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Abstract

Advances in Unmanned Aerial Vehicle (UAV) technology have enabled wider

access for the general public leading to more stringent flight regulations, such as

the “line of sight” restriction, for hobbyists and commercial applications. Improving

sensor technology for Sense And Avoid (SAA) systems is currently a major research

area in the unmanned vehicle community. This thesis overviews efforts made

to advance intelligent algorithms used to detect, track, and identify commercial

UAV targets by enabling rapid prototyping of novel radar techniques such as

micro-Doppler radar target identification or cognitive radar. To enable empirical

radar signal processing evaluations, an S-Band and X-Band frequency modulated,

software-defined radar testbed is designed, implemented, and evaluated with field

measurements. The final evaluations provide proof of functionality, performance

measurements, and limitations of this testbed and future software-defined radars.

The testbed is comprised of open-source software and hardware meant to accelerate

the development of a reliable, repeatable, and scalable SAA system for the wide

range of new and existing UAVs.
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Chapter 1

Introduction

Research in the field of aviation and the continuous improvement of avionics

systems has led to increased use of Unmanned Aerial Vehicles (UAVs) or, more

generally, Unmanned Aerial Systems (UASs). UAVs integrate efficiently into the

large and growing range of applications from aerial surveillance or surveying to

warehouse or crop-field maintenance. Due to their ability to perform dynamic

maneuvers, low manufacturing cost, and elimination of on-board pilots, many

industries find benefit in integrating UAVs into their solutions. However, UAVs are

typically designed for a limited mission scope which requires unique size, type, and

performance to accomplish. The result is a growing market for safe and specialized

UAVs to fit the wide range of needs which present the community with many unique

challenges in order to maintain a safe and efficient National Airspace System (NAS).

The NAS has different classifications of airspace based on altitude and proximity

to safety concerns based on the International Civil Aviation Organization (ICAO)

classification system. The Federal Aviation Administration (FAA) recognizes
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airspace classes A through G. The controlled airspace (A-E) provide Air Traffic

Control (ATC) services. Classes A and E separate general airspace at 18, 000 feet

mean sea level. Classes B, C, and D define airspace classes surrounding airports.

Class G airspace is uncontrolled airspace below Class E. Commercial UAV flight

primarily occurs in Class G airspace however, further restricting limit unmanned

flight. Figure 1.1 shows the current NAS airspace classifications [1].

Figure 1.1: ICAO Airspace Classification [1]

Removing an on-board pilot removes a large payload component and enables

missions requiring large fleets, efficiency, or long distance flight. However, unmanned

flights pose a new set of problems for the aircraft systems engineers. To maintain

safe and successful flights, the UAV requires more reliable communications, accurate

sensors and robust control mechanisms. The FAA has recently increased restrictions

on UAV flight to attempt to mitigate flight issues such as mid-air collisions [2].

Consequently, the restrictions severely limit their market potential. For example, a

UAV is required to fly within the “Line-of-Sight” of the pilot and below 400 feet

elevation. Some applications such as surveying or maintenance are significantly

limited while others such as package delivery or large fleets are only legally allowed

with special permits. To alleviate these restrictions, new technology must satisfy
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the broader FAA regulation regarding “right-of-way” between aircraft [3]. This

regulation requires aircraft to “see and avoid” and pass by at a “well-clear” distance

from other aircraft. The definition and ability to integrate UAVs into general

ATC airspace remains an ongoing problem. In fact, one of the main technology

challenges as presented in the FAA’s newest civil UAS/UAV NAS integration

roadmap is an airborne Sense And Avoid (SAA) system to maintain a safe distance

between aircraft [4]. The main challenges for standardizing an SAA system are

establishing system and performance levels, assessment of multi-sensor use, and

minimum information set required for collision avoidance maneuvering.

Existing solutions to address the mid-air collision problem are already imple-

mented in manned aircraft. The solutions contain a system or systems able to sense

the navigational data of all aircraft in a given airspace, predict a potential collision,

propose an avoidance maneuver and execute said maneuver. These solutions are

typically divided into two categories based on their sensing techniques: cooperative

and non-cooperative systems. Cooperative systems require all aircraft to proactively

participate in the system and are prevalent in commercial and military aviation.

They include on-board telemetry sensors, human-backed base station processors and

ground based sensors cooperating through reliable communication networks. For a

well-regulated, low density airspace, cooperative systems are a reliable solution and

collisions are rare; however, increases in UAV flights threaten the effectiveness of

cooperative-only systems.

The cooperative collision avoidance systems have a wide range of mature

transponder solutions for different flight application. The transponder solutions

include Traffic Collision Avoidance System (TCAS), Portable Collision Avoidance
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System (PCAS), FLight AlaRM (FLARM), and Automatic Dependent Surveillance

and Broadcast (ADS-B) [5, 6, 7, 8]. The different transponders solve several regimes

of aircraft collision avoidance. The TCAS system is the industry standard for the

collision avoidance of commercial airlines and military aircraft flying in controlled

airspace. ADS-B is the communication and telemetry broadcast standard which can

be incorporated into the larger TCAS system. PCAS and FLARM are low-cost, light

aircraft transponder solutions for integrating into the NAS in specific short-range

missions. PCAS passively listens to TCAS calls and can be used to maintain

separation from larger aircraft. FLARM is a mostly European used implementation

of ADS-B used for light-weight, short-range, and non-ATC missions.

Non-cooperative systems, by contrast, involve on-board sensors and processor

systems to either actively or passively detect and declare a potential collision. The

independent sensing of surrounding aircraft and integration of collision avoidance

maneuvers into autonomous navigational systems does not require the cooperation

between aircraft. They also provide one solution for a safe high-density, unmanned,

uncertain integrated airspace. Due to the importance of Size, Weight and Power

(SWaP) characteristics for all potential flight systems, achieving the necessary sensor

performance and reliability for a non-cooperative system is still an on-going research

and development problem. The research field is commonly called Sense, Detect

and Avoid (SDA) or more simply, SAA, and Figure 1.2 shows the taxonomy of the

problem.

There are a number of prototype systems utilizing a wide range of sensor

technologies and avoidance mechanisms. This thesis will explore development of
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Figure 1.2: Sense and Avoid Taxonomy [9]

a prototype radar-based SAA system and fundamental research questions actively

under investigation by the UAV and radar research community.
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1.1 Motivation

Many sensors can be applied to SAA systems; however, radar has numerous

advantages to sound, visible Light or Laser Detection and Ranging (LiDAR)

alternatives due to its inherent robustness to unwanted obstruction commonly called

“noise”. Unlike optical systems, radars are not largely affected by sunlight, smoke,

fog, dust, or other factors that typically affect sensors utilizing optical wavelengths.

Furthermore, radars typically have improved directionality and range characteristics

when compared with acoustic systems. Additionally, radar systems can be used

independently of aircraft with high levels of acoustic noise and can detect aircraft

with little to no acoustic noise emissions (something that is increasingly important

as the number of UAVs using electric propulsion increases).

Many recent attempts have been made at designing a lightweight, low power

radar SAA system for collision avoidance. Each system requires accurate and robust

sensors for detecting the range and velocity of a target to calculate trajectory and

ultimately avoid the collision. The sensor can also provide identification of target

or obstacle type. For aerial vehicles, the identifying between types of aircraft can

result in better decisions made by the collision avoidance algorithm. In this thesis,

the focus is on research to improve fundamental sensor performance as opposed to

providing more efficient collision decisions.

1.2 Problem Statement

Radar-based SAA systems require reliable Detection, Tracking and Identification

(DTI) of targets for mid-air collision avoidance. Two emerging sub-fields of radar-
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based SAA systems, Micro-Doppler Identification [10] and Cognitive Radar (CR)

[11], are currently active in research investigating radar systems designed for UAV-

sized targets.

Micro-Doppler Identification applies machine learning techniques to extract

features from unique electromagnetic echo signatures of different classes or models

of UAVs and classifies them to improve avoidance decision making (i.e., knowing the

flight capabilities of the opposing aircraft allows the avoidance algorithm to optimize

its response). CR is a broad topic which is aimed at applying control or decision

algorithms to the radar transmit signal to optimize for improved performance and/or

resource management; a Software Defined Radio (SDR) enables implementation

through the development of software modules rather than hardware changes.

The goal of this research is to develop a radar testbed in order to investigate

fundamental research questions pertaining to Micro-Doppler radar target identifica-

tion and Cognitive Radar and accelerated radar signal processing development and

testing. The testbed will be capable of operating in common radar bands for UAV

detection, tracking and identification and provide enough bandwidth for accurate

range and velocity measurements.

1.3 Methodology

In the past, radar systems require expensive, high-performance microwave

frontends and multifaceted data processing components. The recent reduction of

price for flexible SDR technology has allowed for academic and industrial research

laboratories to explore novel ideas and make research measurements at a reasonable
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entrance expense. A radar testbed system is developed in the Denver University

Unmanned Systems Research Institute (DU2SRI) with the aim to improve the

SAA system’s ability to perform all three primary radar functions specifically

for UAV-sized targets. The radar testbed is designed to operate with sufficient

bandwidth at common radar frequencies allocated by the Federal Communications

Commission (FCC) [12]. The testbed is designed with sufficient hardware flexibility

to provide software-implemented radar research algorithms pertaining to Micro-

Doppler Identification and Cognitive Radar.

1.4 Contributions

A radar testbed was developed using commercially available software-defined

radios, third party and in house built components, and open-source software. The

radar testbed serves as a prototype for generation 3 mountable SAA radar. However,

its primary use is to implement and test novel UAV SAA radar control, algorithms,

and techniques.

1. S-Band and X-Band radar testbed implemented and tested with LimeSDR.

2. X-Band frequency converter design, implementation, and testing

3. SDR embedded C/C++ and HDL programming modifications for radar

functionality

4. Functionality and performance testing with field measurements.

5. Analysis of Software Defined Radar (SDRad) limitations and benefits as radar

testbeds.
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6. Open-source software and hardware design for accelerating future SAA radar

development.

1.5 Organization of Thesis

The thesis begins by providing a brief background of the required knowledge

for basic understanding of UAV radar SAA. The topic requires a significant

breadth of expertise including collision avoidance, radar basics, and micro-Doppler

fundamentals. A motivated reader can explore a more extensive explanation in

the appendices. Next, a comprehensive review of current radar SAA theory and

technology is provided to justify the potential of a software-defined radar testbed

to increase SAA sensor performance. Completing the background, a detailed review

of current literature for two particularly popular research topics, Micro-Doppler and

Cognitive Radar, is provided. These topics are particularly useful and beneficial in

the push towards autonomous control. They provide examples and context for the

design requirements and functionality of the radar testbed.

Chapter 3 covers the design, implementation, and evaluation of the first testbed

prototypes. First, the problem space and key design decisions are discussed. A

proposed solution is provided with specific parameter requirements. Section 3.2

describes the solution in great detail, covering system-level to component-level

analysis of all major pieces of the testbed solution. Lastly, the prototypes and some

major implementation obstacles are explored.

Chapter 4 details the field measurements made to characterize the testbed. The

experiments targeted the testbed’s capability of performing the three primary radar
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functions: detect, track and identify. The results are analyzed and conclusions are

drawn to make recommendation for future work. Future design changes are also

explored based on results found throughout the design process.
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Chapter 2

Background and Related Work

Substantial research and development work has been performed regarding

radar SAA systems. The following background and literature review investigates

the current state-of-the-art radar SAA systems technology and theory, including

software-defined radar and two fundamental research areas: Micro-Doppler Radar

Target Identification and Cognitive Radar.

2.1 Background

UAV radar SAA systems require a wide range of background knowledge in order

to understand the fundamental principles that govern their operation. The research

is based on fundamentals of collision avoidance systems, radar, Micro-Doppler (µD)

effect and machine learning. The following section provides a brief introduction and

current state of each.
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2.1.1 Collision Avoidance

The idea of using technology for Collision Avoidance Systems (CAS) on-board

aircraft has been around since the 1950s [13, 14, 15]. The early paper by Frank

C. White titled Is an Airborne System for Collision Avoidance Operationally and

Technically Feasible? urges the research community that the field is “wide open” and

perhaps the “key which will unlock the door to more rapid progress either in the radar

or infrared field of endeavor” [13, p. 74]. With a rise in the use of UAVs, the need

for non-cooperative air-to-air SAA systems has drastically increased, and regulatory

programs have created requirements and definitions for the future integration into

airspace in a safe and efficient manner [4, 16, 17]. The overarching goal is to create

a system that senses targets, predicts collisions and adapts flight paths with similar

performance to an on-board pilot.

Integrating a unmanned CAS into NAS, the airspace surrounding an aircraft

can be broken down into cylindrical volumes which serve as thresholds for the

separation and collision avoidance functions. As shown in Figure 2.1, an intruding

target may become a threat and eventually collide with the UAV. As the distance

between the aircraft and a target increases, the uncertainty of detection, tracking

and the underlining flight trajectories increases, thus the potential for collision

decreases. Cooperative systems typically alert pilots of intruding targets within

a large Separation Assurance Volume. Preliminary separation maneuvers will then

prevent the intruder from crossing the Self-Separation Threshold (SST) into the

Self-Separation Volume. The SST is typically a fixed distance determined by

airspace and aircraft. More attention is needed if the intruder crosses the SST and

becomes a threat. Typically, accurate and reliable systems are required to mitigate
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a threat. For manned systems, the reliability and judgment of the pilot facilitates

mitigation; however, UAVs require a dedicated CAS. Non-cooperative SAA systems

suffer detection and tracking difficulties at long distances but become accurate and

increasingly reliable at close distances, thus making them ideal for Self-Separation

Volume use. The Near Mid-Air Collision (NMAC) volume, seen in Figure 2.1 as the

Collision Volume, is a fixed boundary around the UAV at which safe flight can occur.

The Collision Avoidance Volume is a volume enclosed by a variable distance called

the Collision Avoidance Threshold (CAT). It is defined as the minimum distance

between aircraft and threat in which the aircraft must start a successful avoidance

maneuver. The CAS sensors must be able to reliably detect targets and declare

potential collisions outside of the CAT.

Figure 2.1: Collision Avoidance Cylindrical Volumes [9]

The CAT is a function of aircraft trajectories, avoidance maneuver and CAS

performance. The threshold can be thought of as the range required for collision

detection and avoidance. It is largely dependent on the flight trajectories, chosen
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collision maneuver, SAA detection/tracking time, and processing time of the CAS.

Typically, the CAT can be stated as the time-to-collision plus CAS time. A

horizontal-only maneuver is explored in [9]. Figure 2.2 is the geometry of a target

on a collision course from non-frontal angle.

Figure 2.2: Collision Avoidance Horizontal Only Geometry [9]

Fasano solves the geometry in [9] given a UAV traveling 50 m/s, 5 second

processing time, minimum distance of 500 ft, and a bank angle of 40 deg. Figure 2.3

shows the minimum sensing distance vs. approach angle for three target velocities.

The plots show a minimum frontal sensing range of about 600 m for simple avoidance

and conservative processing time to maintain 500 ft of separation. However, for a

Part 107 UAVs, the maximum velocity is 100 mph or 45 m/s. Thus the graph can
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be used as an upper bound for minimum range of detection and to gain insight into

the Collision Avoidance Volume shape. Improving collision avoidance control theory

remains a popular research field [18, 19]. However, this research will work to improve

sensor performance in order to meet CAS needs.

Figure 2.3: Collision avoidance minimum sensing range vs. approach angle [9]

Sense and Avoid Systems

For a SAA to be effective for UAV use, the system must satisfy the needs of

the CAS within its respective airspace. Non-cooperative systems are recommended

for emergency or primary use due to the potential density of future airspace,

autonomous fleets, mass development of new and custom UAVs, and potential

precision benefits over cooperative systems such as Global Positioning Systems

(GPS). This necessitates relative location estimation via on-board sensors which
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is the motivation behind “Sense and Avoid” nomenclature. Several types of sensors,

architectures and levels of cooperativeness have already been theorized, implemented

and evaluated for UAVs use [20, 21].

Figure 2.4: SAA encounter timeline [9]

Figure 2.4 shows a typical functional timeline and provides a format for time

requirements in an SAA system. The timeline includes low-level functions such

as detection, tracking and evaluation of potential collision followed by high-level

functions such as declaring a required action, determining the avoidance maneuver

and executing it. The low-level functions are highly dependent on the sensor type

and performance of each SAA system on each UAV. The high-level functions involve

complex decisions made by machine learning techniques or can often involve a
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pilot or controller “in-the-loop”. The decisions can use sensor data from multiple

sensors within one UAV, communicated between multiple UAVs within a UAS, or

standardized across many UASs. For an SAA system to be considered completely

non-cooperative, the decisions are made solely on the sensors on-board which,

if properly implemented, leads to the most independent and simplified airspace

integration. Currently, many proposed systems involve some level of sensor and

UAS integration due to current sensor limitations [22, 23, 24].

SAA Sensors

The type and performance of SAA sensors is an important decision for systems

engineers. Sensors can be thought of as a transducer that converts real physical

quantities into electrical signals to be interpreted as some telemetric data. For SAA

systems, the sensor is required to capture data needed for DTI of a given target.

Typically, SAA sensor data includes the bearing angle (azimuth and elevation), range

and relative velocity. A single sensor type commonly performs well at measuring one

data type. The full relative trajectory is then calculated based on multiple or other

sensor or data measurements. Popular SAA technology used for sensing is visual,

thermal, LiDAR, radar and acoustic sensors. Sensor technology can be categorized

as cooperative (C) or non-cooperative (NC) as well as active or passive. Active (A)

means the sensor generates or transmits its own energy into the scene. Passive (P)

sensors use signals already generated by the target, other systems or the environment

in order to determine telemetry. Table 2.1 shows the sensor type and which telemetry

it directly measures (M), calculates (C) from measurements or extracts (E) from

multiple measurements.
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Sensor Type Range Bearing Velocity Trajectory
Visual Camera NC, P - M C E

Thermal Camera NC, P - M C E
Acoustic NC, P - M C E

Passive Bistatic Radar NC, P C M M E
Lidar NC, A M C M E
Radar NC, A M C M E
Sonar NC, A M C M E

Transponder (mode C) C - - - M: Altitude only
ADS-B C E E E M: GNSS

TCAS/ACAS C E E E M

Table 2.1: SAA Potential Sensor Technology Characteristics [25, 26, 27, 28, 29]

Non-cooperative Sensors

Non-cooperative sensors use imaging, reflectometry or a combination of both.

The sensors fundamentally rely on the propagation of physical signals determined by

real interactions governed by the laws of physics that carry direct information about

the target’s trajectory. Most often and most used are Electromagnetic (EM) waves

propagating via laws governed by Maxwell’s equations. Passive sensors generally use

imaging techniques and a priori knowledge of the scene in order to measure bearing

of the target. Active sensors generally use echolocation or reflectometry principles

to measure range of the target. Velocity can be measured via a Doppler effect.

Imaging relies on scattering environmental pressure or EM waves with known or

assumed sources. For passive acoustic sensing, the pressure wave or sound source is

assumed or pre-processed to isolate the target itself. Multiple acoustic sensors are

used to measure direction of arrival via time delays. For high frequency EM waves

in the infrared or visual range, the source is assumed to be the sun or another large

natural heat or light source. The main source floods the total area and the target
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is assumed to scatter waves in all directions to become a secondary source. Due

to the small wavelengths of visual1 and infrared2 light, the angle of arrival is easily

measured with camera pixels. For the lower frequency microwaves3, passive radar

relies on assumed or known man-made radio transmitters as the sources to reflect

off the target. The location and frequency of the sources are known and thus, the

location and velocity of a target can be triangulated or calculated via the Doppler

effect. This type of radar is known as a bistatic radar where the source and receiver

are not located at the same location. Figure 2.5 shows the geometry of a bistatic

radar system. If the transmitter on the left is known to be part of a separate radio

system, it is considered a Passive Bistatic Radar (PBR) system.

Figure 2.5: Bistatic Radar

Reflectometry is the process by which a known transmitted wave is reflected off

of a target and compared with the originally generated wave in order to determine

target telemetry. Visual, infrared, microwave or acoustic waves can all be used

in this manner. sound navigation and ranging (sonar) uses sound pressure waves

1Visual: λ = (400nm, 700nm)

2Infrared: λ = (700nm, 1mm)

3Microwaves: λ = (1mm, 1m)
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within Earth’s atmosphere or water similar to echolocation used by bats or dolphins.

LiDAR uses ultraviolet, visual or infrared light in the form of a laser in order

to direct light onto a target and measure the reflections. The small wavelengths

increase the bearing precision but are less robust to obstacles or weather. RAdio

Detection and Ranging (RADAR) which has become the standard English noun,

“radar” [30], is reflectometry at microwave frequencies. The larger wavelength allows

easier propagation however, tends to limit bearing angle measurement and multiple

target separation. Figure 2.6 shows an example of monostatic radar which indicates

the transmitter is located at the same location as the receiver. Often, they use the

same antenna.

Figure 2.6: Monostatic Radar

Cooperative Sensors

Cooperative sensors such as ADS-B or TCAS use sensors such as Global

Navigation Satellite System (GNSS), accelerometers, air pressure gauges or any other

sensors used to determine its own location, heading and altitude [8]. Figure 2.7 shows

a general functional diagram of a ADS-B system.
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Figure 2.7: ADS-B: On-Board Functions [17]

Each aircraft sends the information on cooperative communication links between

targets and base stations. Figure 2.8 shows the general ADS-B concept and one

can see it requires the cooperation of aircraft, satellites, ground radar and control

systems.

Sensor Uncertainty

Choosing a sensor or sensors for a particular application remains a difficult

problem for system engineers. For example, an experimental study in 2016 [21]

compared radar, visual and a fusion of both. It concluded that system performance

is still highly dependent on sensor selection and should not be overlooked or assumed

when designing a solution. The conclusion was based on their defined and measured

performance error, trade-offs between target types and cost requirements. Sensor

noise or error plays a fundamental role in the full SAA system performance and
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Figure 2.8: ADS-B: Non-cooperative System [31]

attempts have been made to provide frameworks in order to model and account for

sensor uncertainty [32, 33, 34]. Incorporating all types of sensors, their uncertainties,

sensor fusion, UAV integration, and flight dynamics into the necessary control laws

or higher level UASs, traffic management frameworks continue to develop at the

theoretical level [35, 36]. Figure 2.9 shows one logical structure for combining

cooperative and non-cooperative collision state information. For this research, the

primary goal will be to increase the performance of radar based SAA systems

to fit within the non-cooperative SAA systems or larger UAS traffic management

frameworks currently being implemented.
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Figure 2.9: SAA Non-Cooperative and Cooperative Sensor integration [22]

2.1.2 Radar

Radar has a well-established history dating back to Heinrich Hertz’s initial exper-

iments in 1886 exploring reflection of EM waves. The publication of Hertz’s book

documenting his experiments forms the foundation of modern radio concepts [37]. In

1900, Tesla suggested in an interview that waves could be used for detection of moving

objects. The use of radar for active detection of objects was first demonstrated by

Christian Hülsmeyer who created a device he called the Telemobiloscope. This device,
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patented in 1904, transmitted broadband Radio Frequency (RF) energy in a wide

pattern while observing reflections with a narrow beam antenna which could be

directed in order to make observations of a specific area. Originally intended for use

in an anti-collision role in a maritime environment, the device never saw widespread

acceptance [38]. In 1922, Guglielmo Marconi presented his experimental results using

short wave radio to notice the effects of reflections of metallic objects miles away.

Also in 1922, U.S. Naval Research Laboratory (NRL) scientists, Albert H. Taylor and

Leo C. Young, demonstrate ship detection by radar and in 1930, NRL accidentally

demonstrated the first aircraft radar detection.

