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ABSTRACT 

The left atrial appendage has been a historically understudied region of the heart 

until fairly recently with the new understanding of its role in the stroke pathway of 

patients with atrial fibrillation. The goal of this study is to take a look at the 

biomechanical behavior of the left atrium and left atrial appendage under normal 

physiological loading conditions using material properties taken from biaxial stretch 

tests. Several different options for material properties models were tested and biaxial 

stretch test data of cadaveric human tissue samples for the left atrium and appendage 

were fit to a Fung-type strain-energy function for input into simulation. Simulations were 

performed on geometry of the left atrium and appendage extracted from computed 

tomographical images of a single patient spanning from the pulmonary veins to the mitral 

valve annulus. Physiological pressure loading conditions were simulated at 5 mmHg, 7.5 

mmHg, 10 mmHg, 15 mmHg, and 20 mmHg over two cardiac cycles. Results showed 

that peak stresses and strains were concentrated at branches in the atrium as well as the 

ostial entrance to the appendage. Ostial diameter of the appendage was measured across 

to axes and showed increases from a baseline of 1.347 cm x 2.927 cm in the unloaded 

configuration up to a size of 1.749 cm x 3.219 cm in the loaded configuration. Finite 

element simulations may be a useful tool for improving patient treatment options, 

especially when it comes to mechanical left atrial appendage occlusion devices.  
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CHAPTER 1: INTRODUCTION 

 

The left atrial appendage is a small bulbous extension of the left atrium that forms 

early in development from the venous pole of the heart1. In recent years, the importance of 

the left atrial appendage (LAA) and its role in the disease progression of patients, especially 

those with atrial fibrillation, has risen to the forefront of the field of interventional 

cardiology2. The dynamic behavior of the LAA throughout the cardiac cycle is not well 

understood from a biomechanical standpoint, and has been difficult to investigate using 

traditional medical imaging methods such as tomography or magnetic resonance imaging. 

The structure of the LAA makes it particularly susceptible to formation of blood clots, and 

this increased chance of thrombosis is one of the leading causes of morbidity in patients 

with atrial fibrillation, mitral valve disease, or other heart diseases.  

Fig 1.1: Left atrial appendage location in the heart. Cartoon and CT scan (coronal plane) 
Patrick J. Lynch, medical illustrator - Wikimedia Commons 
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Current medical treatments range from clot management through drugs such as 

warfarin to the usage of mechanical closure devices. Mechanical LAA closure devices were 

originally approved in the United States by the FDA in 2015 with the WATCHMAN 

device, and usage has since increased in prevalence dramatically3. Data from the five-year 

follow-up on PREVAIL and PROTECT-AF clinical trials of the device shows that these 

mechanical occlusion devices have similar stroke reduction benefits as warfarin therapy. 

Of the 1,114 patients participating in the trial, patients using the mechanical occlusion 

device had a 55% reduction in fatal stroke, mainly hemorrhagic. These treatment options 

have been relatively successful with low rates of complication, but complications that do 

occur are often dangerous or fatal due to their placement in the heart. In the case of 

mechanical occlusion devices, a deeper understanding of the biomechanical behavior of 

the left atrial appendage with regards to both normal and diseased atrial pressures could 

provide a better framework for the design and usage of such devices. The present study 

seeks to expand the current understanding of the dynamics of the left atrial appendage and 

its relationship to left atrial pressure through both finite element modeling as well as 

experimental testing in order to better inform clinical decisions and improve patient health 

outcomes.  
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CHAPTER 2: BACKGROUND 

2.1 Heart Background 

The heart is located inside the rib cage, slightly to the left of the mid-sagittal plane, 

and contains four chambers. Atria are smaller, superior chambers that receive blood, while 

ventricles are noticeably larger, inferior chambers that pump blood to the body. 

  

Fig 2.1: Gross anatomy of the normal human heart 

Oxygenated blood leaves from the lungs and enters the left atrium, and is then pumped by 

the left ventricle throughout the body, before arriving at the right atrium. From there, it is 

pumped to the lungs by the right ventricle, and finally arrives at the left atrium, completing 

the cycle. Due to the different functions of the left and right sides of the heart, there are 

size and pressure differences between the two halves. Specifically, the left chambers of the 

heart are larger, and contain about three times as much muscle as the right chambers1. 
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Naturally, these functional considerations result in different mechanical properties and 

geometries in the different regions of the heart. 

The heart beats rhythmically and the beating is split into the systole and diastole 

phases, which are the contraction and relaxation phases of the tissue, respectively. The 

pressure and volume of the heart changes during each cycle, and many cardiac pathologies 

can be diagnosed by looking at abnormalities in pressure-volume plots of the heart 

chambers10. Typical stroke volumes (blood volume output per cycle) are in the range of 

4L/min to 8L/min. Atrial pressure is typically in the 0mmHg to 20mmHg range, while 

ventricular pressure is typically in the 0mmHg to 120mmHg range, and these are important 

input parameters to understand when looking at treatment options for various heart 

pathologies. 

 

2.2 Left Atrium and Cardiac Cycle 

 The left atrium is one of the four chambers of the heart previously mentioned, with 

the function of receiving oxygenated blood from the lungs and pumping the blood into the 

left ventricle for dispersal throughout the body (see Figure 1.1). To further elaborate, the 

left atrium serves as a preliminary pump that accounts for up to 30% of the filling of the 

left ventricle, and has a typical volume between 22mL to 58mL depending on the 

individual9. Throughout the normal cardiac cycle, atrial pressure is relatively stable, 

ranging between 0mmHg to 20mmHg in healthy individuals. Peaks in atrial pressure 

correspond with the atrial systole, which is the contraction of the atrium before ventricular 

systole, along with a slow build up of pressure during pre-filling of the chamber. Other 
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upticks in atrial pressure correspond with periods of isovolumetric contraction and 

isovolumetric relaxation, which is when the heart contracts or relaxes without volume 

change. These are due to the timed opening of the heart valves which requires pressure 

inside the corresponding chamber to reach a certain threshold pressure. In patients with 

cardiovascular disease, such as high blood pressure, atrial fibrillation, or valvular diseases, 

this healthy atrial pressure curve would be different to compensate for the effects of the 

various disorders. 

