation type drop-down menu.

Species 4

This last species generation is somewhat different from the others rhythmically.

The counterpoint voice starts with a half note, and then proceed to have “staggered”

51

Figure 3.22: Species 3 Generated Example

Figure 3.23: Species 4 Generated Example

whole notes that are tied over each bar in the exercise until the end of the exercise

where the voice then ends with a penultimate half note then whole note. An example

of this can be seen in Figure 3.23. On the frontend, this generation type can be

used by setting ‘Species 4’ in the Generation type drop-down menu.

Optimizations

Many various optimizations were made to help the run time of the ‘Primary

Generation Algorithm’. In being a back tracking algorithm, the cost in run time

52

is the number of nodes visited times the running time cost of each of those nodes.

Reduction in both of these factors was aided by the following:

• The use of a hash to get a set of notes to choose from in a node given a current

state as described in subsection 3.6.1 greatly reduces the cost for each node.

The pre-computation of ‘noteMap’ avoids the need to consider parameterized

musical intervals and their corresponding probabilistic weights in every node.

• Care was taken to avoid allocation/de-allocation of memory in any node while

searching for a solution. The following describe ways this was achieved:

– When ‘keyPitchset’ and ‘keyPitchsetM6M7’ are created, they allocate all

the space needed for the legal notes before any search/generation begins

and these sets of notes are then pointers to allocated memory for each

note. This allows any NChord to simply uses pointers to those legal notes

instead worrying about memory for them.

– Before any generation is done, an estimate of the number of needed

NChords is made and a pool of allocated empty NChord instances is

then available. When entering a node during generation, an Nchord is

fetched from this pool which is a quick operation relative to allocating

a new Nchord instance in each new node. Conversely, if a node fails to

find a solution, the NChord is returned to the pool for re-use by others.

The only time during generation that an allocation for an NChord occurs

is if the estimate was less than what was needed and the pool becomes

empty.

• Pruning was introduced as a result of the set of notes to choose from in a

given node being a multiset. If a randomly chosen note gets a value of false

returned from its child, it is then obvious that choosing that note again will

53

also fail. Removal of any multiplicities from a failing note in the note set under

consideration in a given node avoids choosing that same note again.

• When development first began, there were gigantic sets of “if” statements

where each “if” checked if a rule was enabled or not and, if it was enabled, the

rule would be checked to see if the current incomplete exercise was abiding the

rule. This is inefficient because every single rule was checked every time (if it

was enabled or note) and also created a mess of code. A factory pattern was

implemented so that only the rules that are enabled get instantiated and added

to the vector called ‘generator rules’ in the ‘Generator’ base class. Checking

for legality iterates over only the enabled rules and a ton of code looks nice

and clean.

Other Algorithms

Outlining Major/Minor Chords

There are two note-worthy static functions that are included in the Note class.

These are called ‘outlineMajorChord’ and ‘outlineMinorChord’. These both have

a return value of boolean and both accept three pointers to Note objects as their

arguments. They both utilize a somewhat clever trick to recognize if the three notes

are part of a major or minor chord.

If one imagines a single guitar string as a bitstring such that each bit represents

a fretting position on that guitar string, then a value of 0 represents a fret thats not

in a chord and a value of 1 represents a fret that is in a chord. Each type of chord

then produces a signature pattern because of music’s cyclical scale structure.

For example, a major chord’s interval degrees are the root note, a major 3rd,

and a 5th. The difference in half notes between each of these is: Root to major 3rd

is 4 half steps, major 3rd to 5th is 3 half steps(a minor 3rd), a 5th to the next root

54

Figure 3.24: Modular 12 Note to Integer Conversion

note is 5 half steps(a perfect fourth), and then the pattern repeats ad infinitum up

and down throughout the octaves. Plotting this on a guitar string with two octaves

worth of frets and assuming that the root starts on the 0th (most significant) bit,

we get this bitstring:

1000 1001 0000 1000 1001 0000

The same can be done with a minor chord to produce:

1001 0001 0000 1001 0001 0000

When these two functions are called, they convert each note into an integer value

and then they consider the modular 12 value. For every possible note, Figure 3.24

shows the result of this conversion.