Radar technology saw significant advances during the 1930s and 1940s in the

United Kingdom, Germany, and the United States. The demands of World War

II facilitated many innovations and radar technology advanced rapidly during this

period. In 1935, British scientist Sir Robert Watson-Watt, motivated by the

war, first demonstrated pulsed radar to detect and track Nazi air and sea craft

attempting to cross the English Channel. He was instrumental in developing the

Chain Home Surveillance Radar Network which stayed active till the end of the

war and was pivotal in the ultimate outcome. In 1940, American scientists from

MIT’s famous Radiation Laboratory collaborated with British radar scientists to

deliver the cavity magnetron microwave power tube to enable radar development at

previously unexplored microwave frequencies. The magnetron also enabled radar to

shrink small enough to be installed in aircraft. After WWII, radar applications in the

civilian domain continued to increase, particularly with regard to civilian aviation.

This trend continues to this day [39].
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Radar Principles

In principle, a radar functions by reflecting EM waves (with wavelengths much

larger than visible light) off a target and capturing the return signal through an

antenna connected to electronics specially designed to estimate the time difference

between the transmitted and the reflected signal. Thus the time t0 required for

an EM wave traveling at the speed of light c to traverse a distance R twice is 2R
c

.

Equation 2.1 provides the basic relationship used for relative range measurements.

R =
ct0
2

(2.1)

Since the measured time t0 relates to relative range from a single phase center

of a monostatic radar, spherical coordinates are commonly used. In this way, the

absolute distance between the radar antenna and target is known as Range. The

Boresight Direction is considered the angle pointing in the direction of maximum

antenna gain. Angles θ and φ are known as the Azimuth and Elevation angles

relative to the boresight [30]. Figure 2.10 shows the spherical coordinates used to

describe a target at point P (R, θ, φ). Monostatic radar and spherical coordinates

will be used for the remainder of this thesis.

Radar Architecture

A typical radar system consists of a high power microwave transmitter, low noise

receiver, directional antennas, data conversion unit and a processor as shown in

Figure 2.11. A transmitter typically mixes or modulates a radar waveform signal

with a frequency centered around an intermediate frequency fIF and local oscillator
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Figure 2.10: Spherical Coordinate Systems for Radar [30]

frequency fLO. According to trigonometric properties, the resulting signal contains

frequencies at the sum and difference frequencies. It finally passes through an

amplifier able to output high powers, commonly known as a Power Amplifier (PA),

and directional antennas, such as Horn antennas, radiate the signal towards a target.

The target reflects a portion of the transmitted power back to the receive antenna.

If the target has a relative velocity, a Doppler shift fDr is imparted on the return

signal. A receiver then demodulates the transmit frequency from the received signal

leaving a combination of fIF and fDr. The remaining signal is then sampled and

sent to a processing unit. Using radar processing techniques, the time difference

between send and receive signals can be measured and used to determine the range

of targets [40].

It is common to approximate the microwave power transfer through the entire

radar system. Starting from the transmitter, the power density St radiated in all

directions from the transmitting antenna is the transmit power Pt scaled by the ratio
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Figure 2.11: Typical Radar Block Diagram

between the antenna gain each direction Ga(φ, θ) and the surface area of a sphere

4πR2. Taking the maximum gain or boresight leaves equation 2.2 [41].

St = Pt
Ga

4πR2

W

m2
(2.2)

The Radar Cross Section (RCS) σ is the power scattered off of the target in a

given direction. It is defined as the ratio of backscattered power Pb to the incident

power density (equation 2.3) at the particular point in the far field. Section 3.1.2

further explores the RCS.

σ(θ, φ) =
Pb
St

m2 (2.3)

The re-radiated power is scattered back to the receiver and the power received

Pr at the radar is again scaled by the ratio of the effective aperture of the receive

antenna Ae and the spherical area.

Pr =
PtGaAeσ

(4πR2)2
W (2.4)
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Writing the effective aperture in terms of antenna gain Ae = Gaλ2

4π
and assuming

the same antenna is used for transmitting and receiving, the simple radar range

equation is commonly written as equation 2.5. The R4 term represents application of

the inverse square law of propagation sourced from a single point and is an important

relationship for calculating the maximum range. The inverse square law is applied

twice, once from transmitting from the single transmit antenna and once from the

target acting as a point reflector. The free space path loss
(

4πR
λ

)2
combines all known

system parameters involved in the transmission of a signal. Equation 2.6 shows the

maximum range of detection given a required minimum received power [41].

Pr =
PtGa

2λ2σ

(4π)3R4
W (2.5)

Rmax =

[
PtGa

2λ2σ

(4π)3Pmin

] 1
4

m (2.6)

Receiver Noise

The minimum power received must have enough Signal-to-Noise Ratio (SNR)4

in order for the signal processing to detect the target. The noise power is a mix of

external and internal noise. External noise is any unwanted source within the radar

scene. Common sources are the sun or the cosmic background noise of the universe.

Internal noise is usually dominated by thermal noise or Johnson noise which is

a zero-mean Gaussian random process generated by temperature energy, causing

electron jitter within ohmic losses of the system or heat. The power spectrum of

thermal noise can be written as equation 2.7 which is constant across all frequencies.

4SNR = Pmin

Pnoise
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This type of noise is commonly called white noise. T is the temperature of the noise

source in Kelvin and kB is the Boltzmann’s constant5 [41].

Sn(f) = kBT
W

Hz
(2.7)

Typically microwave systems have limited bandwidth βn and thus the minimum,

band-limited, thermal noise power is given by equation 2.8.

PThermalNoise = kBTβn W (2.8)

As the noise propagates through the receiver, it experiences a gain Gr and

additional thermal noise due to losses from non-ideal sub-components. The system

noise power Pn or noise at the output of the receiver can be written as the sum of

thermal noise and the effective temperature Te of the system. The total receiver gain

Gr is assumed to be ideal linear gain and also effects the system noise.

Pn = kbTβnGr + kbTeβnGr W (2.9)

The ratio of the total system noise output to the external thermal noise input is

called the Noise Factor Fn (equation 2.10). To standardize this metric, T is set to

T0 = 290 °F which is a nominal room temperature. Canceling like terms leaves the

Fn only in terms of effective temperatures.

Fn =
Pn

kbT0βnGr

=
(T0 + Te)kbβnGr

kbT0βnGr

=
T0 + Te
T0

(2.10)

5Boltzmann’s constant: kb = 1.38× 10−23 Watt · Second/Kevlin
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Expressing Fn in decibels results in the Noise Figure (NF) (equation 2.11). NF can

be used to simplify input/output noise characteristics of any system or components.

It can be alternately defined as the ratio of input SNR to output SNR. Typically

radar systems’ NF span from 2dB to 3dB (170K to 2600K) [41].

NF = 10 log (FN) (2.11)

Radar Range Equation

Equations 2.5 and 2.6 only account for ideal behavior. Most non-ideal behavior

can be approximated as a linear effect on the overall SNR of the system and

thus receiver noise is incorporated into the simple radar range equation. A simple

multiplication factor is included within the radar range equation as required. First,

the return signal power Pr of the system can be expressed as the desired SNR (χ̂)

multiplied by the noise power as seen at the estimator kbT0βnFn or input noise times

the noise factor Fn as seen in equation 2.12.

Pr = kbT0βnFn · χ̂ (2.12)

Applying equation 2.12 to equation 2.6 yields the radar range equation 2.13

in terms of the desired SNR needed for a given Radar Signal Processing (RSP)

technique. The additional terms Gs, Ls and La are the system gain, system loss and

atmospheric loss, respectively. System gain or losses can be from signal processing
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or frontend components. Atmospheric losses are strictly more than unity and will be

discussed further in section 3.1.2.

R =

[
PtG

2λ2σ

kbT0βnFnχ̂(4π)3
· Gs

LsLa

] 1
4

(2.13)

For a more in-depth discussion of fundamental radar principles, the reader is

invited to read Appendix A. The basic types, architectures, and systems are discussed

in Section A.1. Some common threads of RSP are discussed in Section A.2.

2.1.3 The Micro-Doppler Effect

The Micro-Doppler (µD) Effect was first investigated by Victor Chen in a coherent

laser or light radar system or LiDAR [10]. Due to the small wavelength of a LiDAR,

even small vibrations within the scale of a few µm can produce easily noticeable

Doppler shifts. The vibrations of a bulk object were perceived as time-varying

Doppler shifts centered around the bulk Doppler shift. Sinusoidal vibrations are seen

as small oscillations in the spectrum. The maximum Doppler shift max {fd} from

a vibrating object is determined by the transmit wavelength λ, vibration amplitude

Dv and vibration frequency fv in equation 2.14. The concept of “micro” motions

inducing “micro” Doppler shift is a broad term used for any non-bulk motion within

a target such as rotating aircraft rotors or human gaits.

max {fd} =
2

λ
Dvfv (2.14)

For radar frequencies, the Doppler shift from vibrations becomes less detectable.

For X-Band with λ = 3 cm, a 15 Hz vibration with a displacement of 0.3 cm
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produces a maximum µD shift of 18.8 Hz. At lower radar bands, the µD effects from

vibrations become impractical to detect; however, larger target internal motions can

be detected and used for multiple applications. The superposition of all detectable

µD shifts from an entire object is often complex enough to become unique from other

objects resulting in a signal commonly called Target Signature.

Doppler Analysis

The Doppler shifts from a single object moving in a unique direction causes a

single Doppler frequency shift. Accurately measuring the instantaneous frequency

of a single sinusoidal wave is a baseline for Doppler analysis. Most microwave

frontends contain a coherent quadrature detector sampling both the in-phase I(t)

and quadrature (90 degrees out of phase) or imaginary Q(t) portions of the signal.

Given a return signal sr(t) (equation 2.15), the phase shift from a target’s motion

is φ(t) = 2πfdt. The transmit frequency st(t) = cos 2πf0t will be modulated

out via hardware or software, leaving just the Doppler shift (equation 2.16) by

mathematically multiplying the signals together then low-pass filtering the first term,

leaving only sd(t) in equation 2.16.

sr(t) = A cos (2π (f0 + fd) t) = A cos (2πf0t+ φ(t)) (2.15)

sd(t) = sr(t)st(t) =
���

���
���

��:0
A

2
cos (4πf0t+ φ(t)) +

A

2
cosφ(t) (2.16)
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The result will be split into I and Q parts and sampled by two Analog-to-Digital

Converters (ADCs) resulting in the decomposition of sd(t) into equations 2.18 and

2.19 via Eulers Identity.

sd(t) =
A

2
cosφ(t) = I(t) + jQ(t) =

A

2
e−jφ(t) (2.17)

I(t) =
A

2
cosφ(t) (2.18)

Q(t) = −A
2

sinφ(t) (2.19)

The goal now is to estimate fd from sd(t) via any frequency estimation tool such

as a Fast Fourier Transform (FFT) or a periodogram. For a mono-component or

single tone Doppler shift, the instantaneous frequency can be calculated as the time

derivative of the phase.

fd(t) =
1

2π

dφ(t)

dt
(2.20)

The velocity is then calculated by equation 2.21,

v(t) =
λ

2
fd(t) (2.21)

From estimation theory, the benchmark for evaluating the variance var{Θ̂} or

the performance of an unbiased estimator of some unknown deterministic parameter
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Θ̂ is called the Cramer-Rao Lower Bound (CRLB). CRLB is defined as the inverse

of the Fisher information I(Θ̂).

var{Θ̂} ≥ 1

I(Θ̂)
(2.22)

The Fisher information is defined in equation 2.23 where E{·} is the expectation

value and p(xk; Θ̂) is the probability density function of (k = 1, ..., N) measurements

xk of Θ̂.

I(Θ̂) = −E
{
∂2

∂Θ̂2
p(xk; Θ̂)

}
(2.23)

The CRLB of the Doppler frequency estimation is equation 2.24 [10].

var{f̂d} ≥
6

N(N2 − 1) · SNR
(2.24)

Micro-Doppler Analysis

The instantaneous frequency of a real object such as an aircraft or human is

often composed of a superposition of all micro motions found within. Simple time

derivatives of the Doppler phase shift are no longer feasible for determining multi-

component signals. Two methods have been theorized in order to analyze µD signals

with multiple deterministic frequency components. Both will be discussed in more

detail in section 2.4 [10].

The first is an attempt to analytically decompose the signal into mono-component

parts. The process of Empirical Mode Decomposition (EMD) is to progressively sift

through the signal to find basis functions with a singular frequency component.
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The basis functions are recursively subtracted from the combined signal. The

basis functions are called Intrinsic Mode Functions (IMFs). EMD was eventually

generalized into wavelet theory to form wavelet decomposition.

The second is an attempt to resolve the signal into a 2-dimensional joint

time-frequency plane. The simplest example of a time-frequency plane is the

Short Time Fourier Transform (STFT); however, limitations on time and frequency

resolutions have lead to advances in more rigorous definitions of what is called joint

time-frequency distributions.

Micro-Doppler Effect in Radar

For a radar target, the µD effect can be approximated as the contributions from a

potentially non-rigid body broken down into rigid segments all with mass, orientation

and velocity. A rigid segment is assumed to not deform with movement or pressure.

The mass in a rigid body is the sum of all particle or point masses making up the

total object. The orientation has six degrees of freedom around the Center of the

total body Mass (CM). The CM is located at vector ~R from the radar coordinate

system. Each particle P (x, y, z) of the rigid body is located vector ~r from the CM ~R.

Because the body is rigid, each particle’s velocity ~v is defined as the time differential

of its position. In equation 2.25, the velocity can be decomposed into translation ~V

and angular velocities ~ω. The latter rotational or angular velocity is called the micro

motion of the object.

~v =
d

dt
(~R + ~r) = ~V + ~ω × ~r (2.25)
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The EM scattering from a complex object in motion can be predicted by making

assumptions on the nature of the object or EM wave. If the rigid body segments

are simple geometries, the calculated or simulated RCS of each object can be vector

summed to predict total object RCS backscatter. If the body is complicated, surface

geometries such as triangles can be simulated and summed. The simplifications

of objects are often used to save calculation or simulation times at the expense

of accuracy. The scattering process is often too complicated to be calculated

analytically and largely depends on object material and electrical size. This results in

many scattering behaviors such as reflection, transmission, diffraction, surface waves,

ducting and interactions between them. Assumptions on the EM wave scattering

type can simplify calculations to only geometric optics and ray tracing.

The EM scattering for an RCS is often simplified to a non-moving object by

removing bulk translation motion ~V . The internal motion of a point scatterer in the

far field reflects the incident electric field ~Ei(~r0) from the object at position ~r0. The

reflected field ~Er(~r) is the incident field modulated by some phase function shown in

equation 2.26. The phase function is dependent on the wavenumber k, the motion

vector ~r′, and the unit vectors in the direction of the incident wave ~uk and observation

~ur.

~Er(~r) = exp
{
jk~r′(t) · ( ~uk − ~ur)

}
~Ei(~r0) (2.26)

For monostatic radar the incident and observation wave unit vectors are opposite

( ~uk = − ~ur). The time varying motion vector is the generalized motion induced by any

internal motion. For a vibrating object projected in the ~uT direction, ~r′(t) = r′(t) ~uT .

The translation motion along ~uT is the sinusoid r′(t) = AcosΩt. The modulating
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phase function is therefore defined as equation 2.27. The contribution or projection

of the vibrational motion in the ~uk direction induces a sinusoidal phase modulation

onto the reflected wave. When ~uT is perpendicular to ~uk, the modulating phase

function has no effect on reflections, or exp {jΦ(t)} = 1.

exp {jΦ(t)} = exp {jkr′(t) ~uT · 2 ~uk} (2.27)

For a rotating point scatter inside a rigid body, the micro-motion of each particle

is limited to rotational degrees of freedom as described in ~ω. The motion vector

becomes ~r′(t) = ∆t (~ω × ~r0), where the ∆t is small enough to assume a small angle

∠~r~r0. The phase function for a rotational point scatterer is shown in equation 2.28.

Φ(t) = k∆t(~ω × ~r0) · 2 ~uk (2.28)

2.2 Radar SAA

Using radar sensors for SAA applications of Part 107 UAV in low altitude Class

G airspace has become a popular research field. Many radar techniques and transmit

frequencies have been explored for potential solutions to satisfy CAS performance

needs. Typical CAS performance requires a 500 ft (150 m) radius safety cylindrical

area with at least 20 second warning time to perform necessary avoidance [42].

The ultimate minimum range needed for detection is determined by the UAV and

intruder. A Part 107 UAV is required to fly slower than 100 mph or 45 m/s. In a

frontal collision, each warning second requires a maximum of 90 m. If the sensor is

required to cover an equivalent field of view of a pilot, the sensor must scan ±110° in
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azimuth and ±15° in elevation (2 sr). To ensure adequate tracking, the scan must

occur at least every 2 seconds and detect targets with 1 m2 RCS [42]. For a survey

of state-of-the-art SAA systems, a few recent performance evaluations, simulations

and systems are presented.

2.2.1 Performance Evaluation

In [42], three radar bands are evaluated for SAA UAV potential. Three bands,

S-Band, X-Band, and Ka-Band (3, 10, 35 GHz respectively), are investigated and

compared based on CAS performance. It is pointed out that during scanning, the

SNR of the receive signal must be greater than some threshold in order for detection.

The SNR threshold is dependent on the overall antenna aperture, power, target

RCS, radar coverage and revisit time. The antenna aperture is loosely related to

the physical size of the antenna. Across operating bands and at a given antenna

size, the angular accuracy increases because the main beam width decreases. For a

required coverage and revisit time, the scan requires more beams with less dwell time.

Therefore, with the above constants there exists a fundamental trade-off between the

dwell time required for range-Doppler processing and angular accuracy controlled by

operating frequency.

Stephane Kemkemian et al. further investigate this trade-off while setting the

installation and performance constants to nominal values for UAVs. The authors

consider multiple scanning technologies such as mechanical/electrical scanning and

simultaneous digital beam forming and the cost associated with each. For S-Band,

the wide beam width is cost effective for a detection function using scanning or

beam forming techniques. The lack of angular accuracy hinders tracking greatly. For
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Ka-Band, the higher gain antenna requires costly, high-element beam forming with

complex supporting circuitry. In fact, given the necessary coverage and advanced

warning, a fully sequential mechanical or electrical scan is not possible. The cost per

coverage can be mitigated by separating azimuth and elevation direction to different

scan techniques. The angular accuracy at Ka-Band provides an advantage for a

tracking function if general location of target is already known. According to the

paper and the performance metrics required by CAS function, X-band provides

a sufficient balance between angular accuracy, system complexity, and scanning

potential [42].

2.2.2 Simulations

In [43], Ka-Band range and velocity measurement error is simulated to predict

CAS performance. The simulation uses typical high-power Ka-Band pulse radar

performance characteristics. Using a simulated probability of detection with a

Swerling-2 clutter model, a closing speed of 1000 km/h or 277 m/s, and 2 m2

target RCS shows the detection range is sufficient for an 11 second collision warning

time. The collision avoidance maneuver starts at 11 seconds to collision and gives a

way-point outside of the safety 500 ft zone. Simulations show proper avoidance given

for a few common collision types. More importantly, the radar trajectory estimation

error is applied and probability of safety zone violations are simulated. To mitigate,

an additional margin from target location is applied to the way-point.

Figure 2.12 shows the effect of azimuth and velocity safety zone violation

probability versus extra margin given to way-points. Given an extra 50 m way-point

margin the probability of collision avoidance given azimuth or velocity error increases
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Figure 2.12: Collision Avoidance Probability vs. extra way-point margin given sensor
error [43]

to 85%. This shows that significant care must be taken to compensate for sensor

uncertainty and thus investigating higher performance radar sensors can yield a

significant effect on preventing collisions.

2.2.3 Research Systems

The research and development performed within this thesis for DU2SRI is based

on prior research performed resulting in publications and patents [44, 45]. Two

generations of radar based SAA systems were developed. The first was a Continuous

Wave (CW) gunnplexer-based X-Band sensor. The second was a light-weight, low-

power Frequency Shift Key (FSK) X-Band radar system using an XMOS processor.

Table 2.2 shows the system characteristics of each generation.
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Generation 1 2 2a
Mass (g) 250 150 360

Dimensions (cm) 15.5x10x9 10x10x10 13x10x17.5
Power Consumption (W) 4.5 4.5 5.8

Input Voltage (VDC) 10-15 5-6 5-6
Transmit Frequency (GHz) 10.5 10.5 10.5
Transmit Bandwidth (MHz) - 5 5

Transmit Power (mW) 10 0.4 0.4
Modulation - FSKCW FSKCW

Table 2.2: Radar prototype comparison

Shown in Figure 2.13 is the radar sensor mounted on a mechanical scanning

platform. The X-Band frontend is a commercially available unit with a 5 MHz

bandwidth. This bandwidth severely limited the range resolution and lead to tracking

errors.

Figure 2.13: Generation 2 DU2SRI Radar Sensor [45]
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In [46], experiments using a commercial 24 GHz Frequency Modulation Con-

tinuous Wave (FMCW) SENTIRE radar by IMST investigate potential for CAS

sensor [47]. The sensor uses phase interferometry between two return channels

in order to measure azimuth angle. A corner reflector and a DJI F450 quadrotor

are used as targets. A transmit bandwidth of 1 GHz is used to achieve a range

resolution of 13.5 cm with experimental error of ± 0.3 cm. A 40 cm separation

between two targets was easily detectable. The radar was mounted on a movable

platform and motion tracking was evaluated. An offline Constant False Alarm Rate

(CFAR)-based tracking algorithms output is shown in Figure 2.14. The tests yield

strong close-range target to clutter ratio and accurate range/bearing measurements.

The tests did not include Doppler processing for velocity and concluded offline

processing of identification and tracking was recommended.

Figure 2.14: CFAR Tracking of Corner Reflector with 24 GHz FMCW radar Sensor
[46]
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In [48], an X-Band FMCW radar sensor using a flood transmitter and digital

beam forming receivers was designed, implemented and evaluated for SAA appli-

cations. The advantage of beam forming is high (or sometimes simultaneous) scan

rates and multi-beam tracking. The sensor was developed within Rockwell Collins

France and tested using a Cessna 172 as a target. Detection ranges were found to

be 10 km for head-on collisions and 5 km at a 45° angle.

In [49], a low SWaP, K-Band FMCW radar sensor with one transmit channel and

two receive channels was designed, developed and evaluated. A 24 GHz homodyne

Microwave Monolithic Integrated Circuit (MMIC) transceiver chip converts K-Band

energy down to DC baseband Intermediate Frequency (IF). A baseband board

conditions the IF signal, and a Texas Instruments micro-processor board captures

and processes the data. The radar waveform is 140 MHz wide with a 730 Hz PRF.

Experimental testing shows easily separated corner targets (with undeclared RCS)

2 m apart at less than 16 m away.

In [50], an ultra low SWaP, W-Band FMCW radar was developed and tested.

W-Band radar has recently become popular due to large available bandwidth and

high Doppler shifts yielding smaller range resolution and faster Doppler processing.

The paper presented two versions of W-Band radar sensors. The first design

transmitted at 76 GHz with 6 GHz potential bandwidth. The theoretical 2.5 cm

range resolution was almost experimentally proven by successfully separating targets

4 and 10 cm apart. The second design miniaturizes the sensor to less than 1 cm3

and 7 g at the expense of a reduced bandwidth to 500 MHz. The power and

microwave performance was verified similar to the first design, thus maintaining

sensor performance only with bandwidth reduction.
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2.2.4 Commercial Systems

A few commercial radar SAA systems are available for public use. Due to the push

for driverless cars, prominent integrated circuits companies have began developing

automotive radar sensor solutions. Texas Instruments and NXP have developed a W-

Band, 4 GHz BW, mutli-channel automotive radar MMIC (AWR1642/MR3003) and

evaluation boards [51, 52]. Analog Devices has a suite of K-Band automotive radar

enabling MMICs and processing units [53]. Opportunities for recycling automotive

sensor development for UAV applications should be monitored as significant overlap

between the two applications exist.