 

Fig 2.2: Two cycles of healthy cardiac cycle. Left atrial pressure varies from 0mmHg to 20mmHg 

with small peaks corresponding with isovolumetric contraction and relaxation as well as during 

atrial systole. 
Wikimedia Commons revised work by DanielChangMD 

 

The pressure curves of the normal cardiac cycle are important to understand because the 

pressure is the main force inside the heart and therefore the main contributor to changes in 

size of the various heart chambers. For this study, the primary focus will be upon the 

pressure inside the left atrium and how it affects the deformation of the LAA. 
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2.3 LAA Structure and Composition 

The left atrial appendage is a small, tube-like structure connected to the main body 

of the left atrium but is composed of tissue with distinct structural, physiological, and 

material properties. With the advent of improved medical imaging, the importance of the 

LAA in certain pathological pathways has become better understood. The ostial entrance 

to the LAA is readily noticeable, and distinguished by a circumferential reduction in size 

at the connection with left atrium. When compared with the tissue comprising the left 

atrium, LAA tissue is slightly more distensible, which helps facilitate its function as a 

decompression chamber during periods of atypically high left atrial pressure4. The main 

body of the LAA develops as an outgrowth of the embryonic left atrium and forms into a 

smooth-walled bulbous space with a comb-like pattern of pectinate muscles inside. Typical 

morphological shapes have been described, classified, and designated as the “chicken 

wing”, “cactus”, “windsock”, and “cauliflower” shapes, in order of prevalence5. The shape 

and size of the LAA varies dramatically between individuals, with volumes ranging from 

0.7mL to 19.2mL6. Generally speaking, the LAA of patients with atrial fibrillation are both 

more voluminous as well as presenting with a larger ostial diameter. Size of the LAA 

additionally demonstrates sex-related variations along with changes with age5. 

 Males have a larger LAA on average and the physical dimensions of the LAA 

generally increase with age with an approximate ostium size of 0.8-1.2 cm, width of 1.0-

1.8 cm, and length of 2.1-2.9 cm when measured excised. The interior of the LAA is filled 

with pectinate muscle throughout, contributing significantly to its difference in mechanical 

properties when compared with the left atrium proper. The thickness of the pectinate 
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muscle varies with age and sex but is on the order of 1 mm and uniform throughout the 

LAA. In older individuals, the LAA tends to be larger overall. As previous studies have 

shown, the size, shape, and composition of each individuals LAA can vary drastically and 

this may play an important role in the success rates of various interventions targeting the 

region. 

 

2.4 LAA Physiology 

 The main function of the LAA appears to be as an important regulator in heart rate, 

left atrial volume, and preload volume5. The LAA has several properties that make it suited 

for this purpose. When compared to the left atrium, it is superior in position, meaning that 

it will only fill properly during periods of higher pressure. Additionally, the LAA is more 

distensible from a material properties standpoint when compared with the myocardium 

comprising the left atrium. The cardiac cycle also has a markedly different presentation in 

the LAA when compared to the left atrium. The main difference is that the  LAA has its 

own distinct pattern of contraction. Blood flow in the appendage in patients with healthy 

sinus rhythm tend towards a biphasic pattern of blood flow, but a large portion of the 

population experiences an extra filling and contraction movement in each flow cycle. The 

first emptying action occurs shortly after diastole and is followed by a period of backflow 

while the second set of flows occurs at the same time as atrial systole. The first inflow-

outflow pattern is thought to be caused by squeezing of the LAA against the pericardium 

as it is pushed underneath by the enlarging ventricle while the second inflow-outflow 
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pattern is due to blood flow in the atrium. The LAA itself also shows some electrical 

activity and active contraction corresponding with the noted pattern of blood flow.  

 

Fig 2.3: Four phase blood flow pattern in the LAA with ECG comparison. Spikes in the signal above 

the straight line indicate flow exiting the LAA while spikes below indicate inflow into the LAA. The 

spikes in blood flow correspond with atrial systole and atrial diastole.  Wikimedia Commons 

 

Historically, the importance of the LAA in heart pathologies was overlooked but with 

recent discoveries of its importance in pathophysiologies, notably atrial fibrillation, 

developing a deeper understanding of its biomechanical behavior has become more 

important. 

 

2.5 LAA Pathology 

 The LAA plays a key role in the pathological pathway of thromboembolism, 

especially in patients with atrial fibrillation (AF). In this pathway, the LAA serves as an 

initiation site for the formation of the thrombus, which may then dislodge and eventually 

result in ischemic stroke7. With AF being one of the most prevalent cardiac arrhythmias, 

the importance of understanding the mechanical behavior of the LAA cannot be 

understated. Atrial fibrillation is a disease characterized by a rapid and irregular cardiac 

cycle and studies have shown that in patients with atrial fibrillation and recent embolic 
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event, up to 41% may present with thrombus in the left atrial appendage8. The most 

commonly seen pathological change of the heart accompanying AF is increased fibrosis of 

the atria due to any number of factors such as genetics, age, valvular heart disease, 

hypertension, or congestive heart failure. These changes contribute and clash with the 

normal electrical signal conduction system which causes the disorganized, erratic heartbeat 

that patients with AF experience. The exact pathophysiological pathway leading from atrial 

fibrillation to thrombus formation in the left atrial appendage has not yet been fully 

described, but prevailing theories implicate the complex blood flow cycle previously 

described in the LAA. This complex cycle would be impacted significantly by an unhealthy 

sinus rhythm, such as that present in AF patients, which may lead to the incomplete 

expulsion of blood from the grooved interior of the LAA, leading to eventual thrombus 

formation. As the major complication of AF does come from the increased risk of thrombus 

formation in the LAA, many treatments target the LAA region in order to diminish clotting. 

Luckily, thromboembolism in the LAA is the only major pathology involving the LAA. 

Nonetheless, a better understanding of the stresses and strains that the LAA goes through 

during the cardiac cycle should allow for improvements to be made in current treatments, 

and may help in discovering new treatment methods. 
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2.6 Treatment Options 

 For patients with AF, the current standard of care calls for treatment with blood 

thinners such as warfarin. While these treatments have been effective for reducing the risk 

of thrombosis and ischemic stroke by preventing blood clotting, patients with other 

complications may be contraindicated for treatment with blood thinners. For these patients, 

mechanical closure with LAA closure devices has seen success. Typically the device is 

inserted with a catheter, using transesophageal ultrasound as guidance. After the device is 

maneuvered into the ostial entrance of the LAA, the device can be expanded to fit snugly 

in the opening. The woven mesh fabric-like material promotes tissue formation, which will 

eventually seal off the region, preventing flow of blood into and out of the LAA. In the 

United States, the WATCHMAN device is currently the only FDA approved percutaneous 

LAA occlusion device but Europeans also have access to the Amplatzer plug device, which 

functions similarly. Data from the latest WATCHMAN clinical trial follow-up indicates 

that the mechanical closure device has a lower primary event rate when compared with 

standard warfarin treatment in the following categories: overall stroke rate, ischemic 

stroke, hemorrhagic stroke, and cardiovascular or unexplained death11.  

