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of autonomous and connected ground traffic. Toward this objective, we propose several algorithms to 
handle different traffic environments. First, an algorithm that is called the Discrete-time occupancies 
trajectory (DTOT) based Intersection traffic Coordination Algorithm (DICA) is proposed. All vehicles in the 
system are Connected and Autonomous Vehicles (CAVs) and capable of wireless Vehicle-to-Intersection 
communication. The main advantage of DICA is that it enables us to utilize the intersection space more 
efficiently resulting in less delay for vehicles to cross the intersection. In the proposed framework, an 
intersection coordinates the motions of CAVs based on their proposed DTOTs to let them cross the 
intersection efficiently while avoiding collisions. In case when there is a potential collision between 
vehicles' DTOTs, the intersection modifies conflicting DTOTs to avoid the collision and requests CAVs to 
approach and cross the intersection according to the modified DTOTs. We also prove that the basic DICA 
is deadlock free and starvation free. We show that the basic DICA has a computational complexity of 

O(n2 L3
m) where n is the number of vehicles granted to cross an intersection and Lm is the maximum 

length of intersection crossing routes. To improve the overall computational efficiency of the algorithm, 
the basic DICA is enhanced by several computational techniques. The enhanced algorithm has a reduced 

computational complexity of O(n2 Lm log2 Lm). 

The problem of evacuating emergency vehicles as quickly as possible through autonomous and 
connected intersection traffic is also addressed in this dissertation. The proposed Reactive DICA aims to 
determine an efficient vehicle-passing sequence which allows the emergency vehicle to cross an 
intersection as soon as possible while the travel times of other normal vehicles are minimally affected. 
When there are no emergency vehicles within the intersection area, the vehicles are controlled by DICA. 
When there are emergency vehicles entering communication range, we prioritize emergency vehicles 
through the optimal ordering of vehicles. Since the number of possible vehicle-passing sequences 
increases rapidly with the number of vehicles, finding an efficient sequence of vehicles in a short time is 
the main challenge of the study. A genetic algorithm is proposed to solve the optimization problem which 
finds the optimal vehicle sequence in real time that gives the emergency vehicles the highest priority. 

We then address an optimization problem of autonomous intersection control which provides the optimal 
trajectory for every entering vehicle. Based on the algorithm DICA, we improve the conservative way of 
trajectory generation which is the key part of DICA to be an optimization approach using mixed integer 
programming. The new algorithm is named Mixed integer programming based Intersection Coordination 
Algorithm (MICA) with the objective of maximizing the final position of a new head vehicle over a fixed 
time interval. Constraints from space conflicting vehicles are modeled using binary variables to represent 
the vehicle's future crossing behavior. The influence of immediate front vehicles of the vehicle of interest 
is also modeled as constraints in the problem formulation to obtain a feasible optimal trajectory while 
potential collisions are safely avoided. Finally, based on MICA, we propose a novel vehicle-intersection 
interaction mechanism MICACO which is designed to handle imperfect communication, i.e., message 
delay and loss. To ensure the successful delivery of messages, we add two more message types and 
corresponding simple rules. State machines of intersection and vehicles are designed properly to ensure 
the safety of every vehicle. 

We verify the efficiency of the proposed algorithms through simulations using SUMO. The simulation 
results show that DICA performs better than another existing intersection management scheme: 
Concurrent Algorithm in [1]. The overall throughput, as well as the computational efficiency of the 
computationally enhanced DICA, are also compared with those of an optimized traffic light control. The 



efficiency of the proposed Reactive DICA is validated through comparisons with DICA and a reactive 
traffic light algorithm. The results show that Reactive DICA is able to decrease the travel times of 
emergency vehicles significantly in light and medium traffic volumes without causing any noticeable 
performance degradation of normal vehicles. The simulation results show that MICA is able to reduce 
congestions of an intersection significantly compared with DICA. We also show MICACO's performance 
through comparisons with MICA and an optimized traffic light. 
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ABSTRACT

In this dissertation, we address a problem of safe and efficient intersection cross-

ing traffic management of autonomous and connected ground traffic. Toward this

objective, we propose several algorithms to handle different traffic environments.

First, an algorithm that is called the Discrete-time occupancies trajectory (DTOT)

based Intersection traffic Coordination Algorithm (DICA) is proposed. All vehicles

in the system are Connected and Autonomous Vehicles (CAVs) and capable of wire-

less Vehicle-to-Intersection communication. The main advantage of DICA is that

it enables us to utilize the intersection space more efficiently resulting in less delay

for vehicles to cross the intersection. In the proposed framework, an intersection

coordinates the motions of CAVs based on their proposed DTOTs to let them cross

the intersection efficiently while avoiding collisions. In case when there is a potential

collision between vehicles’ DTOTs, the intersection modifies conflicting DTOTs to

avoid the collision and requests CAVs to approach and cross the intersection accord-

ing to the modified DTOTs. We also prove that the basic DICA is deadlock free

and starvation free. We show that the basic DICA has a computational complexity

of O(n2L3
m) where n is the number of vehicles granted to cross an intersection and

Lm is the maximum length of intersection crossing routes. To improve the overall

computational efficiency of the algorithm, the basic DICA is enhanced by several

computational techniques. The enhanced algorithm has a reduced computational

complexity of O(n2Lm log2 Lm).

The problem of evacuating emergency vehicles as quickly as possible through

autonomous and connected intersection traffic is also addressed in this dissertation.

The proposed Reactive DICA aims to determine an efficient vehicle-passing sequence
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which allows the emergency vehicle to cross an intersection as soon as possible while

the travel times of other normal vehicles are minimally affected. When there are no

emergency vehicles within the intersection area, the vehicles are controlled by DICA.

When there are emergency vehicles entering communication range, we prioritize

emergency vehicles through the optimal ordering of vehicles. Since the number of

possible vehicle-passing sequences increases rapidly with the number of vehicles,

finding an efficient sequence of vehicles in a short time is the main challenge of the

study. A genetic algorithm is proposed to solve the optimization problem which

finds the optimal vehicle sequence in real time that gives the emergency vehicles the

highest priority.

We then address an optimization problem of autonomous intersection control

which provides the optimal trajectory for every entering vehicle. Based on the algo-

rithm DICA, we improve the conservative way of trajectory generation which is the

key part of DICA to be an optimization approach using mixed integer program-

ming. The new algorithm is named Mixed integer programming based Intersection

Coordination Algorithm (MICA) with the objective of maximizing the final position

of a new head vehicle over a fixed time interval. Constraints from space conflicting

vehicles are modeled using binary variables to represent the vehicle’s future cross-

ing behavior. The influence of immediate front vehicles of the vehicle of interest is

also modeled as constraints in the problem formulation to obtain a feasible optimal

trajectory while potential collisions are safely avoided. Finally, based on MICA,

we propose a novel vehicle-intersection interaction mechanism MICACO which is

designed to handle imperfect communication, i.e., message delay and loss. To ensure

the successful delivery of messages, we add two more message types and correspond-

ing simple rules. State machines of intersection and vehicles are designed properly

to ensure the safety of every vehicle.
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We verify the efficiency of the proposed algorithms through simulations using

SUMO. The simulation results show that DICA performs better than another exist-

ing intersection management scheme: Concurrent Algorithm in [1]. The overall

throughput, as well as the computational efficiency of the computationally enhanced

DICA, are also compared with those of an optimized traffic light control. The effi-

ciency of the proposed Reactive DICA is validated through comparisons with DICA

and a reactive traffic light algorithm. The results show that Reactive DICA is able

to decrease the travel times of emergency vehicles significantly in light and medium

traffic volumes without causing any noticeable performance degradation of normal

vehicles. The simulation results show that MICA is able to reduce congestions of

an intersection significantly compared with DICA. We also show MICACO’s perfor-

mance through comparisons with MICA and an optimized traffic light.
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CHAPTER ONE

Introduction

1.1 Motivation and Background

Recent years, due to the rapidly increasing demand for transportation from the

larger and larger population, roads have become more and more congested. Careful

city planning and smart traffic control strategies [2] can usually alleviate such trans-

portation problems, but the unexpected growth of population and vehicle usage leads

to persistent congestions. As a potential solution to address the serious congestion

problems, autonomous transportation systems have attracted a lot of research and

development efforts from academia, industry, and government. For example, during

the mid-1990s the California PATH (Partners for Advanced Transportation Tech-

nology) launched the Automated Highway System (AHS) program [3] and the US

DARPA (Defense Advanced Research Projects Agency) held a series of autonomous

vehicle challenges during the 2000s [4] to take advantages in sensing and compu-

tation technologies. Also, many large companies and startups have already made

decisions to hugely invest in developing their own self-driving vehicles or vehicles

with advanced driving assistance systems [5]. However, despite many recent suc-

cessful road testing results of several self-driving cars from companies like Waymo,

Uber, Baidu, etc., it is hard to argue that the overall system-wide traffic safety, as

well as throughput, will be improved substantially when we have a few Connected

and Autonomous Vehicles (CAVs) among all other conventional vehicles. In fact,

the potential of autonomous vehicles in terms of traffic efficiency and safety will

1



be unleashed when most cars on roads are autonomous and connected [6]. Thus,

in addition to many efforts to make today’s traffic more efficient by improving uti-

lization of traditional traffic infrastructure such as the works presented in [7–9],

we believe that it is also very important to develop traffic control algorithms that

take advantages of connectivity and autonomy of autonomous vehicles to prepare

for the next generation transportation system. However, while there have been

many efforts toward this direction, the development of safe and efficient autonomous

transportation systems is still at its early stage. Among many research problems

like vehicle path planning [10], autonomous parking control [11], collision avoid-

ance [12, 13], relation between occupant experience and intersection capacity [14],

intersection management of mixed traffic [15], intersection control based on real-time

traffic surveillance [16–18], etc. that should be addressed toward this objective, we

are particularly interested in addressing a problem of safe and efficient intersection

crossing traffic management of autonomous connected traffic. Compared with high-

ways, road intersections are more complicated places where accidents are more likely

to happen and become the bottleneck of traffic performance improvement.

The problem to be solved in this field is how to improve the safety and through-

put of intersection crossing traffic without using traffic lights or stop signs by lever-

aging the advantages of autonomous vehicles. In literature, there are a number

of notable results for autonomous intersection crossing traffic management. Some

researchers started their research from heuristic algorithms since those algorithms

have a very little computational requirement which makes them good candidates for

real-time applications if the performance is acceptable. Aaditya Prakash Chouhan

and Gourinath Banda [19] proposed three different heuristic strategies to find col-

lision free safe constant speed for a vehicle to cross an intersection while computa-

tion load is minimized whenever possible. [20] proposed a robust algorithm against

external disturbances, model mismatches, nondeterministic delay of network and
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processing time of the intersection manager. Instead of using constant velocity,

the algorithm let each vehicle creates an optimal position trajectory and tracks it.

Turning vehicles are not bounded by the low speed before entering the intersection

which increases the throughput of the intersection.

Many researchers have also investigated various optimization approaches to increase

throughput. In [21], Lee et al. proposed an algorithm, called the Cooperative Vehicle

Intersection Control (CVIC), which manipulates every individual vehicle’s driving

motion by providing them proper acceleration or deceleration rates so that vehicles

can cross the intersection safely. Wu et al. [22] introduced a new intersection traffic

management framework that is formulated as a combinatorial optimization problem

and solved the problem approximately using the ant colony system algorithm [23].

Fei Yan et al. [24] combined vehicles whose routes are compatible with each other

into mini groups and obtained an efficient vehicle passing sequence by their proposed

genetic algorithm. A nonlinear programming formulation for autonomous intersec-

tion control was developed in [25] where the nonlinear constraints were relaxed by a

set of linear inequalities. Most of them are centralized approaches in which control

decisions are made typically by a central agent. Decentralized intersection control

approaches have also been proposed in the literature. For example, [26] formulated

a decentralized framework whereby each autonomous vehicle minimizes its energy

consumption under the throughput-maximizing timing constraints and hard safety

constraints to avoid rear-end and lateral collisions. A complete analytical solution

of the decentralized problems was presented in the paper.

These approaches are trying to avoid the appearance of vehicles with conflicting

routes inside an intersection at the same time to ensure safety which uses simple

models that the entire intersection is considered as a conflict zone. Some researchers

studied elaborate models that allow conflicting vehicles to exist inside an intersec-

tion simultaneously to further improve performance. To achieve this objective, most
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approaches discretized the intersection space into grid cells so that vehicles of con-

flicting routes can exist at the same time within an intersection but not within

the same cell. In [27], Kurt Dresner and Peter Stone presented a reservation-

based approach Autonomous Intersection Management (AIM) which allows route-

conflicting vehicles enter the intersection simultaneously as long as they don’t occupy

the same cell at the same time. In AIM, vehicles request and receive time slots from

the intersection during which they may pass. However, no global coordination is

made for crossing vehicles to obtain optimal traffic flow. Following AIM, similar

researches and improved approaches were proposed like expediting the crossing of

emergency vehicles [28], determining the priority of requests using auctions [29,30],

optimization using integer program [31] and mixed integer linear program [32], etc.

Representative centralized approaches also include auction-based intersection man-

agements proposed in [29, 30]. A series of decentralized approaches only based on

vehicle-to-vehicle (V2V) communications were proposed in [33–36] by Reza Azimi et

al. In their papers, the intersection area is considered as a grid which is divided into

small cells. Each cell in the intersection grid is associated with a unique identifier.

One of their advanced intersection protocols named AMP-IP (Advanced Maximum

Progression Intersection Protocol) allows the lower-priority vehicle to go ahead and

cross the conflicting cell before the arrival of the higher-priority vehicle if there is

enough time for the lower-priority vehicle to clear the cell. V2V and V2I were both

used in the cooperative scheduling mechanism called TP-AIM [37] where for a con-

sidered vehicle, V2V provides the preceding vehicle’s future motion information and

V2I gives the assigned priority from the intersection manager.

Roughly speaking, these approaches are all based on the grid cell partitioning

approach of an intersection space. In [27], the effect of the grid cell granularity on the

computational efficiency of an intersection traffic management framework such as

AIM was studied. As the paper pointed out, higher granularity gives more flexibility
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for better traffic throughput. However, the computational complexity increases

proportionally to the square of the granularity. On the other hand, when the cell size

becomes large for better computational efficiency, one can see that the intersection

space is not utilized efficiently resulting in lower traffic throughput. Therefore, to

overcome this trade-off issue between the granularity and computational efficiency

of an algorithm, it might be a good alternative approach to utilize each vehicle’s

actual occupancy instead of grid cells to improve the overall traffic throughput. And

this has motivated our researches on this topic.

There are many researches focusing on optimization of autonomous intersec-

tion control and lots of efforts on allowing route-conflicting vehicles to exist at a

same intersection to improve efficiency. However, few researches have been done on

combining two strategies, i.e. optimize the intersection control while allowing the

simultaneous appearances of conflicting vehicles inside an intersection. Dai et al. [38]

transformed the intersection control model into a convex optimization problem with

an objective function of multiple criteria like safe speeds and accelerations to improve

the quality of experience from a passenger’s perspective. They linearized the colli-

sion avoidance constraints through scheduling the entering priority of vehicles at the

intersection to reduce computational cost. However, this linearization may decrease

performance since, for example, the scheduling requires the earlier arrival vehicle

cross the collision area first for two possibly colliding vehicles without considering

its speed. Reference [39] proposed a vehicle-intersection coordination scheme which

generates smooth flows of traffic by preventing any pair of conflicting vehicles from

approaching their Cross-Collision Point at the same time. Considering states of all

vehicles, the paper formulated a constrained nonlinear optimization problem to min-

imize the risk function to generate safe trajectories of vehicles with unused time and

space in the intersection space area reduced. Whereas, the algorithm needs more

computational cost to coordinate more vehicles since they are optimizing the traffic
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flow of all approaching vehicles at the same time. And the optimization problem is

nonlinear thus the solution is not guaranteed to be the global optimum. Based on

conflict region concept, [40] formulated the intersection control problem as a mixed

linear integer program which produced an arrival schedule composed by a desired

time and speed of arrival at the intersection for every vehicle. Following this, [41]

proposed three optimal control strategies to solve the motion planning problem to

comply with the collision-free schedules at intersections. The strategies are different

mostly on how strict they are about keeping the schedule. The results show that

when the traffic volume is high, the strategy of following schedule strictly leads to

both lowest arrival time and energy expenditure.

Most existing intersection control algorithms were proposed based on the assump-

tion of perfect communication, i.e. they assume messages are delivered instantly to

the receiver and no messages will be lost. In terms of intersection traffic control

algorithms considering communication uncertainties, very few researches have been

done in this field. A delay-tolerant intersection control algorithm was proposed by

Bowen Zheng et al. [42] to guarantee the safety and liveness properties for typical

four-way single-lane intersections. They used timeouts to help vehicles and inter-

section managers decide what to do next to ensure the safety (their behaviors were

modeled as finite state machines). The results show that increasing communica-

tion delays may significantly decrease the intersection performance. The algorithm

does not allow vehicles with conflicting movements to enter the intersection at the

same time. The algorithm was expanded and generalized in [43] to handle multiple

lane intersections and interconnected intersections. Some of the timing and security

issues in transportation networks with VANET-based intelligent intersections were

modeled and analyzed quantitatively in the paper. The paper also showed how

imperfect communication will affect the performance and safety of a single inter-

section and a network of intersections. However, these approaches which handle
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communication uncertainties usually don’t include optimization to further improve

the traffic efficiency. The study of optimal intersection control considering imperfect

communication is still at its very early age.

1.2 Contribution

As an approach to address the granularity issue mentioned in Section 1.1, we

propose a novel intersection traffic management scheme based on the idea of the

Discrete-Time Occupancies Trajectory (DTOT). Conceptually, a DTOT is a discrete-

time sequence of a vehicle’s actual occupancy within an intersection space. The

proposed DTOT-based Intersection Control Algorithm (DICA) allows the flexibil-

ity that each vehicle can choose its path as well as motions along the path that a

CAV wants to take to cross an intersection. A CAV who is approaching an intersec-

tion will check whether it is the Head Vehicle on its lane. A CAV becomes a head

vehicle only when no vehicles exist between the CAV and the intersection, or the

vehicle which is immediately in front of the CAV has begun to enter the intersection.

If the CAV is a head vehicle, it will propose its request to the intersection. From

the request, a vehicle’s enter time and exit time to the intersection, route and other

detailed information of passing the intersection can be found. Then the intersection

responds with a DTOT to the vehicle to avoid collisions and improve the overall

intersection throughput. The DTOT corresponds to a trajectory with achievable

speed and acceleration for the CAV. If the CAV is not a head vehicle, it will just

follow other cars. Thus, the management scheme is only dealing with head vehicles

which reduces largely the communication needs for vehicles and the computational

complexity of the central control agent. It is assumed that a CAV always want to go

through an intersection as quickly as possible. So CAVs in DICA always try their

best to reach maximum allowed speed within the intersection.
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Then, we provide an in-depth analysis of the original DICA to show that it

satisfies the liveness property in terms of deadlock as well as starvation issues and

also to derive the overall computational complexity of the algorithm. We propose

several computational approaches to improve the overall computational efficiency of

the DICA and also enhance the algorithm accordingly so that it can be operated in

real-time for autonomous and connected intersection crossing traffic management.

We also present simulation results that show the improved computational efficiency

of the enhanced algorithm and the overall throughput performance in comparison

with that of an optimized traffic light control.

Following computationally enhancing DICA, we extend DICA approach to include

emergency vehicles in the traffic to be controlled. Our goal is to let emergency vehi-

cles cross intersections as fast as possible while maintaining adequate traffic perfor-

mance. In this dissertation, we assume that emergency vehicles are taking normal

routes which means that they will not travel in a wrong lane. A genetic algorithm is

proposed to find the optimal passing sequence of vehicles whose trajectories can be

rearranged. This optimal sequence aims to make the emergency vehicles cross the

intersection in the fastest way. When there is no emergency vehicle inside the com-

munication region, vehicles are controlled by DICA. Thus, the proposed algorithm is

called Reactive DICA. Among many sequence forming approaches [22, 24, 29, 44] in

literature, [24] is the most similar approach with ours which also proposed a genetic

algorithm to form vehicle sequences. However, unlike the approach proposed in this

dissertation, they are essentially not allowing vehicles with conflicting routes to be

inside the intersection at the same time.

We also address the optimization problem of safe and efficient intersection cross-

ing traffic management which provides the optimal trajectory for every head vehicle.

The overall idea is similar to that in [39] while the employed approaches are different,

i.e. [39] uses MPC and our paper uses Mixed Integer Programming (MIP). The pro-
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posed algorithm is called MICA (MIP-based Intersection Coordination Algorithm)

since it is optimizing every new head vehicle’s trajectory using MIP under various

constraints. The constraints on the new head vehicle’s possible motions are mod-

eled using binary variables. Potential collisions with the immediate front vehicles

are also avoided by the modeled constraints for such vehicles. This optimal con-

trol algorithm allows later confirmed vehicle to cross the intersection earlier as long

as no collisions will happen to increase the overall performance. A huge improve-

ment of performance is observed compared with our DICA algorithm which already

outperforms conventional traffic light control and Concurrent Algorithm [1].

Finally, based on our previous research on intelligent intersection coordination

algorithms [45–48], we present the preliminary results of an algorithm to handle com-

munication uncertainties properly while controlling intersection traffics. The algo-

rithm is optimizing every new head vehicle’s trajectory under imperfect communica-

tion using Mixed Integer Programming (MIP) with various constraints thus named

MICACO (MIP-based Intersection Coordination Algorithm considering COmmuni-

cation uncertainties). MICACO ensures safety and finds the optimal trajectory for

every head vehicle under the realistic communication environment where there are

packet delays and losses.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized into seven chapters.