A few companies specialize in commercial drone radar SAA for airspace mit-

igation. Fortem Technologies develops an electronically steerable Ku-Band drone

sensor [54]. Echodyne Echoflight is a low SWaP, airborne detection and tracking

radar system. It utilized a preparatory Metamaterial Electronically Scanning

Antenna technology for fast electronic scanning. According to FCC records, the

airborne SAA operates within the Ka-Band at about 24 GHz [55]. Both commercial

SAA radars are in early release and have not proven market potential or functionality

at the time of this thesis.

2.3 Software Defined Radar

The concept of SDRad has emerged recently in the research communities.

The need for rapid RSP prototyping and development is driven by the need for

high-performance sensors and saturation of microwave bands. The move to designing

flexible and dynamic hardware frontends supported by programmable software

44



reduces development time and costs by providing a single “one-size-fits-all” hardware

approach. However, the complexity required is not to be taken lightly. A similar

move to software-defined has taken place in the radio world.

2.3.1 Software Defined Radios

Recent advances in fundamental RF and microwave integrated circuit technology

have enabled the creation of an SDR. Thus, opportunities for fundamental research

at a low entry cost have emerged. The primary application of flexible radio systems is

to compensate for over-saturation of EM wave propagation at FCC allocated bands.

The resulting wide-spread interference and management issues can be tackled by

adapting the complex EM environment on a case-by-case basis. Relieving allocation

pressures are currently the focus of active research inside of governmental, private

and university research institutes. An SDR is essentially a transceiver with a

wide range of hardware settings controlled by software applications. Some common

hardware settings are tune frequency, bandwidth, sample rate, gain and filter cutoffs.

Transceivers function as a signal converter from RF and microwave frequencies to

digital signals for later computational processing. SDRs require a vast knowledge of

mixed signal performance limitations, physical limitation, and frontend architecture

solutions. For more information, see Appendix B.

There are a variety of commercially available SDRs for hobbyists, enthusiasts, and

professionals. Most common communication protocols use the license-free Industrial,

Scientific, and Medical (ISM) bands at 2.4 GHz and 5 GHz. Figure 2.15 is a table of

common SDRs in the market and their performance. SDR development has recently

accelerated due to reduced manufacturing cost of transceiver MMIC chips.
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Figure 2.15: SDR Performances and Specifications Comparisons [56]

2.3.2 Software Defined Radars

For SDRad, the same basic transceiver technology is used for radar sensing

applications. The main difference between radio and radar systems’ performance

requirements is found in the interaction between transmit and receive channels.

Signal processing and higher-level network management are typically responsible for

coherence between radios, and precise hardware synchronization is not required for

most protocols. At the core of a radar system is an active time estimate, and therefore

sufficient isolation and precise synchronicity between channels take priority. A few

research labs have designed and developed SDRads. Research into the potential of

SDR technology for radar use has also been investigated.
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Researchers at Ohio State University have developed a few iterations of SDRads

starting in 2010 [57]. A Multiple In, Multiple Out (MIMO) SDRad for testing new

adaptive waveform techniques was designed, implemented and tested. The design

operated from 2− 18 GHz with 500 MHz of bandwidth transmitting and receiving

across 4x4 (4 transmit and 4 receive) channels of dual polarized antennas. The design

used commercially available DSPs and ADC/DAC modules. A custom RF frontend,

and an antenna array driven by a switch matrix was developed for flexible radar

performance. The DSP processor interacts with a CPU/GUI and can generate any

arbitrary waveform. It also processes higher level RSP across 2x2 channels. The RF

frontend converts the 2x2 channels to a selectable microwave frequency using double

conversion architecture. A homodyne, I/Q mixer first converts signals to 2 GHz IF.

It is followed by a tunable heterodyne mixer allowing for user control up to 18 GHz.

The block diagram is shown in Figure 2.16. The switch matrix antenna multiplexes

the 2x2 channels into vertically and horizontally polarized 4x4 channels. Evaluations

were run showing successful range vs. speed plots of a truck.

Figure 2.16: SDRad dual conversion Recieve Architecture

Another 2x1 MIMO SDRad RF frontend was developed at a fixed X-Band

frequency with potential for antenna multiplexing to 4 receive channels and 250 MHz

bandwidth. The frontend was implemented on a microwave capable circuit board
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and tested for performance [58]. Investigations into the usefulness of pre-existing

SDRs were also conducted using Texas Instruments small form factor SDRs [59] and

(more recently) a Universal Software Radio Peripheral (USRP) [60, 61]. USRPs are

developed by Ettus Research and are widely regarded as the leader in SDRs for

research environments. Numerous USPR SDRad evaluations have been conducted

with the minimum necessary antennas and amplifiers [62, 63, 64, 65, 66, 67]. The

tests’ transmit frequencies range from 0.9 − 6 GHz as provided by the USRP.

Varying degrees of success are reported showing promise for SDRad research and

even enabling more sophisticated radar techniques. Of note, a synthetic Ultra-Wide

Band (UWB) waveform utilizes the USRPs total frequency range for higher range

resolution in [65].

A multi-channel, multi-mode SDRad platform operating at S, X and K band was

theorized, designed and developed within the Korea Aerospace University [68]. The

system is designed to have multiple RF frontends supported by a signal processing

module for data conversion, arbitrary waveform design, and RSP. The system is

implemented into PCI modular slot card housing and tested for use with drone

detection, µD signatures and traffic securities [69, 70, 71]. The K-Band frontend is

used for drone detection with a variety of quad drones placed 50 to 100 m from the

SDRad. The µD analysis is performed with a sphere and cylindrical pendulum

at S-Band. The oscillations appear as 5 to 10 Hz within the Time-Frequency

Representation (TFR). Figure 2.17 shows the functional block diagram of the KAU

SDRad. The system is divided into four main sub-systems; the antenna, the RF

module, the signal processor module, and the software module. Both the antenna and

48



RF module run multiple bands in parallel. The modules can be seen in Figure 2.18

as slots within a PCI Express chassis.

Figure 2.17: KAU-SDRad Functional Block Diagram [68]

Figure 2.18: KAU-SDRad Implementation [71]

2.4 Radar Target Identification

The concept of Radar Target Identification (RTI) has been theorized as early as

the 1950s when Dr. E. M. Kennaugh first theorized the “Impulse Response” a target
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exhibits during the EM scattering process [72, 73]. The scattering impulse response,

which utilizes Rayleigh or Mie scattering as described in Section 3.1.2, exhibits unique

observable natural resonances. It was eventually theorized that the unique natural

resonances of specific target geometries could be used for discriminating the targets

themselves [74, 75, 76, 77]. Natural resonances occur when geometries of the target

are similar to the wavelength of an incident wave and thus ring when stimulated. The

concept can be easily seen with sound waves in a tuning fork and in fact are present

within any higher differential order system. At the time, the targets were primarily

larger military aircraft with EM resonances within HF or VHF bands, and the radars

lacked the capability or bandwidth to implement a proper identification system.

However, efforts to increase resonance or use synthetic aperture techniques were

explored[78]. One important concept resulting from Kennaugh’s investigations is the

idea of a pole killing pulse or K-Pulse [79, 80]. It is defined as the pulse of minimum

length whose Laplace transform cancels all poles or natural resonances of a system

using singularity expansion method. The concept was an EM scattering adaptation

of previously explored waveforming filters to minimize intersymbol interference in

communication systems. K-Pulses were eventually generalized into an Extinction

Pulse or E-Pulse which can selectively annihilate poles not just exhibited by some

target [81, 82]. Both pulses were explored for target identification but were essentially

the same concept [80, 81, 83]. E-Pulses are still active today within many signal

processing fields, such as ground-penetrating radar, as the theoretical foundation of

scattering identification [84, 85]. Recently, it’s been broadly generalized into wavelet

theory.
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A competing RTI technique involves increasing spacial radar performance in order

to capture an image of a scene and thus providing enough detail to discriminate

targets. The main performance limitation is angle resolution determined by antenna

main lobe width or gain. Given a certain antenna size, a maximum gain is achievable.

Thus, to increase resolution a technique of capturing many samples of a scene from a

linear moving radar increases effective aperture width. The process is called Synthetic

Aperture Radar (SAR). SAR also requires higher bandwidth and transmit frequency

for range resolution and detail.

For RTI applications, both E-Pulse and SAR suffer performance limitations. For

E-Pulse, the time resolution required to implement ns pulses is limited by ADC/DAC

performance and require large bandwidths at lower microwave bands. SAR is still

a maturing technology and requires image machine learning techniques to overcome

the fact that the image depends on the angle-of-view. Also, they do not consider

target dynamics. It was not until Victor Chen in 2000 explored and formalized how

micro motions effect the radar signal that researchers began exploring target µD

signatures as a discrimination tool [86].

2.4.1 UAV Micro-Doppler Phenomenology

The wavelength change observed from a target moving relative to the observer is

known as the Doppler effect [10]. As described in Section 2.1.3, this phenomenon is

the basis for techniques used to measure target velocity. When a target has internal

components moving relative to the bulk average velocity, such as a human walking or

rotor blade, the radar signal experiences µD effects which ultimately appear as unique

frequency band characteristics. In the following section, the radar phenomenology
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for UAVs and their µD signature will be explored to provide the intuitive knowledge

required to understand µD based RTI.

Rotor Micro-Doppler Effect

The phenomenon of µD on common rotor aircraft has been theorized, simulated

and experimented [10]. Prior to Chen’s formalization, a few experiments were

performed taking frequency and time domain pictures of the µD effect of a Sikorsky

S-55 replica helicopter [87]. From the spectrum in Figure 2.19, the skin line is the

bulk velocity of the helicopter and is negative due to separating flight velocity from

radar. The rotating rotor hub is seen as the lobe around the skin line. The rotor

blades are observed as flat shoulders on either side of the main hub region.

In Figure 2.20, the time response shows impulses at regular intervals. The

impulses are caused when rotor blades are perpendicular to the radar and a large

RCS is present, commonly called the rotor “flash”.

Rotor Micro-Doppler Theory

From [10], Chen formalized the µD effect of rotor blades. First, given the distance

Rp(t) from the radar to a single blade scatter center, the phase function Φp(t) is shown

to be equation 2.29.

Φp(t) =
4π

λ
Rp(t) (2.29)

After integrating over the length of rotor L and generalizing for K rotors,

equation 2.30 shows the phase function Φk(t) for the kth rotor. The rotor rotation
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Figure 2.19: Micro-Doppler Spectrum of Sikorsky S-55 helicopter at X-Band [87]

rate Ω has a rotation angle of φ0. The center of rotation has a radar elevation angle

of β.

Φk(t) =
4π

λ

L

2
cos β cos (Ωt+ φ0 + k2π/N) (k = 0, 1, 2, ..., K − 1) (2.30)
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Figure 2.20: Micro-Doppler time response of Sikorsky S-55 helicopter at X-Band [87]

Finally, the returning µD signature signal is shown in equation 2.31. The range

and height to the center of rotation are R0 and z0, respectively.

sµD(t) = L exp

{
−j 4π

λ
[Ro + z0 sin β]

}K−1∑
k=0

sinc {Φk(t)} exp {−jΦk(t)} (2.31)

Taking a closer look at rotor µD signature signal, the first exponent is constant

phase shift from the propagation distance between radar and rotation center. Each

rotor blade contributes the phase modulation function e−jΦk(t) modulated by the

sinc function of the phase function. The phase function is a cosine whose amplitude
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depends on the maximum Doppler shift generated by the rotor blade and frequency

depends on blade rotation velocity. The phase modulation function is thus governed

by a Bessel function of the first kind. The time-varying Doppler frequency shift

is enveloped by a sinc impulse train at Ω radians per second. The maximum of

the impulse train is located at the maximum Doppler shift frequency resulting in a

high-energy broadband Doppler Shift. This equation represents the rotor “flash”.

Rotor Micro-Doppler Simulation

Figure 2.21 shows the simulation of two 1m rotor blades rotating at 10 revolutions

per second and traveling at 10 m/s based on equation 2.31. The radar sensor

is operating in X-Band 707 m away at an elevation of 45°. The rotor “flash” is

seen in the time response when rotors are perpendicular to the radar Line of Sight

(LOS). The rectangle frequency bandwidth is caused by the maximum and minimum

velocities at the tips of rotors from forward and backward drifting rotors. The near

ideal rectangle envelope can be seen in equation 2.31 as the Fourier Transform of the

sinc function convolved with the phase modulation function. The entire bandwidth

has a shift due to bulk rotor velocity.

In Figure 2.22, a simulated time-frequency representation of the rotor is shown.

Both rotors are seen as sine waves with a 180° phase shift. The “flash” is seen at

peaks as a vertical line. The RCS increase is seen as an increase in magnitude in the

time-frequency plot. Again, the bulk velocity is seen as a frequency offset of the µD

signature.

Comparing the simulation results with the measured spectrum from Figure 2.19,

the rectangle bandwidth is seen as the shoulders of the main hub and skin line.
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Figure 2.21: Time and Frequency response of two 1 m rotor blades at 1 m/s

Figure 2.22: Time/Frequency representation of two 1 m rotor blades at 1 m/s

The sinc impulse train and “Flash” is seen from the main and tail rotors. The

above theory and simulation yields a fundamental framework into understanding the

dynamic effects of rotors on the induced µD signal. However, it approximates a

constant reflectivity across the entire blade length and in all directions. This, in

fact, is not true for real life signals. The following section will investigate real µD

effects from drones with primarily four rotors.
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UAV Micro-Doppler Model

As seen in [88], the theoretical model of the µD return signal of a quadrotor

drone is the summation of every reflecting blade from all rotors. In this paper, only

a quadrotor is investigated; however, the theory is scalable. For a drone with M rotor

hubs and K blades, the return µD signature sr(t) can be stated in equation 2.32.

sr(t) =
M−1∑
m=0

K−1∑
k=0

√
σm,k(t)

L
exp

{
−j 4π

λ

∫ L

0

Rm,k(t)dL
′
}

(2.32)

The time-varying distance or range from the radar to each point along each

rotor Rm,k(t) is integrated along the blade and scaled by 4π/λ. The result is the

time-varying phase function which modulates the propagating signal. The RCS is

the ratio of the incident electric wave to return electric wave which can be thought

of as a gain factor depending on blade, rotor and angle of incidence. Since the angle

of incidence is a time-varying function, the RCS σm,k(t) is also a function of time.

The total reflected signal is the superposition of each blades’ reflection on each rotor.

Following a similar derivation found in [10] which includes the distance from radar

to rotor blades, the return signal can be reduced to equation 2.33.

sµD(t) =
M−1∑
m=0

exp

{
−j 4π

λ
[Rm + zm sin β]

}

·
K−1∑
k=0

√
σm,k(t) sinc {Φm,k(t)} exp {−jΦm,k(t)}

(2.33)
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The phase shift for each rotor hub is based on the range Rm and height zm to each

M hubs. Much like equation 2.30, the phase function (equation 2.34) is a sinusoidal

signal depending on rotor rotation rate and rotation angle for each rotor hub.

Φm,k(t) =
4π

λ

L

2
cos β cos (Ωmt+ φm + k2π/K) (k = 0, 1, 2, ..., K − 1) (2.34)

The Doppler shift can be calculated as the instantaneous frequency of the phase

function or the time derivative of equation 2.34 while setting the rotation angle of

each blade k on rotor m to a general phase angle φm,k = φm + k2π/K. The result

is a combination of sinusoidal functions for each blade on each rotor determined by

geometry and distances. The return µD spectrum will result in contributions from

m× k Doppler shifts.

dΦm,k(t)

dt
= 2πfD,m,k(t) = −Ωm

2πL

λ
cos β [cosφm,k sin Ωmt+ sinφm,k cos Ωmt]

(2.35)

The maximum Doppler shift will occur at the tips of each blade as the blade

rotation is perpendicular to the radar. This occurs at the maximum of equation 2.35

or |fD,m,k(t)| = fmax(µDoppler) = ΩmL cosβ
λ

. Therefore the effective Doppler processing

sample rate must be larger than twice fmax(µDoppler) in order to avoid µD ambiguities.

The spectrum of a quadrotor’s µD signature exhibits similar bands as the

helicopter recordings in Figure 2.19. In [89] and [90], real experiments are performed

to view commercial drones’ spectra. In [89], a 5.8 GHz EM wave is reflected off

of a S1000 Octocopter. In [90], X-Band FMCW radar recordings of a common
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quadrotor DJI Phantom 2 are evaluated for µD signature as shown in Figure 2.23.

The total bandwidth lies within 5 kHz of the main body return and can be divided

into sub-bands to approximate different micro motions such as the rotating blades

or main body.

Figure 2.23: Doppler Spectrum of DJI Phantom 2 at X-Band [90]

The interference between multiple time-varying Doppler processes results in

the overall spectrum exhibiting regular resonances tones. These resonances are

governed by the constructive and destructive interference of the fundamental Bessel

function for each Doppler contribution. Essentially, each Doppler contribution is

Phase Modulation or Frequency Modulation (PM/FM) by velocity and Amplitude

Modulation (AM) by RCS strength. Both the amplitude and frequency of velocity

changes will effect the resulting Bessel frequency. Complex signals such as these are
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often characterized by bandwidths of similar behavior. In [91], the µD bandwidth in

terms of velocity [m/s] is given for common targets.

Target Bandwidth without µD Bandwidth of µD
Walking Person 1.509 3.970
Running Person 0.873 6.273
Hovering UAV 0.158 18.818
Flying UAV 0.000 5.081

Table 2.3: Micro-Doppler Bandwidth in terms of velocity [m/s]

The µD spectrum of a target provides low precision detail into the characteristics

of a target. Ultimately, information about the time-varying nature of the target

is lost across the time dimension by effectively averaging or smearing across the

spectrum window. For this reason, a TFR can provide far more detail at the cost

of computations and memory resources. The TFR of a simple 2-blade rotor case

is shown in Figure 2.22. In [92], the TFR of helicopter and quadrotor UAVs are

experimentally investigated with an X-Band CW radar. The TFRs are accurate

enough to resolve the length of blades of the helicopter type. The µD of the quadrotor

is seen but less discernible due to low RCS of plastic rotors. An X-Band FMCW

radar is used to evaluate an octo and hex copter. Within the range-velocity plot,

distinct µD velocities are shown at the drone range as seen in Figure 2.24.

The time variations effectively become a third dimension, and slicing the radar

cube across range will effectively result in a range localized µD TFR. Figure 2.25

shows the TFR of an octocopter hovering at approximately 85 m. The Doppler

frequencies are seen to drift perhaps due to the hovering control mechanism adapting

rotor speeds as needed.
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Figure 2.24: Octocopter hovering X-Band FMCW range velocity plot [92]

Figure 2.25: Octocopter hovering X-Band FMCW range localized TFR plot [92]
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Additional experiments were performed to evaluate the µD TFR of a DJI Inspire

at L-Band [93]. Also in [94], octocopter, quadcopter and nano-quadcopter are

compared at 35 GHz. One issue with µD analysis is the detecting of only radial

velocity creating a dependence on radar LOS. Recently, the use of interferometric

sensors to detect angular velocity has been investigated. The interferometer operates

by mixing return signals from antennas spaced at a specific distance apart. The

azimuth angle of a target will cause a distance or phase difference between receivers.

An angular velocity causes a detectable phase change or frequency. Experimental

investigations of UAV angular and radial velocities show discerning characteristics.

Angular velocities show potential for secondary features accounting for the LOS

dependency [95, 96].

2.4.2 Micro-Doppler Identification Challenge

The challenge is creating a real-time, reliable technique to differentiate between

UAVs µD signatures. From the first formulation of the µD effect to recent attempts

at machine learning, significant advances in understanding and interpreting how

EM signals reflect off complex targets fuel identification techniques. Identification

can be interpreted as a machine learning classification problem. Within every

classifier, two distinct functions exist: feature extraction and the classifier itself.

Classifiers are application independent, and comprehensive research has already

been conducted to determine the potential of each [97, 98]. Feature extraction

is highly application specific and requires intuitive understanding of the dataset.

The resulting performance is a product of physical understanding, intuition and

real dataset evaluations. However, the existence of a comprehensive UAV µD
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database ultimately determines how practical the results can be. Few databases are

currently published [99], and few research labs have the capability to generate and

evaluate comprehensive UAV radar µD identification databases. Given the project

history of DU2SRI and our UAV fleet size, a unique potential to explore novel

µD research including feature extraction and frequency band comparisons can be

explored. Currently, DU2SRI has an extensive fleet of fixed wing, helicopter, and

quadrotor commercially and custom built UAVs to evaluate RTI algorithms.

2.4.3 Time-Frequency Micro-Doppler Representation

Many attempts at classifying targets based on TFRs or Time-Frequency Dis-

tributions (TFDs) have been explored and published. The first analysis of the

phenomenon and its time-frequency transform was published in 2000 by Victor C.

Chen [10]. He is commonly known as the father of µD and is cited numerous times

for his ground-breaking work in demystifying and laying the fundamental theory

this research field builds from. His initial work contains mathematical models of

the time-frequency domain representation of µD signatures induced from vibrations,

rotations, human gait and rotating antennas. A Gabor transform was used to

experimentally confirm his TFR using empirical data. The Gabor Transform is a

STFT using a Gaussian window function.

TFRs are generally classified by the mathematical transform applied to the

single dimension radar echo resulting in a 2-dimension representation. Due to the

Uncertainty Principle of Signal Processing, the product of the time-duration σt and

bandwidth σw of a signal are bounded by 1
2

[equation 2.36]. In this case, the
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time-duration and bandwidth are defined as the standard deviation of the energy

distribution in the time and frequency domain.

σt · σw ≥
1

2
(2.36)

Due to this fundamental law, efforts have been made to find the best Time-

Frequency Transform (TFT) or optimize a parameterized TFT to best suit an

application. TFT are generally categorized as linear, such as the STFT, or bilinear,

such as the Wigner-Ville Distribution (WVD). Bilinear transforms may have better

time-bandwidth characteristics but suffer from cross term interference due to their

dependence on overlapping local time and frequency characteristics. A final class of

linear TFRs known as Wavelets are essentially generalized STFT in which a time

window function is incorporated into the kernel of the Fourier transform to ultimately

optimize for exploiting time or frequency characteristics. As a result, Wavelets tend

to be interpreted and defined from a “scale” point of view, rather than a frequency

point of view.

2.4.4 Feature Extraction

Feature Extraction is the method of mathematically formulating characteristics

or features of a certain signal to model real-life dependencies and separate different

physical phenomena. In the case of µD RTI, features should be formulated to

differentiate different targets due to their µD signature. A feature can be low

resolution and use approximate statistical calculations or high resolution using known
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physical models. The trade-off is fundamentally between computational efficiency

and performance.

TFR Features

The TFR itself is an attempt at exploring differences in µD signatures and can

be used as a high dimensional feature space. Each pixel in the two-dimension

spectrogram picture is a single feature in the feature space. The downsides with

high-dimensional feature spaces are the required computational needs for classifiers

and the potential for over-fitting. Attempts have been made to apply Principle

Component Analysis (PCA) to the TFR in order to reduce the dimensionality to

the most influential features. PCA is a common research method of finding the

eigenvectors and eigenvalues of a co-variance matrix of some dataset using eigen

decomposition. The eigenvectors become the orthogonal basis functions ranked

from most to least variance based on the corresponding eigenvalues. Singular Value

Decomposition (SVD) is a numerical solution to approximate PCA. The following

papers all attempt some variant of PCA in order to dimensionally reduce the feature

space defined by some µD TFR [100, 101, 102].

In [100], the authors use an X-Band Doppler radar system to classify planes,

quadrotors, helicopters, stationary rotors and birds by extracting an STFT using a

Hamming window. The STFT is first pre-filtered with an adaptive noise filter. After

the STFT, the bulk target velocity is tracked and centered. Radar measurements

were performed within the Dutch Radar Centre of Expertise and included 11 different

targets. The principle components of the linear TFR are calculated and used to train

a linear/non-linear Support Vector Machine (SVM) and a naive Bayesian classifier.
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After 10-fold cross validation, the best performance was the non-linear SVM at 95%

accuracy.