 Mechanical occlusion devices are generally made of a shape retaining nickel-

titanium alloy, commonly referred to as nitinol. This nitinol mesh is then surrounded by a 

permeable polyester fabric, which will facilitate clotting and the eventual sealing off of the 

appendage. They are typically guided into the correct location through a combination of 

fluoroscopy and transesophageal echo, which are both standard, non-invasive methods for 

visualizing the heart region. Once guided to the correct location, the device is then allowed 
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to expand to its original shape, and hooks, along with the shape of the nitinol wireframe 

allows it to stay lodged inside the ostial opening of the LAA. The WATCHMAN device in 

particular comes in 5 different sizes, with ostial diameter starting at 21 mm and increasing 

in increments of 3 mm. Common sizing procedure includes increasing blood volume with 

fluids and then measuring the largest ostial diameter opening36.  

Table 2-1. WATCHMAN Device Sizing 

LAA Diameter (mm) Device Diameter (mm) Device Compression (mm) 

17-19 21 16.8-19.3 

20-22 24 19.2-22.1 

23-25 27 21.6-24.8 

26-28 30 24.0-27.6 

29-31 33 26.4-30.4 

 

 

Fig 2.4: WATCHMAN left atrial appendage occlusion device made of a nitinol wireframe and 

polyester mesh. The device is guided into place using imaging in conjunction with a catheter and 

lodges in place at the point of maximum ostial diameter. 
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2.7 Finite Element Analysis  

Finite element modelling is a useful analytical tool that will be used heavily in this 

work. Finite element modelling sees widespread use throughout many industries, mainly 

as an investigative tool that can take imaging data and build a computational framework 

for testing scenarios that are difficult or impossible to test in the traditional experimental 

sense. Specifically, this study will look at the deformation of the LAA throughout the 

cardiac cycle, something which has many clinical applications, but is difficult and 

expensive to test in vivo. The resulting ostium size of the LAA, which is the size of the 

opening leading to the LAA, is of particular clinical significance because current treatment 

options target this region and seek to occlude blood flow to the LAA to prevent the 

formation of a thrombus. Other important factors that will be considered are the stresses 

and strains that the LAA experiences throughout both normal as well as abnormal cardiac 

cycles.  

The finite element method is an analysis technique to find approximate solutions to 

partial differential equations by subdividing the domain into many small elements. In each 

interval, proper functions are chosen so that the overall solution represents the full partial 

differential equation. These functions are generally piecewise defined polynomial 

functions that are solved over each element using methods from linear algebra. It is an 

iterative process that works to minimize an associated error function until certain 

convergence criteria are reached. Simple finite element models can be solved by hand, but 

more complex 3-D models, such as is used in this study, rely on clever programming 

algorithms and numerical approximations to reduce the computation time.  



13 

 

 

 

CHAPTER 3: MATERIAL PROPERTIES 

 Due to the relatively obscure location and size of the LAA as well as its downplayed 

role in cardiac health, research into the accurate measurements of the LAA is a fairly new 

field of study. The vast variation seen between individuals makes study of the material 

properties of the LAA a difficult task, but improvements in imaging technology may also 

lead to improvements in this area. Experimentally, LAA material properties have been 

investigated in a multitude of animal models, but data from human tissue is fairly rare. 

Another complication is the living nature of the tissue, as material properties performed on 

animals or on cadaveric tissue cannot fully account for the electro-mechanical properties 

present in living tissue. Because there is a significant difference in tissue mechanical 

properties between animal models20 and human tissue19, both are necessary for a thorough 

understanding of the LAA. Animal models contribute greatly to the general trends in tissue 

property and provide much easier accessibility, while data from human tissues is limited 

and often restricted to individuals of old age. Here we provide a brief overview of the 

models commonly used in the field of cardiac biomechanics. 
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3.1 Cardiac Tissue Structure 

 In order to develop an understanding of the mechanics involved with the LAA, an 

understanding of the physiology and microstructure of cardiac tissue must first be 

mentioned. Cardiac tissue is composed primarily of myocardium, which is a form of 

muscle tissue. This cardiac muscle is a highly organized tissue composed of repeating units 

called sarcomeres. These sarcomeres are organized from bundles individual strands of cells 

known as myofibrils, which utilize the proteins actin and myosin to contract. In addition to 

the cardiac muscle, connective tissue such as collagen and other interstitial molecules also 

contribute to around 30% of the heart tissue, by mass35.  

 

Fig 3.1: Microstructure of cardiac muscle. Myofibrils form into bundled units called sarcomeres 

which provide the contraction of the muscle. Intercalated discs between adjacent units allows for 

steady signal conduction and a healthy sinus rhythm.  
OpenStax College - Anatomy & Physiology Wikimedia Commons 
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Cardiac muscle tissue is the primary tissue present in the heart, and forms the bulk 

of the tissue in the heart wall. While similar to skeletal muscle, there are some key 

differences between the two types of muscle tissue. The primary difference is that cardiac 

muscle is more interconnected when compared with skeletal muscle. Cardiac muscle cells 

are deeply interconnected through junctions known as intercalated discs, which allows for 

its smooth, patterned contraction. Another difference is that cardiac muscle contains its 

own calcium ion source which is necessary for healthy heart contraction. 

 Orientation of the fibers making up the cardiac muscle varies throughout the 

thickness of the tissue. This can be seen clearly in Figure 3.2, which outlines the variations 

in cardiac muscle orientation throughout the thickness of the left ventricle. 
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Fig 3.2: (a) Left ventricle and cutout; (b) shows the variation in fibre orientation throughout the 

block of tissue through the thickness of the cardiac muscle; (c) varying degrees of fibre orientation; 

(d) natural material coordinate system label defined through the fibre orientation; (e) local material 

coordinate system defined through mean fibre orientation18 

 

 For the purposes of mechanical analysis, it is natural to define a 3-dimensional 

coordinate system corresponding with the fiber orientation present in cardiac muscle. 

These material axes correspond with: in-line with fiber orientation, transverse to the fiber 

orientation, and the normal perpendicular to the fiber orientation plane, as seen in Figure 

3.2 (e). This understanding forms the basis for most of the models currently used in heart 

research. 