• In Chapter 2, we review the literature on autonomous transportation, espe-

cially on autonomous intersection control.

• In Chapter 3, we introduce the assumptions and interactions between a vehicle

and an intersection in DICA. Then we explain the essential functions in DICA
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in detail and analyze the liveness of DICA. Finally, DICA is simulated and

compared with Concurrent Algorithm [1] to validate its performance.

• In Chapter 4, we analyze the computational complexity of DICA in detail

first and then proposed several computational techniques to improve over-

all computational efficiency. The improved performance is validated through

comparisons with original DICA and an optimized traffic light control algo-

rithm.

• Chapter 5 describes Reactive DICA especially the proposed genetic algorithm

in detail. Simulation results of Reactive DICA are compared with a reactive

traffic light algorithm to show its performance.

• In Chapter 6, we formulate the trajectory optimization problem with each con-

straint explained detailedly. Then we propose MICA algorithm incorporating

the MIP optimization approach. The efficiency of MICA is evaluated against

DICA and an optimized traffic light algorithm through extensive simulations.

• Based on MICA, Chapter 7 presents the preliminary result on a new algorithm

MICACO which handles imperfect communications i.e. packet delay and loss.

The efficiency of MICACO is evaluated through simulation results compared

with MICA and an optimized traffic light algorithm.

• Finally, Chapter 8 draws the conclusion of the dissertation and provides poten-

tial future work.
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CHAPTER TWO

Literature Review

2.1 Autonomous Control of Highway Systems

Highway congestion has brought intolerable burdens to most urban residents.

Governments have made many attempts including building more roads and raising

tolls or other related taxes, promoting public transportation or better vehicle occu-

pancy (carpooling) and developing a high-speed communications network that in

many ways to reduce travel demand [49]. In the meantime, researches of Intelligent

Vehicle/Highway System (IVHS) provide new ways to ease the congestion on high-

ways. There are mainly two types of methods to increase highway capacity while

ensuring safety, 1. vehicle platooning, represented by the AHS which had been

deeply developed at the University of California Partners for PATH program, in

cooperation with the State of California Department of Transportation (Caltrans)

and the United States Federal Highway Administration (FHWA) since 1989 [3, 49].

2. algorithms and protocols for each individual vehicle to drive fast and safely,

represented by references [50,51].

2.1.1 Vehicle Platooning

Organizing traffic into platoons which are groups of up to 20 tightly spaced cars

can increase highway capacity greatly. 8000 vehicles per hour per lane could be

achieved while today’s highways with manually controlled vehicles only have 2000

capacity [3]. Platooning also has a benefit of reducing aerodynamic drag because
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vehicles are tightly spaced. People cannot react quickly enough to drive safely with

such small headways, so every vehicle in a platoon should be automated. In the

approach of [49], a car joins a platoon when it enters the AHS and exits as a one-

car platoon or part of an exiting platoon when it approaches its destination. Inside

AHS, the car is controlled automatically by computers and a series of maneuvers are

executed by the car including splitting from and joining platoons and lane changing

to navigate through the highway network. [49] introduced the finite state machine

method which is used for the execution of maneuvers. Join control law, platoon

leader control law and other laws were given in [3] to ensure collision avoidance

of AHS. What is noteworthy is that the onboard vehicle control system is a hybrid

control system which consists of a discrete event dynamical system (the coordination

layer) and a continuous-time dynamical system (the regulation and physical layers).

The platoon concept is useful but does not take full advantage of the microscope

centralized possibilities because it does not consider the interaction of all vehicles

[51]. In a platoon, only leaders (and free agents) can initiate maneuvers, while

followers maintain platoon formation at all times [3].

2.1.2 Algorithms and Protocols for Individual Vehicles

For an individual autonomous vehicle, many algorithms and protocols have been

proposed for its longitudinal and lateral motion on a highway system while the

vehicle’s safety is ensured.

Longitudinal Control

The longitudinal control of a vehicle is to control the vehicle’s speed and its

adaptation to road features by adjusting the throttle [52] and the brake pedal as

needed [53]. A longitudinal control system will handle issues like nonlinear vehi-

cle dynamics, operations of vehicles from high-speed cruising to a complete full-
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stop, and other operations under the communication constraints [54]. Following

we describe several different controllers that are designed to ensure the safety of

longitudinal motion of each vehicle.

Reference [55] presented the theorem for perpetual safety of two cars on a lane

that if each car makes the worst-case assumption about the car immediately in front

of it, then the safety of multiple cars on a lane can be guaranteed. Reference [56]

used a simple discrete-time kinematic model to represent the longitudinal motion

of a vehicle, xt+h = f(xt, vt) = xt + vth, where xt, vt, h correspond to x-axis (for-

ward direction) position, linear velocity of a vehicle at time t, and sampling period

respectively. The paper formulated an MPC problem for the vehicle to ensure the

generation of safety-guaranteed motions.

Lateral Control

Typically lane changing provides a maneuver for a fast-moving vehicle to pass

a slow one, which can be observed everywhere on the highway [57]. A framework

of lane change decision-making under typical urban driving conditions was pro-

posed by Gipps [58], which includes the effects of traffic lights, obstacles, and types

of surrounding vehicles. Taking into account the potential conflict objectives and

assuming logical driver behavior, the model focuses on the decision-making process.

Reference [56] constructed the MPC problem for Lane Change of a vehicle on

multi-lane traffic and introduced the Lane Change Protocol that a vehicle can initi-

ate its lane change action only when its state satisfies certain relations with neigh-

boring vehicles. The paper also proposed the Yield Protocol which is incorporated

into the MPC motion planning framework to ensure the liveness of Lane Change. A

novel MPC-based approach for active steering control design was presented in [50].

Experimental results showed that a vehicle under MPC feedback policy was capable

of stabilizing with a speed up to 21 m/s on slippery surfaces such as snow-covered
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or icy roads. The paper designed and experimentally tested three types of MPC

controllers including a nonlinear MPC, an LTV MPC, and an LTV MPC controller

of low order.

2.2 Autonomous Intersection Control

Intersection traffic control is more of importance since it is more likely to have

accidents at intersections compared with highways. Besides accidents, the trip delays

from the impact of intersections also lead to waste of human and natural resources.

To tackle intersection control problems, many solutions have been proposed in the

literature. The main problem is how to provide an intersection control algorithm

with guaranteed safety and improved efficiency. Currently, all intersections are con-

trolled by either traffic lights or stop signs in the US. Other countries are also using

similar mechanisms to control intersection traffics. While stop signs are useful for

intersections of light traffic, traffic lights are able to control more congested inter-

sections. The performance of traffic lights highly depends on the cycle lengths of

different phases which can be optimized based on traffic conditions. The optimiza-

tion can be done offline to have fixed cycle durations, for example, Jose Garcia-Nieto

et al. [59] optimized traffic light cycle offline based on particle swarm optimization.

However, traffic lights with fixed cycle durations will make vehicles wait for the

green light even there are no vehicles of conflicting movements. Some researchers

are also working on adaptive or dynamic traffic lights which adapt the traffic light

cycle online based on real-time traffic conditions [8, 60, 61] and optimal control of

autonomous vehicles based on traffic light information [62]. To leverage the comput-

ing, sensing, communicating capabilities of future fully autonomous vehicles, more

researches are being done on algorithms to control intersection traffic without traffic

lights or stops signs. Our algorithms are also only dealing with autonomous vehicles,
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hence we mainly review intersection control approaches of autonomous vehicles in

this section.

2.2.1 Centralized Control

Most of existing intersection control algorithms in literature are centralized

approaches in which control decisions are made typically by a central agent. In [27],

Kurt Dresner and Peter Stone presented a reservation-based approach Autonomous

Intersection Management (AIM) which allows route-conflicting vehicles enter the

intersection simultaneously as long as they don’t occupy the same grid cell at the

same time. In AIM, vehicles request and receive time slots from the intersection

during which they may pass. Later they improved AIM by enabling vehicles to

accelerate in the intersection area [63]. However, no global coordination is made for

crossing vehicles to obtain optimal traffic flow in both papers. Following AIM, simi-

lar researches and modified approaches were proposed like expediting the crossing of

emergency vehicles [28], determining the priority of requests using auctions [29,30],

optimization using integer program [31] and mixed integer linear program [32], etc.

Dustin Carlino, Stephen D. Boyles and Peter Stone [29] proposed an auction-based

intersection traffic management in which vehicles can bid for a faster crossing of an

intersection. They also designed a benevolent system agent to prevent the scheme

from being biased towards wealthy driver agents. Levin et al. [31] studied the

approach to choose the optimal subset of vehicles to move at every time step by for-

mulating an Integer Program (IP). Arbitrary objective functions can be admitted

by the IP so a more general class of policies can be applied to optimize the order

of vehicles to cross the intersection. They also proposed AIM* which uses a mixed

integer linear program to optimally choose vehicle reservations and ensure enough

separation at all conflicting points that vehicles might intersect [32]. A rolling hori-

zon algorithm was also presented to extend AIM* to a larger number of vehicles
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in real time. Matthew Hausknecht et al. [64] investigated the performance of AIM

for networks of autonomous intersections and the impact of dynamically reversing

traffic flow along certain lanes in a road network.

Reference [55] designed smart intersections where vehicles negotiate the inter-

section crossings through interaction of centralized and distributed decision making.

The route that was taken by a car i is described by an ordered pair R(i)=(O(i),

D(i)), of origin and destination, respectively. A scheme was proposed which con-

sists of a time-slot allocation intersection crossing algorithm, and an algorithm for

updating failsafe maneuvers of each vehicle so as to avoid collisions while crossing

an intersection. A car will enter the intersection only if it can exit safely. An inter-

esting result about collision avoidance at intersections is shown in [13], that it is an

NP-hard problem to check the membership in the maximal controlled invariant set,

which is the largest set of states for which there exists a control that avoids colli-

sions. An algorithm with provable error bounds is proposed to solve such a problem

approximately in polynomial running time. The paper provides and proves a tight

bound on the approximated solution.

In recent years, many researches have been done to improve intersection control

performance by using optimization approaches. In [21], Joyoung Lee and Byungkyu

Park proposed an algorithm, called the Cooperative Vehicle Intersection Control

(CVIC), which manipulates every individual vehicle’s driving motion by provid-

ing them proper acceleration or deceleration rates so that vehicles can cross the

intersection safely. They formulated an optimization problem that has the objec-

tive function of minimizing the total length of overlapped vehicular trajectories.

Later Joyoung Lee et al. [65] studied the CVIC framework in the case of a corridor

consisting of multiple intersections. Wu et al. [22] introduced a new intersection

traffic management framework that was formulated as a combinatorial optimiza-

tion problem and solved the problem approximately using the ant colony system
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algorithm [23]. In [66], authors proposed Intersection Management using Coopera-

tive Adaptive Cruise Control (iCACC) which models an intersection as a group of

possible conflicting points and optimizes the arrival of vehicles at those points to

minimize the total intersection delay of all approaching vehicles. Fei Yan et al. [24]

combined vehicles whose routes are compatible with each other into mini groups

and obtained an efficient vehicle passing sequence by their proposed genetic algo-

rithm. Jean Gregoire et al. [67] proposed a cooperative motion-planning algorithm

which decomposes path-velocity to have the optimal coordination among crossing

vehicles. Kyoung-Dae Kim and P.R. Kumar [1, 56] developed a Model Predictive

Control (MPC) framework which integrates decisions made by the intersection in

the discrete domain for vehicle ordering with decisions made by each vehicle in

the continuous domain to dynamically generate a sequence of collision-free motions.

Their paper considered two algorithms, a simple First In First Out (FIFO) Cross-

ing algorithm and a Concurrent Algorithm, and shown the corresponding system-

wide safety and crossing traffic liveness. A nonlinear programming formulation for

autonomous intersection control was developed in [25] where the nonlinear con-

straints were relaxed by a set of linear inequalities. While the objective function

of the optimization problem in [25] involves the travel time, other studies [38, 39]

are trying to solve similar control problem using an objective function with multiple

criteria like safe speeds and accelerations while avoiding collisions. S. Alireza Fayazi

et al. proposed an urban intersection traffic management scheme which regularly

calculates an optimal arrival schedule of approaching vehicles to ensure safety and

largely reduce the number of stops and intersection delays [68, 69]. Their method

encourages vehicle platoon formation implicitly and they also modified their design

to support mixed traffic in [69]. A polling-systems-based algorithm was proposed

in [70] with provable guarantees on safety and performance. In the algorithm, a

rigorous upper bound is provided for the expected waiting time.
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2.2.2 Decentralized Control

Compared with centralized control approaches, infrastructure support is not

needed in decentralized control. And also the single point of failure problem does

not exist for decentralized algorithms.

Since 2011, researcher Reza Azimi has proposed a series of reliable intersection

protocols that use only vehicle-to-vehicle (V2V) communications. The installation of

a centralized infrastructure at each intersection is impractical due to the high overall

system cost. Azimi advocates the use of V2V communications and distributed inter-

section algorithms that run in each vehicle. He designed the vehicular network pro-

tocols that integrate mobile wireless communications standards such as Dedicated

Short Range Communications (DSRC) and Wireless Access in a Vehicular Environ-

ment (WAVE). Collision Detection Algorithm for Intersections (CDAI) which uses

a priority-based policy, Stop-Sign Protocol (SSP), Throughput Enhancement Pro-

tocol (TEP) and Throughput Enhancement Protocol with Agreement (TEPA) are

proposed in [33]. SSP is similar to actual stop-sign situation that every vehicle must

stop before an intersection when there is a stop-sign. Using TEP, vehicles stop at

the intersection only if the CDAI predicts a collision and assigns a lower priority to

them based on the message it receives from all vehicles at the intersection. TEPA

is built on TEP and is explicitly designed to handle lost V2V messages.

In [34], Azimi et al. defined an intersection as a perfect square box that pre-

defines the entry and exit points for each lane to which it is connected. The inter-

section area was discretized as grid cells and each cell was associated with a unique

identifier. More advanced protocols CC-IP (Concurrent Crossing-Intersection Proto-

col) and MP-IP (Maximum Progression-Intersection Protocol) which were improved

from [33] were proposed. In CC-IP, a CROSS message is broadcasted when a vehi-

cle enters the intersection area, other vehicles can simultaneously pass through the

intersection if they detect no potential collision with the vehicle which is already
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crossing the intersection, otherwise the vehicle stops before the intersection area.

However, in MP-IP, the vehicle which has the lower priority uses CDAI and finds

out the first common cell (trajectory intersecting cell, abbreviated as TIC) with the

crossing higher-priority vehicle. Then, instead of not entering the intersection as in

CC-IP, the vehicle stops at the cell just before entering the TIC.

Reference [35] illustrates more advanced protocols about intersection using vehic-

ular networks based on the work of [33, 34]. After detailed describing of MP-IP

and AMP-IP (Advanced Maximum Progression Intersection Protocol), the paper

proves that these protocols avoid deadlock situations inside the intersection area.

The improvement of AMP-IP is that the protocol allows lower priority vehicles to

advance and cross the conflicting cell before the higher priority vehicle arrives. A

Safety Time Interval of 2s is used to help lower-priority vehicles decide whether they

can go through the conflicting cell safely. Simulation results show that the latest

V2V intersection protocol AMP-IP yields over 85% overall performance improve-

ment over the common traffic light models. In [71], Azimi also investigates the

use of their proposed V2V-intersection protocols for autonomous driving at round-

abouts. The improvement in safety and throughput when the intersection protocols

are used to traverse roundabouts is also quantified.

In the approach [72] proposed by Wu et al., the estimated arrival time is shared

wirelessly among vehicles to obtain the best passing sequence. Yue J. Zhang et al.

proposed a decentralized optimal control framework which coordinates a continuous

flow of CAVs crossing two adjacent intersections online [73]. The obtained solution

gives the optimal acceleration/deceleration for each vehicle at any time to minimize

fuel consumption. However, the optimal control solution’s feasibility depends on

the initial condition of each CAV when they enter the so-called control zone of each

intersection. Later, they showed that there exists a feasibility region defined by

every CAV’s arrival time and speed, and can be fully determined to the CAV before
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it enters the control zone [74]. [26] formulated a decentralized framework whereby

each autonomous vehicle minimizes its energy consumption under the throughput-

maximizing timing constraints and hard safety constraints to avoid rear-end and

lateral collisions. A complete analytical solution of the decentralized problems was

presented in the paper.

Aashiq Parker and Geoff Nitschken [75] compared AIM with their intersection

management scheme which uses a decentralized neuro-evolution approach to adapt

vehicle controllers for groups of autonomous vehicles. The synthesis of collective

driving behavior is automated by neuro-evolution and the corresponding efficacy is

demonstrated.

2.2.3 Emergency Vehicle Handling

Human lives and the amount of financial loss highly depend on the response

time of emergency vehicles (i.e. from the time the emergency service is called to the

time help is offered). The travel time of emergency vehicles to the accident scene is

critical to the response time. So it is very useful and helpful to reduce travel time

of emergency vehicles on roads, especially on intersections where congestions are

more likely to happen. The survival chance of injured people in an accident falls

sharply if they reach the operating table later than 60 minutes after the accident [76].

Hence, shortening the travel times of crossing intersections for emergency vehicles

will help to save lives. In reality, the current way to handle emergency vehicles

is similar to using Vehicle-to-Vehicle (V2V) communication (siren and lights) to

warn non-emergency vehicles on roads to yield to the emergency vehicle. Some

drivers cannot respond quickly to the warnings which may result in additional time

delay for emergency vehicles and even serious accidents. In most of the existing

approaches [28, 77, 78] for emergency vehicles, the travel times of non-emergency

20



vehicles will be affected significantly and the advantages of autonomous vehicles are

not fully taken.

Many studies have been done to allow emergency vehicles to have a faster travel

across intersections. Based on MAS (Multi-Agent System), [77] introduced a state

machine for the intersection controller to change traffic signal status according to

lane occupations when an emergency vehicle is approaching. Some researchers have

explored the priority evacuation of emergency vehicles under an autonomous and

connected traffic environment. Wantanee Viriyasitavat and Ozan K. Tonguz pro-

posed an intersection control system that only uses Vehicle-to-Vehicle (V2V) com-

munication to give emergency vehicles priority of crossing [78]. The paper proposed

that at an intersection, a leader should be elected from all approaching vehicles

to serve as the temporary traffic light infrastructure and stop at the intersection

to coordinate the traffic. The green signal is always given to the lane of detected

emergency vehicles and through coordination “green-wave” signals are displayed for

the emergency vehicles to let them move at a faster speed. Kurt Dresner and Peter

Stone proposed a simple way to deal with emergency vehicles under their intersec-

tion control framework AIM (Autonomous Intersection Management) [28]. Their

algorithm only grants reservations to vehicles in the lanes that have approaching

emergency vehicles which allow the emergency vehicle to continue on its way rela-

tively unhindered.

2.2.4 Communication Uncertainties

Most existing intersection control algorithms in literature were proposed based

on the assumption of perfect communication, i.e. they assume all messages are

delivered instantly from a sender to a receiver and no message will be lost. To

handle communication delay, Crossroads algorithm [79] synchronizes all vehicles’

local clocks with the intersection manager and then let vehicles request their target
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velocities. Thus both the intersection manager and the requesting vehicles have the

same notion of time which avoids the use of extra buffer due to the uncertainty

of message trip delays. However, the algorithm requires constant crossing velocity

which results in slow speeds for turning vehicles. To improve Crossroads, Moham-

mad Khayatian et al. [20] proposed a time and space aware algorithm which is

robust against external disturbances, model mismatches, nondeterministic delay of

network and processing time of the intersection manager. Instead of using constant

velocity to cross [79], the algorithm let each vehicle computes an optimal reference

position trajectory and uses a PID controller to track it. Thus, turning vehicles

are not bounded by low speeds before entering the intersection which increases the

throughput of the intersection from that of [79].

Bowen Zheng et al. [42] proposed a delay-tolerant intersection control algorithm

which guarantees the safety and liveness of a typical four-way single-lane intersec-

tion. The behavior of vehicles and the intersection manager are modeled as finite

state machines which use timeouts to help on decisions like what to do next to

ensure safety. The results show that increasing communication latency can signif-

icantly reduce intersection performance. Vehicles with conflicting movements are

not allowed to enter an intersection at the same time. The algorithm was extended

and generalized in [43] to handle multi-lane intersections and intersection networks.

This paper models and quantifies some time and security issues in the traffic network

based on VANET intelligent intersection. It also demonstrated how imperfect com-

munications will affect the performance and security of an individual intersection

and intersection networks. Based on DSRC, Rusheng Zhang et al. proposed virtual

traffic lights algorithm [80] which puts traffic control devices inside vehicles and

elects a vehicle to act as the traffic light which needs to stop before the intersection

to control all vehicles approaching the same intersection.
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2.2.5 Mixed Traffic

Most above intersection control mechanisms don’t work with human-driven vehi-

cles who are hard to predict and coordinate with. Kurt Dresner and Peter Stone

[28, 81] augmented AIM to allow human-driven vehicles by periodically cycling a

green light for a road or lane based on the percentage of human-driven vehicles

in the traffic. An interesting problem of semiautonomous multivehicle safety has

been studied by Rajeev Verma and Domitilla Del Vechhhio [82]. They mainly made

research about the problem of collision avoidance between autonomous vehicles and

human-driven vehicles. And a formal hybrid control approach to design semiau-

tonomous multivehicle systems that are guaranteed to be safe is given. Based on a

spatio-temporal reservation scheme, Luis Conde Bento et al. [83] proposed to reserve

all possible space for a legacy vehicle to ensure safety. Xiangjun Qian et al. [44] pro-

posed that legacy vehicles can use car-following to cross and avoid collisions with

other autonomous vehicles. In Qian’s algorithm, a legacy car can cross the inter-

section if there is another autonomous vehicle to follow or all other higher-priority

vehicles have passed the intersection. Their algorithm is based on the assumption

that legacy vehicles are able to keep a safe distance from leading vehicles. Some

researchers also studied the control mechanism when there is only part of the traffic

are autonomous vehicles [84].