In [101], the authors claim to use robust PCA based on a Minimum Covariance

Determinant (MCD) applied to the STFT Mean Frequency Profile (MFP) analysis

of the RadEch Database [99]. Essentially, the time-average across frequency is

calculated followed by an outlier-robust PCA extraction. An SVM classifier learns

from up to the 50 features and is ultimately implemented on a TI DSP chip

(TMS320C6713). Random validation evaluates acquisition time, from 0.5 to 4

seconds, vs. feature space. Results ranged from 82% to 94%.

In [102], authors investigate computationally simple features for discerning

between birds, fixed-wing UAVs and rotor-based UAV targets. The authors report

that target velocity, spectrum periodicity and spectrum width are sufficient features

for classifying birds vs. UAVs based on µD and scattering theory. For discerning

between fixed and rotor-based targets, an X-Band CW radar samples µD signatures

of a Vertical Take Off and Landing (VTOL) and flying-wing mini-UAVat 96 kHz and

SVD dimensional reducing algorithm is investigated. First, an STFT is computed

with the appropriate sample rate, integration time and window overlapping. Then

the TFR matrix X(v, t) is decomposed into left (U) and right (V) singular vectors

according to equation 2.37.

X = UΣVT (2.37)

The diagonal matrix Σ contains the singular values which represent a metric

for how much information is contained within the respective left and right singular

vectors. The singular vectors are projections of X onto two principal bases decoupling
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velocity and time information from each other. The results of the first few left

and right (velocity and time) vectors contain easily seen rotor rotation rate and

µD bandwidth. Using these values, an estimate of rotor length L is calculated via

equation 2.38.

L =
BW

2πΩ
(2.38)

The previous attempts at target identification use similar methods to reduce

feature space dimensionality of TFR to only the principle components in order to

robustly classify UAVs characteristics. The results are promising but inherently

STFT and other linear TFRs have limited time-variant resolutions. The following

section explores more complex TFRs and µD specific features.

TFR-Based Feature

Measuring the time-varying characteristics of the µD signature has a direct

correlation to the real micro motion of the target. One obvious representation can

be achieved by taking the FFT along each velocity bin across a longer time window.

The second FFT across time has an effective sample rate of fs
Window Length×Overlap .

As a result it can be called the “slow-time” FFT or the “cadence” to not confuse

with the previous Doppler processing “slow-time” terminology. The cadence can be

plotted on a Cadence vs. Velocity Diagram (CVD) and be used to estimate human

gait or rotor rotation speed. A second TFR-based feature is called the cepstrum.

The cepstrum was first theorized in 1963 by Bogert et al in his semnial paper [103]

as an analysis tool for periodic motion within a spectrum. It is defined as the Inverse
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Fast Fourier Transform (IFFT) of the logarithm of spectrum or windowed FFT of a

signal represented in equation 2.39. Today it is commonly used in speech analysis.

C(fque) = F−1
{

log
(
|F{f(t)}|2

)}
(2.39)

In [94], cadences and cepstrum of octocopters, quadcopters, and nano-

quadcopters are calculated with recordings from a 35 GHz CW radar and plotted in

Figure 2.26. In the CVD plots, the distinct vertical lines suggest oscillatory behavior

of the TFR at distinct cadences. This could be due to rotor rotation and the flash

of the blade. The nano-Quad lacks cadence possibly due to high blade rotation

rate relative to sample frequency. The cepstrum plots the que-frequency and reveals

distinct periodicity. The periodicity is most likely caused by the rotation of the

blades and thus is a measure of blade rotation rate. Multiple que-frequency peaks

can result from multiple blades rotating at difference speeds or harmonic distortion.

The TFRs are decoupled and decomposed using SVD and averaged across velocity

and cadence. The resulting features are run through a Radial Basis Function (RBF)-

SVM classifier and five-fold cross validated. The result was above 96% accuracy when

comparing birds to UAVs or small-size UAVs to medium-sized UAVs. The rotor

length was also estimated accurately from CVD or cepstrum. The results suggest

high performance when differentiating types of targets however do not investigate a

large fleet or sub-types of UAVs such as rotor number or fixed-wing aircraft. In [104],

helicopter and octocopter UAVs cepstrum are calculated and plotted with an X-

Band CW radar. The authors suggest cepstrum for low sample rate acquisition or

differentiating between bio-life and UAVs.
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Figure 2.26: TFRs, Cadence and Cepstrum Features for Octo/Quad/Nano UAV [94]

EMD Features

A downside of CVD and cepstrum-based spectrum periodicity calculations is that

STFT and WVD TFRs suffer from lack of resolution or computational complexities.

Another approach to decompose µD into fundamental periodic components called

IMFs is EMD. EMD can be effective for µD analysis with the addition of Hilbert

Huang Transforms. An IMF has only one instantaneous frequency at a time, an equal

number of maximum/minimum extrema to zero-crossings, and is locally zero-mean

across all time. An IMF is found by first sifting to find extrema, then interpolating

with a cubic spline. Lastly, the median is subtracted out. The first IMF is subtracted
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from the original signal and the process is repeated. Essentially, EMD is a time-based

calculation of fundamental frequencies and their time-varying contribution.

In [105], simulations and experiments of rotor blades’ EMDs are analyzed and

shown to carry information for RTI classifiers. Figure 2.27 shows the IMFs of

a simulated single 2.5 m blade rotating at 300 RPMs. The IMFs carry both

frequency and time-varying information of targets. The use of EMD will still result

in a high-dimensional feature space and therefore statistically and geometrically

calculated features are derived from the IMFs [106]. A few EMD-based features

such as zero-crossings, IMF energy, standard deviation, entropy, frequency peak and

a fusion of all are investigated for classifying distinct fixed-wing and rotor-based

UAVs, birds and stationary rotors. Using SVM classifiers and similar data, the error

rate is compared with other common features such as TFRs, CVDs, cepstrum and

regularized complex-log FFTs. The EMD-based features yields best results [106].

Micro-Doppler Reconstruction Features

Estimating UAV characteristics from its µD signal has also been theorized and

evaluated. Characteristics such as the number of rotors, rotor length, rotation rate,

target speed, and target size can lead to estimating the aerodynamics and potential

trajectories of the UAV. Such characteristics can ultimately benefit SAA systems

by improving the avoidance maneuver. The blade flash phenomenon is an ideal

candidate for determining rotation rate. The blade flash is a wide-bandwidth, short-

time event appearing as an envelope peak across multiple IMFs [107]. Ordering the

IMFs according to its blade flash contribution and reconstructing the signal from

a select number of contributing IMFs will enhance the flash observed in a TFR.
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Figure 2.27: First Eight simulated IMFs for single blade target (300 rpm / 2.5
m) [105]

The algorithm in [107] is experimentally evaluated and shows distinct flashes for

helicopter and quadcopter UAVs.
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In [108], Yichao Zhao et al. analyze the estimation of parameters of the µD

model from [10, 88] in equation 2.33. Simplifying the model with focus on periodic

velocities and including phase noise ψ(t) results in equation 2.40. The µD signal is

a superposition of potentially infinite micro-motion frequencies fk with a complex

coefficient Dk. The target bulk velocity is incorporated into V (t) = −4π
λ
vt. The

range and reflectivity are incorporated into a complex factor K = σ exp
{
−j(4π

λ
R0)
}

.

The µD signal is a combination of Amplitude Modulation and Phase Modulation

(AM-PM) where K represents the AM and the summation of infinite sinusoidal

functions is the Phase Modulation (PM).

sµD(t) = K exp

{
j

[
∞∑
k=0

Dk exp {j2πfkt}+ V (t) + ψ(t)

]}
(2.40)

Using a process called Cyclostationary Phase Analysis (CPA), an estimate of

the µD parameters (Dk, fk) can be made. When analyzing random processes,

a stationary process does not exhibit dynamic statistical behavior such as mean

or standard deviation. A cyclostationary process experiences periodic statistical

behavior. It is defined as a zero-mean signal whose Auto-Correlation Function (ACF)

is periodic. The ACF has a peak at the expected value or mean. If the expected

value is cyclical, a periodic peak occurs. Using the fundamental period T0 of the

expected value, the Fourier series coefficients Rα
x(τ) of the ACF Rx(t, τ) are often

referred to as the Cyclic Auto-correlation Function (CAF) defined in equation 2.41.

Rα
x(τ) =

1

To

∫ T0/2

T0/2

Rx(t, τ) exp (−j2παt)dt (2.41)
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The spectral density of each coefficient is called the Cyclic Spectrum Density

(CSD) Sαx (f) defined in equation 2.42.

Sαx (f) =

∫ ∞
−∞

Rα
x(τ) exp (−j2πfτ)dτ (2.42)

The amplitude of the CSD can be put into the form of a Bessel function of the first

kind. Thus, a CSD of a µD signal is a measure of the expected fitted Bessel function

and can be used to estimate the fundamental µD parameters. The performance of

the CPA parameter estimation of the PM µD signal (CSDP) given phase noise is

evaluated with field experiments and Monte Carlo simulations. The results show

robust parameter estimation to distinguish UAVs from other non-cyclostationary

interference signals such as platform movement. The estimates of Dk and fk are

asymptotically optimal above −4 dB.

2.4.5 Neural Networks

Artificial Neural Networks (ANNs) have reemerged in recent years due to

computational hardware advances. An ANN essentially mathematically models

the human brain and its layers of neurons and can be trained to perform most

known mathematical functions. They essentially combine the mathematics of feature

extraction and classification into one network of layered summations with activation

functions. However, the downside with ANNs are their inherent complexity in

implementation and training. ANNs require large computational units and datasets

for effective training. Research using ANNs for a wide variety of applications is a large

and growing field with too many facets to cover in a single thesis. A cursory search
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of ANN µD RTIs yield many attempts at using fully-connected [109], convolutional

neural networks [110] and deep belief networks [111]. Due to large training sizes and

complexity, this method of RTI is still in its infancy and maturing. The development

of a comprehensive training set for ANN µD RTI remains a fundamental limitation

of such machine learning techniques.

2.5 Adaptive Radar

Until recently, applying information and/or control theory into the design of the

radar waveform in order to maximize performance has been strictly theory [112, 113].

A few waveform techniques were technically feasible with a meaningful performance

increase. Examples such as Linear Frequency Modulation (LFM), stepped frequency

modulation, waveform spectrum shaping, and binary phase codes [30] are common

in modern military and commercial systems given a particular application and

performance need. Recently, the concept of CR has emerged and advances in the

mathematical frameworks and SDRad have enabled implementation.

2.5.1 Cognitive Radar

The idea of CR and resulting Fully Adaptive Radar (FAR) frameworks were

theorized and generalized [11] as early as 2006. The concepts behind cognitive

sensing systems are simple but with many interpretations. Fundamentally, it is using

information about the sensing environment and target from prior measurements to

adaptively sense the target with higher performance. Conceptually, Figure 2.28

shows Simon Haykins’ original concept of Cognitive Radars in 2006. The fully-

74



fedback, statistical based tracker uses past and present environmental models from

active sensors and a priori knowledge to intelligently track the target by adapting the

transmitter to optimal parameters. The concept is borrowed from the echolocation

system of a bat, which uses complex calls for high resolution range for velocity ??.

Figure 2.28: Simon Haykins original concept of Cognitive Radar [11]

2.5.2 Fully Adaptive Radar Framework

Statistically-based models driving complex optimal control algorithms to deter-

mine the best radar parameters for detecting or tracking targets are currently being

investigated. Kristen Bell et al provided the mathematical framework using optimal

control theory [114, 115, 116, 117]. The sensor, with its internal parameters θk, senses

the target state xk and makes a measurement zk. All sensor measurements and

parameters up until the current time tk are denoted as matrices Zk = {z1, z2, ..., zk}

and Θk = {θ1, θ2, ..., θk} respectively. Figure 2.29 is the proposed control theory

framework which estimates the target state x̂k(Zk) by minimizing the processor cost

function C(x̂k(Zk),xk). The controller loss function LC,Θ(·) balances the processor

cost function with the sensor cost function RΘ(·) to determine the sensor parameters.
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A Markov motion model with a Probability Density Function (PDF) q(·) statistically

models the next target states given the previous target states and the current

sensor parameters. The sensor measurement function f(·) is another PDF modeled

function to observe the target states given target and sensor parameters. A posterior

density function f+(xk) = f(xk|Zk; Θk) is effectively a measurement of the sensor

measurement function accuracy given prior observations and sensor parameters. It

helps the controller perceive the environmental effect on the target state estimator.

The FAR framework has been solved for tracking and detection of radar targets

by initializing, adapting and optimizing radar sensor parameters [116, 117, 118].

Theory has also been scaled to MIMO networks or distributed cognitive radars [119],

and performance metrics for complex CR systems are proposed [120]. The theory

has also been implemented in an SDRad, and initial experiments for performance

yield promising results [121, 61, 122]. One strong conclusion resulting from the CR

experiments are the bridging of radar performance to processor and sensor costs. This

results in optimal radar performance cost on its hardware resources. The concept

can be extended into the radar development process to provide optimal hardware

design requirements for a given set of performance goals.

For most radar systems, implementing a FAR system is not yet feasible and thus

multi-mode or multi-function systems which integrate different radars for separate

functions have been implemented for performance sensitive applications like fighter

aircraft [40]. The complexity of the control method can range from simple multi-mode

operation to a fully analytic feedback control model with real-time data acquisition.

The latter requires significant computational resources and is severely limited by

system latency. The flexibility of an SDRad provides the ability to switch radar
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Figure 2.29: Fully Adaptive Radar (FAR) Framework [115]

parameters in real time to implement multi-mode or FAR frameworks as needed.

For UAV SAA applications the payload or sensor cost in SWaP is directly related

to computational needs and sensor transmit power. A CR has the potential to meet

the high performance needs by optimizing computation and sensor costs.

77



Chapter 3

Radar Testbed

In signal processing and machine learning design, the engineer needs to evaluate

the effectiveness of an algorithm. Evaluations can be performed on software

simulations (models) or by taking real world measurements depending on the

application. For machine learning, or more generally, statistics-based classifying

of real world data, it is important to test the algorithm on data captured in the same

manner as in the field. For the purpose of testing CR and µD RTI, a SDR based

radar system was developed to capture real radar data for the evaluation of such

algorithms or techniques.

3.1 Design Considerations

For the purposes of current and future research, a flexible, software-defined

Frequency Modulation (FM) radar is needed to perform and compute the adaptive

processes of CR and µD RTI. The testbed will be used primarily within the context

of research and development within applied science laboratories and thus it must
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account for large, dynamic problem spaces as efficiently as possible. Fortunately,

advances in MMIC and System on a Chip (SoP) for sensor or radio applications

provide software control of hardware parameters with a degree previously not

possible. This allows potential for rapid prototyping of novel research concepts

by simply programming solutions into a capable system. In fact, the overarching

novelty of this research is the potential this repeatable design has to provide rapid

radar development at a low entry cost point through the use of commercially (or

open source) available systems, components and development environments.

3.1.1 Problem Space

The design considerations are limited or constrained by the CAS problem

space. Radars prove to be a reliable and robust SAA solution for performing the

necessary Functions (DTI) on the given Targets (FAA Part 107 UAV) given the

Environmental limitation such as atmospheric effects and airspace definitions. The

design considerations themselves start by defining radar performance requirements

to satisfy the problem. The radar type/technique and overall system architecture is

then carefully selected to meet the performance needs while minimizing engineering

and component costs. Finally, the performance is controlled by a set of programmable

hardware design parameters. Thus providing rapid prototyping and the ability to

meaningfully change between different solution sub-spaces or functions. Some major

parameter decisions consist of the transmit frequency, receiver sensitivity, bandwidth,

RSP parameters, and data processing limitations. Defining the problem constraints

provides context as seen in Figure 3.1.
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Figure 3.1: SAA Radar Testbed Problem and Design Space

The targets in this case are “small commercial UAVs” as defined by FAA flight

rules Part 107 [2]. The flight of UAVs under Part 107 are limited by weight (50 lbs),

height (400 feet), speed (100 mph), area (not over people or by airports) and within

LOS of pilot or operator. The SAA requires DTI of targets. The maximum range

performance is defined as the CAT or the distance required for the SAA system to

have enough time for collision detection and successful avoidance. From Section 2.1.1,

a maximum frontal CAT distance for Part 107 UAVs are found to be 600 m. This

formulation assumed a beyond worst-case scenario and a more reasonable range
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of performance is 100 − 300 m with focus on close-range tracking in order to

supply avoidance algorithms with sufficient sensory data. The maximum velocity

performance is defined as the twice the maximum allowable Part 107 UAV speed or

200 mph (≈ 90 m/s). The appropriate resolution of range and velocity is determined

by which function the radar is performing. Typically, tracking requires much higher

resolution than detection. Identification typically requires higher velocity resolution

than detection or tracking. This research investigates opportunities for advancing

DTI of FAA Part 107 UAV targets.

3.1.2 Transmit Frequency

The selection of the transmit frequency directly affects the system performance

in a variety of ways. First, for electromagnetic reflectometry, radio frequency

or microwaves are used due to their inherent robustness to obstacles such as

atmospheric or landscape effects which overwhelm LiDAR, infrared or visible light

sensing systems. Figure 3.2 shows the relative transmission losses of EM waves

with frequencies from microwaves to ultra-violet over 1 nautical mile at sea level.

The microwave region has significant bandwidths available without atmospheric

effects. Visible light and IR have windows of low absorption losses, but scattering

effects begin to dominate due to small wavelengths relative to particles in the

atmosphere. Thus, atmospheric absorption from scattering or other effects need

careful consideration in any CAS.

Fundamentally, the usable frequencies within the millimeter and microwave bands

are further limited by target scattering, free space loss, atmospheric absorption

and Doppler effects, all of which have large dependencies on the choice of transmit
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Figure 3.2: Atmosphere Absorption and Scatter Losses [123]

frequency. Figure 3.3 shows the IEEE standardized radar bands found in IEEE Std

521-2002 [124]. Typical aircraft detection is found within the S-Band or below.

Typical aircraft tracking is found at X-Band or above. Identification is highly

dependent on targets scattering effects. The following sections briefly overview

EM scattering, atmospherics, and Doppler effects and their relationship to transmit

frequency and a UAV target.

Scattering Theory

In scattering theory, if the internal state or kinetic energy of the scattering particle

or medium is unchanged after the collision, the process is called elastic scattering

[125]. Microwaves typically do not have enough energy to interact in-elastically with

common materials. Hence, the scattering effect of radar systems is simply a matter

of which direction the energy has scattered towards. The scattering effects of an

object depend on its material, size and geometry. There are two basic categories
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Figure 3.3: IEEE Radar Bands [124]

of materials based on their electrical and magnetic characteristics: conductors and

non-conductors. Conductors essentially allow for easy movement of free electrons and

thus electric and magnetic fields are quickly resolved through conductive currents and

do not propagate easily. Non-conductors, commonly known as dielectrics, propagate

energy indirectly through displacement currents [41]. The speed of propagation is a

function of a fundamental EM characteristic called the Dielectric Constant Dk. At

the interface of dielectrics, the speed of propagation changes resulting in a reflection

of a portion of the incident wave. Appendix C.1 provides a more fundamental review

of electromagnetic material theory.
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Radar Cross Section

Radar engineers are typically concerned with how much energy is scattered back

in one direction. This, appropriately called backscatter, can be measured as the RCS

σ. The RCS is defined as the ratio of incident power density and reflected power

density of a given target at significant distances from the transmitting antenna. RCS

has units of square meters but is not a measure of projected cross section. The units

are a product of the definition containing power densities with units of W/m2. In

order to understand the significance of RCS, one must investigate how it affects

power radiating within a radar system. The power density incident upon a point

target St can be described as the isotropic transmitted power density scaled by the

antenna gain Ga in the direction of the target. The power density is calculated from

the power transmitted Pt scaled by the surface area of a sphere at a distance R from

the transmitter.

St =
Pt

4πR2
Ga W/m2 (3.1)

The isotropic backscatter can be defined as equation 3.2 which includes the RCS

factor to represent the power backscattered Pb from the incident power density. The

backscatter power is radiated isotropically and is thus scaled by the area of a sphere.

Sb = St
σ

4πR2
=

Pb
4πR2

=
PtGaσ

(4π)2R4
W/m2 (3.2)

Finally, the power received Pr includes the effective aperture size of the receive

antenna Ae, free space path losses
(

4πR
λ

)2
, system losses Ls and atmospheric losses

La. Equation 3.3 is one form of a monostatic radar range equation. The RCS
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can be seen as a factor which represents the ability of a target to reflect a given

transmitted frequency at a specified range, system power, gain, and loss parameters.

From equation 3.2, a formal definition of RCS is defined as 3.4 by expressing the

relationship in terms of the complex electric field amplitudes and guaranteed far

field conditions.

Pr =
PtGaAeσ

(4π)2R4LsLa
=

PtGaGrλ
2σ

(4π)3R4LsLa
W (3.3)

σ = 4πR2Sb
St

= 4π lim
R→∞

[
R2 | ~Eb|2

| ~Et|2

]
m2 (3.4)

The max RCS generated from a few common shapes is illustrated in Figure 3.4.

The calculations assume the maximum dimension of the object is much greater than

the wavelength of transmitted frequency and the material is conductive. Also, the

maximum RCS is not always related to the projected cross section of the object.

Figure 3.4: RCS of common geometric shapes [123]
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Scattering

To understand the effects of electrical size on EM scattering, Figure 3.5 shows the

relationship between the size of a conducting sphere expressed in wavelengths and

the RCS normalized to the maximum RCS from Figure 3.4. A sphere has full three

dimensional symmetry and thus makes a good object for scattering investigations.

EM scattering can be separated into three regions depending on the relationship

between wavelength and object size. When λ � 2πr, RCS is not dependent on

wavelength and is equal to πr2. This is known as the Optical or geometric region,

where waves behave by the laws of ray tracing. The region where λ� 2πr is called

the Rayleigh region. The RCS exhibits a dependence on the wavelength due to the

whole object at any given moment experiencing a uniform electric field, pushing

all free electrons to one side and inducing a dipole. From antenna theory, dipoles

are understood to radiate almost isotropically with broadside gain increasing with

frequency [126]. When λ ∼ 2πr, resonances occur due to the constructive and

destructive interference between immediately reflected specular waves and creeping

waves created by diffuse waves following the shadow of the sphere around the

backside. This region is considered the Mie region. A maximum occurs at point

A when σ = 4πr2 and minimum at point B when σ = 0.26πr2.

Atmospheric Absorption

The propagation of millimeter and microwaves requires suitable transmit powers

to overcome atmospheric absorption. Absorption is fundamentally caused by the

inherent dielectric loss of a material. The lag response of the molecular dipole

moment to propagating waves creates friction dissipated as heat within the material.
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Figure 3.5: Scattering of sphere [123]

Figure 3.6: Creeping Waves for Mie region scattering [123]

It is measured as the loss tangent. Scattering effects can enhance absorption due to

multi-path effects. Absorption effects are typically dominated by water moisture and
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oxygen particles which contain peaks along a generally increasing trend as frequency

increases across the microwave region, shown in Figure 3.7. The peaks are caused by

resonances between molecular dipoles and the transmit frequency. One cause of the

increasing trend is minor Rayleigh scattering. As seen on the plot above 10 GHz,

IEEE radar X-band, water vapor absorption increases dramatically and peaks at 23

GHz. The oxygen absorption peaks around 65 GHz and 135 GHz, IEEE radar V, W,

and mm bands, prevent effective long distance detection at these bands. However,

atmospheric effects can also be used to the radar engineer’s advantage as seen in

weather radar, automotive radar sensors using oxygen absorption peaks to prevent

system-to-system interference, and satellite-to-satellite communications using peaks

in order to prevent ground reception.

Figure 3.7: Atmospheric Absorption [123]

Weather affects propagation significantly as well. Figure 3.8 shows atmospheric

attenuation as a result of rain. The effects of precipitation increase due to scattering

and dielectric loss effects of dense areas of water drops. The wavelengths in this band
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are typically larger than the precipitation and thus a strong frequency dependency

occurs.