55

Using these numbers as another bit string 12 bits long with the integer values set

to 1, they can be right shifted 12 times and, at each iteration, compared to the chord

pattern. If at any point during this process, if all 3 of the integers refer to indices

in the chord pattern that are set to 1, then it is known that those notes outline the

specific chord pattern. Keep in mind that if all the notes match at different octaves,

are solely octaves and fifths, or are octaves and 3rds, this will still evaluate to true.

Climax Note Production

An example of an unforeseen conflict was that of the climax note rules some-

times choosing a root note as a climax note which then disallowed the counterpoint

generation to end on a root note. When this happened, it took the program far too

long to backup all the way to the middle from the end. This was fixed by making

sure that a root note cannot be chosen as a climax note.

The “climax note production” rules do this, but take other actions also. One

of the rules that is somewhat subjective in classical counterpoint production is the

guideline that each single note melody should have a climax note somewhere in the

middle. In order to objectify this rule, it was necessary to define some parameters

and create some specialized rules that differed slightly in functionality from the

others. “cantusFirmus rule8” and “generalCounterpointMeldoy rule5” return false

if they are broken, but differ from the other rules quite substantially with respect

to the fact that they are responsible for setting various booleans and variables that

allow the program to keep track of if a climax note has been found or not and also

for taking different actions in all of the various possible situations. Listed are the

relevant variables and brief descriptions:

• ‘counterpoint mid radius’ and ‘cantus firmus mid radius’

These two integer variables define the number of measures that are in the

middle. To calculate which measures are considered in the middle, the number

56

of measures defined internally by the Lesson class as ‘numMeasures’ is divided

by two (integer division) and then the upper and lower bounds of measures are

the radii added to and subtracted to that number, respectively. For example,

if the number of measures is 17 and the radius is 3, then the middle measures

are any measure from (17/2) - 3 = 5th to the (17/2) + 3 = 11th measure

(there is a 0th measure).

• ‘counterpointFoundHighNoteInMiddle’, ‘counterpointFoundLowNoteInMiddle’,

‘cantusFirmusFoundHighNoteInMiddle’, ‘cantusFirmusFoundLowNoteInMid-

dle’

These boolean variables are simply used to keep track of different situations

that can occur as a result of the specialized rules. These could be thought of

as state variables.

• ‘counterpointClimaxNote’ and ‘cantusFirmusClimaxNote’

These two variables are pointers to Note objects so that once a climax note is

found, it can be quickly referenced.

• ‘counterpointClimaxNChordIndex’ and ‘cantusFirmusClimaxNChordIndex’

These integer variables are also used to quickly reference the climax notes if

necessary.

One very important consequence of these 2 rules is that precautions must be

taken in certain situations. The first special case occurs when a note in ‘possi-

bleNotes’ is found to be a climax note in the middle, setting the internal variables,

but then a later rule being checked is found to make that note illegal. All of the

relevant variables must be reset to indicate that a climax note was not found so

that when subsequent new notes are tried in ‘possibleNotes’, the program is not in

the wrong state. A second special case occurs when a node is returning false and

57

previously had a climax note. Once again, all the relevant variables must be reset

properly to avoid a situation where the program could enter an incorrect state. All

generation methods that use these rules were augmented within their main recursive

function to avoid nasty problems as a result of these special cases.

Notation Fix Functions

There are several functions that are present whose sole purposes are to “fix up”

the musicXML so that when it is converted to an actual visual representation, the

notation looks nice and clean. As a necessity, the class variables ‘tieEnd’, ‘tieStart’,

‘numOfDots’, and ‘stemUp’ were added to the Note class. These additions are

not terribly difficult from an algorithmic perspective, but are highly important in

making the notation produced from the XML code look much better and also make

the program much more flexible. Previous versions of the program did not have any

tied notes, thus, notes had to be comprised of only doubles or halves of the number

of divisions(the quarter note value) and could not traverse bar lines. The following

are the “fix up” functions and brief descriptions of each:

• ‘mergeAdjacentRests()’

This function simply walks through each voice in order to find rests that

are next each other, removes them, and then adds a rest that has the same

duration as the sum of the previously removed rests. For example, in music

notation, it is not proper to have 2 quarter rests and a half rest in a measure

where a single whole rest should be present.