2.2.6 Machine Learning

Machine learning is an emerging aspect in traffic management and control,

which also shows its capability in different areas such as traffic coordination with

power [85], motion prediction [86], power system [87–90], medical science [91],

energy [92–96], etc. Kurt Dresner and Peter Stone [97] proposed a learning-based

intersection control mechanism which switches policies online to best suit traffic

conditions. Their switching mechanism performs much better than previous static
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configured intersection control policies. Matteo Vasirani and Sascha Ossowski [98]

studied multiagent learning on autonomous intersection control where they designed

a learning mechanism for intersection managers such that a global profit increase

of the manager team is able to result in an average trip time decrease for drivers.

Several attempts have been made by researchers [99–101] to apply deep reinforce-

ment learning on traffic control when all vehicles are detected. Rusheng Zhang et

al. [102] proposed a deep Q-learning to control traffic under partial observation of

vehicles, i.e. not all vehicles are equipped with DSRC. Their simulation results show

that reinforcement learning has the ability to effectively reduce the average delay of

vehicles due to intersection even with a low DSRC penetration rate.
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CHAPTER THREE

DTOT-based Intersection Traffic Management

As introduced in Chapter 1, DTOT is the abbreviation of Discrete-Time Occu-

pancy Trajectory which is a sequence of a vehicle’s actual occupancy within an

intersection space. Based on the concept of DTOT, we propose a novel intersec-

tion control algorithm named DICA (DTOT-based Intersection traffic Coordination

Algorithm) in this chapter.

3.1 Assumptions

In this section, we introduce the basic idea and algorithm of DICA that is devel-

oped for autonomous and connected intersection crossing traffic in which all vehicles

are Connected and Autonomous Vehicles (CAVs) and capable of wireless vehicular

communication. We assume that an intersection has the wireless communication

capability as well as a computation unit so that it can exchange information with

vehicles and perform necessary computations to coordinate vehicles to cross the

intersection safely. In DICA, there is no traffic light that controls the intersection

crossing traffic. Instead, each vehicle communicates with the Intersection Control

Agent (ICA), to get permission to access the intersection. As shown in Figure 3.1,

an intersection consists of two regions. The bigger region in the figure, which we

call the communication region, is defined by the wireless vehicular communication

range. The smaller region in the figure, which we call the intersection region, is the

area within an intersection that is shared by all roads connected to the intersec-
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Figure 3.1: DTOTs of two conflicting vehicles. (Opq represents the q-th occupancy
in a vehicle vp’s DTOT. Note that occupancies in this figure are intentionally made
very sparse for clear illustration purpose. DTOT starts with the occupancy in which
the vehicle’s front bumper first contacts the enter line of its lane of an intersection,
and ends with the occupancy that the vehicle is completely out of the intersection
region.)

tion. We also assume that each vehicle is equipped with an RFID (Radio Frequency

IDentification) chip and there are detectors installed at the entrance of the commu-

nication region so that the ICA can detect each vehicle’s VIN (Vehicle Identification

Number), the lane on which a vehicle is approaching an intersection, and the time

when a vehicle enters the communication region. Since all vehicles are autonomous,

we assume that each vehicle can obtain its position, speed, and the relative dis-

tance to an intersection precisely and also can avoid collisions with other vehicles
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autonomously when it is approaching an intersection. With regard to wireless vehic-

ular connectivity, we only require information exchange between CAVs and the ICA.

Thus, there is no V2V communication.

3.2 Interaction between an ICA and a CAV

No: follow traffic

Send RESPONSE

Inside communication region

DICA

Follow confirmed DTOT

Out of intersection region

Convert TSS to 

DTOT

Adjust DTOT if 

needed

Confirm DTOT

Yes: send REQUEST

CAV ICA

Become a head vehicle ?

Figure 3.2: Interaction between a CAV and an ICA.

A CAV is considered a head vehicle in its lane if there are no vehicles in front of it

or the vehicle which is immediately in front of it has begun to enter the intersection

region. As shown in Figure 3.2, the interaction between a CAV and the ICA is

initiated from the CAV, when it becomes a head vehicle, by sending a REQUEST

message to reserve a sequence of spaces and times to cross the intersection. The ICA

knows whether a vehicle is a head vehicle or not according to the list of vehicles for

each lane. Thus, a REQUEST message not from a head vehicle will be neglected by

the ICA. The list can be constructed in the ICA since, as explained earlier, the ICA

knows each vehicle’s VIN, the lane on which the vehicle is approaching, and the time

when a vehicle passes a detector installed at the boundary of the communication
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region of an intersection. Each REQUEST message contains information that is

necessary to reserve the space and time within the intersection region to cross the

intersection such as (i) the VIN, (ii) the Vehicle Size (VS), and (iii) the Timed State

Sequence (TSS). The VS is simply the length and width of the vehicle and the TSS

is the discrete time state trajectory of the vehicle starting from the entering moment

of an intersection region to the moment when the vehicle crosses the intersection

region completely. Note that it is implicitly assumed that each discrete time state

of a vehicle in TSS is also timed. This means that if a vehicle state xt is given,

then we can say that a vehicle possesses the state x at time t. For simplicity of our

discussion, we assume that the state x of a vehicle consists of the (x, y) coordinate

of the vehicle’s location and the orientation θ. We also assume that, while it is

possible that each vehicle can have different sampling period to generate its TSS,

all vehicles use the same sampling period which is small enough to generate a close

approximation of the vehicle’s actual continuous motion within an intersection.

The ICA converts the TSS to the corresponding DTOT using the VS information

which is also contained in the received REQUEST message. The DTOT is simply

a sequence of timed rectangular spaces that a vehicle needs to occupy within an

intersection region to cross the intersection. Now, the ICA uses all confirmed DTOTs

to adjust the requested DTOT to avoid collisions if needed. The ICA then converts

the collision-free DTOT to TSS and sends it back to the vehicle using a RESPONSE

message which contains (i) the VIN and (ii) TSS so that the vehicle can follow

the confirmed DTOT to cross the intersection. More detailed explanation on how

to process the requested TSS to generate a confirmed DTOT is presented in the

following section. In the sequel, we say that a vehicle is a confirmed vehicle if it

has received a confirmed DTOT from the ICA. And we assume that every vehicle is

able to follow the confirmed DTOT precisely. In practice, vehicles will have tracking

errors to follow a given DTOT. To avoid potential collisions with other vehicles,
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we can increase the size of every occupancy in the DTOT by the upper bound of

tracking errors. Since the focus of this chapter is to develop an algorithm for the

ICA for safer and higher throughput intersection crossing traffic, we simply assume

that we have an ideal wireless vehicular communication performance such that all

REQUEST and RESPONSE messages are exchanged correctly and timely. However,

it is important to note that, despite such an ideal communication assumption, our

DTOT-based algorithm can still be applicable in practice with small modifications

of the algorithm to take into account the communication unreliability. For instance,

typically we may face two problems (i.e. package delay and lost) to handle the

imperfect communications existing between CAVs and the ICA in real situations.

We could use the upper bound of the package delay to extend every occupancy in

a DTOT which is safe for vehicles but a little bit conservative. For package lost

problem, an ACK message can be added to confirm the delivery of REQUEST and

RESPONSE messages whose details can be found in the next section. A CAV will

send REQUEST again if it does not receive the ACK message from the ICA. The

same strategy could be applied to the ICA and RESPONSE message.

Algorithm 1 DICA (DTOT-based Intersection traffic Coordination Algorithm)

1: Let S be the set of confirmed vehicles and n = |S|.
2: Let vi be the vehicle to be considered for confirmation.
3: Convert TSS(vi) to DTOT (vi)
4: Call checkFV(S, DTOT (vi))→ DTOT (vi)
5: Call getCV(S, DTOT (vi))→ C
6: while C 6= ∅ do
7: Pop the first vehicle in C → vj

8: Call updateDTOT(DTOT (vi), DTOT (vj))→ DTOT (vi)
9: Call getCV(S, DTOT (vi))→ C

10: end while
11: Store DTOT (vi) for vehicle vi

12: Convert DTOT (vi) to TSS(vi)
13: Send TSS(vi) to vehicle vi
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3.3 DTOT-based Intersection Traffic Coordination

The ICA processes a REQUEST message from a head vehicle according to the

procedures shown in Algorithm 1 which we call the DTOT-based Intersection traffic

Coordination Algorithm (DICA). As shown in the algorithm, we use TSS(v) and

DTOT(v) to denote the TSS and DTOT for a vehicle v respectively. We also use S

to denote the set of vehicles which have already been confirmed at the time when

a REQUEST message is being processed. We say that two vehicles are space-time

conflicting if their trajectories are conflicting not only in space but also in time.

More precisely, two vehicles are considered to be in space-time conflict in our algo-

rithm when their DTOTs have at least one pair of occupancies that conflict in

both space and time. We use another set C in Algorithm 1 to represent the subset

of S which contains the set of vehicles whose confirmed DTOTs have space-time

conflict with the DTOT of the vehicle that is currently being processed for con-

firmation. Vehicles in C are ordered in ascending order of a certain attribute of

their confirmed DTOTs. To explain this attribute more clearly, let us consider a

situation when DICA processes a vehicle vi’s DTOT and there are two vehicles vj

and vk in the set C. Now let us suppose that DTOT(vj) starts to space-time con-

flict with DTOT(vi) from its n-th occupancy and DTOT(vk) starts to space-time

conflict with DTOT(vi) from its m-th occupancy. If we use Opq to denote the q-th

occupancy within DTOT(vp) and τ(Opq ) be the time when the vehicle vp occupies

Opq , then we say that, in this particular situation, τ(Ojn) is the first time at which

vj starts to collide with vi. Similarly, τ(Okm) is the time at which vk starts to

collide with vi. In the sequel, this specific time instant for each vehicle in C is rep-

resented by the variable ‘firstTimeAtCollision’. In this particular situation, τ(Ojn)

and τ(Okm) are denoted by vj .firstT imeAtCollision and vk.firstT imeAtCollision,

respectively. Vehicles in the set C are ordered according to this variable. Specifically,
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if vj .firstT imeAtCollision is earlier than vk.firstT imeAtCollision, then vj gets

higher priority than vk and vice versa. To see more clearly how the ‘firstTimeAt-

Collision’ is determined, we can consider an illustrative example shown in Figure

3.1. In the figure, DTOT(vi) and DTOT(vj) have space conflicts in {Oi2, Oi3} and

{Oj5, O
j
6,}. If we assume that these occupancies are also conflicting in time, then

vj .firstT imeAtCollision with respect to the vehicle vi is τ(Oj5).

As shown in Algorithm 1, when the ICA receives a REQUEST message from a

head vehicle vi, it first converts the TSS(vi) into the corresponding DTOT(vi) using

the vehicle’s VS. Then the ICA calls the function checkFV() to determine if there

exist front vehicles (See Section 3.3.1 for more details about front vehicles.) that

affect the vehicle vi’s motion and also to adjust vi’s DTOT if needed. Then the

function getCV() is called to determine the set C which is the set of vehicles whose

DTOTs are space-time conflicting with DTOT(vi). The updateDTOT() function

adjusts DTOT(vi) appropriately so that DTOT(vi) avoids space-time conflict with

other vehicle’s DTOT. These two functions are iteratively called within the while

loop until the set C becomes empty, which indicates that no vehicles in the set

C will collide with the vehicle vi. After DTOT(vi) is appropriately adjusted and

confirmed that there is no space-time conflict with all other confirmed vehicles,

then the confirmed DTOT(vi) is converted into TSS(vi). Finally, the ICA sends the

confirmed TSS(vi) back to the vehicle vi so that the vehicle can cross the intersection

safely by following the confirmed DTOT. In the following sections, we provide a more

detailed explanation on the subfunctions called within DICA.

3.3.1 Collision Avoidance with Front Vehicles

As shown in Figure 3.3, there are two types of front vehicles when a vehicle

vi is approaching and crossing an intersection. In DICA, a vehicle is considered

as a front vehicle of vi if the vehicle comes from another lane but has the same

31



Vehicle vi

       

(a)

Vehicle vi

(b)

       

i

Figure 3.3: Example situations of front vehicles: (a) vehicles with different routes
but same exit lane, and (b) vehicles with same intersection crossing routes.

exit lane as vehicle vi or the vehicle is immediately in front of vi and has the

exact same intersection crossing route as that of vi. For a vehicle vi, if there is

another confirmed vehicle whose exit lane is the same as that of vehicle vi and will

exit the intersection earlier, then they may collide immediately after crossing the

intersection if the speed of vehicle vi is higher than that of the other confirmed

vehicle. To address this problem, AIM [27] adopted a simple strategy which gives

one second separation time between these two vehicles. However, it is important

to note that the separation time should depend on the speeds of the two vehicles.

Hence, instead of using a fixed separation time approach, we use an approach that

restricts the maximum speed of the following vehicle by the speed of the front vehicle.

In the example situation (a) shown in Figure 3.3, the vehicle vi’s maximum allowed

speed within an intersection is restricted by the front vehicle’s exit speed. If there is

another confirmed vehicle that has the same intersection crossing route as vehicle vi,

we adjust vi’s speed to leave adequate distance between them. In Algorithm 1, the
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function checkFV() looks for the existence of above mentioned front vehicles from

all confirmed vehicles and delay the new head vehicle to avoid potential collisions if

needed.

3.3.2 Vehicles for Collision Avoidance

Algorithm 2 getCV(S, DTOT (vi))

1: C = ∅
2: for vj in S do
3: for Ojkj in DTOT (vj) do

4: if vj not in C then
5: for Oiki in DTOT (vi) do

6: if Ojkj ∩O
i
ki
6= ∅ then

7: Call getOTI(Ojkj ) → I(Ojkj ) := [τlb(O
j
kj

), τub(O
j
kj

)]

8: Call getOTI(Oiki) → I(Oiki) := [τlb(O
i
ki

), τub(O
i
ki

)]

9: if I(Ojkj ) ∩ I(Oiki) 6= ∅ then

10: Assign τlb(O
j
kj

)→ vj .firstT imeAtCollision

11: Push vj into C
12: end if
13: end if
14: end for
15: end if
16: end for
17: end for
18: Sort C in ascending order of firstTimeAtCollision

The function getCV() returns the set C that contains vehicles which will cause

potential collisions inside the intersection with vehicle vi. To better understand the

operation of function getCV(), it is necessary to introduce the way we check the

space-time conflict between two occupancies from DTOTs of two vehicles. For every

individual occupancy in a DTOT of a vehicle, we define the entrance time (τlb) and

the exit time (τub) of the occupancy as the times when the vehicle first contacts and

is totally out of the occupancy. These two times can be estimated by taking the

times of the previous and next occupancies which are the closest to the occupancy
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while having no overlapping area. As an example, for the occupancy Oj4 of the

vehicle vj in Figure 3.1, the entrance time τlb(O
j
4) and the exit time τub(O

j
4) of that

occupancy can be determined by τ(Oj2) and τ(Oj6), respectively. Note that a DTOT

for a vehicle consists of many more numbers of occupancies in practice. Hence, the

entrance times and exit times determined in this way can be very close to the actual

entrance and exit times of the occupancy. For the first several occupancies in a

DTOT, there may not be a previous occupancy that has no overlapping area with

themselves. For these occupancies, we simply take the first occupancy’s time in the

DTOT as these occupancies’ entrance time. As an example shown in Figure 3.1,

we use τ(Oj1) as the entrance time τlb(O
j
2) for the occupancy Oj2. Similarly, we take

the last occupancy’s time as the exit time τub for the last several occupancies in a

DTOT.

As shown in Algorithm 2, the function getCV() determines the set C by check-

ing space-time conflict for every pair of occupancies (Oin, O
j
m) for all n,m, and j in

the set S. Since an occupancy in a DTOT is represented as a rectangle, it is rela-

tively straightforward to do a space conflict checking. For this, Algorithm 2 simply

checks if two rectangles have a non-empty intersection or not. If a pair of occu-

pancies (Oin, O
j
m) are space-conflicting, then the function continues to investigate

these occupancies to determine if they are in time-conflict as well. The above-

explained entrance and exit times of an occupancy are used for this purpose. For

a given occupancy O, the function getOTI() calculates these entrance τlb(O) and

exit τub(O) times for that occupancy and returns a corresponding time interval

I(O) := [τlb(O), τub(O)] which we call the occupancy time interval in the sequel.

Then the two occupancy time intervals for the pair of space-conflicting occupancies

are compared to determine if these occupancies are also occupied around the same

time. If a pair of occupancies (Oin, O
j
m) are conflicting in both space and time, then
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the vehicle vj is included in the set C and the corresponding firstTimeAtCollision is

determined so that the vehicle vj is appropriately ordered within the set C.

3.3.3 DTOT Update

The first vehicle v in the set C is the earliest vehicle that is space-time conflicting

with vehicle vi. Then, in line 6 of Algorithm 1, the function updateDTOT() modifies

vehicle vi’s DTOT to avoid collision with vehicle v based on space-time conflicting

occupancies between vehicles vi and v. However, it is still uncertain whether C will

be empty or not after this update of avoiding collision with vehicle v. In fact, it

is still possible that the modified DTOT of vehicle vi will be in space-time conflict

with DTOTs of other confirmed vehicles. Hence, to ensure that vehicle vi avoids

collision with all other confirmed vehicles, it is necessary to construct C based on

the updated vehicle vi’s DTOT and update the DTOT again to avoid collision with

the first vehicle in the set. This process is repeated in the while loop in Algorithm

1 until the set C becomes empty which means that vehicle vi is not conflicting with

any confirmed vehicles. When a vehicle proposes its DTOT to the ICA, we assume

that it prefers to select the fastest way to pass the intersection which means the

vehicle will try to use the maximum allowed speed to cross. Our current strategy

for updating a vehicle’s DTOT is to delay the vehicle until other confirmed vehicles

cross the intersection safely. Note that, since the times of occupancies in a vehicle’s

DTOT are always delayed whenever the vehicle’s DTOT is updated, it is guaranteed

that the vehicle can always meet the updated DTOT by simply decelerating to

experience a long time before entering the intersection. The worst case is that a

vehicle may need to stop and wait for some time before an intersection to meet the

given confirmed TSS from the ICA.
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3.4 Liveness Analysis

A deadlock is a situation where two or more processes are unable to proceed

and each process is waiting for another one to finish because they are competing

for shared resources. In an intersection crossing traffic, a deadlock could happen

when several vehicles are trying to cross the intersection at the same time. For

example, if the coordination between vehicles who want to cross an intersection is

not done appropriately, then a deadlock may occur between two vehicles on a same

lane. As discussed in [27], it is possible that even when the vehicle in front cannot

get confirmed due to the conflict of its intersection crossing route with those of other

vehicles which are already confirmed to enter and cross an intersection, the vehicle in

the back may get confirmed because its intersection crossing route is not conflicting

with other confirmed vehicles’ crossing routes. And the vehicle successfully reserves

the space for its intersection crossing route within an intersection. In this situation,

the front vehicle cannot get confirmed since some part of the intersection crossing

route of it conflicts with that of the behind vehicle which is already confirmed

and also the behind vehicle cannot proceed to cross the intersection due to the

unconfirmed front vehicle. A deadlock situation may also occur when several vehicles

from different directions want to cross an intersection at the same time. This type

of deadlock situation is discussed in detail in [35] for the case of four vehicles in

which none of the vehicles can progress inside the intersection because each of the

vehicles’ next occupancies is already occupied by other vehicles. Now we show that

DICA in Algorithm 1 is free from these deadlock situations.

Proposition 1. DICA is deadlock free.

Proof. Let Sk denote the set of confirmed vehicles at the k-th time step of DICA.

Then, we show that the set Sk is deadlock free for all k = 0, 1, 2, · · · by induction.

First, at time step k = 0, it is easy to see that there is no deadlock in S0 since no
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vehicle is confirmed yet, i.e., |S0| = 0 where | · | denotes the cardinality of a set.

Then, at time step k > 0, let us suppose that Sk is deadlock free and a new head

vehicle vi is under consideration for confirmation. Note that, as discussed in Section

3.2, a vehicle is considered by DICA for confirmation only if it is the head vehicle on

its lane. Hence, it is trivial to see that there won’t be a deadlock situation between

the vehicle vi and other vehicle vi
′

which is behind vi since vi
′ 6∈ Sk. Next, let us

note that once a vehicle vj is in Sk, then the vehicle’s DTOT will not be changed

while and after a new vehicle vi is processed to be confirmed by DICA. Hence, it is

easy to see that any vehicle which is in Sk at time step k remains deadlock free at

the next time step (k+ 1). Now suppose that the new vehicle vi has been confirmed

by DICA at time step k and included in the set of confirmed vehicle at time step

(k + 1), i.e., vi ∈ Sk+1 = Sk ∪ {vi}. Since all vehicles in Sk ⊂ Sk+1 are deadlock

free, if the new vehicle vi is deadlock free, then we know that Sk+1 is deadlock free

and this proves the deadlock free property of DICA. In fact, it is straightforward

to see that vi is also deadlock free after its DTOT is updated and confirmed by

DICA. First, note that modification of the vehicle vi’s DTOT is not affected by

any vehicle v 6∈ Sk. Instead, it is affected only by vehicles which are already in

the Sk. Since all vehicles in Sk are deadlock free and eventually proceed to cross

and exit the intersection, the vehicle vi’s DTOT is also updated so that the vehicle

vi will eventually enter and cross the intersection while all vehicles in Sk cross the

intersection safely. Thus, the vehicle vi is also deadlock free at time step (k + 1)

and this concludes the proof of this proposition.