Figure 3.8: Atmospheric Attenuation [123]

Doppler Effect

The Doppler effect is an important topic to consider when choosing a transmit

frequency. As described in Section A.1.2 and shown in Figure A.5, the Doppler

frequency shift caused by relative velocity is directly related to transmission

frequency. X-Band radar shifts about 1 kHz per 20 m/s. S-Band radar shifts

about 1 kHz per 50 m/s. Given a Doppler processor’s acquisition time and rate, the

transmit frequency will affect the resolution and maximum velocity, respectively.

UAV Target Requirements

The first requirement of the transmit frequency is significant RCS of typically

commercial drones. If we assume the maximum length of a typical drone is 1

meter, the transmit frequency needs to be significantly higher than 300 MHz in
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order to reflect optically. The transmit frequency is ideally well within the optical

region and should also meaningfully reflect geometries related to different internal

velocities to create distinguished radar echos. The internal velocities can be created

by structures like rotor blades, which depending on angle of attack, could have

significantly less cross sectional area. For this reason, typically higher transmit

frequencies are recommended for identification using small target features. Due to

the complexity and variety of commercially available drones, analytic and simulated

RCS of drones are unreliable [127]. There have been multiple experimental studies

investigating the RCS of commercially available UAVs. The results can be found in

Table 3.1. For reference, a person’s RCS is about 0 dBsm or decibels related to square

meters. From the studies cited, the RCS of commercial UAVs ranges from -1 to -25

dBsm; however, significant variation occurs along frequency and angle of attack. The

studies are provided to give reasonable expectation of RCS of commercial variety.

UAV Type RCS [dBsm] Freq [MHz] Angle
DJI F450 [89] Quad -17 6000-8000 Front and Back
DJI S1000 [89] Octo -8 6000-8000 Front and Back

DJI Phantom 3 [128] Quad -10:-23 1810-1870 Azimuth
Matrice 100 [128] Quad -8:-25 1810-1870 Azimuth

DJI Phantom 2 [127] Quad -20 10,000 Side Bistatic
IRIS [129] Quad -1:-18 1000-4000 Side

Parrot AR 2.0 [130] Quad -18 2400 Side

Table 3.1: Survey of RCS of common commercial drones

Additionally, due to inherent hardware limitations of microwave frontends, the

operation bandwidth limitations and transmit power are proportional to the transmit

frequency and thus, affects the radar performance by limiting the range resolution.

As a result, the FCC currently allocates larger bandwidths at higher frequencies [12].
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The bandwidth considerations provide benefits at higher frequency while transmit

power becomes a more difficult task to accomplish. For these reasons, typically S-

Band and below are used for detection radar at long distances when range resolution

is less preferred. Tracking and identification radars typically use X-Band or higher

when accurate range is preferred over absolute range. Imaging radars use much

higher bands such as K, Ka, and W.

For the research and development within this thesis, S and X Band are selected

as operating transmit frequencies due to their availability as licensed and unlicensed

FCC radiolocation bands as well as their favorable atmospheric, Doppler, and

bandwidth capabilities [12, 42].

3.1.3 System Architecture

The system architecture can be broken down into three subsystems as seen

in Figure 3.9: the microwave frontend, the signal acquisition/generation, and the

processor unit. The required performance of all three subsystems will be chosen in

order to meet radar performance and functionality given a target and environmental

use case. The design is made with focus on enabling future research opportunities in

DU2SRI and to be programmed by the popular open-source RF signal processing

prototyping environment, GNU Radio [131]. For field measurements, the systems

needs to be mobile and able to capture and store large amounts of radar data.

Secondary considerations for future integration into UAVs are the SWaP of the entire

system.
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Figure 3.9: Software Defined Radar Functional Architecture

3.1.4 Radar Type

Pulsed radar was heavily developed during WWII by the Allies to help the British

detect and track Nazi aircraft and sea vessels attempting to cross the English Channel

[132]. The first systems used short-time, high-power, single wavelength pulses of EM

waves. When and if the pulse scattered back, a detection and distance estimate

could be made by the radar operator. The whole system spun on a large mechanical

servo to “sweep” a field of view. This rudimentary system sufficed to win a war but

lacked significant range resolution and required high peak power electronics to travel

significant distances. A fundamental relationship between the range resolution and

peak power limited the systems significantly. Since the war, many technical advances

have been theorized and eventually implemented when technology permitted. These

include Doppler or CW radar, FMCW, imaging, phased arrays, Moving Target

Indicator (MTI), multiple-target tracking, Clutter Rejection and MIMO radar to

name a few. One of the most notable advances was developing FM techniques which

allowed radar engineers to “pulse compress” more bandwidth into longer pulse to

lower peak power.

FMCW radar is arguably the most common tracking and surveillance radar

technique at the time of this thesis. It involves modulating the transmit signal’s

frequency ftx with a radar waveform. The waveform is commonly a linear sweeping
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saw signal. This signal is commonly called a “chirp” due to the sound it makes if

applied to an audio synthesizer. The chirp signal can linearly increase or decrease

ftx for some bandwidth βrsp (usually no more 500 MHz). The received signal is

delayed by the time it takes for the EM signal to propagate twice the distance to

the target (reflection), and that time can be estimated by the frequency difference

between the Tx/Rx given the slope of the FM signal. The concept was developed

because of hardware power constraints with simple pulsed radar and the lack of range

estimation in CW “Doppler” radar. The general technique of modulating ftx is called

“Pulse Compression” and ultimately compresses the peak power across a bandwidth

and decouples SNR from range resolution ∆R. The modulation bandwidth now

ultimately determines the range resolution. FMCW can provide higher power per

“pulse”, which yields higher SNR at greater distances or smaller RCS, independent

of range resolution. A FMCW radar combines the benefits of pulse compression and

CW techniques in order to accurately track small targets at a relatively close range.

It is commonly used for automobile sensors and is therefore the ideal candidate for

UAV SAA tracking function. The decoupling of SNR also provides flexibly to detect

targets at longer distances. The maximum range now becomes limited by the radar

waveform’s ambiguity which can be extended to the desired detection range and the

loss of SNR from the reduced stretch processing window. Achieving the desired radar

performance by altering parameters is explored in the following section.

For more information on radar basics and fundamentals of Pulsed, Doppler and

Pulse-Compression techniques, see Appendix A.
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3.1.5 Radar Performance

The overall radar performance is measured with a variety of metrics and

interdependent variables. Typically, the radar range equation 2.13 considers energy

or power transfer through the system in order to calculate maximum range given a

required SNR or vice versa. The radar range equation is essential for predicting

detection performance. The resolution in each measurement dimension such as

range, velocity, and spatial angles are primarily functions of the RSP and waveform

choice. The waveform can be either pulsed or CW. The resolution and detection

performance are inversely related unless the waveform is pulse-compressed across

frequency. Inherent to any sampling or measurement process, the discrete acquisition

intervals produce aliasing or ambiguities between the input and measured frequency.

The SNR, transmit frequency, and ambiguity all contribute to the total available

swath of range or velocity capable of being measured. Ultimately, the radar engineer

attempts to meet the design resolution and swath requirements between all measured

dimensions.

SNR

Equation 2.13 shows the range potential given system and environmental

parameters; transmitted power (Pt), antenna gain (G), wavelength (λ), target RCS

(σ), bandwidth (βn), receiver sensitivity or NF (Fn), required SNR (χ̂), system gain

(Gs) or loss (Ls), and atmospheric loss (La). It assumes the system bandwidth βs is

equal to the noise bandwidth βn and thus SNR gain from pulse-compression or other

RSP techniques are excluded. Equation 3.5 includes the Pulse-Compression Ratio

(PCR) and RSP Gain (Grsp). The PCR is defined as the Pulse Width (τ) times
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the effective bandwidth of the RSP (βrsp). The system bandwidth is required to be

greater than or equal to the RSP bandwidth which cancels out the noise bandwidth

thus leaving only τ . As τ approaches Pulse Repetition Interval (PRI), the radar

becomes CW and alternate types of RSP are required or preferred.

R =

[
PtG

2λ2στ

kT0Fnχ̂(4π)3
· GsGrsp

LfmcwLsLa

] 1
4

(3.5)

For FMCW using stretched processing, an additional SNR loss term from non-

matched filter processing will further reduce SNR [133]. The loss term is due to the

lagged return signal overlapping the transmit signal over a smaller portion of τ , thus

reducing the SNR by the FMCW loss factor Lfmcw = τ
τr

. The overlapping time of

return signal τr(R) is a function of the target range as shown in equation 3.6, where

τd is the time-delay due to the target range. If τ � τd, the FMCW loss factor is

negligible.

Lfmcw(R) =
τ

τr
=

τ

τ − τd
=

τ

τ − 2R
c

(3.6)

Resolution

Resolution of a measurement is fundamentally the smallest time interval a

system can discriminate or differentiate. Both analog and digital components

limit performance. Each analog component is limited in its ability to allow high

time-differentials to pass through. The digital approximation can only approach the

total analog resolution of the system. From this time-frequency relationship, most

measurement systems ultimately reduce to the ability of a system to isolate and

separate different spectral contributions. For an FMCW radar, the return signal
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contains range information as a function of frequency. Fundamentally, a radar’s

range and velocity resolutions are dependent on the system’s ability to separate

peaks within the signal’s spectrum. A target at a single range will produce a

single frequency tone. The finite and non-ideal measurement inherently generates a

bandwidth of uncertainty around the single peak in a noisy spectrum.

The use of the term “bandwidth” usually refers to the effective frequency band

containing most of the signal’s energy. Bandwidth can be defined differently based

on application, author, or function. The Rayleigh Bandwidth is typically defined as

the inverse of the time-duration of a signal. For an ideal pulse of finite length τ , the

spectrum will be a sinc function with zeros at ± 1/2τ . The Rayleigh Bandwidth 1/τ

is the width of the main lobe contained between the first zeros on each side. Another

definition defines the bandwidth between points 3 dB lower than the maximum

called “3dB-bandwidth” or “main-lobe width”. The 3dB bandwidth is often used on

empirical data where zeros are buried in the noise floor. The Rayleigh bandwidth is

often used within theoretical analysis of systems design.

For a pulsed radar system after matched filtering, as seen in Section A.2.1, the

Rayleigh bandwidth 1/τ is considered the minimum effective bandwidth. Pulse Com-

pression increases the effective bandwidth from Rayleigh by the Time-Bandwidth

Product (TBP) resulting in the RSP bandwidth βrsp. Finally, the range resolution

∆R factors out the speed of light from the bandwidth as seen in equation 3.7. For

a range resolution of 1 m, the RSP bandwidth must be at least 150 MHz. For an

FMCW radar system, ∆R acts as a maximum range resolution. Due to the loss

of overlapping transmit and receive signals, the range resolution suffers a loss by a
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factor of Lfmcw as seen in equation 3.6. If τ is sufficiently large compared to τd, the

range resolution will remain largely unchanged.

∆R =
c

2βrsp
(3.7)

The velocity resolution ∆V is dependent on the Doppler processing window

TD and Rayleigh resolution of the radar Doppler shift ∆fDr = 1/TD as seen in

equation 3.8. For pulse-Doppler processing, Doppler measurements are discretely

sampled every PRI, therefore the velocity resolution is further limited discretely

in the FFT domain. Zero-padding the end of each Doppler FFT call solves this

issue. The TD can be limited by the maximum implementable FFT or filter order.

It can also be limited by the required TFR characteristics. For example, if the

localized change in velocity or acceleration is needed for a tracking algorithm, the

FFT must reduce in size according to the Uncertainty Principle of Signal Processing.

If velocity accuracy is not important, such as within MTIs, TD may be as small as

two samples. This provides an indication of movement without over processing the

data. Given the processing limitations, TFR requirements, and velocity accuracy

needs, there exists a maximum or optimal TD allowed for each velocity estimation.

For 1 m/s resolution, S-Band and X-Band radars require 46.2 ms and 14.3 ms

processing windows, respectively.

∆V =
λ

2TD
= ∆fDr ·

λ

2
(3.8)
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Ambiguity

The ambiguity of range and velocity measurements are fundamentally determined

by which RSP algorithm is used. The ambiguity function plots the magnitude of

the matched filter over effectively range and velocity as seen in section A.2.2. Using

typical pulse-Compression and Coherent Processing Integration (CPI) pulse-Doppler

techniques, the processing fundamentally becomes one of sequential multi-scale

FFTs. Ambiguities can occur in any discrete Fourier Transform process unless proper

filtering eliminates aliasing due to the energy occurrence at frequencies above the

Nyquist frequency1. As seen in equations A.12 and A.13 in Section A.1.3, the range

and velocity ambiguities are linked via the Pulse Repetition Frequency (PRF) of the

radar waveform. Table 3.2 shows the range and velocity ambiguity for the target

transmit frequencies. As the PRF approaches 1 MHz, the unambiguous range Rum

decreases to a nominal Part 107 UAV tracking distance of 150 m. The unambiguous

velocity vum approaches maximum Part 107 allowable flight at less than 10 kHz for

both S-Band and X-Band. However, S-Band allows for larger maximum velocity

per PRF. In other words, the X-Band induces a larger Doppler frequency shift per

unit velocity. The maximum PRF is also limited by hardware signal processing

computational resources. From Table 3.2 it is concluded a PRF exceeding 1 kHz

but less than 1 MHz is required.

Range and Velocity Swaths

The range and velocity swaths of radar sensors are the total available ranges

and velocities capable of being measured. The swath requirement for FAA Part

1Nyquist Frequency fn = fsample/2
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PRF [kHz] 0.1 1 10 100 1000
Rum [km] 1500 150 15 1.5 .15

X-Band vum [m/s] 1.42 14.2 142 1420 1,420
S-Band vum [m/s] 4.6 46 461 4,610 46,100

Table 3.2: Range and Velocity Ambiguity Settings

107 UAVs for DTI are shown in Table 3.3. Each function requires different range

and velocity swaths. The goal of detection radars is to detect the intruding UAV

prior to the CAT. Increasing Rmax lowers probability of error but increases available

collision avoidance processing time. A detection or surveillance radar prioritizes

lower probability of error at a given distance over resolutions ∆R and ∆V . Thus,

the radar range equation 3.5 and SNR are more important parameters over the

radar waveform and its ambiguities. Using a low ∆V MTI reduces the need for

large velocity swaths by thresholding velocities above standstill. MTI has the added

benefit of decreasing detection processing latency. The goal of tracking radars is to

estimate range and velocity as accurately as possible. Tracking focuses on closer

ranges to avoid measurement errors but requires the entire Part 107 velocity swath.

The identification of targets must occur closer than initial detection and within the

µD velocity bandwidth [91].

Function Rmin Rmax |Vmin| |Vmax|
Detection 100 m > 600 m > 0 m/s < 90 m/s
Tracking 0 m 100 m 0 m/s 90 m/s

Identification 0 m < 600 m Vtarget − 10 m/s Vtarget + 10 m/s

Table 3.3: Range and Velocity Swath Requirements

The maximum range and velocity swaths need to satisfy both waveform ambiguity

and radar range equation 3.5. According to equations A.12 and A.13, the PRF is

the fundamental parameter for ambiguity. The PRF must be less than 250 kHz to
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avoid range ambiguities up to 600 m and 1.5 MHz for 100 m. For S-Band detection,

the PRF must be greater than 2 kHz for the entire ±90 m/s velocity swath. For

X-Band tracking, the entire velocity swath requires 6.3 kHz. In FMCW radar with

stretch-processing when pulses are no longer coherently integratable, the velocity

must be calculated directly from the samples, and the PRF no longer determines the

velocity swath.

Using the radar range equation, the theoretical SNR for S-Band and X-Band at

600 m and 100 m vs. PRF is plotted in Figure 3.10. The plot assumes nominal

values; σ = 0 dB, Ga = 15 dB, Pt = 0 dBm,Fn = 3 dB, and Grsp = 3 dB. The

point labels are the minimum PRF given the required Part 107 unambiguous velocity.

The maximum PRF is dependent on unambiguous range and extends off the graph

to the right. For the red X-Band tracking, the target returns as close as 100 m, and

the SNR is large across most PRF. However, tracking SNR reduces to well below

0 dB at 600 m. For the green S-Band Detection at 600 m, the PRF must be less

than 8.2 kHz for above unity SNR. SNR can be increased to 10 dB if the minimum

restriction on PRF is loosened to vum = 45 m/s as seen on the extrapolated tail.

The shaded green region shows the S-Band detection radar performance solution that

satisfies the swath from an SNR and ambiguity perspective. Using FMCW where

τ = PRI ≈ 8 kHz, the FMCW loss factor Lfmcw = 0.14 dB.
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Figure 3.10: Stretched Radar SNR vs. PRF

3.2 Testbed Design

Table 3.4 consolidates radar performance requirements for the desired target,

environmental limitations, and desired functionality. The right hand column gives

a brief description of the rationale behind deciding the target value. The rationale

originates from FAA regulations [2], CAS requirements [9], physical size constraints,

empirical data [91], or nominal or conservative values if no clear value exists or is

relative to the function. Of note, the beyond worst case maximum 600 m CAT is

derived in [9] and is used as a detection maximum range target value. For tracking,

a nominal 100 m is used. For resolution, nominal values ∆R = 1m and ∆V = 1 m/s

are used. In the case of ∆R, the nominal value is roughly the largest maximum

dimension of a typical UAV.
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Goal Target Value Units Reasoning
Detection

Range Swath (100, 600) m CAT Requirement
Range Resolution > 10 m Low Priority
Velocity Swath ±90 m/s Part 107 UAV regulation
Velocity Resolution > 10 m/s Low Priority

Tracking
Range Swath (0, 100) m CAS Requirement
Range Resolution < 1 m Target physical size
Velocity Swath ±90 m/s Part 107 UAV regulation
Velocity Resolution < 1 m/s Tracking Algorithm Error

Identification
Range Swath (0, 600) m Limited by Detection
Range Resolution 1 m Target physical size
Velocity Swath ±10 m/s UAV µD bandwidth
Velocity Resolution < 1 m/s Desired Doppler TFR

Table 3.4: Radar Detection, Tracking and Identification Performance Design Goals

From the performance design goals, Table 3.5 shows the range of system

parameters of an S-Band detection, X-Band tracking, dual-band identification FM

range-velocity radar. For FMCW radar where τ = PRI, in order to keep Lfmcw <

1 dB at 600 m the PRF must remain below ≈ 50 kHz.
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Parameter Target Value Units Reasoning
S-Band Detection

ftx 2− 4 GHz Easy Propagation
Bandwidth > 15 MHz 10 m Resolution
PRF (2, 8) kHz Ambiguity + SNR + Lfmcw
TD (4.62/46.2) ms (10/1) m/s Velocity Resolution

X-Band Tracking
ftx 8− 12 GHz Large BW and Doppler
Bandwidth > 150 MHz 1 m Resolution
PRF (6.3, 50) kHz Ambiguity + Lfmcw
TD 14.3 ms 1 m/s Velocity Resolution

Identification
ftx S-Band,X-Band Comparison
Bandwidth 30− 1000 MHz Low Priority
PRF (2, 50) kHz Ambiguity + SNR
TD > 14.3 ms < 1 m/s Velocity Resolution

Table 3.5: Radar System Parameters to meet Performance Goals

3.2.1 Systems Overview

The final system design consists of two SDR based SAA radar testbeds at S-Band

and X-Band. The host processor is a Razer Blade Stealth Laptop with a GeForce

GTX 1060 external graphics card. A commercially available SDR is used for signal

conversion between digital and RF signals. A microwave frontend including amplifier,

filters, mixers, etc... conditions the signal to propagate from a directional antenna

aperture. Each microwave frontend was developed using MMIC and custom parts.

The design, simulation, implementation, and evaluation run through many iterations

in order to achieve required performance. The RF and microwave development

was performed primarily with Keysight’s Electronic Design Automation (EDA)

software including EMPro [134], Advanced Design Systems (ADS) [135], and Genesys

RF/Microwave Synthesis and Simulation Software [136].
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The S-Band is covered using commercially SDR devices which are available with

maximum tune frequencies ranging from 3.8 to 6 GHz. To achieve operation at X-

Band, centering 10.5 GHz, an additional secondary frequency converter is required.

The converter also allows a chirped Local Oscillator (LO) to potentially stretch-

process to wider βrsp. Additional channel filtering, PAs, and Low Noise Amplifiers

(LNAs) are implemented with MiniCircuit’s MMICs [137] to condition the signal and

remove distortion or spurious mixing signals. The microwave frontend components

and system are verified using a 26.5 GHz Keysight N9040B UXA Signal Analyzer.

The bill of materials is found in Appendix D.

3.2.2 Software Defined Radio

The system uses SDR technology combined with a prototype microwave frontend

to provide flexibility when interacting with signals up the X-Band. There are

many SDR boards currently available on the market as seen in Figure 2.15. More

fundamentally, the transceiver MMICs choice ultimately determines performance

characteristics. At the time of this research, three chipsets dominated the SDR

transceiver market [56]. The lower performance, RTL-SDR family of SDRs is a well

established, lost-cost ($25) single channel SDR solution operating up to 2.2GHz with

3.2 MHz bandwidth [138]. The performance is significantly lacking for this system’s

performance needs. Analog Devices AD93XX suite of transceivers are incorporated

into many full SDRs such as Ettus Research’s USRPs [139, 140]. This family provides

the best performance among commercially available SDRs operating up to 6 GHz

with 20−100 MHz bandwidths. Ettus Research designs SDRs for use primarily with

research labs. The third family is based on Lime Microsystems’ SoP transceivers,
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LMS7002 series [141]. The chip operates up to 3.8 GHz with potential 60 MHz

digital bandwidth. It provides full 2x2 duplex MIMO operation and is supported by a

suite of open-source drivers. In 2016, Lime Microsystems crowdsourced development

of a fully HW/SW open-source SDR board [56, 142]. The low cost ($300), claimed

performance, established transceiver chip, open-source and large support community

lead to the decision to use the LimeSDR board for the radar testbed.

LMS7002

The LMS7002 is a second-generation Field Programmable RF (FPRF) transceiver

IC [141]. The FPRF includes two fully duplex, homodyne I/Q coherent channels,

two PLL-tunable low phase noise synthesizers, 8051 micro-controller with SPI control

registers, on-chip DSP units, and custom high-speed interface as seen in Figure 3.11.

The DSP, micro-controller, and hardware are all capable of accounting for in-chip

non-linearities and self-calibration.

Each filter, amplifier, synthesizer, mixer, and data converter are all programmable

for as much flexibility as allowed. The chip also contains three parallel LNAs for

low, wide and high operating frequency. The matching of each LNA and supporting

transmission lines are optimized for maximum noise performance within each range.

It operates with the specification seen in Table 3.6.

LimeSDR

The LimeSDR board contains one LMS7002 FPRF chip, an Altera Cyclone IV

EP4CE40F23C8N FPGA, a Cypress FX3 USB 3.0 controller, required memory,

power distribution, clock management and external connectors as seen in Figure 3.12
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Figure 3.11: LMS7002 Functional Block Diagram [141]

Parameter Min. Typ. Max. Unit Conditions
ftx 30 3800 MHz PLL Tunable

0.1 3800 MHz TSP NCOs
βdig 48 MHz MIMO

96 MHz SISO
βrf 160 MHz Analog
Pt 0 dBm CW
NF 2.0 dB at 0.95 GHz

2.5 dB at 2.0 GHz
3.5 dB at 3.8 GHz

Gr 0 70 dB 1dB steps
Gt 0 89 dB 1dB steps

Bit Depth 12 bits
ADC fs 160 MHz Samples per second
DAC fs 640 MHz Samples per second

Total Power Usage 880 mW 2x2 MIMO
550 mW SISO

Table 3.6: Lime Microsystem’s LMS7002 Specifications
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and 3.13. The board layout, hardware selection and manufacturing processes are

completely open-source which allows for easy diagnostics or custom development

when necessary.