• ‘dottedNotesFix()’

This function finds any note that has an irregular duration length and then

breaks it down in order to figure out how to add dots to the notes and/or

add extra tied notes to properly notate the duration. For example, if our

58

quarter note has 64 divisions, and an NChord somehow is generated that has

a duration of 104=64+32+8, it should be notated as a dotted quarter note tied

together with a 32nd note. Before this function was implemented, it wouldve

been notated as only a quarter note which made the notation present in the

produced pdf files from the music XML have incomplete looking measures.

• ‘tiedNotesFix()’

This function simply finds any places where a duration crosses a barline, re-

moves that offending NChord, and then produces two tie NChords whose sum

is the duration of the removed NChord.

• ‘setStemsProperly()’

This function goes through and sets a boolean in each note of each NChord

so that the stems will be notated properly in two voice counterpoint. In other

words, it makes sure that the cantus firmus stems are oriented downward and

the counterpoint melodys stems are oriented upward. As a result of these

additions, the function convertToXml(Part*) had some additional features

programmed into it so that the extra notation would be output in the XML.

Rule Sets

Single Note Melody

These are the rules that Ricardo Iznaola suggested be implemented for experi-

mentation in producing viable musical exercises. The source code for these can be

found in ‘GenLesson/trunk/src/Rules/’ with the prefix ‘singleMelody rule*’ and a

summary of each is as follows:

59

Rule 1. Largest leap is a 10th (octave + major 3rd) in either direction

Rule 2. A note may be repeated a maximum of (repetitions do not include the first

note)

(a) One time if note value is whole or half-note

(b) 2 times if note value is quarter-note

(c) 3 times if value is eighth-note

(d) 5 times if value is smaller than eighth-note

Rule 3. A two-note motion is allowed a maximum of(The first intervallic motion is not

included in the repetition count):

(a) No repetition if both values are whole-note

(b) One repetition if both values are half-note

(c) 2 repetitions if both values are quarter-note

(d) 3 repetitions if both values are eighth note or smaller

(e) When values are mixed, the allowable repetitions are those of the smaller

value

(f) Two-note motions may not return to either note more than 3 times in a

row

Rule 4. All intervallic sequences are allowed, with the following limitations(The first

intervallic sequence is not included in repetition count):

(a) 2 note intervallic sequences involving 3rds or bigger intervals can be re-

peated a maximum of two times unless the exercise is explicitly designed

to train the interval

(b) Intervallic sequences involving 3 or more notes can be repeated only once,

unless the exercise is explicitly designed to train the pattern

60

(c) Maximum intervallic distance allowed between first and last note of the

pattern is a tenth.

Rule 5. Voice Leading rules

(a) Second note of whole step may jump in either direction within range of

and up to a tenth.

(b) Second note of half step may jump in either direction within the range

of and up to an octave

(c) A 3rd or a perfect fourth movement cannot continue with a jump bigger

than a 5th from the second note. If the resulting interval between the

first and the third note is a 7th or an octave, the next note has to move

by step motion in the opposite direction.

(d) The tritone must resolve by half-step motion

(e) Second note of the 5th may jump up or down within the range of and up

to a 4th, except for cases described in c.

(f) Second note of a sixth may move by step or jump in the opposite direction

within the range of and up to a 5th.

(g) The 7th resolves by step in the opposite direction.

(h) The second note of an octave moves either by step or (in opposite direc-

tion only) by jump no bigger than a fourth

(i) The ninth resolves by step in the opposite direction

(j) The second note of a 10th moves either by step or (in opposite direction

only) by jump no bigger than a 4th. If the resulting interval between

the first and third note is a 7th or a 9th, then the third note must move

by step in either direction, or according to pre-established rule for the

interval produced between second and 3rd notes.

61

NChord Generation

Rule 1. Make sure the notes are physically playable. This entails verifying that all the

notes are on different strings and making sure that the notes are not spread

out over too far a span of the frets.