In an intersection crossing traffic, a starvation situation may occur when vehicles

from a certain direction are waiting for a very long time or even indefinitely to

be allowed to enter and cross an intersection while vehicles from other directions

are continuously allowed to cross the intersection. Now we show that a starvation
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situation will not occur in an intersection crossing traffic that is coordinated by

DICA.

Proposition 2. DICA is starvation free.

Proof. First, let us recall that, as discussed in Section 3.2, DICA considers a vehicle

for confirmation only when the vehicle becomes the head vehicle on its lane. Now let

σ(v) be the vehicle v’s entrance time to the communication region of an intersection,

H be the set of head vehicles which is ordered by σ(v) for all v ∈ H, and H− be the

set of vehicles which are approaching to cross an intersection but not included in the

set H. Clearly, |H| is bounded by the number of all lanes from which vehicles are

approaching an intersection to cross and |H−| is also bounded by both the number

of lanes and the length of lanes within the communication region of an intersection.

Note that DICA processes vehicles in H for confirmation according to the order of

vehicles in H. Once the first vehicle in H is processed and gets confirmed, then the

vehicle is removed from H. Note that if DICA is not starvation free, then there

must exist at least one vehicle v ∈ H such that the vehicle v will never (or at least

take an unnecessarily very long time to) become the first element in the ordered set

H. Thus, to prove the starvation free property of DICA, it suffices to show that,

for any vehicle v ∈ H, the vehicle v will be removed from H in finite time. To show

this, we can consider the last vehicle vlast in the ordered set H. If σ(vlast) ≤ σ(v)

for all v ∈ H−, then the vehicle vlast will be cleared right after all other vehicles in

H are confirmed and this is the earliest time for vlast to be removed from H. On the

other hand, if σ(vlast) > σ(v) for all v ∈ H− as the worst situation for vlast, then

the vehicle vlast might need to wait until all (|H|+ |H−|) vehicles get confirmed to

be considered for confirmation. Thus, it is clear that the vehicle vlast will be cleared

from H in finite time.
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3.5 Simulation

In this section, we present simulation results of DICA and the Concurrent Algo-

rithm [1] under the same configurations. Compared with Concurrent Algorithm,

DICA provides a more efficient way of coordinating vehicles to avoid unnecessary

delay.

3.5.1 Simulation Setup

Traffic simulation is performed by the microscopic road traffic simulation package

SUMO (Simulation of Urban MObility) [103]. This simulator is widely used in the

research community, which makes it easy to compare the performance of different

algorithms. Our intelligent intersection management algorithm is implemented by

the Traffic Control Interface (TraCI) in SUMO.

The simulated scenario in our simulation is the traffic of a typical isolated four-

way intersection with two incoming lanes and one outgoing lane on each road. vm =

70 km/h is set as the maximum allowed speed for incoming roads. We generate

vehicles with a random velocity within the range of 40% ∗ vm and vm when they

enter the communication region. To simulate intersection traffic as real as possible,

we use different maximum allowed speeds for vehicles with different routes. Although

there are no specific speed limits for vehicles who are turning left or right, people

are still using some lower speed to feel comfortable and maintain safety. We choose

conservative speed limits for turning based on experience from driving in daily life.

We use 25 km/h for right turning and 35 km/h for left turning. For vehicles with

through route, 65 km/h is set as the speed limit. The time step we used in the

simulation is 0.05 s. The maximum acceleration and deceleration rates are 2 m/s2

and −4.5 m/s2. Vehicles have a size of 5 meters length and 1.8 meters width. Since,

in some cases, a vehicle may need to stop just before the enter line of the intersection
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region to avoid collisions with other vehicles, the distance from the enter line of

the communication region to the enter line of the intersection region should be long

enough so that a vehicle can stop from its maximum speed vm. Thus, from the value

used for vm = 70 km/h the maximum deceleration rate amin = −4.5 m/s2, we need

at least −v2
m/(2amin) ≈ 42.03 m. So, we use 50 m for the distance from the enter line

of the communication region to the enter line of the intersection region. We evaluate

the performance of our algorithm in situations where vehicles are spawned randomly

from each direction at different probabilities. In our simulation, we consider three

different traffic volumes. For each traffic volume, through different traffic generation

time and randomly generated vehicles’ routes, we test each case for twelve different

traffic patterns. Average data of twelve different traffic patterns are used as the

result for that case. Each simulation run is terminated when a certain time limit

(10 min) has been reached. Fig 3.4 shows a screenshot of simulation in SUMO when

vehicles of different routes appear within the intersection simultaneously without an

occurrence of collision. Inside the intersection, the straight going vehicle from East

goes inside the intersection shortly after the vehicle from North to South clears the

conflicting space. Vehicles whose DTOTs is not conflicting with these two can pass

the intersection at the same time, for example the right-turning vehicle from South

in the figure.

Table 3.1: Simulation results comparison.

Volume ρ
Crossed Vehicles

τ̄e
τ̄ στ η

Concurrent
Volume 1 93.99% 13.98 8.58 51.74% 14.85
Volume 2 60.24% 89.08 40.91 95.34% 150.77
Volume 3 30.91% 125.09 48.33 97.17% 408.90

DICA
Volume 1 95.11% 7.21 2.97 10.13 % 7.57
Volume 2 91.09% 20.47 15.54 55.86% 22.53
Volume 3 57.09% 50.60 32.87 84.37 % 88.92
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Figure 3.4: A screenshot of simulation which illustrates a situation when vehicles
with conflicting routes cross the intersection simultaneously.

All the simulations in this dissertation were run on a 64bit Windows computer,

and its processor is Intel(R) Core(TM) i7-4770 CPU @ 3.40 GHz with 8 GB RAM.

3.5.2 Simulation Results

Performance improvement has been validated through extensive simulations of

DICA and Concurrent Algorithm. Simulation results of different volumes are shown

in Table 3.1. To evaluate and compare the performance, we define several perfor-

mance measures. Trip time (τ) is the difference between actual exit time of the

intersection and the time the vehicle enters the intersection communication range.

Average trip time (τ̄) is the average value of trip times of all crossed vehicles.

Standard deviation (στ ) is computed based on the trip times of all crossed vehi-

cles. Throughput (ρ) is defined as the percentage of the number of crossed vehicles

against the number of total generated vehicles. Stopped rate (η) is obtained by

dividing stopped vehicles number by crossed vehicles number.
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However, note that neither the average trip time nor the throughput alone is

sufficient to correctly evaluate the performance of an algorithm. In some cases,

it could be possible that one algorithm shows better performance on average trip

time while another algorithm performs better on throughput. Thus, both of the

two measures should be considered together to correctly compare and evaluate the

performances of different intersection control algorithms. We calculated the ratio

of average trip time to throughput, which is called effective average trip time (τ̄e)

and believe it could show the performance of an algorithm more comprehensively,

i.e. τ̄e = τ̄ /ρ.

Compared with Concurrent Algorithm, DICA increases the throughput and

largely decreases the average trip time. As shown in Table 3.1, both algorithms

have less and less throughput with the increase of traffic volume. Also, a larger

decrease in throughput is shown in Concurrent Algorithm compared with DICA.

DICA’s smaller values of standard deviation imply that DICA is fairer than Con-

current Algorithm. Stopped rate shows that fewer vehicles experience a stop at the

intersection enter line for our DICA algorithm thus saves energy. Effective aver-

age trip time could tell us comprehensive information about the performance of an

intersection control algorithm. Efficiency and fairness of an algorithm are integrated

in this measure. With more vehicles crossed and less average trip time, DICA has

much less value of effective average trip time than that of Concurrent Algorithm.

The histogram of trip times of crossed vehicles in one simulation run from case 1

and one particular traffic pattern is shown in Figure 3.5. From the figure we can see

that under the same traffic setting, for the crossed vehicles, DICA results in less and

concentrated trip times. On the other side, Concurrent Algorithm leads to much

longer and wider distributed trip times. Compared with Concurrent Algorithm,

DICA is fairer and much efficient for crossed vehicles.
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Figure 3.5: The histogram of Trip Times of crossed vehicles in a simulation.

Volume 1 Volume 2 Volume 3
0

50

100

150

200

T
ri
p
 t
im

e
(s

)

Concurrent Algorithm

 

 

Average Trip Time

Volume 1 Volume 2 Volume 3
0

50

100

150

200

T
ri
p
 t
im

e
(s

)

DICA

 

 

Average Trip Time

Figure 3.6: Comparison of Trip Times of 3 different cases between DICA and Con-
current Algorithm.

Figure 3.6 shows the maximum, average and minimum trip time for both algo-

rithms under three different volumes. With heavier traffic volume, both algorithms
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have large maximum trip times and average trip times. However, DICA always

performs better than Concurrent Algorithm in all three volumes.

3.6 Summary

In this chapter, we have developed an intelligent intersection control algorithm

DICA employing the concept DTOT. V2I interaction protocol has been established

for interactions between vehicles and an intersection. DICA is able to manage

limited intersection space at a more accurate and efficient way. Simulation results

show that our algorithm achieves less effective average trip time compared with

Concurrent Algorithm proposed by [1].
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CHAPTER FOUR

Computational Complexity Improvements of

DICA

In this chapter, we analyze the overall computational complexity of DICA and

improve it in several computational technical approaches. We also enhance the

algorithm accordingly so that it is possible to operate the algorithm in real-time for

autonomous and connected intersection traffic management.

4.1 Computational Complexity Analysis

In this section, we analyze the computational complexity of the DICA shown in

Algorithm 1. Recall that S is the set of vehicles within the communication region

of an intersection that have been confirmed to cross. Let us assume that there are n

vehicles in S, i.e., |S| = n. Then we have the following result on the computational

complexity analysis of DICA.

Proposition 3. The DICA has O(n2L3
m) computational complexity where Lm is

the maximum length of the intersection crossing routes in an intersection.

Proof. Let vi be the vehicle that is currently being processed by the ICA for intersec-

tion crossing confirmation. Furthermore, letNm := maxk∈S′ N
k, where S ′ = S∪{vi}

and Nk is the number of occupancies in vehicle k’s DTOT. Then, in line 3 (Algo-

rithm 1), it is easy to see that creating a DTOT from the TSS and vehicle size

information in vehicle vi’s REQUEST message involves only O(Nm) computational
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complexity. In line 4 (Algorithm 1), as explained in Section 3.3, the front vehicle

checking function checkFV() does a simple comparison with every confirmed vehicle

in S to see if there are any vehicles that might affect vehicle vi’s DTOT and modifies

the DTOT if it is necessary to ensure enough separation time and distance between

vehicle vi and other vehicles in front. This process requires O(nNm) computational

complexity. Then, in line 5 (Algorithm 1), the function getCV() is called to identify

the set C of vehicles in S whose DTOTs might be in space-time conflict with vehicle

vi’s DTOT. (Note that, as shown in Algorithm 2, C is an ordered set according to

time of collision and it is clearly C ⊆ S.) Thus, to return the set C from the set

S, this function performs n times of space-time conflict checking between vehicle vi

and the vehicles in S. If a non-empty set C is returned in line 5 (Algorithm 1), then,

in lines 6 ∼ 10 (Algorithm 1), vehicle vi’s DTOT is iteratively updated until the set

C becomes empty within the while loop. (As one can see in Algorithms 1 and 2,

these steps are indeed the main part of the DICA and involve some computationally

expensive operations. Hence, we describe the computational complexity of steps

within the while loop separately in the next paragraph.) After the while loop,

as the last steps in Algorithm 1 in lines from 11 to 13, the space-time conflict free

DTOT for vehicle vi is stored, converted into TSS, and then sent to vi so that the

vehicle can cross the intersection according to the DTOT. Clearly, these steps are

fairly simple in terms of computation and in fact require O(1) complexity. Next, we

analyze the computational complexity of the steps within the while loop.

Space-time conflict checking steps: As described in Section 3.3, space-time con-

flict checking in function getCV() is done using the DTOTs of confirmed vehicles.

Specifically, the two nested if blocks from line 6 to line 13 in Algorithm 2 perform

this operation. Space conflict checking is performed if there exist non-empty inter-

sections between two occupancies: one from the DTOT of vehicle vi and another

from the DTOT of one of the vehicles in the set S. This is done in the outer
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if block and requires n · N2
m iterations in the worst case. If two vehicles have a

space conflict, then Algorithm 2 proceeds to check for a time conflict. To check

time overlapping between two space conflicting occupancies, the function needs to

calculate time intervals for these occupancies during which each vehicle occupies

its occupancy. This can be achieved easily by comparing occupancy times between

occupancies within the same DTOT. As an example, for a given occupancy Oik,

which is the k-th occupancy within vehicle vi’s DTOT, the lower and upper bounds

for the occupancy time can be determined by space overlapping checking between

the occupancies Oik and Oik′ for k′ = {1, · · · , Nm} \ k. Thus, the two function calls

to getOTI() within the if block involve the computational complexity of O(Nm).

Once the occupancy time intervals are determined, it is a straightforward calcula-

tion to check time overlapping as shown in line 9 of Algorithm 2, and it takes O(1)

computational complexity. After identifying all space-time conflicting vehicles from

the set S and storing them in the set C, Algorithm 2 then sorts the set C according

to the ascending order of occupancy times of space-time conflicting occupancies and

returns the set. Note that |C| ≤ n and n � Nm in general. Hence, this sorting

operation can be done with O(nlog2n) computational complexity. If we consider

all these calculation steps in the getCV() function, then one can see that the over-

all computational complexity for space-time conflict checking steps in getCV() is

O(nN3
m).

DTOT adjustment for collision avoidance: Once the set C is returned by the

function getCV(), the DICA updates vehicle vi’s DTOT to avoid space-time conflict

with the first vehicle vj in the set C, as shown in line 7 (Algorithm 1). As described

in Section 3.3, our update strategy to avoid space-time conflicts is to make vehicle

vi enter the intersection area a bit later to give vehicle vj enough time to cross

the intersection safely. For this, the DICA first needs to compute the delay time

needed to avoid the space-time conflict with vehicle vj . As the occupancy time
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interval I(Ojk) for vehicle vj ’s earliest space-time conflicting occupancy has already

been determined from the function getCV(), it is easy to calculate this delay time

in this update process. Once the delay time is determined, then the remaining step

is simply changing the times of all the occupancies in vehicle vi’s DTOT that are

to be delayed, and this results in O(Nm) computational complexity.

As described above, the number of vehicles in the set S is n when the function

getCV() is called for the first time in line 5 (Algorithm 1). Then, within the while

loop, the function updateDTOT() adjusts vehicle vi’s DTOT to avoid collision with

the first vehicle in the set C, and this step reduces the number of vehicles in the set C

that can potentially collide with vehicle vi at least by one. Thus, in the worst case,

the number of vehicles in the set C returned by the second call of getCV() within

the while loop is (n−1). If we assume the worst case for all the following iterations

within the while loop until the set C becomes empty, then it is easy to see that

the functions getCV() and updateDTOT() are called n times within the while loop.

This implies that, as the computational complexity of the function updateDTOT()

is significantly lower than that of the function getCV(), the overall computational

complexity of the while loop can be considered as O(n2N3
m).

Note that the maximum number of occupancies Nm depends on both the time

that it takes for a vehicle to cross the intersection and the discrete time step used to

construct the DTOT by the ICA. If we let h be the discrete time step used by the ICA

and Tm be the time it takes for a vehicle to completely cross an intersection when the

vehicle starts from rest and accelerates to cross the intersection as quickly as possible,

then we have N̄m := Tm/h as an upper bound for Nm. Note that Tm depends on the

length of an intersection crossing route that a vehicle takes to cross an intersection.

If we let Lm be the maximum length out of all intersection crossing routes for an

intersection, then N̄m can be expressed in terms of Lm instead of Tm. Specifically, if

Lm is long enough so that a vehicle can reach its maximum allowed speed vm within
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Figure 4.1: Two different cases for the shortest intersection crossing time (Tm)
calculation. (Case 1 is the situation when Lm is too short to reach vm and case 2
is the situation when Lm is long enough to reach vm while a vehicle is crossing an
intersection.)

an intersection before it completely crosses the intersection, then it can be shown

that N̄m = (2amLm + v2
m)/(2amvmh), where am is the maximum acceleration rate

of a vehicle. On the other hand, if Lm is not long enough for a vehicle to reach vm

while crossing an intersection, then it is also relatively straightforward to show that

N̄m = (
√

2Lm/am)/h. (These two different cases are illustrated in Figure 4.1.) If

we fix the values for h, vm, and am, then one can see that N̄m for the former case is

proportional to Lm, while for the latter case, N̄m is proportional to the square root of

Lm. Hence, if we substitute Lm for Nm in the computational complexity O(n2N3
m)

that we derived above, then we finally have O(n2L3
m) as the overall computational

complexity of the DICA.

4.2 Algorithm Improvements

According to the computational complexity analysis result described in the pre-

vious section, it is true that the original DICA that is shown in Algorithms 1 and 2
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is somewhat conservative in terms of computational cost to be used in practice. In

this section, we present several approaches that can be used to improve the overall

computational efficiency of the algorithm.

4.2.1 Reduced Number of Vehicles for the Space-Time Conflict

Check

As shown in Algorithm 2, all confirmed vehicles in the set S are examined to

obtain the set of space-time conflicting vehicles C for a new unconfirmed head vehicle

vi. However, we see that this computation process can be improved by excluding

vehicles that cannot be in space-time conflict with vehicle vi under any circumstances

from the set S. For example, a confirmed vehicle vj ∈ S that has an intersection

crossing time interval that is not overlapping with vehicle vi’s intersection crossing

time interval can be excluded. Note that the intersection crossing time interval of

a confirmed vehicle can be easily determined by the lower bound of the occupancy

time τlb(Ofirst) of the vehicle’s first occupancy Ofirst and the upper bound of the

occupancy time τub(Olast) of the vehicle’s last occupancy Olast in the vehicle’s con-

firmed DTOT. In addition to these vehicles, vehicles in the set S whose intersection

crossing routes are compatible with that of vehicle vi can also be excluded. Hence,

if we let S∗ be the subset of all confirmed vehicles in set S that can be obtained after

excluding all above-mentioned vehicles in determining the set C, then the resulting

computational complexity for the space-time conflict checking in function getCV()

becomes O(α1nN
3
m), where α1 := ñ/n, ñ = |S∗|, n = |S|, and Nm is the maximum

number of occupancies of all vehicles that are in the set S and also the vehicle that

is currently under consideration for confirmation. (See the proof of Proposition 3

for the precise definition of Nm.)
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Figure 4.2: Approximate occupancy time interval calculation for a vehicle with the
through route

4.2.2 Efficient Space Conflict Check

Note that any two vehicles coming from different directions can collide with

each other only within some parts of their intersection crossing routes. Thus, not

all occupancies of a vehicle’s DTOT needs to be checked for space conflict with

another vehicle’s DTOT. For example, the two vehicles vi and vj in Figure 3.1 have

very short ranges of intersection crossing routes that are space conflicting with each

other. Thus, the occupancies to be checked can be reduced to {Oi2, Oi3} and {Oj5, O
j
6}

from their entire DTOTs. As the number of occupancies in a DTOT is very large

in general, this can improve computational speed considerably. Note that, as the

intersection crossing routes are fixed for a specific intersection, we can predetermine

these space conflicting short ranges offline only once for all pairs of incompatible

intersection crossing routes. Hence, this extra preparation process does not incur

an additional computational cost during the online operation of the DICA. If we

use DTOT∗ to denote the subset of the original DTOT for a vehicle that can be

obtained from this approach, then the computational complexity of the function

getCV() in Algorithm 2 can be expressed as O(α3
2nN

3
m), where α2 := Ñm/Nm and

Ñm is the maximum number of occupancies for all vehicles that are in the set S∗

and the vehicle that is currently under consideration for confirmation.
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4.2.3 Approximate Occupancy Time Interval Calculation

As explained in Section 3, the ICA checks if an occupancy of a vehicle is conflict-

ing in time with another vehicle’s occupancy using occupancy time intervals that

can be obtained from each vehicle’s DTOT. However, the method for obtaining an

occupancy time interval presented in the proof of Proposition 3 is somewhat naive

in the sense of computational complexity. In fact, as analyzed in the proof, such

an exhaustive search involves a computational complexity of O(Nm). To simplify

this computation process, we propose estimating the occupancy time interval for a

certain occupancy based on the vehicle’s speed, length, and acceleration rate instead

of performing the exhaustive search. To clarify this idea, let us consider an exam-

ple. For simplicity, we consider a case when a vehicle is moving in a straight line as

shown in Figure 4.2. Let Oik be the occupancy for which the DICA needs to deter-

mine the occupancy time interval I(Oik) = [τlb(O
i
k), τub(O

i
k)], L(vi) be the vehicle

length of vehicle vi, h be the sampling time interval, and xk be the center position

of the Oik along the straight line. Then the algorithm first estimates the vehicle’s

speed and acceleration rate around the occupancy Oik from xk, xk−1, xk+1, and h.