17 

 

 

3.2 Review of Material Models 

 In this chapter, the most prevalent material models of passive myocardium is 

described. While material models that include the effects of electrical conduction do exist, 

the difficulty in collecting experimental data on live tissue has made it difficult to assign 

accurate parameters necessary for those models. Passive myocardium models also face this 

relative lack of experimental data, but accurate material models can be generated from a 

constitutive basis, and this type of model is the most commonly used. Due to the 

microstructure of cardiac muscle, it can be described as an orthotropic material. To further 

complicate things, passive cardiac tissue also has time-dependent properties including 

stress-relaxation and slight hysteresis.  

 In the literature, a number of constitutive models with varying degrees of 

complexity have been investigated and these will be described briefly12. These can 

generally be categorized as either transversely isotropic models or  orthotropic models. The 

basis for both types of models are rooted in fundamental equations of continuum 

mechanics. Cardiac tissue, as with most soft tissue, can be assumed to be incompressible 

which gives us 

J = det F ≡ 1 

where F is the deformation gradient, using the standard conventions of continuum 

mechanics. We define the right and left Cauchy-Green tensors 

C = FTF and B =FFT                                                (1) 

and the Green strain tensor 
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E = 
1

2
(C-I),                                                     (2) 

where I is the identity tensor. The principle isotropic invariants of the Cauchy-Green tensor 

is then  

I1= tr C,      I2 = 
1

2
[I1

2 − tr (C2)],    and    I3 = det C.                     (3) 

For models which consider anisotropy, further invariants can be defined as 

I4 = a0 ⋅ (Ca0),      I5 = a0 ⋅ (C2a0),      I6 = b0 ⋅ (Cb0),      I7 = b0 ⋅ (C2b0)       (4) 

where a0 and b0 are the unit vectors in the prefered reference directions of the anisotropic 

equations. The relationship between a0 and b0 is denoted by the coupling invariant 

I8 = a0 ⋅(Cb0) = b0 ⋅  (Ca0).                                           (5) 

With these invariants, we can then describe the cardiac tissue as a hyperelastic material 

through the use of a strain energy density function, and the models that have been used 

successfully in the literature are predominantly these types of models.  

 An example of a transversely isotropic model based on a constitutive consideration 

of fiber orientation was the Humphrey et al. model with the form 

   (6) 

with invariants I1 and I4.  

The classical orthotropic material model for soft tissue is the Fung-type model40, 

with form 

                                 (7) 



19 

 

with W denoted as strain-energy, c and D as material constants, and Jel as the elastic volume 

ratio. With the assumption of incompressibility, which is valid for most soft tissue, 

Equation 7 simplifies to 

                                                 (7) 

where  

.                                                   (8) 

Q can be written explicitly as 

    (9) 

which reduces to  

                               (10) 

under assumptions of negligible shear terms, such as might be found in biaxial testing. 

Equations 9 and 10 are drastically simplified with the previously mentioned assumptions, 

to get an idea of the full scope of the model, the number of components of b would be 21 

for a fully anisotropic model and 9 for an orthotropic model. 

𝕓anisotropic =

[
 
 
 
 
 
b𝟏𝟏𝟏𝟏 b𝟏𝟏𝟐𝟐 b𝟏𝟏𝟑𝟑

b𝟐𝟐𝟐𝟐 b𝟐𝟐𝟑𝟑

b𝟑𝟑𝟑𝟑

Symmetic

    b𝟏𝟏𝟐𝟑 b𝟏𝟏𝟏𝟑 b𝟏𝟏𝟏𝟐

    b𝟐𝟐𝟐𝟑 b𝟐𝟐𝟏𝟑 b𝟐𝟐𝟏𝟐

    b𝟑𝟑𝟐𝟑 b𝟑𝟑𝟏𝟑 b𝟑𝟑𝟏𝟐

    

b𝟐𝟑𝟐𝟑 b𝟏𝟑𝟐𝟑 b𝟏𝟐𝟐𝟑

b𝟏𝟑𝟏𝟑 b𝟏𝟐𝟏𝟑

b𝟏𝟐𝟏𝟐]
 
 
 
 
 

,  𝕓orthotropic =

[
 
 
 
 
 
b𝟏𝟏𝟏𝟏 b𝟏𝟏𝟐𝟐 b𝟏𝟏𝟑𝟑

b𝟐𝟐𝟐𝟐 b𝟐𝟐𝟑𝟑

b𝟑𝟑𝟑𝟑

Symmetic

      0         0         0   
      0         0         0   
      0         0         0   

    

b𝟐𝟑𝟐𝟑    0       0   

b𝟏𝟑𝟏𝟑     0   

b𝟏𝟐𝟏𝟐]
 
 
 
 
 

    (11) 

 

Most orthotropic models for myocardium are of the Fung exponential type, with 

increasing complexity and number of parameters. In these models, the parameters, 

generally denoted with c-subscripts, are fit with experimental data from bi-axial testing in 
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order to then use the models to predict material behavior. The primary material model used 

in this study is a generalized Fung-type hyperelastic model of the form described in the 

equation above.  
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CHAPTER 4: METHODS AND MATERIALS 

4.1 Experimental Data Collection 

 For the purposes of developing a deeper understanding of the mechanical behavior 

of the left atrium and its appendage, several bi-axial tests and digital image correlation tests 

were performed on fresh sheep hearts to verify material properties data from previous 

experiments that were available for final input into the finite element model. All specimens 

used for experimental data collection were procured from an abattoir with good practices. 

Sheep hearts were collected after slaughter through the throat cut/heart stick protocol and 

maintained in a refrigerated space until data collection, and all data was collected within 

96 hours. 

 Bi-axial testing was performed with a BioTester planar stretching system 

(CellScale, ON). Tissue samples excised from the left atrial appendage and left atrium of 

sheep were cut into a square shape taking care to keep fiber orientation either parallel or 

normal to the edges. Specimens were mounted onto the bi-axial testing machine using a set 

of CellScale biorakes, which were used to secure each of the four edges. The specimens 

were gently set into a saline bath maintained at 37 degrees Celsius. The upper surface of 

the specimens was carefully seeded with a random pattern of graphite in order to provide 

contrast for the built in camera system, which operated at 15Hz. Prior to stress-strain 

measurements, each sample was preconditioned through 10 cycles of 10% equi-biaxial 
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strain. Stress data was extracted from the load cells connected to each arm of the BioRake 

system, while strain data was extracted from the deformation tracking system in the 

CellScale LabJoy camera system. In total, 9 samples from the left atrial appendage were 

tested and 6 samples from the left atrium were tested and these results were compared with 

previous in-lab data to verify the material properties for use in the finite element model. 