Cantus Firmus

Rule 1. No two consecutive notes exactly the same

Rule 2. Must begin and end on root note

Rule 3. Second to last note must approach from step above/below root

Rule 4. Movement is mostly in steps

Rule 5. If interval is greater than a 5th (7 half steps) must be preceded and followed

by movement in opposite directions

Rule 6. If a leap(greater than 2 half steps), must be followed by either:

(a) a. Movement in opposite direction

(b) b. Another leap so that all three notes outline maj/min chord. An

exception to this rule is the beginning 3 notes which can begin with a

leap of a 3rd followed by same motion of direction

Rule 7. Two successive leaps in the same direction must outline chord tones (root,

3rd, 5th) and then be proceeded by movement in the opposite direction

Rule 8. Must have a single low or high point in the middle somewhere

62

legalGeneralCounterpointMelody

Rule 1. Melody is diatonic with exceptions:

(a) Always raise 7 if ascending to root before last note in Mixolydian, Aeolian,

and Dorian modes

(b) 5-M6-M7-R is allowed at ending cadence in Dorian or Aeolian

Rule 2. Notes are rarely repeated

Rule 3. Melodic motion is mostly in steps

Rule 4. Leaps acceptable with exceptions and conditions:

(a) No augmented or diminished intervals allowed

(b) Mostly not larger than 5th, but 8ve okay

(c) Occasionally ascending m6 okay

(d) If ascending/descending m6 or octave must be preceded and followed by

motion in opposite direction

(e) leap must be:

i. Followed and preceded by movement in opposite directions

ii. Double leap must outline min/maj chord and be followed and pre-

ceded by movement in opposite directions

iii. Octave with intervals 5th + 4th

Rule 5. Species voice must have a climax point somewhere near middle

Rule 6. Last 3 to 4 notes of a passage in a single direction should not stress a tritone

Rule 7. Must approach last note step-wise

Rule 8. No leaps to a dissonance

Rule 9. No chromatic movement (notes next to each other with different accidentals)

63

legalGeneralTwoVoice

Rule 1. Climaxes in voices should be at different times

Rule 2. If other voice is higher than cantus firmus, begins with unison, 5th, or octave

Rule 3. If other voice is lower than cantus firmus, begins with unison or 8ve

Rule 4. Ends on unison or octave

Rule 5. Voices cannot overlap or cross (except for unisons at beggining or end)

legalSpecies1

Must follow legalGeneralTwoVoice and legalGeneralCounterpointMelody rules.

Rule 1. Only consonance of 5th, 8ve, m3, M3, m6, M6 or unison are allowed

Rule 2. Unison can only occur at beginning or end

Rule 3. Perfect intervals (unison, 5th, 8ve) approached only by contrary or oblique

motion, not by parallel or similar Exception: horn fifths exception can move

in similar motion if descending 3rd to 5th or ascending 6th to 5th(with top

voice moving stepwise)

Rule 4. Parallel motions with unison, 5th, 8ve are always incorrect

Rule 6. No more than three parallel 3rds or 6ths in succession

legalSpecies2

Must follow legalGeneralTwoVoice and legalGeneralCounterpointMelody rules.

Rule 1. First half note in each measure must be consonant

Rule 2. If unstressed note is dissonant, it must be a passing tone

64

Rule 3. Unison allowed only on first note or last note or on unstressed notes

Rule 4. If an unstressed note is consonant, it should be part of a triad formed by

previous note and cantus firmus

Rule 5. No parallel 5ths or 8ves between adjacent stressed beats

Rule 6. Voices cannot overlap nor cross except for an unstressed beat unison

Rule 7. No parallel 5ths or 8ves between an unstressed beat to a stressed beat

legalSpecies3

Must follow legalGeneralTwoVoice and legalGeneralCounterpointMelody rules.

Used some extra rules found at [23] [24]

Rule 1. First beat must be consonant

Rule 2. Unison NOT allowed on stressed note

Rule 3. Dissonance may not occur on all of beats 2, 3, and 4 in a measure

Rule 4. Dissonances not on stressed note must be part of one of the following sequences:

(a) a passing tone

(b) a neighboring tone

(c) a double neighbor

(d) a nota cambiata

Rule 5. No Parallel 5ths or 8ves between a measure’s stressed beats and the preceding

downbeat

65

legalSpecies4

This species generation follows subsets of the legalGeneralTwoVoice rules and

legalGeneralCounterpointMelody rules along with a set of its own species 4 rules

which are enumerated below.