Figure 3.12: LimeSDR Board Layout [142]

A total of ten coaxial RF U.FL connectors are provided. Each transmit channel

has two separately matched outputs for high and low tune frequency. Each receive

channel has three inputs for low, wide, and high tune frequency. The LMS7002

coherently transmits/receives RF signals, converts to/from digital signals, and

receives/sends data across a high-speed LimeLight interface to the FPGA. The

FPGA contains an open-source Altera Quartus 15 project with HDL code to handle

board settings, transceiver settings, data interfacing, stream settings, timing, and

packetization. The FPGA is programmable through a GPIO JTAG interface or

through a USB connection. The Cypress FX3 USB 3.0 controller interacts with the

host processor with packets of settings or stream data.
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The LimeSDR has similar RF specifications to the LMS7002 chip itself; however,

the instantaneous or digital bandwidth is further limited by the theoretical maximum

USB 3.0 bitrate (5 Gbits/s), theoretical maximum interface data rate between FPGA

and FX3 (400 MB/s), and required overhead. At 12 bits/sample, the fundamentally

βdig limitation is specified as 61.44 MHz per each SISO channel. To clarify, that is

two 30.72 MHz transmit and 30.72 MHz receive streams simultaneously. Thus the

maximum stream data rate is 368.64 MB/s. This satisfies the detection bandwidth

requirement but does not satisfy the tracking.

Figure 3.13: LimeSDR Block Diagram [142]

The board also includes multiple temperature sensors and optional fan control

output. The LimeSDR is housed in a custom made aluminum housing with a

temperature controlling fan, heat syncs, and EM isolation copper netting to keep

receiver sensitivity as low as possible. The housing is shown in Figure 3.14.
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Figure 3.14: LimeSDR Housing from left to right: open, frontside, backside

LimeSDR Application Ecosystem

The stack of supporting software applications for LimeSDR or general SDR

programming is large and lacks significant documentation. At the lowest abstraction

level, hardware drivers control low-level component settings and abstract commands

to a human readable format. LimeSuite provides C/C++ API for LMS7002 and

LimeSDR function calls [143]. It also provides a GUI for register and above level

debugging and self-calibration. Finally, it provides stream and control API to the

larger SDR ecosystem via a hardware agnostic driver abstraction C++ layer called

SoapySDR [144]. There exist many user-level applications with sophisticated GUI

and user control; however, GNU Radio (GR) is currently the most supported and

flexible signal processing prototyping application [131]. GNU Radio also provides a

GUI application called GNURadio Companion for visualizing the signal flow. GR

is written in C/C++ and Python and supports third party modules to extend the

already extensive tree of source, sink, and signal processing blocks. SoapySDR and

GNU Radio connect through a latent application called gr-osmosdr which handles

SDR source and sink block effectively. Figure 3.15 shows how the LimeSDR specific

applications integrate into the larger SDR application ecosystem. A gr-radar toolbox

with RSP block was created in 2014 by the Communications Engineering Laboratory
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at Karlsruhe Institute of Technology in Germany [145]. It provides most of the RSP

block required for this project.

Figure 3.15: LimeSDR Applications Ecosystem [144]

3.2.3 S-Band

Figure 3.16 shows the functional block diagram for a 2x2 digitally steered MIMO,

surveillance S-Band radar. The 2x2 MIMO, homodyne, fully coherent SDR operates

up to 3.8 GHz with 30 MHz instantaneous or digital bandwidth. The microwave

frontend includes a single PA, optional LNA, and four micro-strip or “patch”

antennas. The block diagram excludes any channel filtering required when spurs

are found. The PA and patch antennas were designed and implemented using a

suite of Keysight’s EDA software including a 3D EM solver, non-linear microwave

simulation, and board layout tools.

Microwave Frontend

The S-Band microwave frontend transmitter simply filters, amplifies and prop-

agates the SDR outputs. The receiver gathers, filters and amplifies incoming

signals for the SDR inputs. The transmit amplifier is a PA specifically designed
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Figure 3.16: S-Band Radar Testbed Block Diagram

to handle high output powers. The receive amplifier is an LNA designed for efficient

matching to reduce the NF. The LNA is optional for enhanced SNR performance.

Mini-Circuit’s ZX60-V62+ or ZX60-153LN-S+ amplifiers could be used. A custom

PA board is designed from sample MMIC chips. Custom patch antennas were

designed and implemented completely in house.

S-Band Power Amplifier

A custom SMA connector-matching RF board is designed around a quarter

watt 2.3 − 4 GHz Analog Devices Driver Amplifier (ADL5321). The reference

matching and biasing circuit from the datasheet is simulated in ADS. Discrete genetic

algorithm-based optimization is performed to select ideal circuit components and

spacing. Figure 3.17 shows the scatter parameters of the input and output ports of

the simulated PA matching board. The circuit components are layed out on a PCB.

The PCB is fabricated and implemented and the components are soldered onto the

board. Figure 3.18 shows the final implemented PA board. The gain is measured to

be about 10 dB from 2.5 − 3.5 GHz which is similar to the simulation. The total

cost of the PA is $9.98.
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Figure 3.17: S-Band Power Amplifier Simulation Scatter Parameters

Figure 3.18: S-Band Power Amplifier Implemented

S-Band Patch Antennas

Patch antennas are designed, simulated and manufactured using Keysight’s EDA

software and standard etching processes. The single rectangular patch’s length is

calculated to be the half wavelength of the resonance frequency (3.25 GHz). The

width loosely determines bandwidth. The radiating element is inset fed matched

to a 50 Ω micro-strip transmission line and SMA connector. Figure 3.19 shows the

geometry of the patch antenna.
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Figure 3.19: S-Band Micro-Strip Patch Antenna Geometry

An FEM method 3D EM solver simulates the near field, far field, radiation pattern

and antenna parameters as seen in Figure 3.20. The gain shows peaks at frequencies

higher than 3.25 GHz due to alternate resonance modes from E01. The design is

implemented using a low-cost, two layer copper clad board. Black spray paint is laser

cut and removed from the board where copper is desired to be removed by chemical

etching.
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Figure 3.20: S-Band Micro-Strip Patch Antenna Simulation

3.2.4 X-Band

The X-Band tracking and identification radar requires an additional frequency

conversion stage seen in Figure 3.21. This design uses a secondary heterodyne

conversion stage to convert the SDR output frequency of 3.25 GHz up to 10.5 GHz

by way of the upper mixing product with an LO centered around 7.25 GHz. The

LO can be tuned along the entire X-Band and frequency modulated to extend the

effective bandwidth βrsp by a couple orders of magnitude. This stretch processing

is an alternative RSP to matched filtering where the radar waveform is decoupled

from the signal within the hardware prior to sampling. The stretched processing

has a maximum SNR equal to the SNR of the ideal matched filtered process. It is

accomplished by splitting the same chirped LO between transmit and receive paths.

The chirped LO is driven by a radar waveform generated external to SDR, con-

version board, and microwave frontend. A synchronization signal is simultaneously
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sent to the SDR board to synchronize radar waveform with the samples gathered and

sent across USB to host processor. The external function generator is controlled by

the host processor, thus fully connecting the control loop. The design is alternatively

capable of CW modes and matched filtering using the SDRs instantaneous digital

bandwidth.

Figure 3.21: X-Band Radar Testbed Block Diagram

Frequency Conversion

In order to convert the SDR RF up to X-Band frequency (10.5 GHz), a

heterodyne frequency conversion stage is required (Figure B.2). The choice of

intermediate and LO frequencies determines not only the potential RF frequency but

all spurious mixing products as the result of harmonics present at the mixer inputs.

The spurs reduce in power as the order increases; however, mixing 2nd and 3rd can

result in spurious signals close the fundamental output frequency. A Genesys tool

call “WhatIF” calculates mixing products from non-linearities to determine spurious

free choices.
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Figure 3.22 shows the up-conversion spurs at the output for fIF = 3.25 GHz and

fLO = 7 GHz. The yellow RF bandwidth is interfered by the 2fLO − fIF spur at

−60 dBc. Lowering the fIF slightly will increase the spur frequency out of the range.

Also, strong 3fLO−3fIF spur nears the operating bandwidth. Careful filtering of the

IF and LO must be used to reduce harmonic spurious interference. Also, reducing

fIF by about 250 MHz will move all spurs out of the desired bandwidth.

Figure 3.22: X-Band Up-converter Spurious Mixing Signals

For down-conversion, Figure 3.23 shows possible spurious free fIF outputs. Again,

a few spurs overlap the desired fIF ; −2fLO − fRF and −5fLO − 3fRF . Adequate

channel filtering or moving the fIF can reduce spurious interference.

Considering the harmonic’s spurious possibilities at fLO = 7 GHz and available

bandwidth, two Mini-Circuits mixers (Zx05-153-S+) provide the correct frequency

conversion at 9 dB of loss. A chirped LO centered around 7 GHz is achieved

by tripling a 2 − 3 GHz Voltage Controlled Oscillator (VCO). The frequency
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Figure 3.23: X-Band Down-converter Spurious Mixing Signals

conversion block diagram is shown in yellow in Figure 3.24. The appropriate filtering

and amplification presents a clean chirped LO split between the two mixers at

approximately 7 dBm. The chirped LO output is verified with the Keysight N9040B

Spectrum Analyzer. The output power is measured above 7 dB from 7− 7.5 GHz.

The 2nd and 3rd harmonics are above 42 dBc with total harmonic distortion of 0.71%

at 7.245 GHz.

After mixing with the IF at fIF = 3.025 GHz, the unfiltered transmit 500 MHz

bandwidth signal is shown in Figure 3.25. The single-tone IF on the left side of the

spectrum mixes with the chirped LO using 500 MHz of the available bandwidth

between Markers 3 and 4. The upper and lower mixing products are clearly seen

at fLO ± fIF . The LO is isolated through the mixer down to −30 dBm. The

desired upper mixing product is seen between Marker 5 (10.058 GHz) and Marker 6

(10.489 GHz). The strongest mixing spur is seen directly to the right of the desired
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Figure 3.24: X-Band Radar Testbed Block Diagram

signal with ≈ 100 MHz bandwidth. The spur is the 2nd LO harmonic minus the IF.

Smaller mixing spurs are seen scattered along the noise floor.

Figure 3.25: N9040B Measurement of Unfiltered Frequency Conversion Spectrum
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Microwave Frontend

After the frequency conversion, the transmit and receive signal are properly

filtered and amplified before radiating through horn antennas. A high-Q cavity

band-pass filter isolates only the desired bandwidth prior to driving the final PA to

maximum output power. The maximum Pt is 20 dBm which can be controlled via the

SDR transmit gain control. The system NF is dominated by the final LNA (3.5 dB).

Two identical horn antennas operating in the WR-90 standard waveguide frequencies

(8.2−12.4 GHz) provide high directivity required for tracking radars. The antennas

have 15 dB gain, 29 degrees main beam width, and are linearly polarized.

Waveform Generation

The radar waveform is generated by a headless USB arbitrary waveform generator

from SciCore Instruments. The generator can be programmed to create any waveform

and is limited with 50 MHz bandwidth. It drives the VCO in the chirped LO. The

instrument runs off of USB power and provides a “sync” channel which sends a

square wave with the same frequency and phase as the output channel. The host

processor will make radar measurements and the appropriate API can dynamically

send control to SciCore in order to complete the control loop and provide potential

for CR research.

Power Distribution

The DC power provided to the frequency conversion and microwave frontend

need to be stable and quiet in order to not introduce noise and non-linearities into

the signal. To achieve this, special Low Drop Output (LDO) regulators generate
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the desired voltages. Texas Instruments TPS7A4701 provides an evaluation board

(TPS7A4701EVM-094) with input/output pins and voltage control. Two boards are

purchased to drive the 5 and 12 volt power supply lines. The x-band system pulls

nominally 3.5 Watts.

3.2.5 RF Link Budgets

To simulate overall SNR, RF link budgets are calculated for each band using

Keysight’s Genesys Software [136]. Simple models use datasheet or measured data

of each component. The models are plugged into dynamic simulations for iterative

design, budgeting, and validation. The channel model uses simple gain blocks and

freespace loss plus atmospheric attenuation for the target’s RCS and freespace loss,

respectively. The target is nominally σ = 0.1 m2 large at 100 m. Using these link

budgets, each component is meticulously selected for optimal system performance

and component performance while minimizing the monetary budget of the project.

For a select few components and antennas, internal design and implementation was

required for customization and cost reduction.

Figures 3.26 and 3.27 are plots of the cascade power (CP), cascade noise power

(CNP), desired signals cascade power (DCP), and cascade signal to noise ratio (CNR)

across each component for each operation band. The models predict 1 dB and 25 dB

SNR for S-Band and X-Band, respectively. The S-Band differs drastically from

theory in Figure 3.10 due to a decreased antenna gain, increased PRF, and smaller

target RCS. X-Band SNR is higher due to using a smaller PRF from theory.
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Figure 3.26: S-Band Radar Testbed RF Link Budget

Figure 3.27: X-Band Radar Testbed RF Link Budget

3.3 Prototypes

During the prototyping phase, many problems needed to be addressed in order

to successfully make radar measurements. The following section will describe first-

run prototypes, the RSP, and any major problems that need to be debugged or

redesigned.
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3.3.1 S-Band

Figure 3.28 is the prototype S-Band single-channel detection and identification

radar testbed. The PA, LNA, and patch antennas are clearly seen connected to

the SDR via coaxial SMA connectors. The SDR is connected to the host processor

laptop via a short USB cable. DC power wires are removed from the picture to avoid

clutter. The output power was measured with the S-Band PA to be 3.12 dBm.

Figure 3.28: S-Band Radar Testbed Prototype

S-Band Radar Signal Processing

The S-Band detection radar only uses the internal 30 MHz instantaneous or

digital bandwidth as the effective RSP bandwidth (βdig = βrsp = 30 MHz). The

signal is generated in GNU Radio, transmitted out of LimeSDR, reflects off of the

target, is received by LimeSDR, and processed in GNU Radio. The signal is an LFM
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chirp followed by some deadtime CW DC signal. The bandwidth of the chirp extends

from −fs/2 to fs/2. A software de-chirping RSP is performed by mixing the beating

transmit and receive chirps. The RSP signal path is shown in Figure 3.29. The chirp

source is split between the echotimer and delay block. The echotimer block handles

synchronizing transmit and receive packets. Both the echotimer and delay block

handle HW/SW latency occurring along the data streaming path. A beat frequency

is created after the Multiply Conjugate block directly related the range of a target.

The signal is filtered, decimated, and peak searched using a simple FFT.

Figure 3.29: S-Band RSP

Latency

The hardware latency/jitter from FPGA packetization and software latency/jitter

from GNU Radio scheduler inhibit clean synchronization and clean radar measure-

ments. To solve this problem, a single “Echotimer” block is created to handle

LimeSDR specific source/sink synchronization. The block is found within an updated
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version of gr-radar and interacts with GNU Radio, SoapySDR, and LimeSuite. The

echotimer block successfully synchronizes channels and eliminates most of the jitter.

Due to overhead and databus limitations, some “deadtime” between chirps is required

to reduce packet loss to a tolerable level.

Figure 3.30 shows the display GUI for GNU Radio Companion. The transmit and

receive chirp packets in the time domain are seen on the top plot. The smaller green

and black signals are the real and imaginary return signals from placing the patch

antennas directly facing each other. However, the leakage from the transmit to the

receive channel is strong enough to be observed regardless of position of antennas.

This self-interference restricts observable range however, provides a signal to calibrate

internal latency. The bottom plots are the frequency domain beat signal arising from

the self-interference testing. The internal latency is seen as a shift in frequency from

DC. Dynamic control parameters in the GUI allow for real-time tuning by centering

the self-interference peak. Packets can be synchronized with sample rate precision.
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Figure 3.30: S-Band Self-Interference Tune Testing

3.3.2 X-Band

Figure 3.31 shows the prototyped X-band single channel tracking and identi-

fication radar testbed. The LimeSDR, SciCore FuncGen, power regulators, and

microwave frontend are all mounted on aluminum sheet metal. The entire system

is placed on a cart to bring to field locations. The system can be powered by wall

outlet if one can be reached with an extension cord. Otherwise, the system can be

run off of any standard lithium battery that provides above 12 Volts. The maximum

output power is measured to be is 12 dB and the spurious free bandwidth around

10.5 GHz is 260 MHz.

X-Band Stretch Processing

Figure 3.32 displays the X-Band system from a signal processing perspective. The

chirp signal in orange is a 50% duty cycle voltage signal generated by the function
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Figure 3.31: X-Band Radar Testbed Prototype

generator to drive the VCO. The purple LO signal is a 50% duty cycle LFM chirp

which drives the mixers. The receive signal in green is time ∆τ and frequency fDr

shifted from the transmit red signal due to range and velocity of the target. The chirp

is decoupled out of the receive signal leaving the IF offset by both ∆f and ∆fσ. The

SDR samples and estimates the peak frequency. The range is calculated from the

linear slope m = ∆f
∆τ

and estimated peak ∆f̂ factoring out c shown in equation 3.9.

R̂ = ∆f̂
c

2m
(3.9)

The Doppler frequency shift fDr for X-Band will be less than ≈ 6 kHz from

Figure A.5. During the chirp portion of the waveform, the Doppler shift is much

smaller than the range frequency shift. During the non-chirp portion of the waveform,

the peak finder will estimate the velocity shown in equation 3.10. Additionally, a
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down-sloped chirp will experience a Doppler shift affecting the absolute frequency

shift in the opposite direction. The difference in the magnitude of each direction of

the chirp is twice the Doppler shift.

V̂ = ∆f̂
λ

2
(3.10)

Figure 3.32: X-Band Stretch Processing Frequency Conversion

Chirp Packet Synchronization

Having an external function generator driving the radar waveform requires the

time to be synchronized between said function generator and the samples gathered

by LimeSDR. To accomplish this, the SciCore Function Generator provides a “sync”

output which is a square wave with the same phase as the waveform. The sync

output is connected to a GPIO pin of the FPGA. The FPGA now sends a chirp

timestamp and the period of the chirp as information in the footer of each packet

as seen in Figure 3.33. The new data packet structure is implemented by modifying
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the provided open-source Altera Quartus 15 HDL project. A counter and finite state

machine is used to calculate the period to the nearest clock tick. The start of each

chirp period is recorded using the same timestamp clock as the receive channel. Both

chirp period and the last chirp timestamp are sent as two 32b footer integers with

units of sample clock ticks. A modified version of the LimeSuite drivers are also

required to extract the chirp information and feed into GNU Radio.

Figure 3.33: Chirp Sync New Data Packet Structure
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Chapter 4

Experiments and Results

A set of experiments were performed to prove radar functionality and to

ultimately implement or evaluate novel µD and CR ideas. The experiments test

the range and Doppler capabilities. Due to measurement limitations within the

DU2SRI, strategic measurements were performed and performance was extrapo-

lated.

4.1 Range

The range experiment involves setting up known or similar RCS objects to that

of a Part 107 UAV in areas without sufficient clutter and measuring range with the

intent of estimating the system’s resolution ∆R and swath. The range performance

will directly affect detection and tracking errors.
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4.1.1 S-Band

The range test of the S-Band detection radar involves using a 25 inch diameter

dish in the DU2SRI laboratory. The dish is placed far enough away from radar

such that the frequency peak is clearly observable next to the leakage peak. The

transmit frequency is set to 3.25 GHz. The chirp period is 38.85 µs and sample rate

is 35 MHz, resulting in 1360 samples per chirp. The de-chirped signal is decimated

by a factor of 12 prior to FFT peak finding. The transmit and receive gain is set

to nominal values needed for close-range testing. After tuning out the self-leakage,

Figure 4.1 shows the spectrum of the de-chirped signal. The FFT is zero-padded to

show the underlining analog range bandwidth.

Figure 4.1: S-Band Range Test: Dish target at 22 feet

The target peak is correlated in real-time with target movement and measured

to be 22 ft from the radar. Compensating for c, the LFM chirp has an effective

slope of 545 ft/MHz. The target peak is found to be 40 kHz from the self isolation.
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Multiplying by the LFM slope results in a range estimation of 21.8 feet. Since

the dish is placed at a minimum observable distance next to another range peak,

22 ft is an empirically measured maximum range resolution. In FMCW radar, the

range resolution is also the minimum measurable range. According to equation 3.7,

35 MHz has a theoretical Rayleigh Resolution of 14 ft. As expected, the theoretical

is less than the empirical measured maximum.

4.1.2 X-Band

A range test involving the same 25 inch (0.635 m) dish is performed to verify

range capabilities for the X-Band testbed. X-Band is expected to have higher range

resolution than S-Band at the cost of the maximum detectable range. The dish is

placed 20 m away in an open field with mild clutter from trees, cars, and buildings in

the distance. A golf laser rangefinder is used to measure the distance and establish

the ground truth. The X-Band testbed is set up facing the dish target. The entire

radar scene is shown in Figure 4.2.

The function generator sets the stretched effective bandwidth βrsp =

267.05 MHz, PRF = 1 kHz, and duty cycle of 50%. The waveform and microwave

outputs are verified using an oscilloscope and spectrum analyzer. The SDR samples

the IF at 5 MHz, low-pass filters, and decimates the signal by a factor of eight.

The final sample rate is 312.5 kHz. Within GNU Radio, a simple FFT and peak

finder locates the maximum frequency peak within ±312.5 kHz. The speed of light

is factored out and a final estimation of range is made. Figure 4.3 and 4.4 are the

sampled chirp data in the time and frequency domain, respectively. The time plot

shows the in-phase signal (I(t)) in red and quadrature signal (Q(t)) in blue. The
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Figure 4.2: X-Band Range Test: Dish target at 20 meters

total chirp time is 0.5 ms or 1/2 the PRI. The CW half of the PRI reduces the

overlap between sequential chirps and allows efficient RSP given data processing

rate limitations.

Figure 4.3: X-Band Range Test: Radar Chirp Samples vs. time
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The spectrum of the chirp portion of the signal has distinct peaks along the

positive direction at 73.34 kHz, 160 kHz, and 250 kHz. The slope of the chirp m

is calculated in equation 4.1. From equation 3.9, each kHz represents about 28 cm.

Using this calculation, the first peak corresponds to the dish at 20 m. The clutters of

peaks at 160 kHz and 250 kHz correspond to clutter at 45 m and 70 m, respectively.

Using the rangefinder, the first group is primarily from tree scattering. The second

group is primarily from the cars and building across the road.

m =
∆f

∆τ
=

βrsp
PRI ·DC

= 534.1
Hz

ns
(4.1)

Figure 4.4: X-Band Range Test: Radar Chirp FFT

The dish’s peak sits about 20 dB above the noise floor. According to the radar

range equation, the power level is related to the inverse of R4. The dish’s distance can

increase by a factor of 3.16 before the peak falls into the noise floor. Any target with

the same RCS as the dish will fall below the noise floor, χ ≈ 0 dB, at approximately

63 m. According to Allen E. Fuhs in his RCS lectures, the RCS of a flat disk from

the broad side is equal to πa2 where a is the radius of the disk [146]. Thus, the RCS

of a 0.3175 m radius dish can be approximated as 0.316 m2 or ≈ −5 dBsm. From
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the above approximations, a target with an RCS of 0 dBsm can be observed above

χ = 0 less than 85 m away.

Figure 4.5 is a snapshot of the real-time range measurements R̂. The system

starts with the transmit and receive gain practically off. Prior to five seconds, the

transmit gain is turned to 50 dB and the receive gain is increased to a nominal value

avoiding quantization noise from the ADC and amplifier saturation. At 15 seconds,

the radar operator walks out from behind the radar, up to the target, and circles

back to the radar. The operator’s body shadows the target for this period of time.