Occupancies at xk−1, xk+1 are very close to the occupancy Oik and are not shown

in Figure 4.2 for simplicity. Specifically, if we let Vk−(vi) and Vk+(vi) be the speed

of vehicle vi from Oik−1 to Oik and from Oik to Oik+1, respectively, then these speeds

can be approximated as follows:

Vk−(vi) ≈ xk − xk−1

h
, Vk+(vi) ≈ xk+1 − xk

h

From these speeds, we now approximate the acceleration rate of the vehicle as

follows:

Ak(v
i) ≈ Vk+(vi)− Vk−(vi)

h
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where Ak(v
i) denotes the acceleration of vehicle vi at the occupancy Oik. If we take

the average of the speeds around Oik, then we can also approximate Vk(v
i), which is

the speed of vehicle vi at Oik. Note that, as the length of vehicle L(vi) is just a few

meters in general, the actual motion of vehicle vi within the occupancy Oik can be

approximated fairly accurately by Vk(v
i) and Ak(v

i).

As it is a straightforward process to estimate τlb(O
i
k) and τub(O

i
k) from L(vi),

Vk(v
i), and Ak(v

i), we omit the details of these calculations in this paper. For the

case when the vehicle is moving on a curved path, we can still use the same method

to approximate Vk(v
i) and Ak(v

i). However, in this case, we may need to add a

short extra distance to the L(vi) to estimate τlb(O
i
k) and τub(O

i
k) more accurately.

Such an extra distance can be simply determined by the curvature of the path that

is represented by the DTOT of a vehicle. Finally, if we apply this approximation

method for an occupancy time interval calculation in the getOTI() function, then

the computational complexity of the function getCV() improves from O(n2N3
m) to

O(n2N2
m).

4.2.4 Efficient Occupancies Comparison

In addition to all the techniques described above, the overall computational

complexity of Algorithm 1 can be improved further if we employ an efficient search-

ing method, such as the bisection method, in the process of time-conflict checking

between two DTOT∗s. If we employ this bisection approach for time-conflict check-

ing as shown in Algorithm 3, then the computational complexity of the function

getCV() can be improved significantly from O(n2N3
m) to O(n2N2

m log2Nm).

All of the improvement techniques discussed in this section are incorporated into

the function getCV() to improve the overall computational complexity of the space-

time conflict checking process. Algorithm 3 shows this modified getCV() function,

which is now called enhanced_getCV(). In Algorithm 3, S∗ represents the set of
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Algorithm 3 enhanced getCV(S∗, DTOT (vi))

1: Let S∗ be the reduced set of S.
2: Let DTOT ∗ be the reduced DTOT .
3: C = ∅
4: for vj in S∗ do
5: for Ojkj in DTOT ∗(vj) do

6: if vj not in C then
7: high = |DTOT ∗(vi)| − 1
8: low = 0
9: while low 6= high do

10: middle = (high+ low)/2
11: Call getEstOTI(Ojkj ) → I(Ojkj )

12: Call getEstOTI(Oimiddle) → I(Oimiddle)

13: if I(Ojkj ) ∩ I(Oimiddle) 6= ∅ then

14: Assign τlb(O
j
kj

)→ vj .firstT imeAtCollision

15: Push vj into C
16: else if τ(Ojkj ) > τ(Oimiddle) then
17: low = middle
18: else if τ(Ojkj ) < τ(Oimiddle) then
19: high = middle
20: end if
21: end while
22: end if
23: end for
24: end for
25: Sort C in ascending order of firstTimeAtCollision

already confirmed vehicles that are obtained from the process in Section 4.2.1 and

DTOT∗ represents the subset of original DTOTs for a vehicle that can be obtained

from the approach in Section 4.2.2. The function getOTI() within the while loop

is now replaced by the new function getEstOTI() that approximately calculates

the occupancy time interval as described in Section 4.2.3. Lastly, the approach

for efficient time conflict checking that is presented in Section 4.2.4 is implemented

throughout the while loop of the DICA.

Proposition 4. The enhanced DICA has O(αn2Lm log2 Lm) computational com-

plexity where α := α2
1α2 � 1, n is the number of vehicles already confirmed to cross
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an intersection, and Lm is the maximum length of intersection crossing routes in

an intersection.

Proof. First, note that the only part in Algorithm 1 that is affected by this proposed

enhancement is the number of confirmed vehicles to be considered for a space-

time conflict check, which is reduced from n = |S| to ñ = |S∗|, where ñ = α1n

and α1 ∈ (0, 1]. Thus, in Algorithm 1, the functions enhanced_getCV() and

updateDTOT() are now called α1n times. Next, we also note that, as nothing is

changed by this improvement in the updateDTOT() function whose computational

complexity is already significantly lower than that of the function getCV(), it suf-

fices to analyze the computational complexity of the function enhanced_getCV()

presented in Algorithm 3 for the overall computational complexity of the enhanced

DICA.

Now, as one can see in Algorithm 3, the entire block within the outer for loop

is executed for α1n times as the number of confirmed vehicles to be checked for a

space-time conflict with vehicle vi is reduced from n to α1n owing to the approach

discussed in Section 4.2.1. Then, within the for loop, for each vehicle vj in the

set S∗, occupancies from each vehicle’s DTOT are evaluated for space and time

conflicts, which typically requires an N2
m times occupancy comparison operation,

where Nm is the maximum number of occupancies in a vehicle’s DTOT. However,

in the enhanced_getCV() function, we first note that the maximum number of

occupancies for each vehicle’s DTOT to be tested for space-time conflict is reduced

from Nm to Ñm, where Ñm = α2Nm and α2 ∈ (0, 1] owing to the approach pre-

sented in Section 4.2.2. Another important improvement is that the computational

complexity for the occupancy time interval calculation is improved from O(Nm)

to O(1) within another enhanced function getEstOTI() as discussed in Section

4.2.3. Therefore, the overall computational complexity of the outer for loop can

be estimated as O(α1α
2
2nN

2
m). However, note that this is the case when we use
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the same occupancy comparison method as used in the original getCV() function.

As shown in Algorithm 3, the process of occupancy comparison is now performed

based on the bisection search method. Roughly speaking, for a given n and Nm,

this efficient search method improves the overall computational complexity of the

function from O(nN2
m) to O(nNm log2Nm), as discussed in Section 4.2.4. If we

combine this and others discussed above for the overall computational complex-

ity of the enhanced_getCV() function, then we have O(α1α2nNm log2Nm). Recall

that, as the enhanced_getCV() function is called α1n times in the main while loop

as discussed above, we have O(α2
1α2n

2Nm log2Nm) as the overall computational

complexity of the DICA.

As we have analyzed already in the proof of Proposition 3, Nm is linearly pro-

portional to the maximum length of intersection crossing routes Lm. Hence, if we

substitute Lm for Nm, then we finally have O(αn2Lm log2 Lm) as the overall com-

putational complexity of the enhanced DICA,where α := α2
1α2 � 1.

4.3 Simulation

In this section, we present simulation results that demonstrate the improved

performance of the enhanced DICA over the original algorithm. The performance

of the enhanced algorithm is also compared with that of an optimized traffic light

control algorithm.

4.3.1 Simulation Setup

To evaluate the performance of the original DICA and the enhanced DICA, we

implemented both algorithms in SUMO [103], and performed extensive intersection

traffic simulations. In our simulation, the simulated situation was an intersection

crossing traffic on a typical isolated four-way intersection with three incoming lanes,

one of which is a dedicated lane for left-turning vehicles, and two outgoing lanes
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on each road. We set 70 km/h as the maximum allowed speed vm for all incoming

vehicles. To make the simulation more realistic, we let vehicles approach the inter-

section with different speeds when they entered the communication region of the

intersection. Specifically, when a new vehicle was spawned outside of the communi-

cation region, its initial speed was randomly assigned within the range from 40% to

100% of the maximum allowed speed vm. Thus, a vehicle kept this random initial

speed until it entered the communication region and then it either followed another

vehicle or was confirmed by the ICA with a feasible DTOT. The maximum acceler-

ation (amax) and deceleration (amin) rates for vehicles that are used in simulations

are 2 m/s2 and 4.5 m/s2, respectively. The size of a vehicle used in simulations is

5 meters long and 1.8 meters wide. The distance from the enter line of the commu-

nication region to that of the intersection region is set as 50 m. The time step that

is used in simulations is 0.05 seconds. In most cases, a simulation terminates when

the simulation time reaches 10 minutes.

In our simulations, vehicles were spawned according to several random variables

to generate various traffic volumes as well as traffic patterns. Specifically, pV is the

probability that a vehicle is spawned. pL, pS , pR are the probabilities that the new

vehicle has a left-turning, through or right-turning route. Thus, by adjusting pV , we

could generate various traffic volumes. As shown in Table 4.1, we set pL = 0.2, pS =

0.6, and pR = 0.2 for all traffic volume cases so that 20% of all incoming vehicles had

left-turning routes, 60% had straight routes, and the other 20% had right-turning

routes. We use three random seeds to generate three different intersection traffic

patterns for each traffic volume. Thus, to obtain simulation data for each traffic

volume, we run three simulations of different traffic patterns for each simulation and

then use the averages of these simulation results as the result for each traffic volume

case. The intersection crossing traffic generated in most of our simulations was

balanced traffic in the sense that the numbers of vehicles generated for each incoming
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Table 4.1: Parameters used for various traffic volumes and patterns. (∗ Expected
number of vehicles per 10 minutes.)

Parameter Value

Traffic volumes∗ 100 / 200 / 300 / 400 / 500
pV 0.03 / 0.06 / 0.08 / 0.11 / 0.14
pL 0.20
pS 0.60
pR 0.20
Random seeds 12 / 21 / 66

road were about the same. However, for a simulation to show the starvation free

property of the proposed DICA, the intersection traffic was purposely designed to

be unbalanced, whereby the number of vehicles for minor approaching roads was

roughly 30% that of the vehicles on major roads.

In the following discussion, simulation time means the simulated time used in a

simulation program and computation time, which will be discussed later in Section

4.3.2, means the actual elapsed time that it takes for a computer to run a simulation.

Furthermore, in Section 4.3.2, the traffic control performance of the enhanced DICA

is compared with that of a traffic light algorithm with fixed cycles. To have a

comparable traffic light program, we computed the optimal signal cycles for different

traffic volume cases by using the exponential cycle length model C0 = 1.5Le1.8Y

from [104]. In the model, L represents the total lost time within the cycle. The lost

time for each phase is assumed to be 4 s [105]. Thus, L = 4× 4 s = 16 s. Y is the

sum of critical phase flow ratios. The duration of the yellow light for each phase is

3 s.

4.3.2 Simulation Results

The computation times and performances of three different traffic patterns for

all five volume cases were obtained from the simulations.
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Figure 4.3: Comparison of computation times for traffic volume with 300 vehicles per
10 min. (The symbol 4.x represents the improvement technique in Section 4.2,where
x = { 1, 2, 3, 4 }.) (a) original DICA with different algorithms and (b) original
DICA with different improvement techniques

Computation Time

Figure 4.3 (a) compares the computation times of the original DICA, the enhanced

DICA, and the optimized traffic light algorithm. Figure 4.3 (b) shows how much

computational improvement was achieved through each computational improvement

technique discussed in Sections 4.2.1, 4.2.2, 4.2.3, and 4.2.4. Note that, as the com-

putational improvement technique in Section 4.2.4 is implemented based on the

computational improvement technique in Section 4.2.2, we had to combine tech-

niques from both Sections 4.2.4 and 4.2.2 to indirectly show the improvement due

to the technique in Section 4.2.4. Here, we show a comparison of computation times

for only one traffic volume case with 300 vehicles per 10 min, as the trends for other

volume cases are similar. The vertical axis in Figure 4.3 is the computation time in

units of one hour, which is represented on a logarithmic scale. As shown in Figure

4.3 (a), the enhanced DICA that implements all improvements discussed in Section

4.2 takes significantly less computation time, i.e., only 0.4% of the computation time
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of the original algorithm. When we apply each computational improvement tech-

nique individually, our result shows that the enhanced DICA takes about 11% of

the computation time of the original DICA with the technique in Section 4.2.1, 59%

with the technique in Section 4.2.2, 13% with the technique in Section 4.2.3, and

6% with techniques in Sections 4.2.2 and Section 4.2.4 together. If we combine all

of these individual improvements to estimate the collective improvement, then the

computation time is about 0.45% of that of the original DICA, which is similar to

the computation time result with the enhanced DICA in which all these techniques

are implemented.

Table 4.2 compares the computation times between the enhanced DICA and the

optimized traffic light algorithm for all five traffic volume cases. From the results

shown in the table, we note that the computation time for the optimized traffic

light algorithm gradually increases as the traffic volume increases. However, since

the optimized traffic light algorithm has O(1) computational complexity, its com-

putation time cannot be affected by the number of vehicles around an intersection.

Thus, roughly speaking, one can say that the computation time of the optimized

traffic light for a particular traffic volume case is, in fact, the time required for

the simulation software SUMO to run a simulation with the number of vehicles for

that particular traffic volume case. Therefore, the actual computation time of the

enhanced DICA for a particular traffic volume case can be roughly approximated by

subtracting the computation time of the optimized traffic light for the case from the

computation time of the enhanced DICA presented in the table. For example, for

the traffic volume with 500 vehicles, the actual computation time for the enhanced

DICA can be approximated as 0.031(= 0.058− 0.027) hours which is 1.86 minutes.

Note that this 1.86 minutes is the computation time taken by the algorithm to

handle 500 vehicles. Thus this in turn implies that it takes only 0.2232 seconds

to handle each vehicle. An exception to this approximation is the case with 100
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Table 4.2: Computation time comparison between enhanced DICA and optimized
traffic light

Traffic volume
100 200 300 400 500

(Number of vehicles per 10 minutes)

Optimized Traffic light (h) 0.014 0.017 0.020 0.024 0.027
Enhanced DICA (h) 0.011 0.024 0.026 0.042 0.058
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Figure 4.4: The number of vehicles which wait to cross the intersection over time.

vehicles traffic volume case where the computation time for optimized traffic light

takes a longer time than that of the enhanced DICA. The reason for this result can

be understood by considering the fact that, in such a low traffic volume situation,

the average number of vehicles to be simulated by SUMO at each simulation time

step is smaller in the enhanced DICA case since vehicles are crossing an intersection

much faster without waiting at an intersection under the enhanced DICA than the

optimized traffic light as shown in Section 4.3.2.

Liveness and Safety

Although we have theoretically shown the liveness of DICA, it is better to have

simulation results that support the theory. Since the simulation in this section is

only a verification, we run a simulation with 10, 000 vehicles instead of giving a
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Table 4.3: Average trip time comparison between major roads and minor roads in
unbalanced traffic

Traffic volume
100 200 300 400 500

(Number of vehicles per 10 minutes)

Average trip time on major roads (s) 6.17 6.60 7.38 8.15 10.15
Average trip time on minor roads (s) 6.21 6.57 7.38 7.90 9.63

restriction on the simulation time. The simulation ends after all 10, 000 vehicles

have exited the simulation scene. We recorded the number of vehicles that are

waiting to cross the intersection at each simulation time step and plot the number

profile in Figure 4.4. As shown in the figure, the number of vehicles drops to zero in

almost a linear way within a finite time which demonstrates that every vehicle was

able to cross the intersection eventually that proves the Proposition 1 in Section 4.1.

We performed a set of simulations for the case of an unbalanced traffic situation

where the number of vehicles on the minor roads is only 30% of that on major roads

to demonstrate the fairness of the DICA. To show the fairness of the algorithm, we

recorded the average trip times for major roads and minor roads for every traffic

volume. As shown in Table 4.3, the average trip time of the minor roads is about

the same as that of the major roads. This shows that cases in which some vehicles

cannot get confirmed or will experience a long delay before being confirmed do not

exist, which demonstrates that the DICA is starvation free.

To validate the safety property (i.e., collision freeness) of the DICA through

simulation, we computed the inter-vehicle distance between every pair of vehicles

within an intersection at every second during the simulation. As each vehicle is

represented as a polygon, a 5 m long and 1.8 m wide rectangle more precisely,

we obtained this data based on an algorithm of the shortest distance calculation

between two polygons. A histogram of the recorded inter-vehicle distances is shown

in Figure 4.5. Clearly, the inter-vehicle distance must be less than or equal to zero

if two vehicles are in a collision and must be positive otherwise. As one can see
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from the figure, there is no instance observed throughout the entire simulation with

less than a 1 m inter-vehicle distance, which is a clear indication that there is no

collision inside the intersection. Note that Figure 4.5 demonstrates the safety of the

DICA. The safety problem pertaining to the robustness of the DICA that vehicles

cannot follow a confirmed DTOT correctly will be studied in our future work.

Control Performance

The overall traffic control performance of the enhanced DICA is also evaluated

and compared with that of the optimized traffic light algorithm based on the per-

formance measures introduced in Section 3.5.2. A comparison of the performance

between the enhanced DICA and the optimized traffic light control algorithm is

shown in Figure 4.6. From this result, we can see that, as the throughputs of the

two algorithms are always similar, the profiles of the average trip time and effective

average trip time also show similar trends. The enhanced DICA always performs

better than the optimized traffic light for the first four traffic volume cases. In the

case of the traffic volume with 500 vehicles, the average trip time performance of

63



(a) (b)

(c) (d)

0

5

10

15

20

25

30

100 200 300 400 500

A
ve

r
a
g

e
 
T

r
ip

 T
im

e
 (

s
)

Traffic Volume

(number of vehicles per 10 minutes)

Optimized Traffic Light

Enhanced DICA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 200 300 400 500

T
h

r
o
u

g
h

p
u

t

Traffic Volume

(number of vehicles per 10 minutes)

Optimized Traffic Light

Enhanced DICA

0

5

10

15

20

25

30

100 200 300 400 500

E
ff

e
c
ti

ve
 

A
ve

r
a
g

e
 T

r
ip

 
T

im
e
 (

s
)

Traffic Volume

(number of vehicles per 10 minutes)

Optimized Traffic Light

Enhanced DICA

0

2

4

6

8

10

12

14

16

18

100 200 300 400 500S
ta

n
d
a
r
d
 

D
e
vi

a
ti

o
n

 
o
f 

T
r
ip

 
T

im
e
 

(s
)

Traffic Volume

(number of vehicles per 10 minutes)

Optimized Traffic Light

Enhanced DICA

Figure 4.6: Performance comparison between the enhanced DICA and optimized
traffic light. (a) average trip time, (b) throughput, (c) effective average trip time,
and (d) standard deviation of trip time

the enhanced DICA becomes closer to that of the optimized traffic light. Further-

more, the enhanced DICA has a slightly larger standard deviation of the trip time

than the optimized traffic light. In short, the enhanced DICA performs much better

than the optimized traffic light from low to medium traffic volume cases, while its

performance becomes worse and closer to the performance of the optimized traffic

light for heavy traffic volumes.

We note that this result is mainly due to the fundamental difference between

individual vehicle-based traffic coordination algorithms and traffic flow-based coor-

dination algorithms. To see this, we can consider a heavy traffic situation when all

incoming roads are congested. In such a situation, we know that most vehicles start

to cross an intersection at rest when they are allowed to cross the intersection either

by a green light under a traffic light algorithm or confirmation under the proposed
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Figure 4.7: Flow rate ratio when traffic volume changes from 100 to 500

DICA. Under traffic light control, if a vehicle is crossing an intersection, then it is

highly likely that a few more following vehicles can also cross the intersection without

being stopped. However, in the case when vehicles are controlled by an individual

vehicle-based coordination algorithm such as our enhanced DICA, it is possible to

have a situation where vehicles from different roads are permitted alternatively to

cross the intersection, which inevitably results in more frequent stops than the case

of traffic light control. This is why the enhanced DICA performs worse and closer to

the optimized traffic light in the heavy traffic volume situation. In fact, this result

reveals the important point that to achieve the best throughput performance, it is

necessary to combine both strategies: an individual vehicle-based coordination in

normal traffic volume and a traffic flow based-coordination in congested situations.

Another simulation was performed to validate the transient traffic control per-

formance of the DICA when the traffic volume is changing. We ran a simulation

with a simulation time of 20 min during which the traffic volume increased from the

case of 100 vehicles to 500 vehicles per 10 min. At each simulation time step, the

ratio of the vehicle number generated to the number of vehicles that have exited
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the intersection, which we call the flow rate ratio, was calculated to determine how

much congestion could occur and also how long it takes to address the congestion.

The flow rate ratio measured during the simulation time is plotted in Figure 4.7.

In this figure, if the flow rate ratio is close to 1, then it means that all vehicles

approaching an intersection have already crossed the intersection and there are no

vehicles waiting to cross at that time. The simulation time starts from 300 s in the

figure, as the flow rate ratio needs some time to become stable. From the figure,

we can also see that before the increase in the traffic volume, the flow rate ratios

of the two algorithms are very similar. After 600 s, at which the traffic volume is

changed to 500 vehicles, the flow rate ratio of the optimized traffic light increased

considerably. Figure 4.7 shows that the DICA is more resilient to changes in traffic

volume than the optimized traffic light.

4.4 Conclusion

In this chapter, We analyzed the computational complexity of the original DICA

and enhanced the algorithm so that it can have better overall computational effi-

ciency. Simulation results show that the computational efficiency of the algorithm

is improved significantly after the enhancement and the properties of starvation free

and safety are guaranteed. We also validated that the overall throughput perfor-

mance of our enhanced DICA is better than that of an optimized traffic light control

mechanism in the case when the traffic is not congested.
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CHAPTER FIVE

Reactive DICA: an Approach for Expedited

Crossing of Emergency Vehicles

The problem of evacuating emergency vehicles as quickly as possible through

autonomous and connected intersection traffic is addressed in this chapter. DICA

is augmented to allow emergency vehicles to cross intersections faster and keep the

influence on other vehicles’ travel as minimum as possible.