Use legalGeneralTwoVoice Rules 1, 4, and 5

Use legalGeneralCounterpointMelody Rules 2, 3, 4, 5, 6, 8, and 9

Rule 1. Weak beat of syncope must always be consonant

Rule 2. If strong beat of syncope is dissonant, must resolve downward by step

Rule 3. At most two octaves in a row on strong beats

Rule 4. Must end with 7-6 or 2-3 cadence

Rule 5. Ends on root (doesnt need to start on root or 5th)

Rule 7. Start with a consonant interval

Rule 8. Must be diatonic except for 3rd or 2nd to last notes which may be a maj6 or

maj7 interval in Dorian, Mixolydian, or Aeolian modes

Rule 9. Parallel 5ths or 8ves with a dissonance in between not allowed

Rule 10. Weak beat species voice should not be the same note as previous Cantus

Firmus note.

Rule 11. Use all these other rules

66

Chapter 4

Sample Syllabus

The Guitarist’s Autodeus

Presented By:

The University of Denver's

Lamont School of Music and

College of Computer Science and Engineering

Autodeus is a web-based interactive sight-reading tutorial for guitarists offered

free of charge to all users through the website. The following guide is a 2-year

sequence of study in 2 levels. Level I is divided into 2 parts and each part may

be subdivided further according to individual or programmatic needs. The grad-

ually progressing materials are produced by the software in ever-changing random

sequence, providing a virtually inexhaustible number of exercises for each level of

study. Level II incorporates variable user-managed options for training individual-

ized areas of sight-reading including specific time-signatures, rhythmic groupings,

positions, and strings outside of the pre-established progressive sequence.

67

First Year Syllabus (Level I)

Part I

With each “Open String Exercise”, use the given time signatures, note dura-

tions, strings, and frets and practice each of the following permutations of different

numbers of notes present in the chords:

• Single Notes

• Dyads

• 3-Note Chords

• 4-Note Chords

• Mixture of all of the above

• Mixture of all of the above including 5 and 6 note chords

With each “Roman Numeral Position” Section below, use the given time signa-

ture and note durations and practice the following with single note phrases com-

prised mostly of each of the given intervals and then mix in dyads of those intervals

with the single note lines:

• Half steps and Whole steps

• 3rds

• 4ths

• 5ths

• 6ths

68

Open String Exercises in C Major

• 4/4 whole note durations

Open Strings and 12th fret in C Major

• 4/4 with whole and half note durations

Open Strings and 7th fret in C Major

• 4/4 with whole and half note durations

• 4/4 with whole, half, and quarter note durations and rests

Open Strings, 5th, 7th, and 12th frets in C Major

• 4/4 with whole, half, and quarter note durations and rests

• 2/4 with half, quarter, and eighth note durations and rests

• 3/4 with half, quarter, and eighth note durations and rests

Open Strings and 9th fret in C Major

• 4/4 with whole, half, quarter, and eighth note durations and rests

Open Strings, 3rd, 5th, 7th, 9th and 12th frets in C Major

• 2/4 with half, quarter, eighth, and sixteenth note durations and rests

• 4/4 with whole, half, quarter, eighth, and sixteenth note durations and rests

• 3/4 with half, dotted half, quarter, eighth, and sixteenth note durations with

rests

69

VII Position Diatonic Exercises (Frets 7,8,9,10) in C and G major with

their corresponding modes

1. 2/4 with half, quarter, dotted quarter, eighth, sixteenth notes and rests

2. 4/4 with whole, half, dotted half, quarter, dotted quarter, eighth, sixteenth

notes and rests

3. 3/8 with quarter, dotted quarter, eighth, dotted eighth, sixteenth notes and

rests

4. 6/8 with dotted half, quarter, dotted quarter, eighth, dotted eighth, sixteenth

notes and rests

II Position Diatonic Exercises (Frets 2, 3, 4, 5) in G and D major with

their corresponding modes

Use all of the same time signatures and note durations as the previous section

IX Position Diatonic Exercises (Frets 9, 10, 11, 12) in D and A major

with their corresponding modes

Use all of the same time signatures and note durations as the previous section

IV Position Diatonic Exercises (Frets 4, 5, 6, 7) in A and E major with

their corresponding modes

Use all of the same time signatures and note durations as the previous section

70

Part II

Single String Exercises (open to 16th fret)