Figure 4.5: X-Band Range Test: Range Measurements
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4.2 Doppler

Experiments are performed to prove Doppler capabilities for tracking and µD

functions. The velocity behavior for Part 107 UAVs limits the bulky Doppler shifts

from frontal full speed (45 m/s) collision to 2.17 kHz and 7.00 kHz for S-Band

and X-Band, respectively. A nominal speed of 10 m/s results in only a 216 Hz

Doppler shift at S-Band. The low absolute Doppler shift of Part 107 UAVs leads to

the requirement of higher frequency bands to accomplish tracking. Fundamentally,

the effects of the Doppler shift can clearly be seen within the gathered samples at

S-Band; however, in order to compute meaningful FFTs with discrete resolution in

the Hz region, sufficiently long sample data packets must be stored and processed.

One limitation of using SDRs is their inherent design for high-speed, making

particularly slow measurements difficult to accomplish. This problem arises not

only in the implementation but limits radar solutions which require quick electrical

or mechanical scanning [42]. Thus, only X-Band was built and evaluated for Doppler

performance.

4.2.1 X-Band

Two X-Band Doppler experiments are performed and analyzed. The first is an

an extension of the X-Band range experiment. The second is a real-time ¯D analysis

using a house fan.
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Walking Person

Using the data collected from range experiment only when the radar operator

walks into the radar scene, MATLAB is used to post-process the data to show more

detail and analyze Doppler effects. First, Figure 4.6 plots the imaginary (red) and

real (blue) signals between 20 − 38 seconds. At 22 seconds the operator moves in

front of the radar antennas, and the high-energy return signal is observed above the

noise. At 36 seconds, the operator returns to the radar and an increase in amplitude

is again seen.

Figure 4.6: X-Band - Real (blue) and Imaginary (red) Radar Echo of Person Walking

The information about the range and velocity are not easily observable within the

time-domain. Another signal processing tool called a spectrogram generates a TFR

of the signal. The color-scale indicates the power of signal in frequency normalized
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units. The top plot of Figure 4.7 is the “fast-time” spectrogram of the radar operator.

The “fast-time” indicates the spectrum reveals high-frequency range information as

generated by stretch-processing. Across the entire time frame, a peak is observed at

73 kHz or 20 m, correlating with the stationary dish target. At 1 second (referenced

from start of Figure 4.6), the operator emerges in the scene. He first shadows the

dish target and at sufficient distances, reflections from both operator and dish are

observed. After circling around the target, the operator returns back to the radar.

In the bottom plot, a decimation factor of 100 reduces the frequency range from

100 kHz to 1 kHz. This plot is referred to as the “slow-time” as longer wavelength

features are explored. The Doppler shift from the operator’s movement is observed

first as a negative shift as the operator moves away from the radar. At the end of

the time-frame, a positive shift is observed. The shifts reach an absolute maximum

of ≈ 200 Hz indicating a bulk velocity of ≈ 2.8 m/s (6 mph) or 7.0 s
20m

. The speed

is consistent with the range plots.

Micro-Doppler

To analyze Doppler effects, a 20 inch diameter box fan is used as a simulated

rotor target. The fan has 5 curved blades which are covered with copper tape to

improve reflection. The fans µD signature can be mathematically approximated

using the rotor blade derivation applied to a single rotor hub with 5 blades found

in [86] and described in Section 2.4.1. The SDR is programmed to CW mode and

received samples are decimated to 40 kHz. The fan is placed 3 meters away from the

radar testbed on a 20° angle and images are captured showing the µD of the fan off

and on each of its three power settings. Figure 4.8 is an overlay of all four captured
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Figure 4.7: X-Band - Operator Walking - Fast/Slow Time Spectrograms

modes. The red trace shows fan in the off state. The resting target, noise floor, and

SDR imperfection can be seen in this state. It provides context for the blue, yellow,
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and green traces that show the µD of the fan in all three power levels from least to

greatest.

Figure 4.8: X-Band Micro-Doppler Contributions from a Metallic Fan

The entire band of the signal experiences a dramatic increase in power; however,

a Doppler shift of 30 kHz would result from above mach one speeds, which is highly

doubtful from a box fan. The general noise increase is assumed to be a byproduct

of the testbed itself. The µD from the fan is found in a much narrower bandwidth

shown in Figure 4.9. Across ±5 kHz, a µD signature containing regular resonances

similar to the measured DJI spectrum in Figure 2.23. The most narrow bandwidth

(≈ 2− 3 kHz) is shown to increase as fan speed increases.
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Figure 4.9: X-Band Micro-Doppler Contributions from a metallic fan - ZOOM

4.3 Testbed Results

Throughout the design process, observations were discovered about the perfor-

mance and limitations of the specific design and components used, as well as larger

benefits and issues with software-defined radars as a whole. Table 4.1 consolidates

the radar performance results as a function of parameter. The desired performance

will be met if the supported target parameter value is met or exceeded.
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Performance Parameter Target Value Units Results
S-Band Detection

ftx S-Band GHz 3.25 GHz
SNR Pt 10 dBm 3.12 dBm

∆R < 10m Bandwidth > 15 MHz 35 MHz (4.28 m)
∆V < 10 m/s TD 4.62 ms 1.17 ms (39.6 m/s)
Rmax > 600m PRF < 8 kHz 25.74 kHz (860 Hz min)

X-Band Tracking
ftx X-Band GHz 10.5

SNR Pt 10 dBm 12
∆R < 1m Bandwidth > 150 MHz Stretched: 500 (< 60cm)

∆V < 1m/s TD 14.3 ms 8.16 ms (1.75 m/s)
Lfmcw < 1 PRF < 50 kHz 1 kHz

Identification
ftx S-Band,X-Band

∆V < 1m/s Bandwidth < 50 MHz Packet length Restriction
∆V < 1m/s TD > 14.3 ms

Table 4.1: Radar Testbed Design Results

4.3.1 S-Band

For S-Band, the prototype operated at 3.25 GHz with a measured maximum

output power of 3.12 dBm. The limited power output is a result of operating the

LimeSDR at the upper limit of the device. A higher gain frontend amplifier can

solve this problem. The LimeSDR’s instantaneous βdig is ultimately limited by USB

3.0 data rates or 61.44 MSps for a single SISO 1x1 channel. In practice however, to

synchronize transmit and receive packets and maintain low packet loss, the sample-

rate should be set to 35 MHz, which achieves the range accuracy performance target.

Keeping the PRF less than 8 kHz while meeting all other power and sensitivity

parameters will result in adequate SNR. A minimum PRF of 860 Hz is possible

given a maximum radar waveform length of 1.17 ms.
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One challenge with S-Band Doppler analysis is the required look-time or Doppler

window TD the target velocity swath. For S-Band 10 m velocity resolution, TD >

4.62 ms. At 35 MHz sample rate, the signal processing chain must buffer 323, 400

I/Q samples. To minimize latency, LimeSDR packetizes the data into 4096 Byte

packets to be sent across USB 3.0. Each packet contains 1360, 12 bit I/Q samples.

It was found, the GNU Radio software-implemented stretched process can process

approximately 30 packets prior to running into packet loss and/or buffer overloading.

While maintaining a 35 MHz sample rate, a maximum TD = 1.17 ms can achieve

a velocity resolution of ≈ 40 m/s. If the sample rate is reduced to the LimeSDR

minimum 5 MHz, the Doppler processing window has maximum of 8.15 ms. While

meeting S-Band velocity resolution requirements, the system can not simultaneously

measure range and velocity. This problem is an extension of the range-velocity

dilemma as mentioned in Section A.1.3 applied to the range and velocity resolutions.

For software-implemented FMCW systems, the maximum processing window or

maximum TD is limited by the number of maximum buffer length in samples Nmax

scaled by sample rate or βrsp. The range and velocity resolution, ∆R and ∆V , is

related to TD from equations 3.7 and 3.8. Combining the resolution equations and

solving Nmax results in equation 4.2 or the Range-Velocity Uncertainty.

∆R ·∆V = λ
c

4Nmax

(4.2)

From a radar parameters perspective, equation 4.3 factors out the speed of light

and the transmit frequency of the radar system. This bandwidth-Doppler tradeoff

will occur in any software-implemented FMCW (or stretched) RSP, and is limited by

the total processing window length. The minimum separable Doppler frequency or
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Rayleigh resolution of the radar Doppler shift ∆fDr is directly related to the velocity

resolution ∆V as seen in equation 3.8. Some strategies to overcome processing buffer

limitations are sequential decimation, adding more memory, or implementing RSP

within the FPGA itself. This limitation can easily be overlooked when designing

SDRads.

βrsp
∆fDr

= Nmax (4.3)

In addition to extending the processing window, implementing the RSP in a

secondary, chirped-LO heterodyne conversion stage will eliminate the direct rela-

tionship between RSP bandwidth βrsp and minimum-detectable Doppler frequency

shift ∆fDr. Thus, long Doppler processing windows and high velocity resolution can

be achieved while maintaining high range resolution. The Doppler frequency shift

resolution is shown in equation 4.4.

∆fDr =
βs
N

(4.4)

4.3.2 X-Band

For X-Band, the prototype operated at 10.5 GHz with a measured maximum

output power of 12 dBm. Implementing a stretch-bandwidth process in hardware

via a chirped LO increases potential βrsp up to 500 MHz resulting in ∆R < 60 cm.

The hardware implemented stretch process decouples the range-velocity resolution

dilemma described above. However, the LimeSDR minimum sample rate of 5 MHz

limits the velocity resolution independent to βrsp. The maximum Doppler processing
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window is 8.16 ms and the minimum velocity resolution is 1.75 m/s. The velocity

limitation is an important design consideration when selecting SDR technology, and it

is an important example of how the entire signal processing chain must be considered

when designing SDRads or radar systems as a whole.
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Chapter 5

Results and Discussion

5.1 Conclusion

This research focuses on a small sub-set of the solution required for safe

UAV flight integration into the NAS; radar SAA sensor performance. The final

contribution is a dual band software-defined radar testbed for rapid prototyping

novel radar techniques: Micro-Doppler and Cognitive Radar. The thesis resulted

in first generation prototypes for S-Band detection and X-Band tracking and

identification radar prototyping. The main goal of enabling rapid prototyping of

CR is accomplished by implementing flexible, software-defined hardware to allow

implementation of “pulse-to-pulse” control or optimization. The testbed also offers

the ability to generate a comprehensive database of UAV µD echoes to train machine

learning identification. Further, the testbed is repeatable and cost-efficient compared

to similar laboratory SDRads, thus allowing the collaboration of a wide variety of

university or industrial laboratories into the wider UAS or radar research community.
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Wide-scale, comprehensive µD RTI database creation is integral for successfully

solving the identification problem.

The design of the testbed prototypes are portable, repeatable, and scalable. The

final parts cost of both prototypes is $5, 000. The S-Band testbed operates off of

less than one Watt. The X-Band operates off of less than four Watts, and both

testbeds can fit on a < 1/3 square meter portable cart. The low SWaP allows for

portability of the entire system to move to various environments to collect data

or evaluate high-clutter performance. The system can be powered by an extension

cord or standard lithium batteries. Prior to extensive field work, an operator or

researcher is required to obtain an FCC experimentation license in order to avoid

potential legal issues. However, a few options exist without currently holding an

explicit FCC license. A few Industrial, Scientific, and Medical (ISM) radio bands

exist at the UHF, S-Band, C-Band, K-Band, V-Band, and W-Band. For low-power

use, the FCC allows for “Intentional Radiators” at radiation power depending on

frequency and application [147].

The prototypes are comprised of low-cost, commercially available parts, systems,

or manufacturing techniques, and the SDR uses entirely open-source software and

hardware design. The result is a low-cost, repeatable testbed design which can

accelerate UAV radar SAA sensor development and integration into CASs, not only

in DU2SRI but in the wider UAS research community. The X-Band frequency

converter architecture is also designed to be scalable to higher-frequency bands while

still integrating into the same data-acquisition and software environment. The design

and software source-code is published on Github [148].
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The testbeds are evaluated for functionality and performance with emphasis on its

overall CAS function. The evaluations use FMCW waveforms however, alternate or

novel waveform design can be considered. One major limitation when implementing

FMCW or other LFM plus CW radars within a software-defined architecture is

the total available processing window of the entire signal processing chain. This

limitation is explored and defined in terms of fundamental radar parameters. The

processing window ultimately limits the combined range-velocity resolution in a

software-implemented stretched RSP. This can be thought of as the Range-Velocity

Uncertainty. Potential solutions are provided including implementing the stretched

RSP in hardware.

Overall, it is hoped that future engineers, scientists, and hobbyists find the work

presented in this thesis useful as they pursue research and development of the next

generation of radar SAA sensors. As the development of algorithms grows to meet

the complexity of natural phenomena, so too must its evaluation.

5.2 Future Work

This thesis concludes the development, implementation, and basic evaluation of

testbed performance which now enables rapid prototyping of novel radar techniques

for UAV detection, tracking and identification. Basic evaluation of the testbed

resulted in limitations and potential improvements to be considered when developing

sequential versions. Data synchronicity, packet-loss, self-interference, and calibration

can all be improved to make more robust or accurate measurements. The synchronic-

ity and packet-loss can be improved by modifying HDL or driver software. Reducing
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the self-interference will require either improved microwave frontend design to reduce

coupling from transmitter to receiver or by leakage cancellation techniques [149, 150].

In addition to LimeSDR on-chip filter, DC, and I/Q corrections, conversion board

and frontend non-linearities can be corrected within the radar waveform, on-chip

DSP, or backend software.

In addition, development of more sophisticated testbeds with larger processing

windows, larger bandwidths, and higher transmit frequencies will increase perfor-

mance to any level researchers might require. Additional functionality can also

be implemented such as making the SDRad potentially deployable or a MIMO

expansion. The future research to be enabled includes UAV µD RTI machine learning

evaluation, adaptive stimulus implementation, waveform design prototyping, or any

novel radar technique which uses LFM or more complex.

Deployment

Eventual deployment of future SDRads based on SDR technology requires

addition engineering hours in order to minimize SWaP and reliability. The first

step is to mount all MMIC which are inside the SMA Mini-Circuits parts onto one

monolithic frequency conversion microwave PCB. The estimated size of the PCB will

be similar to that of the LimeSDR board or roughly 100 cm2. Additional mountable

small scale patch antennas can enable full 360 degree coverage via electronic

beam-steering. Beam-steering requires either analogue or digital beam-forming or

phased arrays. Analogue beam-forming channels are phased and combined either

prior to the first frequency conversion stage or prior to the LimeSDR conversion stage.

The latter requires duplicate microwave components for improved performance and
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is typically referred to as a more “Active” phased array. A single chirped LO and/or

a single baseband processor on the LimeSDR will multiplex all steering angles. For

faster control and multiple simultaneous beams, additional LimeSDRs synchronized

in parallel can process all channels distributively using digital beam-forming. This

essentially uses beam angle multiplexing instead of time domain multiplexing by

placing an additional processing load on the host processor. To implement,

synchronization between multiple parallel SDRs will be the most challenging task.

MIMO

Along with testing various radar waveforms and higher-level adaptive control, the

additional synchronized channels can be implemented in parallel to enable MIMO

radar for potential added performance over standard beam-forming techniques [151,

152]. For full MIMO functionality, each transmit and receive channel is required

to be digitally separate similar to digital beam-forming. The channels must also

be uncorrelated via time-multiplexing or orthogonal signals. The radiating elements

can now be placed in a strategic pattern to create a virtual array with more effective

elements than the physical array itself. The virtual elements are created from each

combination of transmit and receive elements.

UAV Database

As the primary motivation for the development of this testbed, a µD UAV

database is recommended for not only SAA application but also anti-UAV and

airspace management as a whole. A comprehensive database should include a wide

range of UAV types and control clutter recorded in many different environments
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with various amounts of noise present. The UAVs should record at various angles

and transmit frequencies. The clutter should include target-less scenes as well as

non-UAV targets such as birds, larger aircraft, and other vehicles. The creation

of such a database is a requirement of successfully implementing a real-world,

statistically-based µD RTI system.
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Communications Commission Std., 2018. [Online]. Available: https:

//transition.fcc.gov/oet/spectrum/table/fcctable.pdf

[13] F. C. White, “Is an airborne system for collision avoidance operationally and

technically feasible?” IRE Transactions on Aeronautical and Navigational

Electronics, vol. ANE-4, no. 2, pp. 72–74, June 1957.

[14] E. O. Frye and D. E. Killham, “Aircraft collision avoidance systems,” IEEE

Spectrum, vol. 3, no. 1, pp. 72–80, Jan 1966.

[15] R. E. Perkinson and F. D. Watson, “Airborne collision avoidance and other

applications of time/frequency,” Proceedings of the IEEE, vol. 60, no. 5, pp.

572–579, May 1972.

[16] K. M. Fahey and M. J. Miller, “Unmanned systems integrated roadmap

FY2017-2042,” Department of Defense. [Online]. Available: http://cdn.

defensedaily.com/wp-content/uploads/post attachment/206477.pdf

[17] R. T. Ogan, “Integration of manned and unmanned aircraft systems into u.s.

airspace,” in IEEE Southeast Con 2014, March 2014, pp. 1–4.

[18] A. Canolla, M. B. Jamoom, and B. Pervan, “Interactive multiple model sensor

analysis for Unmanned Aircraft Systems (UAS) Detect and Avoid (DAA),”

in 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS),

April 2018, pp. 757–766.

[19] J. A. Douthwaite, A. D. Freitas, and L. S. Mihaylova, “An interval approach

to multiple unmanned aerial vehicle collision avoidance,” in 2017 Sensor Data

Fusion: Trends, Solutions, Applications (SDF), Oct 2017, pp. 1–8.

[20] A. D. Zeitlin, “Sense & avoid capability development challenges,” IEEE

Aerospace and Electronic Systems Magazine, vol. 25, no. 10, pp. 27–32, Oct

2010.

https://transition.fcc.gov/oet/spectrum/table/fcctable.pdf
https://transition.fcc.gov/oet/spectrum/table/fcctable.pdf
http://cdn.defensedaily.com/wp-content/uploads/post_attachment/206477.pdf
http://cdn.defensedaily.com/wp-content/uploads/post_attachment/206477.pdf


[21] G. Fasano, D. Accardo, A. E. Tirri, and A. Moccia, “Experimental analysis

of onboard non-cooperative sense and avoid solutions based on radar, optical

sensors, and data fusion,” IEEE Aerospace and Electronic Systems Magazine,

vol. 31, no. 7, pp. 6–14, July 2016.

[22] S. Ramasamy, R. Sabatini, and A. Gardi, “Cooperative and non-cooperative

sense-and-avoid in the CNS+A context: A unified methodology,” in 2016

International Conference on Unmanned Aircraft Systems (ICUAS), June 2016,

pp. 531–539.
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[84] D. Blanco, M. Morante, J. RodrÃguez, J. A. Garzón-Guerrero, M. C.

Carrión, and J. F. Gómez-Lopera, “Noncooperative radar target discrimination

by extinction pulses using exponential β -splines,” IEEE Transactions on

Antennas and Propagation, vol. 64, no. 11, pp. 4887–4890, Nov 2016.

[85] M. M. Moreno, D. B. Navarro, and M. C. C. Pérez, “Radar target discrimina-
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Appendix A

Radar Basics

A.1 Radar Types

Radars are often distinguished by their inherent measurement capabilities. At a

fundamental level, the sensor is capable of estimating range and/or velocity. The

capabilities are often referred to by the radar’s action rather than measurement.

For range measurements, a pulsed radar is required. For velocity measurements,

a Doppler radar is required. The following section first isolates each capability and

overviews the required systems. Subsequently, methods and limitations of combining

both capabilities into one system are introduced.

A.1.1 Pulsed

The first pulsed radar systems used short-time, high-power pulses at one constant

wavelength. When and if the pulse returns, a detection and distance estimate can

be made by the radar system. The whole system spun on a large mechanical servo

to “sweep” a field of view by taking successive azimuthal measurements. A pulse

consists of a carrier transmit frequency enveloped or multiplied by a square wave

with low duty cycle as shown in Figure A.1.

The pulse width τ repeats every pulse period Tr seconds with a pulse repetition

frequency fr = 1/TrHz. The detected signal contains transmitter leakage and

the superposition of the target return signal and unwanted reflections from all
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Figure A.1: Radar pulse signal with return signal [41]

objects within the scene. The range of a target can be calculated by the time

difference between transmit mode and the return signal via equation 2.1. The range

can be calculated by the cross-correlation between send and return signals. The

range resolution is limited by 1/τ which determines the main lobe width of a cross

correlation between two pulses. The minimum range is determined when a full pulse

can be received (equation A.1). The maximum ambiguous range is determined by Tr.

If the target return signal occurs after Tr, it is unknown from which transmit pulse

the signal originated. In this way, the range is ambiguous above Ramb calculated in

equation A.2.

Rmin =
cτ

2
m (A.1)

Ramb =
cTr
2

m (A.2)

From the radar range equation 2.13, the received noise power is inversely

proportional to R4. For a given target RCS, Figure A.2 shows the minimum,

maximum and ambiguous range. Rmin and Ramb are determined by the pulse

waveform. Rmax is determined by the radar range equation 2.13. Typically Ramb

is set to just after Rmax to hide any ambiguous return signal in the noise of the
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system, thus limiting the acquisition time of the system. The range between Rmin

and Rmax is called the Range Swath and can be increased by increasing transmit

power, antenna gain or target RCS.

Figure A.2: Radar range swath

Figure A.3 gives an example of a range-only pulse radar block diagram. The

radar waveform is modulated onto the transmit signal by duplexing a single antenna

with a microwave switch, effectively transitioning the radar between transmit and

receive mode. The transmit frequency f0 is modulated out of the return signal leaving

the radar return signal only. The resulting signal is amplified, peak detected, and

displayed.
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Figure A.3: Pulse radar block diagram [41]

A.1.2 Doppler

From a radar operator’s standpoint, having a direct velocity measurement is

desired for more accurate tracking. A pulsed radar can also be capable of calculating

the target velocity with additional circuits and components via the Doppler Effect.

The Doppler Effect was first described in 1842 by physicist Christian Doppler. The

effect changes the observed frequency of a wave originating at a source by the

receiver’s relative velocity and is a property of all propagating waves including sound,

water and EM. The relationship between the observed frequency f and the emitted

frequency f0 is given in equation A.3 [10].

f = f0

(
c± vr
c∓ vs

)
(A.3)

Setting the source velocity to zero (vs = 0) and assuming the receiver velocity

vr is small compared to c, the relative velocity, ∆v = vr − vs, is shown in the

Doppler relationship equation A.4. A positive relative velocity results from source

and receiver moving away from each other.

f = f0

(
1 +

∆v

c

)
(A.4)

The change in frequency due to the Doppler Effect, ∆f = f − f0, is shown in

equation A.5. In this way the observed Doppler Effect induced frequency shift or
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Doppler Shift is determined by the relative velocity scaled by the wavelength of the

transmitted frequency.

∆f = −f0
∆v

c
= −∆v

λ
(A.5)

EM waves do not propagate in a medium like sound or water waves. The constant

velocity of light c is seen from both the source and observer and thus the relative

velocity must account for special relativity effects through Lorentz transformations.

More specifically, a time dilation factor (equation A.6) stretches or compresses the

time length between crests of an EM wave (equation A.7).