5.1 Reactive DICA

The problem we want to solve is how to let EVs which are driven autonomously

cross an intersection as soon as possible under the connected and autonomous traffic

environment. In the meantime, we aim to keep all other vehicles having similar

travel times as when there are no EVs in the traffic. In short, our objective is to

evacuate EVs through an intersection as quickly as possible while other vehicles’

travel times are minimally affected. Note that for simplicity the term emergency

vehicle in this dissertation means an emergency vehicle in the emergency status (i.e.

with siren and the lights on). Same assumptions with our previous work [45,47] are

employed in this problem. Overtaking and lane-changing inside the communication

region are not allowed which means that vehicles on each lane will keep its lane

once it enters the communication region. As an approach to give preference to EVs

in autonomous traffic, we give priority to EVs in an intersection crossing traffic by
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optimizing the sequence of crossing vehicles. Also, since we are augmenting the

original DTOT-based intersection control algorithm, the new algorithm will only be

used to coordinate vehicles when there is an EV within the communication region

of an intersection while the crossing traffic is controlled the same way as before

when all vehicles are normal vehicles inside the communication region. Thus, the

entering of an EV activates the new algorithm, so we call the augmented DICA the

Reactive DICA (R-DICA). DICA is only taking care of head vehicles which reduces

computational complexity and communication load of the ICA a lot. However,

unlike in DICA, more vehicles are needed to be considered in R-DICA in order

to allow EVs to cross an intersection as fast as possible. Specifically, all vehicles

on the lane of an EV which are ahead of the EV should be included in the set of

vehicles whose intersection crossing order are to be optimized. In the sequel, we

call all those vehicles as vehicles on EV’s lane. Thus, the set of vehicles that we

need to consider for vehicle ordering are all unconfirmed vehicles on EV’s lane and

also all confirmed vehicles which are not on EV’s lane. All these vehicles can be

divided into two types: vehicles whose DTOTs cannot be modified (vehicles who

have already entered the intersection or cannot make a stop at the enter line even

with maximum deceleration), and vehicles whose DTOTs could be changed (vehicles

who are stopping at the enter line of the intersection or are able to make a stop at

the enter line, or unconfirmed vehicles who are ahead of the EV). The sequence of

vehicles of the latter type is what we can optimize to expedite the crossing of EVs.

We define the set of these vehicles as S∗.

Roughly speaking, our approach for a fast crossing of emergency vehicles is to

assign the highest priority to them and delay confirmation for all other normal

vehicles. Thus, incorporating a priority based ordering of vehicles into the basic

DICA framework would achieve this goal. To find such an optimal vehicle ordering,

we formulate an optimization problem based on the entrance time of vehicles which
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is the time a vehicle enters the line of an intersection. Let P(S∗) be the set of

ordered vehicle sequences (or simply called a sequence in the sequel) from the set

of vehicles in S∗. Then, if we use T ve to represent the entrance time of vehicle v, a

reasonable objective function for our optimization problem would be:

min
P(S∗)

TEVe (5.1)

where TEVe is the entrance time of an EV at an intersection. Thus, to solve this

optimization problem, we first need to introduce an approach that determines the

entrance time of an EV.

                     

(a) (b) (c)

Figure 5.1: Three different situations for separation time.

First, we note that some sequences in P(S∗) can be eliminated if we impose some

constraints for optimal vehicle ordering. For example, the order of vehicles on EV’s

lane cannot be altered and hence should be preserved. Also, since all confirmed

vehicles S∗ are able to stop before the enter line of an intersection, we can allocate

higher priorities for vehicles on EV’s lane than those in other lanes. We use P̄(S∗)

to denote the set of ordered sequences of vehicles satisfying these constraints. Now,

let us consider a sequence s in the set P̄(S∗). Then, if we consider the first vehicle v
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in the sequence s, it is easy to see that the vehicle is always a head vehicle on EV’s

lane and has a confirmed DTOT. Hence the entrance time of this vehicle v can be

determined simply by its τ(Ov1) which is the time when the vehicle v occupies the

first occupancy of its DTOT. For any other vehicles which are not the first vehicle

in the sequence s, the way to compute its entrance times is a bit different. We need

a time interval between any two successive vehicles in a sequence to ensure safety.

This time interval is called separation time τs. In this chapter, as shown in Figure

5.1, we define three separation times for different situations between two vehicles.

τs =


δc vi ⊗ vj Figure 5.1 (a), or

δs vi ≺ vj or vj ≺ vi Figure 5.1 (b), or

0 vi � vj Figure 5.1 (c)

(5.2)

where symbols � and ⊗ are used to represent two vehicles’ routes are compatible

and conflicting respectively. vi ≺ vj represents that vehicles vi and vj are on a

same lane and vi is following vj . The separation time’s value depends on pavement

conditions, vehicle mechanical errors and weather conditions. The focus of this

chapter is proposing a coordination algorithm not the determination of these values.

Thus, we just approximate the values from current empirical estimations which are

widely accepted [106]. Then the expression to compute the entrance time of vj

which is not the first vehicle v1 in the sequence is:

T je = max{T ja , T ie + τs} (5.3)

where vi is the immediate predecessor of vj in the sequence, T ja is the predicted

arrival time of the vehicle vj which is the shortest time for the vehicle to arrive

at the enter line of an intersection under the constraints of maximum acceleration

and speed without considering other vehicles in a traffic. T ie is vi’s entrance time
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and τs is the separation time between vi and vj . Starting from the second vehicle

in sequence, this equation is iteratively used to compute the entrance time of each

vehicle in the sequence until the entrance time of the emergency vehicle is computed.

Now the complete form of an optimization problem for optimal vehicle ordering

to minimize the entrance time of the EV is formulated as follows:

Given predicted arrival times T via for all vi ∈ S∗, find s∗ such that

s∗ = min
s∈P̄(S∗)

TEVe (5.4)

s.t. |T ie − T je | ≥


0 vi � vj

δc vi ⊗ vj

δs vi ≺ vj or vj ≺ vi
T ve ≥ T va ∀v ∈ S∗

A naive approach to solve the optimization problem in (5.4) is an exhaustive

search in all possible sequences that can be generated from the set S∗. If we suppose

that there are n vehicles in S∗ (i.e. |S∗| = n) and there are nEV numbers of

vehicles on EV’s lane, then there are n!/nEV ! sequences in P(S∗). However, if n

is becoming large, then the computational time and resources required to solve the

optimization problem are increasing significantly. Hence it might not be an efficient

approach to use an exhaustive search method when we want to solve the problem

(5.4) with many vehicles. Such computation issues of the problem present the need

to seek heuristic approaches which are good at solving complex problems in a very

short time compared with the exhaustive search. Several heuristic optimization

approaches like genetic algorithm, ant colony system, artificial neural networks exist

in the literature. [107] used permutation encoding scheme and solved the flowshop

scheduling problem with an objective of minimizing the makespan. [24] proposed

a genetic algorithm to optimize the groups of compatible vehicles in a very short
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time. [108] and [109] reviewed many researches that genetic algorithms can be used

to solve job scheduling problems which can meet our requirements. Thus, we also

choose to use Genetic Algorithm (GA) to obtain an optimal sequence of vehicles.

Yes

Detect a new vehicle

GA

Stop confirmation of new vehicles;

Confirm vehicles based on the optimal 

order from GA.

EV?

DICA

No

EV exited?
YesNo

Figure 5.2: Control flow diagram of the ICA in R-DICA.

The high-level architecture of R-DICA combining GA and DICA is shown in

Figure 5.2. R-DICA activates GA when the ICA detects an EV. Then the ICA

stop accepting any confirmation of new vehicles which are detected after the EV.

All vehicles who belong to S∗ are rearranged to obtain the optimal sequence for the

EV’s crossing by GA. Then the ICA only confirms vehicles who are already included

in the set S∗ until the EV exits the intersection. Once the EV is completely out of

the intersection, the ICA switches back to use DICA to manage normal intersection

crossing traffic.
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5.2 Genetic Algorithm for Vehicle Ordering

In this section, we discuss the details of how GA is used to find the optimal

vehicle sequence in (5.4). Genetic Algorithms, which have been widely used to solve

problems in computer science, artificial intelligence, information technology and

engineering, are techniques of self-organized and self-adapting artificial intelligence

mimicking the evolutionary process of creatures in nature [108, 110]. A solution in

GA is called an individual which is encoded compactly to facilitate the processes

of crossover and mutation that are essential in a genetic algorithm. A group of

individuals is called a population in which some individuals are selected as parents

to generate offspring through crossover and mutation. Based on some features of

each individual, some individuals survive and others die among all the original pop-

ulation and new individuals. Individuals who correspond or near correct solution

have a better chance to survive during evolving since they have high objective values

which are called fitness. Fitness function should be defined properly to evaluate each

individual. As introduced above, solutions in GA evolve to adapt to the objective

problem. Optimal or near-optimal solutions are expected to be obtained after a cer-

tain number of generations. We propose a GA to solve the complex traffic control

problem for emergency vehicles in a short time. Permutation encoding scheme is

used in the algorithm. And crossover and mutation operators suitable for permuta-

tion encoding scheme are devised. The proposed GA for vehicle ordering is shown

in Algorithm 4. A detailed discussion for permutation scheme, crossover, mutation,

etc. of the proposed GA is given in the following sections.

In the proposed GA, we first generate a random population I that contains Npop

individuals which are encoded by permutation scheme. The function feasibilityCheck()

takes a set of individuals and makes modifications to the infeasible individuals. Fea-

sible individual corresponds to a sequence of vehicles that does not violate the order
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Algorithm 4 Genetic Algorithm for Vehicle Ordering

1: Generate Npop different individuals randomly for n vehicles in S∗ → I
2: feasibilityCheck(I)→ I
3: k = 0
4: j = 0
5: fitness best last = 0
6:

7: while k < Nmax and j < NnoChange do
8: crossOver(Pc, I)→ I
9: feasibilityCheck(I)→ I

10: mutation(Pm, I)→ I
11: feasibilityCheck(I)→ I
12:

13: fitness best, individual best = fitness(I)
14: if fitness best > fitness best last then
15: j = 0
16: else
17: j = j + 1
18: end if
19: top Npop individuals → I
20: k = k + 1
21: end while
22: Decode individual best

of vehicles on EV’s lane. After proper modification, the function returns a set con-

taining individuals which are all feasible. The function crossOver() then perform

crossover on randomly selected pairs of individuals from the population I with a

probability Pc to generate new offspring. Then the feasibility of the offspring is

checked. Notice that after crossover, the number of individuals is larger than Npop.

Mutation on the produced offspring with probability of Pm is done by function

mutation(). The mutated individuals also need to be checked for feasibility and

modified if needed. Based on given conditions, each individual in I is evaluated by

a fitness function fitness() which computes the reciprocal of the entrance time of

the emergency vehicle in that individual. The highest fitness value and the corre-

sponding individual are recorded. Notice that the fitness can also be obtained by

using other metrics like the exit time of the EV, or the trip time of the EV, etc.
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These metrics will give us similar results. We choose the entrance time because we

have the predicted arrival time for each vehicle. Thus, it is easy to implement the

algorithm. Then we use the top Npop individuals from the original population and

offspring to form the new population. If any of the stopping criteria (maximum

number of iterations or the best solution is not updated for a certain number of gen-

erations) are met, then the algorithm terminates. Otherwise, the algorithm repeats

the steps inside the while loop.

5.2.1 Chromosome Encoding and Feasibility Check

v
1

v
2

v
3

v
4

v
7

EV v
5

v
6

Figure 5.3: An example of the permutation encoding scheme, the left-most vehicle
has the highest priority while the right-most one has the lowest priority.

Instead of using the popular binary encoding scheme for genetic algorithms, we

choose to use permutation encoding scheme which is more suitable to find an optimal

sequence for vehicle ordering. As shown in Figure 5.3, the individual corresponds to

a sequence of vehicles which is {v1, v2, v3, v4, v7, EV, v5, v6} with v1 on the leftmost

is the first and the rightmost vehicle v6 is the last one. Different chromosomes denote

different sequences of vehicles. Once an individual is created, it is not always true

that the corresponding sequence is a feasible one since vehicles’ order on EV’s lane

cannot be altered. Every newly generated individual should be checked against the

sub-sequence of vehicles on EV’s lane for feasibility. Figure 5.4 is provided to have a

visual impression of the situation when the vehicles’ sequence needs to be optimized.

In the figure, v1, v3 and EV are the vehicles on EV’s lane whose order could not be

altered. And note that except vehicles on EV’s lane, all other vehicles who are not a

head vehicle are not part of the sequence. The vehicles from South and West who are

not head vehicles are such vehicles that will be confirmed only after EV exits. If an
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Figure 5.4: Example situation of vehicles whose sequence to be optimized in inter-
section space, note: vehicles on EV’s lane are: v1, v3, EV .

individual is not feasible, the corresponding bits of vehicles on EV’s lane should be

changed to conform to the correct relative order. The function feasibilityCheck()

is making the corresponding modifications on an infeasible individual. An example

of adjustment according to the sequence of vehicles who are ahead of the EV on the

same lane is shown in Figure 5.5.

5.2.2 Crossover and Mutation

Two individuals perform crossover to generate offspring if they are selected to

be parents. The offspring inherit features (i.e. gene structures) from their parents.

Different encoding scheme has different crossover operator since they have different
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Figure 5.5: An example of one-point crossover. Relative ordering of parents is
preserved when the chromosomes are adjusted due to the existence of same bits.
Feasibility is checked for the two children based on vehicles’ sequence on EV’s lane
and adjustments are made.

gene structures. For the most popular binary encoding scheme, it is easy to do

crossover and mutation since a chromosome only contains binary bits. For our

permutation encoding scheme, we choose to apply one-point crossover [110] which

is implemented in the function crossOver(). As shown in Figure 5.5, the same bits

may exist in one chromosome after the parts behind the randomly chosen position

are swapped. In the second step in the figure, the two children have same bits

{v2, v3} and {v5, v6} respectively. To generate correct chromosomes, we adjust

the chromosome of one child by swapping those same bits from another child’s

chromosome while preserving the relative ordering of parents. Note that the new

chromosomes may also not be feasible since the order of vehicles on EV’s lane in a

chromosome may not be the same as the actual order. If this happens, since the

order of the vehicles on EV’s lane cannot be changed, we manually adjust the relative

order of vehicles to be the correct order to have a feasible chromosome. For example
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in Figure 5.5, we adjust the order of v1 and v3 for the second child in the last step.

Feasibility check and adjustment are done by the function feasibilityCheck().

Similar to probabilistically selecting two individuals for crossover, we apply

mutation on produced chromosomes based on a given probability by the function

mutation(). Different with binary encoding scheme’s mutation which could be done

by simply changing the value of a randomly selected bit from 1 to 0 or 0 to 1, our

permutation encoding scheme exchanges the bits on two randomly chosen positions

to obtain a new chromosome. As shown in Figure 5.6, positions of v2 and EV are

randomly chosen to exchange values and feasibility check based on vehicles’ order

on EV’s lane is performed after mutation.

Vehicles’ sequence on EV’s lane:

Mutation

Feasibility check 

and adjustment
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Figure 5.6: An example of mutation. Feasibility is checked for the mutated chro-
mosome based on vehicles’ sequence on EV’s lane and adjustment is made. v2 and
EV are randomly chosen to swap to perform mutation. EV is swapped with v3 to
conform to vehicles’ sequence on EV’s lane.

5.2.3 Fitness and Generating New Generation

The reciprocal of the entrance time of the emergency vehicle is defined as the

fitness of an individual in our proposed GA. The entrance time of the emergency

vehicle can be determined as discussed in Section 5.1. For an individual in a popula-
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tion, the higher the fitness is, the closer the corresponding solution is to the optimal

solution. Among all individuals in the population and the offspring produced, the

top Npop individuals with respect to the fitness values are selected to form the next

generation.

5.2.4 Stopping Criterion

The constantNmax represents the number of maximum generations andNnoChange

represents the number of continuous generations that solutions are not changed. As

shown in Algorithm 4, if the best solution is not updated after NnoChange gener-

ations or the Nmaxth generation has been reached, then the algorithm terminates

and stops searching for a better solution.

5.3 Simulation

The performance of the proposed optimization approach for EVs is evaluated

against the DICA and a reactive traffic light algorithm which is explained below.

All simulations are implemented in the traffic simulator SUMO [103]. The default

traffic management for intersections in SUMO is not used and the control algorithms

are programmed as Python applications. The TraCI is used for the interaction

between the Python applications and SUMO. Configurations for intersections in

the simulation and corresponding results are described in this section, followed by

discussions on obtained results.

5.3.1 Simulation Setup

Extensive simulations of different traffic volumes are performed on an isolated

perfect 4-way intersection where each approach has three incoming lanes and two

exit lanes. Most simulation setups in this chapter are similar to that in previous

chapters. All roads have the speed limit of vm = 70km/h. The maximal acceleration
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(amax) and deceleration (amin) for all vehicles are set to be 2m/s2 and −4.5m/s2. In

the simulation, for simplicity we used the same size for normal vehicles and EVs that

they both have 5 meters length and 1.8 meters width. We let vehicles approach an

intersection with different speeds when they enter into the communication region of

the intersection to make the simulation more realistic. In detail, when a new vehicle

is spawned outside of the communication region, the speed of the vehicle is set with

a random value within the range from 40% to 100% of the maximum allowed speed

vm. We set the distance between the enter lines of the communication region and

the intersection region as 50m.

Vehicles are generated randomly on each road with a randomly assigned inter-

section route. Every generated vehicle has the probability of pEV to be an EV,

otherwise it will be a normal vehicle. In our simulation, an emergency vehicle is

generated only when there is no such vehicle inside the communication region. To

create variations on the traffic pattern, we use several different random seed num-

bers to generate different traffic patterns and make the simulations reproducible.

Table 5.1 summarizes the parameters used for various traffic volumes and patterns

that were employed in many of our simulations where pV corresponds to traffic

volumes, pL, pS and pR are the probabilities for a generated vehicle to take Left,

Straight, and Right routes respectively. For every traffic volume, we run three sim-

ulations with different traffic patterns and then use the averages of these simulation

results as the result for each traffic volume case. For the genetic algorithm, we set

Npop = 100, NnoChange = 10, Pc = 0.85, Pm = 0.05 and Nmax = 100.

Simulations were run by 0.05s time step. We terminate each simulation when

the simulation time reaches one hour. The definitions of simulation time and com-

putation time can be found in last chapter.
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Table 5.1: Parameters used for various traffic volumes and patterns. (∗ Expected
number of vehicles per 10 minutes.)

Parameter Value

Traffic volumes∗ 100 / 200 / 300 / 400 / 500
pV 0.03 / 0.06 / 0.08 / 0.11 / 0.14
pL 0.20
pS 0.60
pR 0.20
pEV 0.02
Random seeds 12 / 21 / 66

Green Yellow Red

If an EV exists

If an EV exists

Lights for conflicting 

lanes set to yellow

If an EV exists

Figure 5.7: Reactive traffic light diagram.

5.3.2 Reactive Traffic Light

To show the effectiveness of the proposed R-DICA for emergency vehicles, a

reactive traffic light algorithm for emergency vehicles is implemented and tested.

As shown in Figure 5.7, the traffic light for the lane of an EV changes to green as

quickly as possible when an EV is detected on the boundary of the communication

region. Arrows with single line represent the state transitions (i.e. conventional

traffic light algorithm) when there is no EV inside the communication region while

arrows with double lines show the actions the algorithm will perform if an EV

exists. The conventional traffic light algorithm we used is the default traffic light

implemented in SUMO which has 31, 13 and 83 seconds durations for green, yellow
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and red light phases respectively. As shown in Figure 5.7, if the current status is

yellow or green when an EV is detected, the algorithm changes the light back to

green or just extends the green light for a fixed amount of time respectively. If the

current status of the lane is red when an EV enters the communication region, the

algorithm immediately sets the green lights of conflicting lanes to yellow and then

the lane of the EV will have green light after the yellow phase of the conflicting

lanes. This augmentation of reactive mechanism in traditional traffic light system

certainly help an EV to cross an intersection as quickly as possible.

5.3.3 Simulation Results

Performances of three different traffic patterns for all five volume cases are

recorded from simulations. Figure 5.8 shows a series of screenshots of simulation

employing R-DICA in SUMO when an EV (the vehicle in red) is crossing the inter-

section from South. In the simulation, normal vehicles in yellow are not confirmed

by the ICA while green normal vehicles are the confirmed ones. In Figure 5.8 (a),

we can see that R-DICA activated GA algorithm which establishes an optimal order

of vehicles to expedite the crossing of the EV. As one can note that in Figure 5.8

(a) and (b) the head vehicle on the right lane of West road is not confirmed which

means that this vehicle has a lower priority than the EV. All vehicles whose DTOTs

cannot be modified are confirmed vehicles. And head vehicles who have a higher

priority than the EV are confirmed. Figure 5.8 (b) and (c) show that the EV is

crossing the intersection unhindered while lower priority vehicles are waiting before

the intersection. As shown in Figure 5.8, as soon as the EV exits the intersection, all

head vehicles get confirmed which means R-DICA operates the same way as DICA.