For each separate string, use a variety of diatonic scales, then the chromatic

scale with the following rhythmic variations:

1. 3/8 with quarter, dotted quarter, eighth, dotted eighth, sixteenth notes, and

rests

2. 2/4 with half, quarter, dotted quarter, eighth, dotted eighth, sixteenth notes,

and rests

3. 3/4 with half, dotted half, quarter, dotted quarter, eighth, dotted eighth,

sixteenth notes, and rests

4. 6/8 with dotted half, quarter, dotted quarter, eighth, dotted eighths, sixteenth

notes, and rests

5. 4/4 with whole, half, dotted half, quarter, dotted quarter, eighth, dotted

eighth, sixteenth notes, and rests

Two String Exercises (open to 16th fret)

Repeat all exercises as in the previous section, but use 2 strings at a time with

the following combinations:

1. Sixth (Low E) and Fifth (A)

2. Sixth (Low E) and Fourth (D)

3. Sixth (Low E) and Third (G)

4. Sixth (Low E) and Second (B)

5. Sixth (Low E) and First (High E)

71

6. Fifth (A) and Fourth (D)

7. Fifth (A) and Third (G)

8. Fifth (A) and Second (B)

9. Fifth (A) and First (High E)

10. Fourth (D) and Third (G)

11. Fourth (D) and Second (B)

12. Fourth (D) and First (E)

13. Third (G) and Second (B)

14. Third (G) and First (High E)

15. Second (B) and First (High E)

VI Position Diatonic Exercises (Frets 6,7,8,9) in B and F major with

their corresponding modes

Same as section VII Position Diatonic Exercises

I Position Diatonic Exercises (Frets 1,2,3,4) in F and Db major with their

corresponding modes)

Same as section VII Position Diatonic Exercises

VIII Position Diatonic Exercises (Frets 8,9,10,11) in Db and Ab major

with their corresponding modes

Same as section VII Position Diatonic Exercises

72

III Position Diatonic Exercises (Frets 3,4,5,6) in Ab major, Eb major

with their corresponding modes

Same as section VII Position Diatonic Exercises

X Position Diatonic Exercises (Scales of Eb major, Bb major with their

corresponding modes

Same as section VII Position Diatonic Exercises

V Position Diatonic Exercises (Scales of Bb major, F major with their

corresponding modes

Same as section VII Position Diatonic Exercises

Extended Positions

These exercises are designed to force the student to use what are know as ex-

tended positions. Each position starts on the roman numeral indicated fret with the

first finger (pointer) and goes up 3 frets so that each finger on the left hand sits on

a fret. An extended position is when the left hand’s first or fourth finger reaches

outside this 4 fret, 4 finger box to 1 fret above with the 4th finger (pinky) or 1 fret

below with the 1st finger (pointer) VII Position Diatonic Exercises

1. X - D, F, G, and A[major and their corresponding modes

2. IX - D[, E, F, and G major and their corresponding modes

3. VIII - Scales of C, E[, F, F major and their corresponding modes

4. VII - Scales of B, D, E, and F major and their corresponding modes

5. VI - Scales of B[, Db, E[, and E major and their corresponding modes

73

6. V - Scales of A, C, D, and E[major and their corresponding modes

7. IV - Scales of A[, B, Db and D major and their corresponding modes

8. III - Scales of G, B[, C, and Db major and their corresponding modes

9. II - Scales of G[, A, B, and C major and their corresponding modes

10. I - Scales of F, A[, B[, and B major and their corresponding modes

Second Year Syllabus (Level II)

User-Defined exercises

User selects options for each parameter:

1. Pitch Set (determined by area of fingerboard: strings, frets, positions(4 frets),

trisects)

2. Note Values

3. Rhythmic profile (irregular groupings, syncopations)

4. Meter

5. N-Chords and/or N-Voice Set

6. Key/Mode

Transformations of User-Defined exercises

Transformations of User-Defined exercises

1. Transposition

2. Augmentation/Diminution

3. Meter Change

74

Chapter 5

Future Work

There are countless improvements and further research opportunities that could

be done in addition to this thesis. Some of those are the following:

• Modify MuseScore’s source code so it always uses treble clef. Currently, when

an exercise is generated that has mostly lower notes, Musescore decides to

interpret the musicXML into an output which uses the bass clef. This is an

unknown with respect to fact that it’s difficult to estimate how much work

this would take.