 

Fig 4.2: Representative set-up for bi-axial stretch testing of a sample of ovine left atrium. BioRakes 

supply orthogonal stretching and strain is monitored through an overhead camera that tracks the 

graphite flakes scattered on the surface of the sample. 

 

4.2 Finite Element Modelling 

 For the patient-specific finite element model, left atrium geometry was 

reconstructed from available computed tomographic angiography (CTA) data. From this 

data, an accurate three-dimensional representation of the left atrium, left atrial appendage, 

mitral valve annulus, and the pulmonary veins could be generated. The raw CTA image 

data was collated through the image processing software ScanIP (Synopsis, CA) and 

imported into the Rapidform (3D Systems, SC) software for smoothing before finally being 

meshed in HyperMesh (Altair, MI) to generate the mesh necessary for the finite element 
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model. At this time, a simple pressure loading configuration was also used to perform a 

convergence study in order to determine the density of the mesh. The model was discretized 

into a mesh of triangular shell elements and thickness was found using an iterative process 

based on conservation of mass. After meshing the model, the four pulmonary veins and the 

mitral valve annulus were fixed in space in the ABAQUS software package, material 

properties were applied, and several different loads were applied in order to explore the 

behavior of the left atrium and appendage under physiological loading conditions.  

 

Fig 4.5: Construction of the 3D patient-specific geometry 

a) CTA scans, b) Image slices used for reconstruction, c) Extracted geometry, d) smoothed and 

meshed model for computational simulation. 

 

Simulations were conducted at pressures maximums of 0 mmHg, 5 mmHg, 10 mmHg, 15 

mmHg, 20 mmHg through a simple linear loading curve to test model integrity. 

Simulations were then also conducted at the same pressure maximums based on a 

physiological loading curve from two cycles of normal left atrial pressure during the 
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cardiac cycle, and these simulation data were used for the final results. Two final 

simulations at 7.5 mmHg were also conducted, once with the normal physiological left 

atrial pressure curve and once using a modified pressure curve representing the pressures 

that would be present in the cardiac cycle of a patient with atrial fibrillation. From the 

simulation results, maximum in-plane stresses and measurements of the ostial opening 

length were extracted and compared.  
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CHAPTER 5: RESULTS 

5.1 Experimental Material Properties – Animal 

A representative stress-strain curve from a biaxial test of ovine left atrial 

appendage is shown below. Full stress-strain data can be found in the appendix. 

 

 
Fig 5.1.1: Nominal stress-strain curve for ovine tissue sample 

Top: Cross-fiber, Bottom: In-fiber 
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5.2 Experimental Material Properties – Human 

Stress-strain data from the left atrium and left atrial appendage of human heart 

tissue was fit to a 4-parameter Fung-type hyperelastic model using raw bi-axial stretch data 

provided by previous data from Bellini et al19. The form of the strain-energy function used 

was 

.                      (11) 

A Levenberg-Marquardt least squares algorithm in MATLAB was used to fit the 

parameters and yielded the following material coefficients for the left atrium and left atrial 

appendage. 

 

Table 5-1. Parameters for Fung material model of left atrium and left atrial appendage from human 

tissue under biaxial stretch 

 b11 b12 b22 C 

Left Atrium 19.4398 8.9172 12.6544 1.2425 

LAA 11.4896 12.9766 12.2372 0.9737 

 



27 

 

 

Figure 5.2.1: Cauchy Stress vs. Green Strain for excised samples of human left atrial appendage as 

tested by biaxial stretch. (n=10) 

 

Figure 5.2.2: Cauchy Stress vs. Green Strain for excised samples of human left atria as tested by 

biaxial stretch. (n=20) 

 



28 

 

The stress-strain data from the 10 left atrial appendage samples and 20 left atrium 

samples were then averaged and served as a tabular input for the Fung-type material model 

used in the ABAQUS patient-specific finite element model. To perform the data averaging, 

the Cauchy stresses at set intervals of strain were averaged into a single point for that strain 

region. This type of curve averaging is more appropriate to account for the non-linearity of 

soft tissue37.  

 

Fig 5.2.3 Stress-Strain Curve of LAA with Average Curve found through curve averaging, 

Nominal Stress (kPa) vs. Nominal Strain 
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Tissue anisotropy index39 was calculated by finding the material constants for the 

cross-plane and in-plane fibers in the equi-biaxial state according to  

𝜎11
equi = (2E+1)E(c11+c12)Cexp{(c11+c22+2c12)E

2)                            (12) 

𝜎22
equi = (2E+1)E(c12+c22)Cexp{(c11+c22+2c12)E

2)                          (13) 

and 

.                                                 (14) 

The resulting anistropy index of 0.27 for the left atrium and 0.06 for the left atrial 

appendage of these samples was both reasonably low so the a four-parameter Fung-type fit 

was used to generate stress-strain data for tabular input into ABAQUS biaxial table data. 

Boundary condition was chosen with the entrances to the pulmonary veins and the mitral 

valve annulus fixed because these regions of the anatomy have relatively little movement 

in the human body and are also far from the atrial appendage. In total, there were 15,535 

nodes and 30,820 elements in the model. This very fine mesh ensures that the results 

converge. Stress-strain data from the appendage was used for the model because it was 

slightly more distensible than the left atrium. Tabulated data of the material properties used 

can be found in the Appendix, a hyperelastic material input with Poisson ratio of 0.499 was 

used. 
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5.3 Finite Element Simulations 

 The unloaded geometry of the finite element model of the left atrium and appendage 

was found to be 1.71mm using the backwards iterative method described in detail 

previously, which used the same method to find the unloaded reference geometry of a finite 

element model of abdominal aortic aneurysm16. The material properties that were used in 

the simulations were taken from bi-axial testing of human left atrium. To summarize 

briefly, an initial guess of 3mm thickness for the shell elements in the model were used. A 

negative hydrostatic pressure was then applied to the model and the resulting deformed 

model was re-pressurized with consideration of conservation of mass over an iterative 

optimization process until a node-by-node difference of less than 5% between the 

repressurized model and original model and the result of 1.71mm shell element thickness 

was used for the remaining simulations of the study. The loading curve used is shown in 

the figure below. 

 

Fig 5.3: Representative left atrial pressure curve taken from data of healthy patients. Average 

pressure over 2 cycles is 7.25 mmHg with a minimum at 3.26 mmHg and a maximum at 13.39 

mmHg. Heart rate 75 is bpm. 
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The undeformed 3-D model of the left atrium, generated as described, is shown in the figure 

below. At the top are the pulmonary veins which feed into the main body of the left atrium. 