γ =
1√

1− v2s
c2

(A.6)

∆ts = t2 − t1 =
γ

f0

(A.7)

The Doppler shift equation A.3 becomes equation A.8 which can be written in

terms of β = v
c
. If v � c relativistic effects become negligible as γ → 1, ∆ts → 1

f0

and equation A.8 → equation A.3 [10].

f =
f0

γ

(
c± vr
c∓ vs

)
= f0

√
1± β
1∓ β

(A.8)

This can also be seen via the MacLaurin series when β → 0 and higher order

terms cancel out... √
1− β
1 + β

= 1− β +
β2

2
− ... (A.9)

The Doppler shift when source and observer are moving away from each other at

relatively low speeds is...

f ∼= f0 (1− β) = f0

(
1− v

c

)
(A.10)

This is approximately equal to equation A.4 or the classical interpretation of the

Doppler effect and thus the Doppler shift for all relatively low speed interactions can
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be calculated via equation A.5. To keep terms consistent, positive ∆v represents the

observer traveling away from the source and thus imparting a negative frequency

shift or longer wavelength shift onto the signal.

fDoppler ∼= ∆f = −∆v

λ
(A.11)

For radar applications the relative speed of the aircraft is assumed to be much

less than the speed of light. Figure A.4 is a diagram representing the Doppler effect

in radars. The transmitter emits a wave with frequency ftx in the general direction

of a target with an RCS σ. The target has a velocity and direction represented by

vector v. The Doppler circles in the background are the two dimensional frequency

shifts from each source direction observed by a target traveling at velocity v. The

projected velocity or relative velocity between transmitter and target ∆v = vcosθ

imparts a frequency shift ∆fD onto the reflection of the wave. From equation A.11

the Doppler shift is based on the relative velocity ∆v and wavelength λ. Thus, the

scattered wave has a frequency ftx + ∆fD. The scattering signal captured by the

radar experiences another Doppler shift of ∆v
λ

as the source becomes the target and

the observers becomes the receiver of the radar system. The total frequency shift in

a monostatic Doppler radar is then fDr = 2∆v
λ

. Notice that the negative sign from

the velocity term cancels the negative sign in equation A.11 and thus increases the

frequency or decreases the wavelength.

Figure A.5 contour plots the Doppler shift in a monostatic radar system for

microwave frequencies up to 30 GHz and over ±100 m/s. FCC Part 107 dealing

with small commercial UASs gives a velocity limit of 100 mph or 45 m/s. This gives

a maximum relative speed of 90 m/s between two Part 107 UAVs going opposite

directions. At S-Band, the Doppler shift for UAVs is between ±2 kHz. At X-band,

the Doppler shift is ±6 kHz. At K-Band, it is ±15kHz. In order to measure the

full Doppler shift, the PRF fτ or the sample rate of the Doppler processor must be

larger than 2×fDopplerMax to prevent Doppler ambiguities from sample aliasing. The

Doppler resolution is limited by the frequency resolution of the FFT of a coherent

acquisition window. From basic signal processing theory, the longer acquisition

window yields a more resolved main lobe in the frequency domain. Applying windows

can also effect the main lobe width of the FFT.
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Figure A.4: Radar doppler effect: fDr = 2∆v
λ

A simplified functional block diagram of a Doppler (velocity) only radar system

is shown in Figure A.6. The circulator only allows microwave energy entering a

curtain port to travel to the port in the counter-clockwise direction. The Doppler

shift fd is demodulated out of the return signal and pre-processed for the display. The

transmitted signal is a continuous frequency and does not have modulation applied

to it. This is commonly called a Continuous Wave or “CW” signal and CW radar.
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Figure A.5: Doppler shift in radar

Figure A.6: Doppler radar block diagram [41]

A.1.3 Pulse-Doppler

Combining pulse and Doppler radars to estimate range and velocity within the

same system was enabled by high-data sampling and fast computation, using the

radar architecture in figure 2.11 with a pulsed radar waveform. A single range
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measurement is made every PRI. The measurement contains inherent ambiguities

and resolution limitations. The method to estimate the range is explained in the

following sections. The range measurement is considered to occur in the “fast time”

because the estimate is processed and further limited by the fundamental data sample

rate of the system fsamp. In a CW system, the velocity or Doppler processing occurs

in the “fast time”. If the system is coherent across pulses, CPI can be performed

by using information of a single, similar sample from successive pulses. Using one

sample from each pulse reduces the effective sample rate and is thus the origin for

the nomenclature “slow time.”

The inherent temporal behavior of range and Doppler mechanisms lead to the

effectiveness of CPI processing range in the fast time and Doppler in slow time. A

range requires differentiating propagating signals traveling at the speed of light. As a

baseline, light in a vacuum takes 3.33 ns to travel 1 m. Sampling a passing EM wave

at 300 MHz will capture the wave at 1 m increments. From the preceding section,

the target Doppler shifts for typical UASs at common radar bands are within the

kHz range, thus Doppler processing occurs in the slow time. Figure A.7 shows a

two-dimensional data matrix which represents each complex data sample organized

along the fast time and slow time dimensions. The vertical fast time dimension

represents each data sample within one pulse or the discrete range bins within the

range swath. The horizontal slow time dimension represents the same range bin

across multiple pulses occurring at the PRI. Digital filters and further processing in

each direction can either isolate targets at constant range or constant velocity. For

example, if the Doppler shift is required, the spectral analysis of a single range bin

across the slow time results in an estimate of the target’s velocity only at a specific

range. Applying a high-pass filter across the slow time removes stationary objects

which is often desired when removing ground clutter.

The PRI or PRF (PRF = 1/PRI = 1/Tr) affects ambiguity of both range and

velocity measurements. For a given PRF, the unambiguous range Run and velocity

vun are shown in equations A.12 and A.13. The unambiguous range is inversely

related to the PRF while the unambiguous velocity is directly related. Therefore,
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Figure A.7: Fast time, slow time 2D radar processing data matrix

the PRF trades range coverage for velocity coverage. The relationship is known as

the Range-Doppler Dilemma.

Run =
c

2PRF
(A.12)

vun =
λPRF

2
(A.13)

The combined unambiguous coverage or total range-Doppler coverage is constant

and does not depend on PRF but does depend on the transmit wavelength

(equation A.14). As the operating frequency increases, the coverage decreases.

Figure A.8 shows the maximum unambiguous range vs. maximum unambiguous

velocity as a function of operating frequency in GHz. To move along the operating

frequency contours, the operator must only change the PRF. The higher the PRF,

the lower the range.

Rumvum =
λc

4
(A.14)
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Figure A.8: Maximum unambiguous range vs. velocity at operating frequency in
GHz.

A.2 Radar Signal Processing

RSP is the method or algorithms by which the sampled signals are processed to

calculate range and/or velocity estimates. RSP algorithms are typically designed

from fundamental mathematical models with careful consideration for radar types,

desired targets, environmental noise and hardware limitations. The following sections

provide an introduction to the common, fundamental topics of RSP. A more

expansive overview can be found in [30].

A.2.1 Matched Filter

From a signal processing perspective, the goal is to maximize the SNR and

measure the time difference between send and receive signals. Any increase in SNR

due to signal processing techniques can be captured in a signal processing gain factor

Gs. A common and well-established filter technique call Matched Filtering is used to
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maximize output SNR [30]. The matched filter (equation A.15) is the time-reversed,

scaled, complex conjugate of the input signal x(t). TM is an arbitrary time shift. α

is an arbitrary scale factor which has no effect on output SNR.

h(t) = αx∗(TM − t) or

H(ω) = αX∗(ω)e−jωTm
(A.15)

To get a better intuition as to the effect of a matched filter, equation A.16 shows

the output y(t) of the matched filter applied or convolved with x′(t). The output

is seen to be the cross-correlation between the signal plus noise and the matched

filter with a time shift Tm. If x(t) is a pulse, the cross-correlation between input

and shifted output results in a triangle function centered around the shift. The peak

of the triangle is an SNR-optimized estimate of the time shift Tm. This is ideal for

radar range finding.

h(t) = α

∫ ∞
−∞

x′(s)h(t− s)ds = α

∫ ∞
−∞

x′(s)x∗(s+ TM − t)ds (A.16)

Figure A.9 shows the signal processing chain for a matched filter range detector.

The input x(t) is simply a pulse. The Matched filter H(ω) is calculated and applied

to the input signal plus noise, plus an ideal target model. The noise N is a function

of radar direction and system NF. The target model includes an attenuation factor

σ and the time delay t0. Setting Tm = τ the output is now the same cross-correlated

triangle from equation A.16 but now time shifted t0 + τ . A simple peak detector

can now estimate the time shift t̂0 and calculate the range of the target. The range

resolution ∆R or ability for the estimator to distinguish two targets close to each

other is determined by the pulse duration in terms of range.

∆R =
cτ

2
(A.17)
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Figure A.9: Matched filter signal processing chain

A.2.2 Ambiguity Function

The ideal target model excludes the effects of Doppler shift which may occur

if the target has a relative velocity. Incorporating a Doppler-shifted ej2πfdt applied

to the signal x(t) and assuming α = 1 and Tm = 0 leads to an important radar

waveform design tool called Ambiguity Function (AF) A(t, fd). The function, as

defined in equation A.18, is often depicted as a 2-dimensional plane with a maximum

at (0, 0). It represents the cross-correlation response of an input function in both

time and Doppler shift. Figure A.9 is a contour plot of a pulse AF with τ = 1µs and

Tm = 10µs.

A(t, fd) =
∥∥∥Â(t, fd)

∥∥∥ =

∥∥∥∥∫ ∞
−∞

x(s)ej2πfdsx∗(s− t)ds
∥∥∥∥ (A.18)

Figures A.11 and A.12 show τ = 0 and 0Hz Doppler and Delay cut, respectively.

The resolution of a Doppler shift or range estimate can be seen as the ability to

differentiate the main lobe from a shifted main lobe.
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Figure A.10: Pulse ambiguity function

Figure A.11: Pulse ambiguity function delay cut
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Figure A.12: Pulse ambiguity function doppler cut
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A.2.3 Pulse Compression

Both Pulse and Doppler radar’s performance is limited by hardware speed and

power handling. Peak and average power limit the maximum range which can be

seen in the radar range equation 2.6. Typically, a high power handling amplifier is

placed before the transmit antenna. If the amplifier is driven to high peak powers,

the output becomes saturated and power is lost to the harmonics of the transmit

frequency. The duty cycle τ
Tm

relates the peak to average transmit power. High

average powers can lead to power loss to heat and thus reduce power efficiency.

The range resolution and signal detection are effected by hardware power

limitations. For pulse radar, the range resolution ∆R is directly related to the pulse

width τ through equation A.17 and thus a smaller pulse width is required for better

range resolution. For signal detection, the SNR χ of the return signal can be written

in the energy form equation A.19 where the noise is modeled as a zero-mean white

Gaussian noise with variance σn.

χ =
Es
σn

(A.19)

The total signal energy Es of a data acquisition time Tm is the received

instantaneous power Ps(t) integrated over the entire time period. For a reflected pulse

waveform x(t) with a peak voltage level A from propagation attenuation, RCS and

system losses K, the power is related to x2(t). Therefore, Ps(t) = x2(t) = K2A2(t)

for t = 0 to t = τ .

Es =

∫ Tm

0

Ps(t)dt =

∫ τ

0

K2A2dt = K2A2τ (A.20)

The SNR is also directly related to τ . This presents an inverse relationship

between smaller range resolution and larger SNR. To maintain a required SNR,

decreasing τ requires increased peak power. Therefore the hardware power

limitations require a minimum τ in order to detect a signal at a given SNR. Since

the signal’s SNR decreases as range increases via the inverse square law, the radar

engineer must choose τ to increase range resolution or maximum range of detection.
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The idea of pulse compression was theorized in order to decouple SNR or energy

from resolution for a given range of targets. In order to decouple, the range resolution

must be further investigated. The range resolution is fundamentally determined by

an internal time resolution which can be interpreted as the ability for a system

to sense changes in time or time derivatives. One measure of a system’s ability

to transfer higher time derivatives in steady state is commonly called bandwidth.

Intuitively, a zero-mean, sinusoidal signal with higher frequency ultimately requires

larger slopes at the zero crossings or a system with a larger bandwidth allows higher

time derivatives to pass through. The FFT of a pulse width τ is known to be a

sinc function with main lobe peak-to-null bandwidth βp = 1
τ
. βp can be thought of

as the minimum bandwidth or minimum resolution of any signal of length τ . To

increase the time resolution, the pulse is modulated by a known signal with higher

bandwidth βm thus decoupling bandwidth and time-width by a known factor. The

TBP is a measure of bandwidth increase or time-resolution increase from the simple

pulse minimum. For a simple pulse, the TBP is equal to 1. As βm � βp, the pulse

energy is compressed across more bandwidth by a factor of TBP thus maintaining

detection performance while improving range resolution.

Common modulation waveforms include linear or non-linear frequency, stepped

frequency and binary phase. LFM is one of the most commonly used, simple, and

understood functions. It is defined as a linear sweep of some bandwidth βLFM over

the pulse width τ .

x(t) = cos

(
π
βLFM
τ

t2
)

(A.21)

Ideally, the waveform contains equal energy at all frequencies across the

bandwidth and is commonly called an up-chirp or down-chirp signal depending on

the ramp direction due to the sound it makes when played back within the audio

range. Figure A.13 shows the real and imaginary parts of a chirp waveform with a

length of 1µs with a TBP of 50.

Processing the LFM waveform with TBP = 10 through a matched filter,

Figure A.14 is the AF and Figure A.15 is the zero Doppler cut or auto-correlation.

The LFM waveform appears to rotate the AF from the simple pulse so constant
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Figure A.13: Linear Frequency Modulated Waveform of length 1µs and TBP = 50

Doppler cuts will cross the main lobe at a diagonal and therefore decrease the main

lobe of the constant Doppler cut. The zero-delay cut will remain similar to a simple

pulse; however, the range and velocity are now coupled when the Doppler frequency

shift is similar to 2R
c
β
τ
Hz or the target reflection occurs along the AF diagonal.
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Figure A.14: Ambiguity Function of LFM Waveform of length 1µs and TBP = 10

Figure A.15: Doppler cut of the Ambiguity Function of LFM Waveform of length
1µs and TBP = 10
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A.2.4 Frequency Modulated Continuous Wave

FMCW radar is arguably the most common radar technique at the time of this

thesis. It involves a repeated LFM transmit signal with a duty cycle near 100%.

The chirp signal can be linearly increasing, decreasing, or both in frequency for

some bandwidth (usually about 500MHz). FMCW is ideal for accurate, close-range

tracking. The bandwidth in a radar system ultimately determines the range

resolution and nominal ranges. FMCW provides higher average power from near

100% duty cycle. This yields higher SNR at greater distances or smaller RCS. Thus

making FMCW a good candidate for accurate range detection of small targets within

the close range.
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Appendix B

Software Defined Radios

B.1 Mixed Signal Limitations

Current ADCs and Digital-to-Analog Converters (DACs) have limited upper

sample frequency ranges determined by the physical speed of electronics. The

Nyquist frequency is defined as half the sample rate or the maximum frequency

a sampling process can recreate without aliasing. As a rule of thumb, a usable

sampling process must be at least 5-10 times higher than operating bandwidth.

Typical high-end ADCs/DACs have sampling frequencies less than 500MHz thus

limiting potential operating bandwidths.

The use of a single data converter per transmit or receive channel further

limits temporal or phase measurements to be made across channels. For MIMO,

fully coherent information across all channels is required for physical layer time

synchronicity. “Fully Coherent” implies both in-phase and quadrature (90° out of

phase) signals are sampled or created. Thus, both amplitude and phase of the signal

is monitored.

B.2 Frequency Conversion

Due to EM propagation behavior, common communication frequency bands range

from a few MHz to a few GHz. Short-range communications are also being devel-
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oped up to 100 GHz at the time of this thesis. Given the limitation of ADCs/DACs,

RF frontends have been conceived and developed to convert limited frequency bands

from the propagation frequency to near 0Hz or “DC” while maintaining the integrity

of the information signal. To achieve this, components are developed to “mix” or

multiply two signals together. The result is a signal whose frequency is a combination

of the sum and difference of the original signal’s frequencies. This behavior is easily

seen in the “Product-to-Sum” and “Sum-to-Product” trigonometric identities in

equations B.1 and B.2.

cos θ · cosφ =
cos(θ + φ)

2
+

cos(θ − φ)

2
(B.1)

cos θ + cosφ = 2 · cos
(θ ± φ

2

)
· cos

(θ ∓ φ
2

)
(B.2)

B.3 Frontend Architecture

The sampled or constructed signal is centered around the IF. The IF is converted

to or from the propagation frequency, called RF, by a single tone generated by some

local generator and is therefore commonly called the LO. The choice of IF, whether

at DC or near to, is an architectural design choice between a homodyne (direct or

DC conversion) or heterodyne transceiver, respectively.

Figures B.1 and B.2 show typical homodyne and heterodyne receiver architecture.

The main difference is ωif and the channel select filters. The additional filters are

required due to non-ideal behavior of the components such as amplifier non-linearity

caused by saturation. The saturation induces harmonic components to propagate

through mixers generating spurious signals at unwanted frequencies. Sufficient care

must be taken to eliminate unwanted spurious noise by strategic filtering. For SDRs

the transceiver architecture is chosen to be flexible and UWB to allow for multiple

applications to be implemented from the same system. Typically homodyne, fully

coherent receivers and transmitters are used.
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Figure B.1: Homodyne or Direct Down Conversion Receiver Architecture [153]

Figure B.2: Heterodyne Conversion Receiver Architecture [153]
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Appendix C

Electromagnetic Theory

C.1 Electromagnetic Material Properties

The movement of electrons or any charge carrier in a conductor will, by Maxwell’s

equations, displace an electric field ~E which induces a magnetic field ~H which can,

by Lorentz Forces, displace free electrons in another conductor. However, the fields

cannot change instantaneously within a medium and thus changes must propagate

at a finite speed. The velocity of propagation in a vacuum is the speed of light c1.

If the material has a large density of molecular electric dipoles, the applied

field can create electric dipole moments and effect the total electric flux density

or displacement field ~D by inducing an electric polarization density ~PE. If ~PE is

linearly related to ~E by equation C.1, the relationship between the displacement

field and the electric field can be written as the constitutive equation C.2. Where ε0

is the permittivity of free space2 and χE is the electric susceptibility.

~PE = ε0χE ~E (C.1)

~D = ε0εr ~E (C.2)

1c = 299, 792, 458 meters per second

2ε0 = 8.854187817× 10−12 Farads per meter
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The relative permittivity εr is the free space normalized permittivity and is a

complex frequency and position dependent number or tensor. In a non-dispersive,

homogeneous and isotropic medium, the frequency dependence, position dependence

and tensor matrix properties are dropped, respectively, and a single complex number

is left as shown in equation C.3. The complex part represents the dielectric damping

of the medium and the real part is called the dielectric constant ; Dk = ε′

ε0
. From

Maxwell’s curl equation, the ratio between dielectric damping plus conductivity σ

and dielectric constant determines if a material can propagate fields without loss

based on the loss tangent as defined by equation C.4. In a conductor, the loss

tangent is overwhelmed by conductivity and the material becomes an inefficient

propagator of fields through displacement currents because currents are ”shorted”

through conductive currents. In a insulator or “dielectric”, the propagation loss is

dominated by dielectric damping.

ε = ε0εr = ε′ − jε′′ (C.3)

tan δ =
ωε′′ + σ

ωε′
(C.4)

tan δconductor ∼=
σ

ωε′
(C.5)

tan δdielectric ∼=
ε′′

ε′
(C.6)

An analog of the medium’s electrical properties are found in its magnetic

properties. The magnetization density ~M is the measure of magnetic moments

caused by a magnetic field ~H by a linear factor χM in equation C.7. The medium’s

combined magnetic effects can be written as a constitutive equation C.8, where µ0

is the permeability of free space3 and µr is the relative permeability. For most

3µ0 = 4π × 10−7 Henrys per meter

192



dielectrics and conductors used in microwave design, µr = 1 and permeability is

ignored by calculations.

~M = µ0χM ~H (C.7)

~B = µ0µr ~H (C.8)

The permittivity ε, permeability µ, and conductivity σ of a medium play a

fundamental role in its scattering characteristics. For a given interface between

two mediums with different electromagnetic characteristics, the reflection coefficient

is defined as the complex ratio between the electric field of a reflected wave ~Er and

the original incident wave ~Ei and can be expressed in terms of intrinsic impedance

of each medium as expressed in equation C.9.

Γ =
~Er
~Ei

=
η2 − η1

η2 + η1
(C.9)

Impedance can be thought of as the intrinsic force needed per unit velocity. For

electromagnetism in mediums, the force is provided by electric and magnetic fields,

and the velocity is either the conductive or displacement currents. The impedance

of medium can be defined from the electromagnetic characteristics in equation C.10

where γ is the propagation constant defined as equation C.11.

η =

√
jωµ

σ + jωε
=
jωµ

γ
(C.10)

γ = α + jβ = jω
√
µε
√

1− jσ/ωε (C.11)

As the medium approaches a loss-less dielectric, σ → 0 and ε and µ become

strictly real quantities. The propagation constant can be written as equation C.12,

γ = jβ = jω
√
µε (C.12)

193



and the intrinsic impedance can be written as equation C.13, where the intrinsic

impedance of free space is defined as η0 =
√
µ0/ε0 ∼= 377Ω.

η =
jωµ

jω
√
µε

=

√
µ

ε
= η0

√
µr
εr

(C.13)

For most usable dielectrics found in nature, µr ∼= 1, resulting in the real part of

the complex permittivity or the dielectric constant being responsible for an intrinsic

impedance difference between two mediums. Intuitively, this can be thought of as

reduction in the propagation velocity by a factor of 1√
εr

, resulting in a reflection

of a significant portion of the EM wave. A common analogy used to explain this

phenomenon is the partial reflection in a window due to the impedance transition

from air to glass. In another example, water can have a dielectric constant lower than

10 and is dependent on temperature, state, concentration and many other factors as

seen in Figure C.1. By equations C.13 and C.9, Γ ≥ 0.52. Thus, at least more than

half the wave’s energy is reflected.

Figure C.1: Dielectric permittivity and dielectric loss of water between 0°C and
100°C [154]

For conductors, as σ → ∞; α → ∞; η → 0; Γ → −1. Thus, the wave decays

infinitely fast and then completely reflects similar to a shorted transmission line.

Table C.1 shows rough estimates of conductivity, dielectric constant, and relative
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permeability to give the reader an idea of electromagnetic and scattering behavior

of common materials in the environment.

Medium σ [S/m] Dk µr
Iron 1.00× 107 - 5000

Copper 5.96× 107 - 0.999994
Gold 4.10× 107 - 0.999493
Silver 6.30× 107 - 0.99998

Aluminium 3.77× 107 - 1.000022
Sea Water s4.80 75 0.999992

Drinking Water 5× 10−4 ↔ 5× 10−2 80 0.999992
Silicon 1.56× 10−3 11.7 1
Wood 10−4 ↔ 10−3 1.22 1.00000043
Glass 10−15 ↔ 10−11 6.5 1
Air 10−15 ↔ 10−9 1.00058986 1.00000037

Teflon 10−25 ↔ 10−23 2.1 1.0000

Table C.1: Electric and Magnetic Characteristics of Common Materials
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Appendix D

Bill of Materials

System Function Company Part Number Price Spec
Both SDR Lime LimeSDR $300 3.8 GHz

S-Band PA ADI ADL5321 $9 250 mW
Both LPF MC VLP-54 $25 4 GHz
Both IF AMP MC ZX60-V62+ $50 15 dB
Both LNA MC ZX60-153LN-S+ $200 3 dB NF
LO VCO MC ZX95-2500A-S+ $45 2− 2.6 GHz
LO LPF MC VLFX-2500+ $40 2.5 GHz
LO Tripler MC ZX90-3-812-S+ $52 2− 3 GHz
LO LO AMP MC ZX60-183A-S+ $170 30 dB
LO HPF MC VHF-6010+ $25 6.3 GHz
LO LPF MC VLF-8400+ $22 8.4 GHz
LO Splitter MC ZX10-2-98-S+ $40 3.5 dB

X-Band PA MC ZX60-24-S+ $290 18 OP1dB
X-Band Mixer MC ZX05-153-S+ $49 4− 15 GHz
X-Band Cavity Filter MC ZVBP-10R5G-S+ $300 10− 11 GHz
X-Band HPF MC VHF-8400+ $25 8.4 GHz
X-Band Horn Pasternack PE9856/SF-15 $1100 WR-90
X-Band FuncGen SciCore AWG2300 $600 50 MHz
X-Band LDO TI TPS7A4701 $20 1 Amp

Table D.1: Bill of Materials
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