• Modify MuseScore’s source code so that it does not require an X server (only

uses command line arguments). Every time an exercise is produced (except

for species generation), Musescore is executed and this takes a long time. This

would surely speed up generation.

• Experiment with adding triplets into generation. Autodeus does not currently

have support for rhythmic musical phrases which sub-divide by 3. For ex-

ample, randomly adding a 1/3 of a beat in the mix with other established

rhythms would most certainly produce very badly formatted rhythmic nota-

tion. Lastly, due to the random nature of the program, the inclusion of triplet

75

based rhythms would need to be constrained somehow to actually produce

rhythms that are more likely to be created by humans.

• Improvements to the Frontend:

– Allow users to track progress through the syllabus designed by Dr. Ri-

cardo Iznaola.

– Ability to save exercises in order to transpose to different keys and/or

download them

– Gathering of user statistics and feedback to get a better idea of how to

vary exercises based on selected difficulty such as:

∗ Usefulness of exercise

∗ Was the exercise too hard or too easy?

∗ How pleasing was the melody?

• While the frontend greatly reduces the likelihood of bad input, the actual exe-

cutable ‘GenLesson’ could benefit greatly if it performed more input validation

when scanning the ‘input.fmt’ file.

• Using machine learning, it would be massively interesting to use the user-

generated statistics to train neural networks which then generate music.

• Study the efficacy of learning to sight-read with Autodeus as opposed to tra-

ditional means. This could also offer insight on how to better improve the

difficulty settings and their relation to the input parameters.

• It would be great to get some unit test framework setup to test all the various

functions and classes, but this could very likely more than double the size of

the code base. Validating that each rule produces what is intended and testing

edge cases for pre-computation steps would erase a lot of uncertainty.

76

• Lastly, the frontend could really benefit from some graphic design and extra

features. It would be great to optimize the Javascript MIDI playback library

downloading and play/stop experience and also have a feature which allows

the user to change the playback tempo.

77

Bibliography

[1] D. Cope, Computer Models of Musical Creativity. 2005.

[2] https://www.sightreadingfactory.com/.

[3] http://practicesightreading.com/.

[4] http://thefluentguitarist.com/.

[5] A. Duncan, http://andrewduncan.net/cmt/. 1991.

[6] J. Abersold, http://www.jazzBOOKs.com/mm5/merchant.mvc?Screen=FQBK.

2010.

[7] C. Fischer, The Guitar Grimoire. 1995.

[8] https://github.com/.

[9] https://www.digitalocean.com/community/tutorials/how-to-serve-flask-

applications-with-gunicorn-and-nginx-on-ubuntu-16-04.

[10] http://www.musicxml.com/.

[11] http://www.cplusplus.com/reference.

[12] http://libmusicxml.sourceforge.net/.

[13] https://code.google.com/p/libmusicxml/.

78

[14] http://www.lilypond.org/.

[15] https://musescore.org/.

[16] https://mido.readthedocs.io/en/latest/.

[17] Gamma, Helm, Johnson, and Vlissides, Design Patterns. 2009.

[18] http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-

amazon-ec2.html.

[19] goo.gl/RHThz1.

[20] goo.gl/ergKU7.

[21] https://msdn.microsoft.com/en-us/library/aa289166(v=vs.71).aspx.

[22] A. Mann, The Study of Counterpoint. 1971.

[23] http://openmusictheory.com/thirdSpecies.html.

[24] goo.gl/M99erul.

79

	Algorithmic Music Generation for Pedagogy of Sight Reading
	Recommended Citation

	Algorithmic Music Generation for Pedagogy of Sight Reading
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Second Advisor
	Third Advisor
	Keywords
	Subject Categories
	Publication Statement

	tmp.1546974753.pdf.zAGfW