At the left we see the left atrial appendage jutting out with ostial diameter encircled. 

 

Fig 5.4: Undeformed geometry of the patient-specific finite element model. The encircled region is 

the ostial entrance to the left atrial appendage. 

 

Nodal coordinates at the entrance of the left atrial appendage were selected manually and 

exported to MATLAB where the size of the opening was quantified. Distance between 

each node was calculated and due to the elliptical shape of the ostial opening, a long-axis 

and short-axis length are reported. Material properties were input according to the average 

stress-strain curve from biaxial stretching of human atrial tissue converted into nominal 

stress and nominal strain for the ABAQUS software package. 
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Fig 5.5: Extracted nodal locations of the ostial diameter for undeformed geometry of the model 

 

 

Fig 5.6: Projection of extracted ostial diameter nodes from the undeformed geometry. Long axis 

2.927cm, short axis 1.347cm. 

 

For the undeformed geometry of the patient-specific model, the ostial opening had a 

baseline size with long axis 2.93cm and short axis 1.35cm. 
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5 mmHg: 

The normal left atrial pressure curve was then scaled linearly to an average of 5 

mmHg compared to its original 7.25 mmHg and this loading curve was applied as an 

internal pressure surface force in ABAQUS. 

Fig 5.7.1: Maximum in plane principal stress with loading condition of 5 mmHg 

Images taken from Peak Pressure of Second Cardiac Cycle 

Top: Anterior view, Bottom: Posterior view 
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Fig 5.7.2: Maximum in plane principal strain with loading condition 5 mmHg 

Images taken from Peak Pressure of Second Cardiac Cycle 

Top: Anterior view, Bottom: posterior View 
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Maximum in plane principal stress for this loading condition peaked at 5.674x104 Pa. The 

simulation results show that peak stresses occur at locations where tissue branches off from 

the left atrium. Stresses in the appendage opening are also more focused on the short axis. 

Regions of higher strain were also limited to branching of the geometry, and had a 

maximum of 2.109x10-1. 

 

Fig 5.8: Extracted nodal locations of the ostial diameter for 5 mmHg loading condition 

 

Fig 5.9: Projection of extracted ostial diameter nodes from 5 mmHg loading condition. Long axis 

3.021cm, short axis 1.578cm. 
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Figures 5.8 and 5.9 show the nodal coordinates of the ostial opening to the left atrial 

appendage in 3-D and its projection, respectively. Separating the length of the ostial 

opening into a long and short axis yielded 3.021cm for the long axis and 1.578cm for the 

short axis.  
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10 mmHg: 

 Once again scaling the physiological left atrial pressure curve, an average pressure 

of 10 mmHg was used as the loading pressure on the internal surface of the geometry. 

Fig 5.10.1: Maximum in plane principal stress with loading condition of 10 mmHg 

Images taken from Peak Pressure of Second Cardiac Cycle 

Top: Anterior view, Bottom: Posterior view 
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Fig 5.10.2: Maximum in plane principal strain with loading condition 10 mmHg 

Images taken from Peak Pressure of Second Cardiac Cycle 

Top: Anterior view, Bottom: posterior View 
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Maximum in plane principal stress for this loading condition peaked at 1.252x105 Pa. 

Regions of higher stress remain the same compared to the 5 mmHg simulation, but are 

larger in magnitude and affect a larger portion of the left atrium body. 

 

 

Fig 5.11: Extracted nodal locations of the ostial diameter for 10 mmHg loading condition 

 

Fig 5.12: Projection of extracted ostial diameter nodes from 10 mmHg loading condition. Long axis 

3.090cm, short axis 1.653cm. 
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Figures 5.11 and 5.12 show the nodal coordinates of the ostial opening to the left atrial 

appendage in 3-D and its projection, respectively. Separating the length of the ostial 

opening into a long and short axis yielded 3.090cm for the long axis and 1.653cm for the 

short axis.  
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15 mmHg: 

 Scaling the two-cycle left atrial pressure curve to an average of 15 mmHg and 

applying it as an internal surface load yielded simulation results show below. 

Fig 5.13.1: Maximum in plane principal stress with loading condition of 15 mmHg 

Images taken from Peak Pressure of Second Cardiac Cycle 

Top: Anterior view, Bottom: Posterior view 
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5.13.2:Maximum in plane principal strain with loading condition 15 mmHg 

Images taken from Peak Pressure of Second Cardiac Cycle 

Top: Anterior view, Bottom: posterior View 

 



43 

 

Maximum in plane principal stress for this loading condition peaked at 1.991x105 Pa. 

Compared with the previous cases, there is significantly noticeably more in-plane principal 

stress throughout the entire body of the left atrium. The body of the appendage itself was 

relatively unstressed, but the ostial opening is the region of highest stress in the entire 

model. 

 

Fig 5.14: Extracted nodal locations of the ostial diameter for 15 mmHg loading condition 

 

Fig 5.15: Projection of extracted ostial diameter nodes from 15 mmHg loading condition. Long axis 

3.162cm, short axis 1.670 cm. 
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Figures 5.14 and 5.15 show the nodal coordinates of the ostial opening to the left atrial 

appendage in 3-D and its projection, respectively. Separating the length of the ostial 

opening into a long and short axis yielded 3.162cm for the long axis and 1.670cm for the 

short axis.  
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20 mmHg: 

 Using the same scaling technique, a left atrial pressure curve with average pressure 

20 mmHg was generated and used as the loading curve in ABAQUS. Tables with all 

pressure loading curves used can be found in the Appendix. 

Fig 5.16.1: Maximum in plane principal stress with loading condition of 20 mmHg 

Images taken from Peak Pressure of Second Cardiac Cycle 

Top: Anterior view, Bottom: posterior View 
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Fig 5.16.2: Maximum in plane principal strain with loading condition 20 mmHg 

Images taken from Peak Pressure of Second Cardiac Cycle 

Top: Anterior view, Bottom: posterior View 
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Maximum in plane principal stress for this loading condition peaked at 2.556x105 Pa. 

Compared with the previous cases, there is significantly noticeably more in-plane principal 

stress throughout the entire body of the left atrium. The body of the appendage itself was 

relatively unstressed, but the ostial opening is the region of highest stress in the entire 

model. 