The optimal vehicle-passing sequence from the genetic algorithm ensures the fast

crossing of an intersection for the EV.
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Computation Time

To show the computational efficiency of R-DICA using GA, we implemented R-

DICA in two different versions: One with GA and the other one with the Exhaustive

(a) (b)

(c) (d)

Figure 5.8: A series of screenshots of simulation which illustrates a situation when
an EV is crossing the intersection.
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Figure 5.9: Performance comparison of EVs for DICA, R-DICA, and the reactive
traffic light: (a) average trip time, (b) maximum trip time

Search (ES) method to solve the optimization problem. Computation times of dif-

ferent volume cases are recorded for both methods. Simulation results are shown

in Table 5.2 where ‘N/A’ means that the computer was not able to complete the

simulation due to memory errors.

Table 5.2: Computation time comparison between ES and GA

Traffic volume
100 200 300 400 500

(Number of vehicles per 10 minutes)

Computation time of ES (h) 0.05 0.52 N/A N/A N/A
Computation time of GA (h) 0.05 0.15 0.35 0.65 0.72

From the result, we can see that R-DICA with GA has definite advantages over

R-DICA with ES in terms of computational efficiency. As shown in the table, the

exhaustive search method only works for light traffic volumes while it has memory

issues for traffics of higher volumes.

Performance of EVs

We obtained the performance measures introduced in Section 3.5.2 to compare

the performance of R-DICA with DICA and the reactive traffic light.

As shown in Figure 5.9, the average trip times of EVs in all three algorithms:

DICA, R-DICA and the reactive traffic light are compared. For traffic volumes
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from 100 to 400, R-DICA has the least average trip time of EVs than the other two

algorithms. Especially in light traffic volumes, R-DICA reduces the EVs’ average

travel time by more than 50% from the reactive traffic light. However, the algorithm

has a bit longer average trip time for EVs than that of the reactive traffic light in

500 traffic volume. The worst case for EVs’ travels is illustrated by the maximum

trip time of EVs in (b) of Figure 5.9. The maximum trip time of R-DICA increases

and becomes greater than that of the reactive traffic light. Both the average trip

time and the maximum trip time of EVs for DICA are increasing along the volumes.

One may note that the average trip time and the maximum trip time of the reactive

traffic light keep almost the same with the increase of the traffic volume. Through

observation of the simulations, part of this is because too many vehicles accumulate

before the intersection when the lane of the EV is under red light. At this situation,

the EV is not detected and is stopping outside the communication region. When

the light for the lane of the EV turns green, the EV accelerates from rest to enter

the communication region which results in a higher speed for the EV. Thus, for

the heavier traffic volumes, EVs always have a higher speed when detected and are

expedited to cross by preference. The trip time within the communication region is

then reduced compared with R-DICA.

Performance of Normal Vehicles

Comparison of the performance for normal vehicles for all three algorithms is

shown in Figure 5.10. From this result, we can see that the throughput and effective

average trip time of R-DICA are nearly the same as those of DICA which shows

that the performance of normal vehicles is minimally affected by EVs. Both the

throughput and effective average trip time of normal vehicles become worse with

the increase of traffic volumes. This is consistent with the result in our previous
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Figure 5.10: Performance comparison of normal vehicles for DICA, R-DICA, and
the reactive traffic light: (a) throughput, (b) effective average trip time

work [45, 47]. Also, one can see from Figure 5.10 that the reactive traffic light has

steady and worse performance for normal vehicles than the other two algorithms.

To investigate more about the potential negative effects of prioritizing EVs on

other normal vehicles, we compare the maximum trip time of normal vehicles for

DICA and R-DICA in Table 5.3. The maximum trip time of R-DICA is very close to

that of DICA and their difference increases with traffic volumes. This shows that it

will bring a more negative effect on normal vehicles to evacuate an EV in congested

traffic.

Table 5.3: Comparison of maximum trip times of normal vehicles between DICA
and R-DICA

Traffic volume
100 200 300 400 500

(Number of vehicles per 10 minutes)

Maximum trip time of 17.88 35.80 55.37 89.47 132.90
normal vehicles: DICA (s)

Maximum trip time of 18.62 38.52 61.68 99.15 150.00
normal vehicles: R-DICA (s)
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5.4 Summary

In this chapter, we have shown that the DICA algorithm can be augmented to

allow emergency vehicles to cross intersections faster. A genetic algorithm based

approach is proposed as part of the augmented algorithm, called R-DICA, to opti-

mize the sequence of vehicles which gives the emergency vehicle the highest priority

and keeps the influence on other vehicles’ travel times as minimum as possible. The

R-DICA operates the same way as DICA if there is no EV inside the communication

region and optimizes vehicle-passing sequence if an EV enters the communication

region. A reactive traffic light and DICA algorithms are also implemented for sim-

ulation and their results are compared with R-DICA to evaluate the performance

of R-DICA. Simulation results show that R-DICA is effective to reduce travel times

of EVs and has better performance than the reactive traffic light for normal vehi-

cles. We conclude that the performance of normal vehicles is not noticeably affected

based on the simulation results of DICA and R-DICA.
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CHAPTER SIX

MICA: Optimal Control of Autonomous and

Connected Intersection Traffic

DICA’s strategy to obtain a collision-free DTOT for a new vehicle is conservative

by delaying the vehicle until all confirmed vehicles can cross the intersection safely.

The strategy might introduce an unnecessary delay for a new vehicle i. For example,

let’s say vehicle i is space-time conflicting with another confirmed vehicle j whose

speed is slower. DICA will force vehicle i to slow down waiting for vehicle j to

clear the conflicting area. In fact, by proper coordination, vehicle i can cross the

conflicting area before vehicle j by accelerating to reduce travel time and have no

collisions. Note here, vehicles’ arriving order may not be preserved whereas the

performance of overall traffic would be improved. Instead of employing the simple

delay strategy, this chapter proposes an approach named MICA (Mixed Integer

Programming based Intersection Coordination Algorithm) to optimize a new head

vehicle’s trajectory while potential collisions with confirmed vehicles are avoided.

6.1 Vehicle-Intersection Interaction

Figure 6.1 shows the high-level interaction between a CAV and the ICA in MICA.

As introduced in previous chapters, a CAV becomes a head vehicle only when no

vehicles exist between the CAV and the enter line of the intersection, or the vehicle

which is immediately in front of the CAV has begun to enter the intersection (i.e.,
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Figure 6.1: Interaction between a CAV and ICA.

has crossed the enter line). If a vehicle becomes a head vehicle, it immediately

sends a REQUEST message to the ICA in order to request an intersection crossing

trajectory to follow. We call such a trajectory a confirmed trajectory which is a

sequence of timed states. In DICA, the term DTOT denotes Discrete-Time Occu-

pancy Trajectory which might not always represent the optimal trajectory due to

the conservative collision avoidance strategy. With the introduction of MIP opti-

mization, we redefine the term DTOT as Discrete-Time Optimal Trajectory in this

chapter since MICA provides the optimal trajectory for every head vehicle. Thus, a

confirmed trajectory is also called a confirmed DTOT in the sequel. It is assumed

that a REQUEST message contains all necessary information such as the vehicle’s

size, current speed, current position, intended intersection crossing route, etc. for

the ICA to generate a confirmed DTOT. Once a confirmed DTOT is generated,

the ICA sends the DTOT to the vehicle in a RESPONSE message. When a head

vehicle receives its confirmed DTOT, it becomes a confirmed vehicle. A vehicle

which is not a head vehicle will simply follow other vehicles autonomously. Note

that the ICA can check whether a vehicle is a head vehicle or not easily based on

the information collected from the detectors installed at the communication region
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boundary. Therefore, REQUEST messages accidentally from non-head vehicles are

simply ignored by the ICA.

6.2 Problem Formulation of MICA

In this section, we introduce how we formulate the trajectory optimization prob-

lem for each head vehicle and also the overall MICA algorithm. We solve the prob-

lem of generating the optimal crossing trajectory for every vehicle through a mixed

integer programming formulation which includes necessary collision avoiding con-

straints. The formulation ensures every vehicle can cross an intersection as fast as

possible while potential collisions among vehicles are safely avoided.

6.2.1 Single Vehicle Trajectory Generation

We first consider the case of trajectory generation for a single vehicle. We assume

that there is only one vehicle approaching an intersection. Then in this very simple

situation, we aim to generate the DTOT for the vehicle to follow so that it can cross

the intersection as quickly as possible while satisfying some constraints like speed

and acceleration limits.

Let γ be the intersection crossing route (or path) the vehicle will follow when

it crosses an intersection and also let s be the state variable which represents the

position of the vehicle along the route γ. We assume that γ is fixed for a given

pair of enter and exit lanes across an intersection (i.e., a vehicle will not change

lanes during its intersection crossing). We also use h to denote the fixed sampling

time, vmax to denote the maximum allowed speed for the vehicle, amax and amin to

denote the maximum and minimum acceleration rates respectively. Note that, given

a fixed h, the DTOT of a vehicle can be represented by a sequence of positions of the

vehicle along γ such as {s0, s1, s2, . . . , sk, . . . , sn} for some positive integer number

n where sk represents the position of the vehicle along γ at the kth time step. Here,
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we implicitly assume that si ≤ sj if i < j and this relation will be included as a

constraint in our optimization problem formulation. We choose n as a sufficiently

large number. Let s = [s0 s1 · · · sn]T ∈ Rn. Then the fastest crossing DTOT for

the vehicle can be obtained by

max
s∈Rn

sn (6.1)

under several constraints which will be described below.

The main challenge is how to express all constraints as a function of elements

of the vehicle’s DTOT so that a linear constrained optimization problem can be

derived at the end. The first constraint that we should consider is the ordering

relation between any pair of si and sj in s ∈ Rn where i, j ∈ [0, n] and i 6= j. Since

s should represent an ordered sequence of positions of the vehicle along γ at each

sampling time step, it is clear that we should constrain the values for each variable

sk in s as follows:

slbk ≤ sk ≤ subk (6.2)

where

slbk = 0 if k = 0, slbk = sk−1 if k 6= 0;

subk = sk+1 if k 6= n, subk = vmax · n · h if k = n.

Next, vehicles should not drive backward on roads and should obey the speed

limit which is enforced by laws. Thus, we have the following constraint for speed:

0 ≤ vk ≤ vmax (6.3)

where vk is the speed of the vehicle at the kth time step. In order to incorporate

this constraint into our optimization formulation in (6.1), we rewrite the velocity

variable vk in terms of the positions sk and sk−1 in s as

vk =
sk − sk−1

h
for k ∈ [1, n]. (6.4)
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In addition to the speed constraint, we also should consider constraints for the

acceleration (or deceleration) rate of a vehicle in order to make sure the computed

DTOT is dynamically feasible. Let ak be the acceleration rate of a vehicle at the

kth time step. Then, the constraint for acceleration ak is given by

amin ≤ ak ≤ amax for k ∈ [1, n]. (6.5)

Again, in order to incorporate these constraints into the optimization formulation

in (6.1), it is necessary to rewrite ak in terms of variables sk in s as follows:

a1 =
v1 − v0

h
=
s1 − s0 − v0h

h2
,

ak =
vk − vk−1

h
=
sk − 2sk−1 + sk−2

h2
for k ∈ [2, n]

(6.6)

where v0 is the speed of the vehicle at the 0th time step which we assume is known

to the ICA via direct measurement or the V2I message sent from the vehicle to the

ICA at that moment.

6.2.2 Mixed Integer Programming for Collision Avoidance

In this section, we generalize the DTOT generation problem to include situa-

tions when there are other vehicles also approaching the same intersection. In such

situations, we should develop additional constraints and include them in the opti-

mization process so that the vehicle of interest can successfully cross the intersection

while potential collisions with other vehicles are safely avoided. In our discussions

below, we use the superscript i to indicate the vehicle of interest.

Constraints from space-conflicting vehicles

Suppose that there is a set C of confirmed vehicles which have arrived at the

communication region earlier than vehicle ci and hence their DTOTs have already
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been generated and confirmed. Let C∗ be the set of vehicles in C whose routes are

conflicting with vehicle ci’s route γi. Now, let us consider another vehicle cj ∈ C∗

to derive collision avoidance constraints for ci’s DTOT generation. We first note

that, as discussed in our previous work [47], for any pair of intersection crossing

routes whose both ends (entering and exiting of an intersection) are different from

each other, space conflicting (or overlapping) occurs only at certain small portions

of their routes. Also, one can see that these space conflicting short ranges along

routes can be determined offline for all pairs of conflicting intersection crossing

routes. Thus, to make vehicle ci avoid any potential collisions with vehicle cj , it

is necessary to ensure that ci does not occupy the space conflicting area when cj

occupies that area.

Figure 6.2 illustrates an example situation when vehicle cj is already a confirmed

vehicle as vehicle ci is entering the communication region. In this situation, ci is

the head vehicle on its lane and being considered for confirmation by the ICA (i.e.,

the DTOT is being generated by the ICA). The two long lines with arrows in the

figure represent vehicles ci and cj ’s routes: γi and γj . We can see that their routes

have a conflicting area A (with red diagonal lines) inside the intersection region

which is the area that both of the vehicles should not occupy at the same time

to avoid collisions. In the figure, P iin,j denotes the position on γi that ci starts to

enter the conflicting area A and P iout,j denotes the position on γi that ci becomes

free from collisions with cj . Note that we represent the position of a vehicle by the

position of the center of the vehicle’s front bumper along its route. Thus we choose

P iout,j to be at vehicle ci’s length (Li) away from the right boundary of A since the

length of a vehicle should also be considered for collision avoidance. Note also that

the positions P iin,j and P iout,j along γi are assumed to be known since they can be

computed offline for every pair of intersection crossing routes and, in the sequel, we

use γi|j to denote the conflicting area with cj on γi.
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Figure 6.2: Example of conflicting area.

We can see that, for ci, there are two options to avoid any potential collisions

with cj : (i) exits γi|j before cj arrives at its γj |i, or (ii) arrives at γi|j after cj exits

its γj |i. Let piin,j and piout,j be the distances from vehicle ci’s current position to

P iin,j and P iout,j along γi respectively. Then the two options can be expressed in two

inequalities:

siτ(in,j) ≥ p
i
out,j (6.7)

siτ(out,j) ≤ p
i
in,j (6.8)
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where sik is the ci’s position on γi at the kth time step, τ(in, j) ∈ {0, 1, . . . , n} is

the time step when cj arrives at position P jin,i and τ(out, j) ∈ {0, 1, . . . , n} is the

time step when cj completely leaves γj |i, i.e., cj arrives at position P jout,i. Note that

τ(in, j) and τ(out, j) can be easily computed based on cj ’s confirmed DTOT which

is known to the ICA.

However, the two inequalities are not compatible with each other and no solution

exists if we include both of them in the same problem formulation. To capture this

logical condition when solving the optimization problem for trajectory generation

for ci, we adopt a binary variable bij ∈ {0, 1} to represent ci’s behavior with respect

to cj and reformulate our optimization problem in (6.1) as a mixed-integer linear

programming (MILP) problem. Then, the constraints for collision avoidance with

the conflicting vehicle cj can be represented as

siτ(in,j) ≥ p
i
out,j +M · (bij − 1) (6.9)

siτ(out,j) ≤ p
i
in,j +M · bij (6.10)

where M is an arbitrarily large number. If bij = 1, (6.7) holds which means that ci

is already out of the conflicting area A at the time cj starts to enter the conflicting

area. Similarly, if bij = 0, (6.8) holds meaning that ci is still before the conflicting

area at the time cj exits the conflicting area A. Thus, the binary variable bij ensures

that the two equations cannot hold at the same time. The choice of either option

for ci becomes a decision variable in the optimization formulation.

Now we have modeled the constraints from one conflicting vehicle in C∗. Follow-

ing the same process, we can easily include all other vehicles in C∗ by computing

the corresponding times and position parameters related to their conflicting areas

with vehicle ci.
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Figure 6.3: Examples of three types of front vehicles (we use the simplest intersection
structure to save space).

Constraints from front vehicles

Besides vehicles in C∗ considered above, ci’s immediate front vehicles may also

have a direct influence on ci’s crossing behavior since wrong trajectory planning may

cause rear-end collisions with its front vehicles. As shown in Figure 6.3, to cross an

intersection safely, ci needs to avoid rear-end collisions with three different types of

front vehicles: (i) Figure 3(a), a front vehicle with the same entrance lane (cfen), (ii)

Figure 3(b), a front vehicle with the same exit lane (cfex), and (iii) Figure 3(c), a

front vehicle with exactly the same route (cfro). Below, we discuss how to formulate

constraints to the motion of vehicle ci to avoid collisions with these three types

of front vehicles. In the following discussion, note that front vehicles’ intersection

crossing trajectories are already known to the ICA since they are already confirmed.

First, let us consider the case of collision avoidance with a front vehicle cfen. If we

use τ(en, f) to denote the time step when cfen enters the enter line of an intersection

and vfτ(en,f) is the speed of cfen at that moment, then, to ensure that vehicle ci will not

collide with cfen while ci is approaching the intersection, we constrain the motion of
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ci so that both vehicles are separated in time by at least tsep. tsep can be determined

conservatively by assuming that ci is currently approaching the intersection at its

maximum speed vmax. Thus we define tsep as

tsep =
vmax − vfτ(en,f)

|amin|
+
gmin
v0

+ δ (6.11)

where gmin is a constant that represents the minimum distance gap between two

adjacent vehicles on a same lane regardless of their speeds and δ is another constant

that represents a safety margin in time. The first term in (6.11) is the time ci needs

to decelerate from vmax to vfτ(en,f) with its maximum deceleration rate while the

second is the minimum time required to ensure the minimum distance gap gmin.

Then we can formulate the following constraint to ensure that ci arrives at the

intersection enter line after τ(en, f) with a certain amount of time margin:

siτ(en,i) ≤ p
i
en (6.12)

where τ(en, i) = τ(en, f) +
⌈
tsep
h

⌉
is the earliest time step at which ci can arrive at

the enter line of the intersection, and pien is the position of the enter line on γi.

Next, to avoid collisions with a front vehicle cfex, we develop a constraint using

the same idea that introduces a minimum separation time tsep between ci and cfex

when they exit an intersection. Specifically, we make ci exit the intersection at

least tsep time later after cfex. In this case, tsep can be obtained in the same way

as in (6.11) except that vfτ(en,f) must be replaced by vfτ(ex,f) in the first term of the

equation where τ(ex, f) is the time step when cfex exits the intersection and hence

vfτ(ex,f) is the speed of cfex at that moment. Following the similar process, we can

have the following constraint for ci to avoid collision with cfex:

siτ(ex,i) ≤ p
i
ex (6.13)
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where τ(ex, i) = τ(ex, f) +
⌈
tsep
h

⌉
is the earliest time step at which ci can exit the

intersection, and piex is the position of the intersection exit on γi.

Now, note that if another confirmed vehicle has both the same entrance lane and

the same exit lane with vehicle ci, they actually have the same route. Thus, to avoid

collisions with such a front vehicle cfro, we can simply combine constraints from the

first two types of front vehicles. We include both (6.12) and (6.13) at the same time

as constraints in our optimization formulation for vehicle ci to avoid collisions with

this type of front vehicles.

6.2.3 Optimization Problem Formulation

We now present the final form of the proposed optimization problem formulation

to generate the DTOT for vehicle ci that avoids collisions with all confirmed vehicles.

Collecting variables for optimization from (6.1), (6.9), and (6.10), we first define the

vector of decision variables x := {si1, si2, · · · , sin, bi1, bi2, · · · , bil} assuming that |C∗| = l.

Let x(k) denotes the kth element of x. Then, the final form of the optimization

problem is to find x∗ such that

x∗ = argmax
x∈Rn×{0,1}l

x(n) (6.14)

subject to constraints

• Eqs. (6.2), (6.3), and (6.5).

• For vehicle cj ∈ C∗, eqs. (6.9) and (6.10).

• For cfen or cfro type front vehicle, eq. (6.12)

• For cfex or cfro type front vehicle, eq. (6.13)

where vik and aik is defined as in (6.4) and (6.6), respectively.

98



6.2.4 MICA

Based on the problem formulation introduced above, we now present the over-

all MICA intersection control framework. As shown in Algorithm 5, we first call

the function getConstraintsFV() to obtain the constraints due to ci’s front vehi-

cles as explained in Section 6.2.2. Then, the function getConstraintsSCV() is

called to determine the constraints due to confirmed vehicles whose routes are space

conflicting with route γi as introduced in Section 6.2.2. After all required con-

straints for collision avoidance are obtained, MICA computes the DTOT for ci via

the function MIP(). With the problem formulation in Section 6.2.3 and the obtained

constraints, MIP() can be solved using existing optimization solvers like CPLEX,

Gurobi, etc. Note that we omit the details on functions getConstraintsFV() and

getConstraintsSCV() and recommend to refer to our earlier work [47] for more

details.

Algorithm 5 MICA (Mixed Integer Programming based Intersection Coordination
Algorithm)

1: Let C be the set of confirmed vehicles.
2: Let ci be the vehicle to be considered for confirmation.
3:

4: Call getConstraintsFV(C, γi)→ constFV

5: Call getConstraintsSCV(C, γi)→ constSCV

6: Call MIP(constFV, constSCV)→ x∗

7:

8: Send x∗(1, 2, · · · , n) to vehicle ci

6.3 Simulation

Simulations were implemented in SUMO [103] to show the performance of MICA.

The algorithm was programmed as Python applications which interact with SUMO

through its API: TraCI. The mixed integer programming optimization problem was

solved using Gurobi optimization software [111].
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6.3.1 Simulation Setup

In simulations, we use a four-way intersection that has three entrance lanes

and two exit lanes each way. Most simulation setups in this chapter are similar

to that in previous chapters. The maximum allowed speed vmax for all vehicles is

70 km/h. Vehicles enter the communication region of the intersection with different

speeds which are randomly chosen within the range from 40% to 100% of vmax. All

vehicles have the same rectangular shape and size (5 meters long and 1.8 meters

wide). We set amax = 2 m/s2 and amin = −4.5 m/s2, respectively. The distance

from the enter line of the communication region to that of the intersection region is

set as 50 m.