 

 

Fig 5.17: Extracted nodal locations of the ostial diameter for 20 mmHg loading condition 

 

Fig 5.18: Projection of extracted ostial diameter nodes from 20 mmHg loading condition. Long axis 

3.219cm, short axis 1.749 cm. 
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Figures 5.17 and 5.18 show the nodal coordinates of the ostial opening to the left atrial 

appendage in 3-D and its projection, respectively. Separating the length of the ostial 

opening into a long and short axis yielded 3.021cm for the long axis and 1.578cm for the 

short axis.  
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7.5 mmHg: 

For the 7.5 mmHg loading condition, two cases were tested. One loading curve 

used was analogous to the previously discussed loading conditions, but modifications were 

made to the second loading curve to represent the left atrial pressures one might expect to 

see in a patient with atrial fibrillation. Specifically, the pressure peaks corresponding to the 

p-waves of the cardiac cycle were lowered and heart rate was increased to 100 bpm or 1.7 

Hz compared to the original 75 bpm or 1.25 Hz. This test was done for comparative 

purposes, to see whether or not the left atrium of patients with atrial fibrillation would 

behave different mechanically do to the slight variation in  loading condition pattern. 

 
Fig 5.19: von Mises stress with healthy left atrial pressure loading condition of 7.5 mmHg 

Image taken from Peak Pressure of Second Cardiac Cycle 

 

 

Figure 5.20: von Mises stress with AFIB left atrial pressure loading condition of 7.5 mmHg 

Image taken from Peak Pressure of Second Cardiac Cycle   
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CHAPTER 6: DISCUSSION AND CONCLUSION 

In this study, the relationship between the ostial diameter of the left atrial 

appendage as well as the stresses and strains that the left atrium and appendage undergo in 

a patient-specific geometry were investigated. Simulations were run at 5 mmHg, 7.5 

mmHg, 10 mmHg, 15 mmHg, and 20 mmHg in order to get an idea of the types of 

deformation that would be present. The simulations were performed using ABAQUS 

software and several different methods for obtaining material methods were investigated, 

with data from biaxial stretching of human tissue chosen as the final material model. 

Simulations were run primarily with a healthy cardiac cycle pressure but one case of atrial 

fibrillation pressure curve was tested without major differences between the two. 

Maximum in plane stress and corresponding ostial diameter for each of the simulation 

conditions are summarized in Table 6-1. 
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Table 6-1: Ostial Size and Stress of Patient-Specific Model at 0, 5, 10, 15, 20 and 7.5 mmHg 

Average LAP 

(mmHg) 

Ostial Size:  

Short Axis (cm) 

Ostial Size: 

 Long Axis (cm) 

Max in-plane Stress 

(Pa) 

0 1.347 2.927 - 

5 1.578 3.021 5.674x104 

10 1.653 3.090 1.252x105 

15 1.670 3.162 1.991x105 

20 1.749 3.219 2.556x105 

 

. 

7.5 1.644 3.063 1.064x105 (Mises) 

7.5 AFIB 1.626 3.054 9.542x104 (Mises) 

 

Some trends that can be noted from the simulation results make sense from both a 

theoretical as well as physiological standpoint. Under physiological loading conditions, 

ostial diameter increases with increasing left atrial pressure. An interesting result is that 

deformation is much more prominent along the short axis of the opening when compared 

with the long axis, making the deformed shape of the LAA ostial diameter more circular 
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when a load is applied. At peak left atrial pressure during the second cycle of loading, 

maximum in plane stress is 56 kPa for 5 mmHg average load, and this increases up to 256 

kPa for 20 mmHg average loading curve. While left atrial pressures of 20 mmHg are on 

the extreme end of the spectrum, these results suggest that sudden changes in left atrial 

pressure can have drastic effects on the stresses and strains experienced by the cardiac 

tissue. For patients with mechanical occlusion devices, especially those with atrial flutter 

or fibrillation, changes in left atrial pressure outside of what is normally expected could 

result in unforeseen deformation of the tissue, which may explain cases in which occlusion 

devices dislodge from their attachment site. Furthermore, peak stresses occur along the top 

and bottom of the long axis of the appendage rim and also around the pulmonary veins, 

rather than along the short axis of the opening and these stresses correspond to the high 

pressure points of the cardiac cycle, during atrial systole, and also during full filling of the 

atrium. 

 While the LAA varies in shape and size based on the individual, our results indicate 

that typical left atrial pressures tends to deform the ostial opening to the appendage in such 

a way that it becomes more circular in shape. Uneven spread of stress in the tissue also 

supports this conclusion, with higher stresses along the shorter axis of the ostial opening, 

when looked at as an ellipse. For patients with mechanical occlusion devices, these 

asymmetries in stress and strain may fatigue the material of the occlusion device 

asymmetrically, leading to uneven wear and tear, which may weaken the structural 

integrity of the device. For this patient specific study, the length of the short axis of the 

ostial diameter opening experienced an increase in size of 17.1% at loading of 5 mmHg up 
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to an increase in size of 29.9% at a loading of 20 mmHg. However, the long axis opening 

only experienced increases of 3.2% at 5 mmHg to up to 9.9% at 20 mmHg. This again 

highlights the asymmetrical deformation pattern of this particular patient-specific model 

that is likely due to the asymmetric, elliptical nature of the opening to the atrial appendage. 

As for the comparison between loading with a healthy pressure curve versus 

loading with a pressure curve more characteristic of a patient with atrial fibrillation, the 

results indicate that there is not much difference. For the atrial fibrillation pressure loading 

curve that was used, both the ostial size as well as the von Mises stress were negligibly 

lower than the simulation results for the healthy pressure loading curve. This makes sense 

from a theoretical standpoint because while patients with atrial fibrillation tend to have a 

more erratic or fluttered cardiac cycle, the peak stresses experienced are not drastically 

different. From a purely biomechanical standpoint with considerations of passive tissue 

mechanics, one would not expect to see a large difference between the two test conditions. 

For live cardiac tissue, the unsteady cardiac cycle of patients with atrial fibrillation may 

further complicate and confound with the left atrial appendage from an excitation-

contraction standpoint, but this angle still needs further exploration. 