Vehicles were spawned randomly on each entrance lane with an intersection route

which is also randomly chosen. We used several different random seeds to gener-

ate different traffic patterns and make simulations reproducible. In Table 6.1, the

parameters used for generating various patterns and volumes are summarized in

which pL, pS and pR are the probabilities for a new generated vehicle to take Left,

Straight or Right route respectively. Note, the volume 100 means we generate aver-

agely 100 vehicles for a 10-minute simulation. We use five different traffic volumes

{100, 200, 300, 400, 500}. For every volume, we ran simulations of three different

traffic patterns to get the average results as the final result for each traffic volume.

Table 6.1: Parameters used for various traffic volumes and patterns. (∗ Expected
number of vehicles per 10 minutes.)

Parameter Value

Traffic volumes∗ 100 / 200 / 300 / 400 / 500
pV 0.03 / 0.06 / 0.08 / 0.11 / 0.14
pL 0.20
pS 0.60
pR 0.20
Traffic patterns: random seeds 1: 12 / 2: 21 / 3: 66
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Simulations were run using 0.05 s as the time step and a simulation is terminated

when the simulated time reaches 10 minutes.

6.3.2 Simulation Results

The throughput performance of MICA is compared with that of the optimized

traffic light algorithm in Section 4.3.1 as well as that of DICA.

For each vehicle, we obtained the performance measures introduced in Section

3.5.2 to show the performance of MICA. Also, we use the Jain’s fairness index

f [112, 113] to compare the fairness of each algorithm with respect to trip times of

crossed vehicles. The Jain’s fairness index takes values within [0, 1]. If all crossed

vehicles have similar trip times, then f is close to 1. Otherwise, if all vehicles

experience very different trip times, f is close to 0. If we let ηi be the trip time of

vehicle ci who crossed the intersection in a simulation run and N be the number of

crossed vehicles, then we can compute the Jain’s fairness index f as follows:

f(~η = [η1, η2, · · · , ηN ]) =
(
∑i=N

i=1 ηi)
2

N
∑i=N

i=1 η2
i

(6.15)

The performance comparisons between algorithms are shown in Figure 6.4. The

result shows that MICA performs substantially better than others in both perfor-
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Figure 6.4: Crossed vehicles’ performance of the optimized traffic light, DICA and
MICA: (a) average trip time, (b) stopped rate.
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Table 6.2: Jain’s fairness index of the optimized traffic light, DICA and MICA.

Traffic volume (number of
100 200 300 400 500

vehicles per 10 minutes)

Optimized Traffic Light 0.80 0.80 0.78 0.75 0.71
DICA 0.97 0.87 0.75 0.60 0.63
MICA 0.98 0.97 0.94 0.90 0.88

mance metrics (average trip time and stopped rate) in all traffic volume cases. In

particular, one can see that the average trip time of MICA remains nearly constant

while those of other algorithms increase as the traffic volume increases. Also, we

can find that most vehicles cross an intersection without making a complete stop

under MICA. Even in the highest traffic volume case when more than 60% of the

crossed vehicles experienced a stop under the other two algorithms, MICA maintains

less than 10% stopped rate for the same situation. Thus, the results show that the

capacity of MICA in handling the intersection crossing traffic is much larger than

others.

Table 6.2 shows the Jain’s fairness index of the three algorithms for all traffic

volumes. The index for MICA decreases slightly as the traffic volume increases but

still shows much better performance than other algorithms.

Figure 6.5 plots the histograms of the trip times of all crossed vehicles for the

optimized traffic light, DICA and MICA for the heaviest volume 500 and traffic

pattern 1. Very few vehicles take about 10 seconds more than the most frequent

trip time when the simulation employs MICA. DICA’s trip times distribute over

a much larger range and the optimized traffic light has more vehicles experienced

larger trip times.

Figure 6.6 shows that the throughputs of the three algorithms are almost the

same for all traffic volumes. We are using random generation of vehicles in the

simulations, so the small fluctuations should due to the randomness and the results

of light volumes are more influenced. The effective average trip time shares similar
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Figure 6.5: Histograms of trip times when employing the optimized traffic light,
DICA and MICA for traffic volume 500, pattern 1.

trends with the average trip time in Figure 6.4 because the range of throughput

values is small.

(a) (b)

Figure 6.6: Overall performance comparison among the optimized traffic light, DICA
and MICA: (a) throughput, (b) effective average trip time.
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6.4 Summary

In this chapter, we use MIP to formulate a new head vehicle’s optimal control

problem. Besides the constraints from vehicles and local laws, constraints from con-

flicting vehicles and front vehicles are also carefully designed in order to ensure the

safety of intersection crossing vehicles. Simulation results show that the proposed

MICA achieves substantially higher throughput as well as fairness performance than

other intersection control approaches, such as the optimized traffic light and DICA.
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CHAPTER SEVEN

MICACO: MICA considering Communication

Uncertainties

MICA works very well if we have perfect communication between the ICA and

CAVs. However, in real applications, communication uncertainties which typically

include packet delay and loss, are unavoidable. In this chapter, we present an

approach based on MICA to handle packet delay and loss while ensuring safety and

liveness. In this dissertation, packet delay means the amount of time a message

needs to travel from a CAV/ICA to another ICA/CAV. And packet loss means

some packets may fail to reach their destinations due to the blocking of buildings

or message congestions, etc.

7.1 MICACO

7.1.1 New Interaction Mechanism

In order to handle these communication problems, we propose a simple yet effec-

tive high-level interaction mechanism based on MICA to ensure CAVs free from colli-

sions under imperfect communication environment. In the new mechanism which we

call MICACO (MICA considering COmmunication uncertaities), defaultly a head

vehicle which is not confirmed by the ICA will start to decelerate with an accelera-

tion rate that will make it stop at the enter line of the intersection region.
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Figure 7.1: Interaction between a CAV and the ICA handling communication prob-
lems.

The main idea of MICACO is illustrated through the interaction between a

CAV and the ICA in Figure 7.1. Compared with the interaction scheme in Figure

6.1, the new interaction diagram has more components and two more messages

ACK CAV and ACK ICA to handle delayed and lost messages. Once a vehicle
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enters the communication region, it will check if it is the head vehicle on its lane.

Same as previous interaction mechanism, if a CAV becomes the head vehicle on its

lane, it will send a REQUEST message to the ICA to get a confirmed collision-free

DTOT to follow. The REQUEST message contains the vehicle’s VIN and other

information for its crossing. Let’s denote the empirical upper bound of the one-way

trip time for a message to take between a vehicle and the ICA is h. If the REQUEST

message is not delivered successfully to the ICA, the vehicle will decelerate for

2h time and realize the failure. Then the vehicle will generate a new REQUEST

message and send it again. Otherwise, with the information in the message and

other confirmed vehicles’ DTOTs, the ICA computes the corresponding DTOT for

this vehicle which avoids potential conflicts with all other confirmed vehicles using

MICA. The obtained DTOT is sent back to the CAV in the RESPONSE message.

Note here, the ICA temporarily saves the generated DTOT and will check against

this DTOT when it wants to confirm another new vehicle. If the RESPONSE is

received by the CAV within 2h, the CAV will save the received DTOT and send

ACK CAV message to inform the ICA the reception of the RESPONSE. Otherwise,

as we introduced above, the CAV will regenerate a REQUEST and send it. In the

meantime, the CAV is still decelerating with an acceleration rate that can make it

stop at the enter line. The introduction of ACK CAV lets the ICA knows that the

CAV receives the collision-free DTOT and also stores it. Then those space-times are

reserved for the CAV indicating the CAV is confirmed by the ICA. Similarly, if the

ACK CAV is not received by the ICA, the ICA will simply remove the generated

DTOT and go back to its Standby state which will be explained later. Lastly, the

ICA sends ACK ICA to indicate the reception of the message ACK CAV. Then once

the CAV receives ACK ICA, it knows that its collision-free DTOT is confirmed by

the ICA and plans itself to follow its DTOT. Note that this DTOT contains the

trajectory after the CAV decelerates for 4h. Even if the CAV receives the DTOT
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Figure 7.2: State machine of a CAV.

much earlier than 4h, it will still decelerate and start to follow the DTOT at the

time instant after 4h. If the message ACK ICA is not received by the CAV within

4h time or it is lost, the CAV will realize this at 4h and regenerate a REQUEST

and send it to the ICA. We will explain the timer reset and other details for the

ICA and CAV in their respective state machines in the following sections.

7.1.2 CAV State Machine

The state machine diagram of a CAV is shown in Figure 7.2. Several state

transitions are shown in the figure to describe how vehicles will behave where there

exist packet delay and loss. Same as before, a CAV will always follow traffic before

it becomes a head vehicle. If the CAV is a head vehicle, it enters the state Ready

which is a transient state that the CAV will send REQUEST and enter another

state Wait for RESPONSE. In this state, the vehicle is waiting for the RESPONSE

message from the ICA. If the message is not lost and the communication delay is

within the upper bound (RESPONSE is received by the CAV within 2h), the CAV

sends ACK CAV and enters the state Wait for ACK ICA. Note here not lost means

that the message should not be lost in either direction i.e. from the CAV to the

ICA and from the ICA to the CAV. Otherwise, it goes back to state Ready and
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Figure 7.3: State machine of an ICA interaction instance.

sends an updated REQUEST. In the meantime, the timer is reset: t := 0. We

assume that the communication delay is far larger than the processing time for the

ICA to compute a DTOT. Thus the processing time is negligible. In the state Wait

for ACK ICA, the vehicle is waiting for the ACK ICA message from the ICA. If it

receives the ACK ICA in time, it finally enters the state Confirmed indicating the

completion of interaction with the ICA. Otherwise, it will go back to Ready state

and restart everything.

7.1.3 ICA State Machine

The state machine diagram of the ICA is shown in Figure 7.3. When no

REQUESTs are received, the ICA is in state Standby. The ICA will enter state

REQUEST received once a REQUEST from a CAV arrives at the ICA. Then the

ICA generates DTOT for the CAV and sends the RESPONSE back. The ICA

starts to count time when it sends the RESPONSE. It is now in state Wait for

ACK CAV at which state two transitions may happen. If the message is not lost

and the corresponding delay is within the bound i.e. the ICA receives ACK CAV

within 2h, it enters the state ACK CAV received. Otherwise, the ICA cannot receive

the ACK CAV message in time, it will remove the generated DTOT and become
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Table 7.1: Parameters used for various traffic volumes and patterns. (∗ Expected
number of vehicles per 10 minutes.)

Parameter Value

Traffic volumes∗ 100 / 200 / 300 / 400 / 500
pV 0.03 / 0.06 / 0.08 / 0.11 / 0.14
pL 0.20
pS 0.60
pR 0.20
Traffic patterns: random seeds 1: 12 / 2: 21 / 3: 66

Standby state again. In state ACK CAV received, the ICA will confirm the collision-

free DTOT and send message ACK ICA to the CAV. Until this point, a complete

interaction with a CAV is done.

Note that, Figure 7.3 illustrates the state machine for an ICA interaction instance

which only deals with one CAV. If there is another vehicle or multiple vehicles send

REQUESTs to the ICA at the same time, the ICA will generate more interaction

instances to for each vehicle and destroy those extra instances once the interactions

are completed. The ICA will only keep one available instance when there are no

requests from CAVs.

7.2 Simulation

Simulations were implemented in the open-source traffic simulator SUMO [103]

to show the performance of MICACO. SUMO is highly portable and very popular

within the academic community for microscopic road traffic simulations to validate

traffic control algorithms. The algorithms were programmed as Python applications

which interact with SUMO through its API: TraCI. The mixed integer programming

optimization problem was solved using Gurobi optimization solver [111].
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7.2.1 Simulation Setup

We used an isolated four-way intersection with three entrance lanes and two

exit lanes each way in our simulations. Most simulation setups in this chapter

are similar to that in previous chapters. The maximum allowed speed vmax for

all vehicles is 70 km/h. Before entering the communication region, vehicles are

traveling with different constant speeds which are randomly chosen within the range

from 40% to 100% of vmax. For simple, all vehicles have the same rectangular

shape and size (5 meters long and 1.8 meters wide). We set amax = 2 m/s2 and

amin = −4.5 m/s2, respectively. However, note that MICACO also applies to

vehicles with different shapes, sizes and acceleration rates. The distance from the

enter line of the communication region to that of the intersection region is set as

50 m.

Vehicles were spawned randomly on each entrance lane with a randomly assigned

intersection route. We used several different random seeds to generate different

traffic patterns and make simulations reproducible. In Table 7.1, the parameters

used for generating various patterns and volumes are summarized in which pL, pS

and pR are the probabilities for a new generated vehicle to take Left, Straight or

Right route respectively. Note, the volume 100 means we generate averagely 100

vehicles for a 10-minute simulation. For every volume, we ran simulations of three

different traffic patterns to get the average result as the final result for each traffic

volume. Simulations were run using 0.05 s as the time step and a simulation is

terminated when the simulated time reaches 10 minutes. The packet loss rate used

was 5% and the one-way delay mean and standard deviation used were 0.1s and

25% ∗ 0.1s. Simulations were run using 0.05 s as the time step and a simulation is

terminated when the simulated time reaches 10 minutes.
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Figure 7.4: Traffic control performance comparison between MICA and MICACO
(a) throughput, (b) effective average trip time.

7.2.2 Simulation Results

The traffic control performance of MICACO is compared with that of MICA

as well as that of the optimized traffic light algorithm introduced in Section 4.3.1.

For each vehicle, we obtained the performance measures introduced in Section 3.5.2

to show the performance of MICACO. Also, we use the Jain’s fairness index f

introduced in Section 6.3.2 to compare the fairness of each algorithm with respect

to trip times of crossed vehicles.

Comparison with MICA

We compare the overall traffic control performance of MICACO with that of

MICA to show the effect of considering communication uncertainties on final per-

formance. As shown in Fig. 7.4, with imperfect communication, the throughput

keeps almost the same and the effective average trip time increases for all volume

situations. Both metrics show similar trends for MICA and MICACO. Since we

generated vehicles randomly in the simulations, part of the small fluctuations of

throughput should due to the randomness and the results of light volumes are more

influenced. Based on the definition of the effective average trip time we know that

the average trip time also increases for all volumes situations. However, the percent-
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age of performance drop is relatively small as the maximum decrease percentage of

the effective average trip time is about 13%.

Comparison with the Optimized Traffic Light Algorithm

(b)(a)

(d)(c)

Figure 7.5: Comparison of traffic control performance between the optimized traffic
light algorithm and MICACO: (a) average trip time, (b) stopped rate.

The performance comparisons between the optimized traffic light algorithm and

MICACO are shown in Figure 7.5. The results show that even though MICACO’s

performance drops a bit from MICA’s performance to handle packet delay and loss,

it still performs substantially better than the optimized traffic light algorithm for

all performance metrics (average trip time, throughput, maximum trip time and

stopped rate) in all traffic volume cases. This is because even though packet delay

and loss bring some delays for an approaching head vehicle, the final DTOT com-

puted through MIP is still the optimal trajectory for the vehicle to follow. Compared

with the optimized traffic light algorithm, there are not unnecessary waiting times

for vehicles under the control of MICACO. In particular, we can see that the average
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Table 7.2: Jain’s fairness index of the optimized traffic light algorithm and MICACO.

Traffic volume (number of
100 200 300 400 500

vehicles per 10 minutes)

Optimized Traffic Light 0.80 0.80 0.78 0.75 0.71
MICACO 0.98 0.95 0.91 0.87 0.86

trip time of MICACO remains nearly constant while that of the optimized traffic

light algorithm increases as the traffic volume increases. And in the worst case,

the optimized traffic light algorithm takes a vehicle averagely 3 times longer than

MICACO to cross the intersection. One can find that although there are small

fluctuations of throughput due to randomness, MICACO achieved slightly better

throughput than the optimized traffic light across all traffic volume cases. In terms

of maximum trip time, both algorithms show similar trends that it took a vehicle

longer and longer time to cross in the worst case when there were more and more

vehicles. When more vehicles enter the communication region, it is more likely that

a vehicle will experience multiple delays and packet losses which result in longer

waiting time before crossing that contributes to the longer total trip time. Lastly,

Figure 7.5 (d) shows that most vehicles crossed the intersection without making a

complete stop under MICACO. Even in the highest traffic volume case, when more

than 60% of the crossed vehicles experienced a stop under the optimized traffic light

algorithm, MICACO maintains less than 15% stopped rate for the same volume case.

Thus, the results show that the capacity of MICACO in handling the intersection

crossing traffic is much larger than the traditional traffic light.

Table 7.2 shows the Jain’s fairness index of the two algorithms for all traffic vol-

umes. The fariness index for both algorithms decreases slightly as the traffic volume

increases but MICACO shows much better performance than the other algorithm.

For light traffic volume cases, the fairness index of MICACO is very close to 1 which

means that vehicles were able to cross the intersection almost unhindered leading

to very similar trip times.
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7.3 Summary

Based on MICA, this chapter proposed MICACO which ensures safety and

obtains the optimal trajectory for each vehicle while considering imperfect com-

munication like packet delay and loss. MICACO uses simple interaction mechanism

and two more message types ACK CAV and ACK ICA to ensure the successful

delivery of messages between a CAV and an ICA. Extensive simulation results show

that the proposed MICACO achieves substantially higher throughput as well as fair-

ness performance than the optimized traffic light algorithm although it performs a

bit worse than MICA due to the handling of communication uncertainties.
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CHAPTER EIGHT

Conclusion and Future Work

This dissertation has presented several control algorithms for connected and

autonomous intersection traffic. These algorithms ranging from basic DICA, reac-

tive DICA for emergency vehicles’ expedited crossings, to MICA which gives every

vehicle an optimal trajectory and MICACO which handles communication uncer-

tainties. All algorithms were validated through extensive simulations. This chapter

summarizes the dissertation briefly and gives potential future work.

8.1 Conclusion

Chapter 1 made a brief introduction for the dissertation and Chapter 2 explored

existing researches in related fields. In Chapter 3, we developed an intelligent inter-

section control algorithm DICA employing the concept DTOT. The chapter intro-

duced the concept of DTOT by which ICA is able to manage limited intersection

space at a more accurate and efficient way. Theoretical analysis shows that DICA

is free from deadlocks and starvation problems. Simulation results show that our

algorithm achieves less Effective Average Trip Time compared with the Concurrent

intersection control algorithm.

In Chapter 4, we analyzed the computational complexity of the original DICA

and enhanced the algorithm so that it can have better overall computational effi-

ciency. The enhancement was done through several computational techniques like

determining conflicting spaces offline, employing the bisection method in time-
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conflict checking, etc. Simulation results show that the computational efficiency

of the algorithm is improved significantly after the enhancement and the properties

of starvation free and safety are guaranteed. We also validated that the overall

throughput performance of our enhanced DICA is better than that of an optimized

traffic light control mechanism in the case when the traffic is not congested.

In Chapter 5, we have shown that the DICA algorithm can be augmented to allow

emergency vehicles to cross intersections faster. A genetic algorithm based approach

is proposed as part of the augmented algorithm, called R-DICA, to optimize the

sequence of vehicles which gives the emergency vehicle the highest priority and keeps

the influence on other vehicles’ travel times as minimum as possible. The R-DICA

operates the same way as DICA if there is no EV inside the communication region

and optimizes vehicle-passing sequence if an EV enters the communication region. A

reactive traffic light and DICA algorithms are also implemented for simulation and

their results are compared with R-DICA to evaluate the performance of R-DICA.

Simulation results show that R-DICA is effective to reduce travel times of EVs

and has better performance than the reactive traffic light for normal vehicles. We

conclude that the performance of normal vehicles is not noticeably affected based

on the simulation results of DICA and R-DICA.

In Chapter 6, we use MIP to formulate a new head vehicle’s optimal control

problem. Besides the constraints from vehicles and local laws, constraints from con-

flicting vehicles and front vehicles are also properly modeled. Great improvements

from DICA are shown in simulation results which implies that the algorithm MICA

is able to reduce intersection congestions effectively.

In Chapter 7, we propose MICACO which ensures safety and obtains the optimal

trajectory for each vehicle while considering imperfect communications like packet

delay and loss. MICACO has more interaction rules between a CAV and an ICA, and

two more messages ACK CAV and ACK ICA to handle delayed and lost messages.

117



Extensive simulation results show that the proposed MICACO achieves substantially

higher throughput as well as fairness performance than the optimized traffic light

algorithm although it performs a bit worse than MICA due to the handling of

communication uncertainties.

8.2 Future Work

In the future, assumptions like the accurate prediction of DTOT can be relaxed

and methods to deal with car failures will be studied to make the algorithm more

applicable to real situations.

In addition to giving priority to special vehicles e.g. emergency vehicles by

forming optimal sequence like R-DICA, R-DICA can be enhanced to allow special

vehicles’ faster crossings through efficient usage of intersection space. For example,

ICA may modify both occupancies’ positions and times of a vehicle’s DTOT in order

to form a passage for special vehicles.

We will study algorithms based on MICACO on a network of intersections to

have a global optimal performance on a city level. Also, we will work to integrate the

grouping strategy used in traffic flow based intersection control algorithms into our

MICACO to achieve better performances in more congested situations. MICACO

can be generalized to work with mixed traffic where autonomous vehicles and human-

driven vehicles coexist. A more interesting and difficult problem could be including

pedestrians in the intersection traffic. The validation of MICACO related algorithms

will use more professional communication simulation softwares.
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