To summarize, several different methods for obtaining the material property inputs 

into a patient-specific finite element model were explored. Originally, biaxial stretching 

and DIC data collected from fresh ovine tissue samples were processed into stress-strain 

data inputs for the model, but differences between the species were drastic enough that the 

model was unrealistic. After obtaining raw data from biaxial stretching of human left 

atrium and left atrial appendage tissues, the data was fit to a 4-parameter Fung-type 
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exponential model successfully and served as inputs for the patient-specific model. The 3-

D geometry of the model itself was collated from many slices of computed tomographic 

angiography images and meshed using Hypermesh. This model was then input into 

ABAQUS with triangular shell elements and the material properties extracted from the 

human biaxial stretch were used to perform simulations at 5, 7.5, 10, 15, and 20 mmHg left 

atrial pressure loading curves. Looking at the deformations at the ostial opening to the left 

atrial appendage along with the maximum in plane-stresses experienced by the models, our 

results indicate that deformation of the opening is asymmetric due to the elliptical shape of 

the appendage, and this finding may translate to other patients. In the future, with 

widespread access to medical imaging, performing simpler finite element simulations on 

patient-specific data may become a viable strategy for improving patient health outcomes, 

especially when it comes to the use of mechanical occlusion devices targeting patients with 

atrial fibrillation. There are also some ways to improve the modelling framework of this 

study. For the material model used, using DIC to quantify the 3D stress-strain behavior 

would allow use of a more accurate Fung model with more independent material 

parameters. Such a set-up could even be used to virtually implant a mechanical occlusion 

device and measure the impact directly, experimentally. Of course, one limitation of this 

study is its patient-specific nature, so increasing the number of samples would be 

beneficial. Other improvements could be made by having a distinct material model for the 

pulmonary veins, atrium, and appendage or by simulating the effects of the surrounding 

pericardium.  
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Appendix 

Selected Material Property Inputs into ABAQUS: Biaxial Hyperelastic Input Poisson = 0.449, Rows 

1-100 and 401-500. 

Row: 1-100  

Nominal Stress (Pa) 

Row: 1-100  

Nominal Strain 

Row: 401-500 

Nominal Stress (Pa) 

Row: 401-500 

Nominal Strain 

0 0 22693.7 0.183555 

10.4888 0.000501 22921.3 0.183978 

20.9991 0.001002 23151.4 0.184401 

31.5315 0.001502 23384.1 0.184824 

42.0865 0.002002 23619.4 0.185247 

52.6646 0.002502 23857.3 0.185669 

63.2665 0.003002 24097.8 0.186092 

73.8925 0.003501 24341 0.186514 

84.5433 0.004 24587 0.186936 

95.2195 0.004499 24835.6 0.187358 

105.921 0.004998 25087.1 0.18778 

116.65 0.005496 25341.3 0.188202 

127.405 0.005994 25598.4 0.188623 

138.188 0.006492 25858.4 0.189045 

148.999 0.00699 26121.3 0.189466 

159.839 0.007487 26387.1 0.189887 

170.708 0.007984 26655.9 0.190308 

181.607 0.008481 26927.8 0.190729 

192.536 0.008978 27202.7 0.19115 

203.496 0.009474 27480.7 0.19157 

214.488 0.00997 27761.9 0.191991 

225.511 0.010466 28046.2 0.192411 

236.568 0.010962 28333.8 0.192831 

247.657 0.011457 28624.6 0.193251 

258.781 0.011953 28918.7 0.193671 

269.939 0.012448 29216.1 0.19409 

281.132 0.012942 29516.9 0.19451 

292.361 0.013437 29821.2 0.194929 
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303.626 0.013931 30128.9 0.195348 

314.928 0.014425 30440.1 0.195767 

326.267 0.014919 30754.9 0.196186 

337.645 0.015412 31073.2 0.196605 

349.061 0.015906 31395.2 0.197024 

360.517 0.016399 31720.9 0.197442 

372.012 0.016891 32050.4 0.19786 

383.549 0.017384 32383.6 0.198279 

395.126 0.017876 32720.6 0.198697 

406.745 0.018368 33061.5 0.199115 

418.407 0.01886 33406.4 0.199532 

430.112 0.019352 33755.2 0.19995 

441.861 0.019843 34108 0.200367 

453.654 0.020334 34465 0.200785 

465.493 0.020825 34826 0.201202 

477.377 0.021316 35191.2 0.201619 

489.307 0.021806 35560.7 0.202036 

501.285 0.022297 35934.4 0.202452 

513.311 0.022787 36312.5 0.202869 

525.385 0.023276 36695 0.203285 

537.508 0.023766 37081.9 0.203702 

549.681 0.024255 37473.4 0.204118 

561.904 0.024744 37869.4 0.204534 

574.179 0.025233 38270 0.20495 

586.506 0.025721 38675.3 0.205365 

598.885 0.02621 39085.4 0.205781 

611.318 0.026698 39500.3 0.206196 

623.805 0.027186 39920 0.206612 

636.347 0.027673 40344.6 0.207027 

648.944 0.028161 40774.3 0.207442 

661.598 0.028648 41209 0.207857 

674.308 0.029135 41648.8 0.208271 

687.076 0.029621 42093.8 0.208686 

699.903 0.030108 42544.1 0.2091 

712.789 0.030594 42999.7 0.209515 

725.735 0.03108 43460.6 0.209929 



62 

 

738.742 0.031566 43927.1 0.210343 

751.81 0.032052 44399 0.210757 

764.941 0.032537 44876.6 0.21117 

778.135 0.033022 45359.8 0.211584 

791.393 0.033507 45848.8 0.211997 

804.715 0.033991 46343.6 0.212411 

818.103 0.034476 46844.3 0.212824 

831.558 0.03496 47351 0.213237 

845.079 0.035444 47863.7 0.21365 

858.669 0.035928 48382.6 0.214063 

872.327 0.036411 48907.6 0.214475 

886.055 0.036895 49439 0.214888 

899.853 0.037378 49976.7 0.2153 

913.723 0.03786 50520.9 0.215712 

927.664 0.038343 51071.6 0.216124 

941.679 0.038826 51629 0.216536 

955.768 0.039308 52193 0.216948 

969.931 0.03979 52763.9 0.217359 

984.171 0.040271 53341.6 0.217771 

998.486 0.040753 53926.4 0.218182 

1012.88 0.041234 54518.2 0.218593 

1027.35 0.041715 55117.2 0.219004 

1041.9 0.042196 55723.4 0.219415 

1056.53 0.042677 56337 0.219826 

1071.24 0.043157 56958 0.220237 

1086.04 0.043637 57586.6 0.220647 

1100.92 0.044117 58222.9 0.221058 

1115.88 0.044597 58866.9 0.221468 

1130.92 0.045076 59518.7 0.221878 

1146.05 0.045556 60178.5 0.222288 

1161.27 0.046035 60846.4 0.222698 

1176.58 0.046513 61522.5 0.223108 

1191.97 0.046992 62206.8 0.223517 

1207.46 0.047471 62899.5 0.223926 

1223.03 0.047949 63600.8 0.224336 
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